PHYS338:Computational Physics Final Exam

Student Name: Hamza AlHasan-1181636

Submission Date: Jan 24, 2021

Q1:

Consider the differential equation:

$$
\frac{dy}{dx} = \sqrt{y + x^2} \tag{1}
$$

$$
y(0) = 1 \tag{2}
$$

Using Forward Euler Method to solve this differential equation with $dx = 10^{-5}$. Then the solution of $y(x)$ is plotted:

Figure 1: y VS x; $0 \leq x \leq 3$ - Q1

The code used is:

ExamQ1.py

From the code, $y(3)$ is calculated:

$$
y(3.000000000011186) = 8.319602661671594
$$

The error is: $O(h^2) = O(dx^2) = O(10^{-10})$

Q2:

Consider this integral:

$$
I = \int_{-\pi}^{\pi} e^{-\sin(x)} dx
$$
 (3)

I will use Simpson's Rule to find the value of I, with $n = 100000$. The code used is:

ExamQ2.py

And the result is:

$I = 7.954926521012942$

To measure the error uncertainty in Simpson's Rule, i used this formula:

$$
E \le \frac{(b-a)^5}{180n^4} (max(|f^{(4)}(x)|)) \tag{4}
$$

In Fig[\(2\)](#page-1-0), i used Wolfram Mathematica code to find the error.

Figure 2: Finding Error Uncertainty in Simpson's Rule - Q2

From the Fig[\(2\)](#page-1-0), we find that the error is $E = 5.91536 \times 10^{-18}$, which is a very small error.

Q3:

In this system, i want to find θ when the system is at equilibrium, that is, the acceleration is zero.

$$
mg - 2ky\sin(\theta) = ma = 0\tag{5}
$$

Where $k = 640N/m$ and $L_0 = 0.1m$.

Writing y as function of θ :

$$
\cos(\theta) = \frac{L_0}{L_0 + y} \tag{6}
$$

$$
y = \frac{L_0}{\cos(\theta)} - L_0 \tag{7}
$$

Hence, equation[\(5\)](#page-2-0) becomes:

$$
2kL_0[\tan(\theta) - \sin(\theta)] - mg = 0\tag{8}
$$

This is a non linear equation that is analytically very hard to solve. So i used Bisection Method to solve it by making $f(\theta)$ equal the left hand side of the equation[\(8\)](#page-2-1). Then i got θ as function of mass m. Finally i found the value of angle θ corresponding to mass $m = 5kg$.

To implement the method, i used this C language code:

ExamQ3.c

However, it is necessary to find θ_0 and θ_1 such that: $f(\theta_0)f(\theta_1) < 0$. So i used Desmos to find them: From this i found that: $\theta_0 = 0.5$ and $\theta_1 = 0.85$.

Figure 4: θ (degree) VS mass(kg) - Q3

After solving the equation with different values of m, i got the plot of θ as a function of mass used. Fig[\(4\)](#page-3-0).

From the calculated data, i found:

$$
\theta = 48.552202^o \text{ at mass} = 5.000000 \text{ kg} \tag{9}
$$

Figure 5: V(5,5) VS k - Q4

Consider this physical partial differential equation with boundary conditions:

$$
\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} - k^2 V = 0 \tag{10}
$$

$$
V(x,0) = 1\tag{11}
$$

$$
V(x,10) = 1\tag{12}
$$

$$
V(0, y) = 1\tag{13}
$$

$$
V(10, y) = 0 \tag{14}
$$

Where $V(x, y)$ is 2D-voltage function, and k is inverse screening length. $k = \frac{1}{\lambda}$ where λ is screening length.

We want to solve this partial equation for different values of k, such that $0 \le k \le 10$. Then i plot $V(5,5)$ as a function of k. In Fig[\(5\)](#page-4-0) shows this plot.

To solve the equation[\(10\)](#page-4-1), i used matlab code:

ExamQ4m.m

Q5:

The two differential equations that describe the Felix model are:

$$
\frac{dv}{dt} = F_g - F_d \tag{15}
$$

$$
=\frac{g}{(1+\frac{h}{R_e})^2} - \frac{A}{2m}C(v)\rho(h)v^2\tag{16}
$$

$$
\frac{dh}{dt} = -v\tag{17}
$$

where F_g is the gravitational force, and F_d is the drag force in opposite direction, and $C(v)$ and $\rho(h)$ as shown in the question.

I used Forward Euler method to solve these equations with $dt = 0.001$. I used C language code:

ExamQ5.c

And i used this python code to plot the results:

ExamQ5Plot.py

The results are in the following plots:

Notice that at $A = 0.120m^2$, the velocities are higher. Also, the flight time(can be found in h VS t txt) of $A = 0.120m^2$ is less that of $A = 0.450m^2$:

$$
A = 0.120m^2 : \text{Flight time} = 1.695020 \times 10^2 s \tag{18}
$$

$$
A = 0.450m^2 : \text{Flight time} = 2.962780 \times 10^2 s \tag{19}
$$

We notice that as the area is being smaller, the drag force is smaller. Hence, the velocity gets higher.

Figure 6: v VS h; above Fig: $A = 0.120m^2$, below Fig: $A = 0.450m^2$ - Q5