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Why Study Statistical
Mechanics? 1

Many systems in nature are far too complex to analyze directly. Solving
for the motion of all the atoms in a block of ice – or the boulders in
an earthquake fault, or the nodes on the Internet – is simply infeasible.
Despite this, such systems often show simple, striking behavior. We use
statistical mechanics to explain the simple behavior of complex systems.

Statistical mechanics brings together concepts and methods that infil-
trate many fields of science, engineering, and mathematics. Ensembles,
entropy, phases, Monte Carlo, emergent laws, and criticality – all are
concepts and methods rooted in the physics and chemistry of gases and
liquids, but have become important in mathematics, biology, and com-
puter science. In turn, these broader applications bring perspective and
insight to our fields.

Let’s start by briefly introducing these pervasive concepts and meth-
ods.

Ensembles: The trick of statistical mechanics is not to study a single
system, but a large collection or ensemble of systems. Where under-
standing a single system is often impossible, calculating the behavior of
an enormous collection of similarly prepared systems often allows one to
answer most questions that science can be expected to address.

For example, consider the random walk (figure 1.1). (You might imag-
ine it as the trajectory of a particle in a gas, or the configuration of a
polymer in solution.) While the motion of any given walk is irregular
(left) and hard to predict, simple laws describe the distribution of mo-
tions of an infinite ensemble of random walks starting from the same
initial point (right). Introducing and deriving these ensembles are the
themes of chapters 3, 4, and 6.

Entropy: Entropy is the most influential concept arising from statis-
tical mechanics (chapter 5). Entropy, originally understood as a thermo-
dynamic property of heat engines that could only increase, has become
science’s fundamental measure of disorder and information. Although it
controls the behavior of particular systems, entropy can only be defined
within a statistical ensemble: it is the child of statistical mechanics,
with no correspondence in the underlying microscopic dynamics. En-
tropy now underlies our understanding of everything from compression
algorithms for pictures on the Web to the heat death expected at the
end of the universe.

Phases. Statistical mechanics explains the existence and properties of

3



4 Why Study Statistical Mechanics?

Fig. 1.1 Random Walks. The motion of molecules in a gas, or bacteria in a
liquid, or photons in the Sun, is described by an irregular trajectory whose velocity
rapidly changes in direction at random. Describing the specific trajectory of any
given random walk (left) is not feasible or even interesting. Describing the statistical
average properties of a large number of random walks is straightforward; at right is
shown the endpoints of random walks all starting at the center. The deep principle
underlying statistical mechanics is that it is often easier to understand the behavior
of ensembles of systems.

phases. The three common phases of matter (solids, liquids, and gases)
have multiplied into hundreds: from superfluids and liquid crystals, to
vacuum states of the universe just after the Big Bang, to the pinned
and sliding ‘phases’ of earthquake faults. Phases have an integrity or
stability to small changes in external conditions or composition1 – with
deep connections to perturbation theory, section 8.1. Phases often have
a rigidity or stiffness, which is usually associated with a spontaneously
broken symmetry. Understanding what phases are and how to describe
their properties, excitations, and topological defects will be the themes
of chapters 7,2 and 9.2Chapter 7 focuses on quantum sta-

tistical mechanics: quantum statistics,
metals, insulators, superfluids, Bose
condensation, . . . To keep the presenta-
tion accessible to a broad audience, the
rest of the text is not dependent upon
knowing quantum mechanics.

Computational Methods: Monte–Carlo methods use simple rules
to allow the computer to find ensemble averages in systems far too com-
plicated to allow analytical evaluation. These tools, invented and sharp-
ened in statistical mechanics, are used everywhere in science and tech-
nology – from simulating the innards of particle accelerators, to studies
of traffic flow, to designing computer circuits. In chapter 8, we introduce
the Markov–chain mathematics that underlies Monte–Carlo.

Emergent Laws. Statistical mechanics allows us to derive the new

1Water remains a liquid, with only perturbative changes in its properties, as one
changes the temperature or adds alcohol. Indeed, it is likely that all liquids are
connected to one another, and indeed to the gas phase, through paths in the space
of composition and external conditions.

To be pub. Oxford UP, ∼Fall’05 www.physics.cornell.edu/sethna/StatMech/



5

Fig. 1.2 Temperature: the Ising
model at the critical temperature.
Traditional statistical mechanics fo-
cuses on understanding phases of mat-
ter, and transitions between phases.
These phases – solids, liquids, mag-
nets, superfluids – are emergent prop-
erties of many interacting molecules,
spins, or other degrees of free-
dom. Pictured here is a simple
two-dimensional model at its mag-
netic transition temperature Tc. At
higher temperatures, the system is
non-magnetic: the magnetization is
on average zero. At the temperature
shown, the system is just deciding
whether to magnetize upward (white)
or downward (black). While predict-
ing the time dependence of all these
degrees of freedom is not practical or
possible, calculating the average be-
havior of many such systems (a statis-
tical ensemble) is the job of statistical
mechanics.

laws that emerge from the complex microscopic behavior. These laws be-
come exact only in certain limits. Thermodynamics – the study of heat,
temperature, and entropy – becomes exact in the limit of large numbers
of particles. Scaling behavior and power laws – both at phase transitions
and more broadly in complex systems – emerge for large systems tuned
(or self–organized) near critical points. The right figure 1.1 illustrates
the simple law (the diffusion equation) that describes the evolution of
the end-to-end lengths of random walks in the limit where the number
of steps becomes large. Developing the machinery to express and derive
these new laws are the themes of chapters 9 (phases), and 12 (critical
points). Chapter 10 systematically studies the fluctuations about these
emergent theories, and how they relate to the response to external forces.

Phase Transitions. Beautiful spatial patterns arise in statistical
mechanics at the transitions between phases. Most of these are abrupt
phase transitions: ice is crystalline and solid until abruptly (at the edge
of the ice cube) it becomes unambiguously liquid. We study nucleation
and the exotic structures that evolve at abrupt phase transitions in chap-
ter 11.

Other phase transitions are continuous. Figure 1.2 shows a snapshot
of the Ising model at its phase transition temperature Tc. The Ising
model is a lattice of sites that can take one of two states. It is used as a
simple model for magnets (spins pointing up or down), two component
crystalline alloys (A or B atoms), or transitions between liquids and gases
(occupied and unoccupied sites).3 All of these systems, at their critical

3The Ising model has more far-flung applications: the three–dimensional Ising
model has been useful in the study of quantum gravity.
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6 Why Study Statistical Mechanics?

Fig. 1.3 Dynamical Systems and
Chaos. The ideas and methods of
statistical mechanics have close ties
to many other fields. Many nonlin-
ear differential equations and map-
pings, for example, have qualitative
changes of behavior (bifurcations) as
parameters are tuned, and can ex-
hibit chaotic behavior. Here we see
the long–time ‘equilibrium’ dynamics
of a simple mapping of the unit in-
terval into itself as a parameter µ is
tuned. Just as an Ising magnet goes
from one unmagnetized state above Tc

to two magnetized states below Tc,
so this system goes from a periodic
state below µ1 to a period–two cycle
above µ1. Above µ∞, the behavior
is chaotic. The study of chaos has
provided us with our fundamental ex-
planation for the increase of entropy
in statistical mechanics. Conversely,
tools developed in statistical mechan-
ics have been central to the under-
standing of the onset of chaos.

1

x*(  )µ

µ

µ
µ

2

points, share the self-similar, fractal structures seen in the figure: the
system can’t decide whether to stay gray or to separate into black and
white, so it fluctuates on all scales. Another self–similar, fractal object
emerges from random walks (left figure 1.1, also figure 2.2) even without
tuning to a critical point: a blowup of a small segment of the walk looks
statistically similar to the original path. Chapter 12 develops the scaling
and renormalization–group techniques that we use to understand these
self–similar, fractal properties.

Applications. Science grows through accretion, but becomes po-
tent through distillation. Each generation expands the knowledge base,
extending the explanatory power of science to new domains. In these
explorations, new unifying principles, perspectives, and insights lead us
to a deeper, simpler understanding of our fields.

The period doubling route to chaos (figure 1.3) is an excellent ex-
ample of how statistical mechanics has grown tentacles into disparate
fields, and has been enriched thereby. On the one hand, renormalization–
group methods drawn directly from statistical mechanics (chapter 12)
were used to explain the striking scaling behavior seen at the onset of
chaos (the geometrical branching pattern at the left of the figure). These
methods also predicted that this behavior should be universal: this same
period–doubling cascade, with quantitatively the same scaling behavior,
would be seen in vastly more complex systems. This was later verified
everywhere from fluid mechanics to models of human walking. Con-
versely, the study of chaotic dynamics has provided our most convincing
microscopic explanation for the increase of entropy in statistical mechan-
ics (chapter 5), and is the fundamental explanation of why ensembles
To be pub. Oxford UP, ∼Fall’05 www.physics.cornell.edu/sethna/StatMech/



7

are useful and statistical mechanics is possible.
We provide here the distilled version of statistical mechanics, invigo-

rated and clarified by the accretion of the last four decades of research.
The text in each chapter will address those topics of fundamental im-
portance to all who study our field: the exercises will provide in-depth
introductions to the accretion of applications in mesoscopic physics,
astrophysics, dynamical systems, information theory, low–temperature
physics, statistics, biology, lasers, and complexity theory. The goal is to
broaden the presentation to make it useful and comprehensible to so-
phisticated biologists, mathematicians, computer scientists, or complex–
systems sociologists – thereby enriching the subject for the physics and
chemistry students, many of whom will likely make excursions in later
life into these disparate fields.

Exercises

Exercises 1.1–1.3 provide a brief review of probability
distributions. Quantum Dice explores discrete distribu-
tions and also acts as a gentle preview into Bose and
Fermi statistics. Probability Distributions introduces the
form and moments for the key distributions for continuous
variables and then introduces convolutions and multidi-
mensional distributions. Waiting Times shows the para-
doxes one can concoct by confusing different ensemble av-
erages. Stirling part (a) derives the useful approximation
n! ∼ √2πn(n/e)n; more advanced students can continue
in the later parts to explore asymptotic series, which arise
in typical perturbative statistical mechanics calculations.
Random Matrix Theory briefly introduces a huge field,
with applications in nuclear physics, mesoscopic physics,
and number theory; part (a) provides a good exercise in
histograms and ensembles, and the remaining more ad-
vanced parts illustrate level repulsion, the Wigner sur-
mise, universality, and emergent symmetry.

(1.1) Quantum Dice. (Quantum) (With Buchan. [15])

You are given several unusual ‘three-sided’ dice which,
when rolled, show either one, two, or three spots. There
are three games played with these dice, Distinguishable,
Bosons and Fermions. In each turn in these games, the
player rolls one die at a time, starting over if required
by the rules, until a legal combination occurs. In Dis-
tinguishable, all rolls are legal. In Bosons, a roll is legal
only if the new number is larger or equal to the preced-
ing number. In Fermions, a roll is legal only if the new

number is strictly larger than the preceding number. See
figure 1.4 for a table of possibilities after rolling two dice.

3

1

2

1 2 3

3

43

4

2

Roll #1

R
ol

l #
2 5 6

5

4

Fig. 1.4 Rolling two dice. In Bosons, one accepts only the
rolls in the shaded squares, with equal probability 1/6. In Fer-
mions, one accepts only the rolls in the darkly shaded squares
(not including the diagonal), with probability 1/3.

(a) Presume the dice are fair: each of the three numbers
of dots shows up 1/3 of the time. For a legal turn rolling a
die twice in Bosons, what is the probability ρ(4) of rolling
a 4? Similarly, among the legal Fermion turns rolling two
dice, what is the probability ρ(4)?

Our dice rules are the same ones that govern the quantum
statistics of identical particles.

c©James P. Sethna, April 19, 2005 Entropy, Order Parameters, and Complexity



8 Why Study Statistical Mechanics?

(b) For a legal turn rolling three ‘three-sided’ dice in Fer-
mions, what is the probability ρ(6) of rolling a 6? (Hint:
there’s a Fermi exclusion principle: when playing Fer-
mions, no two dice can have the same number of dots
showing.) Electrons are fermions; no two electrons can
be in exactly the same state.

When rolling two dice in Bosons, there are six different
legal turns (11), (12), (13), . . . , (33): half of them are
doubles (both numbers equal), when for plain old Dis-
tinguishable turns only one third would be doubles4: the
probability of getting doubles is enhanced by 1.5 times
in two-roll Bosons. When rolling three dice in Bosons,
there are ten different legal turns (111), (112), (113), . . . ,
(333). When rolling M dice each with N sides in Bosons,
one can show that there are

(
N+M−1

M

)
= (N+M−1)!

M!(N−1)!
legal

turns.

(c) In a turn of three rolls, what is the enhancement of
probability of getting triples in Bosons over that in Distin-
guishable? In a turn of M rolls, what is the enhancement
of probability for generating an M-tuple (all rolls having
the same number of dots showing)?

Notice that the states of the dice tend to cluster together
in Bosons. Examples of real bosons clustering into the
same state include Bose condensation (section 7.6.3) and
lasers (exercise 7.7).

(1.2) Probability Distributions. (Basic)

Most people are more familiar with probabilities for dis-
crete events (like coin flips and card games), than with
probability distributions for continuous variables (like hu-
man heights and atomic velocities). The three contin-
uous probability distributions most commonly encoun-
tered in physics are: (i) Uniform: ρuniform(x) = 1 for
0 ≤ x < 1, ρ(x) = 0 otherwise; produced by ran-
dom number generators on computers; (ii) Exponential:
ρexponential(t) = e−t/τ/τ for t ≥ 0, familiar from radioac-
tive decay and used in the collision theory of gases; and

(iii) Gaussian: ρgaussian(v) = e−v2/2σ2
/(
√

2πσ), describ-
ing the probability distribution of velocities in a gas, the
distribution of positions at long times in random walks,
the sums of random variables, and the solution to the
diffusion equation.

(a) Likelihoods. What is the probability that a ran-
dom number uniform on [0, 1) will happen to lie between
x = 0.7 and x = 0.75? That the waiting time for a ra-
dioactive decay of a nucleus will be more than twice the ex-
ponential decay time τ? That your score on an exam with
Gaussian distribution of scores will be greater than 2σ
above the mean? (Note:

∫∞
2

(1/
√

2π) exp(−v2/2) dv =

(1− erf(
√

2))/2 ∼ 0.023.)

(b) Normalization, Mean, and Standard De-
viation. Show that these probability distributions
are normalized:

∫
ρ(x)dx = 1. What is the

mean x0 of each distribution? The standard de-

viation
√∫

(x− x0)2ρ(x)dx? (You may use

the formulas
∫∞
−∞(1/

√
2π) exp(−x2/2) dx = 1 and∫∞

−∞ x2(1/
√

2π) exp(−x2/2) dx = 1.)

(c) Sums of variables. Draw a graph of the probabil-
ity distribution of the sum x+ y of two random variables
drawn from a uniform distribution on [0, 1). Argue in gen-
eral that the sum z = x+ y of random variables with dis-
tributions ρ1(x) and ρ2(y) will have a distribution given
by the convolution ρ(z) =

∫
ρ1(x)ρ2(z − x) dx.

Multidimensional probability distributions. In sta-
tistical mechanics, we often discuss probability distribu-
tions for many variables at once (for example, all the
components of all the velocities of all the atoms in a
box). Let’s consider just the probability distribution of
one molecule’s velocities. If vx, vy , and vz of a molecule
are independent and each distributed with a Gaussian
distribution with σ =

√
kT/M (section 3.2.2) then we de-

scribe the combined probability distribution as a function
of three variables as the product of the three Gaussians:

ρ(vx, vy , vz) = 1/(2π(kT/M))3/2 exp(−Mv2/2kT )

=

(√
M

2πkT
e

−Mv2
x

2kT

)(√
M

2πkT
e

−Mv2
y

2kT

)
(√

M

2πkT
e

−Mv2
z

2kT

)
. (1.1)

(d) Show, using your answer for the standard deviation
of the Gaussian in part (b), that the mean kinetic energy
is kT/2 per dimension. Show that the probability that the
speed is v = |v| is given by a Maxwellian distribution

ρMaxwell(v) =
√

2/π(v2/σ3) exp(−v2/2σ2). (1.2)

(Hint: What is the shape of the region in 3D velocity
space where |v| is between v and v + δv? The area of a
sphere of radius R is 4πR2.)

(1.3) Waiting times. (Math) (With Brouwer. [14])

On a highway, the average numbers of cars and buses go-
ing east are equal: each hour, on average, there are 12
buses and 12 cars passing by. The buses are scheduled:
each bus appears exactly 5 minutes after the previous one.
On the other hand, the cars appear at random: in a short
interval dt, the probability that a car comes by is dt/τ ,

4For Fermions, of course, there are no doubles.
To be pub. Oxford UP, ∼Fall’05 www.physics.cornell.edu/sethna/StatMech/
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with τ = 5 minutes. An observer is counting the cars and
buses.

