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WHAT THIS BOOK IS FOR

Students have generally found optics a difficult subject to
understand and learn. Despite the publication of hundreds of
textbooks in this field, each one intended to provide an
improvement over previous textbooks, students continue to
remain perplexed as a result of the numerous conditions that
must often be remembered and correlated in solving a problem.
Various possible interpretations of terms used in optics have also
contributed to much of the difficulties experienced by students.

In a study of the problem, REA found the following basic
reasons underlying students' difficulties with optics taught in
schools:

(a) No systematic rules of analysis have been developed
which students may follow in a step-by-step manner to solve the
usual problems encountered. This results from the fact that the
numerous different conditions and principles which may be
involved in a problem, lead to many possible different methods of
solution. To prescribe a set of rules to be followed for each of
the possible variations, would involve an enormous number of
rules and steps to be searched through by students, and this
task would perhaps be more burdensome than solving the
problem directly with some accompanying trial and error to find
the correct solution route.

(b) Textbooks currently available will usually explain a
given principle in a few pages written by a professional who has
an insight in the subject matter that is not shared by students.
The explanations are often written in an abstract manner which
leaves the students confused as to the application of the
principle. The explanations given are not sufficiently detailed
and extensive to make the student aware of the wide range of
applications and different aspects of the principle being studied.
The numerous possible variations of principles and their
applications are wusually not discussed, and it is left for the
students to discover these for themselves while doing exercises.

Accordingly, the average student is expected to rediscover that
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which has been long known and practiced, but not published or
explained extensively.

(c) The examples usually following the explanation of a
topic are too few in number and too simple to enable the student
to obtain a thorough grasp of the principles involved. The
explanations do not provide sufficient basis to enable a student
to solve problems that may be subsequently assigned for
homework or given on examinations.

The examples are presented in abbreviated form which
leaves out much material between steps, and requires that
students derive the omitted material themselves. As a result,
students find the examples difficult to understand--contrary to
the purpose of the examples.

Examples are, furthermore, often worded in a confusing
manner. They do not state the problem and then present the
solution. Instead, they pass through a general discussion, never
revealing what is to be solved for.

Examples, also, do not always include diagrams/graphs,
wherever appropriate, and students do not obtain the training to
draw diagrams or graphs to simplify and organize their thinking.

(d) Students can learn the subject only by doing the
exercises themselves and reviewing them in class, to obtain
experience in applying the principles with their different
ramifications.

In doing the exercises by themselves, students find that
they are required to devote considerably more time to optics
than to other subjects of comparable credits, because they are
uncertain with regard to the selection and application of
the theorems and principles involved. It is also often necessary
for students to discover those "tricks" not revealed in their
texts (or review books), that make it possible to solve problems
easily. Students must usually resort to methods of
trial-and-error to discover these "tricks", and as a result they
find that they may sometimes spend several hours to solve a
single problem.

(e) When reviewing the exercises in classrooms, instructors
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usually request students to take turns in writing solutions on
the board and explaining them to the class. Students often find
it difficult to explain in a manner that holds the interest of the
class, and does not enable the remaining students to tollow the
material written on the boards. The remaining students seated in
the class are, furthermore, too occupied with copying the
material from the boards, to listen to the oral explanations and
concentrate on the methods of solution.

This book is intended to aid students in optics to overcome
the difficulties described, by supplying detailed illustrations of
the solution methods which are usually not apparent to students.
The solution methods are illustrated by problems selected from
those that are most often assigned for class work and given on
examinations. The problems are arranged in order of complexity
to enable students to learn and understand a particular topic by
reviewing the problems in sequence. The problems are illustrated
with detailed step-by-step explanations, to save the students the
large amount of time that is often needed to fill in the gaps that
are usually found between steps of illustrations in textbooks or
review /outline books.

The staff of REA considers optics a subject that is best
learned by allowing students to view the methods of analysis and
solution techniques themselves. This approach to learning the
subject matter is similar to that practiced in various scientific
laboratories, particularly in the medical fields.

In using this book, students may review and study the
illustrated problems at their own pace; they are not limited to
the time allowed for explaining problems on the board in class.

When students want to look up a particular type of problem
and solution, they can readily locate it in the book by referring
to the index which has been extensively prepared. It is also
possible to locate a particular type of problem by glancing at
just the material within the boxed portions. To facilitate rapid
scanning of the problems, each problem has a heavy border
around it. Furthermore, each problem is identified with a
number immediately above the problem at the right-hand margin.
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To obtain maximum benefit from the book, students should
familiarize themselves with the section, "How To Use This Book,"
located in the front pages.

To meet the objectives of this book, staff members of REA
have selected problems usually encountered in assignments and
examinations, and have solved each problem meticulously to
illustrate the steps which are usually difficult for students to
comprehend. Special gratitude, for added outstanding support in
this area, is due to:

Prof. Paul R. Byerly Jr. Prof. Peter J. Riley
University of Nebraska University of Texas

Prof. William R. Cochran Prof. Om P. Rutgi
Youngstown State University S.U.N.Y. College at Buffalo

Gratitude is also expressed to the many participants in this
program including Thom Bessoir, David Chin, W. Foulkes, J.
Goldstein, Simon Halapir, Craig Jay, Leonard Lubarsky, Arthur
McCombs, R. Rao, Lisa Schurberg, Joel Stern.

Gratitude is also expressed to many persons involved in the
difficult task of typing the manuscript with its endless changes,
and to the REA art staff who prepared the numerous detailed
illustrations together with the layout and physical features of the
book.

The difficult task of coordinating the efforts of all persons
was carried out by Carl Fuchs. His conscienticus work deserves
much appreciation. He also trained and supervised art and
production personnel in the preparation of the book for printing.

Finally, special thanks are due to Helen Kaufmann for her
unique talents to render those difficult border-line decisions and
constructive suggestions related to the design and organization
of the book.

Max Fogiel, Ph.D.
Program Director



HOW TO USE THIS BOOK

This book can be an invaluable aid to students in optics as
a supplement to their textbooks. The book is subdivided into 27
chapters, each dealing with a separate topic. The subject matter
is developed beginning with wave theory and extending through
properties of light, refraction, reflection, ophthalmic optics,
interferometry, diffraction, absorption and scattering,
polarization, and ray tracing. Sections have also been included
on lenses, optical instruments, aberration, prisms, dispersion,
color, lasers and holography. An extensive number of
applications have been included, since these appear to be most

troublesome to students.

TO LEARN AND UNDERSTAND
A TOPIC THOROUGHLY

1. Refer to your class text and read there the section
pertaining to the topic. You should become acquainted with the
principles discussed there. These principles, however, may not
be clear to you at that time.

2. Then locate the topic you are looking for by referring to
the "Table of Contents" in front of this book, "The Optics
Problem Solver".

3. Turn to the page where the topic begins and review the
problems under each topic, in the order given. For each topic,
the problems are arranged in order of complexity, from the
simplest to the more difficult. Some problems may appear similar
to others, but each problem has been selected to illustrate a
different point or solution method.

To learn and understand a topic thoroughly and retain its
contents, it will be generally necessary for students to review the
problems several times. Repeated review is essential in order to
gain experience in recognizing the principles that should be

applied, and to select the best solution technique.



TO FIND A PARTICULAR PROBLEM

To locate one or more problems related to a particular
subject matter, refer to the index. In using the index, be
certain to note that the numbers given there refer to problem
numbers, not to page numbers. This arrangement of the index is
intended to facilitate finding a problem more rapidly, since two
or more problems may appear on a page.

If a particular type of problem cannot be found readily, it
is recommended that the student refer to the "Table of Contents"
in the front pages, and then turn to the chapter which is
applicable to the problem being sought. By scanning or glancing
at the material that is boxed, it will generally be possible to find
problems related to the one being sought, without consuming
considerable time. After the problems have been located, the
solutions can be reviewed and studied in detail. For this purpose
of locating problems rapidly, students should acquaint themselves
with the organization of the book as found in the "Table of
Contents".

In preparing for an exam, it is useful to find the topics to
be covered in the exam from the "Table of Contents," and then
review the problems under those topics several times. This
should equip the student with what might be needed for the

exam.
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CHAPTER 1

WAVES

WAVE ANALYSIS
e PROBLEM 1-1

If the frequency of an oscillating source on the surface

of a pool of water is 3 Hz, what is the speed of the wave
if the wavelength is observed to be 0.5 m?

Solution: Three important characteristics of an oscillating
wave are its velocity of propagation, its frequency, and

its wavelength. The frequency f is defined to be the

number of cycles per unit time at which any point oscillates
or, expressed another way, the number of waves that pass

a given point per unit time. The wavelength A is the
distance between two adjacent crests of the wave. To find

a relation between these quantities, note that the time t
required for the wave to make one oscillation (called the
period of the wave) is equal to 1/f. During this time, the
wave moves a distance d = A. From the relation

d = vt ,
it follows that

A

[}
<
Hh| =
|
Hi<

or

v =f\.

Substituting the known values for £ and A into this
equation gives

1

v = (3 Hz)(5 x 10 "m) = 1.5 m/sec

(Note: 1 Hz =1 sec™ ).



e PROBLEM 1-2

A source particle executing a periodic motion defined by
y = 6 sin Tt sends out waves which travel through a
homogeneous medium at the rate of 6 cm per second. Find

the displacement of a second particle 80 cm from the source
one minute after the source began to vibrate. (Assume the
medium to be of one dimension,like a stretched cord.)

Solution: Since the wave disturbance travels at the rate
of 6 cm per sec, the second particle will not begin to
vibrate until 80/6 or 13.3 sec after the source begins to
vibrate.

Therefore, since y = 6 sin 7t defines the motion of
the source, and since in simple wave motion each particle
executes the same to and fro motion,

y=65inTT( _§62

defines the motion of the second particle.

Hence, when t = 60 sec, the displacement of the second
particle will be given by

65in1r(60-§2

Y 3

5.2 cm.

® PROBLEM 1-3

A traveling wave is described by the equation

y = exp(—azz-btz-2/ab zt)

1) In what direction is the wave traveling?

2) What is the wave speed?

3) Sketch this wave for time t = 0 and for time t = 3 sec,
using a = 144/cm?, b = 9/sec?.

t=3 SEC t=0
FIG. | FIG. 2
+ + ]
=-1.0cm -0.5 +Z

Solution: Factoring out -a, the expression —azz—bt2—2/ab zt
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becomes -a(zz+lgD t2+2/(b7a) zt) = -a(z + /(b/a) t)z. Thus,
y(z,t) = expl-a(z + /(b/a) _t)2].

1) The wave is traveling toward the left, or toward
negative values of z, since as t increases, z must get
smaller in order to keep the exponent the same.

2) The wave speed is
c = -/(b/a) = - %— cm/sec.

3) The following tables of values can be constructed:

2

For t = 0, y(z,t) = exp(-azz) = exp(—ﬂ‘l 22)
cm

z (cm) y(z,t)

9.86 x 10”11

4

2 .003
0 1

2 .003
4

9.86 x 10 11

For t = 3 sec, y(z,t) = exp[—a(z + V(b/a) (3 sec))2]=
= exp[--M—g (z + V(9 cm?/144 sec?) (3 sec)) 2J=
cm

= exp[—ﬁg— (z + .75 cm)2]

cm

z (cm) y(z,t)

-1.0 0.0001
-0.9 0.0392
-0.8 0.6977
-0.75 1.0000
-0.7 0.6977
-0.6 0.0392
-0.5 0.0001

From these tables, Figures 1 and 2 can be drawn as shown.

® PROBLEM 1-4

The equation of a transverse wave is given by
y = 6.0 sin(.020mx + 4.0mt) where x and y are
expressed in cm and t is expressed in seconds.
calculate the following:

(a) the amplitude of the wave;

(b) the wavelength of the wave;

(c) the frequency of the wave;
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(d) the speed of the wave;

the direction of propagation of the wave; and

the maximum transverse speed of a particle of the
wave.

Solution: The general expression for a sinusoidal wave-
train traveling to the left is

y = ymsin(Kx + wt - ¢) ; (1)

K is the angular wave number given by K = %F where ) is
the wavelength of the wave, w is the angular frequency
given by w = %; where T is the period of the wave, Y is
the amplitude of the wave, and ¢ is the phase constant.

The phase velocity v is found from the equation A = VT or

v = % , where the period T is the time required for the
wave to travel a distance of one wavelength A. X and T
may be expressed as A = %g and T = %g . Thus,

v = (2n/K)/(21/w) = w/K.

Comparing equation (1) with the given wave,_ it is
seen that y = 6 cm, K = .020m cm™%, w = 4n sec-1,

and ¢ = 0. Then,

(a) the amplitude is 6 cm.

(b) A = % = o507 = 105 cm; the wavelength is 100 cm.
-1 _ 1 _ sec~ -1

(c) £ = T = g = /0T = 2 sec = 2 cycles/sec; the

frequency is 2 cycles/sec or 2 Hz.

_ W o_ 41 cm
(d) v = X = 70207 sec - 200 cm/sec; the velocity is
200 cm/sec.

(e) A wave moving in the positive x direction has the
form y = Y,Sin(Kx - wt) while one moving in the

negative x direction has the form y = ymsin(Kx-Fwt).

Thus since the wave given in this problem has the
latter form, it is moving to the left.

(f) To Qetermine the particle velocity which shall be
designated by the symbol u, let us fix our attention
on a particle at a particular position x (that is, x
1S now a constant in this equation) and find how the
particle displacement y changes with time (transverse
d}splacement refers to displacement in the vertical
direction). 1In general, y = ymsin(Kxi-wt). u is

equal to the derivative of y with respect to t.
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Differentiating y with respect to t gives

u = %% = YW cos (Kx + wt)

To find the maximum transverse speed, let
cos(Kx+wt) = 1, since this is the maximum value the

cosine function sume. Then u = W,
can as max Yo

= ‘1:
Wax = (6 cm) (47) sec = 75 cm/sec

The maximum transverse speed is thus about 75 cm/sec.

e PROBLEM 1-5

A particle executing simple harmonic motion given by

y = 4 sin (22t + o) is displaced +1 unit when t = 0. Find:

(a) the phase angle when t = 0;

(b) the difference in phase between any two positions of
the particle 2 seconds apart;

(c) the phase angle corresponding to a displacement of +2;

(d) the time necessary to reach a displacement of +3 from
the initial position.

Solution:

(a) We are given an equation for simple harmonic motion
in the form y = ymsin(wt-+¢) where Ym is the amplitude,

w is the angular frequency, and ¢ is the phase constant.
In this problemnm, Yo = 4, w = %g, and ¢ = a. We are also

given an initial condition; that is, y = 1 when t = 0.
Using this condition, it is possible to solve for a as

follows:
4 sin(zgt +oD

4 sin(0+ o)

(9
]

=
I

sina = %

a = sin_l(%)= 14°30' = 7/12.4 .

The equation now reads

_ . 2Tt T
y = 4 s:xx(;g— + IfTI)

and the phase angle corresponding to t = 0 is

( 21r6(0) + 12ﬂ.4)




m™ .
or SV radians.

(b) Let ty and t, be any two times such that ty-ty =

1
2 sec. Then since
21t
. 1 m
y, =4 Sm( g * 12.“4)
and
21t
. 2 m
vy, = 4 S”‘( 6 +_“12.4)
the required phase difference is
z_ﬂt_g..;.L_ 2‘"i.;._"_)=2_'"_(t.1_-_)
6 12.4 6 12.4 6 2 1
_2_11'. = °
=% 2 120

(c) When y = 2, the initial equation becomes

2 =4 sin(?%E + T%%%) = 4 sin(phase angle)

then siﬁ(phase angle) = % =

N

phase angle = sin™t (}) = 30°.

(d) When y = 3 the initial equation becomes

. 2Tt m
3 =4 51n(}g— + TTTI)
(2t T = 3
sin\—5 T 12.4 )

21t + m _ sin-l

p— [} 1]
& t 123 = 48°40° .

oW

Solving for t gives the result t = .57 sec.

Note that in problems where periodic functions are
involved, more than one numerical answer is possible. 1In
part (a) the principal value of arcsin 1/4 was taken to get
o = 14°30', but since sin(m-0) = sinm cosa - cosm sino =
sino, o may also have the value (180° -14°30'). a may also
take on the values (14°30'+ 360°), etc., since sin(a+ 27m) =
sino.
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THE RESULTANT OF TWO OR MORE WAVES
® PROBLEM 1-6

Devise a method to determine the resultant amplitude of

any number of simple harmonic motions of the same period.

A FIG. |

Solution: Consider the combination of two such simple
harmonic motions given by

y = a sin Z%E , and y = b sin (%%E + u) ’
which represent two simple harmonic motions of the same
period, of unequal amplitude, differing in phase by a, and
in the same straight line.

x
o2 . 2. x FG2
!

Suppose these two motions are executed along the line
YOYl, as shown in Figure 1, and that, at any time t, the

displacement due to the first alone is OAl, and that due
to the second alone is 0A2° Pl and P, will then represent
the corresponding positions of the particles in the circles

of reference, the angle P,OM being equal to Z;t, the angle

7




P,ON = (2—;£+a).

Now complete the parallelogram, P10P2P by drawing P,P
through P1 parallel to the radius OP2 and P2P through P,
parallel to the radius OPl. Drop a perpendicular PC to the

YOYl line.
Applying the principle of superposition, we have the
resultant displacement at time t = OA2 + OAl = OA2 + A2C,

since OAl = A,C (because oP, and P,P are equal and parallel),
or resultant displacement = OC.

But if the point P revolves in a circle of radius OP
with the same period as the two simple harmonic motions,
then OC represents the displacement of a simple harmonic
motion of amplitude OP, the radius of this circle, at the
time P is in the position shown in the figure. Since the
foregoing construction is perfectly general, one may
conclude that the resultant of two simple harmonic motions
of the same period is also a simple harmonic motion of
amplitude given by OP and differing in phase from the one
of amplitude oP, by the angle POP, .

Therefore, the resultant amplitude can be found
easily, since it is represented by the side OP of the
triangle OPlP, the other two sides of which represent the

two individual amplitudes. In the problem which has been
discussed, for example, all that is necessary is to draw a
diagram like Figure 2, in which the angle PP;X = a. By the

law of cosines,

2 _ 2 2
OP"” = OPl + PP1 - 20P1 P1P cos(180° - o) (1)
By the double angle formula for the cosine function,
cos(180° - a) = cos 180° cos o + sin 180° sin o = =-cos a.
Hence, equation (1) becomes
OP2=OP2+PP2+20P'PP 2
1 1 1*PyP cos a . (2)

Thus, the resultant amplitude A may be calculated from the
relation

A2 = a2 + b2 + 2ab cos o , (3)

where a,b and A are as shown in Figure 2.

This method may readily be extended to any number of
simple harmonic motions in the same straight line. For,
having taken two of them, and having found the resultant
OP in the manner just described, this resultant may be
combined with the third, and so on. Thus, OP in Figure 3
represents the resultant of 5 simple harmonic motions of
the same period, with individual amplitudes a, b, ¢, 4, e,
with phase difference between first and second = Ay
between second and third = . PY etc.
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® PROBLEM 1-T7

A wave vibrates according to the equation

y = .5 sin %? cos 40mt, where x and y are expressed in

centimeters and t is expressed in seconds. (a) What are
the amplitudes and velocities of the component waves whose
superposition can give rise to this vibration? (b) What
is the distance between nodes? (c) What is the velocity
of a particle at the position x = 1.5 cm when t = 9/8
seconds?

Solution:

(a) The given wave is of the form
y = A sin(ax) cos(Bt).

Comparing this with the trigonometric identity

% [sin A + sin B] = sin % (A + B) cos % (A - B)

gives
_ A . .
Yy =735 [sin A + sin B]
where
1 -
5 (A + B) = ox
and
1 -
E(A-B)—Bt

Solving for A and B in terms of x and t,

A+ B = 20x

A - B = 28t
2A = 2ax + 28t
so
A = ox + Bt
and
B = 2ax - A = 20x - (ax + Bt) = ax - Bt
Then

y = % [sin(ax + Bt) + sin(ax - Bt)]
Yy = 5 sin(ox + Bt) + A sin(ax - Bt).

2
9



For the given wave,

A=.5 a-= T and B = 40T.

§ ’

Then the component waves whose superposition gives rise to
this vibration are

- s (T
y; = .25 51n(3x + 401rt)

Yo .25 sin (%x - 401rt)

Comparing Yy and vy, with the general expression for a
wavetrain traveling to the left, namely y = Y sin(Kx + wt),

where K denotes the angular wavenumber, w is the angular
frequency and Ym is the amplitude of the wave, it can be

seen that the amplitude of the waves is .25 cm. The
velocity is given by

v =

R|E

and since w = 407 sec-l, and K = % cm T,

40T sec_1
vV = ——————— = 120 cm/sec

/3 i

(b) The distance between nodes is half the wavelength, % .

Then the distance between nodes is 3 cm.

(c) To find the (transverse) velocity of a particle of

the wave, we look at the wave at a particular value of x
(i.e., x is constant) and find how y changes with time.

Let u = particle velocity. Then, differentiating y with
respect to t gives

u = %% = é% [.5 sin (% ;) cos(40nt)]

-.5(407) sin (% x) sin (407t) .

At x = 1.5 cm, t = 9/8 sec, we have

c
I

-.5(407) sin(lgivr)sin 407 (9/8)

= =5.(40m) (1) (0),

Thus, the particle velocity = 0.

10



e PROBLEM 1-8

25 cm2

(2 sin[4zgm (x—ct)], (ct -8)< x < (ct+8)
and f2 (x,t) = <

2
Two waves are described by fl(x,t) = 3 exp[:- (x + ct) :]

| 0 elsewhere
6 cm/sec. (‘;raph the sum of these functions:

= fl + f2, at t = -2 sec, t = -%sec, and t = 0.

FIG. 1

=- Y2 SEC

t=0

FIG. 3

Solution: Since ¢ = 6 cm/sec, the given expressions for R
[x+(6 cm/sec)t]

2

25 cm

f,(x,t) and f,(x,t) become f,(x,t) =3 exp ['

2 sin [:4221“ (x- (6 cm/sec)ta, (6 cm/sec)t -8

<x < (6 cm/sec)t + 8
and f2(x,t) =

o, elsewhere

11



2
At t = -2 sec, f,(x, -2 sec) = 3 exp [—(x—lz cm) ] and
1 2
25 cm
- . 27
2 s:.n[m (x+12 cm)], -20 cm<x <-4 cm

fz(x, -2 sec) =
o, elsewhere

25 cm2

T
2
-(x~-12 cm) . 27
3exp[: . cm2 .-]+251nc4 cm(x+12cm):),

2
3 exp [—(x-lz cm) ] , X<-20 cm and x > -4 cm

Hence, f

-20 cm <x <=4 cm
The graph of this function is shown in Figure 1.

At t = —% sec,

2
fl(x, —% sec) = 3 exp -—(’-t——iﬂ] and

25 cm?

2 sin[: 2T (x+ 3 cm)], -1l cm<x <5 cm

4 cm
f2 =
0, elsewhere
-(x -3 cm) 2)
3 exp —_— r X <-11 cm and X > 5 cm
25 cm v
Hence, fT =

i
3 exp [ﬁ;}_czn_l)_ + 2 sinc422m (x+ 3 cmD ,
25 cm -

-1l cm<x <5 cm

The graph of this function is indicated in Figure 2, where
the dotted graphs correspond to fl and f2, and the solid

2
graph corresponds to f,. At t = 0, f.(x,0) = 3 exp| ——
T 1 25 cm?

. 2
(2 sin 412:“), -8 cm <x <8 cm

/

)

LO ’ elsewhere

and f2 (x,0)

2
3 exp -—--’5——2 X < -8 cm and x > 8 cm
25 cm

Hence, fT

2
3 exp [i-a + 2 sin (42“;“ , -8 cm <x <8 cm
2

25 cm

1



The solid line graph indicated in Figure 3 is the graph of
fT while the dotted lines represent the graphs of f1 and f2'

e PROBLEM 1-9

Find the resultant motion when a single particle is
acted on simultaneously by three waves obeying simple
harmonic motion, their motions being given by the
relations,

2m
T

(t - f%y ;

, RESULTANT
/' \\ ',I
/
+a / 2'
- 5(.1 7
-.86a
/ \ K
- \‘ Fd
FIG. |
Solution: Method I. Give t successive values; calculate

for each the corresponding displacement due to each simple
harmonic motion; find the resultant displacement by
algebraic summation; and finally plot resultant values of
the displacement against corresponding values of t. A few
such values are given in Table 1.

Table 1
t Y1 Y2 Y3 Resultant y
0 0 -0.5a -0.86a -1.36a
1 T1T/12 +0.5a 0 -0.5a 0
2 T/12 +0.86a +0.5a 0 +1.36a
3 1T/12 +1.0a +0.86a +0.5a +2.36a

By obtaining in this manner a large number of corre-
sponding values of y and t, and plotting, a curve is

obtained similar to the broken one in Figure 1.

This

curve then represents the required resultant motion of

the particle.

The method involves an important principle, called
the Principle of Superposition, according to which the
resultant displacement at any instant is equal to the
algebraic sum of the individual displacements at that

instant.

This holds, provided the displacements are

small, its justification being found in the fact that it
leads to correct results.

13
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Method II. The method just outlined involves a good
deal of calculation, and for that reason the following
more graphical method is recommended. In this method, the
graph of each simple harmonic motion is plotted separately
to the same scale and with the same set of coordinates.
Points on the resultant graph are then obtained by
applying the principle of superposition. For example,
at the time represented by OD (Fig. 1), the displacement
due to the first simple harmonic motion is DC(-), due to
the second DB(+ ), due to the third DA(+ ), from which the
resultant displacement at this instant = DA + DB -DC = DP.
Similarly, other points are obtained in sufficient number
to enable a smooth graph to be drawn. The curve obtained,
of course, will be exactly the same as by Method I.

By inspection it is seen that the resultant motion
(a) is periodic; (b) because of its shape, probably is
simple harmonic; (c) by actual measurement has an ampli-
tude = 2.7a.

Both of these methods are perfectly general and may
be applied whether the individual simple harmonic motions
are of the same period, as in this problem, or of
different periods, as in Figure 2, where two waves obeying
simple harmonic motion are superimposed, with periods in
the ratio of 1 to 2. The essential condition is that they
all represent motion in the same straight line.

e PROBLEM 1-10
= E

Add the functions El o C€os wt and E2 = E0 cos (wt + ¢)

and plot a graph showing the amplitude of the resulting

sinusoidal function, as a function of the phase angle ¢.
What is the amplitude when ¢ = 0, n/4, n/2, 3n/4, 7?2

Solution: Let E represent the sum of the functions El and

E2.
E=E1 +E2
= Eo cos wt + E0 cos(wt + ¢)
= Eo[cos wt + cos(wt + ¢)] (1)

14



Now, using the trigonometric

cosines,
cos X + cos y =

equation (1) becomes

_ 1
E = EO[Z cos > (ot + wt + ¢)

E = 2E

0

Note that the amplitude of

2E0

2 cos 1

identity for the sum of two

(x+y) cos % (x-y)

2

1
COs )

(wt = (wt+ ¢) )]

cos (wt + ¢/2) cos( - ¢/2)

the function E is given by

cos( - ¢/2), since cos(wt + ¢/2) represents the same

wave with different phase shifts corresponding to different

values of ¢.

Also note that cos( - ¢/2) =

cos(4/2), so that

the amplitude as a function of ¢ is given by

A(9) = 2E0 cos ¢/2
A(P) » A(®)=2Eo0 0S¥
|.85£o—2"l-
; L.4lEo )
" 765€0 }
—— -+ P
2 47
_Eo.
-2E0 {

Graphing this function, we obtain the figure shown in this

problem.

When ¢ = 0 A(9) = (2E0)(cos 0/2) = 2E0
¢ = 1/4 A(¢) = (cos m/8)(2E;) = 1.85E;
¢ = m/2 A(¢) = (cos n/4)(2E0) = l.4lE0
¢ = 31/4 A(¢) = (cos 3n/8)(2E0) = .765E0
o = A(¢) = (cos n/2)(2E0) =0

Two harmonic wave motions,

are added together.
(1) Write the equation of

(2) what is the period of

e PROBLEM 1-11

vy, = sin x and Yoy = 1/2 sin 2x,

the resultant wave motion.

the resultant wave?

15



(3) Draw a graph of the two initial wave motions and of
the resultant wave.

Find the maxima by differentiating the resultant wave

with respect to x.

et -~ / Y= Sinx(i+cos x)
S 7 , Y=sinx
/ \ /

st! \ Ve V2 sin 2X

1 1
Va4 e f\ \SV4 332 T4 f 2
_.5-& '
-7074 \ )

- 4+ X /
-1.2 1

T

Solution:

(1) The principle of superposition says that the resultant
wave can be found by summing the given individual waves.
Thus,

y=yl+Y2
. 1 .
y = sin x + 3 sin 2x
= sin x + % (2 sin X cos Xx)

y = sin x (1 + cos Xx).
(2) The period of the resultant wave is 2w, since the
wave equation is a function of sin x and cos x (each of
which has a period of 2mw).

(3) First make a table of values as follows:

y /4 | /2 |31/4| T 5v/4|31/271/4| 27
sin x .707 1l .707 0 .707 -1 [.707 0
% sin 2x .5 0 -.5 0 .5 0 .5 0
sin x (1 + cos x) 1.2 1 .2 0 .2 -1 1.2 0

16



Now plotting these values yields the figure.

(4) Differentiating the equation

y = sin x (1 + cos x)

with respect to x gives

g% = sin x (-sin x) + (1l +cos x)cos x .
Then,
g% = coszx - sin2x + cos x.

To find the maxima, set gﬁ equal to zero.

coszx - sin2x + cos x =0,
. . . 2 L2 _ . 2
By the trigonometric identity cos“x + sin“x = 1, sin“x =
1 - coszx and so, the above equation becomes

coszx - (1 - coszx) + cos x =0

or
2 -
2 cos“"x +cosx-1=0.

By the quadratic equation,

(-1:/17 = 4(2)(—@/2(2)

cos X =
- +
cCOoSsS X = lz 3

and thus, the two solutions are

cos X = , and cos x = -1,

| =

N

1 . . .. -1
cos x = > gives maxima and/or minima, at x = cos (

):

x =7/3, x = -1/3 and 571/3.

From the graph, it is apparent that x = 57/3 is a
minimum. Hence, maxima occur at x = 1/3 and x = -71/3.
From the graph, it can be seen that cos x = -1, which
gives x = m, is a point of inflection. This can be proven
by taking the second derivative of y with respect to x
and setting it equal to zero.

17



® PROBLEM 1-12

Six simple harmonic motions, each of the same amplitude
and period, acting along the same straight line, are

superimposed. If the phase difference between each
successive pair is the same, find one value of this phase
difference for which the resultant amplitude is zero.

Solution: Call the amplitude of the waves A and the
period T. Since the angular frequency, w,is given by

w = %; , then w is the same for each wave. The phase
difference between each successive pair can be represented
by ¢. Using this information the six waves can now be

represented in the following way:

Yy = A sin wt

Yy = A sin (wt + ¢)
Yy = A sin (wt + 2¢)
Yy = A sin (wt + 3¢)
Yg = A sin (wt + 4¢)
Yg = A sin (wt + 59¢) .

By the principle of superposition, these motions can be
added in order to obtain the resultant motion. In
addition, since it is desired to find the value of the
phase difference required for the resultant amplitude to
equal zero, the following must hold true:

Yl+yZ+Y3+Y4+Y5+Y6=0
or
A sin wt + A sin(wt + $) + A sin(wt + 2¢)

+ A sin(wt + 3¢) + A sin(wt + 4¢) + A sin(wt + 5¢) = 0.

Since A # 0, both sides of the equation may be divided
by A. Then,

sin wt + sin(wt + ¢) + sin(wt + 2¢) + sin(wt + 3¢)

+ sin(wt + 4¢) + sin(wt + 5¢) = 0.

Now, using the following formula for the sum of two
sine functions,

sin x + sin y = 2 sin % (x+y) cos % (x-y) (1)

18



and applying it three times, it is found that
251n—(wt+wt+¢)cos [wt - (wt + ¢) ]
+251n (wt+2¢+wt+3¢)cos [wt +2¢ = (wt + 3¢)]
+251n—(wt+4¢+wt+5¢) cos [wt+4¢-(wt+5¢)] = 0.
Dividing by 2 and gathering terms, the above equation
becomes

sin(wt + ¢/2)cos(-¢/2) + sin(wt + 5¢/2)cos (-d/2)

+ sin(wt +9¢/2)cos(-¢/2) = 0.

Factoring out cos(-¢/2) gives

cos(-¢/2) sin(wt + ¢/2) + sin(wt + 5¢/2)

+ sin(wt+9¢/2)] = 0. (2)

Note that one solution is already apparent; that is,
cos(-¢/2) = 0, or ¢ = m. This result is easy to interpret
physically; any two waves of equal frequency and amplitude
will interfere destructively (that is, cancel each other
with a resultant amplitude = 0) when their phase difference
is 180° (the crest of one wave corresponds exactly to the
trough of the other). Thus, any even number of waves with
equal amplitude and frequency will have a resultant
amplitude of zero. Since this is a very general solution
that holds for any even number of waves, let us proceed
to try to find a more specific solution which holds for
the given case; that is, for six waves.

From equation (2), another solution is

sin(wt + ¢/2) + sin(wt+ 5¢/2) + sin(wt +9¢/2) = 0 .
Using the double angle formula
sin(x+y) = sin x cos y + cos x siny , (3)
the above equation becomes
sin wt cos ¢/2 + cos wt sin ¢/2 + sin wt cos 5¢/2
+ cos wt sin 5¢/2 + sin wt cos 9¢/2
+ cos wt sin 9¢/2 = 0.
Factoring out sin wt and cos wt gives
sin wt(cos ¢/2+cos 5¢/2 + cos 9¢/2)

+ cos wt(sin ¢/2 + sin 5¢/2 + sin 9¢/2) = 0. (4)
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Now, look at one particular value of t, so that the
factor wt can be eliminated. (Note that if the resultant
wave amplitude is zero, it is zero everywhere; that is,
for every value of t; thus, this is perfectly valid.) Let

2m 2T

t = T. Since w = T wt = (750 (T) = 2m and so,

sin wt = sin 27 = 0 and cos wt = cos 2T =1 .

Then equation (4) becomes
sin ¢/2 + sin 5¢/2 + sin 9¢/2 = 0.
From equation (1),

25h1%(W2+5W2)am

N =

(¢/2-5¢/2) + sin 9¢/2 = 0
or

2 sin(3¢/2) cos(-¢) + sin 9¢/2 = 0 .

Since cos ¢ is symmetric around the point ¢ = 0, cos(-¢) =
cos ¢. Thus,

2 sin(36/2) cos ¢ + sin(94/2) = 0. (5)

By the double angie formula for the sine function,

sin(9¢/2) = sin(3¢/2 + 3¢)
= sin(3¢/2)cos(3¢) + cos(3¢/2)sin(3¢). (6)
cos(3¢) = cos(3¢/2+ 3¢/2).

By the double angle formula for the cosine function,

cos (3¢) cos(3¢/2 + 39/2)

cos?(36/2) - sin?(34/2). (7)

In addition, reapplying the double angle formula for the
sine function gives

sin(3¢) = sin(3¢/2 + 3¢/2) = 2 sin(3¢/2)cos(3¢/2). (8)
Substituting the expressions for cos(3¢) and sin(3¢) given
in equations (7) and (8), respectively, into equation (6)

gives

sin(9¢/2)

sin(3¢/2)(cos®(3¢/2) - sin?(3¢/2))
+ cos (3¢/2)( 2 sin(3¢/2) cos (34/2)]
= sin(3¢/2)cos?(3¢/2) - sin>(34/2)
+ 2 sin(3¢/2)cos?(3¢/2)
= sin(3¢/2)(3 cos®(3¢/2) - sin®(3¢/2)] .

20



Substituting this expression for sin(9¢/2) into equation
(5) gives

sin(3¢/2)[2 cos ¢ + 3 cos?(3¢/2) - sin2(3¢/z)] =0 .

One solution to this equation is sin(3¢/2) = 0, which is
satisfied if 3¢/2 = mm, where m is an integer. Choose
m= 1. Then

_ 2T _ 2

=3 =3

and this is a particular value of ¢ for which the resultant
amplitude is zero.

(180°) = 120° ,

THE HALF-WAVE PLATE
® PROBLEM 1-13

Show that a particle subjected to two simple harmonic
vibrations of the same frequency, at right angles and

out of phase, traces an elliptical path which degenerates
to two coincident straight lines if the phase difference
is m. Indicate the relevance of this to a half-wave plate.

