PHYS338:Computational Physics HW8

Student Name: Hamza AlHasan-1181636

Submission Date: Dec 11, 2020

First, we construct a linear equation describes the system. We have:

$$M = c_0 + c_1 a + c_2 s + c_3 v + c_4 \rho \tag{1}$$

Let $C_{5\times 1}$ be the coefficients values, $M_{N\times 1}$ be the masses matrix, and $A_{N\times 5}$ be the data matrix, such that: the first column is ones, and the other columns are the data of a, s, v, and ρ respectively. Therefore we have the following linear equation:

$$A * C = M \tag{2}$$

We want to find a matrix such that if we multiply it by A (from the right), it results the identity matrix, i.e, the inverse of a non-square matrix. In *matlab*, such a matrix is defined as pinv(A). Hence,

$$pinv(A) * A = I \tag{3}$$

Then, to find C:

$$A * C = M \tag{4}$$

$$pinv(A) * A * C = pinv(A) * M$$
(5)

$$C = pinv(A) * M \tag{6}$$

Matlab Code:

					M =
A =					1.0e+04 *
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	0.2160 0.2110 0.2610 0.2040 0.2010 0.1960 0.2370 0.2070 0.1990	-0.0016 -0.0015 -0.0023 -0.0015 -0.0016 -0.0017 -0.0020 -0.0015 -0.0021	89.5300 89.1100 89.9600 85.4200 86.3000 84.1400 88.0600 86.5200 82.7500	1.2500 1.2500 1.2400 1.2700 1.2800 1.2500 1.2500 1.2200 1.2200 1.2100	6.7291 6.7829 5.6629 6.3580 6.6519 5.7042 5.7709 6.3551 5.4550

Figure 1: The matrices A and M

>> pinv(A)

ans =

1.0e+03 *

-0.0147	-0.0054	-0.0060	0.0074	-0.0150	-0.0003	0.0077	0.0230	0.0041
-0.0295	-0.0139	0.0113	0.0294	-0.0109	-0.0041	0.0173	0.0214	-0.0210
-1.1559	-0.1183	-0.3768	1.5075	-0.6749	-0.2796	0.6002	1.8246	-1.3268
0.0002	0.0001	-0.0000	-0.0002	0.0000	-0.0000	-0.0001	-0.0001	0.0001
-0.0013	-0.0027	0.0032	0.0067	0.0101	0.0029	-0.0027	-0.0107	-0.0055

Figure 2: pinv(A) matrix

					>> C=pinv(A)*M
>> pinv(A)*A	L				C =
ans =					1.0e+06 *
1.0000 0.0000 0.0000 -0.0000 0.0000	0.0000 1.0000 0.0000 -0.0000 -0.0000	-0.0000 -0.0000 1.0000 0.0000 0.0000	0.0000 0.0000 0.0000 1.0000 -0.0000	-0.0000 -0.0000 0.0000 0.0000 1.0000	-0.0977 -0.1649 6.0750 0.0018 0.0377

Figure 3: pinv(A) * A = I & C matrix

Now, if we add a new flight data, then we have :

```
>> M1=C(1,1)+0.209*C(2,1)-0.0014874*C(3,1)+83.52*C(4,1)+1.24*C(5,1)
M1 =
    5.7931e+04
>> error=M1-57715.48
error =
    215.5317
>> percentage_error=error*100/57715.48
percentage_error =
    0.3734
```

The percentage error is 0.3734%, which is a good predicting for the mass of the aircraft.