(a) Verify that each hour the average number of cars pass-
ing the observer is 12.

(b) What is the probability Pbus(n) that n buses pass the
observer in a randomly chosen 10 minute interval? And
what is the probability Pcar(n) that n cars pass the ob-
server in the same time interval? (Hint: For the cars,
one way to proceed is to divide the interval into many
small slivers of time dt: in each sliver the probability is
dt/τ that a car passes, and 1 − dt/τ ≈ e−dt/τ that no
car passes. However you do it, you should get a Poisson
distribution, Pcar(n) = ane−a/n! See also exercise 3.5.)

(c) What is the probability distribution ρbus and ρcar for
the time interval ∆ between two successive buses and
cars, respectively? What are the means of these distri-
butions? (Hint: To answer this for the bus, you’ll
need to use the Dirac δ-function,5 which is zero except
at zero and infinite at zero, with integral equal to one:∫ c

a
f(x)δ(x− b) dx = f(b).)

(d) If another observer arrives at the road at a randomly
chosen time, what is the probability distribution for the
time ∆ she has to wait for the first bus to arrive? What
is the probability distribution for the time she has to wait
for the first car to pass by? (Hint: What would the dis-
tribution of waiting times be just after a car passes by?
Does the time of the next car depend at all on the previ-
ous car?) What are the means of these distributions?

The mean time between cars is 5 minutes. The mean
time to the next car should be 5 minutes. A little thought
should convince you that the mean time since the last car
should also be 5 minutes. But 5 + 5 �= 5: how can this
be?

The same physical quantity can have different means
when averaged in different ensembles! The mean time
between cars in part (c) was a gap average: it weighted
all gaps between cars equally. The mean time to the next
car from part (d) was a time average: the second observer
arrives with equal probability at every time, so is twice
as likely to arrive during a gap between cars that is twice
as long.

(e) In part (c), ρgap
car (∆) was the probability that a ran-

domly chosen gap was of length ∆. Write a formula for
ρtime
car (∆), the probability that the second observer, arriv-

ing at a randomly chosen time, will be in a gap between
cars of length ∆. (Hint: Make sure it’s normalized.)
From ρtime

car (∆), calculate the average length of the gaps
between cars, using the time–weighted average measured
by the second observer.

(1.4) Stirling’s Approximation and Asymptotic
Series. (Mathematics)

One important approximation useful in statistical me-
chanics is Stirling’s approximation [102] for n!, valid for
large n. It’s not a traditional Taylor series: rather, it’s
an asymptotic series. Stirling’s formula is extremely use-
ful in this course, and asymptotic series are important in
many fields of applied mathematics, statistical mechan-
ics [100], and field theory [101], so let’s investigate them
in detail.

(a) Show, by converting the sum to an integral, that
log(n!) ∼ (n + 1/2) log(n + 1/2) − n − 1/2 log(1/2), where
(as always in this book) log represents the natural log-
arithm, not log10. Show that this is compatible with the
more precise and traditional formula n! ≈ (n/e)n

√
2πn;

in particular, show that the difference of the logs goes
to a constant as n → ∞. Show that the latter is com-
patible with the first term in the series we use below,

n! ∼ (2π/(n + 1))
1/2e−(n+1)(n + 1)n+1, in that the dif-

ference of the logs goes to zero as n → ∞. Related for-
mulæ:

∫
log x dx = x log x− x, and log(n+ 1)− log(n) =

log(1 + 1/n) ∼ 1/n up to terms of order 1/n2.

We want to expand this function for large n: to do this,
we need to turn it into a continuous function, interpolat-
ing between the integers. This continuous function, with
its argument perversely shifted by one, is Γ(z) = (z− 1)!.
There are many equivalent formulas for Γ(z): indeed, any
formula giving an analytic function satisfying the recur-
sion relation Γ(z + 1) = zΓ(z) and the normalization
Γ(1) = 1 is equivalent (by theorems of complex analy-
sis). We won’t use it here, but a typical definition is
Γ(z) =

∫∞
0
e−ttz−1dt: one can integrate by parts to show

that Γ(z + 1) = zΓ(z).

(b) Show, using the recursion relation Γ(z + 1) = zΓ(z),
that Γ(z) is infinite (has a pole) at all the negative inte-
gers.

Stirling’s formula is extensible [9, p.218] into a nice ex-
pansion of Γ(z) in powers of 1/z = z−1:

Γ[z] = (z − 1)! (1.3)

∼(2π/z)
1/2e−zzz(1 + (1/12)z−1

+ (1/288)z−2 − (139/51840)z−3

− (571/2488320)z−4 + (163879/209018880)z−5

+ (5246819/75246796800)z−6

− (534703531/902961561600)z−7

− (4483131259/86684309913600)z−8 + ...)

5Mathematically, this isn’t a function, but rather a distribution or a measure.
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This looks like a Taylor series in 1/z, but is subtly differ-
ent. For example, we might ask what the radius of con-
vergence [104] of this series is. The radius of convergence
is the distance to the nearest singularity in the complex
plane.

(c) Let g(ζ) = Γ(1/ζ); then Stirling’s formula is some
stuff times a Taylor series in ζ. Plot the poles of g(ζ) in
the complex ζ plane. Show, that the radius of convergence
of Stirling’s formula applied to g must be zero, and hence
no matter how large z is, Stirling’s formula eventually
diverges.

Indeed, the coefficient of z−j eventually grows rapidly;
Bender and Orszag [9, p.218] show that the odd coeffi-
cients (A1 = 1/12, A3 = −139/51840 . . . ) asymptotically
grow as

A2j+1 ∼ (−1)j2(2j)!/(2π)2(j+1) . (1.4)

(d) Show explicitly, using the ratio test applied to for-
mula 1.4, that the radius of convergence of Stirling’s for-
mula is indeed zero.6

This in no way implies that Stirling’s formula isn’t valu-
able! An asymptotic series of length n approaches f(z) as
z gets big, but for fixed z it can diverge as n gets larger
and larger. In fact, asymptotic series are very common,
and often are useful for much larger regions than are Tay-
lor series.

(e) What is 0!? Compute 0! using successive terms in
Stirling’s formula (summing to AN for the first few N .)
Considering that this formula is expanding about infinity,
it does pretty well!

Quantum electrodynamics these days produces the most
precise predictions in science. Physicists sum enormous
numbers of Feynman diagrams to produce predictions of
fundamental quantum phenomena. Dyson argued that
quantum electrodynamics calculations give an asymptotic
series [101]; the most precise calculation in science takes
the form of a series which cannot converge!

(1.5) Random Matrix Theory. (Math, Quantum)
(With Brouwer. [14])

One of the most active and unusual applications of ensem-
bles is random matrix theory, used to describe phenomena
in nuclear physics, mesoscopic quantum mechanics, and
wave phenomena. Random matrix theory was invented in

a bold attempt to describe the statistics of energy level
spectra in nuclei. In many cases, the statistical behavior
of systems exhibiting complex wave phenomena – almost
any correlations involving eigenvalues and eigenstates –
can be quantitatively modeled using ensembles of matri-
ces with completely random, uncorrelated entries!

To do this exercise, you’ll need to find a software envi-
ronment in which it is easy to (i) make histograms and
plot functions on the same graph, (ii) find eigenvalues of
matrices, sort them, and collect the differences between
neighboring ones, and (iii) generate symmetric random
matrices with Gaussian and integer entries. Mathemat-
ica, Matlab, Octave, and Python are all good choices.
For those who are not familiar with one of these pack-
ages, I will post hints on how to do these three things on
the Random Matrix Theory site in the computer exercise
section on the book Web site [108].

The most commonly explored ensemble of matrices is the
Gaussian Orthogonal Ensemble. Generating a member
H of this ensemble of size N ×N takes two steps:

• Generate a N ×N matrix whose elements are ran-
dom numbers with Gaussian distributions of mean
zero and standard deviation σ = 1.

• Add each matrix to its transpose to symmetrize it.

As a reminder, the Gaussian or normal probability distri-
bution gives a random number x with probability

ρ(x) =
1√
2πσ

e−x2/2σ2
. (1.5)

One of the most striking properties that large random
matrices share is the distribution of level splittings.

(a) Generate an ensemble with M = 1000 or so GOE ma-
trices of size N = 2, 4, and 10. (More is nice.) Find the
eigenvalues λn of each matrix, sorted in increasing or-
der. Find the difference between neighboring eigenvalues
λn+1−λn, for n, say, equal to7 N/2. Plot a histogram of
these eigenvalue splittings divided by the mean splitting,
with bin–size small enough to see some of the fluctuations.
(Hint: debug your work with M = 10, and then change
to M = 1000.)

What is this dip in the eigenvalue probability near zero?
It’s called level repulsion.

6If you don’t remember about radius of convergence, see [104]. Here you’ll be using
every other term in the series, so the radius of convergence is

√
|A2j−1/A2j+1|.

7In the experiments, they typically plot all the eigenvalue splittings. Since the
mean splitting between eigenvalues will change slowly, this smears the distributions
a bit. So, for example, the splittings between the largest and second–largest eigen-
values will be typically rather larger for the GOE ensemble than for pairs near the
middle. If you confine your plots to a small range near the middle, the smearing
would be small, but it’s so fast to calculate new ones we just keep one pair.

To be pub. Oxford UP, ∼Fall’05 www.physics.cornell.edu/sethna/StatMech/
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For N = 2 the probability distribution for the eigenvalue
splitting can be calculated pretty simply. Let our matrix

be M =

(
a b
b c

)
.

(b) Show that the eigenvalue difference for M is λ =√
(c− a)2 + 4b2 = 2

√
d2 + b2 where d = (c − a)/2.8 If

the probability distribution of matrices ρM (d, b) is contin-
uous and finite at d = b = 0, argue that the probability
density ρ(λ) of finding an energy level splitting near zero
vanishes at λ = 0, giving us level repulsion. (Both d and
b must vanish to make λ = 0.) (Hint: go to polar coor-
dinates, with λ the radius.)

(c) Calculate analytically the standard deviation of a di-
agonal and an off-diagonal element of the GOE ensemble
(made by symmetrizing Gaussian random matrices with
σ = 1). You may want to check your answer by plotting
your predicted Gaussians over the histogram of H11 and
H12 from your ensemble in part (a). Calculate analyti-
cally the standard deviation of d = (c−a)/2 of the N = 2
GOE ensemble of part (b), and show that it equals the
standard deviation of b.

(d) Calculate a formula for the probability distribution of
eigenvalue spacings for the N = 2 GOE, by integrating
over the probability density ρM (d, b). (Hint: polar coor-
dinates again.)

If you rescale the eigenvalue splitting distribution you
found in part (d) to make the mean splitting equal to
one, you should find the distribution

ρWigner(s) =
πs

2
e−πs2/4. (1.6)

This is called the Wigner surmise: it is within 2% of the
correct answer for larger matrices as well.9

(e) Plot equation 1.6 along with your N = 2 results from
part (a). Plot the Wigner surmise formula against the
plots for N = 4 and N = 10 as well.

Let’s define a ±1 ensemble of real symmetric matrices, by
generating a N ×N matrix whose elements are indepen-
dent random variables each ±1 with equal probability.

(f) Generate an ensemble with M = 1000 ±1 symmetric
matrices with size N = 2, 4, and 10. Plot the eigenvalue
distributions as in part (a). Are they universal (indepen-
dent of the ensemble up to the mean spacing) for N = 2
and 4? Do they appear to be nearly universal10 (the same
as for the GOE in part (a)) for N = 10? Plot the Wigner
surmise along with your histogram for N = 10.

The GOE ensemble has some nice statistical properties.
The ensemble is invariant under orthogonal transforma-
tions

H → RTHR with RT = R−1. (1.7)

(g) Show that Tr[HTH ] is the sum of the squares of all
elements of H. Show that this trace is invariant un-
der orthogonal coordinate transformations (that is, H →
RTHR with RT = R−1). (Hint: Remember, or derive,
the cyclic invariance of the trace: Tr[ABC] = Tr[CAB].)

Note that this trace, for a symmetric matrix, is the sum
of the squares of the diagonal elements plus twice the
squares of the upper triangle of off–diagonal elements.
That is convenient, because in our GOE ensemble the
variance (squared standard deviation) of the off–diagonal
elements is half that of the diagonal elements.

(h) Write the probability density ρ(H) for finding GOE
ensemble member H in terms of the trace formula in
part (g). Argue, using your formula and the invariance
from part (g), that the GOE ensemble is invariant under
orthogonal transformations: ρ(RTHR) = ρ(H).

This is our first example of an emergent symmetry. Many
different ensembles of symmetric matrices, as the size N
goes to infinity, have eigenvalue and eigenvector distribu-
tions that are invariant under orthogonal transformations
even though the original matrix ensemble did not have
this symmetry. Similarly, rotational symmetry emerges
in random walks on the square lattice as the number of
steps N goes to infinity, and also emerges on long length
scales for Ising models at their critical temperatures.11

8Note that the eigenvalue difference doesn’t depend on the trace of M , a+ c, only
on the difference c− a = 2d.

9The distribution for large matrices is known and universal, but is much more
complicated to calculate.

10Note the spike at zero. There is a small probability that two rows or columns of
our matrix of ±1 will be the same, but this probability vanishes rapidly for large N .

11A more exotic emergent symmetry underlies Fermi liquid theory: the effective
interactions between electrons disappear near the Fermi energy: the fixed point has
an emergent gauge symmetry.
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Random Walks and
Emergent Properties 2

What makes physics possible? Why are humans able to find simple
mathematical laws that describe the real world? Our physical laws
are not direct statements about the underlying reality of the universe.
Rather, our laws emerge out of far more complex microscopic behavior.1 1You may think that Newton’s law of

gravitation, or Einstein’s refinement to
it, is more fundamental than the dif-
fusion equation. You would be cor-
rect: gravitation applies to everything.
But the simple macroscopic law of grav-
itation emerges, from a quantum ex-
change of immense numbers of virtual
gravitons, just as the diffusion equa-
tion emerges from large numbers of long
random walks. The diffusion equation
and other continuum statistical me-
chanics laws are special to particular
systems, but they emerge from the mi-
croscopic theory in much the same way
as gravitation and the other fundamen-
tal laws of nature do.

Statistical mechanics provides powerful tools for understanding simple
behavior that emerges from underlying complexity.

In this chapter, we will explore the emergent behavior for random
walks. Random walks are paths that take successive steps in random
directions. They arise often in statistical mechanics: as partial sums of
fluctuating quantities, as trajectories of particles undergoing repeated
collisions, and as the shapes for long, linked systems like polymers. They
have two kinds of emergent behavior. First, an individual random walk,
after a large number of steps, becomes fractal or scale invariant (sec-
tion 2.1). Secondly, the endpoint of the random walk has a probability
distribution that obeys a simple continuum law: the diffusion equation
(section 2.2). Both of these behaviors are largely independent of the
microscopic details of the walk: they are universal. Random walks in
an external field (section 2.3) provide our first examples of conserved
currents, linear response, and Boltzmann distributions. Finally we use
the diffusion equation to introduce Fourier and Greens function solution
techniques (section 2.4). Random walks encapsulate many of the themes
and methods of statistical mechanics.

2.1 Random Walk Examples: Universality
and Scale Invariance

We illustrate random walks with three examples: coin flips, the drunk-
ard’s walk, and polymers.

Coin Flips. Statistical mechanics often demands sums or averages of
a series of fluctuating quantities: sN =

∑N
i=1 �i. The energy of a material

is a sum over the energies of the molecules composing the material; your
grade on a statistical mechanics exam is the sum of the scores on many
individual questions. Imagine adding up this sum one term at a time:
the path s1, s2, . . . forms an example of a one-dimensional random walk.

For example, consider flipping a coin, recording the difference sN =
hN − tN between the number of heads and tails found. Each coin flip

13



14 Random Walks and Emergent Properties

contributes �i = ±1 to the total. How big a sum sN =
∑N

i=1 �i =
(heads − tails) do you expect after N flips? The average of sN is of
course zero, because positive and negative steps are equally likely. A
better measure of the characteristic distance moved is the root–mean–
square (RMS) number2

√
〈s2N 〉. After one coin flip,2We use angle brackets 〈X〉 to denote

averages over various ensembles: we’ll
add subscripts to the brackets where
there may be confusion about which en-
semble we are using. Here our ensemble
contains all 2N possible sequences of N
coin flips.

〈s21〉 = 1 = 1/2(−1)2 + 1/2(1)2; (2.1)

after two and three coin flips

〈s22〉 = 2 = 1/4(−2)2 + 1/2(0)2 + 1/4(2)2; (2.2)

〈s23〉 = 3 = 1/8(−3)2 + 3/8(−1)2 + 3/8(1)2 + 1/8(3)2.