-3

Solution: Let the vibrations be taking place along the

x- and y-axes with a phase difference of ¢ between them.
Then if x = a sin wt, vy = b sin(wt+ ¢). Since sin(a+B8) =
sin o cos B + cos a sin R,

% = sin wt cos ¢ + cos wt sin ¢.

g can be substituted for sin wt and from the trigonometric

identity sinzwt + coszwt =1, cos wt = /1 = sin?yt =

= /1 - x%/a? . Thus, the above equation becomes
L =X V1 - x%/a? - si
5 3 cos ¢ +V/1 x“/a sin ¢ .
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This equation can be rearranged to the following:
Yy _ X = - . si
5 3 cos ¢ 1 x“/a sin ¢ .

Squaring this equation gives

2 2 2
¥ X 2, _ 2xy _ ) . 2
b2 + ;7 cos ¢ ab cos ¢ = (} 2 sin“¢

2
or grouping the terms involving 2 together,
a

2 2
X 2 .2 ¥y~ _ 2xy 2
—7(cos ¢ + sin” ¢) + ;7 =2p C°os ¢ = sin” ¢.
Since cos2 ¢ + sin2 ¢ = 1, this equation becomes
x2 2 2x 2
o+ X - XY o ¢ = sin“¢ .
a2 b2 ab

This is the general equation of an ellipse where the
major and minor axes do not coincide with the x- and y-
axes. Thus, the particle always has x- and y-coordinates
such that the point they define lies on an ellipse. The
particle thus follows an elliptical path.

1f ¢ = n/2, 3n/2, 57/2,..., the equation of the path

reduces to (x2/a2) + (yz/bz) = 1, which is an ellipse with
the major and minor axes coincident with the coordinate
axes.

When ¢ = m, the equation of the path becomes

2 2 2
X_+Y_.+_XX=0,
a? b2 ab

or

(G8)7 -

This is the equation of two coincident straight lines
x/a = -y/b, inclined to the negative x-axis at an angle

l(b/a). (See figure.)

In the case of a half-wave plate, plane-polarized
light striking the plate is split up into two components,
0 and E, plane-polarized at right angles to one another
and initially in phase. These pass through the plate at
different speeds and the thickness is such that on
emergence the two beams are out of phase by m. Any
particle affected by the two components will thus be
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affected by two simple harmonic vibrations at right angles,
out of phase by m. As can be seen from the above analysis,
the particle would trace a straight-line path. This means
that the two components are equivalent to a single

vibration at an angle tan 1(b/a) to the slower component,
b/a being the ratio of the amplitudes of the components of
the incident light on entering the plate. If the plane-
polarized light is striking the plate at an angle of 45°
to the two transmission directions, then it is resolved
into two equal components so that b = a. The emerging
light is thus plane-polarized in a direction making an
angle of -45° with each of the principal directions in the
plate.

BEATS
e PROBLEM 1-14

A familiar (and useful) system of beats is a moiré pattern.
Consider two picket fences, one with boards (and spaces)
50 mm wide, and another with boards and spaces 51 mm wide

placed next to it. As you drive past at a speed of
20 km/hr, how frequently can you not see through the two
fences?

ﬁ. 'P A N —— ——— ——
i = = = ,
.lo b; l‘ rx
x 5: : 102mm
St
{00mm

Solution: For waves in general, the frequency v is given

by v = % where v is the speed of the wave and A its wave-

length. Looking first at fence 1, the positions of the
boards can be written as Xy = m1-100 mm, where my =

0,1,2,3,... . Similarly, for fence 2, the boards can be
seen at distances of X, = m2-102 mm, m, = 0,1,2,3,...

When X, = X%, the boards are coincident (as is the case at

x = 0), and we cannot see through the two fences. At such
points,

X = Xy
and so,
ml-loo = m2-102
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Since both my and m, are integers, the situation first
occurs when m, = 50 and m = 51, again when m, = 100,
m = 102, etc. Since this occurs every 51 times for the

first fence (in effect, after 51 "wavelengths"), the
distance between beats is

Xy m1-100 mm

(51) (100) mm
=5.1m,.
Now, the wave is stationary but the observer is

moving with a velocity v = 20 km/hr with respect to the
wave. So

2 x 10 m/hr
(3.6 x 103 sec/hr) (5.1 m)

>|<

Vbeat

_ -1
vbeat = 1.09 sec

Therefore, you can not see through the fences 1.09 times
per second.
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CHAPTER 2

VELOCITY OF LIGHT

THE SPEED OF LIGHT IN EMPTY SPACE
® PROBLEM 2-1

What is the speed of an electromagnetic wave in empty
space?

Solution: The speed of an electromagnetic wave in a
substance can be determined by using the following
relation:

v =1 (1)

where u is the permeability and € the permittivity of the
substance. u, and €,, the permeability and permittivity,

respectively, of free space, are both constants, whose
values are

7

u, = 41 x 10 nt/amp?

and

12 2

e = 8.85 x 10 1%coul?/nt - m

Therefore, in empty space, equation (1) becomes

1

V41 x10~7 x 8,85 x 10~12coul?/amp? - m?

3.00 x 108 m/sec .
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DETERMINATION OF THE DISTANCE TRAVELLED

BY LIGHT IN A GIVEN TIME PERIOD
® PROBLEM 2-2

8

If the velocity of light is assumed to be 3 x 10° m/sec,

how much time does it take the light to travel through a
distance of 30 cm?

Solution: When the velocity of light v and the distance
X which it has traveled are both known, then the time t
required for the light to travel that distance is found
by applying the equation

vet = x .

If the velocity of light is 3 ><108 m/sec and the distance
it has to travel is 30 cm, or 0.30 m, then the time it
takes to travel that distance is 0.30 m/3 x 108

1x1072

m/sec or

sec, which is equal to 1 nanosecond.

THE VELOCITY OF LIGHT IN GLASS
e PROBLEM 2-3

What is the velocity and wavelength of light with vacuum
wavelength A = 500 mM when measured in glass whose index

of refraction at this wavelength is 1.507?

Solution: For any particular ray of light, the product of
its velocity and the index of refraction of the medium it
is traveling in is always constant:

ven = constant (1)
Also, since v=£fA, A = % or ) is proportional to v. Thus,
A*n = constant (2)

In other words, the product of the wavelength of light and
the index of refraction of the medium it is traveling
through is constant for a particular light ray.

Equation (1) states that

= v,*n (3)

Vy "Iy feRlre]

where the subscripts V and G represent vacuum and glass,
respectively, and equation (2) states that

A, *N, = A.+n

v v feRre! (4)
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Ny, the index of refraction of a vacuum = 1, vy = the
speed of light in a vacuum = 3 x 108 m/sec, and ng and Ay
are given to be 1.50 and 500 mu, respectively.
Thus, from equation (3),
Vy, D 8
vg = z; v _ (3x10 m/sec) (1) = 2 x 108 m/sec
G 1.50

and from equation (4),

v 'V _ (500 mu) (1)

G . - 1.50 =333 mu .

METHODS USED TO MEASURE THE VELOCITY

OF LIGHT
® PROBLEM 2-4

A rotating mirror experiment, to measure the speed of
light, is set up on Mt. Wilson with the return mirror on

Mt. San Antonia 35377 meters away. When the 8-face mirror
rotates at a speed of 530 rps no shift of the light source
is obtained. Calculate the velocity of light.

Solution: The distance which a beam of light travels in
one round trip from Mt. Wilson to Mt. San Antonia is

2 x 35377 m. Each time the beam of light strikes the
rotating mirror it has made one round trip. If the mirror
has 8 faces and is rotating at a rate of 530 revolutions
per second then the light makes 8 x 530 round trips per
second or it travels

(2 x 35377 m) - (8 x 530) per second,

8

which is equal to 3.00 x10 m/sec.

® PROBLEM 2-5
In a Fizeau toothed-wheel experiment for obtaining the

velocity of light, an eclipse of the source is first
observed when the speed of the disk is 1500 rpm. (a) If

the distance of the toothed wheel, which has 600 teeth,

to the reflecting mirror is 4980 meters, find the velocity
of light. (b) At what speed must the disk be moving

for a second eclipse to be observed?

Solution:

(a) For a Fizeau toothed-wheel apparatus for measuring
the speed of light, the following equation is used:
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where ¢ is the velocity of light, w is the angular speed
of the wheel, % is the length of the apparatus, and 68 is
the angular distance from the center of a gap to the
center of a tooth. The wheel is rotating at an angular
6%1%%%) = 25 rev/sec. The
angular distance from the center of a gap to the next

_ 1 1 -
rev; hence 6 = = (356 rev) =

speed of w = (1500 rev/min)(

L
600 2
T%ﬁﬁ rev; and the length of the apparatus, 2,is 4980

center of a gap is

meters. Substituting this data into equation (1) gives
the result

2(25;2—;’) (4980m)

(1355 rev)

CcC =

c = 2.988 x10% m/s

(b) If the first eclipse of the source occurs when the
wheel is rotating at a rate of 1500 rpm, then the next
eclipse occurs when the wheel is spinning at 3000 rpm.

But this next eclipse would occur at a tooth rather than
at a gap; therefore, this next eclipse would go undetected.
Thus, the next detectable eclipse would occur at 4500 rpm.

e PROBLEM 2-6

In Anderson's method for measuring the velocity of light,
the response of the photo-electric cell was a minimum when
the path difference was 171.8 meters and the frequency of

modulation 9.6 XI06 cps. Find the value of the velocity

of light.

(D) vETECTOR

Solution: In this method, light from a light source was
chopped by the Kerr cell into pulses of length L, from
crest to crest, determined by the ratio of the speed of
light to the frequency of interruption of the shutter, f.
The light pulses, represented by arrows (bright) and gaps
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(dark) , were divided by the half silvered mirror M, into
2
two beams. One beam was reflected downwards by mirror M, ,
2
struck mirror M,, was reflected back through M%, and

finally traveled to the detector D. The other beam was
transmitted through M%, struck mirror Ml’ was reflected

back to mirror M, , which reflected the beam to the detector
e
D. If the mirrors Ml and M2 were equidistant from M,, the
2

two bright crests of the light flashes reached the photo-
electric cell simultaneously, and a moment later the two
dark troughs arrived together. Thus, the output signal
fluctuated strongly at the chopping frequency.

If the mirrors Ml and M2 were not equidistant, but
placed so that the round trip path to and from each of them
differed by % (or any odd multiple of %) , the cell was
illuminated alternately by light coming from mirrors Ml and
M2. Thus, the photocell saw a steady light intensity, and

no signal resulted.

The path difference is varied by moving M, to a
position M!. This increases the path difference to 2 times

M.MJ

1M which must be an integral multiple of L.

The speed of light is given by

f
=g =
¢ n

where s is the length (2 x171.8 m) by which the path has
been increased, f is the chopping frequency, and n is the
number of pulses of length L which are present in a total
length s. This number is evaluated from taking as a rough

value, ¢ = 3 x 108 m/sec. Thus,

8
9.6 x 10
and
 2x171.8 &
= —31.25 11 .
Hence,
c=s £
n
6

_ 343.6 xli'6 x10° | cec

2.99 x 10° m/sec .
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STELLAR ABERRATION
® PROBLEM 2-7

Find the velocity of light by considering the aberration

of light from the stars, which is 20.47 seconds of arc.

v,

SOLAR OBSERVER'S

SYSTEM TELESCOPE
cl |c

FIG. | LIGHT

Solution: The aberration of light from the stars, known

as stellar aberration, is the apparent systematic movement
of fixed stars relative to the direction of motion of the
earth in orbit and is not dependent on the earth's position
in space.

The star s appears to be at Syr Syr Sy and Sy for
positions of the earth El' E2, E3 and E4, respectively, as
shown in Figure 1. The telescope must be tilted by an
angle 6 to receive the light from the star.

The angular shift in the apparent position of stars
is shown in Figure 1 to be given by the relation

tan® = (1)

al<

where v is the velocity of the earth in its orbit and c
is the velocity of light. Now

circumference of the earth's orbit _ 27R (2)
period of the earth's orbit T

v =

where R = 93 x 106 miles and T = 365 days. Hence,

6

v = (217) (93 x 10 miles) = 18.53 miigs
hours min sec
(365 days)(24 day )(Gchour)(Go ETH)

Since 6 is small, the approximation tan 6 = 6 is valid.
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Therefore, equation (1) becomes 6 = g or c = % and
substituting for v and for 6 gives

miles
1 min\y /1l degree m radians
(20.47 sec)(60 sec)( 60 min ) 180 degrees)
_ miles
= 186717 “sec

e PROBLEM 2-8

8 km

If the radius of the Earth's orbit is 1.497 x 10

calculate the magnitude of stellar aberration.

Vv

SOLAR O0BSERVER'S
SYSTEM |6/ TELESCOPE
[}

cH¢cC

LIGHT
FI1G. 1

Solution: Since the stellar aberration is due to the
apparent systematic movement of fixed stars relative to
the direction of motion of the earth in its orbit and is
not dependent on the earth's position in space,it can be
inferred from Figure 1 that

tan 6 = < (1)
C

where v is the velocity of the earth in its orbit and c is
the velocity of light.

v = the circumference of the earth's orbit _ 27R

the period of the earth's orbit T

where R = 1.497 x 1071 m, and T = 365 days. Hence,

(27) (1.497 x 10%1 m)

(365 days) (24 hg;;s)(GO mt) (s0 S55)

v =

2.983 x 104 m/sec

Thus, substituting the value just computed for v along
with the known value for c into equation (1) gives

5

tan 6 = ¥ - 2.983 x 10* m/sec _

C  2.998 x10°% m/sec

31
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Since 8 is small, the approximation tan 6 = 6 is valid,
and so,

@
1

(9.95 x 10-5 rad)(180 degreeS) 60 min)(GO seC)

m rad degree min

20.52 seconds of arc

STANDING WAVES
e PROBLEM 2-9

An oscillator which emits high frequency waves at 0.26 GHz
is set up in front of a large plane metal reflector.
Standing waves are formed with nodes 57.5 cm apart.

Neglecting the refractive index of air, compute the
velocity of light.

Solution: Standing waves are obtained by superposition of
two wave trains of the same frequency and wavelength but
traveling in opposite directions. Two such waves are

y; = r sin 27 (% - ;)
Y, = ¢ sin 27 (%-+ %)

where ) is the wavelength of light used, r represents the
maximum amplitude of the waves, and T denotes the period
of the waves.

The resultant is given by

= _ . t_Xx . t,.x
y =y, + Yy = r{%ln 2m (T X) + sin 27 (T+'Aﬂ (1)
Using the trigonometric identity
sin A + sin B = 2 sin (A;B)cos(A;B) (2)
1 = t—i = E 5 i
Taking A = 2m (% - 3 )and B = 27 (T + A) , equation (1)
becomes
y = 2r sin[—é—"(%—% % %] cos[— ———— %+§))]
= 2r sin <2nt )cos( ZKX (3)

Since cos 6 = cos(-0), equation (3) can be rewritten as

y = 2r sin (3%5) cos(-£§§) (4)
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The nodes are given by the condition y = 0 for all t.
Applying this condition to equation (4) gives the result

_ . 21t 21X . mm _

0 = 2r 51n(-T—) cos (T) . Since cos 5 = 0, where m

. . A

is an odd integer, Z%X = I% and so, x = HZLW = 1343 . Thus
= _ A 3X 5\ .

y = 0 for x = Ay el A wl etc., and so, the distance

between two successive nodes is -‘1—)‘ - % = % .

Hence, » = 2x57.5 cm = 115 cm. The velocity v is
given by the relation

v = fA (5)

where f represents the frequency of the waves.
Substituting the given value for f and the value just
computed for X into equation (5) gives

9

0.26 x10” x 115 cm/sec

v

10

2.99x10 cm/sec

<
n

e PROBLEM 2-10

An oscillator of frequency 2.3 x 108 Hz is set up near a
plane metal reflector, and the distance between adjacent

nodes in the standing waves produced is found to be 65 cm.
From this data, compute the velocity of light.

Solution: Standing waves giving rise to nodes and loops
are obtained by superposition of two wave trains of the
same frequency and amplitude but traveling in opposite
directions. Two such waves may be represented as follows:

y; = r sin 2n(%—§) (1)
Y, = r sin 27 (% + %) (2)

The resultant is given by

y=yl+y2=r[sin2n(%-§)+sin2n(%+§ﬂ (3)

Using the trigonometric identity for the sum of the sines
of two angles,

sin A + sin B = 2 sin(A;B)cos(A;B) (4)

and letting



equation (3) becomes
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Since cos 6 = cos(-6), eguation (5) becomes

y = 2r sin (3%5) cos (Z%ﬁ) (6)
The nodes are given by y = 0 for all t. Applying

this condition to equation (6) gives

0 = 2r sin (Z%E) cos (2%5) .

This is satisfied when 3%5 = %; , where m is an odd

integer. Then

_ mmA _ m)
X="r =7 -
Thus, y = 0 when x = % R %% R %% ye«. « Therefore, the
. . 3 A A
distance between two nodes is (Tr - I) =5 .

Hence A = 2x65 cm = 130 cm. The velocity v of the wave
is given by the relation

v = f2A, (7)

where f denotes the frequency of the wave. Substituting
the known values for f and A into equation (7) gives

8

v 2.3x10" x130 cm/sec

2.99 XIOIO cm/sec .
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CHAPTER3

PHYSICAL PROPERTIES OF LIGHT

THE DOPPLER EFFECT
e PROBLEM 3-1

A laser emits a monochromatic light beam, of wavelength A, which falls

normally on a mirror moving at velocity V. What is the beat frequency
between the incident and reflected 1light?

Solution: When a source of light is in motion relative to an observer
or vice versa, the light waves exhibit a change in frequency as seen by
that observer. This phenomenon is known as the Doppler effect, and the
Doppler shift for light is given as

c t v
Vobserved =V - &
+ v

c

where y 1is the frequency of the light in an inertial frame of refer-
ence, v 1is the speed of the source relative to the observer, and c

is the speed of light. In this problem v 1is the speed of the mirror.
Let us choose the mirror to be moving away from the laser, so that it
absorbs the light as if it were an observer moving away at speed v;

it then re-emits the light as if it were a source moving away at speed
v. In both cases the source and observer are separating from one an-

other decreases. T t we need
ther, so the frequency decrease 0 get v i erved <v , we

the lower signs in equation (1).
Now,when the mirror absorbs the light, we have

/c - v
Vabsorbed v c+v @)

Similarly, when it re-emits the light, the frequency shift is given by

v =y C =V =yt =1V (3)
emitted absorbed / P (p T v) .

The beat frequency is the difference in frequencies between the in-
cident and reflected light:

=y -

Vbeat Vemitted

- . c - v)
Vbeat Vv YWe+v,
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[
“[1-c+v:l
2v ]
Vie + v

cl_2v ]
Vbeat Alec + v

~

when v<<c, then ¢ +v =c¢c . In this case v

beat o
o PROBLEM 3-2

The Milky Way galaxy rotates once in 200 million years, and our sun is
located about 30,000 light years from the galactic center. As a result,
the earth is moving through space relative to the other galaxies. What
is the observed Doppler shift in A of the hydrogen line of 6563

for light coming from other galaxies? Consider two cases: a) The line
of observation is in the direction of the earth's motion; b) The line
of observation is perpendicular to the direction of the earth's motion.
Ignore other causes of observed Doppler effects.

L L

U ’
—rdde——r'cose —»

Solution: The relativistic Doppler shift is given by the expression

, _ /1 - u/c
V.o EW T v u/e

Multiplying both the numerator and denominator by the factor ,/1 - u/c ,
one obtains the expression

‘- _ / l-u/c
\Y =V
1 - (u/c)?

where v is the observed frequency of light of frequency v in the
frame of reference of the source; u 1is the relative source-observer
velocity, and c¢ 1s the speed of light.

For case (a), the light is travelling parallel to the earth's

motion, and u is given by u = RQ , with R = 30,000 light-years,
and

21

) = —=——— rad/year.
200(10%)
Thus,
a = 30 00062n light-years (rad/year)
200(10°)
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= 9.425(10-4)c (where c¢ represents the speed
(%) = 9.425(10™.
c

Now since u<<e¢, v/ =y {1 - (u/c)}, or, since v’ = ¢/A’ and
v = c¢/A (A = the wavelength of light),

of light) or

i7 ~ % {1 - (u/c)}, with A = 65638 .

Thus, A" = 6569.2 A, or AN = A" - A = 6.2 & .

b) Where the line of observation is perpendicular to the direction of
the earth's motion, the observed frequency shift, which is purely a
relativistic effect, is called the transverse Doppler effect. The
frequency shift is given by the expression

v =vyv[1l - (U/C)a]%.
The derivation of this effect is indicated in the figure. The generalized
Doppler shift is given by

o 1 + (u/c)cos g’
vev 1 - (u/c)?

where, as indicated, the observer (on the earth) is located at point P
at rest in the unprimed coordinate system, and the source of light is
at rest in the primed system. For transverse observation,

m
0 = 5 >
cos g’ = - E
ol (u/e)® 21%
Thus, v v '/I_——-(‘UT)T v [1 (u/C) ]
or
% = lT 1 - (u/c)a]%, with (u/c) = 9.425(10™).

A

Thus, A = 6563.003 A , or A\ = 0.003 A,
e PROBLEM 3-3

What is the Doppler width of the hydrogen line Hy (A = 6563 A) in a

laboratory discharge tube operating at a temperature of 200°C? Give
the results in frequency units and wavelength units.

Solution: For a luminous gas, the atoms are moving with a Maxwellian
distribution of velocities. Therefore, a spectral line emitted by a
gas must comprise a range of frequencies symmetrically distributed
about the frequency emitted by the atom when at rest; this range in-
creases with increasing temperature. We define the full width at
half intensity, A, to be the separation between two points of the
spectral line at which the intensity is one-half aslgreat as it is at
its maximum. The brightness of a line a distance A - A from the
center is proportional to

e -b(X' - A)?

where b 1is a constant dependent on the temperature and on the mass
of the atom. The width, A, if it is due entirely to the Doppler ef-
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fect, is

A =0.72(10"% a /%

where T 1s the absolute temperature and M 1s the atomic weight of
the radiating atom.
Substituting the values for T and M into the above equation, one

obtains
a = 0.72(107®) 6563 Af_%?= 0.103 % .
Further,
c = £\ c
(c = the speed of light), or since c/f = A , AA = = F Af . Thus,
of = - =2 Ak,
with 8
£=S- 3 x 10 E{‘ig° = 4.571 x 10** sec”! .
6563 x 10 " m
Therefore 14 =1\z
, Af = (4.571J~i8 10°" sec™™) (.103 1)
(3 x 10 n/sec)
or,

Af = 7.17 x 10° Haz.

e PROBLEM 3-4

Light may be incident at an angle of 40° on a plane mirror moving to-
ward the source at a velocity v = 0.15 c. Find: a) the angle of reflec-

tion, and b) the wavelength of the reflected light, assuming the in-
cident light has a wavelength of 550 nm.

SURFACE
INCIDENT NORMAL
RAY

REFLECTED RAY

MIRROR

Solution: a) The law of reflection modified for the Doppler effect is
given by

Sin ¢ Sin ¢
i - r 1)
Cos 9, + v/c Cos § - v/c
i r
Substitution of 8; = 40°, v/c = 0.15 results in
Cos g = 0.15 + 1.43 Sin G (2)

squaring both sides of equation (2) and using the trigonometric identity
Cos?g = 1 - Sinfg gives

3.03 smaer + 0.43 Sing - 0.98 = 0.
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Solving for Siner using the quadratic formula,

-0.43 I ,/(.43)% + 4(3.03)(0.98)

Sing = 3)
r 2(3.03)

Siner = 0.50, or
er =30 .

(Note: The positive solution to equation (3) is used since 6. is
obviously less than 90°.)

b) If the direction of motion of a source of light moving with velocity
v and the direction from which it is seen subtend an angle ¢, the
Doppler shifted wavelength A' 1is related to the wavelength A emit-
ted by the source through the expression

1 -(v'/c)ecos 8
A= r—————————— B 4)

J1 = (v'/e)?

In the problem the observer sees a reflection of the source in a mirror
moving with velocity v; since the image seen in a moving mirror moves
with twice the velocity of the mirror, v' = 2v; using v/c = 0.15,

A= 550 nm, and ¢ = 30° , equation (4) gives

A' = 427 mm.

ENERGY AND MOMENTUM OF LIGHT
e PROBLEM 3-5

A parallel beam of light of radiant energy density 6.4 x 104 J/m3 is

incident on a plane mirror. What is a) the momentum acting upon the
mirror and b) the force exerted upon it during 5 seconds illumination?

Solution: The momentum of light is given by the de Broglie relation as

B _he 1 _hy E

P= A = A X c c c 3 (1)
where h is Planck's constant, A, ¢, and y are the wavelength, speed,
and frequency of light, respectively, and E 1is the energy of the light
beam. Knowing the energy of the beam, we can find the momentum exerted
by the beam. If this beam impinges on a mirror the change in momentum
will be twice the incident momentum (no energy lost in reflection, dir-
ection of momentum changes), or considering a volume of 1 cubic meter
and a mirror surface of 1 square meter,

4
change in momentum = 2E/c = 2 x 6.4 )é 0 . 4,28 x 10 4 kgm/s. 2)
3 x 10

Now, force is defined as the rate of change of momentum, so the force
exerted on the mirror is given by

-4
F = ﬁ% - 228X 10 458 x 107 N/, (3)
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We will now use dimensional analysis to see how the units were arrived
at: for the first equation we had

momentum = Energy
speed

J
m/sec

N.m
m/sec

_ kg-m/seca
1/sec

= kg-m/sec

In the second equation,
momentum
time

_ kg-m/sec

sec

Force

= kg-m/sec® = N

Since this was the force exerted on one square meter of the mirror's
surface, the units become N/nf .

® PROBLEM 3-6

Find the momentum density (momentum per unit volume) in a beam of sun-

light,

Solution: Each photon in a beam of sunlight carries momentum p given
by

P = E/c, (1)
where E, the energy of the photon, can be found from its frequency f;

E = hf. (2)
Since

f=c/r, (3)

using A = 5 x 10-7 meters and c = 3 x 108 m/sec gives E =~ 4 x 10719

Joules and p = 1.33 x 10-27 kg-m/sec, for each photon. To find the
number of photons per unit volume (and hence the momentum density by
tultiplying this number by p obtained above), we use the known fact
that the average flux density for sunlight is about 1400 watts/mf,

i.e., on each square meter of the earth's surface there are incident

1400 Joules of energy each second. This energy must be carried by the
photons contained between the earth's surface and a height equal to the
distance a photon can travel in one second, i.e., a height H = c-1 sec =

3 x 108 meters. Thus in a box of base area equal to 1 square meter and
height 3 x 108 m there must be

1 photon

4 x 10-19 Joules

in a box one meter high, (i.e., of volume one cubic meter) there would
then be

1400 Joules x

= 3.5 x 1021 photons;

21
3.5 x lg 3phot:ons = 1.2 x 1013 photons/m3 .

3x 10 m
The momentum density is then
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13 photons « 1.33 x 10-27 kg-m/sec _ 1.6 x 10"14 kg-m/sec

m3 photon m

1.2 x 10

® PROBLEM 3-7

A flashlight of mass M floats in space, at rest wit™ respect to the
"fixed stars', It is turned on for 1 hr., emitting 1v of light in a

parallel beam. How fast is it going at the end of the hour with respect
to the fixed stars? (Velocity is not an absolute quantity and must be
measured with respect to some inertial frame.)

BEFORE (NOLIGHT)  AFTER (uem BEAM TURNED ON

/'
FRAME CV. -0 ,‘5 v FRAME
OF FIXED STARS (O £ OFFIXED STARS

(Vi AND V; REPRESENT THE_ INITIAL AND FINAL VELOCITIES OF THE
FLASHLIGHT, RESPECTIVELY )-

Solution: This problem can be solved by momentum conservation: the
initial momentum of the flashlight is MVi s the final momentum of the

flashlight is MVf. Light, though massless, has the property of momen=-

tum such that P = U/c where U is the energy of the light. Here we
are concerned with a beam of light. To calculete the energy of a beam
we can use 2 methods;

a) 1if the beam has an energy per unit volume, ¢ , and a volume
V then U =¢V,

b) if the beam has a power output P, which we know is defined
as energy per unit time, and it is on for a time T, then the total
energy U = PT ,

In our problem we have the latter case. Therefore:

Total momentum initially is P, = MVi + 0,

T
However, with respect to the fixed stars Vi = 0, so PT initially is
> Total momentum finally is Pg = MVf + % o
These must be equal; so 0 = MVf + -1)—:' , or solving for Vf we have
V. = - PT _ _ (1 W)(3600 sec) .

M(3 X 108 m/sec)

Dimensionally, a watt = 58112. .

—3—— (sec)
sec

(kg) (m/sec)
which is the units of velocity. Thus, V

= m/sec,

P -;-1(1.2 x 10~)m/sec .

The minus sign merely signifies that the flashlight and the light beam
move in opposite directions. Incidentally, the volume of the beam is
its cross-sectional area times cT.
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® PROBLEM 3-8

How many photons are there in 1 mm3 of monochromatic light of 488 nm

wavelength, whose beam has a radiant power flux density of 20 watts/cof
and a cross-sectional area of 1 cm??

BEAM MOVING
\WITH VELOCITY

Solution: The idea is to find the energy in lmm3 of the beam and divide
it by the energy per photon. The result will be the number of photons
per mm®

3 Photon 3
mm mm

[Energx] / [Energy] - Photons

What is the energy of one photon?
The energy of a photon, denoted as El’ is given by hf where h

is Planck's constant and f 1is the frequency of the light. The fre-
quency is related to the wavelength A through the equation f\A =c ,
where c¢ 1is the speed of light. By rearranging we get £ = ¢/ .

= hf = DE
E, = hf = =

All the work will be done in the mks (meter-kilogram-sec) system. All
non-mks units will have to be converted. We also need to know the
following 3 things:

a) 1mm=10""m

b) ¢ =3 x 108m/sec

¢) h = 6.625 x 10°°% joule-sec.

o b _ (6.625 x 107% joute-sec) (3 x 10° g/seC)

1 (4.88 x 1077 m)

E, = 4.1 x 1077 joules
L2




The diagram indicates the situation. The beam traveling with velocity
¢ has a flux of 20 watts/caf . Call this flux F.

F = Power _ Energy
area  (area) (time)

If we want the energy enclosed in 1 mm3 of the beam we have €p = FAt

where A is the arc of one surface of the 1 mm3 volume, and t 1is
the time required for the beam to travel lmm.

= Lom = iéggl—%l———— = 3.3 x 10-12 sec,
(3 x 10 m/sec)

c
_ watts\/1l cof _ 4 watts _ 4 joules
F—(ZO C“F)<1x10-4m?>_20)(10—r 20 x 10 m

’ 4 joules -6 2 -12 \
r \20 x 10 iF:;z:)(l x 10 " m )(3.3 x 10 sec/

= 6.6 x 10713 joules

€
T
To obtain the number of photons per mm3, we just calculate
€ -13
E: _56.6 10_19 = 1.6 x 106.
1 4.1 x 10

Therefore there are 1.6 x 106 photons/mm3 .

THE PHOTOELECTRIC EFFECT
® PROBLEM 3-9

Ultraviolet light of 300 nm wavelength strikes the surface of a

material which has a work function of 2.0 eV. What is the velocity
of the electrons emitted from the surface?

Solution: Using the equation ¢ = y\A , where v and A represent the
frequency and wavelength of 1light, respectively, and c¢ 1is the speed
of light,

8
v = % - 3x10 2 sec _ 1015 sec-l _ 1015 Hz .
3x10 " m
Converting the work function of 2.0 eV to 3.2 x 10-19 J by use of
the relationship 1 eV = 1.6 X 10-19 J, and using K.E. = hy - w , we

have

(6.63 x 107* J/sec) (10 sec™) - 3.2 x 10717 5

19 3

K.E.

3.43 x 10~

where h 1is Planck's constant.
Now the velocity can be found by using

K.E. = % mv2 ,

where the mass of an electron, m, 18 9.1 x 10-31 k

3.43x 102 5=3 . (0.1 x 103 kg) v

g. Hence,
2

and so, 6
v = 0.87 x 10 m/sec.
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e PROBLEM 3-10

Photoelectrons of kinetic_energy 2 eV are emitted from a cesium surface;
) = 1.8 eV, What is the longest wavelength of

the work function Q’Jr Wf

light which could have produced such emission?

Solution: The photoelectric effect is produced when a metal surface is
bombarded by photons. The photon possessing energy hf = hé/A (where h
is Plancks' constant, and £, A\, and c are the frequency, wavelength,
and speed of light, respectively) imparts energy to the metal's elec-
trons. If the photon energy just equals the energy needed to free the
electron from the surface we term it the work function energy Wf .

This is the minimum photonic energy needed to remove the electron.

The frequency of the photon needed for wf is termed the threshold

frequency fo, Wf is given by the equation Wf = hf0 .

If the incoming photon has more energy than W_, the electron

f’
ejected possesses kinetic energy as well. The following equation ex-
presses these facts:

- _ he _
Eohoton = BE =3 =W + E

where Ek represents the kinetic energy of the emitted electron.

In this problem, E. = 2eV and W_ = 1,8eV. From the equation

k £
he
EPhoton = hf = —% , it 1s apparent that the longest wavelength (A) of

light corresponds to the smallest incoming photon energy required for

electron ejection at Ek = 2eV,
hc he
= =W_+E ) A=77"—"7".
A ( £ k) (Wf + Ek)

Substituting for h and ¢,

344jou1e-sec)(3Ax 108 m/sec)
(Wf + Ek)

_ £6.625 x 10~

A

1,99 x 1072 3

wf + Ek
_ -19
W, + E = 3.8 eV and 1 eV =1.6 x 10 Joules;
therefore, -19
_ 1.6 x 10 1ou1es> - -19
We + B = (3.8eV)< == 6.08 x 10712 joules.
-25
A = (199 X 10_19 J-m) _ 3.27 x 10 7.
(6.08 x 10717 3)
lnm = 10 ° m,
Therefore
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THE POYNTING VECTOR
® PROBLEM 3-11

A light wave is traveling in glass of index of refraction 1.5. If the

amplitude of the electric field of the lightwave is 100 volts/meter,
what is the magnitude of the Poynting vector?

Solution: One of the important characteristics of an electromagnetic
wave is that it can transport energy from point to point. The rate of
energy flow per unit area in a plane electromagnetic wave can be de-
scribed by the vector S called the Poynting vector, We define g

as -
S=-1_EX§ (1)
Yo

where uo = L x 10-'7 wb/amp-m, E and ﬁ refer to the instantaneous

values of the electric and magnetic fields respectively, and S is
given in units of watts/meters®, 1In addition, we know that the magni-
tudes of the electric and magnetic fields are related by the following

expression when the wave is traveling in a vacuum:

E=VB (2)

where V is the speed of the wave.

In the given problem, we have light traveling through glass of index
of refraction 1.5. The speed of the light wave is thus reduced and is
found from the definition of the index of refraction:

n=S%_ speed of 1i§ht in a vacuum .
V  speed of light in given medium ’
hence, o 3 x 103 / 8
V=S -2 22 WMSeC . 5 %10 m/sec .
n 1.5

We are given the amplitude of the electric field, so we can find the
amplitude of the magnetic field:

E = 100 volts/meter.

Using equation (2), where V 1is now the speed of the wave in glass,
we have
-8 =7
B=F‘7=1°°—8=50 x10° =5 X10™' ,
2 X10

Then the magnitude of the Poynting vector is given by

S = l_ EB
Ho
= <_1__7>(1oo) (5 X 10"7)
4 X 10
S = 39,8 w/m? ,

It is important to note that this is the maximum value, since the magnitude
of E was given as a maximum value ("amplitude" implies E ax). To
m
1

obtain the average value of S, we use §==—E B , the magnitude
2“0 max —max

of the Poynting vector then becomes S = 19.9 w/m® .
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e PROBLEM 3-12

The solar constant, the power due to radiation from the sun falling on
the earth's atmosphere, is 1.35 kW-m‘z, What are the magnitudes of E

and B for the electromagnetic waves emitted from the sun at the
position of the earth?