Does this pattern continue? Because �N = ±1 with equal probability
independent of the history, 〈�NsN−1〉 = 1/2〈(+1)sN−1〉+1/2〈(−1)sN−1〉 =
0. We know 〈�2N 〉 = 1; if we assume 〈s2N−1〉 = N − 1 we can prove by
induction on N that

〈s2N 〉 = 〈(sN−1 + �N )2〉 = 〈s2N−1〉 +������
2〈sN−1 �N〉 + 〈�2N 〉

= 〈s2N−1〉 + 1 = N. (2.3)

Hence the RMS average of (heads-tails) for N coin flips,

σs =
√
〈s2N 〉 =

√
N. (2.4)

Notice that we chose to count the difference between the number of
heads and tails. Had we instead just counted the number of heads hN ,
then 〈hN 〉 would grow proportionately to N : 〈hN 〉 = N/2. We would
then be interested in the fluctuations of hN about N/2, measured most
easily by squaring the difference between the particular random walks
and the average random walk: σ2

h = 〈(hN − 〈hN 〉)2〉 = N/4.3 The3It’s N/4 for h instead of N for s be-
cause each step changes sN by ±2, and
hN only by ±1: the standard deviation
σ is in general proportional to the step
size.

variable σh is the standard deviation of the sum hN : this is an example
of the typical behavior that the standard deviation of the sum of N
random variables grows proportionally to

√
N .

The sum, of course, grows linearly with N , so (if the average isn’t
zero) the fluctuations become tiny in comparison to the sum. This is
why experimentalists often make repeated measurements of the same
quantity and take the mean. Suppose we were to measure the mean
number of heads per coin toss, aN = hN/N . We see immediately that
the fluctuations in aN will also be divided by N , so

σa = σh/N = 1/(2
√
N). (2.5)

The standard deviation of the mean of N measurements is proportional
to 1/

√
N .

Drunkard’s Walk. Random walks in higher dimensions arise as
trajectories that undergo successive random collisions or turns: for ex-
ample, the trajectory of a perfume molecule in a sample of air.4 Because

4Real perfume in a real room will primarily be transported by convection; in
liquids and gases, diffusion dominates usually only on short length scales. Solids
don’t convect, so thermal or electrical conductivity would be more accurate – but
less vivid – applications for random walks.
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2.1 Random Walk Examples: Universality and Scale Invariance 15

the air is dilute and the interactions are short-ranged, the molecule will
basically travel in straight lines, with sharp changes in velocity during
infrequent collisions. After a few substantial collisions, the molecule’s
velocity will be uncorrelated with its original velocity. The path taken
by the molecule will be a jagged, random walk through three dimensions.

Fig. 2.1 The drunkard takes a series of
steps of length L away from the lamp-
post, but each with a random angle.

The random walk of a perfume molecule involves random directions,
random velocities, and random step sizes. It’s more convenient to study
steps at regular time intervals, so we’ll instead consider the classic prob-
lem of a drunkard’s walk. The drunkard is presumed to start at a lamp-
post at x = y = 0. He takes steps �N each of length L, at regular time
intervals. Because he’s drunk, the steps are in completely random direc-
tions, each uncorrelated with the previous steps. This lack of correlation
says that the average dot product between any two steps �m and �n is
zero, since all relative angles θ between the two directions are equally
likely: 〈�m · �n〉 = L2〈cos(θ)〉 = 0.5 This implies that the dot product

5More generally, if two variables are
uncorrelated then the average of their
product is the product of their aver-
ages: in this case this would imply
〈�m · �n〉 = 〈�m〉 · 〈�n〉 = 0 · 0 = 0.

of �N with sN−1 =
∑N−1

m=1 �m is zero. Again, we can use this to work by
induction:

〈s 2
N〉 = 〈(sN−1 + �N )2〉 = 〈s 2

N−1〉 + 〈2sN−1 · �N 〉 + 〈� 2
N 〉

= 〈s 2
N−1〉 + L2 = · · · = NL2, (2.6)

so the RMS distance moved is
√
NL.

Random walks introduce us to the concepts of scale invariance and
universality.

Scale Invariance. What kind of path only goes
√
N total distance in

N steps? Random walks form paths which look jagged and scrambled.
Indeed, they are so jagged that if you blow up a small corner of one, the
blown up version looks just as jagged (figure 2.2). Clearly each of the
blown-up random walks is different, just as any two random walks of the
same length are different, but the ensemble of random walks of length
N looks much like that of length N/4, until N becomes small enough
that the individual steps can be distinguished. Random walks are scale
invariant: they look the same on all scales.6 6 They are also fractal with dimen-

sion two, in all spatial dimensions larger
than two. This just reflects the fact
that a random walk of ‘volume’ V = N
steps roughly fits into a radius R ∼
sN ∼ N

1/2 . The fractal dimension D
of the set, defined by RD = V , is thus
two.

Universality. On scales where the individual steps are not distin-
guishable (and any correlations between steps is likewise too small to
see) we find that all random walks look the same. Figure 2.2 depicts
a drunkard’s walk, but any two–dimensional random walk would give
the same behavior (statistically). Coin tosses of two coins (penny sums
along x, dime sums along y) would produce, statistically, the same ran-
dom walk ensemble on lengths large compared to the step sizes. In three
dimensions, photons7 in the Sun (exercise 2.2) or in a glass of milk un- 7A photon is a quantum of light or

other electromagnetic radiation.dergo a random walk with fixed speed c between collisions. Nonetheless,
after a few steps their random walks are statistically indistinguishable
from that of our variable–speed perfume molecule. This independence
of the behavior on the microscopic details is called universality.

Random walks are simple enough that we could probably show that
each individual case behaves like the others. In section 2.2 we will gen-
eralize our argument that the RMS distance scales as

√
N to simulta-

neously cover both coin flips and drunkards; with more work we could
c©James P. Sethna, April 19, 2005 Entropy, Order Parameters, and Complexity



16 Random Walks and Emergent Properties

Fig. 2.2 Random Walk: Scale Invariance Random walks form a jagged, fractal
pattern which looks the same when rescaled. Here each succeeding walk is the first
quarter of the previous walk, magnified by a factor of two; the shortest random walk
is of length 31, the longest of length 32,000 steps. The left side of figure 1.1 is the
further evolution of this walk to 128,000 steps.
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2.2 The Diffusion Equation 17

include variable times between collisions and local correlations to cover
the cases of photons and molecules in a gas. We could probably also
calculate properties about the jaggedness of paths in these systems, and
show that they too agree with one another after many steps. Instead,
we’ll wait for chapter 12 (and specifically exercise 12.7), where we will
give a deep but intuitive explanation of why each of these problems
is scale invariant, and why all of these problems share the same be-
havior on long length scales. Universality and scale invariance will be
explained there using renormalization–group methods, originally devel-
oped to study continuous phase transitions. 1985 1990 1995 2000 2005
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Fig. 2.3 S&P 500, normalized.
Standard and Poor’s 500 stock index
daily closing price since its inception,
corrected for inflation, divided by the
average 6.4% return over this time pe-
riod. Stock prices are often modeled as
a biased random walk. Notice that the
fluctuations (risk) in individual stock
prices will typically be much higher. By
averaging over 500 stocks, the random
fluctuations in this index are reduced,
while the average return remains the
same: see [67] and [68]. For compar-
ison, a one-dimensional multiplicative
random walk is also shown.

Polymers. Finally, random walks arise as the shapes for polymers.
Polymers are long molecules (like DNA, RNA, proteins, and many plas-
tics) made up of many small units (called monomers) attached to one
another in a long chain. Temperature can introduce fluctuations in the
angle between two adjacent monomers; if these fluctuations dominate
over the energy,8 the polymer shape can form a random walk. Here

8Plastics at low temperature can be
crystals; functional proteins and RNA
often packed tightly into well–defined
shapes. Molten plastics and dena-
tured proteins form self–avoiding ran-
dom walks. Double–stranded DNA is
rather stiff: the step size for the ran-
dom walk is many nucleic acids long.

the steps are not increasing with time, but with monomers (or groups
of monomers) along the chain.

The random walks formed by polymers are not the same as those in
our first two examples: they are in a different universality class. This
is because the polymer cannot intersect itself: a walk that would cause
two monomers to overlap is not allowed. Polymers undergo self-avoiding
random walks. In two and three dimensions, it turns out that the effects
of these self–intersections is not a small, microscopic detail, but changes
the properties of the random walk in an essential way.9 One can show

9Self–avoidance is said to be a rel-
evant perturbation that changes the
universality class. In (unphysical)
spatial dimensions higher than four,
self–avoidance is irrelevant: hypothet-
ical hyper–polymers in five dimensions
would look like regular random walks
on long length scales.

that these intersections will often arise on far–separated regions of the
polymer, and that in particular they change the dependence of squared
radius 〈s2N 〉 on the number of segments N (exercise 2.8). In particular,
they change the power law

√
〈s2N 〉 ∼ Nν from the ordinary random

walk value ν = 1/2 to a higher value, ν = 3/4 in two dimensions and
ν ≈ 0.59 in three dimensions. Power laws are central to the study of
scale–invariant systems: ν is our first example of a universal critical
exponent.

2.2 The Diffusion Equation

In the continuum limit of long length and time scales, simple behavior
emerges from the ensemble of irregular, jagged random walks: their
evolution is described by the diffusion equation:10 10In the remainder of this chapter we

specialize for simplicity to one dimen-
sion. We also change variables from the
sum s to position x.

∂ρ

∂t
= D∇2ρ = D

∂2ρ

∂x2
. (2.7)

The diffusion equation can describe the evolving density ρ(x, t) of a local
cloud of perfume as the molecules random–walk through collisions with
the air molecules. Alternatively, it can describe the probability density of
an individual particle as it random walks through space: if the particles
are non-interacting, the probability distribution of one particle describes
the density of all particles.
c©James P. Sethna, April 19, 2005 Entropy, Order Parameters, and Complexity



18 Random Walks and Emergent Properties

Consider a general, uncorrelated random walk where at each time step
∆t the particle’s position x changes by a step �:

x(t+ ∆t) = x(t) + �(t). (2.8)

Let the probability distribution for each step be χ(�).11 We’ll assume11In our two examples the distribution
χ(�) was discrete: we can write it using
the Dirac δ-function. (The δ function
δ(x−x0) is a probability density which
has 100% chance of finding the particle
in any box containing x0: thus δ(x−x0)
is zero unless x = x0, and

∫
f(x)δ(x −

x0)dx = f(x0) so long as the domain
of integration includes x0.) In the case
of coin flips, a 50/50 chance of � = ±1
can be written as χ(�) = 1/2δ(� + 1) +
1/2δ(�− 1). In the case of the drunkard,
χ(�) = δ(|�| − L)/(2πL), evenly spaced
around the circle.

that χ has mean zero and standard deviation a, so the first few moments
of χ are ∫

χ(z) dz = 1, (2.9)∫
zχ(z) dz = 0, and∫
z2χ(z) dz = a2.

What is the probability distribution for ρ(x, t+∆t), given the probability
distribution ρ(x′, t)?

Clearly, for the particle to go from x′ at time t to x at time t + ∆t,
the step �(t) must be x − x′. This happens with probability χ(x − x′)
times the probability density ρ(x′, t) that it started at x′. Integrating
over original positions x′, we have

ρ(x, t+ ∆t) =
∫ ∞

−∞
ρ(x′, t)χ(x− x′) dx′

=
∫ ∞

−∞
ρ(x− z, t)χ(z) dz (2.10)

where we change variables to z = x− x′.1212Notice that although dz = −dx′, the

limits of integration
∫∞
−∞ →

∫ −∞
∞ =

−
∫∞
−∞, canceling the minus sign. This

happens often in calculations: watch
out for it.

a

Fig. 2.4 We suppose the step sizes �
are small compared to the broad ranges
on which ρ(x) varies, so we may do a
Taylor expansion in gradients of ρ.

Now, suppose ρ is broad: the step size is very small compared to the
scales on which ρ varies (figure 2.4). We may then do a Taylor expansion
of 2.10 in z:

ρ(x, t+ ∆t) ≈
∫ [

ρ(x, t) − z
∂ρ

∂x
+
z2

2
∂2ρ

∂x2

]
χ(z) dz (2.11)

= ρ(x, t)
������1∫
χ(z) dz − ∂ρ

∂x�������
0∫

zχ(z) dz + 1/2
∂2ρ

∂x2

∫
z2χ(z) dz.

= ρ(x, t) + 1/2
∂2ρ

∂x2
a2

using the moments of χ in 2.9. Now, if we also assume that ρ is slow, so
that it changes only slightly during this time step, we can approximate
ρ(x, t+ ∆t) − ρ(x, t) ≈ ∂ρ

∂t ∆t, and we find

∂ρ

∂t
=

a2

2∆t
∂2ρ

∂x2
. (2.12)

This is the diffusion equation13 (2.7), with13One can understand this intuitively.
Random walks and diffusion tend to
even out the hills and valleys in the den-
sity. Hills have negative second deriva-

tives ∂2ρ
∂x2 < 0 and should flatten ∂ρ

∂t
<

0, valleys have positive second deriva-
tives and fill up.

D = a2/2∆t. (2.13)

The diffusion equation applies to all random walks, so long as the prob-
ability distribution is broad and slow compared to the individual steps.
To be pub. Oxford UP, ∼Fall’05 www.physics.cornell.edu/sethna/StatMech/



2.3 Currents and External Forces. 19

2.3 Currents and External Forces.

As the particles in our random walks move around, they never are cre-
ated or destroyed: they are conserved.14 If ρ(x) is the density of a 14More subtly, the probability density

ρ(x) of a single particle undergoing a
random walk is also conserved: like par-
ticle density, probability density can-
not be created or destroyed, it can only
slosh around.

conserved quantity, we may write its evolution law (see figure 2.5) in
terms of the current J(x) passing a given point x:

∂ρ

∂t
= −∂J

∂x
. (2.14)

Here the current J is the amount of stuff flowing to the right through
the point x; since the stuff is conserved, the only way the density can
change is by flowing from one place to another. From equation 2.7 and J(x) ∆

ρ(  ) ∆xx

J(x+  x)

Fig. 2.5 Let ρ(x, t) be the density
of some conserved quantity (# of
molecules, mass, energy, probability,
etc.) varying in one spatial dimension
x, and J(x) be the rate at which ρ is
passing a point x. The the amount
of ρ in a small region (x, x + ∆x) is
n = ρ(x) ∆x. The flow of particles into
this region from the left is J(x) and
the flow out is J(x + ∆x), so ∂n

∂t
=

J(x) − J(x+ ∆x) ≈ ∂ρ
∂t

∆x, and we de-
rive the conserved current relation

∂ρ

∂t
= −J(x+ ∆x) − J(x)

∆x
= −∂J

∂x
.

equation 2.14, the current for the diffusion equation is

Jdiffusion = −D∂ρ

∂x
; (2.15)

particles diffuse (random–walk) on average from regions of high density
towards regions of low density.

In many applications one has an average drift term along with a ran-
dom walk. In some cases (like the total grade in a multiple-choice test,
exercise 2.1) there is naturally a non-zero mean for each step in the ran-
dom walk. In other cases, there is an external force F that is biasing
the steps to one side: the mean net drift is F ∆t times a mobility γ:

x(t+ ∆t) = x(t) + Fγ∆t+ �(t). (2.16)

We can derive formulas for this mobility given a microscopic model. On
the one hand, if our air is dilute and the diffusing molecule is small,
we can model the trajectory as free acceleration between collisions sep-
arated by ∆t, and we can assume the collisions completely scramble the
velocities. In this case, the net motion due to the external force is half
the acceleration F/m times the time squared: 1/2(F/m)(∆t)2 = F ∆t∆t

2m
so γ = ∆t

2m Using equation 2.13, we find

γ =
∆t
2m

(
D

2∆t
a2

)
=

D

m(a/∆t)2
=

D

mv̄2
(2.17)

where v̄ = a/∆t is the velocity of the unbiased random walk step.
On the other hand, if our air is dense and the diffusing molecule is

large, we might treat the air as a viscous fluid of kinematic viscosity
η; if we also simply model the molecule as a sphere of radius r, a fluid
mechanics calculation tells us that the mobility is γ = 1/(6πηr).

Starting from equation 2.16, we can repeat our analysis of the contin-
uum limit (equations 2.10 through 2.12) to derive the diffusion equation
c©James P. Sethna, April 19, 2005 Entropy, Order Parameters, and Complexity



20 Random Walks and Emergent Properties

in an external force,15

J = γFρ−D
∂ρ

∂x
(2.18)

∂ρ

∂t
= −γF ∂ρ

∂x
+D

∂2ρ

∂x2
. (2.19)

The sign of the new term can be explained intuitively: if ρ is increasing in
space (positive slope ∂ρ

∂x ) and the force is dragging the particles forward,
then ρ will decrease with time because the high-density regions ahead
of x are receding and the low density regions behind x are moving in.

The diffusion equation describes how systems of random–walking par-
ticles approach equilibrium (see chapter 3). The diffusion equation in
the absence of external force describes the evolution of perfume density
in a room. A time–independent equilibrium state ρ∗ obeying the dif-
fusion equation 2.7 must have ∂2ρ∗/∂x2 = 0, so ρ∗(x) = ρ0 + Bx. If
the perfume cannot penetrate the walls, ∂ρ∗

∂x = 0 at the boundaries so
B = 0. Thus, as one might expect, the perfume evolves to a rather
featureless equilibrium state ρ∗(x) = ρ0, evenly distributed throughout
the room.

In the presence of a constant external force (like gravitation) the equi-
librium state is more interesting. Let x be the height above the ground,
and F = −mg be the force due to gravity. By equation 2.19, the equi-
librium state ρ∗ satisfies

0 =
∂ρ∗

∂t
= γmg

∂ρ∗

∂x
+D

∂2ρ∗

∂x2
(2.20)

which has general solution ρ∗(x) = A exp(− γ
Dmgx) + B. We assume

that the density of perfume B in outer space is zero,16 so the density16Non-zero B would correspond to a
constant-density rain of perfume. of perfume decreases exponentially with height:

ρ∗(x) = A exp(− γ

D
mgx). (2.21)

The perfume molecules are pulled downward by the gravitational force,
and remain aloft only because of the random walk. If we generalize
from perfume to oxygen molecules (and ignore temperature gradients
and weather) this gives the basic explanation for why it becomes harder
to breath as one climbs mountains.17

15 Warning: if the force is not constant in space, the evolution also depends on the

gradient of the force: ∂ρ
∂t

= − ∂J
∂x

= −γ ∂F (x)ρ(x)
∂x

+D ∂2ρ
∂x2 = −γρ ∂F

∂x
−γF ∂ρ

∂x
+D ∂2ρ

∂x2 .
Similar problems can arise if the diffusion constant is density dependent. When
working with a conserved property, write your equations first in terms of the current,
to guarantee that it is conserved. J = −D(ρ,x)∇ρ+ γ(x)F (x)ρ(x) The author has
observed himself and a variety of graduate students wasting up to a week at a time
when this rule is forgotten.

17In chapter 6 we shall derive the Boltzmann distribution, implying that the
probability of having energy mgh = E in an equilibrium system is proportional
to exp(−E/kBT ), where T is the temperature and kB is Boltzmann’s constant. This
has just the same form as our solution (equation 2.21), if

D/γ = kBT. (2.22)
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2.4 Solving the Diffusion Equation

We take a brief mathematical interlude, to review two important meth-
ods for solving the diffusion equation: Fourier transforms and Greens
functions. Both rely upon the fact that the diffusion equation is linear:
if a family of solutions ρn(x, t) are known, then any linear combination
of these solutions

∑
n anρn(x, t) is also a solution. If we can then ex-

pand the initial density ρ(x, 0) =
∑

n anρn(x, 0), we’ve formally found
the solution.

Fourier methods are wonderfully effective computationally, because
of fast Fourier Transform (FFT) algorithms for shifting from the real-
space density to the solution space. Greens function methods are more
important for analytical calculations and as a source of approximate
solutions.18 18One should note that much of quan-

tum field theory and many-body quan-
tum mechanics is framed in terms of
something also called Greens functions.
These are distant, fancier cousins of the
simple methods used in linear differen-
tial equations.

2.4.1 Fourier

The Fourier transform method decomposes ρ into a family of plane wave
solutions ρ̃k(t)e−ikx.

The diffusion equation is homogeneous in space: our system is trans-
lationally invariant. That is, if we have a solution ρ(x, t), another
equally valid solution is given by ρ(x − ∆, t), which describes the evo-
lution of an initial condition translated by ∆ in the positive x direc-
tion.19 Under very general circumstances, a linear equation describing 19Make sure you know that g(x) =

f(x−∆) shifts the function in the pos-
itive direction: for example, the new
function g(∆) is at ∆ what the old one
was at the origin, g(∆) = f(0).

a translation–invariant system will have solutions given by plane waves
ρ(x, t) = ρ̃k(t)e−ikx.

We argue this important truth in detail in in the appendix (sec-
tion A.4). Here we just try it. Plugging a plane wave into the diffusion
equation 2.7, we find

∂ρ

∂t
=
dρ̃k

dt
e−ikx = D

∂2ρ

∂x2
= −Dk2ρ̃ke

−ikx (2.23)

dρ̃k

dt
= −Dk2ρ̃k (2.24)

ρ̃k(t) = ρ̃k(0)e−Dk2t. (2.25)

Now, these plane wave solutions by themselves are unphysical: we must
combine them to get a sensible density. First, they are complex: we
must add plane waves at k and −k to form cosine waves, or subtract
them and dividing by 2i to get sine waves. Cosines and sines are also
not by themselves sensible densities (because they go negative), but
they in turn can be added to one another (for example, added to a

This is called the Einstein relation. Our rough derivation (equation 2.17) suggested
that D/γ = mv̄2, which suggests that kBT must equal twice the kinetic energy along
x for the Einstein relation to hold: this is also true, and is called the equipartition
theorem (section 3.2.2). The constants in the (non–equilibrium) diffusion equation
are related to one another, because the density must evolve toward the equilibrium
distribution dictated by statistical mechanics.
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22 Random Walks and Emergent Properties

constant background ρ0) to make for sensible densities. Indeed, we can
superimpose all different wave-vectors to get the general solution

ρ(x, t) =
1
2π

∫ ∞

−∞
ρ̃k(0)e−ikxe−Dk2t dk. (2.26)

Here the coefficients ρk(0) we use are just the the Fourier transform of
the initial density profile

ρ̃k(0) =
∫ ∞

−∞
ρ(x, 0)eikx dx (2.27)

and we recognize equation 2.26 as the inverse Fourier transform of the
solution time–evolved in Fourier space

ρ̃k(t) = ρ̃k(0)e−Dk2t. (2.28)

Thus, by writing ρ as a superposition of plane waves, we find a simple
law: the short–wavelength parts of ρ are squelched as time t evolves,
with wavevector k being suppressed by a factor e−Dk2t.

2.4.2 Green

The Greens function method decomposes ρ into a family of solutions
G(x− y, t) where all of the diffusing particles start at a particular point
y.

Let’s first consider the case where all particles start at the origin.
Suppose we have one unit of perfume, released at the origin at time t = 0.
What is the initial condition ρ(x, t = 0)? Clearly ρ(x, 0) = 0 unless
x = 0, and

∫
ρ(x, 0)dx = 1, so ρ(0, 0) must be really, really infinite.

This is of course the Dirac delta function δ(x), which mathematically
(when integrated) is a linear operator on functions returning the value
of the function at zero: ∫

f(y)δ(y) dy = f(0). (2.29)

Fig. 2.6 10,000 endpoints of random
walks, each 1000 steps long. Notice
that after 1000 steps, the distribution
of endpoints looks quite Gaussian. In-
deed after about five steps the distri-
bution is extraordinarily close to Gaus-
sian, except far in the tails.

Let’s define the Greens function G(x, t) to be the time evolution of
the density G(x, 0) = δ(x) with all the perfume at the origin. Naturally,
G(x, t) obeys the diffusion equation ∂G

∂t = D ∂2G
∂x2 . We can use the Fourier

transform methods of the previous section to solve for G(x, t). The
Fourier transform at t = 0 is

G̃k(0) =
∫
G(x, 0)eikx dx =

∫
δ(x)eikx dx = 1 (2.30)

(independent of k). Hence the time evolved Fourier transform is G̃k(t) =
e−Dk2t, and the time evolution in real space is

G(x, t) =
1
2π

∫
e−ikxG̃k(0)e−Dk2tdk =

1
2π

∫
e−ikxe−Dk2tdk. (2.31)
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This last integral is the Fourier transform of a Gaussian. This transform
can be performed20 giving another Gaussian21 21It’s useful to remember that the

Fourier transform of a normalized
Gaussian 1√

2πσ
exp(−x2/2σ2) is an-

other Gaussian, exp(−σ2k2/2) of stan-
dard deviation 1/σ and with no prefac-
tor.

G(x, t) =
1√

4πDt
e−x2/4Dt. (2.33)

This is the Greens function for the diffusion equation.
The Greens function directly tells us the distribution of the end-

points of random walks centered at the origin (figure 2.6). Does it
agree with our formula 〈x2〉 = Na2 for N -step random walks of step
size a (section 2.1)? At time t, the Greens function (equation 2.33) is
a Gaussian with standard deviation σ(t) =

√
2Dt; plugging in our dif-

fusion constant D = a2

2∆t (equation 2.13), we find an RMS distance of

σ(t) = a
√

t
∆t = a

√
N , where N = t

∆t is the number of steps taken in
the random walk: our two methods do agree.

Finally, since the diffusion equation has translational symmetry, we
can solve for the evolution of random walks centered at any point y: the
time evolution of an initial condition δ(x − y) is G(x − y, t). Since we
can write any initial condition ρ(x, 0) as a superposition of δ-functions

ρ(x, 0) =
∫
ρ(y, 0)δ(x− y) dy (2.34)

we can write a general solution ρ(x, t) to the diffusion equation

ρ(x, 0) =
∫
ρ(y, 0)δ(x− y) dy =

∫
ρ(y, 0)G(x− y, 0) dy (2.35)

ρ(x, t) =
∫
ρ(y, 0)G(x− y, t) dy =

∫
ρ(y, 0)

e−(y−x)2/4Dt

√
4πDt

dy. (2.36)

This equation states that the current value of the density is given by
the original values of the density in the neighborhood, smeared sideways
(convolved) with the function G.

Thus by writing ρ as a superposition of point sources, we find that
the diffusion equation smears out all the sharp features, averaging ρ over
ranges that grow proportionally to the typical random walk distance√

2Dt.

20If we complete the square in the integrand e−ikxe−Dk2t = e−Dt(k+ ix
2Dt

)2e−
x2
4Dt ,

and change variables to κ = k + ix
2Dt

.

G(x, t) =
1

2π
e−

x2
4Dt

∫ ∞+ ix
2Dt

−∞+ ix
2Dt

e−Dtκ2
dκ. (2.32)

If we then shift the limits of integration downward to the real axis, the integral gives√
π/Dt yielding equation 2.33. This last step (shifting the limits of integration),

is not trivial: we must rely on Cauchy’s theorem, which allow one to deform the
integration contour in the complex plane: see footnote 21 in exercise A.5.
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24 Random Walks and Emergent Properties

Exercises
Exercises 2.1, 2.2, and 2.3 give simple examples of random
walks in different contexts. Exercises 2.4 and 2.5 illustrate
the qualitative behavior of the Fourier and Greens func-
tion approaches to solving the diffusion equation. Ex-
ercises 2.6 and 2.7 apply the diffusion equation in the
familiar context of thermal conductivity.22 Exercise 2.8
explores self–avoiding random walks: in two dimensions,
we find that the constraint that the walk must avoid itself
gives new critical exponents and a new universality class
(see also chapter 12).

Random walks also arise in nonequilibrium situations.

– They arise in living systems. Bacteria search for
food (chemotaxis) using a biased random walk, ran-
domly switching from a swimming state (random
walk step) to a tumbling state (scrambling the ve-
locity), see [10].

– They arise in economics: Black and Scholes [115] an-
alyze the approximate random walks seen in stock
prices (figure 2.3) to estimate the price of options –
how much you charge a customer who wants a guar-
antee that they can by stock X at price Y at time t
depends not only on whether the average price will
rise past Y , but also whether a random fluctuation
will push it past Y .

– They arise in engineering studies of failure. If a
bridge strut has N microcracks each with a failure
stress σi, and these stresses have probability density
ρ(σ), the engineer is not concerned with the aver-
age failure stress 〈σ〉, but the minimum. This intro-
duces the study of extreme value statistics: in this
case, the failure time distribution is very generally
described by the Weibull distribution.

(2.1) Random walks in Grade Space.

Let’s make a model of the prelim grade distribution. Let’s
imagine a multiple-choice test of ten problems of ten
points each. Each problem is identically difficult, and the
mean is 70. How much of the point spread on the exam
is just luck, and how much reflects the differences in skill
and knowledge of the people taking the exam? To test
this, let’s imagine that all students are identical, and that
each question is answered at random with a probability
0.7 of getting it right.

(a) What is the expected mean and standard deviation for
the exam? (Work it out for one question, and then use
our theorems for a random walk with ten steps.)

A typical exam with a mean of 70 might have a standard
deviation of about 15.

(b) What physical interpretation do you make of the ratio
of the random standard deviation and the observed one?

(2.2) Photon diffusion in the Sun. (Basic)

Most of the fusion energy generated by the Sun is pro-
duced near its center. The Sun is 7 × 105 km in radius.
Convection probably dominates heat transport in approx-
imately the outer third of the Sun, but it is believed that
energy is transported through the inner portions (say to
a radius R = 5× 108 m) through a random walk of X-ray
photons. (A photon is a quantized package of energy: you
may view it as a particle which always moves at the speed
of light c. Ignore for this exercise the index of refraction
of the Sun.) Assume that the mean free path � for the
photon is � = 5× 10−5m.

About how many random steps N will the photon take of
length � to get to the radius R where convection becomes
important? About how many years ∆t will it take for the
photon to get there? (You may assume for this exercise
that the photon takes steps in random directions, each of
equal length given by the mean-free path.) Related for-
mulæ: c = 3×108 m/s; 〈x2〉 ∼ 2Dt; 〈s2n〉 = nσ2 = n〈s21〉.
There are 31, 556, 925.9747 ∼ π × 107 ∼ 3× 107 seconds
in a year.

(2.3) Ratchet and Molecular Motors. (Basic, Biol-
ogy)

Read Feynman’s Ratchet and Pawl discussion in refer-
ence [89, I.46] for this exercise. Feynman’s ratchet and
pawl discussion obviously isn’t so relevant to machines
you can make in your basement shop. The thermal fluc-
tuations which turn the wheel to lift the flea are too small
to be noticeable on human length and time scales (you
need to look in a microscope to see Brownian motion).
On the other hand, his discussion turns out to be surpris-
ingly close to how real cells move things around. Physics
professor Michelle Wang studies these molecular motors
in the basement of Clark Hall.

22We haven’t derived the law of thermal conductivity from random walks of
phonons. We’ll give general arguments in chapter 10 that an energy flow linear
in the thermal gradient is to be expected on very general grounds.
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2.4 Solving the Diffusion Equation 25

Inside your cells, there are several different molecular mo-
tors, which move and pull and copy (figure 2.7). There
are molecular motors which contract your muscles, there
are motors which copy your DNA into RNA and copy
your RNA into protein, there are motors which transport
biomolecules around in the cell. All of these motors share
some common features: (1) they move along some linear
track (microtubule, DNA, ...), hopping forward in discrete
jumps between low-energy positions, (2) they consume
energy (burning ATP or NTP) as they move, generat-
ing an effective force pushing them forward, and (3) their
mechanical properties can be studied by seeing how their
motion changes as the external force on them is changed
(figure 2.8).

Fig. 2.7 Cartoon of a motor protein, from reference [50]. As it
carries some cargo along the way (or builds an RNA or protein,
. . . ) it moves against an external force fext and consumes r
ATP molecules, which are hydrolyzed to ADP and phosphate
(P).

Fig. 2.8 Cartoon of Cornell professor Michelle Wang’s early
laser tweezer experiment, (reference [123]). (A) The laser beam
is focused at a point (the “laser trap”); the polystyrene bead
is pulled (from dielectric effects) into the intense part of the

light beam. The “track” is a DNA molecule attached to the
bead, the motor is an RNA polymerase molecule, the “cargo”
is the glass cover slip to which the motor is attached. (B) As
the motor (RNA polymerase) copies DNA onto RNA, it pulls
the DNA “track” toward itself, dragging the bead out of the
trap, generating a force resisting the motion. (C) A mechani-
cal equivalent, showing the laser trap as a spring and the DNA
(which can stretch) as a second spring.

Fig. 2.9 The effective potential for moving along the DNA
(from reference [50]). Ignoring the tilt We, Feynman’s energy
barrier ε is the difference between the bottom of the wells and
the top of the barriers. The experiment changes the tilt by
adding an external force pulling � to the left. In the absence
of the external force, We is the (Gibbs free) energy released
when one NTP is burned and one RNA nucleotide is attached.