Solution: Starting with the electromagnetic waves at the earth, it is
possible to determine E and B by two methods. (a) The Poynting
vector 1
§==—% x8

Ho
gives the energy flow across any section of the field per unit area per
unit time,

Here, f and B are the instantaneous electric field and magnetic
induction, respectively, at a point of space, and “b is the perme-

ability of free space. If we approximate the sun as a point source of
light, then we realize that it radiates electromagnetic waves in all
directions uniformly. However, the distance between earth and sun is
very large, and we may approximate the electromagnetic waves arrivi

at the surface of the earth as plane waves. For this type of wave, E
and B are perpendicular., Thus

IS = |_1-E*x§
Yo

— -> ->
where we have used the fact that [B] = IHH0| in vacuum, (H is the

magnetic field intensity.)
But in the electromagnetic field in vacuum, eoE2 = pol-[2 , Or

E ‘“‘0/”0 = H. Then

3 -2
E = EH = .
X V/6)/yy E = EH = 1.35 x 10° Wem

= EH = 1.35 x 10° wem 2

or
E? = A/uo/eo x 1.35 x 103 W-mm2
= 377 Q x1.35 x 103 yon™2 | [where, Q= ohn]
E = é.og x 10° vem ™! = 0,71 X 10% vem™t .
Similarl -
Yo Ho 1.35 x 103 Wem 2)
B = pOH = E .

Substituting for o and E,

_ Can 1077 weber-al.n™(1.35 x10% wen~2)

B
71 x 10° vem™t

-1 -2

B=2.39 x10 6 Weber-w‘-,A om .
But 1W=1Jdess and 1V=1JdC?T [C= coulomb]

-1 -1 -2

B = 2.39 X 10—6 Weber-J'S l'A m
J-C

1

since 1 amp(A) = 1 cs” B = 2,39 x10™° yeper.m™2 .

(b) The electromagnetic energy density (or, energy per unit volume)
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in an electromagnetic field in vacuum is HOH2 = %Ez . The energy

falling on 1 m® of the earth's atmosphere in 1 second is the energy
initially contained in a cylinder 1 m? in cross section and 3 ¥ 108 m
in length; all this energy travels to the end of the cylinder in

the space of 1 second. Hence the energy density near the earth is

_1.35 x10° wem 2

-1

HZ = E2
IJO eo 3 x 108 mes

Here, ﬁ) is the permittivity of free space.

£2 = 1.35 x 10° W.n 2
8.85 x 10712 2. 1n™2 y 3 y10% m.sL
E® = 1.326)(5207 o T
° C «N “.m.s

But 1 w=1 J-s“1 =1 Nom-s_l; therefore,

E2 = 5,085 yx 10° N/coy Y - 5,085 x 10° N2/c?
or

E=.71 x10° y.¢l 2 .71 X 103 V-m-l,
Also -

! 2 B?® 1.35 x 105 Wem™2
B™ = === 8 -1
Ho 3 x10 mes

or

g2 = 4m X 10“7 N-A-'2 x 1.35 x 103 w.m'z
3 x10° mes™t
2

= 2.36 x10™% wpem™

w
1

CERENKOV RADIATION
e PROBLEM 3-13

Cerenkov radiation can be loosely compared to the shock wave caused by
a speed boat traveling in shallow water. If the boat moves at 60 km/hr

and if the bow wave has an apex angle of 30°, what is h, the depth of

the water?
(Phase velocity of water waves vph = ,/gh)

Solution: From an appropriate optics text we find that the angle of
Cerenkov radiation is given by

sin 9= = (6D}
nv

where 6 is the limiting angle of the cone of Cerenkov radiation, ¢ is the
velocity of light, n is the index of refraction of the medium, and v is the
velocity of light in the medium of the particle emitting the radiation.
c/n  then represents the phase velocity of light in the medium. We can
then relate this to the bow wave of a speed boat, where 6 will represent
the angle that the edge of the bow wave makes with the direction of
motion of the speed boat; v is the velocity of the speed boat and c/n
is the phase velocity of the water waves. Now the phase velocity of the
water waves is found to depend on the depth of the water in which the
waves are produced and is given in this problem as
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Voh = Jeh. (2)

Converting 60 km/hr to m/s, 3
60 km ,10”"m 1hr
hr km 3600 sec
= 16,66 m/s; (3)
we get from (1) and (2)
& ’ sin 0= A/ 80, (4)
v

Substituting for 6, g, and v,

sin 30° = -12—= V3.8 h (5)

h=a 2 —7m, (6)
® PROBLEM 3-14

A source emitting waves travels through a medium with a velocity of v,
which is greater than the velocity V with which a wave disturbance
travels in the medium., a) Apply Huygen's principle to show that a
conical wave surface is produced. b) 1Illustrate with a diagram.

c) Find an expression for the angle between the two "bow" waves formed.
d) Given the relativity constraint that no body can move at speeds ex-

ceeding c, the speed of light, is this concept of any physical signifi-
cance for light?

Fi6.1

Solution: Looking at Figure 1 we start with the source of wave motion at
0 which proceeds through O0', 0", and e with a velocity v. While at
0 the source emits waves which travel with velocity V = c¢/n spherically
from O, While at O0' and O" and in between the source also emits
waves which travel with velocity V spherically from O0' and 0",
respectively. When the source reaches e, the waves emitted from O will
have reached A, those waves emitted from O' will have reached A',
those waves emitted from 0" will have reached A', and those waves emit-
ted from e will still be at e. From a Huygen's construction of the result-
ing wave fronts, the line AA'A"e represents the resulting wave progres-
sing through the medium., If we consider the medium to be three dimension-
al and isotropic, then the wave front will be that cone resulting from a
rotation of the line AA'A"e about the axis represented by the direction
of the velocity.

Since OA ; AA'A'e , triangle OAe 1is a right triangle and

Sin 6= V/v (6}
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or the total angle of the cone is then
20= 2 sin "t V/v . 2)

As we developed equation (1), we said that the wave propagation
velocity was V = c¢/n; or for light, the phase velocity of electromagnetic
radiation in the medium. So we can also write equation (1) as

c
Sin @ = el (3
Then, defining
v/c = 8 , equation (3) becomes
1

Sin 9= 1., (4
n

Since the speed of light is reduced in a medium to V = c¢/n, n > 1,

it is indeed possible to create these wave fronts. This type of radia-
tion is known as Cerenkov radiation and is used extensively in high
energy particle physics to measure the velocity of particles.

TOTAL REFLECTION OF LIGHT
® PROBLEM 3-15

A beam of light is totally reflected in a 45-90-45 degree glass prism
(n = 1.5) as shown in the diagram. The wavelength of the light is
50004. (a) What is the distance into air at which the amplitude of

the external wave is e~l of its value at the surface? (b) What is
the ratio of the intensity of the external wave at a distance of 1 mm
to that at the surface?

LIGHT REFLECTED

FROM METAL
SHARP METALLIC
EDGE
ety
INCIDENT ' INTERNALLY
LIGHT REFLECTED
LIGHT

Solution: (a) From the electromagnetic theory of reflection and re-
fraction the expression for the amplitude of the transmitted wave

is known to be of the form

Ae—ayel(k-x - wt) (1)
where sinz
o=k 3 e -1 ; 2
n

k represents the angular wavenumber 27/A, and w represents the angular
frequency. The amplitude will thus be reduced by a factor of e-! if
oy =1, or y = o~'. Substitution of k = 21/5 x 10-* mm, 6 = 45°,
and n = (1.5)”! (the index of refraction of the second medium (air)
relative to the first), into equation (2) gives
o = [ 2m ] sin?(45%)
5 x 107" mm 1 -1
(1.5)
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_ 2m
TSx 10 m V-1

n

Hence, y =a ~' =5 x 10""* mm

2mv 1.125 - 1

2.3 x 10" mm.

y

(b) The intensity of a wave is proportional to the square of the
amplitude; hence if R represents the ratio of the intensity at
=1 mm to that at y =0,

R = e_za‘l mm) =201 mm)
= = e ;
—230 mm)
e
using o= (2.3 )(10.“4‘)-1 from part (a),

3
087 x 10

R = ; rewriting in powers of temn, i.e,,

setting 3
9_8'7 x 10 = lox 3)

and solving for x by taking the natural logarithm of both sides of
equation (3),

3
x = =87 X110 3800
1n 10

-3800

’

SO
R =10

(a considerable reduction in intensity).

THE LORENTZ TRANSFORMATIONS
® PROBLEM 3-16

Show how the Lorentz transformations correctly describe the experimentally
demonstrated fact that the same light pulse is seen to spread out in a

spherical wave front for two observers moving relative to each other.

WAVE FROth ,
WAVEFRONT AT TIME t'IN S
AT TIME
tINS ,
0 o) x,x'
z b4

Solution: We must base our calculations on Einstein's postulates; namely,
1) All laws of physics, including the Maxwell equations, are in-
variant in all inertial reference frames,
2) The speed of light, {c }, measured in any inertial frame will be

50



invariant.
In the following diagram, at time t =0 in the S frame and time
t* = 0 in the S' frame the origins of both coincide and a light
pulse is emitted at that origin. The S' frame is moving with velocity
¥V to the right.

An observer in either frame sees his frame as inert.al. If a pulse
of light is emitted from the origin of an inertial reference frame Si

at time t1 = 0, at some later time ti the original wave front of the
pulse will be a spherical shell whose radius equals cti , where c¢ =

the speed of light. Using analytic geometry we know a sphere is re-

presented in Cartesian coordinates by xf + y2 + z2 = r? in this Si
1

frame. Thus by equating we have xf + y + z2 = c2t2 .
Now we apply this to our situation descrlbed by the diagram. The
S frame has coordinates (x,y,z,t) and the S' frame has coordinates
(x',y',z',t").
We have just stated that both frames are inertial, so in the S
frame,
x? + y? + 2% = 22, (1)
and in the S' frame
x'2+y'2+z'2=c2t'2. (2)

[Note that the speed of light ¢ is the same in both frames]. But how
is it possible that two observers who are at the same place when a light
pulse is emitted and who then travel apart at some constant speed v
later both observe the light wave front to be a sphere with themselves
at the center?

This would be geometrically impossible if the two observers meant
the same thing when they specified the time at which they located the
wave front. If the two observers' ideas of when two events are simul-
taneous do not coincide, this paradoxical result can be accounted for.
Equations (1) and (2) can be written in the form

c?? - (x2+y2+2® =0
c2t'? - (x'? + y02+ z'2) =0

which implies that the value of this combination of time and coordinates
has the same value, zero, in all inertial coordinate systems whose
origins coincide at time zero.

The Lorentz transformations are given by

XV
t -
e

t!
x' = y[x - vt]

y =Yy
z"‘—‘z-
The inverse transformations are given by

1 ]
t=y[t'+%]
c
x = vy [x'+ vt']
=y!
= z'

1

V1 - ve/c?

where vy =

and the primed frame is moving to the right,
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which we have.,

We want to show that by using these transformations on the S frame
we get the same kind of spherical wave form in the S' system., In the
S' frame, x2 + y? + 22 = ¢c?t?® . By substituting in the inverse trans-
formations we get 012
YVIx' + vt']2 + y'2 4+ z'2 = czf[t' + %] .

By expanding the above equation, we now have

1] 1t 22
Y[x'2 + 2x"vt' + v3t'2] 4+ y'2 4 2'2 = czye[t'z + ot! x_c‘é_,_ 1.4_"_],
c
Now by moving the y'2 and z'2 terms to the other side of the above
equation, and regrouping Y2 terms we have

12 tyt! 2412 12 Tyt x'3v2
v x'2? 4+ 2x'vt' + v3'2 - c3t'2 - 2t'x'v -

= =yt - z12
rya ] y z'“,
We can simplify this equation to yield the following:

t2y2
ya[x'2+v2t'2-c3t'2-%v—] r2,

=_y|2_z

Within the brackets, the x'2 and t'2? temms can be factored out

2
yz[x's(l -%:’.2.).,, t'3(v? - c2)] = —y'2 - z'2
2 2 _ g2
1 -EE=C_QEL=%!(°2 - v3) = _%.5(‘,2_(,2).

By making this substitution we have
x|2
'Ya ':5—(\!2 -c? + t'3WwR =c?)| = _yoz - z'2,

Now factoring out (v® - c2®) gives the result

2
.Ya(vz - ca)[tnz _x' ] = —y'2 = z12
c2
¥ = 1 o _c? ___¢c?
- v T -ve T y? -c?’
(1'32)

Substituting this value for y2 into the above equation yields

(v2 - ¢?) 2[ 12 x'z] 12
- c - - - -2
(v - ¢ t c=® y 2
or,

- C2t'2 4 x'2 = —yt2 - g2

x'2 4 y.z + 2'2 = ¢g2¢t2,

This was the equation that the S' observer used to describe his view
of the light pulse. It may seem a bit strange that both see spherical
waves, but the Lorentz transformations show this to be true, The ac-
ceptance of this comes with the acceptance of the fact that time and
space are dependent on the particular inertial frame one is in,
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CHAPTER 4

RECTILINEAR PROPAGATION
OF LIGHT

THE PINHOLE CAMERA
e PROBLEM 4-1

If the sensitive plate of a pinhole camera is 20 cm from
the pinhole, what should be the diameter of the pinhole,
according to Abney's formula?

Assume that the photographic film used has its highest
sensitivity at a wavelength of 450 nm.

Solution: 1In essence, a pinhole camera can be described as
a Fresnel lens, such that as seen by the photographic film
the pinhole has a proper fractional Fresnel zone to provide
focusing. An equation which can be used in this problem is

Abney's formula, which is as follows:

D=1.9va' (1)

where a' is the distance from the pinhole to the f£ilm, A

is the wavelength for which the film used has its highest
sensitivity and D is the diameter of the pinhole. Hence,
substituting the given values for a' and X into equation (1)
gives the result:

D=1.9/.20 x 450 x 10 °m =

5.7 x 10 “m = 0.57 mm
® PROBLEM 4-2

An object 6 inches high is placed in front of a pinhole
camera at a distance of 6 feet fraom the aperture. What

is the size of the inverted image on the ground glass
screen if the length of the camera-box is 1 foot?

Solution: From the figure, it can be seen from the two
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. /”/’-1}6"1.
Sammm— 1 2 € —>

rE=——or
WQ-WFW
SCREEN
similar triangles that the following relation is valid:
6 ft _ 1 ft
6 in X

Hence, x = 1 in. and so, the size of the inverted image on
the screen is 1 in.

THE ILLUMINATION OF LIGHT
PROBLEM 4-3

An opaque globe, 1 foot in diameter, is interposed between
an arc lamp and a white wall. If the wall is 12 feet from

the lamp and the center of the globe is 3 feet from the
lamp, what is the area of the shadow on the wall?

—see== =V} X
e = ———
T
WALL

Solution: Assume that the source of light given in this
problem is a point source. In this problem, the size of

the shadow on the wall is proportional to the distance from
the wall to the source of light. From the similar triangles
shown in the figure, the following relation holds true:

12 ft _ 3 ft

X 1 ft

Solving for the diameter of the shadow, x, gives
x = 4 ft.

The area of the shadow is = mR2?, where R represents the
radius of the shadow. Then, the area of the shadow =

2
(i‘—zf—t) e m o= 4r ft2 £ 12.57 f£t2
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e PROBLEM 4-4

Light from the sun is reflected on a tiny plane mirror
measuring 2 mm x 2 mm in size. What is the shape

of the illuminated area on a screen (a) 1 cm away
and (b) 2 m away from the mirror?

Solution: When light is reflected by a small mirror onto

a screen, the shape of the illuminated area of the screen
depends upon the distance between the mirror and the screen.
If the distance is small, relative to the size of the mir-
ror, then the shape of the illuminated area on the screen
will resemble that of the mirror. If the screen is far
away from the mirror then the illuminated area becomes cir-
cular in shape.

In this problem, the mirror measures 2 mm x 2 mm
in size. The illuminated area on the screen at a dis-
tance of 1 cm will be rectangular in shape. In order
for its shape to be that of an exact square, the light
would have to be reflected exactly perpendicularly to
the mirror. If the mirror is moved to a distance of 2
meters away from the screen, the illuminated area on
the screen will be circular in shape.

® PROBLEM 4-5

What is the apparent angular elevation of the sun when a
telephone pole 15 feet high casts a shadow 20 feet long on

a horizontal pavement?

® SUN

Solution: This problem can be solved trigonometrically, by
examining the figure. Given the height of the pole and the
length of the shadow which it casts, the angle of elevation
of the sun, 8,can be found from the following relation (see
figure) :

w'n-'
olun

tan 6 =

’

hence, 6 = tan”( %) = 36°52'12".
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VERGENCE
® PROBLEM 4-6

What are the vergences for light at points at the following
distances from a light source: 100 cm, 33.3 cm, 400 mm,

25 gm, 0.50 m, and 100 mm?

Solution: Vergence is defined to be the reciprocal of the
distance from a reference point to a point of vergence. 1In
this problem the point of vergence is the light source and
the reference point is a point that is a given distance

away from the source. The vergence is positive when the

rays of light are diverging, and it is negative for converg-
ing rays of light. The vergence of light at a given distance
from the source is equal to the curvature of the wave front
at that distance from the source.

Using the data in this problem, the vergence can be
calculated_in terms of diopters, which are equivalent to
units of m !. Thus, the distances are converted to meters
before taking their reciprocals. The following table indi-
cates the results:

Given
distance 100 cm 33.3 cm 400 mm 25 cm 0.50m 100 mm

distance

in m 1.00 m 0.33 m 0.40 m 0.25 m| 0.50 m 0.10 m
vergence

(diopters) 1 3 2.5 4 2 10

THE UMBRA AND PENUMBRA
e PROBLEM 4-7

Discuss the type of shadow formed by an extended source.

,4
- PENUMBRA
"T3<27" |eoraque pisk |} umera
DISK SHAPED TS~
SOURCE ~\\\\ PENUMBRA
(SCREEN
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Solution: If the source is of finite size instead of being

a point, the shadow is divided into a central part, called
the umbra, which is uniformly dark, and a peripheral part
called the penumbra, which is graded from dark at its inner
edge to bright at its outer edge, where it becomes equal

in brightness to the part of the screen that falls outside

of the shadow. 1In the figure, the source is a bright disk of
finite size, and the object is an opaque disk which throws
its shadow on the screen. The umbra of the shadow is disk-
shaped, and the penumbra is annular (ring-shaped).

® PROBLEM 4-8

Describe the two portions of the shadow of an object il-
luminated by a source of small dimensions and explain what

relationship they have to partial and total solar eclipses.

FI1G.1 FIG. 2

; =[]

S

Solution: Probably one of the first optical phenomena to
be noted was that the shadow of an object illuminated by a
source of small dimensions has the same shape as the object
and that the edges of the shadow are the extensions of
straight lines from the source tangent to the edges of the
object. Apart from diffraction effects, the formation of
shadows can be treated satisfactorily in terms of a ray
picture.

Point 0 in Fig. 1 represents a point source of light.
That is, the dimensions of the source are small in compari-
son with other distances involved. S is a screen and P is
a circular obstacle between the source and the screen. The
area of the screen, bounded by rays from the source tangent
to the edges of the obstacle, is called the geometrical
shadow of the obstacle.

If the source is not sufficiently small to be consid-
ered a point, as in Fig. 2, the shadow consists of two por-
tions. The region behind the obstacle which receives no
light from the source is called the umbra. This is sur-
rounded by the penumbra, within which a part of the source
is screened by the obstacle. The fuzzy appearance of the
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edges of a shadow cast by a frosted bulb incandescent lamp
is due to the penumbra. An observer within the umbra can-
not see any part of the source, one within the penumbra can
see a portion of the source, while from points outside the
penumbra the entire source can be seen.

The phenomenon of a partial or total solar eclipse is
caused by the passage of a portion of the earth's surface
within the penumbra or umbra of the shadow of the moon, cast
by the sun. 1In Fig. 3 (obviously not to scale) S, M, and E
represent the sun, moon, and earth, respectively. The
moon's shadow in space consists of a conical umbra U sur-
rounded by a penumbra P. When a portion of the umbra near
the tip sweeps over the earth's surface, the solar eclipse
will be total for all observers within it. Within a band
on either side lying in the penumbra, the eclipse will be
only a partial one. Eclipses of the moon arise in a simi-
lar manner when the relative positions of sun, earth, and
moon are such that the moon lies within the shadow of the
earth.

e PROBLEM 4-9

An opaque circular disk is interposed between a screen and
a luminous disk of greater size. The straight line joining
the centers of the disks is perpendicular to the faces of
the disks and to the plane of the screen. The radius of
the luminous disk is r, the distance between the disks is
d, and the distance of the screen from the opaque disk is
X. Show that the width of the penumbra ring projected on
the screen is equal to 2rX/d, and that it is therefore in-
dependent of the diameter of the opaque object.

A oP
LUMINOUS ,;:2;"

DISK ¢
SCREEN

Solution: If a source is not sufficiently small to be con-
sidered a point, the shadow formed by the opaque disk con-
sists of two portions, the umbra and the penumbra. The re-
gion behind the opaque disk which receives no light from
the source is called the umbra, whereas the penumbra is the
region surrounding the umbra within which a part of the
source is screened by the opagque disk.

Consider the situation where the umbra reaches the

screen and the penumbra is in the shape of a washer, as
shown by the figure. The radius of the luminous disk is r.
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Thus, the length of the line segment AB is 2r. In addition,
it is also given that the distance between the two disks is
d and the distance between the opaque disk and the screen is
X. The width of the penumbra is represented as Y in the
figure. Triangles ABC and CDE are similar, so the following
relation is valid:

AB/FC = DE/CG (1)

where FC is the altitude of triangle ABC and CG is the alti-
tude of triangle CDE. Substituting the given data into
equation (1) gives

2 °r . 4
d X
Hence
2
Y=%)S,

and is independent of the size of the opaque disk.

Now, when the umbra does not reach the screen, the
penumbra is just a dark circular disk that is not indepen-
dent of the size of the opaque disk. Thus, the formula for
the width of the penumbra is valid only when an umbra is
present at the screen.

e PROBLEM 4-10

The diameters of the sun, earth, and moon are 864,000
miles, 7920 miles, and 2160 miles, respectively. A solar
eclipse occurs at a moment when the earth to sun distance
is 92,900,000 miles and the earth to moon distance is
226,000 miles. Compute the length of the conical umbra of
the moon's shadow and compare it with the distance from the
moon to the earth's surface.

p D — e b
| 1080mi [, — —
A 226,000 mi

Qa
L 92,900,000 mi ]

Solution: Triangles ABE and CDE, shown in the figure, are
similar triangles. Thus, the following relation holds:

) |2
]
el
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(864,000 miles) = 432,000

N =

AB = the radius of the sun =
miles;

BE = the distance from the earth to the sun + a (where a is
shown in the figure) = 92,900,000 miles + a;

CD = the radius of the moon = % (2160 miles) = 1080 miles;

DE = the length of the conical umbra = the distance from the
moon to the earth + a = 226,000 miles + a.

Thus, the above relation becomes

432,000 — 1080
92,900,000 + a 226,000 + a

Cross-multiplying gives

(432,000) (226,000 + a) = (1080) (92,900,000 + a)

or,
97632 x 10® + 432a x 10°® = 100332 x 10° + 1080a.
Thus,
432 x 10° - 1080)a = (100332 - 97632) x 10°
and so,
430920a = 2700 x 10°
or

e

a 6266 miles.

Hence, the length of the umbra = (226,000 + a) miles =
232,226 miles.

The difference between the length of the umbra and
distance between the moon and earth is very small; thus,
the earth is at the tip of the umbra.

Under the given conditions and if the earth is assumed
to be flat, the shadow of the umbra on the earth would be a
circle with a radius of about 29 miles.

ASTRONOMY e PROBLEM 4-11

Artificial satellites can often be seen as bright objects
high in the sky long after sunset. What must be the mini-

mum altitude of a satellite moving above the earth's equa-
tor for it to be still visible directly overhead two hours
after sunset?

Solution: Let the circle with center O shown in figure 1
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F1G.1

represent the plane of a section of the earth, parallel to
the equator and viewed from the south pole. This means
that the earth is rotating about its own axis in a counter-
clockwise direction. Since it takes 24 hours to make one
complete revolution, any point on the equator or on the
circumference of this circle will rotate through

360°
24 hours

or 15° each hour.

Assume that the observer is at point B at the time of
sunset. (The sun's rays are falling on the earth from the
right and are parallel.)

Two hours after sunset, the observer would have moved
to the new position A and any point overhead would lie along
the radius OA.

The minimum altitude at which a satellite would be vis-
ible is obtained by finding the point of intersection of the
solar rays grazing the earth's surface at B and extended
radius OA. This point is S and is a distance h above the
observer at A.

Since the solar rays are perpendicular to the surface
of the earth, the triangle OBS shown in figure 1 is a right
triangle.

From figure 1,

cos 30° = —=

where R is the radius of the earth. Thus,

R+ h _ 1
R cos 30°
or
1+ % = cos]§0° = 0.%66 = 1.1547
Hence,
h = (1.1547 - 1)R = 0.1547R.

R is approximately equal to 6400 Km. Thus,

~

h = (0.1547) (6400 Km) = 990 Km.
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® PROBLEM 4-12

With the aid of diagrams, explain why (a) a moon rising in
the east at midnight cannot be a full moon and why (b) a

new moon cannot be seen for long after dark.

MOON

SUN-LIGHT

AAAAMANAA

F1G.)

EARTH

Solution: (a) In order to understand why a moon rising in
the east at midnight cannot be a full moon, refer to figure
1.

As depicted in figure 1, at midnight, the observer on
the earth is at position O while the moon rising in the
east is directly over point 0. The part of the moon that is
illuminated by sunlight and observed from O is the part of
the figure which is shaded. This is clearly not a full
moon. The rest of the moon that is illuminated by the sun-
light is not seen from 0. Hence, a full moon cannot be seen
at midnight while rising in the east.

MOON
o0 <
 SUN-LIGHT
FIG. D
-2 oA

(b) A new moon is only seen when the moon is close to
a line joining the earth and sun. As shown in figure 2, a
new moon is seen by the observer at O only at or near sun-
set. After darkness has arrived, the position of the ob-
server has shifted to O0' due to the rotation of the earth.
The motion of the moon is negligible during this time and
hence, the moon remains more or less stationary. The illu-
minated area of the moon is then no longer visible to the
observer at O'.
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CHAPTERS

REFRACTION

HUYGEN'S PRINCIPLE
® PROBLEM 5-1

A wave front, which has amplitude A = 1 arbitrary unit,
is advancing due East. Considering the obliquity factor,

what are the amplitudes of secondary Huygen's wavelets,
originating at a given point on the wave front and then
traveling West, North West, North, North-East, and East?

EAST
> FORWARD

WEST
<

WAVE FRONT

Solution: According to Huygen's principle, one regards
each point on the wave front as the source of secondary
wavelets. The secondary wavelets do not have uniform am-
plitude in all directions and to conform to the practical
situation that no light goes in the opposite direction, one
introduces the obliquity factor (1 + cos6)/2 to be multi-
plied by the amplitude in order to calculate the amplitude
in any direction making an angle 8 with the forward direc-
tion.

Now let 0 be the source of wavelets on the original wave
front BC, as shown in the figure.

For the secondary wavelet traveling West,
6 = 180°

Thus,
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Amplitude = L1 * 08 180%) . 2 3 - 1) = o

for the secondary wavelet traveling Northwest,
6 = 135°

Thus,

Amplitude 1(1 + cos 135°)/2.

1(1 - .707)/2

0.15

For the secondary wavelets traveling north

8 = 90°
Thus,
Amplitude = 11 * cos 30%)
- 1(1 + 0)

2
= 0.5
For the secondary wavelets traveling north-east
6 = 45°
Thus

Amplitude

1(1 + cos 45°)/2

1(1 + .707)/2

0.85
For the secondary wavelets traveling east
6 =0°

Thus,

1(1 + cos 0°)

Amplitude 3

1(1 +1)/2

= 1.
® PROBLEM 5-2

Explain how the earth's atmosphere alters light rays.

Solution: The velocity of light in all material substances
is less than its velocity in free space and in a gas the
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velocity decreases as the density increases. The density of
the earth's atmosphere is greatest at the surface of the
earth and decreases with increasing elevation. As a result,
light waves entering the earth's atmosphere are continuously
deviated as shown in Fig. 1. The line A-A' represents a

APPARENT POSITION

TRUE POSIT

FIG. | Fi6.2
wave front in the light from the sun or a star. The density
of the air at the lower portion of the wave front is greater
than that at the upper portion. Hence the lower portion of
the wave always travels more slowly than the upper portion
and Huygens' construction leads to the shift in the direction
of the wave front as shown. An observer at the earth's sur-
face sees the light source in the direction of the tangent to
the rays when they reach the earth and concludes that the ob-
ject is nearer the zenith than its true position.

Rays entering the earth's atmosphere horizontally are
"lifted" by atmospheric refraction through about 0.5°. This
is very nearly equal to the angle subtended by the sun's disk,
so that when the sun appears to be just above the horizon at
sunrise or sunset, it is, geometrically, just below it.
Furthermore, since the sun requires about two minutes to move
(apparently) a distance equal to its own diameter, the day (at
the equator) is lengthened by about two minutes at both sunrise
and sunset. At higher latitudes the increase is even greater.
The necessary correction for atmospheric refraction must be
made by every navigator in the process of "shooting" the sun or
any other heavenly body.

FIG. 3

The deviation of light by atmospheric refraction decreases
with increasing angle of elevation of the light above horizon-
tal, falling to zero for light incident normally on the earth's
surface. Since rays from the upper portion of the sun's disk
are incident at a slightly greater angle than those from the
lower part, they are refracted to a smaller extent. This ac-
counts for the slightly flattened appearance of the sun at sun-
set or sunrise, the lower portion being lifted more than the
upper.

Another phenomenon produced by atmospheric refraction is
the mirage, illustrated in Fig. 3. The conditions necessary
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for its production require that the air nearer the surface of
the ground shall be less dense than that above, a situation
which is sometimes found over an area intensely heated by the
sun's rays. Light from the upper portion of an object may
reach the eye of an observer by the two paths shown in the
figure, with the result that the object is seen in its actual
position, together with its inverted image below it, as though
a reflecting surface lay between the object and observer.

The weary traveler in the desert interprets the reflecting
surface as a body of water. This same phenomenon accounts for
the "wet" appearance of the surface of a smooth highway under
a hot sun, when a rise in the road ahead permits it to be seen
at a glancing angle. Mirages are also produced when the re-
verse conditions arise , which is sometimes the case over

&2

FIG. 4

large bodies of water. Objects at a distance appear to be
lifted above their true positions. This phenomenon is known
as "looming." (Fig. 4.)

SNELL'S LAW
® PROBLEM 5-3

At a water-glass interface let the upper medium be water of
index 1.33 and the lower one to be glass of index 1.50.

(a) Let the incident ray, traveling from the water medium
to the glass medium, be at an angle of 45° with the normal.
What is the angle of refraction?

(b) Suppose the light is incident from below on the same
boundary, but at an angle of incidence of 38.8°. Find the

angle of refraction.

N.=133 WATER § Nw

GLASS : Ng =150 GLASS ' Ng=1.50
| &
i ™!
FIG. | AG. 2
Solution: (a) To find the angle of refraction in the

first case (see Fig. 1), one must apply the law of refrac-
tion (Snell's law),

66



n_ =+ sin 45° = n_ « sin 6
w G

to obtain 6 = 38.8°

(b) Again, one must apply the law of refraction to
Fig. 2

. 1 ° — . 3
nG sin 38.8 nw sin ¢

to get ¢ = 45°

Thus we see that if the direction of a ray of light is re-
versed, it will retrace its original path.

e PROBLEM 5-4

A light ray passes through two materials with the para-
meters indicated in figure 1.

Where does the light ray hit the screen?

N=|

<

Y/
TNz

4
V7em { Sem
FIG. 1 > ’ ”
Solution: Using the law of refraction we have:
- 1 o 3 . 1

n,-sin 45 ng 51n¢B
. 2 sin¢B

V2

= [}
¢B 21

Similarly, ¢C = 14°

Using n,- sin 45" = nB~51n¢B =

nA-51n 45 = n

nC-51n¢C =n -51n¢D

-sin(bD

o

¢p = 45°

Applying trigonometry, we have

a /7°tan¢B = Y7 + tan 21°

o
I

1 _1 .
5 V17 ‘tand, = 3 VY17 « tan 14°
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c = 5-tan¢D = 5+ tan 45°
and since y = a + b + ¢ then
y = /7 -tan 21° + 1 /I7 - tan 14° + 5 - tan 45°
1.0 + 0.5 + 5.0 = 6.5 cm

=
I

M=l | Ng=2 Ne3

)
— .1::3:f5?
‘(/,/”B;’ a
2z
» % SCREEN

4 e —r <
FI6.2 7 Yo7 5¢m

So the light ray will strike the screen 6.5 cm above the
level of the point where it initially struck the first sur-
face.

e PROBLEM 5-5

A man standing symmetrically in front of a plane mirror with beveled
edges can see three images of his eyes when he is 3 ft. from the
mirror (see figure (A)). The mirror is silvered on the back, is

2% feet wide, and is made of glass of refractive index 1.54. What
is the angle of bevel of the edges?

Solution: The man can only see an image of his eyes if light leaves
them, strikes the mirror, and is reflected back along the same path,
The central image is thus formed by light traversing the perpendi-
cular from his eyes to the mirror. The outer images are formed
by light striking the beveled edges at the point A (see figure (B))
at an angle of incidence ¢ such that the angle of refraction ¢'
makes the refracted ray strike the silvered surface normally (at
point D 1in Fig., (B)). This must be the case if the ray of light
is to leave the beveled edge by the same path with which it arrived.
The angle ¢' 1lies between the normal to the Peveled edge and the
normal to the back surface. Since 4 SAX = 90 (see figure (B))

@' + § DAX = 90°
But J DAX = 90° - @ because AADX 1is a right triangle and all of
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the internal a?gles gf a triangle add up to 180°.
Hence, @' = 90 - 90 +9 =6 .,

Draw BA, a construction line at A parallel to the back of the
mirror. Angle BAC is also equal to ¢ .

But by Snell's Law, n. sin ¢ = n sin @', where n., is the refractive

1 1
index of air (n1 = 1) and n {is that of glass. Then sin ¢ =

n sin @' = n sin § . ()

Also, o =9 + (90 - ¢). (See figure (B)). Thus, ¢ = 90 +¢§ - a =
90 - (o - 6) . Now we can write (from equation (1)),

sin[90 - (@ - 98)] =n sinp .

But sin (90 - §) = cos { and therefore, we have
cos (0 - 8) =n sing .
By the trigonometric relation for the cosine of the difference of two
angles, cos(o - §) = cos o cos 9 + sin ¢ sin @ = n sin @ . Dividing
both sides by cos g gives
cos ¢+ sin ¢ tan @ = n tan ¢

cos ¢ = tan § [n - sin o]

cos o
= —n 2
tan © n - sin o @)

We need to find the angle © . Looking at figure (A)),

1% ft. _ 5
cos o = 3 5 = IE
v&l% ft.)” + (3 ft.)
and 3 ft, 12

sin o = %
/(1% fc.)2 + (3 ft.)f 13

or, alternatively, we know from the pythagorean triple 5,12,13
that if cos x = 5/13 then sin x = 12/13.

From equation (2),
. : 5/13
an ® = 154 - (12/13)

Then ¢, the angle of bevel, is given by
0 arctan(.625)

= 0.625.

or

32 .

e
e PROBLEM 5-6

An optic fiber may have a core of dense flint, n, = 1.66,
and a coating of crown glass, n, = 1.52. What is the high-

est angular aperture (half angle of the cone of light enter-
ing the fiber) for light that is transmitted through the
straight fiber?

Solution: The figure shows a cross-section of the fiber;
a ray 1s incident on the end of the fiber at point A with
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angle of incidence 6, , refracted into the fiber at angle

1
62 , and strikes the core-coating interface at point B at
an angle 63 H 93 must be equal to (or greater than) the

critical angle for the ray to be totally reflected down the
fiber. Note that if 61 is increased, 63 will decrease;
thus, setting 63 equal to the critical angle and solving
for 61 will yield the largest value of el which permits

light to be transmitted through the fiber.
Snell's law applied at point A gives
sinel

sin 5 = nl (1)

and the condition for total internal reflection at point B
is

sin63 = nZ/nl . (2)
zigmtg:]o:2§giz, 92 = 90°—63 , SO sin63 = cose2 = nz/nl '

sin, =/1 - c05292 = /1 - (;%?)2 (3)
Using equation (3) for sine2 in equation (1) gives

sinf, = /nl2 - n, . (4)

Substitution of n, = 1.66 and n2 = 1.52 gives sinel = 0.67,

or 6, = 42°. 1

e PROBLEM 5-7

What is the least radius through which an optic fiber of
core diameter 0.05 mm may be bent without serious loss of
light? The refractive index of the core is 1.66, of the

sheath 1.52.

- 4
c—> —1R \ 0.05Smm
E—> T ==

d
R ré

Solution: The figure shows a cross-section of the optic
fiber. The collimated incident light is represented by
parallel rays A, B, C, D, and E. Of the rays shown, ray E
will strike the core-sheath interface with the smallest
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angle of incidence; if this angle is set equal to the
critical angle, all rays will necessarily be totally re-
flected at the interface, thus reducing losses to a mini-
mum. Since the sine of the critical angle is given by the
ratio of the indices of refraction of the two media in-
volved,

sin 6 = nz/n1 . (1)

But from the geometry shown in the figure, another relation
is available for 6,

sin 6 * R T a/3 ° (2)

Eliminating sin 6 between equations (1) and (2) and
solving for R,

oo d EL“_z)
2\n "1

Substitution of the given values of n, , n_, , and d gives

1 2

R = 0.57 mm.
® PROBLEM 5-8

A glass plate 1 inch thick, of index 1.50, having plane
parallel faces, is held horizontally 4 inches above a

printed page. Find the position of the image of the page,
formed by small angle of incidence rays only.

n,e00 \0. 9
i H A
A' : 4 ,,
Ne=1.50 i ¥
N,=1.00 B!
A ) xT
4”
(]
D
C

Solution: The actual path of the light ray is represented
by ABC, the source being at point C, but the eye does not
account for the refraction of the beam. To the eye, the
image appears to be at point D, which is x cm deep.

From the figure,
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a = tan 0

b=4 - tan ¢

a+b

X*tan¢ = tan6 + 4-tan¢ (1)

Using the law of refraction we have n sin¢ =

A

ng sin® = 1.5 sinf®. Assuming that both 6 and ¢ are very

small, the small angle approximation, sin® = tanf can be
made. Then
1.5 « tan 6 = tan ¢
and tan 6 = 0.67 ° tan ¢
substituting into (1), we get
x°tan¢ = 0.67-tan + 4-<tan¢ .
Cancelling out the tan¢'s we get

X = 4.67 inches.

Then, the image of the page is located 4.67 inches below
the top of the glass plate.

e PROBLEM 5-9

What will be the effect on the apparent length of an ob-

ject if a slab of transparent material with plane parallel
sides is interposed at right angles to the line of vision?

@l.a. b
a8
© d
o\

¢ x
v

¢
L 2

]

i 2

Solution: Let d be the thickness of the material and n,
D e S e .
its index of refraction.

In this problem, we will try to find how much closer
the object appears to be. Let y be the distance from the
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object to the front side of the slab, and x be the apparent
distance. ¢ is the angle of incidence on the first sur-
face, so it is also the angle of refraction, or the angle
of emergence, at the second surface. 6 is the angle of re-
fraction at the first surface and, similarly, the angle of
incidence at the second surface. We start by applying some
basic trigonometry.

a=4d - tan 6 (1)

b = (y-d) - tan ¢ (2)

a+b=x-+ tan ¢ (3)
Then a + b = x . tan ¢ =4 . tan 6 + (y-d) . tan ¢ (4)

Now we apply the law of refraction to get

sin ¢ = n - sin 6. (5)
Assuming that ¢ and 6 are vervy small, we can change (5) to
tan ¢ = n ¢ tan 8 by using the small angle approximation
given by

sin o = tan o = a

Then tan 6 = = - tan ¢. (6)
If we substitute (6) into (4) we get
d
x*tan¢ = ﬁ~tan¢ + (y=-d)-tané.

Dividing through by tan¢, we get:

-4 -
X = ﬁ + Yy d
1 -

Thus the image appears to be a distance of units

d(n-1)
closer to the observer. n

® PROBLEM 5-10

A block of flint glass, of refractive index 1.65 and of
depth 5 cm, rests on the bottom of a beaker of water. The
surface of the water is 10 cm above the top surface of the

glass block. What is the apparent depth of a scratch on
the inside of the bottom of the beaker below the surface
of the water?

Solution: The scratch is actually 15 cm deep but to the
eve 1t seems to be x cm deep because the eye does not take
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into account the refraction of the light ray at each sur-
face.

From the law of refraction it is known that

 sin =n - in ® = n_ ° sin Y.
nA s ¢ © si P in y

Putting in the indices of refraction n_, n and n,, we

have A
sin ¢ = 1.33 ¢ sin 6 = 1.65 * sin Y. (1)
From the figure, a =10 * tan 6
b= 59+ tan vy
i
1
i
| a (
n;lLOO 0' b

-3
H—>
»l
>

\Q; 10cm

0
Ng=1.65
I Sem
\J
ol
SCRATCH)
a+ b = x°tan ¢ = 10°tan 6 + 5-tan vy . (2)

If 6 and y are very small, then we can use the small angle
approximation, which says that

sin B = B = tan B. Then equation (1)
becomes

1.33 ¢« tan 6 = 1.65 * tan y
So lo'tan6=%£§§-~tanyélz.4tanY

Substituting back into equation (2) gives us:

~

X tan¢ = 10 tang + 5 tany = (12.4 + 5) tany

or X ¢+ tan ¢ = 17.4 - tan y (3)
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Dividing (1) by (3) results in

sin ¢ _ 1.65 sin ¥y
x tan ¢ 17.4 tan vy

cos ¢ _ 1.65
X 17.4

and so, ° COS Y.

If ¢ and y are very small, then

cos ¢, cos Yy T 1

1 _ 1.65
So we have x - 17.3
x = 10.5 cm.

Thus the apparent depth of the scratch is 10.5 cm.

THE CRITICAL ANGLE
e PROBLEM 5-11

A ray of light is incident on the left vertical face of a
glass cube of index 1.50, as shown in the figure. The
plane of incidence is the plane of the paper, and the cube
is surrounded by water. At what maximum angle must the ray
be incident on the left vertical surface of the cube if

total internal reflection is to occur at the top surface?
Water has an index of 1.33.

N=133
n=1.50 ¥
Il
S~ © —_—
~— ———
_——— —

Solution: To find the incident angle at which there is
total internal reflection of the ray at the top surface of
the cube, we must find its critical angle using the law of
refraction.

1.50 ° sin Yo = 1.33 - sin 90°.
= o
So Ye 62.5°.
Then ¢ = 27.5 because ¢ and Y, are the complementary

angles of a right triangle. So using the law of refrac-
tion, we have:
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1.33 » sin © = 1.50 * sin ¢.
Substituting in ¢ = 27.5 and solving for O we have

0 = 31.4° for total internal reflection.

e PROBLEM 5-12

A semicylinder such as is shown in sectional view is con-
structed of glass of refractive index 1.65, and its flat
horizontal upper surface supports a drop of liquid (also

shown). For light directed radially toward the drop, total
internal reflection is found to occur with critical angle
ec = 58°. What is the refractive index of the liquid?

<L»
9 |8

Solution: It can be proven that if a beam of light strikes
a surface perpendicularly then there is no bending of the
beam of light (no refraction) as it passes that surface.

Then as this ray of light enters the cylindrical sur-
face of the glass it is perpendicular to that surface so
there is no refraction at the surface.

For a critical angle of 58°, we use the law of re-
fraction and get

e ai o = 1 °© =
1.65 sin 58 nosln 90 ng

so ng = 1.40.

® PROBLEM 5-13

A point light source is 2 inches below a water-air surface.
Compute the angles of refraction of rays from the source
with incident angles of 10°, 20°, 30°, 40°, and show these
rays in a diagram.

Solution: We must first find the critical angle so we can
check if there is any total internal reflection. Using the

76



law of refraction, we have:

n_°* sin = n_ ° sin 90°
w ¢c A

= [
¢, = 48.8

Since the given angles of incidence never exceed the crit-
ical angle, all four rays are refracted. To find each
angle of refraction, we must, once again, use the law of
refraction,

1.33 * sin 10° =1 °* sin ¢r

to get ¢r = 13.4° for an angle of incidence of 10°.

Similarly, the angles of refraction for the other
angles of incidence are: 27.1°, 41.7° and 58.7° respvec-
tively.

Notice that the angle of refraction is independent of
the distance of the source from the surface, and depends

only on the angle of incidence and the refractive indices
of the mediums in question.

e PROBLEM 5-14

A fish looks upward at an unobstructed overcast sky. What

total angle does the sky appear to subtend? Water has an
index of 1.33.

AR N,=1.00
WATER n,=\.33

4l

Solution: First the critical angle for the surface between
water and air must be found using the law of refraction.

L4 i = . 1 °
n, sin ¢c nA sin 90

= o
¢c 48.8

Once we know that ¢c is 48.8° we also know that ¢ is

also 48.8° because these angles are alternate interior
angles. To the fish, the sky tends to subtend an angle of
2-¢ which says that the fish's field of vision (upward)
is 97.6°. Note that this is independent of the depth of
the fish.
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® PROBLEM 5-15

A small pebble lies at the bottom of a tank of water. Determine the
size of a piece of cardboard which, when floating on the surface of
the water, directly above the pebble, totally obscures the latter
from view.

d |y
FIG. 1 WATER

Solution: We can consider the pebble as a point source of light.
If the cardboard is big enough for its purpose, then all rays of
light from the pebble which would be refracted into the air at the
surface must be blocked off by the cardboard, and all rays striking
the surface of the water outside the cardboard must be totally in-
ternally reflected (see figure).

The cardboard must obviously be circular, and, if its center is
directly above the pebble, a ray of light striking the edge of the
cardboard must do so at an angle ¢ 2 the critical angle.

By Snell's Law, traveling from pebble to edge of cardboard
nw sin ¢ = na sin @

where ¢ is the angle of incidence, € is the angle of refraction,
na is the index of refraction of air (na = 1) and nw is that of

water. Then,
nw sin =1

because 8 = 90 for total internal reflection, which satisfies the
requirement that ¢ be a critical angle. Therefore, using the figure,

r

sin Q:W.

1 Squaring both sides and cross-multiplying

=4}
0]
=3
[e]
(]
=
£
+

ij

L}

2 2 2 2 2 d
r +d = nwr or r =

d
Thus a circular piece of cardboard with a radius given by r = ;Z§===_
-1

w

will totally obscure the pebble from view.

® PROBLEM 5-16

A skin diver shines his flashlight at the surface of the
water so that the beam makes an angle of 60° with the

vertical. (nwater = 1.33)

(a) Where does the beam go? Assume there is no reflected
beam if there is a transmitted one.
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(b) 0il of index 1.2 is now spread on the water. Where
does the beam go?

(c) Many layers of oil are spread on the water, as shown
in Fig. 1. Sketch the path of the beam.

(d) The air over a blacktop road is hottest near the road
surface. The index of air away from the surface is 1.0003.
An observer sees the road surface only if he looks down at
an angle of 89° or more. What is the index of air at the

surface?

h = 100 FIG. |

1.05—
1.10—~
L15»
1.20—
1.25—
1.33—

Solution: (a) As the incident wave makes contact with the
surface of the water it may be refracted, or it may be
totally reflected if the incident angle is greater than the
critical angle.

FIG. 2
The critical angle can be found by solving the equation
i = = °
nw51n¢c 1 for ¢c. So ¢c 49

The incident angle of 60° is greater than the critical
angle; thus there is total internal reflection, which means
that thg ray of light will be reflected as if the surface
was a mirror.

Na=!
nw’4/3

FIG. 3

) (b) We must use the law of refraction to find the
critical angles of both surfaces. For the lower surface:

n _sin = n_-sin °
" ¢c o 90° where ng represents the

index of refraction of the oil
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64

o
I

nA3|
No=!.2

60 Na=4/3

FIG. 4

Thus the incident rav will be refracted and transmitted to
tge se;ond surface since the angle of incidence is less
than

Similarly, the critical angle for the upper surface
is 56°. Now we must find the angle of refraction of the
lower surface, which is also equal to the angle of inci-
dence of the upper surface

n _*sin 60° = n_+sing
w o

¢ = 74°

Since the incident angle of 74° for the upper surface is
greater than its critical angle, there will be total in-
ternal reflection at the upper surface.

115+
1.20->
1.25+» e

133> / ?74.
FIG.S 60°

(c) At the surface, which seperates the indices of
refraction 1.33 and 1.25, the critical angle, using the
law of refraction is

1.33 sincbc = 1.25 sin 90°,

e

— a3 —1f1.25 °
c = sin [1733] 70

The angle of the refracted beam is computed as follows:

or ¢

1.33 sin 60° = 1.25 siné.

~ «:.—1[(1.33) sin 60°
Then, 6 = sin [ 138 ]

e

67.5°

For the next surface, the critical angle is about 74°
and the angle of the refracted beam slightly larger
than 74°. Therefore the beam of light will be totally
reflected at the second surface and will emerge at an
angle equal to the original angle of incidence.
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(d) Using the law of refraction and given that the
critical angle is 89°, we can find the index of refraction
of the air just above the hot pavement by

N=0003 8% |
n—» .

FIG. 6

1.0003 +« sin 89° = n + sin 90°
Solving, we have,
n =1.0001

® PROBLEM 5-17

The index of refraction of silver for X-rays of wave-
o
length 1.279 A is 0.9999785. Calculate the grazing angle

(between the incident ray and the surface) smaller than that
for which total reflection will occur for X-rays incident on
a silver surface.

Gl
¢ig I
$rg I
o
F1G. | 7,7> '
er
Solution: Snell's law states that
sinei
—— = n
51n6r

where Gi is the angle of incidence. The angle is measured
from the incoming ray to the normal to the surface. er is

the angle of refraction, measured to the normal and n is the
relative index of refraction between the two media. If we
look at figure 1, we see that we can write Snell's law in
terms of the angle between the ray and the tangent to the
surface, ¢ig' rather than ei.

F i . - ¢, = -
rom figure 1, 61 90 ¢1g and er 90 ¢rg' Therefore

.e‘ = i - . = i . - i . = .
s%n'l sin (90 ¢lg) sin 90 cos¢lg cos 90 51n¢lg cos¢ig,
similarly, siner = cos¢rg. Therefore, Snell's law becomes:

cos¢i _
cosé =n
rg

Now if the index of refraction in region II is less than that
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in region I then there will be a critical angle above which
rays will not be able to go from region I to region II giving
rise to internal reflection. This critical angle can then be
defined by the angle ¢rg = 0, or then the equation for ¢cg is
cos¢cg =n

and in this problem n = 0.9999785

so cos¢cg = 0.9999785
= ° ] "

or ¢cg 0° 22'32" .

REFRACTIVE INDICES
e PROBLEM 5-18

Show that the optical length of a light path, defined as the
geometrical length times the refractive index of the medium in

which the light is moving, is the equivalent distance which the
light would have traveled in a vacuum.

Solution: Suppose that light travels a distance {4 in a medium
of refractive index n. The optical length is then

optical length = nf

and, since n = c¢/v where ¢ and v represent the speed of
light in a vacuum and in the given medium, respectively, substituting
for n in the preceding equation gives

optical length =ct/v .

But light travels with constant velocity in the medium, and
hence ¢/v = t, where t 1is the time taken to traverse the light
path. g

= t =
n = v ¢ L0

where {_. is the distance the light would have traveled at velo-

0
city c, that is, in a vacuum. Thus the optical length is the
equivalent distance which the light would have traveled in the
same time in a vacuum,

e PROBLEM 5-19

A large piece of plastic of nonuniform refractive index is
made in the form of a doughnut. The inside diameter (the
diameter of the hole) is 34 cm and the outside diameter is
46 cm; the annular body of the doughnut is circular. If
the mean refractive index of the plastic is 1.6, what re-

fractive index gradient is necessary to keep a beam of light
traveling along the center of the plastic ring? Express
this in terms of the refractive index at the outside and
inside periphery of the doughnut.

Solution: From the theory of Schlieren optics it is known
that a ray traverses a stratified medium in an arc with the
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radius of curvature determined by the index gradient. For
example, for the case illustrated in the figure shown, in

INCIDENT

RAY KARC OF RADIUS R
: X

which a plane wave is incident from the left onto a medium
occupying the region x > 0, where in the medium the index

n(y) decreases vertically, a given incident ray will curve
downward as shown with a radius of curvature R given by

_ 1
R—nm (1)

In this problem the ray is to travel a circular path of
radius R = mean ilameter _ 34 cm Z 46 cm _ 20 cm. The
average balue of the index between y = 17 cm and y = 23 cm

is given as 1.6, so (assuming a uniform gradient),
n(l7) + n(23)
2

1.6 (2)

Note that n(l17) does not mean n times 17, but rather the
value of n at y = 17.

Also, if the gradient is uniform,

_n(l7) - n(23)
(dn/dy) = =33 =17y om ° <

Combining equations (1) and (3),

n(l7) - n(23) _ 1.6
(23 - 17) cm 20 cm ' ©°F

n(17) - n(23) 0.48. (4)

Equations (2) and (4) can now be solved for the two un-
knowns n(l17) and n(23), giving n(17) = 1.84, n(23) = 1.36.
Thus the refractive index at the outside of the doughnut is
1.36 and that at the inside is 1.84.

e PROBLEM 5-20

In classical dispersion theory introduction of a damping

term, myr, into the equation of motion of a bound electron
results in the necessity of introducing a complex index of
refraction i = n + ik. Analysis results in two equations

relating n, the real part of fi, and k, the complex part:

2 2
-w

242 + Y2W2

(1)




Ne? YWV

mEO (Woz - w2)2 +Y2W2

2nk = ; (2)

W is the resonant frequency of the electron, N the number

of electrons per unit volume, m and e the electron mass and
charge respectively. Show that if k« n, equations (1) and
(2) reduce to

Solution: If k«n, the index of refraction is nearly rgal,

and since it is the introduction of the damping term myr
into the equation of motion,

S e > >
m¥ + myr + kr = - eE,

that results in a complex index, we must assume the damping
term is small, i.e., y< 1. Then y and k are negligible in
comparison with n, so equation (1) becomes

n® =1+ - (5)

Noting that n2-1 = (n-1) (n+l), and remembering from dis-
persion theory that equations (1) and (2) predict that
k<<n only if |n-1|« 1, then

n2 -1 =~ (n-1) (2); (6)

Substitution of equation (6) into (5) gives

Ne2 1

n=1+ sto (woz : w2> .

(7)

Likewise, if |n-1|« 1, n does not differ greatly from 1, so
2nk =~ 2k, and equation (2) becomes

Ne2 ywwo

X ® e G Z-wF)

(8)

Such approximations would be valid, for example, for gases
of relatively low densities.
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e PROBLEM 5-21

A microscope is placed vertically above a small vessel and
focused on a mark on the base of the vessel. A layer of
transparent liquid of depth d is poured into the vessel, and

then it is found by refocusing the microscope that the image
of the mark has been displaced through a distance x. Show
that the index of refraction of the liquid is equal to
d/(d-x) .

Tx D&:Lecso
|
IMAGE G
'Ix __CIL/ FIG. |
(o] —> A
/ n
—48
l c l /
’ / ¢
MARK
0B SERVED APPARENT DEPTH OF THE MARK

Solution: When the microscope is refocused, the image is
displaced a distance x, and so the objective lens that fo-
cuses the image is raised a distance x (see figure 1). Be-
cause of refraction due to the liquid, the mark no longer
appears located at its actual depth 4 in the vessel, but

instead appears suspended in the liquid at depth d'. From
the law of refraction, the index of refraction is given by
the ratio of these depths:

n=z (1)

Now, referring to figure 1, the displacement of the image,
X, can be expressed as the distance between the original and
refocused positions of the lens:

X = oo' (2)

Studying figure 1 will show that this distance can be ex-
pressed in many ways:

»
] ]
9}
° (o}
O -
!
o
Q

]
o
3
+
Q

I
8l
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o'A+d - o'B

o'A +d - (0o'A +4d")
x=d-4a" (3)
Solving (3) for d' gives:
d' =d - x (4)

Thus, d - x can be substituted for 4' in equation (1),
and hence,

® PROBLEM 5-22

Find the index of refraction for a glass whose dielectric

constant is 2.5

Solution: Maxwell's equation for the curl of the electric
field can be expressed as:

3H
VXE-=-usr, (1)
where u is the permeability of the glass and H represents

the magnetic field.

Taking the curl of both sides of equation (1) gives:

- -y JH
Vx (VXE) =V x (ju 5t (2)
The vector operator on the right side of equation
(2) can interchange with the partial time derivative:

2

V x (V x E) 3t

-u (V x H)

9 JE
-UE(J*’EE ’

where e is the permittivity of the glass and J is the
current density, by Maxwell's equation for the curl of the
magnetic field. Assuming J is not a function of t, and
using the vector identity

vx(VxE)=V(v-E)-\72 (E),

since V « E = 0 (Maxwell's equation),

2
sz=uea—§— (3)
5t

For a plane wave propagating itself along the positive
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x-axis, equation (3) can be reduced to one dimension:
—5 =HE —5 (4)

Now since E is an arbitrary vector function, it can be
expressed as another arbitrary vector function:

E = F(t - §> (5)

Substituting equation (5) into equation (4) and carrying
out the partial differentiation immediately gives the
result:

1 _
2 T HE
v
or:
v = 1 (6)
Yu €

From the definition of the index of refraction,

_c
v== (7)

where n = index of refraction and c¢ = speed of light.
Using the expression for v in (7) in (6) gives:

1

=3¢
|

i

rearranging yields:
n =c/u ¢ (8)

For glass, u ~ M, and € = Ke,, where K = dielectric con-
stant and u, and ¢, are the permeability and the permit-
tivity, respectively, of the vacuum. Using these values
in equation (8) yields:

n = /K e, 4, (c) (9)
In free space the speed of light is just:
c = ___uol = (10)
Substitution of (10) into (9) gives:
n = Re g {-—1——] - /R
Mo €0

The dielectric constant, K, is given as 2.5; hence,

n=+v2.5=1.58
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TRANSVERSE DISPLACEMENT
® PROBLEM 5-23

A ray of light is incident at an angle of 60° on one surface
of a glass plate 2 cm thick, of index 1.50. The medium on

either side of the plate is air. Find the transverse dis-
placement between the incident and emergent rays.

Solution: The transverse displacement between the incident
and emergent ray of light is represented by x in the above
diagram. Once the angle of refraction ¢ is found, we can
apply some basic laws of trigonometry to find the displace-
ment x.

Using the law of refraction to find ¢ we have:

° i ° = ° 3
nA sin 60 nG sin ¢

so ¢ = 35.3° and y = 90 - ¢ = 54.7°

Now we use the law_of sines on triangle ABC to find the
length of segment AB.

AB _ 2 cm
sin 90° = sin 54.7°

AB = 2.45 cm

Once again, using the law of sines on triangle ABD, we have:

2.45 cm _ X

sin 90° sin ©
Since o + 6 = 60° (see figure), 6 = 24.7°.
So X = (2.45) (sin 24.7°)cm = 1.02 cm.

® PROBLEM 5-24

A slab of transparent plastic measures 2x10x60 mm3 in size.
If the refractive index of the plastic varies monotonically
in the lengthwise direction from 1.4 to 1.56, how much will

a beam of collimated light, incident normally, be deflected
at a distance of 1 m from the plastic?
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Solution: From the theory of Schlieren optics, the inci-
dent ray will, upon entering the stratified medium, des-
cribe an arc of radius R determined by the index gradient
according to the relation

_ 1
R=n dn/dy (1)

—>2mm < FIG. |

INCIDENT A
RAY

(In the figure the positive y axis is up.) Once R is
determined, the distance d follows from Snell's law ap-
plied at the second surface of the plastic and the laws of
geometry. Since n varies with y monotonically,

dn _ 1.56 = 1.4 _ 5 5, 1073 ;oo1 .

dy 60 mm

at the center of the incident beam, n = léﬁg—%—liéé = 1.48;

then, from equation (1), R = 5.48 x 102 mm.

ll 2 mm 'I

INCIDENT

REFRACTED
BEAM

FIG. 2 0

Figure 2 shows the passage of the ray through the
slab in greater detail. N represents the surface normal
at the point where the curving beam strikes the second
surface of the slab, 6 the angle of incidence, and ¢ the
final angle of refraction out of the slab. From Figure 2,
triangle BOC,

3

sin 6 = £ = 3,6 x 10 °.

Applying Snell's law at point B,

sin 6 _ 1

sin ¢ n(B) ;
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since R is so large very little error is made if we assume
n(B) = n(A) = 1.48, and then

3

sin ¢ = (1.48) (3.6x10 °) = 5.4x10° 3.

Then from geometry, assuming that point B very nearly lies
directly opposite point A, and setting sin ¢ = tan ¢ since
sin ¢ is so small,

d =~ (1 m sin ¢ = 5.4 mm.

IMAGES
e PROBLEM 5-25

An object viewed normally through a plate of glass (n=1.5)

with plane parallel faces appears to be five-sixths of an
inch nearer than it really is. How thick is the glass?

Solution: If an object is viewed through a transparent
material with plane parallel faces, then the object seems
d(n-1)
to be —
thickness of the material and n is its index of refraction.

closer than it actually is, where d is the

So, in this problem, if the index of refraction is 1.5

and the object viewed through it seems to be % inch closer
than it actually is, then we have:

5 _ d(n-1)

6 n :
Substituting for n:

5 _d(1.5-1)

6 1.5
and d = 2.5 inches. So in order for an object to be seen
5

3 inch closer than it actually is through a plate glass of

index 1.5, the glass must be 2.5 inches thick.
e PROBLEM 5-26

Show that the correct formula, when considering "back
surface" mirrors, for the distance of the image behind the
reflecting surface is

=D-=-¢t(1 - 2/n),

where D is the object distance to the front of the glass, t
is the thickness of the glass, n is the relative index of
refraction of the glass.
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Solution: .First construct a ray diagram picture of this prob-
lem (see figure 1). A ray from the object A proceeds to G

AA

FIG. 1

and is reflected at G in the direction of 1. Another part of
the ray @s refracted and proceeds to H, I, and the direction
2. Looking back from the direction of 1 and 2 the object

appears to be located at C and F, respectively. So C is the
image of A in a reflection from the front surface and F is
the image of A in the rear surface. The distance we wish to
determine is JF. Now from triangles AGB and BGC, ¢AGB = ¢BGC
because they are both complements of the angle ei . There-

fore, BC = D. Also looking at triangle GHI, GI = 2t tand_ .
From triangle ABG, BG = D tang; and from triangle FIB,
BF tan b, = BI.

Now we note that BIF = ei and BGC is also equal to ei.
Then we can write
BT _ 56
BF BC
BG + GI _ BG (1)
D

since BI = BG + GI and BC = D.

Rearranging,
BG _ BG _ _ GI (2)
BF D BF
and substituting for GI
E_ E= _ 2t taner (3)
BF D BF
- 2t sinb
= ::_____E (4)
BF cosf
r



Using Snell's law (sine.l/siner = n)

— — 2t sin®, .

E - _BG - — 1 ; BG =D tanei =D 51n9i

BF D n BF cos®6 cosf. °

—_ r i
Therefore, sinb. =BG cosf., and so,
i D i
B_G _ —B—G- =—2t BG Cosei (5)
BF D Dn BF cosb_

Factoring out and cancelling BG on both sides of equation

(5) gives,
cos®9,

1 1 _ 2t i
— . —  cosf (6)
BF D nD BF r
2t ©0S6;\ 1 1
or 1+————)—=— (7)
( nD cosor BF D
— 2t cosei
BF—D(1+5565-§§; (8)
The distance we wish to find is
JF =BF - BJ = BF - t (9)
and substituting into equation (8)
. _ 2t cosei
JF+t-D(1+r—15 c—oser) (10)
cosé.,
IF = A A
JF—D(1+ = cosar) t
cosf,
=D+ x co 6i -t
n s6_.
cosf,
3§=D-t(1-3 i) (11)
n cosf

If we now take the limit ei + 0 then er -+ 0 and

cosf.,

6635—-—»1 so equation (11) becomes
r

JF=D- t(1L - 2/n) .
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e PROBLEM 5-27

What is the percentage of angular magnification when one

views an object at 33 cm through a pane of glass 5 mm
thick?

Solution: The angular magnification provided by a plane
(not curved) pane of glass is given by

_(t (n-1)
AM, (3) = <5)[_"_] (100%)

where t is the thickness of the pane, p is the distance
from the observer to the object and n is the relative in-
dex of refraction.

Taking n = 1.5 and substituting the given values for t

and p,
AM(2) =[£ -115—;1] . 100% = 0.5%.

PHASE CHANGES
® PROBLEM 5-28

Refer to the figure below:

a) If n, > n; and n, > n; . will a 180° phase change occur

on reflection? If so, at which boundary?

b) 1I1f n, > n, >n; at which boundary will a phase change

occur?

c) If n, > n, and n3 > n2 , at which boundary will a phase

change occur?

d 1If n; > n

occur?

> n, , at which boundary will a phase change

2

3

Solution: When reflection occurs from an interface beyond
which the medium has a lower index of refraction than the
medium which the light is in initially, the reflected wave
undergoes no phase change; when the medium beyond the inter-
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face has a higher index, there is a phase change of w. The
transmitted wave does not experience a phase change in either
case.

With reference to the figure:

(a) 1if n2 > ny and n2 > n; o there will be a 180° phase
change for light rays entering from the left at boundary I,
but no phase change at boundary II.

(b) 1If n, > n, > n, o light entering from the left will ex-
perience a 180° phase change at each of the boundaries I and
II.

(c) 1If n1 > n2 and n3 > n2 , there will be a 180° phase
change at boundary II.

(d) 1f n; >n, > ng, light entering from the left will not

experience any phase changes in passing through boundaries I
and II.
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CHAPTERG6

REFRACTION AT CURVED
SURFACES

DETERMINATION OF IMAGE POSITIONS
® PROBLEM 6-1

Show that when doing problems with a virtual object and

trying to find the position of the image, we cannot sim-
plify the problem and assume the object to be real.

AIR nA=I.0
GLASS Ng=1.5

oy B

Solution: Let converging rays of light strike a spherical,

glass, refracting surface whose radius of curvature is 40 mm
and whose index of refraction is 1.5, as shown in the figure.
Without the glass, the incident rays would converge at point
P, which is 20 mm to the right of the spherical surface, but
the glass refracts the rays and they converge at P' instead.

The proper method of finding the position of P' is to
let P be a virtual object and use the lens equation,

Ng =

R

n n
A . g _
s ts° ©

where n, and n, are the indices of refraction of the air and

glass, respectively, R is the radius of curvature of the
glass surface, and S and S' are the object and image dis-
tances from the surface, respectively. Letting S = - 20 mm
(because it's a virtual image), n, = 1.0, ng = 1.5, and

A
R = 40 mm, we have
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1.0 + 1.5 _ 1.5 -1
- 20 mm S' T 40 mm

Hence, S' = 24 mm.

Thus, the image appears 24 mm to the right of the spherical
surface.

If we try to simplify the problem by assuming the ob-
ject to be real and the image virtual, the lens equation
becomes

s, _ M "
[ s' ~ R
where n, = 1.5, n, = 1.0, S =+ 20 mm, and R = - 40 mm (be-

cause the refracting surface is now concave rather than con-
vex). Now the rays of light diverge from point P to form a
virtual image at point P'. 1If this is a valid procedure for
this type of problem, then the virtual image at P' should
also be 24 mm to the right of the surface of the glass.
Solving the above equation, we have

1.5 1.0 1.0 - 1.5

20 mm + S' T - 40 mm !

hence S' = - 16 mm. Therefore the virtual image, if the
object at P is real, is 16 mm to the right of the surface.
This solution does not agree with the first one. Therefore,
the two methods of solving this problem were not equivalent,
because in the first method converging rays were incident
on the convex side of the refracting surface, while in the
presumed equivalent method, diverging rays were incident on
the concave side of the surface.

® PROBLEM 6-2

A solid glass sphere of radius R and index of refraction
1.50 is silvered over one hemisphere. A small object is
located on the axis of the sphere at a distance 2R from

the unsilvered surface. Find the position of the image
formed by the refracting and reflecting surfaces.

Solution: To solve this problem, the small aperture equa-
tion for a spherical surface is used:

o]

2
ol

g M ™My

P 2o2 1 (1)

N

where n,y and n, are the indices of refraction on the two
sides of the spherical interface, Sq is the object distance,
Sy is the image distance, and R is the radius of curvature
of the surface. 1In addition, (n2 - nl)/R is the effective
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focal length of the spherical interface. Recall that the
focal length of a spherical mirror of radius R is R/2.

To find successively the image formed by each inter-
face from the object of the previous interface, first sub-
stitute the following given values into equation (1):

s, = 2R , n1 = 1.0 and n, = 1.5

Then, equation (1) becomes

1 1.5 1.5 -1

.—+ =
2R 52 R
1.5 _ 1 _ 1 _ 0
S, 2R 2R
sz=w

This means that the image created by the first surface of
the original object is an infinite distance from the inter-
section of the axis with the first spherical interface.
This also means that the rays from the initial object will
be parallel to the mirror's axis as they encount®r the
mirror. Therefore, the mirror's image will be at a distance
R/2 from the mirror (the focal point of the mirror). This
image will then be a distance

R + 3 = 3R/2
from the spherical glass surface. Now we can use equation
(1) a second time:

1.5+1 1 -1.5

3R/2 5—2 - R
;1—=—1/2R

2
or s2 = - 2R .

Remembering sign conventions, this means that the final
image will be virtual, located at a distance of 2R from
the spherical glass surface, or in other words, at the

vertex of the mirror surface.

® PROBLEM 6-3

A small air-bubble is imbedded in a glass sphere at a dis-
tance of 5.98 cm from the nearest point on the surface.
What will be the apparent depth-of the bubble, viewed from

this side of the sphere, if the radius of the sphere is
7.03 cm, and the index of refraction of the glass is 1.42?

Solution: For this problem, we will use the following

97



®
|<--u '——-bs;:—’i
\ uz
n, n;
equation for refraction at a spherical surface, noting that

this equation holds only for small distances from the optic
axis:

n n n - n
1,2 _z_ﬁ__; (1)
b R

where the n's represent the indices of refraction in the
respective media, the u's the respective distances of the
object and image from the intersection of the optical axis
and the spherical surface, and R is the radius of the
spherical surface. In the figure, uy .ou, and R are shown
as being positive.

Substituting the given values

u, = 5.98 cm, n, = 1.0, n2 =1.42 and R = 7.03 cm

2
into equation (1) gives

1, 1.42 _1.42 -1

GI 5,98 7.03 (2)

1 _ 0.42 _ 1l.42 _ _ = —

EI = =55 -~ 5 og = 0-059 - 0.237 = 0.178 (3)
or u1 = - 5.62 cm.

Since u, is negative, a virtual image of the air bubble

is formed at a distance of 5.62 cm to the right of the glass
surface.

® PROBLEM 6-4

A small bubble in a sphere (radius 2.5 cm) of glass

(n = 1.5) appears, when looked at along the radius of the
sphere, to be 1.25 cm from the surface nearer the eye.
What is its actual position? If the image is 1 mm wide,
what is the bubble's true diameter? What is the longi-
tudinal magnification?




Solution: The equation for the refraction at a spherical
surface will be used in this problem, noting that this
equation holds only for small distances from the optical
axis:

o]

of
(S [

=< _ = (1)

GID
N

2

where the n's represent the indices of refraction in the
respective media, the u's the respective distances of the
object and image from the intersection of the optic axis
and the spherical surface and R is the radius of curvature

of the spherical surface. In the figure, U, .ou, and R
are shown as if they were positive.
Substituting the given values
u, = - 1.25 cm; n, = 1.0, n, = 1.5, and R = 2.5 cm
into equation (1) gives
1 . 1.5 _ 1.5 -1 _ .5 1
- 1.25 u, - 2.5 - 2.5 5
L5 _ 1, 451
u 5
2
u, = 1.5 cm ,

or, the bubble is located at a distance of 1.5 cm from the

glass surface.

Since we also want to find the size of the bubble whose
apparent size is 1 mm, we use

where M represents the magnification and

image size _

object size 0.83 mm .

; ize = -1 =
M; object size = 1.7 =

To find the longitudinal magnification, we need to
find the image distances for the front and back of the
bubble.

0.83

Uy rrone = 15 - 2282 = 14,58 m
u, back = 15 + 9'38—?1 = 15.41 mm .

Applying equation

(1) for both u and Uy pack gives

2 front

the following results:
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1 g 1.5 _1.5-1
14.58 mm = 25 mm

ul front
E——l— = 5_16 - 0.102 = 0.02 - 0.102 = - 0.082 mm *
1 front
ul front = = 12.20 mm
1, _ 1.5 _1.5-1
ul back 15.41 mm 25 mm
E—l—— = 0.02 - 0.097 = - 0.077 mm 1
1 back
Lo - 12.99
and

Y1 front - Y1 back ~ 0.79 mm .