For transcription of DNA into RNA, the motor moves on
average one base pair (A, T, G or C) per step: ∆� is
about 0.34nm. We can think of the triangular grooves in
the ratchet as being the low-energy states of the motor
when it is resting between steps. The barrier between
steps has an asymmetric shape (figure 2.9), just like the
energy stored in the pawl is ramped going up and steep
going down. Professor Wang showed (in a later paper)
that the motor stalls at an external force of about 27 pN
(pico-Newton).

(a) At that force, what is the energy difference between
neighboring wells due to the external force from the bead?
(This corresponds to Lθ in Feynman’s ratchet.) Let’s as-
sume that this force is what’s needed to balance the natural
force downhill that the motor develops to propel the tran-
scription process. What does this imply about the ratio
of the forward rate to the backward rate, in the absence
of the external force from the laser tweezers, at a tem-
perature of 300K, (from Feynman’s discussion preceding
equation 46.1)? (kB = 1.381 × 10−23J/K).

The natural force downhill is coming from the chemical
reactions which accompany the motor moving one base
pair: the motor burns up an NTP molecule into a PPi

molecule, and attaches a nucleotide onto the RNA. The
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26 Random Walks and Emergent Properties

net energy from this reaction depends on details, but
varies between about 2 and 5 times 10−20 Joule. This
is actually a Gibbs free energy difference, but for this
exercise treat it as just an energy difference.

(b) The motor isn’t perfectly efficient: not all the chemi-
cal energy is available as motor force. From your answer
to part (a), give the efficiency of the motor as the ratio
of force-times-distance produced to energy consumed, for
the range of consumed energies given.

(2.4) Solving Diffusion: Fourier and Green. (Ba-
sic)

0 5 10 15 20
Position x

-0.4

0

0.4

ρ(
x,

t=
0)

 -
 ρ

0

Fig. 2.10 Initial profile of density deviation from average.

An initial density profile ρ(x, t = 0) is perturbed
slightly away from a uniform density ρ0, as shown in
figure 2.10. The density obeys the diffusion equation
∂ρ/∂t = D∂2ρ/∂x2, where D = 0.001 m2/s. The lump
centered at x = 5 is a Gaussian exp(−x2/2)/

√
2π, and the

wiggle centered at x = 15 is a smooth envelope function
multiplying cos(10x).

(a) Fourier. As a first step in guessing how the pictured
density will evolve, let’s consider just a cosine wave. If the
initial wave were ρcos(x, 0) = cos(10x), what would it be
at t = 10s? Related formulæ: ρ̃(k, t) = ρ̃(k, t′)G̃(k, t−t′);
G̃(k, t) = exp(−Dk2t).

(b) Green. As a second step, let’s check how long it
would take to spread out as far as the Gaussian on the left.
If the wave at some earlier time −t0 were a δ function at
x = 0, ρ(x,−t0) = δ(x), what choice of the time elapsed

t0 would yield a Gaussian ρ(x, 0) = exp(−x2/2)/
√

2π
for the given diffusion constant D = 0.001m2/s? Re-
lated formulæ: ρ(x, t) =

∫
ρ(y, t′)G(y − x, t − t′) dy;

G(x, t) = (1/
√

4πDt) exp(−x2/(4Dt)).

(c) Pictures. Now consider time evolution for the next
ten seconds. The initial density profile ρ(x, t = 0) is
as shown in figure 2.10. Which of the choices in fig-
ure 2.11 represents the density at t = 10s? (Hint: com-
pare t = 10s to the time t0 from part (B).) Related for-
mulæ: 〈x2〉 ∼ 2Dt;

(2.5) Solving the Diffusion Equation. (Basic) 23

Consider a one-dimensional diffusion equation ∂ρ/∂t =
D∂2ρ/∂x2, with initial condition periodic in space with
period L, consisting of a δ function at every xn = nL:
ρ(x, 0) =

∑∞
n=−∞ δ(x− nL).

(a) Using the Greens function method, give an approxi-
mate expression for the the density, valid at short times
and for −L/2 < x < L/2, involving only one term (not
an infinite sum). (Hint: how many of the Gaussians are
important in this region at early times?)

(b) Using the Fourier method,24 give an approximate ex-
pression for the density, valid at long times, involving only
two terms (not an infinite sum). (Hint: how many of
the wavelengths are important at late times?)

(c) Give a characteristic time τ in terms of L and D,
such that your answer in (a) is valid for t� τ and your
answer in (b) is valid for t� τ .

(2.6) Frying Pan (Basic)

An iron frying pan is quickly heated on a stove top to 400
degrees Celsius. Roughly how long it will be before the
handle is too hot to touch (within, say, a factor of two)?
(Adapted from reference [93, p. 40].)

Do this three ways.

(a) Guess the answer from your own experience. If you’ve
always used aluminum pans, consult a friend or parent.

(b) Get a rough answer by a dimensional argument. You
need to transport heat cpρV∆T across an area A = V/∆x.
How much heat will flow across that area per unit time,
if the temperature gradient is roughly assumed to be
∆T/∆x? How long δt will it take to transport the amount
needed to heat up the whole handle?

(c) Roughly model the problem as the time needed for
a pulse of heat at x = 0 on an infinite rod to spread

23Math reference: [71, sec. 8.4].
24If you use a Fourier transform of ρ(x, 0), you’ll need to sum over n to get δ-

function contributions at discrete values of k = 2πm/L. If you use a Fourier series,
you’ll need to unfold the sum over n of partial Gaussians into a single integral over
an unbounded Gaussian.
To be pub. Oxford UP, ∼Fall’05 www.physics.cornell.edu/sethna/StatMech/
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Fig. 2.11 Final states of diffusion example

out a distance equal to the length of the handle, and use
the Greens function for the heat diffusion equation (ex-
ercise 2.7). How long until the pulse spreads out a root-
mean square distance σ(t) equal to the length of the han-
dle?

Note: For iron, the specific heat cp = 450J/kg · C, the
density ρ = 7900kg/m3, and the thermal conductivity
kt = 80W/m · C.

(2.7) Thermal Diffusion. (Basic)

The rate of energy flow in a material with thermal con-
ductivity kt and a temperature field T (x, y, z, t) = T (r, t)
is J = −kt∇T .25 Energy is locally conserved, so the en-
ergy density E satisfies ∂E/∂t = −∇ · J.
(a) If the material has constant specific heat cp and den-
sity ρ, so E = cpρT , show that the temperature T satisfies
the diffusion equation ∂T/∂t = kt

cpρ
∇2T .

(b) By putting our material in a cavity with microwave
standing waves, we heat it with a periodic modulation
T = sin(kx) at t = 0, at which time the microwaves
are turned off. Show that amplitude of the temperature
modulation decays exponentially in time. How does the
amplitude decay rate depend on wavelength λ = 2π/k?

(2.8) Polymers and Random Walks.

Polymers are long molecules, typically made of identi-
cal small molecules called monomers that are bonded to-
gether in a long, one-dimensional chain. When dissolved
in a solvent, the polymer chain configuration often forms a
good approximation to a random walk. Typically, neigh-
boring monomers will align at relatively small angles: sev-
eral monomers are needed to lose memory of the original
angle. Instead of modeling all these small angles, we can
produce an equivalent problem focusing all the bending in
a few hinges: we approximate the polymer by an uncorre-
lated random walk of straight segments several monomers

in length. The equivalent segment size is called the per-
sistence length.26

(a) If the persistence length to bending of DNA is 50nm,
with 3.4Å per nucleotide base pair, what will the root-
mean-square distance

√〈R2〉 be between the ends of a
gene in solution with 100,000 base pairs, if the DNA is
accurately represented as a random walk?

Polymers are not accurately represented as random walks,
however. Random walks, particularly in low dimensions,
often intersect themselves. Polymers are best represented
as self-avoiding random walks: the polymer samples all
possible configurations that does not cross itself. (Greg
Lawler, in the math department here, is an expert on
self-avoiding random walks.)

Let’s investigate whether avoiding itself will change the
basic nature of the polymer configuration. In particu-
lar, does the end-to-end typical distance continue to scale
with the square root of the length L of the polymer,
R ∼ √L?

(b) Two dimensional self-avoiding random walk.
Give a convincing, short argument explaining whether or
not a typical, non-self-avoiding random walk in two di-
mensions will come back after large numbers of monomers
and cross itself. (Hint: how big a radius does it extend
to? How many times does it traverse this radius?)

BU java applet. Run the Java applet linked to at ref-
erence [72]. (You’ll need to find a machine with Java
enabled.) They model a 2-dimensional random walk as a
connected line between nearest-neighbor neighboring lat-
tice points on the square lattice of integers. They start
random walks at the origin, grow them without allowing
backtracking, and discard them when they hit the same
lattice point twice. As long as they survive, they average
the squared length as a function of number of steps.

25We could have derived this law of thermal conductivity from random walks of
phonons, but we haven’t yet done so.

26Some seem to define the persistence length with a different constant factor.
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28 Random Walks and Emergent Properties

(c) Measure for a reasonable length of time, print out
the current state, and enclose it. Did the simulation give
R ∼ √L? If not, what’s the estimate that your simula-

tion gives for the exponent relating R to L? How does
it compare with the two-dimensional theoretical exponent
given at the Web site?
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Temperature and
Equilibrium 3

We now turn to study the equilibrium behavior of matter: the historical
origin of statistical mechanics. We will switch in this chapter between
discussing the general theory and applying it to a particular system – the
ideal gas. The ideal gas provides a tangible example of the formalism,
and its solution will provide a preview of material coming in the next
few chapters.

A system which is not acted upon by the external world1 is said 1 If the system is driven (e.g., there are
externally imposed forces or currents)
we instead call this final condition the
steady state. If the system is large, the
equilibrium state will also usually be
time independent and ‘calm’, hence the
name. Small systems will continue to
fluctuate substantially even in equilib-
rium.

to approach equilibrium if and when it settles down at long times to
a state which is independent of the initial conditions (except for con-
served quantities like the total energy). Statistical mechanics describes
the equilibrium state as an average over all states consistent with the
conservation laws: this microcanonical ensemble is introduced in sec-
tion 3.1. In section 3.2, we shall calculate the properties of the ideal
gas using the microcanonical ensemble. In section 3.3 we shall define
entropy and temperature for equilibrium systems, and argue from the
microcanonical ensemble that heat flows to maximize the entropy and
equalize the temperature. In section 3.4 we will derive the formula for
the pressure in terms of the entropy, and define the chemical potential.
Finally, in section 3.5 we calculate the entropy, temperature, and pres-
sure for the ideal gas, and introduce some refinements to our definitions
of phase space volume.

3.1 The Microcanonical Ensemble

Statistical mechanics allows us to solve en masse many problems that
are impossible to solve individually. In this chapter we address the gen-
eral equilibrium behavior of N atoms in a box of volume V – any kinds
of atoms, in arbitrary external conditions. Let’s presume for simplicity
that the walls of the box are smooth and rigid, so that energy is con-
served when atoms bounce off the walls. This makes our system isolated,
independent of the world around it.

How can we solve for the behavior of our atoms? If we ignore quan-
tum mechanics, we can in principle determine the positions2 Q = 2The 3N dimensional space of positions

Q is called configuration space. The
3N dimensional space of momenta P is
called momentum space. The 6N di-
mensional space (P,Q) is called phase
space.

(x1, y1, z1, x2, . . . xN , yN , zN) = (q1 . . . q3N ) and momenta P = (p1, . . . p3N )
of the particles at any future time given their initial positions and mo-

29



30 Temperature and Equilibrium

menta using Newton’s laws

Q̇ = m−1P (3.1)
Ṗ = F(Q)

(where F is the 3N–dimensional force due to the other particles and the
walls, and m is the particle mass).33m is a diagonal matrix if the particles

aren’t all the same mass.

E

δE+  E
Fig. 3.1 The shell of energies between
E and E + δE can have an irregu-
lar “thickness”. The volume of this
shell in 6N–dimensional phase space,
divided by δE, is the definition of Ω(E).
Notice that the microcanonical average
weights the thick regions more heav-
ily. We shall see in section 4.1 that this
is the correct way to take the average:
just as a water drop in a river spends
more time in the deep sections where
the water flows slowly, so also a trajec-
tory in phase space spends more time in
the thick regions where it moves more
slowly.

In general, solving these equations is plainly not feasible.

• Many systems of interest involve far too many particles to allow
one to solve for their trajectories.

• Most systems of interest exhibit chaotic motion, where the time
evolution depends with ever increasing sensitivity on the initial
conditions – you cannot know enough about the current state to
predict the future.

• Even if it were possible to evolve our trajectory, knowing the solu-
tion would for most purposes be useless: we’re far more interested
in the typical number of atoms striking a wall of the box, say, than
the precise time a particular particle hits.4

How can we extract the simple, important predictions out of the com-
plex trajectories of these atoms? The chaotic time evolution will rapidly
scramble5 whatever knowledge we may have about the initial conditions

5This scrambling, of course, is precisely
the approach to equilibrium.

of our system, leaving us effectively knowing only the conserved quanti-
ties – for our system, just the total energy E.6 Rather than solving for

6If our box were spherical, angular mo-
mentum would also be conserved.

the behavior of a particular set of initial conditions, let us hypothesize
that the energy is all we need to describe the equilibrium state. This
leads us to a statistical mechanical description of the equilibrium state of
our system as an ensemble of all possible initial conditions with energy
E – the microcanonical ensemble.

We calculate the properties of our ensemble by averaging over states
with energies in a shell (E,E+δE) taking the limit7 δE → 0 (figure 3.1).

7What about quantum mechanics,
where the energy levels in a finite sys-
tem are discrete? In that case (chap-
ter 7), we will need to keep δE large
compared to the spacing between en-
ergy eigenstates, but small compared to
the total energy.

Let’s define the function Ω(E) to be the phase-space volume of this thin
shell:

Ω(E) δE =
∫

E<H(P,Q)<E+δE

dP dQ. (3.2)

Here H(P,Q) is the Hamiltonian for our system.8 Finding the average

8The Hamiltonian H is the function
of P and Q that gives the energy.
For our purposes, this will always be
P2/2m + V (Q) =

∑3N
α=1 pα

2/2m +
V (q1, . . . , q3N ), where the force in New-
ton’s laws 3.1 is Fα = − ∂V

∂qα
.

〈A〉 of a property A in the microcanonical ensemble is done by averaging
A(P,Q) over this same energy shell,9

〈A〉E =
1

Ω(E)δE

∫
E<H(P,Q)<E+δE

A(P,Q) dP dQ. (3.8)

4Of course, there are applications where the precise evolution of a particular sys-
tem is of interest. It would be nice to predict the time at which a particular earth-
quake fault will yield, so as to warn everyone to go for a picnic outdoors. Statistical
mechanics, broadly speaking, is helpless in computing such particulars. The bud-
get of the weather bureau is a good illustration of how hard such system-specific
predictions are.

9It is convenient to write the energy shell E < H(P,Q) < E + δE in terms of the
Heaviside step function Θ(x):

Θ(x) =

{
1 x ≥ 0
0 x < 0

; (3.3)
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3.2 The Microcanonical Ideal Gas 31

Notice that, by averaging equally over all states in phase space com-
patible with our knowledge about the system (that is, the conserved
energy), we have made a hidden assumption: all points in phase space
(with a given energy) are a priori equally likely, so the average should
treat them all with equal weight. In section 3.2, we will see that this
assumption leads to sensible behavior, by solving the simple case of an
ideal gas. We will fully justify this equal-weighting assumption in chap-
ter 4, where we will also discuss the more challenging question of why
so many systems actually reach equilibrium.

The fact that the microcanonical distribution describes equilibrium
systems should be amazing to you. The long-time equilibrium behavior
of a system is precisely the typical behavior of all systems with the same
value of the conserved quantities. This fundamental “regression to the
mean” is the basis of statistical mechanics.

3.2 The Microcanonical Ideal Gas

We can talk about a general collection of atoms, and derive general
statistical mechanical truths for them, but to calculate specific properties
we must choose a particular system. The simplest statistical mechanical
system is the monatomic10 ideal gas. You can think of helium atoms 10 Air is a mixture of gases, but most

of the molecules are diatomic: O2 and
N2, with a small admixture of triatomic
CO2 and monatomic Ar. The proper-
ties of diatomic ideal gases are almost
as simple: but one must keep track of
the internal rotational degree of free-
dom (and, at high temperatures, the
vibrational degrees of freedom).

at high temperatures and low densities as a good approximation to this
ideal gas – the atoms have very weak long-range interactions and rarely
collide. The ideal gas will be the limit when the interactions between

we see that Θ(E + δE −H) − Θ(E −H) is one precisely inside the energy shell (see
figure 3.1). In the limit δE → 0, we can write Ω(E) as a derivative

Ω(E)δE =

∫
E<H(P,Q)<E+δE

dP dQ

=

∫
dP dQ [Θ(E + δE −H) − Θ(E −H)]

= δE
∂

∂E

∫
dP dQ Θ(E −H) (3.4)

and the expectation of a general operator A as

〈A〉 =
1

Ω(E)

∫
dP dQ [Θ(E + δE −H) − Θ(E −H)]A(P,Q)

=
1

Ω(E)

∂

∂E

∫
dP dQ Θ(E −H)A(P,Q). (3.5)

It will be important later to note that the derivatives in equations 3.4 and 3.5 are

at constant N and constant V : ∂
∂E

∣∣∣
V,N

. Finally, we know the derivative of the

Heaviside function is the the Dirac δ-function. (You may think of δ(x) as the limit
as ε → zero of a function which is 1/ε in the range (0, ε). Mathematicians may think
of it as a point mass at the origin.)

Ω(E) =

∫
dP dQ δ (E −H(P,Q)) , (3.6)

〈A〉 =
1

Ω(E)

∫
dP dQ δ (E −H(P,Q))A(P,Q). (3.7)

Thus the microcanonical ensemble can be written as a probability density
δ (E −H(P,Q)) /Ω(E) in phase space.
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particles vanish.11

For the ideal gas, the energy does not depend upon the spatial con-
figuration Q of the particles. This allows us to study the positions
(section 3.2.1 separately from the momenta (section 3.2.2).

3.2.1 Configuration Space

Since the energy is independent of the position, our microcanonical en-
semble must weight all configurations equally. That is to say, it is pre-
cisely as likely that all the particles will be within a distance ε of the
middle of the box as it is that they will be within a distance ε of any
other particular configuration.

What is the probability density ρ(Q) that the ideal gas particles will
be in a particular configuration Q ∈ R3N inside the box of volume V? We
know ρ is a constant, independent of the configuration. We know that
the gas atoms are in some configuration, so

∫
ρ dQ = 1. The integral

over the positions gives a factor of V for each of the N particles, so
ρ(Q) = 1/V N .

It may be counterintuitive that unusual configurations, like all the
particles on the right half of the box, have the same probability density
as more typical configurations. If there are two non-interacting particles
in a L× L × L box centered at the origin, what is the probability that
both are on the right (have x > 0)? The probability that two particles
are on the right half is the integral of ρ = 1/L6 over the six dimensional
volume where both particles have x > 0. The volume of this space is
(L/2)×L×L× (L/2)×L×L = L6/4, so the probability is 1/4, just as
one would calculate by flipping a coin for each particle. The probability
that N such particles are on the right is 2−N – just as your intuition
would suggest. Don’t confuse probability density with probability! The
unlikely states for molecules are not those with small probability density.
Rather, they are states with small net probability, because their allowed
configurations and/or momenta occupy insignificant volumes of the total
phase space.

Notice that configuration space typically has dimension equal to sev-
eral times Avogadro’s number.12 Enormous–dimensional vector spaces12A gram of hydrogen has approxi-

mately N = 6.02 × 1023 atoms, known
as Avogadro’s number. So, a typical
3N will be around 1024.

have weird properties – which directly lead to to important principles
in statistical mechanics. For example, most of configuration space has
almost exactly half the x-coordinates on the right side of the box.

If there are 2N non-interacting particles in the box, what is the prob-
ability Pm that N +m of them will be on the right half? There are 22N

equally likely ways the distinct particles could sit on the two sides of
the box. Of these,

(
2N

N+m

)
= (2N)!/((N + m)!(N −m)!) have m extra

particles on the right half.13 So,13(p
q

)
is the number of ways of choosing

an unordered subset of size q from a set
of size p. There are p(p − 1)...(p − q +
1) = p!/(p − q)! ways of choosing an
ordered subset, since there are p choices
for the first member and p − 1 for the
second . . . There are q! different ordered
sets for each disordered one, so

(p
q

)
=

p!/(q!(p− q)!).

11With no interactions, how can the ideal gas reach equilibrium? If the particles
never collide, they will forever be going with whatever initial velocity we started them.
We imagine delicately taking the long time limit first, before taking the limit of weak
interactions, so we can presume an equilibrium distribution has been established.
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Pm = 2−2N

(
2N

N +m

)
= 2−2N(2N)!/((N +m)!(N −m)!). (3.9)

We can calculate the fluctuations in the number on the right using
Stirling’s formula,14 14Stirling’s formula tells us that the

“average” number in the product n(n−
1) . . . 1 is roughly n/e. See exercise 1.4.n! ∼ (n/e)n

√
2πn ∼ (n/e)n. (3.10)

For now, let’s use the second, less accurate form: keeping the factor√
2πn would fix the prefactor in the final formula (exercise 3.5) which

we will instead derive by normalizing the total probability to one. Using
Stirling’s formula, equation 3.9 becomes

Pm ≈ 2−2N

(
2N
e

)2N /(N +m

e

)N+m(
N −m

e

)N−m

= N2N (N +m)−(N+m)(N −m)−(N−m) (3.11)

= (1 +m/N)−(N+m)(1 −m/N)−(N−m)

= ((1 +m/N)(1 −m/N))−N (1 +m/N)−m(1 −m/N)m

=
(
(1 −m2/N2)

)−N
(1 +m/N)−m(1 −m/N)m

and, since m
 N we may substitute 1 + ε ≈ exp(ε), giving us

Pm ≈
(
e−m2/N2

)−N (
em/N

)−m (
e−m/N

)m

≈ P0 exp(−m2/N).
(3.12)

where P0 is the prefactor we missed by not keeping enough terms in
Stirling’s formula. We know that the probabilities must sum to one,
so again for m 
 N , 1 =

∑
m Pm ≈

∫
P0 exp(−m2/N) dm = P0

√
πN .

Hence
Pm ≈

√
1/πN exp(−m2/N). (3.13)

This is a nice result: it says that the number fluctuations are distributed
according to a Gaussian or normal distribution15 (1/

√
2πσ) exp(−x2/2σ2) 15We derived exactly this result in sec-

tion 2.4.2 using random walks and a
continuum approximation, instead of
Stirling’s formula: this Gaussian is
the Green’s function for the number
of heads in 2N coin flips. We’ll de-
rive it again in exercise 12.7 by de-
riving the central limit theorem using
renormalization-group methods.

with a standard deviation σm =
√
N/2. If we have Avogadro’s number

of particles N ∼ 1024, then the fractional fluctuations σm/N = 1√
2N

∼
10−12 = 0.0000000001%. In almost all the volume of a box in R3N , al-
most exactly half of the coordinates are on the right half of their range.
In section 3.2.2 we will find another weird property of high–dimensional
spaces.

We will find that the relative fluctuations of most quantities of interest
in equilibrium statistical mechanics go as 1/

√
N . For many properties

of macroscopic systems, statistical mechanical fluctuations about the av-
erage value are very small.

3.2.2 Momentum Space

Working with the microcanonical momentum distribution is more chal-
lenging, but more illuminating, than working with the ideal gas config-
uration space of the last section. Here we must study the geometry of
spheres in high dimensions.
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Fig. 3.2 The energy surface in mo-
mentum space is the 3N−1 – sphere
of radius R =

√
2mE. The conditions

that the x-component of the momen-
tum of atom #1 is p1 restricts us to
a circle (or rather 3N−2 – sphere) of
radius R′ =

√
2mE − p12. The con-

dition that the energy is in the shell
(E,E+δE) leaves us with the annular
region shown in the inset.

δp
1

E+  E

IP
E

R

R’

The kinetic energy for interacting particles is∑3N
α=1

1/2mαvα
2 =

∑3N
α=1 pα

2/2mα. If we assume all of our atoms have
the same mass m, this simplifies to P2/2m. Hence the condition that
the particles in our system have energy E is that the system lies on
a sphere in 3N–dimensional momentum space of radius R =

√
2mE.

Mathematicians16 call this the 3N−1 sphere, S3N−1
R . Specifically, if the

energy of the system is known to be in a small range between E and
E + δE, what is the corresponding volume of momentum space? The
volume µ

(
S�−1

R

)
of the �− 1 sphere (in � dimensions) of radius R is1717Check this in two dimensions. Us-

ing 1/2! =
√
π/2 and 3

2
! = 3

√
π/4, check

it in one and three dimensions (see ex-
ercise 1.4 for n! for non-integer n.) Is
n! = n (n− 1)! valid for n = 3/2?

µ
(
S�−1

R

)
= π�/2R�/ �

2 ! (3.14)

The volume of the thin shell18 between E and E + δE is given by
18This is not quite the surface area,
since we’re taking a shell of energy
rather than radius. That’s why its
volume goes as R3N−2 , rather than
R3N−1.

Momentum Shell Volume
δE

=
µ(S3N−1√

2M(E+δE)
) − µ(S3N−1√

2ME
)

δE

= dµ
(

S3N−1√
2mE

)/
dE

=
d

dE

(
π

3N
2 (2mE)

3N
2 / 3N

2 !
)

= π
3N
2 (3Nm)(2mE)

3N
2 −1/ 3N

2 !

= (3N/2E)π
3N
2 (2mE)

3N
2 / 3N

2 !. (3.15)

Formula 3.15 is the main result of this section. Given our microcanonical
ensemble that equally weights all states with energy E, the probability
density for having any particular set of particle momenta P is the inverse
of this shell volume.

16Mathematicians like to name surfaces, or manifolds, for the number of dimensions
or local coordinates internal to the manifold, rather than the dimension of the space
the manifold lives in. After all, one can draw a circle embedded in any number of
dimensions (down to two). Thus a basketball is a two sphere S2, the circle is the
one-sphere S1, and the zero sphere S0 consists of the two points ±1.
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Let’s do a tangible calculation. Let’s calculate the probability density
ρ(p1) that the x-component of the momentum of the first atom is p1.19 19It is a sloppy physics convention to

use ρ to denote probability densities of
all sorts. Earlier, we used it to denote
probability density in 3N–dimensional
configuration space; here we use it to
denote probability density in one vari-
able. The argument of the function ρ
tells us which function we’re consider-
ing.

The probability density that this momentum is p1 and the energy is
in the range (E,E + δE) is proportional to the area of the annular
region (between two 3N−2 – spheres) in figure 3.2. The sphere has
radius R =

√
2mE, so by the Pythagorean theorem, the circle has radius

R′ =
√

2mE − p1
2. The volume in momentum space of the 3N−2–

dimensional annulus is given by using equation 3.14 with � = 3N − 1:

Annular Area/δE = dµ

(
S3N−2√

2mE−p12

)/
dE

=
d

dE

(
π(3N−1)/2(2mE − p1

2)(3N−1)/2/ 3N−1
2 !
)

= π(3N−1)/2((3N − 1)m)(2mE − p1
2)(3N−3)/2/ 3N−1

2 !
= (3N − 1)mπ(3N−1)/2R′3N−3/ 3N−1

2 !
= [Constants]R′ 3N−3, (3.16)

where we’ve dropped multiplicative factors that are independent of p1

and E. The probability density of being in the annulus is its area divided
by the shell volume in equation 3.15; this shell volume can be simplified
as well, dropping terms that do not depend on E:

Momentum Shell Volume
δE

= π
3N
2 (3Nm)(2mE)

3N
2 −1/ 3N

2 !

= 3Nmπ
3N
2 R3N−2/ 3N

2 !
= [Constants]R3N−2. (3.17)

Our formula for the probability density ρ(p1) is thus

ρ(p1) =
Annular Area

Momentum Shell Volume

=
(3N − 1)mπ(3N−1)/2R′3N−3/ 3N−1

2 !
3Nmπ

3N
2 R3N−2/ 3N

2 !
= [Constants](R2/R′3)(R′/R)3N (3.18)

= [Constants](R2/R′3)(1 − p1
2/2mE)

3N
2 .

The probability density ρ(p1) will be essentially zero unless R′/R =√
1 − p1

2/2mE is nearly equal to one, since this factor is taken to
a power 3N/2 of around Avogadro’s number. We can thus simplify
R2/R′3 ≈ 1/R = 1/

√
2mE and (1 − p1

2/2mE) = (1 − ε) ≈ exp(−ε) =
exp(−p1

2/2mE), giving us

ρ(p1) ∝ 1/
√

2mE exp
(
−p1

2

2m
3N
2E

)
(3.19)

The probability density ρ(p1) is a Gaussian distribution of standard
deviation

√
2mE/3N ; we again can set the constant of proportionality

c©James P. Sethna, April 19, 2005 Entropy, Order Parameters, and Complexity



36 Temperature and Equilibrium

to normalize the Gaussian, leading to

ρ(p1) =
1√

2πm(2E/3N)
exp
(
−p1

2

2m
3N
2E

)
(3.20)

Our ensemble assumption has allowed us to calculate the momentum
distribution of our particles explicitly in terms of E, N , and m, without
ever considering a particular trajectory: this is what makes statistical
mechanics powerful.

Formula 3.20 tells us that most of the surface area of a large–dimensional
sphere is very close to the equator. Think of p1 as the latitude on the
sphere: The range of latitudes containing most of the area is δp ≈
±
√

2mE/3N , and the total range of latitudes is ±
√

2mE: the belt di-
vided by the height is the square root of Avogadro’s number. This is
true whatever equator you choose, even intersections of several equators.
Geometry is weird in high dimensions.

In the context of statistical mechanics, this seems much less strange:
typical configurations of gases have the kinetic energy divided roughly
equally among all the components of momentum: configurations where
one atom has most of the kinetic energy are vanishingly rare.

This formula foreshadows four key results that will emerge from our
systematic study of equilibrium statistical mechanics in the following
few chapters.

(1) Temperature. In our calculation, a single momentum component
competed for the available energy with the rest of the ideal gas. In
section 3.3 we will study the competition in general between two
large subsystems for energy, and will discover that the balance is
determined by the temperature. The temperature T for our ideal
gas will be given (equation 3.57) by kBT = 2E

3N .20 Equation 3.2020 We shall see that temperature is nat-
urally measured in units of energy. His-
torically we measure temperature in de-
grees and energy in various other units
(Joules, ergs, calories, eV, foot-pounds,
. . . ); Boltzmann’s constant kB is the
conversion factor between units of tem-
perature and units of energy.

then gives us the important formula

ρ(p1) = 1/
√

2πmkBT exp(−p1
2/2mkBT ). (3.21)

(2) Boltzmann distribution. The probability of the x-momentum
of the first particle having kinetic energy K = p2

1/2m is propor-
tional to exp(−K/kBT ) (equation 3.21). This is our first example
of a Boltzmann distribution. We shall see in section 6.1 that the
probability of a small subsystem being in a particular state21 of21This is different from the probabil-

ity of the subsystem having energy E,
which is the product of the Boltzmann
probability times the number of states
with that energy.

energy E will in completely general contexts have probability pro-
portional to exp(−E/kBT ).

(3) Equipartition theorem. The average kinetic energy 〈p2
1/2m〉

from equation 3.21 is kBT/2. This is an example of the equiparti-
tion theorem (section 6.2): each harmonic degree of freedom in an
equilibrium classical system has average energy kBT/2.

(4) General classical momentum distribution. Our derivation
was in the context of a monatomic ideal gas. But we could have
done an analogous calculation for a system with several gases of
different masses: our momentum sphere would become an ellipsoid,
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but the calculation would still give the same distribution.22 What
is more surprising, we shall see when we introduce the canonical
ensemble (section 6.1), that interactions don’t matter either, so
long as the system is classical:23 the calculation factors and the 23Notice that almost all molecular dy-

namics simulations are done classically:
their momentum distributions are given
by equation 3.21.

probability densities for the momenta are given by equation 3.21,
independent of the potential energies.24 The momentum distribu-
tion in the form equation 3.21 is correct for nearly all equilibrium
systems of classical particles.

3.3 What is Temperature?

When a hot body is placed beside a cold one, our ordinary experience
suggests that heat energy flows from hot to cold until they reach the same
temperature. In statistical mechanics, the distribution of heat between
the two bodies is determined by the assumption that all possible states
of the two bodies at fixed total energy are equally likely. Do these two
definitions agree? Can we define the temperature so that two large
bodies in equilibrium with one another will have the same temperature?

Consider a general, isolated system of total energy E consisting of two
parts, labeled 1 and 2. Each subsystem has fixed volume and number of
particles, and is energetically weakly connected to the other subsystem.
The connection is weak in that we assume we can neglect the dependence
of the energy E1 of the first subsystem on the state s2 of the second one,
and vice versa.25 25A macroscopic system attached to

the external world at its boundaries
is usually weakly connected, since the
interaction energy is only important
at the surfaces, which are a negligible
fraction of the total. Also, the mo-
menta and positions of classical parti-
cles without magnetic fields are weakly
connected in this sense: no terms in the
Hamiltonian mix them (although the
dynamical evolution certainly does).