Since the diameter of the bubble is 0.83 mm, the longitu-
dinal magnification is

0.79 _
m - 0.95.

® PROBLEM 6-5

A thin biconvex lens has surfaces of equal radius of curva-
ture, 15 cm, made of glass with index of refraction 1.5.
One of the lens surfaces is silvered, so that it acts as

a mirror, and an object is placed 40 cm from the lens on
the other side. Find the position of the image of this

object.

A
40
IMAGE ! FIG. |
0BJECT | l
VPR

24

Solution: For this problem, three solutions will be pre-
sented. Solution (1) will be to use the thin lens/mirror
equation, successively treating the problem as three opti-
cal elements with zero separation; solution (2) will be

to use the thin lens/mirror equation, successively treat-
ing the problem as three optical elements with a separation
d, and then let the separation d approach zero; and solu-
tion (3) will be to use the small aperture refraction
equation

n n - n

! R
u

n
1
u
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(nl and n, denote the indices of refraction of the media,

u and u' represent the object and image distances from the
curved surface, respectively, and R is the radius of curva-
ture of the curved surface) successively for each of the
three curved surfaces, with zero separation at each surface.

<—u, —’\ FIG. 2

} 40
IMAGE 2 ! { IMAGE |
Uz —» 0BJECT 2

Solution (1) :

For the biconvex lens we can find the focal length
fl of the lens from the lens makers formula:

1 _ (n-1)(/R; - 1/R,)

(1.5 - 1)(11—5 - 1/-15) - L (2)

f2 = 15 cm ;

for the mirror, fm = R/2 = 15/2 = 7.5 cm.

Now, the thin lens/mirror equation,

1 1
G+—'=l/f
u

applied to the incident rays on the biconvex lens,yields

1 1
R+—_—'_1/15

i}

S _ 40 - 15 _ 1
1/a) =35 - 1/40 = 35575 = 31
ul' =24 cm .

This then will be the image of the object in the first en-
counter with the biconvex lens and is the object for the
mirror. Now we must be careful about the sign convention

of the thin lens/mirror equation. u' =24 cm says that the
first image formed is to the right of the biconvex lens
(see figure 1), so the object distance u, for the mirror is

-24 cm. Applying the thin lens/mirror equation again
yields
1 1 1
—_— e — = =
u ! £
2 u, m
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or

1 1 2
-24+uv=E
2
1 _ 2 ., 1 _48 +15 _
T =15 * 734 =15 x 24 - /40
u
2
uz' = 40/7 cm .

This image, by sign convention, will be to the left of the
mirror (see figure 2). Hence, uj for the second pass

through the lens is - 40/7 cm. Applying the thin lens/
mirror equation again yields

1 + 1 _1/15
- 40/7 u -
3
1_i+l_40+7x15_29
v 15 40 ~ 40 x 15 - 120
u
3
v 120 _
u; =S5 < 4.14 cm .

That is, since we are passing back through the lens, a
real image is formed 4.14 cm in front of the lens.

Solution (2):

r‘“‘T—V : —’\r

Here our optical system looks as shown in figure 3.
Ultimately, d will be allowed to approach zero. Thus,
the first time the light passes through the lens, the
image distance will be 24 cm, as in solution (l1). Now
the object distance for the mirror is d-24 and applying
the thin lens/mirror equation,

1 1
g =33+t~ = 2/15
42
1 _ 2 _ 1 _ (2d-48)-15 _ _2d - 63
u v~ 15 d - 24 " 15(d - 24) ~ 15(d - 24)
2
w ' = 15(d - 24)
2 2d - 63

Now the object distance for the second pass through the
lens will be d - uz' or
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u =g - 15a - 360 _ 2a® - 63d - 15d + 360
3 2d = 63 23 - 63 .

Simplifying this expression for ujy and applying the thin
lens/mirror equation yields

2d - 63 1 1
2 T T 15
2% - 784 + 360 uy

or
1 1 2d - 63 _

uy ' 15 242 - 784 + 360

2a% - 78d + 360 - 304 + 945
3042 - 11704 + 5400
v 30d% - 11704 + 5400
4 = 2
2a% - 1084 + 1305

Letting 4 approach zero,

U 5400

u3 = ﬁﬁg = 4.14 cm .

In this case we again need to look at the sign convention
which tells us that a positive value will be to the left
of the lens. Therefore, this is the same answer as solu-
tion (1).

Solution (3):

r‘“"/ \ FIG. 4
Tl

' —»
{F]

n,

Considering figure 4, equation (1) yields
1 + 1.5 _ 1.5 -1
0 a. 15
1

1.5 _ 1 _
=T =30 1/40

(5]

. ]
or solving for ul R

u1 = 180 cm.

Now consider the mirror. With our sign convention, u, is
- 180 cm. Thus, solving for the image distance in the
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mirror gives:

1 1 2
180 ' N
2
12 1
T =15 * 180
b}
"= 38 o
u2 —5 -

Now the curved surface is again considered and with our
sign convention,

u; = - 36/5; R = - 15.

Again applying the lens equation,

1.5 + 1 _1-1.5
- 36/5 r =15
u
3
1 ;L.+ 7.5 _ 36 + 225
¢ 30 36 30 x 36 '
u
3
' 30 x 36
u, 561 = 4.14 cm.

Thus, each method of solving this problem yields the same
result.

® PROBLEM 6-6

Show that the sun's rays passing through a globe of water

(n = 1.33), 6 inches in diameter, will be converged to a
focus 6.05 inches from the center of the sphere.

Solution: This problem can be solved by considering what
happens at each refracting surface. The sunlight falling
on the first surface creates an image given by the equa-
tion
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' '
n n - n

S

+ — R
where n is the refractive index of the first medium (air;

E]

n=1), n’ is the refractive index of the second medium
(water; n' = 1.33), S is the object distance (S = » for

the sun's rays), s' is the image distance from the vertex
of the first surface, and R is the radius of curvature
of the first surface. Substituting the given values for

n, n', S and R into the preceding equation,

1.0 , 1.33 _1.33 - 1.0

o X 3"
1 0.33
s' T 3" x 1.33

S

or

12.09"

Hence, the image is formed at a distance of 12.09" from
the first surface or (12.09" - 6") from the second surface.
This image now acts as the object for the second surface.
Hence, again using the preceding equation,

1.0 _ 1.33 _0.33
s* T (12.09" - 6 _ 3"

where S" is the image distance from the vertex of the second
surface. Solving for S" gives the result

s" = 3.05".,

Hence the sun's rays converge at 3" + 3.05" = 6.05" from
the center of the globe.

® PROBLEM 6-7

A glass rod (n = 1.50) is 10 cm long between vertices.

The left end is a convex hemispherical surface of radius

5 cm, the right end is a convex hemispherical surface with
radius 10 cm. An arrow 1 mm long is placed 20 cm to the
left of the left end, an axis oriented at right angles

to the axis. (a) What is the object distance for the
right surface? (b) 1Is the object real or virtual?

(c) What is the image position from the right surface?

(d) Is the image real or virtual? (e) What is the mag-
nification of the whole rod?




Solution: (a) The glass rod is shown in figure 1. The

problem is solved easily by considering the refraction

at the left surface first and the refraction at the right
surface next. The object distance for the first surface

(Vl) is - 8 (= +20cm). Considering the refraction at the

first surface, the image is formed at a distance si from

the first surface given by the following equation:

n l1 _n-1

1 3 R, (1)

where n is the refractive index of the glass rod and Rl is

the radius of curvature of the first surface. Substituting
the given values for n, 8 and R, into equation (1),

1.5 _ 0.5 1

Si 5 20 °
Hence si = ;LO_IOO_X_LS_S_ = 30 cm from V, or -20cmfrom the right

surface V,. This is the object distance for the second sur-
face (Vz). (b) The object is obviously virtual with

respect to the second surface. (c) Now applying equation (1)
at the second surface,

1 n l-n

5" %o, Ry

where s' is the image distance from the second surface, and

So is the object distance with respect to the second sur-
2

face (-20 cm)

1l _0.5,1.5
g7 10" 20 ¢
Solving for g’ yields the result s’ = 8cm from VZ' (d) the

image is obviously real. (e) The linear lateral magnifi-
cation may be obtained by taking the product of the magni-
fications produced by the two refracting surfaces. Thus,
for the first surface,

s
1 _ 30em _ _ 4

M =58 " 1.5 x 20
For the second surface,

_ n8' _ +1.5 x 8 _
my T =~ -0

(t denotes the length of the rod.)

Hence m = mlm2 = -0.6.
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® PROBLEM 6-8

A plane mirror is suspended vertically at the center of a
large spherical flask filled with water (the index of
refraction for water is 1.33). The diameter of the flask

is 10 inches. An observer whose eye is 35 inches from
the mirror sees an image of his own eye. Where is the
image seen?

Solution: For this problem, we will use the single sur-
face refraction equation locating the image distance u'
from the object distance u, the radius of curvature R,

and the indices of refraction n and n'. This equation is:
n,n'_n'-n
E+?——T—- (1)

Equation (1) can be applied for each surface the rays con-
tact in turn, until a final image is formed. 1Initially,

n=1, n' = 4/3, the radius of curvature of the spherical
_ 10 inches _ , .
flask, R, = = 5 inches, and the radius of cur-

vature of the mirror is infinite. Since u; = 30 inches (the

distance of the eye from the surface of the flask), sub-
stituting into equation (1) gives the result

1, 4/3_4/3-1_1
3 = L

30 ul 5 15
4 _ 1 _ 1 _ 1
3ul 15 30 30

3u,’

1 _
- = 30

Vo %x 30 = 40 inches

ul' is measured from the front surface of the flask, and so,
the image is 35 inches behind the mirror. Reflection of
this image places the next image 35 inches in front of the
mirror, which is 30 inches outside the flask surface.
Therefore u, is a virtual object, or u, = -30 inches.

(WIFS

Applying equation (1) again, this time with n =
and n' = 1 (going from the flask into air),

4/3 1 _1-4/3 _ 1

-3o+u2" =5 =15
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1 _ 4,1 _10
u2' 90 15 90
u2' = 9 inches

The final image, u2', is 9 inches outside the flask. Since

the original object was 30 inches from the flask, the final
image is 21 inches from the original object.

® PROBLEM 6-9

Light originates at an axial point object 40 cm to the
left of a long glass rod of index 1.6. The end of the rod
is ground and polished to a convex spherical surface of
radius 6 cm. Find the image distance.

1 h=1.0

Solution: When light is refracted from a point object at a
spherical surface, apply the relationship

n 4Dz _D2- Ny
o 1 r

where n; is the index of the medium from which the light
source originates, n: is the index of the medium where the
image appears, o is the object's distance from the surface,
i is the image's distance from the surface, and r is the
radius of curvature of the surface.

In the given example, n; is assumed to be 1 (n = 1 for
air), n, = 1.6, o = 40 cm, and r = 6 cm. Substituting these
given values into the equation gives:

1, 1.6 _1.6-1

40 cm 1 6ocm °

Solving for i gives us i = 21.3 cm.

The image distance i is positive, which implies that the
image is real. If i was negative, then it would be a virtual
image.

e PROBLEM 6-10

one end of a cylindrical glass rod of index of refraction
1.50 is ground and polished to a hemispherical surface of
radius R = 20mm. An object in the form of an arrow lmm

108



high, at right angles to the axis of the rod, is located
80mm to the left of the vertex of the surface. Find the
position and magnification of the image if the rod is in
(a) air and (b) water of index 1.33. (c) Find the
first and second focal lengths of the spherical surface in
air.

Solution: (a) For the given data, n, = 1.00, n, = 1.50,
s = 80mm, R = 20mm, and using the equation

n n n,-n

A G _ G A

s s ° R b

(s' is the image distance from the glass surface) we have

1.00 | 1.50 _ 1.50 - 1.00

80mm s' 20mm
hence s' = 120mm. The image is 120mm to the right of the
surface of the glass rod and since s' is positive, the
image is real.

The magnification, m, of the image inside the glass
rod can be found by applying the formula,

n, x s'
m = _E§—§ ) (2)
G
_1.00 x 120mm _
m = =-1.

“1.50 x 80mm

Hence the image formed is the same size as the object but
inverted because the magnification is negative.

(b) For the glass rod in water, equation (1) becomes
n n, -n
W, _ T
s s R

W

where ng is the index of water, 1.33. Now, using the data
for this part of the problem, we have

1.33 . 1.50 _ 1.50 - 1.33

80mm s' 20mm
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Thus, s' = -185mm. Hence, when the glass rod is immersed
in water of index 1.33, a virtual image will appear about
185mm to the left of the surface of the glass.

Using equation (2), the magnification, m, is

1]
me -w*S __1.33 x (-185mm) -
n, X s 1.50 x 80mm -

Since the magnification is positive, the image is erect
and it is twice the height of the object.

+2

(c) The first focal length, which is to the left of the
surface, is found by applying the equation

N T
& F

n
?A+ £
1

where fl is the first focal length and we use the object
and image distances of the rod when it was in air. This
gives us

1.00 1.50 _1.00

gomm ' 120mm - £

hence f1 = 40mm.

The second focal length, which is to the right of the
surface, is found by applying

"a, % _ "
A, G. G
) S

£2
and this gives us

1.00 , 1.50 _ 1.50
£,

80mm 120mm

so f2 = 60mm. Hence, the first focal point lies 40mm to

the left of the surface and the second focal point lies
60mm to the right of the surface, when the glass rod is in
air.

® PROBLEM 6-11

A small fish is at the center of a spherical fish bowl
1 ft. in diameter. Find the position and the lateral

magnification of the image of the fish, seen by an ob-
server outside the bowl.

Solution: In the figure, OS = a represents the small fish,
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R is the radius of the sphere, OS' = b is the apparent size
of the fish, ei is the angle of incidence (measured from

the normal), and et is the angle of refraction.

First we want to determine the ratio b/a. To do this,
we notice from the figure that geometrically,

b = R tan et (1)
a =R tang, (2)
or, dividing equation (1) by equation (2),
tan et
b/a = tan 0, (3)
i
Remembering that tan A = sin A/ cos A (4)

sin © cos ei

t
b/a = — (5)
sin ei cos et

Snell's law of refraction
nt sin Gt = ni sin ei

allows us to write equation (5) as

ni cos ei
b/a = =+ —%
nt cos et

(6)

At this point, it would be helpful if the approximation

cos 0.
i

cos et

=1 was valid.

From the figure, by the Pythagorean Theorem,

a? = a2 + gr? (7)

ar? = p? + gr? (8)
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and

-__ R
cos 6, = (9)

Va2+R

Factoring out R from the denominator of the expression
on the right hand side of equation (9), and cancelling
out the R's in numerator and denominator gives

cos Oi S S (10)
/1 + a“/R
Similarly,
cos B, = N — (11)
t 2
1 + b°/R
Dividing equation (11) by equation (10) gives:
cos et _ 1 4+ a2 R2
cos 6 2,.2 (12)
i 1+ b°/R
Now, if the fish is small and the sphere is large,
a%/r? ~ b?/R% << 1
so
cos et/cos ei 1 (13)
and equation (6) becomes
b/a = ni/nt . (14)
In our problem, n; = 1.33 (the index of refraction
of water), n = 1.0, and R = 0.5 ft. Pick the small
fish for example to be of size a = 0.25 inch. Then
a/R = 1/24 or a?/R® = 1.7 x 1073
so the approximation made in equation (13) is wvalid.
Therefore the magnification is
Magnification = b/a = ni/ht = 1,33 . (15)

Now to find where the image is located, one ray from
S, namely SP, when refracted is represented by ray S'P.
Another ray which can be used is ray SP'. Since it is
radial, it will not be refracted, so S'P' represents the
so called "refracted ray," and both S'P' and S'P intersect
at S'. Thus, the image plane is the line which bisects
the sphere. This means that the image distance is 1/2 the
diameter of the sphere, or - 0.5 ft., obeying the usual
sign conventions.
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Another way to find the image point is to make use of
an approximation first, which says that the small fish is
a point at the center of the sphere. Then all rays from
the fish are radial and are not refracted at the spherical
surface since the radial rays are normally incident at the
surface (i.e., Gi = 0 and therefore Gt = 0). Since the

radial rays are not refracted, the observer sees thgm to
be converging to the center of the sphere. So, again the
image distance is - 0.5 ft.

® PROBLEM 6-12

A piece of capillary glass tubing has an outside diameter
of 7mm. The tubing appears to have a diameter of lmm
inside when looked at through the glass wall. What is
its real diameter (n = 1.5)?

Solution: In the figure, Ri represents the radius of the
capillary; RO represents the outer radius of the glass

tube; Rapp represents the apparent radius of the capillary
as seen from outside, ei is the angle of incidence, and

et is the angle of refraction. We will look at a ray

which leaves from S and travels to P before being refracted
at the surface. Since a radius vector is always perpen-
dicular to a circle, ei and et in the figure are the angle

of incidence and angle of refraction respectively. By
geometry, other angles in the figure can be determined.

We want to get the ratio R /R.. To do this, we

app’ i

notice by geometry that
R.
= = sind, (1)
RO 1
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'i—o— = Cosei (2)
Rapp - Ri = Rll tan(et - Gi) (3)

Solving equations (1) and (2) for Ri and R respectively

11’
Ri = Ro sinei and Rll = ROCosei. Substituting for Ri and

Rll in equation (3) gives Rapp - R051n9i
= Ro cosei tan(et - ei) or
= 3 =0 -
Rapp = Ro(sz.nei + cosd, tan(et ei)).

Dividing through by RO gives

Rapp/Ro = 51nei + cosei tan(et - ei) (4)

sin(et - Gi)

cos (6, - 6;) equation (4) becomes

Expressing tan(et - ei) as

s:.n(et - ei)

Rapp/Ro = 51nei + cosei cos(et =5, (5)
_ sin ei cos(et - ei) + cosei 51n(et -ei) (6)
cos(et - ei)
Using the following trigonometric identity
sin A cos B + cos A sin B = sin (A + B) (7)
equation (6) becomes
Ra _ 51n(6i + et - Gi) 8
Ry cos(et - ei)
or
R sin®
app _ - te (9)
Ro cos ( £~ i)

Dividing equation (9) by equation (1) gives

Rapp _ 51n6t/51nei

- (10)
Ri cos(et eiT

By Snell's law (ntsinet = nisinei), equation (10) becomes

R n./n
app _ 1’7t (11)
R, cosTet - GIT
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Substituting the given values n, = 1.5 and n, = 1.0 into
equation (11) gives

R
app _ 1.5 (12)

Ri cos(et - ei)

To eliminate the cos(et - ei) term, we make use of approxi-

mations. If it can be shown that 6 - 6, = 0°, then

= . ] 1
cos(et - ei) = 1. R0 and Rapp are given to be 5 mm and 3 mm,

respectively. In addition, it is evident from the figure
that Ri < Ra . Therefore, from equation (1),

pp
R. R
; - i . app _ 1 _
51n0i = R < R 5 0.143.
(¢ (o)
Hence,
6. < 8°

1

cosei ~ 0.989

Taking cosei = 1 introduces approximately a 1% error. Then
equation (11l) becomes

R n.
8PP - 1 _ 1.5
Ri nt
and
Rapp
Rl =735 — 0.33mm.

Hence, the real diameter is 2(0.33) mm = 0.66 mm.

That the image of S is at S' can be seen by looking at a
ray proceeding from S along the radius vector 0SS'. At

the surface this ray will not be refracted, so we will have
an image of S at S'.

THE METHOD OF CHANGE OF CURVATURE
OF WAVEFRONT
® PROBLEM 6-13

Plane waves, traveling in air, fall on a convex surface
with radius of curvature 20 cm, separating air from glass.

Find, by the method of change of curvature of wave front,
at what point the waves are brought to a focus. (Index
of refraction for glass = 1.64)

Solution: First, the sagittal equation must be derived.
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r R

ad)

— FI1G. |
‘_,’R2_r2 —4

Looking at figure 1, we see that

d =R - Rz-r2

Factoring out R from the radical sign gives
d =R - R»/{ - rz/R2

The binomial theorem states:

2
(L +x)" =1+ nx + ELE—%TllE— + .. .
Therefore,
2
/1 - f2R% = (1 - £2/RH)% = 1 -
2R
Neglecting higher order terms,
r2 r2
d=R-R(l-‘2?=R-R+ﬁ
Thus,
rz
da = R
FIG. 2
CONVERGING
SPHERICAL WAVE
INCIDENT CONVEST
PLANE WAVE SURFACE
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Figure 2 shows what happens when a plane wave inter-
acts with a convex surface. When the plane wave is in
air, all parts of the plane wave move to the right with
velocity c (the speed of light in air). When the part of
the plane wave on the axis first encounters the convex
surface, the part of the plane wave off the axis will con-
tinue to move with a velocity c while that part of the
wave on the axis moves with a velocity Cn (the speed of

light in the medium). Since the index of refraction, n,
=c / Ch’ this can be used to determine the relative posi-

tions of the wave front when the off axis part of the plane
wave interacts with the convex surface. Fermat's principle
of least action tells us that the time necessary for the
wave to move a distance X in the medium x is the same
amount of time necessary for the wave to move a distance

3 in air, or
X
1l _ x
T T o (7)
m
or
b X
1 1
X = = — (8)
c/cm n

Now, making use of equation (6) and figure 2,

r2

X1 T 2R (9)
r2

X2 = -le- (10)

where R is the radius of curvature of the convex surface
and Rl is the radius of curvature of the wave surface in

the medium. R, will represent the location of the con-

1
vergence of the spherical wavefront.

From figure 2,

X] - Xy =X (11)

Substituting the expression on the right hand sides of
equations (8), (9), and (10), for x, Xq and Xor respect-

ively,
2 2 2
r r . r
R "2 " 2R (12)
Then
r2=ﬁ_£_=f_1_£)=ﬁ(n‘l (13)
R, 2R~ 2R _ 2R n 2R



Then, solving for Rl yields

_ n
1 n -1 R (14)

R

Substituting the given values for n and R into equation (14)

R o 1-64 o0 on oo 20 x 1.64

1164 -1 — g1 "~ 5l.3cm
© PROBLEM 6-14

A water tank is closed at one end by a very thin glass

window, curved outward, with radius of curvature equal

to 20 cm, and at the other end by a very thin window of
plane glass. The distance from window to window is

164.6 cm. A small bright scurce is placed on the central
axis of these windows at a distance of 100 cm outside the
curved window. Find, by the method of change of curva-
ture of wave front, the position of the image of the
source. (The index of refraction of water = 1.33.)

di|d2
Y
R
(lgss
FIG. 1 R Rs
ds
d4—¢r
d
d ds

Solution: Figure 1 shows a wave front diagram for this
problem. From Fermat's principle of least action, while
the off axis part of the wave front is traveling a dis-
tance d, + d, , the on axis part of the wave will travel
a distance d' related by

cotd_ar
(o] Cm

(1)

where ¢ is the velocity of light in air, and Cn is the

velocity of light in the medium and t is the time re-
quired to move towards the right. The index of refraction
for the medium is n = c/cm . From the sagittal equation
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derived in the preceding problem,

r2
4, = 33 (2)
r2
d. = X (3)
2 2Rl

where r = % the vertical height of the glass window.

From equations (1), (2), and (3),
2
R S S S
a’ = n 2 R + R (4)
1
From figure 1, we can see that

'
d3 = d2 -d

Then, from equations (3) and (4),
2
- | 1 _1 /1,1
"3‘2[111 n<R+Rl>J (3)

From the sagittal equation,

2
r 1
d = —— — (6)
3 2 R2
. 1
Solving for —=— ,
R
2
24
1 _ 3
RT3 7
2 r

Substituting the expression for d3 given by equation (5)
into equation (7),

L_1._1(1,21) (8)

This spherical wave front will then converge to form
an image of the object at a point R2 from the convex sur-

face. Substituting the given values

n=1.33, R= 100 cm and Rl = 20 cm

into equation (8) gives R,= 2.05 meters. Our problem states

2
that the length of the water tank is 164.6 cm; therefore,
what happens to the converging wave front when it reaches
the right end of the water tank must be considered. Looking
at figure 1, we see that

R3 = R2 -2
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where % represents the distance from window to window.
Substituting in the values for R2 and £ gives

R3 = (2.05 - 1.646) m = 404 m (9)

Now we have the reverse of what happened at the left
of the tank. While the spherically converging wave on
the axis moves a distance d4 in water, the off axis point

moves a distance d5 in air. By Fermat's principle,

d d

4 _ 5
e =% (10)
m
or d5 = nd4 (11)
The sagittal equations are
r2
dS = Eﬁz (12)
and r2
d4 = 51—2; (13)

Substituting the expressions for d5 and d4 (from equations
(12) and (13), respectively) into equation (11),

r2 nr2
= = nr (14)
2R4 2R3
Solving for R4 B
R
= 3
R, = = (15)
Substituting for R3 and n,
_ .404
Rg=T.33™
or R4 = .304 m = 30.4 cm.

Hence, the image of the source is located 30.4 cm
beyond the plane window

DERIVATIONS
® PROBLEM 6-15

A surface of curvature c separates media of refractive
indices n and n'. Show that the conjugate (positions of
object and image points) distance equation for this sur-
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face is

1]
rf+».=(n'-n)c,

where £ and %' are the obiect and image distances, respect-
ively.

FIG. 1

Solution: Figure 1 shows the refracting surface element
separating the object space and the image space with in-
dices of refraction n and n' respectively. The curva-
ture ¢ = % where R is the radius of curvature of the re-
fracting element. Distances are positive when taken from
O to V in the object space and from I to V in the image
space. A ray from an axial point O is refracted at A in
accordance with Snell's law, and proceeds to the axial
image point I. Let the object distance be % and the
image distance be %', as shown in figure 1, measured from
V. Let the path length of the incident ray OA = bi and

let the path length of the refracted ray AI = br'

Considering triangle OAC, the law of Sines gives

51nei 2+
sinp bi

R

(1)

Considering triangle IAC, the law of Sines gives

sinb v o
r _ 2% R . (2)

sinp b

r
Dividing equation (1) by equation (2), we have

sinf; . +R Pr 3
— R B (3)
i

s - v
51ner 2
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Snell's law of refraction states:

. o s
n 51nei =n 51n8r (4)
n' sinb,
Hence, substituting o for §IH§; in equation (3)
_9L_+_13.br=£ (5)
2' - R b n

i
In a general case, br and bi can be related to %, %', and

the distances AM and VM. However when an important as-
sumption is made, namely that the distance AM is small
compared to £ and %', then to a sufficient degree of ap-
proximation,

= ] =
br = 2 and bi 2

Then equation (5) becomes

2" n'
2 n

L +R
LT - R

Cross-multiplying gives

n2'(2 + R) = n'%(2' - R)
Expanding,

ngf' + nRL' = n'2L' - n'RL

Dividing both sides by %2'R gives

E+E=£-n'
R 2 R 2!
or
L}
% + 97 = c(n' - n)

e PROBLEM 6-16

The curved surface of a glass hemisphere is silvered.

Rays coming froma luminous point at a distance u from the
plane surface are refracted into the glass reflected from
the concave spherical surface, and refracted at the plane
surface back into the air. If r denotes the radius of

the spherical surface and n the index of refraction of the

glass, show that

1 1 2n _
atawtT =0

where u' denotes the distance of the image from the plane
surface.
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IMAGE 2
\

O0BJECT

Solution: This problem can be solved by two methods.
Method 1: First, the small aperture equation for re-
fractive media states:

n n
TI+E'2‘=_2_"‘l (1)

where the n's represent the indices of refraction of the
materials at the interface, u and u' are the object and

image distances, respectively, from the interface, and R
is the radius of curvature of the surface. For a mirror,

1,1 _2 2)

u u' R

Secondly, we will look at ray diagrams and use Snell's

law:

nlslnel = nzsine2 (3)

where the 6's represent the angles the ray makes with the
normal to the surfaces and the n's are the indices of re-
fraction. The law of reflection states

6, =6 (4)

where ei and er represent the angles of incidence and re-
flection, respectively.

At the plane surface, 1/R = 0 so equation (1)
yields

_1—+_n.r=0

ul L'll

(nl = the index of refraction of air 1);

ul' = -nu; (5)
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For the mirror,

— - | -
u, = R uy R + nul (6)

Substituting this value for u, into equation (2),

1 + 1 _ 2

F= =

R + nu; u, R
1 _2 . 1 _ R + 2nu1
uz' R R + nu1 R(R + nul)

R(R + nul)
L] -
Y2 T R ¥ 2nu; (7

At the plane surface,

= = [
u3—R u2

Substituting the expression for u2' given by equation (7)
into this equation,

R(R + nu,) R + nu
u=R-_______l—=Rl—______l
3 R + 2nu R + 2nu
1 1
Rnu
= 1 (8)
R + inu1

Using equation (1) again,

n 1 n-1
e =0
u3 u3 R
n(R + 2nu1) o 1 R + 2nul
nRu AT 0 = u.' Ru
1 3 3 1

Cross multiplying,
-Rul = Ru3' + 2nulu3'
or
Ruj' + Ru; + 2nuj'u; = 0 (9)

Dividing equation (9) by Ru3'u1 yields
(10)
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Letting u; = u, the initial object distance, and u3' =u',
the final image position, equation (10) becomes

1 1 2n _
stort R0 (11)

as required.

*—u—> (MIRROR
FIG. 2 SURFACE

Method 2: 1In figure 1, we choose a ray from the ob-
ject which will encounter the flat hemispherical sur-
face at the axis of symmetry. This ray will be refracted
at the surface but will proceed along the radius of the
hemisphere. Since a radius vector is normal to the sur-
face of a sphere, this ray will be reflected at the mirror
surface back along its radius and retrace its path to the
flat surface, and thus, to the original object point.

For a second ray, choose that ray from the object
which when refracted at the flat hemispherical surface
will be directed to the intersection of the axis of sym-
metry and the mirror. This ray will be reflected sym-
metrically and finally refracted at the flat surface.

These two rays intersect and a real image is produced
in the glass at a distance u" from the flat surface. How-
ever, further consideration shows that this real image
produces a virtual image, the location of which we seek
since this is the image visible from outside the glass.

From this image point u", drawa third ray parallel
to the axis of symmetry which will then be normal to the
flat hemispherical surface and be undeviated as it leaves
the hemisphere.

If we look at the first ray and the third ray which
we chose, we see that the rays leaving the hemisphere are
diverging and so we have a virtual image formed which will
be at the intersection of the rays at the final image point
u' (see figure 1).

From figures 1 and 2 the following geometric relation-
ships exist:
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a .
sinf, = (a) sinf.' =
1 (u2 + az)g5 1 ((a - b)2 + u2];i
. a" . b
sinb, = (b) sinf, "' =
t (a"2 + unz)g t (bZ + rz)s
sin6, = a" (c) sinf, ' = a
1 (u' + allz)% t [(r_lJ")2 +a"2];§
sinei
51n6t = n (d)
Again, from Snell's law,
sinei
3 L] -—
51net = n (h)
From (a), sinf. = a .
i (a2 + uz)a
. all
F . = i
rom (c), 51n6l (u'2 " a"z)%
therefore,
sinei = 3 a 75 = 3 a’ 5L =n sinet
(a® + u”) (u'“ + a"“)
by (&)1 = na’ (by (b)]
@+ oD%
From (f) and (g9),
. b a"
sing, ' = = =
£l e HT - um? s an?t
3‘—lsin 6.' [from (h)] = a '2b s+ Lfrom (e)]
nf(a - b)° + u“)?

Now we need to eliminate a", u",
relationships and keep u, u', r, n.

]

a a"

(a2 + 1.12);5 2

(u'“ + a"

7y

Squaring both sides of this equation gives

all
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It has been shown that
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Cross-multiplying gives

az(u'2 + a"z) = a"z(a2 + u2)
or,
22002 4+ a2am2 = an2,2 4 av2y2
The aza"2 terms drop out, leaving
a u'2 = a"zu2
or
a" = a%- (12)
u

In addition, from (b), (c) and (4),

all all

"2 + ullz);i

= RN

IIZ‘%

' 2 )

(a (u'“ + a
The a" terms in the numerators cancel, and squaring both

sides,

1 _ 1

a"2 + u"2 nz(u'2 + a"z)
Hence,

rlz‘ll2 + n2a|l2 a"2 + ‘Jll2
or

2 2 2 2,2 2 2u'2 2,2
u"” = (n® - 1)a"* + n“u'“ = (n° - 1)a — + n“u’'
u
= c2 [from equation (12)] (13)

where 02 is used to consolidate the writing of terms.

From (f) and (g),
2

b2 + r2 - [(r - u“)2 + a"2]

b all

Cross=-multiplying gives

bz[(r - u")2 + a"2] = a"zb2 + a"“r

Then

2_,2

b~a + bz(r - u")2

]
o
V)]
+
o
2]
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The bza"z terms cancel and so,

2 _ a"2r2 alI2r2 azu'zrz
b” = 5 = 7= 5
(r - u") (r - c) u“(r - c)
[from equation (12)]
Hence,
_ aru'
b=gr-9o (14)
Similarly,
2 2,2
n®u'? =L (ur - ru' - ue? |1 -2 - Dau (15)
2 2 2
u u“(r - c)

In this last equation, using small aperture, let a go to O.
As a result, c goes to nu' [from equation (13)]. So,
equation (15) becomes

n2u'2u2 = (ur - ru' - nu'u)2

or, taking the square root of both sides,
nu'u = ur - ru' - nu'u

Then,
2nu'u = ur - ru'

Dividing both sides of this equation by u'ur gives

2n _ 1 _ 1
r u' u
or
1 1 2n
1—;+(_u,)+—r——0

Now, as we have drawn figure 2, u' is inside the glass
hemisphere and is a virtual image. Therefore to be con-
sistent with the first method, we must substitute

u' = -u'. Thus,

2n

1 1 _
St tT < 0

PARTIAL REFLECTION
® PROBLEM 6-17

I The index of refraction of a refracting sphere in air is I
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Y3 . A ray of light, entering the sphere at an angle of
incidence of 60° and passing over to the other side, is
there partly reflected and partly refracted.

(a) Show that the reflected ray and the emergent ray are
at right angles to each other.

(b) Show that the refracted ray will cross the sphere and
be refracted back into the air in a direction exactly
opposite to the direction in which the ray was going
before it entered the sphere.

Solution: Let a light ray be incident on a sphere of index

of refraction ¥/3 at an angle of incidence of 60°. This is
indicated as ray A in figure 1. By Snell's law of refrac-
tion,

n sin i = n' sin r

where n and n' are the indices of refraction in the two
media, i is the angle of incidence, measured with respect
to the normal, a radius vector in this case, and r is the
angle of refraction, we can find the path of the refracted
ray B as follows:

1 sin 60° = V3 sin r
r = 30°

When ray B again strikes the spherical surface, ray B
and the two radius vectors form an isosceles triangle, so
the interior angle as shown on the figure is 30° and apply-
ing Snell's law again, the exterior angle for ray C can be
shown to be 60°. The reflected ray G makes an angle of
60° with respect to the normal, by the law of reflection
(the angle of incidence = the angle of reflection). Like-
wise, ray D will be at an angle of 30° to the radius vector.
Where ray D strikes the surface, we have a similar condition
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to ray B striking the surface so rays E and F will be as
shown.

Then, since a straight line contains 180 degrees,
60 + 30 + the angle between C and D = 180 and so, the

angle between C and D = 90°. 1In addition, it can easily
be determined that A and E are antiparallel.

THE RAINBOW
® PROBLEM 6-18

Describe how a rainbow is produced.
z N\
(39
) (b)

)

Solution: The rainbow is produced by the combined effects
of refraction, dispersion, and internal reflection of sun-
light by drops of rain. When conditions for its observa-
tion are favorable, two bows may be seen, the inner being
called the primary bow and the outer the secondary bow.

The inner bow, which is the brighter of the two, is red on
the outside and violet on the inside, while in the more
faint outer bow, the colors are reversed. The primary bow
is produced in the following manner. Assume that the sun's
rays are horizontal, and consider a ray striking a raindrop
as shown in figure (a). This ray is refracted at the first
surface and is in part reflected at the second surface,
passing out again at the front surface as shown. An exact
computation of the course of such a ray is exceedingly
laborious but the French scientist Descartes computed the
paths of some thousands of rays incident at different points
on the surface of a raindrop and showed that if a ray of any
given color were incident at such a point that its deviation
was a maximum, all other rays of the same color which struck
the surface of the drop in the immediate neighborhood of
this point would be reflected in a direction very close to
that of the first. The angle of maximum deviation of red
light is 138°, or the angle &, shown in the figure, is equal
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to 180° - 138° = 42°, The corresponding angle for violet
light is 40°, while that for other colors lies intermediate
between these.