Our microcanonical ensemble then asserts that the equilibrium en-
semble of the total system is an equal weighting of all possible states
of the two subsystems having total energy E. A particular state of the
whole system is given by a pair of states (s1, s2) with E = E1 + E2.
This immediately implies that a particular configuration or state s1 of
the first subsystem at energy E1 will occur with probability density26

26That is, if we compare the probabili-
ties of two states of the subsystems with
energies Ea and Eb, and if Ω2(E−Ea)
is 50 times larger than Ω2(E−Eb), then
ρ(Ea) = 50 ρ(Eb) because the former
has 50 times as many partners that it
can pair with to get an allotment of
probability.

ρ(s1) ∝ Ω2(E − E1) (3.22)

where Ω1(E1) δE1 and Ω2(E2) δE2 are the phase-space volumes of the
energy shell for the two subsystems. The volume of the energy surface
for the total system at energy E will be given by adding up the product
of the volumes of the subsystems for pairs of energy summing to E. This

22Molecular gases will have internal vibration modes that are often not well de-
scribed by classical mechanics. At low temperatures, these are often frozen out:
including rotations and translations but ignoring vibrations leads to the traditional
formulas used, for example, for air (see note 10 on page 31).

24Quantum mechanics, however, couples the kinetic and potential terms: see chap-
ter 7. Quantum mechanics is important for atomic motions only at low temperatures,
so equation 3.21 will be reasonably accurate for all gases, all liquids but helium, and
many solids that are not too cold.
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may be intuitively clear, but we can also formally derive it:

Ω(E) =
1
δE

∫
E<H1+H2<E+δE

dP1 dQ1 dP2 dQ2

=
∫
dP1 dQ1

(
1
δE

∫
E−H1<H2<E−H1

dP2 dQ2

)
=
∫
dP1 dQ1Ω2(E −H1(P1,Q1))

≈
∫
dE1

(
1
δE

∫
E1<H1<E1+δE

dP1 dQ1

)
Ω2(E − E1)

=
∫
dE1Ω1(E1)Ω2(E − E1) (3.23)

Notice that the integrand in equation 3.23, normalized by the total in-
tegral, is just the probability density27 of the subsystem having energy27Warning: again we’re being sloppy:

we use ρ(s1) in equation 3.22 for the
probability that the subsystem is in a
particular state s1 and we use ρ(E1) in
equation 3.24 for the probability that a
subsystem is in any of many particular
states with energy E1.

E1:
ρ(E1) = Ω1(E1)Ω2(E − E1)/Ω(E). (3.24)

We will show in a moment that if the two subsystems have a large
number of particles then ρ(E1) is a very sharply peaked function near its
maximum at E∗

1 . Hence, the energy in subsystem 1 is given (apart from
small fluctuations) by the maximum in the integrand Ω1(E1)Ω2(E−E1).
The maximum is found when the derivative dΩ1

dE1
Ω2 − Ω1

dΩ2
dE2

is zero, so

1
Ω1

dΩ1

dE1
=

1
Ω2

dΩ2

dE2
. (3.25)

This is the condition for thermal equilibrium between the two subsys-
tems.

It is more convenient not to work with Ω, but rather to work with its
logarithm. We define the equilibrium entropy

Sequil(E) = kB log(Ω(E)) (3.26)

for each of our systems, where kB is a scale factor representing the
unfortunate fact that temperature is not measured in the same units
as energy.28 Then dS/dE = kB(1/Ω)dΩ/dE, and the condition 3.2528See note 20 on page 36.

for thermal equilibrium between two macroscopic bodies is precisely the
condition

d

dE1
(S1(E1) + S2(E − E1)) =

dS1

dE1

∣∣∣∣
E1

− dS2

dE2

∣∣∣∣
E−E1

= 0 (3.27)

that entropy is an extremum. Indeed, since the sum of the entropies is
the logarithm of the integrand in equation 3.23 which by assumption is
expanded about a local maximum, the condition of thermal equilibrium
maximizes the entropy.2929We shall discuss different aspects of

entropy and its growth in chapter 5. We want to define the temperature so that it becomes equal when the
two subsystems come to equilibrium. We’ve seen that

dS1/dE = dS2/dE (3.28)
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in thermal equilibrium. dS/dE decreases upon increasing energy, so we
define the temperature in statistical mechanics as

1/T = dS/dE. (3.29)

Is the probability density ρ(E1) in equation 3.24 sharply peaked, as
we have assumed? We can expand the numerator about the maximum
E1 = E∗

1 , and use the fact that the temperatures balance to remove the
terms linear in E1 − E∗

1 :

Ω1(E1)Ω2(E − E1) = exp (S1(E1)/kB + S2(E − E1)/kB)

≈ exp
((
S1(E∗

1 ) + 1/2(E1 − E∗
1 )2

∂2S1

∂E2
1

+ S2(E − E∗
1 ) + 1/2(E1 − E∗

1 )2
∂2S2

∂E2
2

)/
kB

)
= Ω1(E∗

1 )Ω2(E∗
2 ) (3.30)

exp
(

(E1 − E∗
1 )2
(
∂2S1

∂E2
1

+
∂2S2

∂E2
2

)/
(2kB)

)
.

Thus the energy fluctuations are Gaussian,

ρ(E1) =
1√

2πσE

e−(E1−E∗
1 )2/2σ2

E (3.31)

with standard deviation σE given by

kB/σ
2
E =

∂2S1

∂E2
1

+
∂2S2

∂E2
2

. (3.32)

How large is ∂2S
∂E2 for a macroscopic system? It has units of inverse

energy squared, but is the energy a typical system energy or an atomic
energy? If it is a system-scale energy (scaling like the number of particles
N) then the root-mean-square energy fluctuation

√
〈(E1 − E∗

1 )2〉 will be
comparable to E1 (enormous fluctuations). If it is an atomic-scale en-
ergy (going to a constant as N → ∞) then the energy fluctuations will
be independent of system size (microscopic). Quantities like the total
energy which scale linearly with the system size are called extensive;
quantities like temperature that go to a constant as the system grows
large are called intensive. The entropy of a system is typically exten-
sive,30 so the second derivative ∂2S

∂E2 ≈ [S]/[E2] ≈ N/N2 ≈ 1/N . Hence,
the energy fluctuations scale as 1/

√
N of the total energy.31 Just as 31We can also calculate these fluctua-

tions explicitly: see exercise 3.7.

30A large system can usually be decomposed into many small, weakly coupled
subsystems, for which the entropies add. This will be simpler to show in the canonical
ensemble (section 6.2. In the microcanonical ensemble, equation 3.30 can be used to
show that the entropy of the total system is

Stot(E) = S1(E
∗
1 ) + S2(E −E∗1 ) + kB log(

√
2πσE) (3.33)

which is extensive up to a small correction (due to the enhanced energy fluctuations
by coupling the two subsystems). For systems with long-range forces like gravitation
or with long-range correlations, breaking the system up into many weakly–coupled
subsystems may not be possible, and entropy and energy need not be extensive.

c©James P. Sethna, April 19, 2005 Entropy, Order Parameters, and Complexity



40 Temperature and Equilibrium

for the configurations of the ideal gas, where the number of particles in
half the box fluctuated very little, so also the energy E1 fluctuates very
little from the value E∗

1 at which the probability is maximum.32 In both32We will discuss fluctuations in detail
in section 6.1, and in chapter 10. cases, the relative fluctuations scale as 1/

√
N .

The inverse of the temperature is the cost of buying energy from the
rest of the world. The lower the temperature, the more strongly the
kinetic energy for the momentum component is pushed towards zero.
Entropy is the currency being paid. For each unit δE energy bought, we
pay δE/T = δE · dS/dE = δS in reduced entropy of the world. Inverse
temperature is the cost in entropy to buy a unit of energy.

The “rest of the world” is often called the heat bath; it is a source and
sink for heat and fixes the temperature. All heat baths are equivalent,
depending only on the temperature. More precisely, the equilibrium
behavior of a system weakly coupled to the external world is independent
of what the external world is made of – it depends only on the world’s
temperature. This is a deep truth.

3.4 Pressure and Chemical Potential

The entropy S(E, V,N) is our first example of a thermodynamic poten-
tial. In thermodynamics, all the macroscopic properties can be calcu-
lated by taking derivatives of thermodynamic potentials with respect
to their arguments. It is often useful to think of thermodynamic po-
tentials as surfaces: figure 3.3 shows the surface in S,E, V space (at
constant number of particles N). The energy E(S, V,N) is another
thermodynamic potential, completely equivalent to S(E, V,N): it’s the
same surface with a different direction ‘up’.

Fig. 3.3 Entropy. The entropy
S(E,V,N) as a function of energy E
and volume V (at fixed number N).
Viewed sideways, this surface also de-
fines the energy E(S, V,N). The three
curves are lines at constant S,E, and V :
the fact that they must close yields the

relation ∂S
∂E

∣∣∣
V,N

∂E
∂V

∣∣∣
S,N

∂V
∂S

∣∣∣
E,N

=

−1 (see exercise 3.6).

1 1 21 2

∆

V∆

S (E ,V ,N )
2

∆E

N

2
S (E ,V ,N )

1

Fig. 3.4 Two subsystems. Two
subsystems, isolated from the outside
world, may exchange energy (open door
through the insulation), volume (pis-
ton), or particles (tiny uncorked holes).

In section 3.3 we defined the temperature using ∂S
∂E

∣∣
V,N

. What about
the other two first derivatives, ∂S

∂V

∣∣
E,N

and ∂S
∂N

∣∣
E,V

? That is, how does
the entropy change when volume or particles are exchanged between two
subsystems? The change in the entropy for a tiny shift ∆E, ∆V , and
∆N from subsystem 2 to subsystem 1 (figure 3.4) is

∆S =

(
∂S1

∂E1

∣∣∣∣
V,N

− ∂S2

∂E2

∣∣∣∣
V,N

)
∆E +

(
∂S1

∂V1

∣∣∣∣
E,N

− ∂S2

∂V2

∣∣∣∣
E,N

)
∆V

+

(
∂S1

∂N1

∣∣∣∣
E,V

− ∂S2

∂N2

∣∣∣∣
E,V

)
∆N. (3.34)

The first term is of course (1/T1−1/T2)∆E; exchanging energy to max-
imize the entropy sets the temperatures equal. Just as for the energy, if
the two subsystems are allowed to exchange volume and number then the
entropy will maximize itself with respect to these variables as well, with
small fluctuations.33 Equating the derivatives with respect to volume

33If the systems are at different temperatures and the piston is allowed to act, we
would expect the pressures to equalize. Showing that this maximizes the entropy is
complicated by the fact that the motion of a piston not only exchanges volume ∆V
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gives us our statistical mechanics definition of the pressure P :

P/T =
∂S

∂V

∣∣∣∣
E,N

(3.35)

and equating the derivatives with respect to number gives us the defini-
tion of the chemical potential µ:

−µ/T =
∂S

∂N

∣∣∣∣
E,V

. (3.36)

These definitions are a bit odd: usually we define pressure and chem-
ical potential in terms of the change in energy E, not the change in
entropy S. There is an important mathematical identity that we derive
in exercise 3.6. If f is a function of x and y, then (see figure 3.3):34 34Notice that this is exactly minus the

result you would have derived by can-
celling ∂f , ∂x, and ∂y from ‘numerator’
and ‘denominator’.

∂f

∂x

∣∣∣∣
y

∂x

∂y

∣∣∣∣
f

∂y

∂f

∣∣∣∣
x

= −1. (3.37)

Also, it’s clear that if we keep all but one variable fixed, partial deriva-
tives are like regular derivatives so

∂f

∂x

∣∣∣∣
y

= 1
/ ∂x

∂f

∣∣∣∣
y

. (3.38)

Using this for S(E, V ) and fixing N , we find

−1 =
∂S

∂V

∣∣∣∣
E,N

∂V

∂E

∣∣∣∣
S,N

∂E

∂S

∣∣∣∣
V,N

=
P

T

(
1
/ ∂E

∂V

∣∣∣∣
S,N

)
T (3.39)

so
∂E

∂V

∣∣∣∣
S,N

= −P. (3.40)

Thus the pressure is minus the energy cost per unit volume at constant
entropy. Similarly,

−1 =
∂S

∂N

∣∣∣∣
E,V

∂N

∂E

∣∣∣∣
S,V

∂E

∂S

∣∣∣∣
N,V

= − µ

T

(
1
/ ∂E

∂N

∣∣∣∣
S,V

)
T (3.41)

so
∂E

∂N

∣∣∣∣
S,V

= µ (3.42)

the chemical potential is the energy cost of adding a particle at constant
entropy.

between the two subsystems, but also changes the energy ∆E because of the work

done. Equation 3.34 and 3.35 tell us that ∆S =
(

1
T1

− 1
T2

)
∆E+

(
P1
T1

− P2
T2

)
∆V =

0, implying that ∆E/∆V = (1 − λ)P1 + λP2 with λ = 1
1−T2/T1

. If we hypothesize

that the maximum entropy had P1 	= P2, we would certainly expect that ∆E/∆V
would lie between these two pressures, corresponding to 0 < λ < 1, but if T2 and T1

are both positive and different then either λ < 0 or λ > 1. Hence the piston must
move to equalize the pressure even when the temperatures do not agree.
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42 Temperature and Equilibrium

The chemical potential will be unfamiliar to most of those new to
statistical mechanics. We can feel pressure and temperature as our bod-
ies exchange volume with balloons and heat with coffee cups. Most of
us have not had comparable tactile experience with exchanging parti-
cles.35 Your intuition will improve as you work with chemical potentials.35Our lungs exchange oxygen and car-

bon dioxide, but they don’t have nerve
endings that measure the chemical po-
tentials.

They are crucial to the study of chemical reactions: whether a reaction
will proceed depends in part on the relative cost of the products and
the reactants, measured by the differences in their chemical potentials
(section 6.6). The chemical potential is also central to noninteracting
quantum systems, where the number of particles in each quantum state
can vary (chapter 7).

Our familiar notion of pressure is from mechanics: the energy of a sub-
system increases as the volume decreases, as ∆E = −P∆V . What may
not be familiar is that this energy change is measured at fixed entropy.
With the tools we have now, we can show explicitly that the mechanical
definition of pressure is the same as the statistical mechanics definition
(equation 3.35): the argument is somewhat technical, but illuminating
(footnote 36 at the end of this section).

We can also give a simpler argument, using properties of the entropy
that we will discuss more fully in chapter 5. A mechanical measure-
ment of the pressure must not exchange heat with the body. Changing
the volume while adding heat to keep the temperature fixed, for exam-
ple, is a different measurement. The mechanical measurement must also
change the volume slowly. If the volume changes fast enough that the
subsystem goes out of equilibrium (typically a piston moving near the
speed of sound), then the energy needed to change the volume will in-
clude the energy for generating the sound and shock waves – energies not
appropriate to include in a good measurement of the pressure. We call
a process adiabatic if it occurs without heat exchange and sufficiently
slowly that the system remains in equilibrium.

Consider the system comprising the subsystem and the mechanical
device pushing the piston, under a cycle V → V +∆V → V . Because the
subsystem remains in equilibrium at all times, the process of changing
the volume is completely reversible: the entropy of the system at the end
is the same as that at the beginning. Since entropy can only increase
(chapter 5), the entropy of the system halfway through the cycle at V +
∆V must be the same as at V . The mechanical instrument can be made
with few moving parts, so its entropy change can be neglected. Hence
the entropy of the subsystem must be unchanged under an adiabatic
change in volume. Thus a mechanical measurement of pressure is done
at constant entropy.

Broadly speaking, the entropy of a system changing adiabatically
(slowly and in thermal isolation) will be a constant. Indeed, you may
view our detailed calculation (the following footnote) as providing a sta-
tistical mechanical derivation for this important truth.36

36 We want to show that our statistical mechanics definition P = T ∂S
∂V

∣∣∣
E,N

cor-

responds to the everyday mechanical definition P = −∆E/∆V . We first must use
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statistical mechanics to find a formula for the mechanical force per unit area P .
Consider some general liquid or gas whose volume is changed smoothly from V to
V + ∆V , and is otherwise isolated from the rest of the world. (A solid can support
a shear stress. Because of this, it has not just a pressure, but a whole stress tensor,
that can vary in space . . . )

We can find the mechanical pressure if we can find out how much the energy
changes as the volume changes. The initial system at t = 0 is an equilibrium ensem-
ble at volume V , uniformly filling phase space in an energy range E < H < E + δE
with density 1/Ω(E, V ). A member of this volume-expanding ensemble is a trajec-
tory P(t),Q(t) that evolves in time under the changing Hamiltonian H

(
P,Q, V (t)

)
.