Consider now an observer at P. The X-Y plane is hori-
zontal and sunlight is coming from the left parallel to the
X-axis. All drops which lie on a circle subtending an angle
of 42° at P and with the center at O will reflect red
light strongly to P. All those on a circle subtending an
angle of 40° at P will reflect violet light strongly, while
those occupying intermediate positions will reflect the in-
termediate colors of the spectrum.

The point O, the center of the circular arc of the bow,
may be considered the shadow of P on the Y-Z plane. As the
sun rises above the horizon the point O moves down, and
hence with increasing elevation of the sun a smaller and
smaller part of the bow is visible. Evidently an observer
at ground level cannot see the primary bow when the sun is
more than 42° above the horizon. If the observer is in an
elevated position, however, the point O moves up and more
and more of the bow may be seen. In fact, it is not uncom-
mon for a complete circular rainbow to be seen from an air-
plane.

The secondary bow is produced by two internal reflec-
tions, as shown in figure (b). As before, the light which
is reflected in any particular direction consists largely
of the color for which that direction is the angle of maxi-
mum deviation. Since the angle of deviation is here the
angle § and since the violet is deviated more than the red,
the violet rays in the secondary bow are deflected down at
a steeper angle than the red and the secondary bow is red
on the inside and violet on the outside edge. The corres-
ponding angles are 50.5° for the red and 54° for violet.

131



CHAPTER 7

DIOPTICS

REFRACTING POWER
® PROBLEM 17-1

The radius of curvature of the front surface of the cor-
nea of the human eye is about 7.7 mm and the radius of
curvature for the back surface is about 6.8 mm. The index

of refraction of the cornea is 1.376 and for the aqueous
humor it is 1.336. Find the dioptric power of the front
and back surfaces of the cornea.

AQUEQUS
HUMOR
N=1.336 N=1.000

n.37%

Solution: The dioptric power, D, of a surface is found by
using the equation

- n
D=n—bR—-E (1)
S

where ng is the index of refraction of the second medium,
n, is the index of refraction of the first medium (the
medium which the light is incident upon), and Rs is the

radius of curvature of the surface. For the front surface
of the cornea, n = 1.376, n, = 1.000, and RS = 0.0077 m.
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Substituting these values into equation (1) gives

_1.376 - 1.000 . -
D=="3.0077m 48.8 m

or D = 48.8 diopters. For the back surface of the cornea,

n, = 1.336, n, = 1.376, and Rs = 0.0068 m .

b

Substituting these values into equation (1) gives

_1.336 - 1.376 . _ -1
D = ="5.0068m _ 2-°m
or D = -5.9 diopters.

e PROBLEM T7-2

Given a biconvex lens in air, the radius of the front
surface, R1 , = 6.25 cm, the radius of the back surface,

R2 = -8.33 cm, the thickness of the lens, t 12.0 mm,

14

and the index of refraction of the lens, n, o 1.5. There

is an object 50 cm from the front surface of the lens.
What is (a) the true power of the lens, (b) the positions
of the first and second principal points, (c) the position
of the image, and (d) the magnification?

FIRST SECOND
PRINCIPAL PLANE ¢ 12~PRINCIPAL PLANE
'"'ﬁ' P };'RCENTRAL AXIS

Solution: Since the lens used in this problem has a thick-
ness of 12 mm, the equations for a thin lens cannot be

used because they only hold for lenses of negligible thick-
nesses.

(a) To find the true power of the lens, D, it is necessary
to first find the power of each surface, D; and D, , and
then to use the following equation:

Dy . D . t

D=Dy +Dp - ——— (1)
L

where t is the thickness and ng is the index of refraction
of the lens.
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The power of the first surface is found by making use
of the relation

D, = LR1 A
where n, is the index of refraction of air = 1.
Hence,
_1.5-1.0 _ -1
D1 = 5.0625m - 8-0m

or
D, = 8.0 diopters.

The power of the second surface can be found by using
the relation

_"a L
D2 R,
Hence,
_ 1.0 - 1.5 . -2
D2 = Z5.0833m 00 m
or
D, = 6.0 diopters.

Now, substituting the values computed for D; and D;
along with the given value for t into equation (1) gives

D=8.0+6.0 - {8:00(6-0)00.002) 4iqpters =

13.62 diopters.

Hence, the true power of the lens is 13.62 diopters
or 13.62 m~!

(b) For thick lenses, the first and second principal points
are the points where the first and second principal planes
and the central axis intersect. These points are represented
by P and P, in the figure. The distance from the first
principal point, P1 , to the first surface (along the cen-
tral axis) is represented by a and the distance from the
second principal point, P, , to the second surface is rep-
resented by b. a and b can be found by using the formulas

. f - gi t zi) . t 2)
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and

b = (3)

where f is the focal length of the lens, which is the re-
ciprocal of the power of the lens. So the focal length, £,
is

f=f=— L1 —-0.073¢m=7.34 cm.
13.62 m !

Substituting into equation (2) for £, n, , t and R;

gives the result
(7.34 cm) (1.0 - 1.5)(1.20 cm) _
= (-8.33 cm) (1.5) = 0.35 cm

and similarly, equation (3) becomes

b = (7.34 cm) (1.5 - 1.0) (1.20 cm) = 0.47 cm

(6.25 cm) (1.5)

(c) The position of the image can be found by applying the
lens equation,

=1
= 7 (4)

el =

1
-6+

where 0 is the distance of the object from the first prin-
cipal point, i is the distance of the image from the second
principal point, and f is the focal length of the lens.
Since the object is given to be 50 cm from the front surface
of the lens, the object distance, 0, is equal to

50 cm + 0.35 cm = 50.35 cm.

Substituting the value 0 = 50.35 cm into equation (4)
gives

X . 1___ 1
50.35 cm i~ 7.34 cm
Hence,

i = (7.34) (50. 35) = 8.59 cm.

50.35- 7.34

The image is 8.59 cm to the right of the second principal
point or (8.59 - 0.47) cm = 8.12 cm to the right of the
second surface of the lens.

(d) The magnification, m, of a thick lens is the same as
the magnification for a thin lens, and thus can be found by
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making use of the following expression:

_ _i_ _ 8.59cm . _
m=-5%"%0.35 cm _ ~ 0171 -

Thus, the image is approximately 0.171 times as large as

the object, and the minus sign indicates that it is in-
verted.

® PROBLEM T7-3

Calculate the powers of the glass surfaces in air whose
radii of curvature are 40 cm, 250 mm, 10 cm, 70 mm, and

2 cm, if the index of refraction of the glass is 1.50.

N=1.00

Solution: The figure shown is of the glass surface in air.
To find the power of the surface, D, in diopters

(m ~ ') the following equation must be used:

D= (n- 1) %

where n is the index of refraction of the glass and R is
the radius of curvature of the glass surface. Given that
n = 1.5 and that the radii are 0.4 m, 0.25 m, 0.1 m, 0.07 m,

and 0.02 m, the powers can be computed to be D = 1.25, 2.00,
5.00, 7.14 and 25.00 diopters, respectively.

® PROBLEM 7-4

What is the refracting power of a spherical refracting
surface of radius 20 cm separating air (n = 1) from glass

(n = 1.5, where n denotes the index of refraction of the
medium) ?

Solution: The power of a spherical refracting surface can
be found from the following equation:

D=(-1) 3 ,

where D is the refracting power, n is the index of refrac-

tion of the glass surface, and R is the radius of curva-

ture of the surface. Substituting the given values
R=20cm = 0.20m and n = 1.5

into the equation gives the result

D= (1.5 - 1) 5—5%-5 = 2.5m ! or 2.5 diopters.
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® PROBLEM 7-5

A spherical glass surface having a radius of curvature of
20 mm is immersed in water. What is the power of the

surface in water (nwater =1.333, n = 1.50; n repre-

sents index of refraction)?

glass

N GLASS=150
N WATER=1.333

Solution: The power of the surface when immersed in water
can be found by applying the following equation:
1

D=(n—l)§

where D is the power of the surface, R is the radius of
curvature of the glass surface, and n is the relative in-
dex of refraction; that is, the ratio of the index of re-
fraction of the glass to the index of refraction of the
medium in which the glass is immersed. In this problem,
n is equal to

1.50
1.333

or 1.125.

Substituting the values n = 1.125 and R = 0.02 m into
the above equation gives the result

1

- -1
002 m _ 0-m

D= (1.125 - 1)

Since power is expressed in diopters when the radius of
curvature of the lens is expressed in meters, the power of
this surface is 6.25 diopters.

¢ PROBLEM T7-6

The refractive power of a thin plano-convex lens made of

glass of index of refraction 1.5 is 20 diopters. Find the
radius of curvature of the curved surface of the lens.

Solution: The power of a lens, expressed in dipoters, is
the reciprocal of the focal length, expressed in meters.
The equation relating the focal length £ of a lens to its
radii of curvature R; and R, and its refractive index

n is the following:

1 _ - 1 _ 1
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Thus the power D is given by the following equation:

D= (n- 1)(?% - g; (2)

Substituting the given values
n = 1.50, D = 20 diopters or 20 m ! and R, = »

(The radius of curvature of the plane side of the lens)
into equation (2) gives the result

20 m™ ! = (1.50 - 1) g~ .
1
. . .50
Solving for R; gives R; = ————
20 m !
= .025 m
= 2.5 cm.

® PROBLEM 7-7

What is the refracting power of a concave mirror of radius
20 cm when the reflecting surface is in contact with (a)

air (n = 1) and (b) water (n = 1.33; n denotes index of
refraction)?

Solution: The power of a lens or a mirror is the recipro-
cal of its focal length. When the focal length is ex-
pressed in meters, the power is expressed in diopters.

(a) The focal length of a mirror in air (n = 1) is half
the radius of curvature of the mirror. Thus the focal

length of the mirror in air is % * (20 cm) or 0.1 m.

Hence, the power of the mirror is ) a o °F 10 diopters.

(b) If the mirror is immersed in a medium other than air,
the focal length of the mirror is still half the radius of
curvature of the mirror, but the power is the product of
the reciprocal of the focal length and the index of re-
fraction of the medium. So, the power of the lens is

1
(1.333) = 13.33 diopters.

(0.20 m)

N

® PROBLEM T7-8

A concave lens with focal length 12 cm is placed in con-

tact with a convex lens of focal length 7.5 cm. Find the
refracting power of the combination.

Solution: When two lenses of focal lengths fi and f2 are
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placed in contact with each other, the resulting focal
length £ can be calculated as follows;

1 _ 1 .1
fFETR TE

The refracting power of the combination of the lenses is
the reciprocal of the focal length of the combination of
the two. Thus the refracting power of the combination, D,
is given by the following equation:

1 1

D=H+E,

where f; and f, are the focal lengths of the two lenses.
fi1 is equal to +0.12 m since it is the focal length of a

concave lens and f, is equal to -0.075 m since it is the

focal length of a convex lens. Substituting into the above
equation gives
1 1 _ -1

D=%izm*=0075m - " °"

When the focal lengths of the lenses are expressed in meters
the power is expressed in diopters; hence the refracting
power of the combination of the two lenses is -5 diopters.

® PROBLEM 7-9

If one holds a lens 50 cm from a flash lamp and finds that
an image of the lamp is sharply focused at a distance of

16.6 cm from the lens, what is the power of the lens?

Solution: The power of a lens is the reciprocal of its
focal length (when expressed in meters). Thus the power
of the lens, P is given as follows:

100
==
where £ is the focal length in centimeters. A lens in air
is said to have a power of 1 diopter when its focal length
is 1 meter. Given that the object distance, S = +50 cm
and that the image distance, S', = + 16.6 cm, the lens
equation

1
t g o

Hh| =
|
1]

gives the result

1 _ 1 1 ~ -1

f " S0cm T 16.6 cm 0.08 cm
Hence,

P = 1%9 = 8 diopters.
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e PROBLEM T7-10

A lens-gauge graduated in diopters for glass with index
of refraction 1.5 is used to measure the power of a thin
double convex lens made of glass with index of refrac-

tion 1.6. The readings on the dial are +4 diopters for
both surfaces of the convex lens. Find the refractive
power of the lens, assuming that its thickness is negli-
gible.

Solution: Since the lens-gauge is graduated for glass of
index of refraction 1.5, the readings obtained for each
surface must use n = 1.5. The power of the two surfaces
of a lens is defined as follows:

n -1 4

P = — =
1 r:

l -n -

and P, s

Hence, the total power of the lens, P, is given as follows:
P =Py + P, =

n -1 + 1l -n
ry ra

= (n - 1) (i-—l—-) (1)

ra ra

Thus, since P = 4 + 4 = 8,

(n - 1) (f%-- ;%—)= 8

Solving for

and substituting n = 1.5 gives the result

i _ 1 __8
r r, n-1
_ 8
- 1.5 -1
= 16

Therefore, from equation (1), if n = 1.6, then

P=(1.6-1)(;11--r—12)
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0.6 x 16

= 9.6 diopters.

® PROBLEM T-11

What is the prismatic effect of a lens of power +4 diop-
ters decentered 0.75 cm?

Solution: Prismatic effects are produced by mounting a
lens in front of an eye so that the optical center of the
lens is displaced from the normal intersection point of
the visual axis.

Consider a lens of power F decentered through a dis-
tance y. The axis of the lens is GAF'. A ray parallel
to the axis, incident at a height y, is deviated toward
the principal focus F', i.e., through an angle equivalent
to the deviation produced by a prism of power y/f' prism
diopters if y is in cm and f' is the focal length in
meters.

Prismatic Power = yF

0.75 x 4 prism-diopters

3 prism-diopters

® PROBLEM 7-12

The refracting power of a symmetric glass lens
(n = 1.5, where n represents index of refraction) sur-

rounded by air (n = 1) is +10 diopters, and its thick-
ness is 0.5 cm. Determine the radius of the first
surface.

FIG. | A ﬁznzza D
|QZZZZJV
(s0) ST (sh)

Solution: The magnitudes of the radii of curvature for
the two faces of a symmetric lens are equal. Let this
magnitude be |r|. Then the first surface has a radius
of curvature of r and the second surface has a radius of
curvature of -r. The refracting power measured in
diopters is the reciprocal of the focal length of the
lens, expressed in meters. Hence, the focal length

f = —1 = .1 m-= 10 cm.

10 m?
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The problem of finding the focal length in terms of
the thickness and the radius of curvature can be solved by
considering the refraction of light at the two surfaces of
the lens consecutively. Consider an object at a distance
of -s from the first surface as shown in fig. 1.

The refraction equation applied to the first face is

n-1
= Tl (1)
where s' is the image distance from the first surface of

the lens. The image s' acts as the object for the second
surface and hence,

[

n
57T

n - (n - 1) (2)

1 _
s" s' -t [e]

where s" denotes the image distance from the second
surface of the lens and t is the thickness of the lens.

-1

n-1_-1
Let—'?'—— F -

Now it is desired to eliminate s' from equations (1) and
(2). From equation (1),

. n
S TTI_1
S £
Substituting
n
| -
=TT
S f
and
(m-1) _-1
r £

into equation (2) gives

This is equivalent to the following:

In—'

1 1
- - -z (3)

s"
1 1 - t/n
T f

(] Ll
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Hence,

1 1 1
=—"+—
1 _t s f
.11 n
] f
and so
1 _t 1
1 1 n 1 1
-9 Gw*+ ¥
Thus,
_ n _ n
t=TIT_I "I .,I )
s f s" £
Equation (3) can be rewritten as follows:
1 __1
s" sf _ t f
f - s n
or
1 _ 1 21
s" nsf - t(f - s) f
n(f - s)
Hence,
1, n(s - f) - _ 1
s" nsf - t(f - s) f
and so,
nsf - t(f - s) + ns"(s - f) _ -1
s"nsf - s"t(f - s) £ -
Cross-multiplying gives the result
s"nsf - s"t(f - s) = - nsf? + tf(f - s) - ns"f(s - £

Expanding this equation gives
s"nsf - s"tf + s"ts = - nsf? + tf? - tfs
- ns"fs + ns"f? .
This is equivalent to the following:
ss"(nf + t + nf) = s"(tf + nf?) - s(nf? + tf) + tf?

or

_ f£(nf + £)s" _ f(nf + t)s , _ tf?

ss 2nf ¥+ t 2nf+ t 2nf + t

This can be rearranged to yield the following
equation:
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" 2
+ f(nf + t)s _ f£(nf + t)s" _ 2n§f+ - = 0 (5)
2nf + t 2nf + t

ss"

Here s is measured with respect to V; and s" is measured
with respect to V,. The second principal focal length f'
is defined in terms of object and image distances measured
from principal points such that

1 _1__ 1
s" - h' s - h™ f°
where h and h' are the distances of the first and second
surfaces of the lens from the principal planes, respectively
or

s - h-s"+nh'
(s" -h") (s - h)

=L
£

Cross-multiplying gives the result
sf' - hf' - s"f' + h'f' = s"s - h's - hs" + hh'
and so,

ss" - (£f' + h')s + (£' - h)s" + £'(h - h') + hh'

(6)
=0 .

Solving equations (5) and (6) for ss" and equating the
expressions obtained gives the result

-f(nf + t)s + E(nf + t) s" tf?
2nf + t 2nf + t 2nf + t

= (f' + h')s - (f' - h)s" - £'(h - h') - hh'

Equating the terms with like coefficients (s, s", and 1,
respectively) gives

' ' _ f(nf + t)

£ +h 2nf + t (7)
' o _ _ f(nf + t)

£ h = 2nf + t (8)
] - [ [ _tfz

f'(h h') + hh' = F 5t (9)

However, from equations (7) and (8),

f(nf + t)

- L]
h=¢f"+ R TY (10)
and
v = g1 - E(nf + t)
h? = -ff 2nf + t (11)
Thus,

144



Cht = ggr s 2£(E+8)
h = h' =2f' + 5 ¥ 1T% '

And in addition, from equations (10) and (11),

nh = _(f. +Lnf;t_))2 ,

2nf + t

Substituting these expressions for h - h' and hh' into
equation (9) gives

2 , 2f(nf + t) _( f(nf + t))?
'+ SF e L T
- tf?
(2nf + t)

Expanding this equation gives

et 2P - g 2
_f2(nf + £)2 _ _ _ tf?
(2nf + t)?2 2nf + t
or
grz _ £2(nf + £)% _ _ _ tf?
(2nf + t)?2 2nf + t

Now, placing each term of this equation over a common
denominator

( (2nf + £)2%2 ),
the above equation becomes
£'2 (2nf + t)? - £2(nf + t)? = -tf2(2nf + t)
or
£'? (2nf + t)2 - £2(n%f? + 2nft + t?)

= - 2nfit - t%f2 .
Hence,
£'2(2nf + t)% - n2f* - 2nfit - f£2¢?
= -2nft - £2¢2 ,
The -2nf®t and -f2t? terms cancel and so,
le - n2f|0
(2nf + t)?

Taking the square root of both sides of this equation
gives
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£ =t mF vt
_ n
T,
f £2
when t = 0 f' = - % ; hence,
_ n
£! = 2n t
—+—
f £2
or
_%__t;=fl_, (12)
nf

Using the relation

(n - 1) _ 1

r £’

where r represents the radius of curvature of the first
surface of the lens, equation (12) becomes

2(n - 1) _ t(n - 1)?
[e] n|ri?2

D §
T

Placing both terms of the left hand side of this equation
over the denominator |r|? gives the result

2
2(n - 1)!r|._§lﬂ_:_ll_

[x]®

_ 1
= v
Cross-multiplying and neglecting the absolute value signs,

_t(n - 1)2

£' = r?
n

2(n - 1)xr £'

or

r2 - 2f'(n - 1) r + § (n - 1)%2f' =0 (13)

The refracting power D, the thickness t, and the index of
refraction n are given to be +10 diopters, 0.5 cm, and
1.5, respectively. The focal length

£''=2=0.1m=10 cm.
Now, substituting for f', n, and t in equation (13) gives

(0.5 cm)

2 _ - .
r 2(10 cm) (1.5 r + 15
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or
r2 - 10r + 0.8333 =0

Using the quadratic formula,

r = L0 * V100 - 3.3332 = (5 4+ 4.916) cm

2

9.916 cm.

IMAGE POSITION
® PROBLEM 7-13

The cornea of the eye is a convex mirror, and the high-
light usually seen in it is a reflected image. Suppose
that a circular object 20 cm in diameter is located 40 cm

from the eye. 1If the radius of the cornea is 0.8 cm, how
far is the virtual image from the cornea and what is its
size?

Solution: The thin lens/mirror equation is as follows:

s+1=%2, (1)

where R is the radius of curvature of the surface, and 0
and i are the object and image distances, respectively.
Substituting the given values 0 = 40 cm and R = -0.8 cm
(the minus sign is due to the fact that the mirror is con-
vex) into equation (1) gives the result

40 cm

hence i = -0.396 cm. The magnification, m, of the image
is given by the expression

m=- L -0:3% cm _ 4 4499,

Thus, the image is virtual, located about 4 mm inside the
cornea, and it is magnified by a factor of 0.0099, which

makes it seem to be erect and (20 cm) (.0099) = 2 mm in
diameter.
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CHAPTER 8

OPHTHALMIC OPTICS

EFFECTIVE, VERTEX,

AND TRUE POWERS
e PROBLEM 8-1

Anophthalmic prescription calls for corrective glasses of =4,50 mn1

refractive power to be worn l4mm in front of the cornea, the customary

position of spectacle lenses. If the patient chooses to wear contact
lenses instead, what prescription would be needed for them?

Solution: In this case, the power of the new lens would be the same
as the effective power of the prescription lens at the cornea.

P

1

P .= ——— ,
eff 1 dP1

where d represents the distance from the cornea to the glasses and
P1 represents the refractive power of the glasses. Then, substituting

the given values for d and P1 into the above equation gives the

result
P _ _=4.50
eff 1 - .014(-4.50)

=4.50
1+ .063

= -4.23m ),

Therefore, if the patient chooses to wear contact lenses instead of
glasses, the lenses should both have a refractive power of -4.23 m-l,

e PROBLEM 8-2

A corrective lens of refractive power -10.00 diopters corrects

a myopic eye. What would be the effective power of this lens if it
were 12mm. from the eye?

Solution: The effective power of a lens placed at a distance d from
another lens is given by
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1

eff T 1 - @,

For a positive lens, Peff increases as d decreases, but for a nega-

P

tive lens, Peff decreases as d decreases.

P
1

eff 1 - dP
- -0
1 - .012(-10)
__-10
1+ .12

P

-8.93 diopters.

e PROBLEM 8-3

A trial-case sphere has a front surface power of 6.50 diopters, a
thickness of 4mm, and a back surface power of -12,00 diopters

(n = 1.,50)., Calculate the vertex power. What is the true power of
the lens?

Solution: For a thick lens, the true power P 1is given by

P=P +P - g PP, , (1)

where P is the power of the front surface, P is the power of the

1 2
back surface, d 1s the thickness of the lens and n 1is the refractive
index of the lens.

Substituting the given values for P d and n 1into equa-

1’ Pz’
tion (1) gives the result

.004
6.50 - 12,00 - 1.50 (6.50) (-12.00)

6.50 - 12.00 + 0.21
-5.29 diopters .

P

The vertex power, Pv, is given by

P
Ty @

5.29

1 - =004(6.50)
1.50

_ _ _5.29
1 - .017

-5.38 diopters.

i
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FAR POINT OF EYE
e PROBLEM 8-4

The far point of a certain eye is 1 meter in front of the eye. What

lens should be used to see clearly an object at infinity?

S’=-100cm
-
rd p——
____J._g:_:.:;-__
-~ Tmm—— i)
7
- S=c0

Solution: Assume that the image is to be formed at the far point.
Then, using the lens equation

1_1.1
e-o0oti
substituting in the given values, 0 = » and 1i = -100cm, we have
i_1,_1
f o -100cm ?
or
f = -100 cm.

Therefore, a diverging lens which has a focal length of 100 cm is
needed.

e PROBLEM 8-5

Determine the positions of the far point for eyes corrected by lenses

at a distance of 15 mm and having refractive powers of +5, =8, +10,
and -15 diopters. The focal length of the cornea = 1 meter.

Solution: We know that for a system of two lenses, the first lens
of power P1 has an effective power Peff at the second lens given by

where d 1is the distance in meters between the two lenses.
(a) For the lens P1 = +5 diopters:

P = —2
eff 1 - .015%x 5
—3
1 - .075

5

.925

5.41 diopters.

The far point is the position of the object with respect to the lens
with effective power Peff when the lens is placed at the cornea and

the image is formed at infinity. Using the lens equation
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Thus, 100 _ 100

Peff 5.41
= 18.5 cm.
(b) For the lens with P1 =, -8 diopters:
. T
eff 1 - dP1
. -8
1 - .015(- 8)
=8
1+ .12

-7.14 diopters.

_ . loo
eff ~ T 7.14

-14.0 cm.

Thus,

Using the lens equation

1.1 1
S 2= = ,
S0 51 fess

-
14.0 °

=-14.0 cm .

e
©

v mlw
o O

Hence,

(¢) For the lens with P1 +10 diopters:
P
= L1
Peff 1 - dP1
10
1 - .015x 10
10

1 - .15
11.76 diopters.

_ _100
eff - 11.76

8.5 cm.

Thus,

From the lens equation,
1

eff

f

mlH
o

+
Hp'w

L
= 8.5

<+

mIH

8 I+

0
Hence, S, = 8.5 cm.
(d) P1 = =15 diopters:
Pl
Peff = 1 - dP1
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? _ _-15
eff © 1 - ,015(- 15)
-15
1.225

-12.24 diopters.

Thus,
_ 100

eff Peff

100
-12.24

-8.17 cm.
1_ 1
0 = fogf
f = =8.17 cm.

Hence

mIH

w0
o
L}
o
Hh
Hh

NEAR POINT OF EYE
e PROBLEM 8-6

The near point of a certain eye is 100 cm in front of the eye, What

lens should be used to see clearly an object 25 cm in front of the
eye?

'==100cm |

AN

S NN\ NN\

e -
e o

%
7
—-——0*_:-_———'—-— '/‘ " -
-------- A
7.
%
s=+25cm
: . 1 1 1 .
Solution: Using the lens equation iy + 10 where f is the focal

length of the lens, 0 is the object distance, and i the image distance
substituting the given values 0 = 25 cm and i = =100 cm (the negative

sign is due to the fact that the image is on the same side of the lens
as the object), we have,

I S S

25cm  -100cm ’

o Hh |

= 33 cm,

Hence, a converging lens with a focal length of 33 cm is required.

® PROBLEM 8-T7

(1) Wwhere is the near point of an eye for which a spectacle lens of
power +2 diopters is prescribed?

(2) Where is the far point of an eye for which a spectacle lens of
power -=0,5 diopter is prescribed for distant vision?

Solution: (1) A spectacle lens of positive power is used for those
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eyes which focus rays from infinity behind the retina. This reduces
the focal length of the combination of the two lenses. In order to
see the nearest object placed at a distance S., the object distance
from the lens, its image must be formed at infinity. If the image
distance is denoted by Si, then S1 = o, This is a virtual image

and is seen clearly by the eye.
Using the lens formula, we have

1 1 1
5 '8, "%
0 i
Hence, 1 1 1
5.7%° T
o o
or S = f= 100 cm
0 ~ T 2 diopters
= 50 cm,

(2) For an eye for which a spectacle of Power = -0.,5 diopters is pre-

scribed for distant vision, the image of an object placed at infinity

must be formed at its nearest point. Hence, when S0 =, S must be
i

negative and is obtained from the lens equation,

1,1 _1_p
S0 S1 £ 100
Hence, 1 1 5
=t 5 %7100
i
and so, S =f = -200 cnm,

RESOLVING POWER OF EYE
® PROBLEM 8-8

The resolving power of the eye is 1 minute of arc. What is the cor-

responding dimension on the retina?

Solution: Angular resolving power of a circular aperture of diameter
d 1s given by the following formula:

Ang. R.P. =g = 1.22 2,

where A\ is the wavelength of light. For the eye, the nodal points
for the eye lens lie 17.lmm in front of the retina since the direction
of any ray remains unchanged when passing through the nodal points.

Hence the dimension on the retina will be the angular resolving
power multiplied by this distance, or

R = g(rad) (17.1)

_lxmx 17.1
60 180

~ -2
= .5x 10 " mm. = 5, (microns).
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LEAST DISTANCE

FOR DISTINCT VISION
e PROBLEM 8-9

(1) A man decides to test his eyesight with the aid of a small mirror.
When he stands in front of the mirror he finds that he can see himself
clearly, with his eyes relaxed, at a maximum distance of 1lm from the
mirror. He then reduces his distance from the mirror and finds that
with an effort of accomodation he can continue to see himself clearly
down to a distance of 15cm from the mirror. What spectacle lenses
should he wear in order to be able to see very distant objects clearly?
What is his least distance for distinct vision when wearing these?

(2) An object is placed 60cm. in front of a concave mirror of radius
of curvature lm. When not wearing spectacles what is the maximum dis-
tance the man may stand away from the mirror while still seeing clearly
the image of the object formed by the mirror?

IMAGE 0BJECT

Solution: (1) In order to see distant objects with the help of spectacles,
the image distance must be the maximum distance of distinct vision for
objects at infinity. The maximum distance of distinct vision for the

eye, as shown in the figure , is 2m.
The lens equation states

|‘ Im ? Im $|

1.1 _1

-4 ===

p q f£°

where p and q denote the object and image distances, respectively,
from the lens, and f represents the focal length of the lens.

p=o
q = =-2m
(Image is on the same side as the object). Therefore,
1,1 1
m+-2m f
so,
f=-2m .

The lens is a diverging lens. With the glasses, his nearest distance
of distinct vision is obtained by taking q = =-30cm , f = -2m = -200cm

% + % = % gives

1.1 1

p T T30 T 200
or

1.1 .1

> " 200 " 30



Then,
1 _ -3+ 20

P 600
217
~ 600
Therefore, _ 600
P17
= 35.3cm.
(2) Using the mirror formula
1 1 1 2
—_— —~— === %
p q9 f R’

and substituting the given values p = 60cm. and f = R/2 = 50cm. ,
we have

1 1 _1

60 T g~ 50
therefore,

1.1 1

q 50 60
or

1__1

q 300
Therefore,

q = 300cm.

Hence the image is formed 300cm from the mirror. In order to see it
clearly, the man must be 200cm. from the image or 500cm. from the

mirror.

IMAGE SEPARATION
e PROBLEM 8-10

The separation of the headlights on a car is about 150cm. When the car

is 30 meters away, what is the separation of the images of the lights
on the retina?

Solution: While each person's eye is different, we can use a "standard"
eye which approximates the average of all human eyes. The '"standard"
eye has a strength of +60 diopters when viewing objects a large dis-
stance from the eye. Using the thin lens equation we find that 30 meters
is equivalent to a large distance from the eye for a +60 diopter lens.
Diopters are the units which the inverse of the focal length is expres-
sed in terms of when the focal length is measured in meters.

The magnification is given by

W I
M= u O M

where u' 1is the image distance, u 1is the object distance, I 1is the
image size and 0 1is the object size. Since we have determined that
30 meters is equivalent to a large distance from the eye, u' will be
the focal length of the eye lens, determined from the lens equation
1/u + 1/u' = 1/£, or

1 .1 -1
Som * = 00m T
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where f 1is the focal length of the eye. u' = 1/60m = .0167m.
Substituting into equation (1),

0167 _ _I
30 1.5

Solving for 1I,

I=8.33%10%m=.833 m.

e PROBLEM 8-11

The angular width of the blind spot is 6 .
a) What is the width of the blind spot on the retina?

b) What is the width of area on a tangent screen at a distance of 2
meters from the eye?

| 0.0166m |

FIG. |

Solution: a) As stated in the previous problem, the '"standard' eye
has a strength of +60 diopter when viewing objects a large distance
from the eye. Using the thin lens equation

LI S |

- u' f

where u 1is the object distance, u' 1is the image distance (eye lens

to retina in this problem) and f is the focal length. We then find
1

[-<]

1 _1_
+ o - f 60

u' = 0.0166m.

From figure 1, we have the geometry of the blind spot, so d, the
diameter of the blind spot, is

d

0.0166 ~ tan ©

Solving for d, -3
d=1.8% 10 "'m = 1,8mm

Therefore, the width of the blind spot on the retina = 1.8mm.

b) We can express the magnification of a lens by
w1
u 0

where u' 1is the image distance, u 1is the object distance, I 1is the
image size, and 0 1s the object size. Solving for O,

Iu

0= o

Substituting the given value u = 2 meters and the computed values
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I=1.8x 10-3m, and u' = 0.0166m into the above equation,

1.8 x 1073 X 2

=2 .
.0166 m =21 cn

0=

THE OPHTHALMOMETER
® PROBLEM 8-12

What principles of optics does an ophthalmometer use to measure the

radius of the cornea of the eye?

B
CORNEA
R
0BJECT b
B - T~ IMaGE
— u y
A

Solution: An ophthalmometer is an instrument an ophthalmologist uses
to measure the radius of curvature of the cornea of the eye. The
cornea is the first refracting surface of the eye. Rays of light that
enter the eye are first refracted by the cornea.

An ophthalmometer utilizes the two following equations to calculate
the radius of curvature of the cornea,

% + % = % (the lens equation) (1)

and —_—
ab I \' )

In the latter equation, I is the size of the image and 0 1s the size
of the object, V and u represent the image and object distances from
the lens (as shown in the figure). We can eliminate V by solving for
1/V in equation (2) and substituting this value into equation (1).
Hence, we have

0 1 _2
Tou u R’
from which the radius, R = Zéiil . Usually, however, the size of the

object 0 1is so much larger than that of the image I that I can be
neglected in comparison to 0. Therefore,

~ 2eu-l
R = 0

In the ophthalmometer, the size of the image is measured by an
optical doubling device and the object size O and the object distance
u are directly measured by the instrument. Thus, R can be determined
by the previous equation.
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CHAPTERY9

INTERFERENCE

PHASE DIFFERENCES
e PROBLEM 9-1

?ind the phase difference between light reflected from the
inner and outer surfaces of a deposit of magnesium fluoride

(n = 1.38) 1000 i thick on a lens surface (a) for violet

light of wavelength 4000 i (b) for red light of wavelength
o
7000 A. (Neglect variations of n with A.)

Solution: We want to investigate the phase difference of
400 nm and 700 nm light in air as it reflects from the front
and back surfaces of a thin coating (index of refraction,

n = 1.38) on a lens surface (typically n = 1.5). The total
phase difference will be composed of differences in phase
shifts on reflection plus the difference in path lengths.
Since at the front surface the ray goes from n = 1.00 to

n = 1.38 and at the rear surface the ray goes from n = 1.38
to n = 1.5 whatever phase shift occurs at the front surface
will also occur at the back surface, so the phase shift
difference will be zero. The ray reflected from the back
surface will travel twice the thickness of the coating. So
we want to find how many wavelengths of 400 nm and 700 nm
are equal to 2 x 100 nm.

However the light is travelling in MgF, , so we need to
find the equivalent wavelenth of 400 nm and 700 nm in Mng.
Now,

fA =c (1)

where f, the frequency of vibration is constant in all
materials, A is the wavelength in the medium and c is the
velocity of light in the medium. Also

c
vacuum
c_ .. _n. (2)
medium
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The ratio of vacuum velocity of light to velocity of light
in the medium is just the index of refraction. Combining
equations (1) and (2) yields,

Aair
)\ . = —— (3)
medium Dhedium
AM F. 400 mm = ﬂgg_i_lg:z = 2.89 x 10'7 m
92 1.38 .
A 700 x 107° -7
MgF2 700 nm = ———138— = 5.07 x 10 m

or, the fractional wavelength path difference is

_ 2x10”]

F¥P400 nm = g9 x 10°7 0-689

2 x 1077
7

5.07 x 10~

£WP200 nm = 0.394,

If we denote the phase difference by ¢,

then ¢ = fwp x 360° (or fwp x 27, with the result expressed

in radians).

0.689 x 360° 248°

So, ¢400 nm -~
= 0.394 x 360°

o
and ¢700 m 142
are the phase differences for parts (a) and (b), respec-
tively, of this problem.

PATH DIFFERENCES
® PROBLEM 9-2

Two rectangular pieces of plane glass are placed one
upon the other with a thin strip of paper between them
at one edge. When illuminated by sodium light at normal
incidence bright and dark interference bands are formed,

ten of each per centimeter in length. Find the angle
which the wedge makes with the horizontal.

FIG. |

Solution: 1In this problem we wish to investigate the path
difference between a ray which is reflected from the bot-
tom surface of the top piece of glass,and a ray which is re-
flected from the top surface of the bottom piece of glass
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(see Figure 1). We shall consider that both rays A and B
are incident normal to the surfaces (only a small approxi-
mation). We can see that ray B travels an extra distance

2t in the gap between the plates. Therefore we would say
that 2t must be equal to some integer, m, times the wave-
length of light to have a maximum,and 2t = (2m + 1) (A/2) to
have a minimum. However, if we recall the Fresnel equations
for refraction,

N ng cos ei - nt cos et L
L n, cos ei + nt cos et
and
N _ n, cos ei - ny cos et 2)
|| n; cos 6_ + n_ cos 6,

%._.
-

|
FIG. 2 <41""

fe—tie—tle—|
x X X

where the r's are the amplitude reflection coefficients, the
i's refer to the incident material medium and the t's to the
transmitted material medium; the n's are the indices of re-
fraction in the appropriate medium, and the thetas are the
angles of the rays with respect to the normal to the surface.
As suggested above, we are going to look at normally incident
rays; so

i t
Then ,
n, - n,
= - _L—i ’
r, = r|| n_ + n; (3)

so we can see that ray A is then phase shifted half a wave-
length from the incident ray and ray B has zero phase shift
from its incident ray, conditions which hold for either
parallel or perpendicular components of the E vector. So
our condition for phase difference between ray A and B after
reflection is

2t + A/2 = m\A + A/2 minimum (4)
2t = m\ (5)
and
2t + A/2 = m)\ maximum (6)
2t = (2m - 1)A/2 (7)
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Y
FIG. 3 a +
f—— x ———

Looking at Figure 2 we see our problem says for a dis-
tance in the x direction of 1 cm we can have ten interfer-
ence bands or, for every x = 1/10 cm we have the m in equa-
tion 7 increasing by 1, or from Figure 3; 2y must be one
wavelength of light in length for a shift of 0.1 cm change
in x.

Then,

A/2
X

tan a = y/x =
since sodium light has wavelength
= 589 nm, tan a =

589 x 10 ’m

2 x (.1 x 10 %)m

= 2.95 x 107 %

and o = 2.95 x 10-4 radians.

in radians

YOUNG'S EXPERIMENT
e PROBLEM 9-3

In a Young's experiment the distance d between the slits
is 0.1 mm and the perpendicular distance to the screen is

50 cm. Compute the distance on the screen between maxima
for violet light (A = 400 mu) and red light (X = 700 mp).

FIG. |

Solution: Figure 1 illustrates Young's experiment.
Consider the point P on the screen in a direction making

an angle 6 with the axis of the system. With P as a center
and PS2 as a radius, strike an arc intersecting PS1 at B.

If the distance R from slits to screen is large in compar-

161



ison with the distance 4 between the slits, the arc SZB
can be considered a straight line at right angles to PSZ’
PA, and Psl. Then the triangle les2 is a right triangle,
similar to POA, and the distance SlB equals dsin6. This
latter distance is the difference in path length r, -r,

between the waves reaching P from the two slits. The
waves spreading out from S1 and 82 necessarily start out

in phase but they may not be in phase at P because of this
difference in length of path. Complete reinforcement will
take place at the point P only when the path difference is
some integral number of wavelengths. Thus,

dsin6 = mA (m=1,2,3...) (1)

for complete reinforcement. Now, if point P is at the
center of the m-th fringe, the distance Y from the
zeroth to the m-th fringe is (from Figure 1)

Yo = Rtanem . (2)

Since the angle Gm for all values of m is extremely

[

small, we can use the approximation tanem sinem so,

Y, = Rsiné_ . (3)

Therefore, from egs. (1) and (3),

A
Yo = Rq - (4)

In the given problem,

d=.1mm=10°%° mu
R=50cm =25 x 10°% mu
1= 400 myu

= 700 mu .,

Then from eq. (4)

(5 x 10%)m(400)/10° mu

y =
my
= 2m millimeters (ym =0,2,4,6,8...)
1
Y, = (5 x 10%)m(700)/10° myu
2
= 3.5m millimeters. (ym =0,3.5,7,10.5...)
2

So the distance on the screen between maxima for
violet light is 2 mm and the distance between maxima
for red light is 3.5 mm.
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o PROBLEM 9-4

In an interference experiment of the Young type, the
distance between the slits is 1/2 mm. The wavelength

of the light is 6000&. If it is desired to have a fringe
spacing of 1 mm at the screen, what is the corresponding
screen distance?

Solution: Figure 1 illustrates Young's interference
experiment. Light of a single wavelength is incident on
two slits, a distance d apart. This produces a relative
maximum at point P when,

d+sin 6 = m-2A (1)

SCREEN

where d is the slit distance, 6 is the angle shown in
Figure 1, m is the order number, and X is the wavelength
of the incident light.

Ilmm

!‘ X >

If the fringe spacing on the screen is 1 mm, then
according to Figure 2 we have,

tand = (2)

X |

and

tand' = l_mﬁ3ri_§ . (3)

If we assume that 6 is small we can make the approximation
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tanf = sinf ;

thus, from equations (2) and (3) we have:
i = 8a
sin6 = (4)

and
lmm +a (5)

sing' =
6 X

Applying equation (1) to equations (4) and (5), we have

¥=% (6)
and

m'*A_ 1l mm + a

S B a— . (7)

Combining these two equations by solving for a and sub-
stituting, we get,

m'A _lmm , mi
d X a '
-4
= Xm-m) ™ (8)
where (m'-m) = 1 because the maximas are next to each

other. Letting d = 0.5 mm. and A = 60008 = 6 x 10”* mm,
.hen the screen distance, x, is 833 mm or about 83 cm.

e PROBLEM 9-5

A Young's experiment is set up with the following charac-
teristics: Monochromatic source (A = 0.55u), slit
separation d = 3.3 mm, distance from slits to screen
D = 3m (see figure).

1) Calculate the fringe spacing.

2) Place a sheet of glass with plane parallel faces and
thickness e = 0.01 mm in front of slit Fi.

a) Determine the direction of the displacement of
the fringes and the formula giving the relationship for
their displacement.

b) Knowing that the fringes are displaced by
4.73 * .01 mm find the index of refraction of the glass
and its error.

AX
M)

g

S d

= =P

d N

Solution: Here we need to concentrate on the interference
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between two slits. From a standard optics text we find
that the intensity of the interference pattern on N slits
is,

I .2
“0 sin"N¢ (1)

2

I =
N sinzd

where Io is the initial intensity; I is the intensity at
the screen; N is the number of slits;and § is given by,

§ = %g sin 6 (2)

where A is the wavelength of coherent monochromatic
light from the source; d is the slit separation, and 6
is the angle between the normal to the slit system and
the point on the screen. For small angles, sin6 = x/D
where x is the distance from the center of the screen tc
a point at which we wish to measure the intensity and D
is the distance from slits to screen.

Substituting into equation (2) gives the result

(3)

_ nd
§ =5

oI

For two slits N = 2. Substituting this into equation (1)
we realize we can expand the sin2 246 term because,

sin 28§ = 2 siné cos§ . (4)

Squaring both sides results in,

sin 25 = 4 sin®s cos?s . (5)
Substituting this into equation (1) and cancelling terms,
I =1, cos?s . (6)

The fringe spacing i is the distance between two maxima

or two minima. We therefore let i = x, - x, and 6 = ™.
: . 2 1

Applying equation (3),

Solving for i,
i= T (8)

Substituting the given values for A, D, and 4 into
equation (8),

4

-6
;= (55x107%) ) _ ., 107% . (9)

3.3 . 1073
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Now we insert a sheet of glass of thickness 0.01 mm
and index of refraction n in front of one of the slits.
The light of this slit will now travel a different optical
distance to a position x on the screen. Initially before
the glass plate was inserted in front of the slit, the
path difference was,

_ =5 A
61 =FM-FM=x71 . (10)

.

The glass plate will add an additional path difference
(n-1)e 30 the new path difference is,

§=xf+ (n-l)e (11)

so, the new § for a maximum will be pX (p being an integer)
or,

pA = x 2+ (n-lle . (12)

Solving for x,
=1 - (n-
x = 3(pr - (a-Dye] (13)
so the shift in fringes will be the change in x:
_ i
bx = - 3 (n-l)e . (14)
To measure the index of refraction we solve for n:
-1 - Abx
n=1 I . (15)
So we do the measurement as follows. Observe the
fringe system with no glass plate, record the positions x
of the maxima, then insert the glass plate, record the new
positions of the maxima and determine the shift Ax of the

maxima. In our problem Ax = -4.73 mm,substituting values
into equation (15),

_0.55 x 1073

0.5

(-4.73)

L = 1.5203 . (16)
10

To determine the error in n we want to look at the
relationship d(Ax)/Ax. Differentiating equation (15) we
have

= - A
dn = - F£ d(sx) . (17)

Solving equation (14) for - f% p

A _n-=-1

ie Ax (18)
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Substituting for - f% in equation (17),

- (mo d(Ax)
dn (n-1) X
Substituting values 2
2x10" -3
dn = 0.5 -T-7'3—=2X10,

son=1.520 *+ 0.002.
® PROBLEM 9-6

Calculate the interference pattern that would be obtained
if three slits (equally spaced) instead of two were used
in Young's experiment.

Solution: Let the spacing between the slits be h, as shown
in the figure. Let the amplitude at P due to the wave
coming from 82 be given by,

. el(wt—kx)' (1)

Since the distance between Sl and P is greater than that
between 82 and P, we calculate the difference between the
two distances by dropping a perpendicular from 82 on SlP.

If SZP makes an angle ¢ with the normal to the slit line,

S,P - S.P = h sin ¢ ,

1 2

Hence, the amplitude at P due to the wave coming from S1
can be written as,
Ez = Eo el(wt—kx—kh sin ¢) . (2)

Similarly, we can write the amplitude of the wave at P ar-
riving from S3, keeping in mind that this path length is

less than x by h sin ¢. Thus,

_ i(wt-k[x-h sin¢ ])
E3 = Eo e
- Eo ei(wt—kx+kh sin ¢) . (3)
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Hence, the total amplitude at P is,
E=E, +E, +E

1 2 3
_ Eo ei(wt-kx) [} + e-ikh sin ¢ + eikh sin %]

. . ix . s
After making use of Euler's equations, e = cos X + i sin x

-ix ..
and e = cos X - 1 sin x,

E = Eo ei(wt-kx) [} + 2 cos (kh sin ¢ﬂ (4)

where k is the propagation vector (%F)

Hence, the intensity at P is given by the square of E.
Therefore,

1= |E|2 = EE*,

where E* denotes the complex conjugate of E,

E_ e-i(wt-kX){} + 2 cos (kh sin ¢ﬂ :

Then,

I

{%o e-i(wt-kx)(} + 2 cos (kh sin #B}
% {E ellwt=kx) 7 5 cos (kh sin @}
“

o
= E 2{1 + 2 cos (kh sin ¢)\2
° J

= Io{} + 4 cos2 (kh sin ¢) + 4 cos (kh sin ¢9
= 10{1 + 4 cos® 6 + 4 cos e} (5)
where 6 =(kh sin ¢ = %1 . (6)

cos 2060 + 1

> (Trig. identity.)

Now 00526 =

After substituting for cosze, equation (5) becomes,

cos 26 + 1
Io£1 + 4(——2——-) + 4 cos ﬂ
Io[} + 2 + 2 cos 206 + 4 cos {J

Io[} + 4 cos 6 + 2 cos 2%}.
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DOUBLE-SLIT EXPERIMENTS

e PROBLEM 9-7

A double slit experiment is performed, with the modifi-
cation that following slit A is a half wave plate with
fast axis along the slit, and following slit B is a
half wave plate with fast axis perpendicular to the slit.
The light is unpolarized. What is the position of the
dark fringes?

——— e f—

f S A/2 PLATES

Solution: 1In this case, although the light is never
polarized, the birefringent material will make a
difference. Consider first that component of the light
which is polarized along the slit (say, vertically); the
path through the half wave plate over slit B contains,
say, N wavelengths. That through slit A then contains

N + 1/2 wavelengths, with the result that the symmetric
center point (LA = LB),(where LA and LB represent the

distances from plates A and B, respectively, to the point
of observation) is now a dark fringe and the equal time
(or equal number of wavelengths, m=0) point has shifted
half a fringe toward A.

NO PLATES

H-COMPONENT,
WITH PLATES

, V-COMPONENT,
ALY N/ WITH PLATES

2+3 SUM, WITH PLATES

The horizontal polarization component (H) does not,
of course, interfere with the vertical one, since vectors
can cancel only if they are collinear. This fringe
pattern also shifts, this time half a fringe toward B.
The result is, as shown, a restored fringe pattern, with
a dark fringe at the center.
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® PROBLEM 9-8

In a double slit interference experiment the distance
between the slits is 0.05 cm and the screen is 2 meters
from the slits. The light is yellow light from a sodium

lamp and it has a wavelength of 5.89 x 10°° cm. What is

the distance between the fringes?

Solution: To find the distance between fringes in the
double slit experiment, we must first derive the formulas
for the location of the maxima and minima of the fringe
pattern. Let us examine this experiment in more detail.

Light is incident on the 2 slits from the left (see
figure). MP and AP represent 2 rays of light, one from
each slit, arriving at P. Typically, L >> d, we may
consider MP to be equal to BP. Assuming that the light
rays emerging from the slits are in phase, the two light
rays arriving at P will be out of phase because light from
A must travel the extra distance AB when compared with
light from M. 1If this path difference (AB = d sin¢) is
equal to an even number of half wavelengths, P will be a
maximum point. If AB equals an odd number of half wave-
lengths, P will be a minimum point. Hence,

For a maximum, sing¢ (2n)%% (n =0,1,2,...)

For a minimum, sin¢ (2n+l)% (n=0,1,2,...) .

Therefore, the angular location of adjacent maxima on the
screen (say the nth and (n+l)th maxima), is

. (2(n+1)) 2 _ (n+l)r
Sin(dp41) = 2d -~ ad (1)
. _ (2n))x _ n)x
51n(¢n) T 2da —d@

But, if ¢ is small,
sin(¢n+l) x tan(¢n+1)
sin(¢n) x tan(¢n) .
Hence, using equation (1) and the figure,
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Yn+1 _ (n+1) )

L d ’

where Y = the distance from the central maximum to the

n+l
n+l'st bright fringe.

Yn _nA |
L d '
hence,
(n+1) AL _ nAL
Ynel ~ ¥n = 7@ a
= AL
Y41 ~ ¥n = g3 -

This is the screen separation of 2 adjacent maxima. If

5

A = 5.89 x 10 > cm
L = 200 cm
d = 0.05 cm,

then the distance between fringes is given by,

(5.89 x 1072 x 200 )cm?
n+l n 0.05 cm

.233 cm.

WIENER'S EXPERIMENT
® PROBLEM 9-9

Standing waves of light are produced, as in Wiener's exper-
iment, by reflecting light normally from a plane mirror.

(-]
If the light has a wavelength of 5461 A, find the number of
dark bands per centimeter on the photographic plate when it
is inclined at a) 0.5° to the reflecting surface, b) 10°.

AN

MIRROR FIG. |

Solution: Consider Wiener's experiment shown in Figure 1.
The standing wave pattern is set up with light of wave-
length A by reflecting it normally from the plane mirror.
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The standing waves are obtained by the superposition of
two wave trains of equal amplitude but travelling in oppo-
site direction. These may be represented by,

- : t_x
y; = r sin 2m (T l) (1)
and
= r sin 27 t + 5\ (2)
Y3 T

where r is the amplitude of the wave trains and T is
the period of the waves.

Adding equations (1) and (2), we obtain the resultant

sin Zn f - T) 51n<?“ f) cos <2n A) - cos <2nt> (2;x)

\
and sin 21r(E + %/'= sin< 2t ) cos(ZﬂX\

T T

+ cos (ﬁn%} sin (2%5) R

results which follow from the double-angle formulas.

>‘|>C

Therefore,

. t X . t X
sin 2n<¥ - Xt\+ sin Zﬂ(f + X)

= 2 sin(3fE) cos(3X) -

Then, since cos (y) = cos (-y),

— _ 2mx . t
y = 2r cos ( ) ) 51n(2n T)

For any value of x, the amplitude is periodic and has max-
imum value (antinodes) for

; n=1,2, ... and minimum value (nodes) for

N>

X =n

x (2n+l)%; n=0,1, ...

The nodes and anti-nodes are spaced apart. (The anti-

N>

nodal planes are shown in Figure 1l.) Now when a photo-
graphic plate is placed at an angle 6 (to OM as shown in
Figure 1), it crosses the nodes and antinodes formed. The
light will affect the plate and darken it only when an
antinode falls on the plate. Where there is a node, the
plate is not affected and no blackening will be observed.
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If L is the length of the photographic plate, the antinodes
occur whenever

L sin 6 = n

N>

Hence,the number of antinodes/cm on the plate =

2 L sin 6 _ 2 sin ©
LA A

When 6 = 0.5°, the number of antinodes or dark spots =
319.6 per cm. When 6 = 10°, the number of antinodes is
6360 per cm.

THE FABRY-PEROT INTERFEROMETER
AND ETALON

® PROBLEM 9-10

The plates of a Fabry-Perot etalon are held strictly
parallel at a distance of 1 cm. This etalon is placed
between two identical converging lenses L1 and L, having

focal length 15 cm. A monochromatic source 1 cm in
diameter is placed at the principal focus of L1 (A=0.49y.).

Take the index of refraction of air equal to 1 . If an

opaque screen which covers half the surface of the plates
is placed between the plates, what change is observed in
the etalon fringes focused by L, at the plane F'?

L] Plate L L2

NN\
Fl 15”1 F

Solution: It is clear from the figure that circular
fringes will be observed on the screen at F'. These would
be complete circles. The lenses are used to collimate

the beam and make the beam as close to the normal to the
interferometer surfaces as possible.

4 PATE L

LN
»a\\
uq_\\
— NV
TN

v p ¢ Y

The effect of introduction of an opaque screen
covering one half of the surface of the interferometer
plates is to reduce the number of multiple internal
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reflections by 50 percent and hence reduce the intensity
of the fringes by an equal amount. No change in the
fringe pattern would be observed as no new path difference

is introduced by the opaque screen.
e PROBLEM 9-11

Calculate the ratio of full width at half-maximum
to the separation between maxima (as a function of the
phase difference) for a Fabry-Perot etalon with the re-

flectance R = 0.5, 0.8, 0.9, 0.98.

FIG. |

Solution: The Fabry-Perot etalon consists essentially of
two optically flat, partially reflecting plates of glass
or quartz. The plates are held fixed by spacers. The
beam incident on the first plate is partially reflected
and partially transmitted. The transmitted beam is sub-
sequently reflected back and forth between the two plates,
as shown in Figure 1, where r is the coefficient of reflec-
tion and t is the coefficient of transmission. The geo-
metric path difference between any two successive trans-
mitted rays is 2d cos 6, where d is the separation between
the plates and 6 is the angle either the transmitted or
reflected ray makes with the surface normal. The corres-
ponding phase difference between two successive rays is

_4m
§ = 3 d cos ¥

where A is the wavelength of the light. Then summing the
amplitudes of the transmitted rays

_ 2 2 ié 4 2i8
E = Eot (1<: r-e + r'e + ...)

T

2

. E t

= E t2 >r2Ke1K6 - o) i
o 1 - r2ei8
k=0
E.=E t% +E t2r2eld o | |, (1)

T o o
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The intensity is then given by,
gl

I, = |E

2 oIt
Tl 6'

L
|l -r2et

2 _
where ,EO' = IO

is the intensity of the incident beam. In general there
will be a phase change on reflection and hence we can write
|r|e15r/2

where 6 /2 is the phase change on a single reflection. If

R = |r|2 =rr* and T = |t|? = tt* (r* and t* denote the complex
conjugates of r and t, respectively), then

I, =1 T2

T ll _ RelA'Z ’

where A = § + Gr is the total phase change.

iagl2z _ @._ ReiA)(l _ Re-iA) -

1 - Re

1 - R(eiA + e'iA) + rR? .
iA

Euler's equations state that e = cos A + i sin A
and e_lA =cos A - i sin A .
Then, ll - RelA'2 =1- 2R cos A + R? .
Therefore,
I T2
I, = 2
T 1+ R2 - 2R cos A
= cos(® + 2 = cos? A - gip2 A
cos A = cos(2 + 2) = cos 3 sin” 3 .
2 A _ _ 32 A
cos 3 = 1 sin 5 ! so
cos A =1- 2 sinzA /2 .
2
_ T
IT—I A .

o(l - R)2 + 4R sin® 2

Factoring out (1 - R)2 from the denominator of this expres-
sion,

2

L= IO T 1

T a-m? 14+—F o sin®as
(1 - R)
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Thus,the intensity varies as

1
1 +PF sin2 A2

4R

where F =—‘_—_§ .
(1 - R)

F is referred to as the coefficient of finesse.
its maximum value for

sin2 % = 0, or for A = 2mm .

2
IT - Io T 1 -
ITmax (1 - R)2 1l + ___iB__E sin2 %

(1 - R)

Then,

IT2
o]

(1- R)?

1

1+ 4R 5 sin2 A/2

(1 - R)

as shown in Fig. 2.

.04

Iy
IT max 0.5-

4

I

T

attains

F1G.2

I./I

. 1
o/ Irmax will be 5 when

A=2Tm A=27(m+1)



So,

A
__ng__i sin2 (—%%3) =1, and
(1 - R)
A
.2 (P1/2 1 _1
sm(z)‘ iR =F
(1 - r)?

Taking the square root of both sides gives the result
A1 2 1
sin (—Tg—)= — .
- VF
Hence, 4, ,, = 2 sin~1 (l->
VF

. . . _ =1 1
Full width at half maximum is 2A1/2 = 4 sin </§>

The adjacent maxima are separated by 2m. Hence the ratio
of full width half maximum to the separation between

maxima is,

4 sin-1 (é )

£=—
f = % sin-1 (—l-) .
V/F

__JHL__7 is large we can say that
(1 - R)

Since F =

;ﬂw

sin-l (/%> is approximately equal to

Then,
£ = —2_
T/F

R F f
0.5 8 0.225
0.8 80 0.071
0.9 360 0.0335
0.98 9800 0.00643

177



® PROBLEM 9-12

The reflecting power of the silvered surfaces of a Fabry-

Perot etalon is 64%. Find the minimum intensity halfway
between the maxima for the transmitted fringes.

REFLECT
INCIDENT ED RAY AR
RAY
5 REFLECTING
SURFACE
d
4 REFLECTING
SURFACE
FIG. | TRANSMITTED
\RAYS AIR

Solution: Figure 1 shows a Fabry-Perot etalon. It is an
optical device that provides an interference pattern result-
ing from multiple transmission-reflection of an incident
beam of monochromatic light. The angle of incidence is
exaggerated so that the path of the rays are easily seen.
Normally it is used with the angle of incidence zero.

If we now look at zero incident angle, the incident
ray is reflected and transmitted at the first surface such
that the reflected ray can be represented by an electric

field Ei = r'elwt and the transmitted ray by an electric
field Ei = t'elwt, where Ei is incident electric field, r'

and t' are the reflection and transmission coefficients at
the first surface respectively, w is the angular frequency
of the monochromatic light and t is time. Using r" and t"
as reflection and transmission coefficients for the second
surface and 6§ as the phase shift caused by the path differ-
ence, and including any relative phase change at the two
surfaces in r", we can write for the set of reflections and

transmissions

E =E,r' eiwt
1r i
= e n i((.l)t-(S)
EZI‘ = Eit r"t"e
E3r = Eitlrnrur"tuel (wt-26)
= [ 1] (2N-3) " i (wt- (N-l) 6)
ENr Eit r t"e
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= ] " iwt
E ¢ = Ejt'te
E2t = Eitlrnrntnel (wt- 5)
E3t = Eit'r"rllrllr"tuel (wt-26)
ENt = Eitlturnz(N-l)el(wt-(N-l)6)

to find the amplitude of either the reflected or trans-
mitted pattern we have only then to add all the amplitudes.
For the reflected amplitude this is

Er = Eielwt{%' + r"t't"e—la[} +-<r"2e—15) + (r"ze—l(s)2 +

e (r"ze_la)N—%I}
now if r"2e™3% ¢ 1 and we let the number of reflections N
become infinite,

since

ad k 1 o 2 -id\k
z: = : w2 -1

a =3—-—3 - the series E (r e )
k=0 k=0

converges to
_ "2e-ié

so,

i (L ) -ié
E = E.elwt r' +4 _r_i_t.e—_. .
r i 1 w2 =18
-r' e

Doing the equivélent sum on the transmitted rays yields,

F..iel(“t t't"{% + r"2 e-la + r"ze-la)2 + r"ze-lé)4 +

oo (e )

int | » 1
=E.e t t" —_— ],
* [; - r"ze—l%J

Now from the Fresnel equation matching the boundary condi-

=
I

. 2 .
tions we have r' = -r" and t' t" =1 - r'" so we can write ,
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. J
1wt (1 - r' -1 >
E_=E.e r'<;
r i 1 - r'2e -is

—E r,eiwt[? - pr2emi0 716, r'ze-lG:J
i 1 - r,2e-16

—
- E eiwt r'(l - e_ls)
i 2 -if
k.- r'“e
(% %)
and r
. 2
iwt l -1r'
E =E,. -
t i€ 1 - r,2e-16
—

To find the intensity of the reflected and transmitted rays
we must form the product ErEr* and EtEt*, where Er* and E_¥*

t
denote the complex conjugates of Er and Et , respectively.
For the reflected rays, if we denote Ii =E.” ,

i

I = 1.p02| 1= e_lé‘ L - elé.

r i 1 - r,Ze-16 1 - r,2e16
L2 2 - (738 4 o18)

1+ r'4 - r'z(e-16 + elé)
ZIir'z(l- cos §)
4

1 +r'° - 2r'2 cos §

and for the transmitted intensity

I, =1 1- r,2 . 1- r,2
t 1] 2 pi2.718 1 - pr216
=1 (l - r'2)2
e r'4 - 2r'2 cos §

Dividing both numerator and denominator of both I
and I, by (1 - r' ) and using the identity

cos 6§ =1 -2 sin2 %
we have 2
]
I, 2r’ ) sinZg
i\, ' 2 2
I_ = -
r 1 ( 2r' )2 .. 28
S — sin 3
1 -1



_ 1
e =1 75" N2 . 26
1 + — 3 sin’ 3

1 -1r'

In this problem we have a reflecting power of 64%,

which says that r'2 = 0.64 and we want to find the trans-

mitted intensity halfway between the maxima for the trans-
mitted fringes. This means we want to find the minimum
transmitted intensity which occurs when the path difference,

related to § , yields sin26/2 = 1. Then since the reflec-

tance R = |r'|2 ,

Ie _ 1 ~ 1 _ 1

- : - -
i 14 (____2;: 2)2 L. 4r? 1+ —4R y?

- ] -
1-r (-2 (1 -r
e _ 1 _ 1 _ 1
I, "], D (.64)2 1. 2.562 T+ 19.75
(1 - .64) (.36)
= 0.0482

e PROBLEM 9-13

A "solid" Fabry-Perot interferometer consists merely of a

2 cm slab of high index material (n = 4.5). Calculate
a) the fringe contrast and b) the resolving power.

INCIDENT NORMAL TO SURFACE
REFLECTED RAY

M RecioN |

8, N, REGION 2

FIG. | REFLECTED RAY

Solution: The intensity of the transmitted beam in a
Fabry-Perot etalon is given as,

(1)

1

I, =1,

t i, ( 2r 2)2 sinz(%>
l1-r

In this problem we first want to determine the fringe
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contrast; namely the contrast between the intensity of the
fringe when at maximum intensity and the intensity of the

fringe when at minimum intensity. In equation (1) r repre-
sents the reflection coefficient, § the path difference of
the multiply reflected rays, and the I's represent the in-
cident and transmitted intensities. By considering equa-

tion (1) we can see that the maximum of the function occurs

when sin2 §/2 = 0 and the minimum when sin2 §/2 = 1 so the

maximum
(?t)max

I;

=1

and the minimum intensity is,

(It)min - 1 (2)
I ar?
(l - r2)2

i} (1 - rzyi 4r2 ()

- (1 - r2)2
1 - 2% + £% 4 4r?

_ (l - rz)z

- (l + r2)2

Now we need to determine the reflection coefficient.
For this we need to look at the boundary conditions on the
electric and magnetic field which lead to the Fresnel
equations,

(4)

. (5)

r = EE _ n, cos el - n2 cos 92 (5)
Ei L n, cos 61 + n, cos 62

. _ EE _ n2 cos el - nl cos 92 7

I E, I n) cos 6, + n, cos 8

tL = '::—t L~ coszr;l cisnelcos ] (8)
i 1 1 2 2

t = ; = n coszr;l cisnelcos 6 (9)
i i 1 2t My 1

\

where,with respect to Figure 1, subscripts 1 and 2 refer
to quantities in regions 1 and 2, n's are the indices of
refraction in the two regions, and 6 the angle with respect
to the normal of the rays at the surface. |l represents the
properties when the incident electric field is in the plane
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of incidence and . represents the properties when the inci-
dent electric field is perpendicular to the plane of inci-
dence.

In a Fabry-Perot etalon, 6 is normally zero so the
reflection coefficients reduce to

n, - n
1 2
r, = ——= (10)
L n; +n,
and
n, - n
2 1
r, = ———=-r (11)
I n, + n, 1

in this problem n; = 1.0; n, = 4.5 so r = 3.5/5.5 = 0.6363...

..... so the fringe contrast is,

1 2\?
t max _ 1 - 1+ (0.6363 ....)
It min (1 - r2>2 - (0.6363 ....)2

1+ r2

2
_ (14 .4049
= <1 - .4049) (12)
= 2.36

which says the intensity at a maximum is 2.36 times the
intensity at the minimum.

To find the resolving power, defined as A/A)X, we can
investigate equation (1) using the additional relation

§ = %F nd cos 6 (13)

where § refers to the path difference.

A A+AN

, —»  FIG.2
6 e

.

Consider two sources, one with wavelength A and a

second with wavelength A + A\, where from equations (1) and
(3) the intensity pattern appears as shown in Figure 2. So
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we can decide that two sources are just resolved when both
A and A + AX have an intensity equal to half the maximum
intensity at 8, in Figure 2. From equation (1) this says

that,

2r 2 2
(—-———2) sin“(8/2)= 1 (14)
l1-r¢r
or ,
1l - r2
sin 5/2 = T (15)

or,with our definition of AS§

2
. A _ 1 -r
sin = = === (16)
now a maximum will occur when § in equation (13) has a

value of 2mm and so we expect AS to be very close to a maxi-
mum; therefore, A§/4 will represent a small angle and we can
replace sin Aé/4 by Aé/4 or

A6~1-r2 . (17)

4 2r

We can also differentiate equation (13) to yield,

a8 = - 24104 oin 000 . (18)
The condition for a maximum, § = m2m causes equation (13)
to become

m\A = 2nd cos 6 (19)
and differentiating yields

mAA = - 2nd sin 646 . (20)

We can combine equations (17), (18), (19) and (20) as
follows: From equations (19) and (20),

A _ _ _cos 6
AX ~ ~ sin 046 °

From equation (18),

sin 0A8 = -:TAH‘SJ

and from equation (17),

- 4(1 - r2)= 2(1 - rz)
2r r
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Substituting for sin6A6 and AS, we have

A _ cos 6(4mnd) - 4mndr cos 6 .
AX AAS 2% (l- r2)

therefore ,

A _ 2nd Tr

AN > (1—_-]:—2)005 6 . (21)

Since a Fabry-Perot is used with 6 = 0 and we have calcu-
lated r in the first part of the problem then,

A _2x4.5%x2x107 %7 (.6363 ...)

A A1 - (L6363 ...)%)

0.604
A

where A is measured in meters and for a wavelength of say
500 nm,

A
AX

= 1.21 x 10° .

THE MICHELSON INTERFEROMETER
® PROBLEM 9-14

When the movable mirror of a Michelson's interferometer
is shifted a certain distance, 200 fringes are observed
to pass a given point in the field of view. If light of

wavelength 6.24 x 10-5 cm is used, determine how far the
mirror was moved.

MOVABLE MIRROR

HALF-SILVERED
MIRROR

A

SOURCE FIXED MIRROR

FIG. | 7 OBSERVER

Solution: Figure 1 is a diagram indicating the principal
features of the Michelson interferometer. It is known for
this piece of equipment that if m fringes cross the
observer's field of view when the movable mirror is moved
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a distance x, then the following relation is true:

2X = mA,
where A = the wavelength of light used.
Here we have m = 200 and A = 6.24 x 10_5 cm. Then,
mA _ 200 x 6.24 x 107°
= = cm

x=7F 2

6.24 x 1073 cm = 6.24 x 10~ mm

Thus, the mirror was moved .0624 mm.

® PROBLEM 9-15

A Michelson interferometer is adjusted so that white light
fringes are in the field of view. Sodium light is sub-

stituted and one mirror moved until the fringes reach
minimum visibility. How far is the mirror moved?

—< PLANE MIRROR
HALF-SILVERED
Y MIRROR
- 8 >—
SOURCE < D
/ E
A
¢ PLANE
MIRROR
FIG. 1 Y DETECTOR

Solution: A Michelson interferometer is shown in figure 1.
A ray from the source can then be traced through the inter-
ferometer. At B the ray is split and the transmitted por-
tion proceeds to D, and is reflected back to E, where a
portion is reflected to F. The portion that is reflected
at B proceeds to C, is reflected to E, and a portion is
transmitted to F. The interference pattern that_is observed
at F will depend on the path difference BDE - BCE. If
this optical path difference is an integer number of wave-
lengths of the source light, a maximum will occur at F and
if the path difference is an odd integer number of half-
wavelengths, a minimum will occur there. So at F we will
see a pattern of maxima and minima (fringes). However white
light has all wavelengths, so we will have an overlapping

of fringes for each of the wavelengths represented and
therefore the only time we will be able to distinguish
fringes will be if the path difference is zero.
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For minimum visibility for sodium light (consider
sodium light to be primarily the 589.0 nm and 589.6 nm
doublet) we will need to have a maximum of one of the lines
to be located at the minimum of the other line. In essence
then, we want to find the distance d, a measure of how far
the mirror must be moved so that,

24 = mxl ; maximum for Al (1)

and

2d

(m + l/2)>\2 : minima for Az, (2)

where Al and AZ represent the two wavelengths of

sodium light.

From equation (1), m = %Q , and substituting
for m in equation (2) 1
_f2a , 1
2a-= {r " 7]x2 (3)
1
or,
A A
2d|1 - 2| = 2 (4)
1
Then,
A
4= 2 (5)

So,after substituting the values for Al and Az
into (5),
-9
589.0 x 10 -4
d = =g, = 1.45 x 10
4(1 589.0 x 10 )

\"  589.6 x 10-9Y

m= 0.0145 cm .,

THE MACH-ZENDER INTERFEROMETER
e PROBLEM 9-16

The apparatus shown in Figure 1 is a Mach-Zender

interferometer. Both beam splitters transmit 90% and

reflect 10% of the light intensity incident on them.

Mirror 2 is not parallel to the others, by the angle ¢.
1) Wwhat pattern does observer A see?

2) What pattern does observer B see?

3) If a half-wave plate with its fast axis vertical is
inserted in the beam at C, and one with its fast axis
horizontal is inserted in the beam at C', what does the
observer A see?

Solution: Figure 2 shows two sets of rays traversing the
interferometer when all four optical surfaces are parallel.
If mirror 2 is tilted by an angle § the incident ray on
mirror 2 then follows the rays labeled (1), (2), (3), (4),
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and (5) through the remainder of the interferometer.
Let us now consider what A sees for an optical path

difference between two sets of rays. From the first beam

splitter to mirror 1 to the second beam splitter to A the
path length is

by v Ly + 3+ 4,

The other path (from the first beam splitter to mirror two
to the second beam splitter to A) yields

£y * Ly + (L3 + [1)/cos 2§
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and the path difference is then

b+ 1) ¢ - o)

The path difference B sees will be the same as that which
A sees. So there will be phase differences for both
observer A and observer B and so fringes will occur. To
determine the intensity of the fringes seen we must make
use of the fact that the beam splitters do not yield equal
intensities.

For A the beam progressing through mirror 1 is
transmitted in the first beam splitter and reflected at
the second beam splitter so its intensity is 0.9X 0.1 Io

0.09 Io. For the beam progressing by mirror 2 there is

reflection at the first beam splitter and transmission at
the second beam splitter,so its intensity is 0.1 X 0.9 Io

0.09 Io' So A sees two interfering beams of equal

intensity with resulting I = 0.18 Io and Imin = 0.

max
For B the beam progressing via mirror 1 is transmitted
in both beam splitters so its intensity is 0.9 X 0.9 I0 =

0.81 Io. For the beam passing through mirror 2 both beam

splitters reflect the beam so the intensity is
0.1 X 0.1 Io = 0.01 Io' So B sees two interfering beams

of different intensities with resulting I = 0.82 I and

Iin = 0.80 I,

max

Since visibility, V, is a common way to express the
variation in the fringe pattern and is defined as
Thax = Imin

+ I .
max min

VvV =

A sees V=1 and B sees V = 0.012.
% %

Ao

6
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If we insert half wave plates in the upper and lower
arms of the interferometer, we suspect that polarization
will result. 1In the top leg,if we have an "individual
photon" polarized at some angle with respect to the E axis
of the half wave plate, we have in figure 3 a polarized

vector A with components A, and Ag respectively along the

ordinary and extraordinary axis. After passing through
the half wave plate the AE component

is a half wavelength out of phase with the A

o component or

the resulting A vector is rotated 90° clockwise. 1In the
bottom leg we see in figure 4 that a similar condition
occurs with the A vector rotated 90° counterclockwise.

Now when these recombine at A[it has been shown that the
intensities were equal and had a fringe pattern,]we see
that we have introduced through the two half-wave plates

an additional half wave-length phase difference. Therefore
the fringes will be shifted by half a fringe; namely,

the former bright spots are now dark and the former dark
spots are bright. In our polarization decomposition we
defined the A vector arbitrarily so that for all "individual
photons" there will be an extra half wavelength phase shift.

THE LUMMER-GEHRCKE PLATE
® PROBLEM 9-17

A Lummer-Gehrcke plate 1 cm thick is used for studying
sodium light, X = 58938. If the index of refraction is

1.52, find the order of interference nearest the faces
of the plate.

Solution: A Lummer-Gehrcke plate is shown in Figure 1.
Allow a ray of sodium light to enter along the incident
ray. The angle 6 is chosen so that the incident ray is
internally reflected at the second surface of the prism,
and since the prism and the plate have the same index of
refraction, ray 1 is not deviated as it enters the plate.
However, at the bottom of the plate, its angle of incidence
is less than the critical angle so the ray splits into
transmitted ray 2 and reflected ray 3. At the upper plate
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INCIDENT
RAY

surface ray 3 further splits into transmitted ray 4 and
reflected ray 5. This splitting continues as the split
reflected ray progresses down the plate. A careful
observation of the geometry shows that rays 4 and 8, etc.,
emerge parallel to each other and also rays 2, 6 and 10,
etc., emerge parallel to each other. Also from ray 3 to
ray 8 there are two internal reflections and likewise from
ray 1 to ray 6. This means that the phase difference
between rays 4 and 8 and also between rays 2 and 6 are

due to the difference in path length only.

F

Let us now look at Figure 2. We then want to find
the path difference
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A = n(ACD) - AB (1)

(n is the relative index of refraction) which will
determine whether our Lummer-Gehrcke plate will yield a
maximum or minimum or something in between for a particular
wavelength A and the thickness d of the plate.

We can write equation (1) as
A =n(AC + CE + ED) - AB (2)
where AE is drawn perpendicular to CD.

Tracing the various angles equal to Gi it becomes
clear that § DAE = 6,. Thus ED = AD sin6, while AB =
/n

AD sin 6,. From Snell's law, sinei/sinet =n

= 1/n, so that __
ED AB
sinei sinb

air’ “glass

becomes

t

sinb.;
in6;

i _1
51n9t n

3
2 2

= AB . (3)
The path difference is then
A = n(AC + CE) . (4)
Examining triangle FAE we see that
FE = 24 cos8;
and since FC = AC,
equation (4) becomes
A = n(FC + CE) = nFE

or A

n(2d cosei). (5)

For a maximum the path difference must be an integer
number of wavelengths or

mA = 2nd cosei (6)

where m is the order of interference.

In this problem we want to find the order of
interference nearest the faces of the plate. Now the
critical angle is that internal angle ei for which the

exterior angle 6, will be 90°, so we want to use in

equation (6), 6. = 6 From Snell's law

i critical"®
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11
sinb, = & = 1753 (7)
6, = 41.14° (8)

or from equation (6),

2nd cos 41.14°

m = X (9)
2 x 1.52 x 1072 x 0.7531
= ~5 (10)
589.3 x 10
= 38849 (11)

remembering that m must be an integer.

FRESNEL'S DOUBLE MIRRORS
® PROBLEM 9-18

A laser beam illuminates two mirrors, as shown in Figure 1.
If we assume that the beam consists of strictly monochroma-
tic plane waves and has a circular cross section of 1l0cm

diameter, what interference pattern do we see at a distance
of 5m from the mirrors? The angle between the mirrors is
0.01 rad.

) ()
0‘”?44350 MIRRORS
8

FIG. | 0.0!
RAD

Solution: This arrangement, known as Fresnel's double mir-
rors, allows two plane-wave fronts to overlap. The two re-
flected half-beams (semicircular in cross section) inter-
fere where they overlap, giving a pattern like that sketched
in Figure 2. 1In the region of overlap, where fringes are
formed by the intersection of plane-wave fronts, we may

find the fringe spacing by the equation

D = A/2 .
sin(a/2)

This equation may be found by assuming that the two triangles
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FIG. 2 o

formed by the diagonal of length D shown in Figure 3 are
isosceles. Then ¢ = % and the equation follows geometrically
(o is the angle between the mirrors). For our small angle,

D = 1/a, since for very small a, sin (%) is approximately
equal to % . We can formulate our problem as a two-source one.

The fringes may be thought of as due to two point sources at
some large distance L away and separated by the angle a.

Then

Q
1]

. a _ 2|md _.
2L sin 5 and I = Iocos [A sin SJ

_ 2(2m . .. 0O
= Io cos [TTL sin 06 sin 7}

This gives us a fringe spacing of D = (A/2)/sin(0/2), which
agrees with the other result. Since L and 6 are arbitrary,
we might replace them by a measured position along the
detection plane (a film, perhaps): Y = L sin 8. Then

_ 2(2m , . O
I = Iocos b Y sin 2) .

It is given that d = 10cm, Y = 5m, and o = 0.01 rad
= 0.57°. Hence,

-
1]

IO cosz[%F(Sm) sin[o'g7o]}

I cosz[s.%]’

o) A

where A is the wavelength of the laser beam, expres-
sed in meters.

Notice that the geometry here is the difficulty rather than
the concepts of interference. This is why such approxima-
tions as that of small angles are so important. A more
exact solution contributes nothing to our understanding of
the physics.

HAIDINGER FRINGES
® PROBLEM 9-19

Haidi wger fringes are observed with a 2-mm thick slab of
inde . n = 1.600 haying accurately flat surfaces. The light
used has X = 5000 A. Calculate the maximum order at the
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center of the circular fringe pattern. How many bright
fringes are observed within a cone of 1/30 radian of the
normal to the surface?

INCIDENT
RAY

REFLECTED RAYS

FIG. | TRANSMITTED RAYS

Solution: Haidinger fringes are the interference pattern
of maxima and minima that are formed with multiple reflec-
tions and transmissions from an optically flat-parallel
set of surfaces when the angle of incidence onto the plate
is zero (See figure 1l). Our condition of maxima or minima
then relates to the optical path difference between suc-
cessive rays (say 1 and 2). It can be shown geometrically
that

2d cos 6 = m Amedi maxima (1)
1 ..
= + =
(m 2) Amedi ‘ minima (2)

for the transmitted rays, and

1 .
2d cos 6 = (m + 5) Amedium maxima (3)
=m Amedium minima (4)

for the reflected rays, where d is the thickness of the slab.

Now we need to investigate the apparent difference be-
tween the transmitted and reflected maxima. First, since
the incident rays are split on transmission and reflection,
if the transmitted rays form a maximum then the reflected
rays will form a minimum (from conservation of energy).
Also we must recognize that there is the possibility of a
phase change as the rays interact at the surface. In re-
flection, the Fresnel equations,which are the result of
matching boundary conditions between the electric and mag-
netic fields at the boundary of the interface,tell us that
an E-M wave parallel to the plane of incidence will have a
phase change of m (half-wavelength) when the index of re-
fraction of the incident ray medium is greater than that of
the refracted ray medium, and zero when the index of refraction
of the incident ray medium is less than the refracted ray medium.
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For an E-M wave perpendicular to the plane of incidence the re-
verse is true.

Looking again at figure 1, we see that ray 1 has =
phase change on reflection and ray 2 has 0 phase change on
reflection,so in addition to the optical path difference
there is an additional half-wavelength phase shift between
rays 1 and 2. It is further noted that rays beyond 2 have
0 phase shift plus the optical path difference from ray 2.

So if the optical path difference is an integer number
of wavelengths, the reflected rays 1 and 2 will have a half-
wavelength phase difference and yield a minimum. Conversely,
on transmission there are a pair of reflections occurring
between all transmitted rays and therefore only the optical
path difference will control whether there is a maximum or
minimum. Namely, when the optical path difference is an
integral number of wavelengths, there will be a maximum on
transmission.

Now the relations between velocity c, frequency f, wave-
length A, and index of refraction n are

fA = ¢ (5)
c_.
n = E__EiE__ (6)
medium

and the frequency remains constant in any medium. So for
Aair = 500 nm, the wavelength in the slab is

, _ Mair _ 500.0x107° -

medium n 1.6

= 312.5 nm (8)

Since Haidinger fringes are formed with 6 = 0°,equa-
tion (1) will yield the maximum order for reflection at
the center and the maximum order for transmission will be
0.5 larger. So

2d cos 0 = m Amedium (9)
2d 2 x 2 x 10°3
m = = — (10)
9
Modian  312-5 x 10
m = 12800 (11)
m + % = 12800.5 (12)

is the answer to part one.

For the second part, we use equation (4) with g = 1/30
radian to get

2d cos (1/30 radian) = m; A . (13)
medium
_2x 2 x 10"3 x .99944
m = 312.5 x 10-9 (14)
m; = 12792.89
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and the difference between m and m; is the number of bright
fringes that will be observed. Note that here we can use

a decimal number of fringes, since we can estimate that we
are between maxima by a certain fraction.

Am = 12800 - 12792.89 = 7.11 bright fringes.

INTERFERENCE FILTERS
e PROBLEM 9-20

A fourth-order interference filter (path difference 7) where
A is the wavelength of light used) is chosen to transmit a

narrow band of light of wavelength 4000A. Find, neglecting
dispersion, what other bands are transmitted in the visible

region.

INCIDENT | 2 3 4
LIGHT REFLECTED

d

L

FIG. \ TRANSMITTED

Solution: An interference filter to transmit a narrow band
(AX small) of light appears in Figure 1, where the angle of
incidence of the light is exaggerated. We want to look at
an angle of incidence equal to zero, but to understand what
is happening to the rays we must look at a finite angle of
incidence.

It is known that the phase condition for reflection
in the denser (n larger) medium at a boundary is such that
the reflected ray is phase shifted by a half wavelength.
It is seen from the figure that each reflected ray goes
through an odd number of reflections so that the net effect
of the reflections is to leave the reflected rays out of
phase by 180°. Therefore the reflected beam will be a max-
imum when twice the thickness is an odd integer multiple of
a half wavelength. By energy conservation, if the reflected
intensity is a maximum, then the transmitted intensity is
a minimum.

Similarly the reflected beam will be a minimum when
twice the thickness is an even integer multiple of a half
wavelength. Once again, by energy conservation, if the
reflected beam is a minimum, the transmitted beam will be
a maximum.

The order of the interference filter is then related
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to the odd integer multiple,so that first order corresponds
to odd integer multiple one, second order corresponds to
odd integer multiple three, third order corresponds to odd
integer multiple five and fourth order corresponds to odd
integer multiple seven. In a similar way we look at the
harmonics of a standing wave.

In this problem, for A = 400 nm, our path difference
in the interferometer is 7A or 2800 nm. Now if nA = 2800 nm,
where n is an integer, we will have a maximum in the trans-
mitted intensity. We must find those corresponding wave-
lengths which are in the visible spectrum (400-700 nm). We
then want to investigate

nlAl = 2800 nm ,

Clearly, for n; an integer greater than 7, the light will
not be in the visible range, so we want to look at n, less
than 7. If n, is less than 4 then the resulting wavelength
again will not be in the visible range. Therefore we are
left with n; = 4,5,6 which yields for Al

2800 . 2800 . 2800
6 ' 5 ' T2

or

466.6nm, 560 nm,and 700 nm.

INTERFERENCE FRINGES
® PROBLEM 9-21

How many fringes are formed per millimeter if light beams

of wavelength 632.8 nm intersect at an angle of 5°?

FIG. |

Solution: Figure 1 shows the two monochromatic beams of
the same wavelength and inclined to each other at an angle
8. These two beams interfere on the photographic plate HH',
producing bright and dark lines. Since the beam (1) is
seen to be in constant phase across the surface of the
hologram plane, the interference pattern,or fringes,will

be separated by an amount Ay, whenever the path difference
between the two beams is one wavelength
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From the triangle CPP',

. _ CpP A
sinb BpT iy °
Therefore,
_ A
bY = 51n6 -

Hence the number of fringes per mm is equal to

1 - sin6
Ay (mm) A (mm)

- sin 5°
6.328 x 1072

1

138 (mm) ~
e PROBLEM 9-22

Interference fringes are produced in a thin wedge-shaped
film of cellophane of index of refraction 1.4. If the angle

which the film makes with the horizontal is 20 sec. of arc,
and the distance between fringes is 0.25 cm, find the wave-
length of light.

d, d, w=l4
fe— X3 —-L_
=X

Solution: The optical path difference between two beams re-
flected from the two surfaces of a wedge shaped film, at nor-
mal incidence, is 2 pd where u is the refractive index of the
film and d is the height of the film, at a distance of x from
its vertex.

For two successive fringes separated by a distance x,
we can write the condition for a maximum:

2 udl = nA
and
2 ud (n + 1)

]

2

On subtracting the top equation from the bottom equation,

2 u(d2 - dl) = A (1)
but d2 = x29
and

d1 = xle
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(since 6 is small, tan 6 < 0)
Therefore,

d, - d; = (x, - %08 (2)

Substituting the expression found for d2 - dl from equation
(2) into equation (1), we have

2 ue(x2 - xl) = ) (3)
but (x2 - xl) = 0.25 cm
and 6 = 20 sec. of arc
20 T

rad

= %0 x 60 =X 180°
= 9,696 x 10_5 rad.

Therefore, from equation (3),

2 x 1.4 x 9.696 x 10™> x 0.25 cm

6.787 x 10> cm

A

]

o
6787 A

® PROBLEM 9-23

With two slits spaced 0.2 mm apart, and a screen at a
distance of ¢ = 1 m, the third bright fringe is found to
be displaced a distance h = 7.5 mm from the central
fringe. Find the wavelength X of the light used. See
the figure.

¥4
DOUBLE SLIT SCREEN

Solution: When the difference D between the path lengths
of the rays 1 and 2 is an integral multiple of the wave-
length A, one obtains a maximum (bright fringe) of the
interference pattern on the screen. From the figure we
see that

D =d sing .
If ¢ is much larger than the distance between the two

slits, we see that 6' =8, where 6' relates the position of
the maximum on the screen to the distance between slits
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and the screen,

tan 0' = % .

The approximation % >> d also means that 6 is small; for
which case we have

tan 68' =~ sin6' .

Therefore, for the third maximum to occur at h, D must be
3x;

D =d sin6 = 3

or
sin® = sinf' = %%
. 3
Therefore, since sin6' = tanf' = % , % =T
h _ 32
2 a '

which gives X as

_ dh
A=3g
0.75 cm x 0.02 cm

3 x 100 cm

5 x 10°° cm

=500 x 10 7 m

= 500 nm.
e PROBLEM 9-24

Light falls on two parallel slits separated by 0.2 mm.
If interference fringes on a screen 75 cm away have a

spacing of 2.2 mm, what is the wavelength of the light
used?

SCREEN

X=2.2mm

a

14 750mm — ————»

Solution: The fringes on the screen 750 mm away from the
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slit can be seen if the condition
d sinb = mA (1)
holds; d is the spacing between the two slits, X is the
wavelength of the light in air, and m is the order number.
When 6, in equation (1), is small, we can make the
approximation sin6 = tan6; therefore equation (1) becomes
d tanf6 = mA (2)

and

d tané’ (m+1) 2, (3)
for two consecutiwve interference fringes.

From the figure,

= 2
tang = 750
and

X + a 2.2 + a

1
tand 750 - 750

so equations (2) and (3) become

= mA (4)

and

0.2(2.2+a)

Sieh = (mel)) (5)

since d = 0.2 mm. Now solving for a in equation (4), we
have

a = 3750m\
and substituting this into equation (5), we have

0.2(2.2+ 3750mA\)
750

(m+1) A

from which the wavelength X is found to be 5.87 x 10-4 mm.

® PROBLEM 9-25

Parallel white light is incident on two very narrow but
parallel slits for which 4, the slit separation, = 1 mm. A
1 meter focus lens is used to focus the interference fringes
on a screen. If a-‘small hole is made in this screen 3 mm

from the central white fringe and the light examined by a

[ -]
spectroscope, what wavelengths between 4000 A and 8000 A
will be missing?
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Solution: Maximum intensities for a wavelength A are
produced at those values of y which satisfy the equation

d sin 6 = nA ; n integer .

For small ¢,

sin ¢ 6 tang =%,

where y and D are as shown in the figure.
Therefore,
Y -
e} ) nA

o 2D
D

or y
and minima are produced when

y=(n+3) 7.

Now when a hole is made 3 mm from the central maxima, those
wavelengths would be missing which have a minima at y = 3 mm.

Then A_. = _—dy__ » where
min 1
(n+1) o
2
d=1m=103n
=3mm=3x103m
D=1m
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Therefore,

1073 x 3 x 1073

min T R D))

A

m

3 x 107°

1 m
n+§

All values of n which produce Amin between 4000 A

7

=4 x 10 'm and 8000 & = 8 x 10" 'm will be missing.

Hence, for n = 1,

-6 _ _
Aa=3210 5 10%-20x10m :

3 14
2
for n = 2,
-6
>\—3X510 gx10'6=12x107m;
2
for n = 3,
-6 -6
=3 (x7/120) _6 X71° =8.57x10 ' m :
for n = 4,
-6 -6
A\ = 3 (}(9/120) 6 x910 = 6.667 x 10 7 m:
for n = 5,
3x10°% 6 x107° -7
y = 11 = 1T = 5.454 x 10 'm;
(5
for n = 6,
-6 -6 -
A = 3(?3?3) =8 E 0 —sesx 107 m

. .
Hence, wavelengths 4615 A, 5454 i and 6667 i will be absent
in the spectrograph.

® PROBLEM 9-26

A single dust particle acts like an isotropic scatterer.
Such a particle is on the front (unsilvered) surface of a

mirror so that one may observe the light scattered directly
from the particle and that scattered to the mirror and back.
Find the observed interference pattern.
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Solution: From the figure, we see that the dust and

its image form two coherent sources, separated by a
distance 2t. First neglect refraction at the surface.

At an angle 8 from the normal, the two light paths differ
in length by 2nt cos6, where n is the index of the glass.
So the bright fringes occur at 2nt cosf = mi. Since only
§ is specified, all the rays with this angle form a cone
of revolution about the normal, and the fringes appear
circular. Close to 6 = 0 the fringe separation is large,
but as 6 increases, the fringes get closer together. Thus
fringes are actually observable only close to the normal.

If we include refraction, the condition becomes
mA = 2ntV£2 - sinze , because cosf becomes Vn2 - sinze .

e PROBLEM 9-27

The focal length of a Billet split lens is 12 cm and the
separation between the lens halves is 0.4 mm. If the
split lens is placed 30 cm from a narrow slit illuminated

by sodium light (A = 5893R), what will be the fringe
spacing on a screen held 1 m from the lens? Assume that
the center of the slit is 0.2 mm below the bottom edge of
the top lens half.

<—30m —a FiG. |
4 mm
.2mm v
BILLET SPLIT LENS

SOURCE ¢ _2 cm SCREEN
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Solution: Figure 1 shows the arrangement of a Billet split
lens. The lens will form an image of the source according
to the thin lens formula

1 1 _ 1

u u' f

Substituting the given values u = 30 cm and £ = 12 cm
into the above equation gives

1 1 _ 1
ot T 12

Hence, the image will be formed u' = 20 cm to the right
of the Billet lens.

Since the lens is split, two images will be formed
of the source, at a position (100 - 20)cm or 80 cm from
the screen. We now need to find the spacing between
these two images. For this we can use the relation

I_u'
0 u

where I is the image size,and O is the object size, u is

the object distance and u' is the image distance. Now at
the slit the center of the original slit is 0.2 mm below

the axis of the bottom edge of the top lens,so O = 0.2 mm
so

-2
L] - -
1=0% = 0.2 x 10 3620310 _ _y 33 %3074,

30 x 1072

or the spacing of the image of the slit is 2 x 1.33
x 10~%m = 2.66 x 10~“m. Now for constructive inter-
ference to occur,

= dy
ni I

where n is an integer, d is the slit spacing, y is the
distance from the central point on the screen to the first
secondary maximum, and & is the distance from the double
slit image to the screen. Then, taking n = 1, the fringe
spacing is
-9
y = é% _ 589.3 x 10 —Z -8 _ 1.77 x 10 3 n
2.66 x 10

1.77 mm
° PRQBI.EM 9-28

Two glass plates are nearly in contact and make a small
angle 6 with each other. Show that the fringes produced

by interference in the air film have a spacing equal to
A/26 if the light is incident normally and has wavelength A.

Solution: Let 6 be the angle between the two glass plates
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d.\d2

X | ~ofe-X -4
“—Xz —

and let Xy and X, be the distances from the edge of the
wedge of two consecutive fringes, as shown in the figure.

If d1 and d2 denote the air gaps for these two fringes,
then

2d; = nm (1)
and

2d2 = (n+l) X (2)

where X is the wavelength and n is an integer. Subtracting
(1) from (2)

2(d2 - dl) = A . (3)

Q

From the figure, tan6 = §l =
1

. Assuming 8 to be very

xlm
N

2
small, the approximation tan6 = 6 can be made. Therefore,
d3 =9 = Blxpmxp)
= 6x (4)
where
X = (xy = x;)
Substituting for d2 - dl into equation (3),
20x = A
Then,
2

X~ 29
e PROBLEM 9-29

Two beams of radio waves of frequency 3MHz intersect at an

angle of 10°. What is the interference-fringe spacing?

Solution: Figure 1 shows the two waves of frequency 3MHz
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—r—f =

A
H

intersecting on a plane HH' and inclined to each other at
an angle of 10°. The successive maxima will be formed at
a distance Ay whenever the path difference between them is
one wavelength. Hence from the triangle ABC,

’

sing = %% = fL . where A is the wavelength of
Y light used.
Therefore,
Ay = L c

sinb f sinb6

where c is the velocity of light and f is the frequency.

Then, substituting the given values for f and 6 and

the known value for c(3 x 108 m/sec) into the preceding

8
equation, we get Ay = 3 x éo m/sec ~ 576 meters.

3 x 10 Hz sin 10°

® PROBLEM 9-30

Suppose that the plates shown in figure la are 10 cm wide
and are separated at one edge by 0.1 mm. The plates are
made of glass with n = 1.50, and the space between them is

filled with an o0il having n = 1.33. Taking A = 500 nm,
compute the spacing between interference fringes. 1Is the
fringe at the line of contact dark or bright?

< /AV‘

FiG.l1a —J FIG.I1b x

Solution: If the phase difference between the rays
reflecting from the top surface and the bottom surface can
be found, then the points where constructive and destruc-
tive interference between the rays occurs can be determined.
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Destructive interference will occur when the phase
difference, related to the wavelength, A, of the light, is
(2m+1)A/2, where m is an integer including 0. Construc-
tive interference will occur when the phase difference is
mi. The phase difference results from the differences in
path lengths and difference in phase shifts. Since there
is a phase difference equivalent to half a wavelength
between two rays, the first being reflected at a surface
as the ray goes from high index of refraction to a low
index of refraction and the second ray which goes from low
index of refraction to high index of refraction, we do not
need to remember which ray has the equivalent half wave-
length phase shift and which ray has the zero phase shift
because we are comparing the total phase difference between
the rays.

In order to concentrate on where along the wedge we
will have constructive interference, we need

miA = 2t + A/2 (1)

where t is the thickness of the wedge at the point of
constructive interference. The next point along the wedge
which will give constructive interference will be

(m + 1)2A

2t + )/2 (2)

1
and subtracting equation (1) from equation (2) gives

2tl - 2t = A

or

tl -t =2 .

Now looking at Figure 1lb, since we can determine o
from the data of the problem and X is given, we have

(A\/2)/x = tano ,

where x represents the fringe spacing; hence,

_ A
X = 3 %ana (3)

Now we need to determine the wavelength in o0il with index
of refraction n; relative to the wavelength in air, 500 nm.
First we have the relations

fA =c¢

o}
vacuum
—_— = n

c .
medium

where f is the frequency of light, a constant for any
material, c the velocity of light in the medium, X the
wavelength of light in the medium and n the index of
refraction of the medium. So
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_ Avacuum

Amedium n

medium
and sc the wavelength in oil is

_ 500 x 107°

oil ~ 1.33

7

A =3.75 x 10 ''m

Substituting into i _ plate segqration
t g into equation (3), where tana STate width

-3
0.1 0.1 x
= foem = — 0T ;o =, we have
3.75 x 10/ -4
% = —5 = 1.88 x 107" m = 0.188 mm .
2 x 0.1 x 10
0.1

To determine whether the line of contact is bright or dark
we can look at equation (1) in which 2t + A/2 is the phase
difference between the two rays. With t=0, which is the
situation at the line of contact, the phase difference is
A/2, so destructive interference occurs and the fringe at
the line of contact is dark.

e PROBLEM 9-31

Two identical sources are far apart, but still a large num-
ber of wavelengths from an observer. Thus the Fraunhofer
condition is satisfied; but the approximation of parallel
rays from the sources is not. Find the fringe spacing near
the observation point when a) observer and sources are

nearly collinear, b) observer and sources are at the vertices
of an equilateral triangle, and c) observer and sources lie
on the circumference of a circle with sources on a diameter.

Solution: All the wave fronts are plane, since the dis-
tances are large. In (a) the fringe at the observer might
be bright or dark, depending on the value of d.

A little to the side of the axis the rays from Sl and Sz
are nearly parallel, where Sl and 82 represent the two

sources as shown in Figure 1 (P represents the point of
observation), and the next fringe occurs at d cos 6; = \.

210



The actual fringe spacing, in terms of the distance to
source 2, is

D = L2 sin 61.

. A .
= = = - = - 2
Since cos 61 g + sin el V1 cos? el v/az . A .
Hence, D = L, Y42 - A% 1-lxz L
’ -T2 d - 2 gf 27

where L2 represents the distance from 52 to P. Similarly,

L represents the distance from S1 to P. D is the length
of the fringe spacing.
An alternative arrangement is that shown in Figure 2. Again
the fringe at P is not determined, but the spacing is:
L L
1 2

; + ke = A
sin 61 sin 91

—_ L
Ll tan el = L2 tan 61 and

where, as usual, the subscript 1 refers to the point one
fringe away from the center. Again we take small angles
(since the general problem yields the equation of a conic).
Then

tan 6 ~ sin 6 Z 6 ,

and
L L
1 2 _ v
q+e—1,=x » L8, =1L,68; =D.
2 2
L + L
D = 1 X 2 .
%
5 +——d—=15, N P
<:Fuu
- 7 N CREST
P - * TROUGH
FIG. 3 FIG. 4 CREST

S TROUGH

In (b) we have a single geometric arrangement as shown
in Figures 3 and 4. The wave fronts intersect as shown,
with bright fringes marked by circles. These are easily
shown to be separated by D = A .

In (c) the wave fronts always intersect at right
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angles. We can think of the observer here as a st;ip of
film along the circumference. Thus the spacing D is an
arc length. From Figure 5,

6
L, =d sin a = d sin % LB d cos 5 .

(N + 1)A,

=
1
=
I
2
>
=
b
1
=
o
-
I

where the subscript 1 refers to the next fringe. Subtract-
ing,

6

_ _ . 1 __._8)y_2d 0

A(LA - LB) =\, ALA =d (s1n > sin 5) =3 AB cos 3
=d gl - cos 91 - -4 AB sin 8
ALB = cos — 3 3 5

Here Ax = X, - x ,and we can find A (sin or cos) by

1
trigonometry, using the small-angle approximations, or by
differentiation. So

_ _ _ 1 .6 ]
A= ALA ALB =3 dAe[51n > + cos 7].
The fringe spacing is D = % dA6, so we can write
D = A l ’

.1
(sin 56 + cos 59)

which is easily confirmed at 6 = 0, 7, and w/2 .

Notice that we have used three different approaches to
these solutions. In (a) we have found the (small) angle be-
tween the m = 0 and the m = 1 fringe. 1In (b) we have
measured the actual distance between wave-front intersec-
tions in a fixed geometry, and in (c) we have used the
path-length difference to arrive at a general expression.
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INTERFERENCE DISTRIBUTIONS
® PROBLEM 9-32

A satellite circling the Earth is transmitting microwaves
of 15 cm wavelength. When the satellite is above a ground
station which has two antennas connected together 100 m
apart and located in the plane of the orbit, a signal is
received that fluctuates in intensity with a period of
1/10 sec. If we know that the satellite is 400 km high,
and if we neglect the curvature of the Earth, what is the
velocity of the satellite?

————— _’y

y

——o R
A
R=400km
< |
F1G.1 dsin® FIG. 2

50"\ v 50 m

Y— 100 m—; I d
ANTENNA ANTENNA 2 SOURCE | SOURCE 2

Solution: Let us look at this problem as a stationary
source of 15 cm microwaves 400 km from two receiving
antennas separated by 100 meters as seen in Figure 1. 1In
this figure y represents the distance the source is away
from a symmetric position with respect to the two antennas.
If y = 0, the signal received from antenna 1 is in phase
with the signal received from antenna 2 and connecting the
two antennas will yield a signal with intensity equal to
twice the intensity of either signal. If we now let y be
different from zero there will be a phase difference in
the signals received at antennas 1 and 2 until for some
value of y the phase difference will be equal to half a
wavelength so the sum of the signals received at the
antennas will be zero.

Now if we allow the satellite to move with a velocity
v along a line parallel to the line joining the two
antennas, we will find a varying signal whose period of
variation will be related to v.

So from Figure 2, we see that to find the phase
difference we need to determine r, -r; . If at a point y

distant from the symmetry point we construct a circle of
radius r, we see that r, - r; is just 4 sinb. So when

d sin6 = nA
where ) is the wavelength of the source, we have a maximum
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of order n, an integer, and when
a sing = (2n+1))/2)

we have a minimum. In an approximation of small angles,
sin€ = tan6® = y/R, so the maxima will occur at

y = R sin 8 = E%B .

What we want is the velocity v = dy/dt and since the
maxima are related to different orders n of the interfer-
ence pattern, then

4y _(dn)( &)- dn Ak
dt dn dt °

Now dn/dt is the number of fringe maxima that pass
the receiver per second or the reciprocal of the period of
fluctuation in intensity and so is 10 per second. Therefore

-2 3
&Y _ yg « 125 X 10701100 X 10%) 0 o gy

e PROBLEM 9-33

The radius of curvature of the convex surface of a plano-
convex lens is 200 cm. The lens is placed convex side
down on the concave surface of a plano-concave lens with

radius of curvature of 400 cm. The lenses are illuminated
from above with red light of wavelength 625 mu. Find the
diameter of the third bright ring in the interference pat-
tern of the reflected light.

—

pr AL

c N
|-x—-| FIG. |
Solution: Figure 1 shows the geometry of this problem. A
beam of light travels from A to B where part of it is re-
flected and the remainder proceeds to C where part of it is
reflected. The parts reflected at B and C can then inter-
fere and will exhibit constructive or destructive interfe-
rence depending on whether the total phase difference be-
tween the two reflected beams is mXA or (2m + 1)A/2; where
m is an integer and X is the wavelength of the light used.
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Since reflection at B is a reflection at a glass-air inter-
face and reflection at C is a reflection at an air-glass
interface. and since the reflection at C has an extra path
length oi 24%, where AL is the distance between points B
and C, our condition for a bright ring is

2A2 + X/2 = m) (1)

and since we want the third bright ring, m = 3. So

5\

AL =5 (m-1/2) =(\/2/(3 - 1/2) = % (2)

N>

In order to find x, the following relations can be estab-
lished:

gi = sin 8, ﬁi = sin o, (3)
and
AL = R2 cos 62 - (R2 - Rl) - R1 cos 61 (4)
From equation (3)
R, sin 6, = R, sin 6, (5)

and by squaring both sides and using the trigonometric
identity

sin2 o + 0052 6 =1
we obtain
(22 _ o 2 2 2 L
R, cos 62 —(R2 Rl + Rl cos 6]) (6)
so from egquation (4),

_ 2 _ 2 2 2 1/2 _
AL = (Rz Rl + Rl cos el)

(R2 - Rl) - Rl cos 61
(7)

Rearranging and squaring to eliminate the square root
term,

2 2 2 2
(R2 - Rl + R1 cos 61

)1/2

AL + (R2 - Rl) + Rl cos el (8)

(9)
1)



+ 2AJL(R2 - Rl) + 2A% Rl cos 6, + 2(R2 - Rl)Rl cos 6, .

1 1

The Rl2 cos2 61 terms cancel one another, and we are left
with

_ 2 _ 2 _
R - Ry = (A)° + (R2 Rl) +2ASL(R2 Rl)

+ [2AILRl + 2(R2 - Rl)Rl] cos 6 (10)

I

Solving for cos 91 yields the following result:

2 2 2
R - Rl

2
2 - (82)" - (R, - R

2 ~ Ry)
2A2Rl + 2(R2 - Rl)Rl

- 2A2(R, - R,)
cos 81 = 2 1

(11)
Therefore,
- 0% + 2R, (R, - R,) - 282(R, - R,)
172 1 2 1

cos 61 = (12)
2A2Rl + 2R1(R2 - Rl)

Substituting the following data:
R, = 2m , R, = 4m, and AL = 3(6.25 x 107 m)
(see equation (2)), into equation (12) yields the result

8, = 0.0716°.

1

Since

X = Rl sin el I

x = 2sin (0.0716°) = (2)(1.24 x 1073) = 2.5 x 10" m = 2.5 mm

will be the radius of the third bright spot. Hence, the
diameter of the third bright ring is 5.0 mm.

e PROBLEM 9-34

Prove that the formula giving the intensity for the inter-
ference pattern from two coherent point sources is

A" =1 = 2a2(1 + cos §),

where a is the amplitude of each source separately, and §
is the difference in phase of the wave train from each
source at the point where the intensity is measured.

Solution: Consider any particle P which is disturbed as a
result of wave motion coming from two sources Sl and 82
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which are of equal amplitude, have the same period, and are

in phase. The problem is to find the resultant disturbance

at P. We shall approach this problem in two different ways:
first graphically using phasors, and then analytically.

I. Each source, S1 and 82 , produces a sinusoidally-

varying electric field at point P. The equation of this
field is of the form of simple harmonic motion, that is
y = a sin (wt + ¢).

We can represent the instantaneous value of a quantity that

varies sinusoidally with time by the projection onto a ver-

tical axis of a vector of length corresponding to the ampli-
tude of the quantity and rotating counterclockwise with an-

gular velocity w. These rotating vectors are called phasors
and are illustrated in Figure 1.

The point Q moves in a circle of radius equal to the
amplitude a, with constant angular velocity w. Then the
position vector of this point, 0Q, having length = a, ro-
tates with constant angular velocity w about point O. Let
the vector OQ make an angle with the horizontal axis, at
time t=0, equal to the initial phase angle ¢. Point P is
the projection of point Q onto the vertical axis and, as

rotates, point P poscillates along the axis. Let y rep-
resent the length of OP. At any time t, the angle between
the radius O0Q and the horizontal axis is wt + ¢, and
y = a sin(wt + ¢).

Now, to find the amplitude of the resulting E field,
we represent each sinusoidal field as a phasor. The ap-
propriate diagram is shown in Figure 2.

In Fig. 2, a is the amplitude of each of the two
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