The amount this particular trajectory changes in energy under the time-dependent
Hamiltonian is

dH
(
P(t),Q(t), V (t)

)
dt

=
∂H
∂P

Ṗ +
∂H
∂Q

Q̇ +
∂H
∂V

dV

dt
. (3.43)

A Hamiltonian for particles of kinetic energy 1/2P2/m and potential energy U(Q) will
have ∂H

∂P
= P/m = Q̇ and ∂H

∂Q
= V (Q) = −Ṗ, so the first two terms cancel on

the right-hand side of equation 3.43. (You may recognize Hamilton’s equations of
motion; indeed, the first two terms cancel for any Hamiltonian system.) Hence the
energy change for this particular trajectory is

dH
(
P(t),Q(t), V (t)

)
dt

=
∂H
∂V

(
P,Q

) dV
dt
. (3.44)

That is, the energy change of the evolving trajectory is the same as the expectation
value of ∂H

∂t
at the static current point in the trajectory: we need not follow the

particles as they zoom around.
We still must average this energy change over the equilibrium ensemble of initial

conditions. This is in general not possible, until we make the second assumption
involved in the adiabatic measurement of pressure: we assume that the potential
energy turns on so slowly that the system remains in equilibrium at the current
volume V (t) and energy E(t). This allows us to calculate the ensemble average
energy change as an equilibrium thermal average:

d〈H〉
dt

=

〈
∂H
∂V

〉
E(t),V (t)

dV

dt
. (3.45)

Since this energy change must equal −P dV
dt

, we find

−P =

〈
∂H
∂V

〉
=

1

Ω(E)

∫
dP dQ δ(E −H(P,Q, V ))

∂H
∂V

. (3.46)

We now return to calculating the derivative

∂S

∂V

∣∣∣∣
E,N

=
∂

∂V
kB log(Ω) =

kB

Ω

∂Ω

∂V

∣∣∣∣
E,N

. (3.47)

Using equation 3.4 to write Ω in terms of a derivative of the Θ function, we can
change orders of differentiation

∂Ω

∂V

∣∣∣∣
E,N

=
∂

∂V

∣∣∣∣
E,N

∂

∂E

∣∣∣∣
V,N

∫
dP dQ Θ(E −H(P,Q, V ))

=
∂

∂E

∣∣∣∣
V,N

∫
dP dQ

∂

∂V
Θ(E −H(P,Q, V ))

= − ∂

∂E

∣∣∣∣
V,N

∫
dP dQ δ(E −H(P,Q, V ))

∂H
∂V

(3.48)

But the phase–space integral in the last equation is precisely the same integral that
appears in our formula for the pressure, equation 3.46: it is Ω(E)(−P ). Thus

∂Ω

∂V

∣∣∣∣
E,N

=
∂

∂E

∣∣∣∣
V,N

(Ω(E)P )

=
∂Ω

∂E

∣∣∣∣
V,N

P + Ω
∂P

∂E

∣∣∣∣
V,N

(3.49)
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3.5 Entropy, the Ideal Gas, and Phase Space

Refinements

Let’s find the temperature and pressure for the ideal gas, using our mi-
crocanonical ensemble. We’ll then introduce two subtle refinements to
the phase space volume (one from quantum mechanics, and one for indis-
tinguishable particles) which will not affect the temperature or pressure,
but will be important for the entropy and chemical potential.

We derived the volume Ω(E) of the energy shell in phase space in
section 3.2: it factored37 into a momentum space volume from equa-37It factors only because the potential

energy is zero. tion 3.15 and a configuration space volume V N . Before our refinements,
we have:

Ωcrude(E) = V N

(
3N
2E

)
π

3N
2 (2mE)

3N
2 / 3N

2 !

≈ V Nπ
3N
2 (2mE)

3N
2 / 3N

2 !
(3.52)

Notice that in the second line of 3.52 we have dropped the term 3N/2E:
it divides the phase space volume by a negligible factor (two-thirds the
energy per particle).38 The entropy and its derivatives are (before our38Multiplying Ω(E) by a factor in-

dependent of the number of particles
is equivalent to adding a constant to
the entropy. The entropy of a typi-
cal system is so large (of order Avo-
gadro’s number times kB) that adding
a number-independent constant to it is
irrelevant. Notice that this implies that
Ω(E) is so large that multiplying it by
a constant doesn’t significantly change
its value.

so

∂S

∂V

∣∣∣∣
E,N

=
∂

∂V
kB log(Ω) =

kB

Ω

(
∂Ω

∂E

∣∣∣∣
V,N

P + Ω
∂P

∂E

∣∣∣∣
V,N

)

=
∂kB log(Ω)

∂E

∣∣∣∣
V,N

P + kB
∂P

∂E

∣∣∣∣
V,N

=
∂S

∂E

∣∣∣∣
V,N

P + kB
∂P

∂E

∣∣∣∣
V,N

= P/T + kB
∂P

∂E

∣∣∣∣
V,N

(3.50)

Now, P and T are both intensive variables, but E is extensive (scales linearly with
system size). Hence P/T is of order one for a large system, but kB

∂P
∂E

is of order
1/N where N is the number of particles. (For example, we shall see that for the ideal
gas, PV = 2/3E = NkBT , so kB

∂P
∂E

= 2kB
3V

= 2P
3NT

= 2
3

P
NT


 P
T

for large N .)
Hence the second term, for a large system, may be neglected, giving us the desired
relation

∂S

∂V

∣∣∣∣
E,N

= P/T. (3.51)

The derivative of the entropy S(E,V,N) with respect to V at constant E and N
is thus indeed the mechanical pressure divided by the temperature. Adiabatic mea-
surements (slow and without heat exchange) keep the entropy unchanged.
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refinements)

Scrude(E) = kB log
(
V Nπ

3N
2 (2mE)

3N
2 / 3N

2 !
)

= NkB log(V ) + 3/2NkB log(2πmE) − kB log
(

3N
2

!
)

(3.53)

1
T

=
∂S

∂E

∣∣∣∣
V,N

=
3NkB

2E
(3.54)

P

T
=

∂S

∂V

∣∣∣∣
E,N

=
NkB

V
(3.55)

(3.56)

so the temperature and pressure are

kBT =
2E
3N

and (3.57)

PV = NkBT. (3.58)

The first line above is the temperature formula we promised in forming
equation 3.21: the ideal gas has energy equal to 1/2kBT per component
of the velocity.39 39Since kBT = 2E/3N , this means

each particle on average has its share
E/N of the total energy, as it must.

The second formula is the equation of state40 for the ideal gas. The

40It is rare that the ‘equation of state’
can be written out as an explicit equa-
tion! Only in special cases (e.g., nonin-
teracting systems like the ideal gas) can
one solve in closed form for the thermo-
dynamic potentials, equations of state,
or other properties.

equation of state is the relation between the macroscopic variables of
an equilibrium system that emerges in the limit of large numbers of
particles. The pressure P (T, V,N) in an ideal gas will fluctuate around
the value NkBT/V given by the equation of state, with the magnitude
of the fluctuations vanishing as the system size gets large.

In general, our definition for the energy shell volume in phase space
needs two refinements. First, the phase space volume has units of
([length][momentum])3N : the volume of the energy shell depends multi-
plicatively upon the units chosen for length, mass, and time. Changing
these units will change the corresponding crude form for the entropy by a
constant times 3N . Most physical properties, like temperature and pres-
sure above, are dependent only on derivatives of the entropy, so the over-
all constant won’t matter: indeed, the zero of the entropy is undefined
within classical mechanics. It is suggestive that [length][momentum] has
units of Planck’s constant h, and we shall see in chapter 7 that quantum
mechanics in fact does set the zero of the entropy. We shall see in exer-
cise 7.1 that dividing41 Ω(E) by h3N nicely sets the entropy density to 41This is equivalent to using units for

which h = 1.zero in equilibrium quantum systems at absolute zero.
Second, there is an important subtlety in quantum physics regarding

identical particles. Two electrons, or two Helium atoms of the same
isotope, are not just hard to tell apart: they really are completely and
utterly the same (figure 7.3). We shall see in section 7.3 that the proper
quantum treatment of identical particles involves averaging over possible
states using Bose and Fermi statistics.

In classical physics, there is an analogous subtlety regarding indistin-
guishable42 particles. For a system of two indistinguishable particles, 42If we have particles that in principle

are not identical, but our Hamiltonian
and measurement instruments do not
distinguish between them, then in clas-
sical statistical mechanics we may treat
them with Maxwell-Boltzmann statis-
tics as well: they are indistinguishable
but not identical.

the phase space points (pA,pB,qA,qB) and (pB,pA,qB,qA) should
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not both be counted: the volume of phase space Ω(E) should be half
that given by a calculation for distinguishable particles. For N indis-
tinguishable particles, the phase space volume should be divided by N !,
the total number of ways the labels for the particles can be permuted.

Unlike the introduction of the factor h3N above, dividing the phase
space volume by N ! does change the predictions of statistical mechanics
in important ways. We will see in section 5.2.1 that the entropy increase
for joining containers of different kinds of particles should be substan-
tial, while the entropy increase for joining containers filled with indistin-
guishable particles should be near zero. This result is correctly treated
by dividing Ω(E) by N ! for each set of N indistinguishable particles. We
call the resulting ensemble Maxwell-Boltzmann statistics, to distinguish
it from distinguishable statistics and from the quantum-mechanical Bose
and Fermi statistics. We shall see in chapter 7 that identical fermions
and bosons obey Maxwell-Boltzmann statistics at high temperatures –
they become classical, but remain indistinguishable.

Combining these two refinements gives us for the ideal gas

Ω(E) = (V N/N !) (π
3N
2 (2mE)

3N
2 / 3N

2 !) (1/h)3N . (3.59)

S(E) = NkB log
[
V

h3
(2πmE)3/2

]
− kB log(N !

3N
2

!). (3.60)

We can make our equation for the entropy more useful by using Stirling’s
formula log(N !) ≈ N logN −N , valid at large N .

S(E, V,N) =
5
2
NkB +NkB log

[
V

Nh3

(
4πmE

3N

)3/2
]

(3.61)

This is the standard formula for the entropy of an ideal gas. We can put
it into a somewhat simpler form by writing it in terms of the particle
density ρ = N/V

S = NkB

(
5
2
− log(ρλ3)

)
. (3.62)

where4343de Broglie realized that matter could
act as a wave: a particle of momentum
p had a wavelength λquantum = h/p.
The mean-square momentum of a par-
ticle in our gas is p2 = 2m(E/N),
and would have a quantum wavelength
of h/

√
2mE/3N = λthermal/

√
2π/3 –

close enough that we give de Broglie’s
name to λ too.

λ = h/
√

4πmE/3N (3.63)

is called the thermal de Broglie wavelength, and will be physically sig-
nificant for quantum systems at low temperature (chapter 7).

Exercises

Exercise 3.1 is the classic problem of planetary atmo-
spheres. Exercise 3.3 is a nice generalization of the ideal
gas law. Part (a) of exercise 3.4 is a workout in δ-

functions; parts (b) and (c) calculate the energy fluc-
tuations for a mixture of two ideal gases, and could be
assigned separately. Exercise 3.5 extends the calculation
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of the density fluctuations from two subvolumes to K
subvolumes, and introduces the Poisson distribution. Fi-
nally, exercise 3.6 introduces some of the tricky partial
derivative relations in thermodynamics (the triple prod-
uct of equation 3.37 and the Maxwell relations) and ap-
plys them to the ideal gas.

(3.1) Escape Velocity. (Basic)

Assuming the probability distribution for the z compo-
nent of momentum given in equation 3.21, ρ(pz) =
1/
√

2πmkBT exp(−pz
2/2mkBT ), give the probability

density that an N2 molecule will have a vertical compo-
nent of the velocity equal to the escape velocity from the
Earth (about 10 km/sec, if I remember right). Do we need
to worry about losing our atmosphere? Optional: Try
the same calculation for H2, where you’ll find a substan-
tial leakage.
(Hint:You’ll want to know that there are about π × 107

seconds in a year, and molecules collide (and scramble
their velocities) many times per second. That’s why
Jupiter has hydrogen gas in its atmosphere, and Earth
does not.)

(3.2) Temperature and Energy. (Basic)

What units [joules, millijoules, microjoules, nanojoules,
. . . , yoctojoules (10−24 joules)] would we use to measure
temperature if we used energy units instead of introduc-
ing Boltzmann’s constant kB = 1.3807 × 10−23 J/K?

(3.3) Hard Sphere Gas (Basic)

We can improve on the realism of the ideal gas by giving
the atoms a small radius. If we make the potential energy
infinite inside this radius (“hard spheres”), the potential
energy is simple (zero unless the spheres overlap, which
is forbidden). Let’s do this in two dimensions.

A two dimensional L × L box with hard walls contains
a gas of N hard disks of radius r � L (figure 3.5). The
disks are dilute: the summed area Nπr2 � L2. Let A
be the effective volume allowed for the disks in the box:
A = (L− 2r)2.

r

Fig. 3.5 Hard Sphere Gas.

(a) The area allowed for the second disk is A − π(2r)2

(figure 3.6), ignoring the small correction when the ex-
cluded region around the first disk overlaps the excluded
region near the walls of the box. What is the allowed
2N-dimensional volume in configuration space, of allowed
zero-energy configurations of hard disks, in this dilute
limit? Ignore small corrections when the excluded re-
gion around one disk overlaps the excluded regions around
other disks, or near the walls of the box. Remember the
1/N ! correction for identical particles. Leave your answer
as a product of N terms.

Fig. 3.6 Excluded volume around a sphere.

(b) What is the configurational entropy for the hard disks?
Here, simplify your answer so that it does not involve
a sum over N terms, but valid to first order in the
area of the disks πr2. Show, for large N , that it is
well approximated by SQ = NkB(1 + log(A/N − b)),
with b representing the effective excluded area due to
the other disks. (You may want to derive the formula∑N

n=1 log (A− (n− 1)ε) = N log (A− (N − 1)ε/2) +
O(ε2).) What is the value of b, in terms of the area of
the disk?

(c) Find the pressure for the hard-sphere gas in the large
N approximation of part (b). Does it reduce to the ideal
gas law for b = 0?

(3.4) Connecting Two Macroscopic Systems.
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An isolated system with energy E is composed of two
macroscopic subsystems, each of fixed volume V and
number of particles N . The subsystems are weakly cou-
pled, so the sum of their energies is E1 + E2 = E (fig-
ure 3.4 with only the energy door open). We can use
the Dirac delta function δ(x) to define the volume of the
energy surface of a system with Hamiltonian H to be

Ω(E) =

∫
dP dQ δ (E −H(P,Q)) (3.64)

=

∫
dP1dQ1dP2dQ2 (3.65)

δ (E − (H1(P1,Q1) +H2(P2,Q2))) .

(a) Derive formula 3.23 for the volume of the energy sur-
face of the whole system using δ-functions. (Hint: Insert∫
δ(E1 −H1(P1,Q1)) dE1 = 1 into equation 3.65.)

Consider a monatomic ideal gas (He) mixed with a di-
atomic ideal gas (H2). We showed that a monatomic

ideal gas of N atoms has Ω1(E1) ∝ E
3N/2
1 . A diatomic

molecule has Ω2(E2) ∝ E5N/2
2 .44

(b) Argue that the probability density of system 1 being
at energy E1 is the integrand of 3.23 divided by the whole
integral, equation 3.24. For these two gases, which energy
Emax

1 has the maximum probability?

(c) Use the saddle-point method [71, sect. 3.6] to approx-
imate the integral 3.65 as the integral over a Gaussian.
(That is, put the integrand into the form exp(f(E1)) and
Taylor expand f(E1) to second order in E1−Emax

1 .) Use
the saddle-point integrand as a Gaussian approximation
for the probability density ρ(E1) (valid, for large N , when-
ever ρ(E1) isn’t absurdly small). In this approximation,
what is the mean energy 〈E1〉? What are the energy fluc-
tuations per particle

√〈(E1 −Emax
1 )2〉/N?

For subsystems with large numbers of particles N , tem-
perature and energy density are well defined because
Ω(E) for each subsystem grows extremely rapidly with
increasing energy, in such a way that Ω1(E1)Ω2(E − E1)
is sharply peaked near its maximum.

(3.5) Gauss and Poisson. (Basic)

In section 3.2.1, we calculated the probability distribution
for having n = N0 + m particles on the right–hand half
of a box of volume 2V with 2N0 total particles. In sec-
tion 10.3 we will want to know the number fluctuations
of a small subvolume in an infinite system. Studying this
also introduces the Poisson distribution.

Let’s calculate the probability of having n particles in a
subvolume V , for a box with total volume KV and a to-
tal number of particles T = KN0. For K = 2 we will
derive our previous result, equation 3.13, including the
prefactor. As K → ∞ we will derive the infinite volume
result.

(a) Find the exact formula for this probability: n particles
in V , with total of T particles in KV . (Hint: What is the
probability that the first n particles fall in the subvolume
V , and the remainder T − n fall outside the subvolume
(K − 1)V ? How many ways are there to pick n particles
from T total particles?)

The Poisson probability distribution

ρn = ane−a/n! (3.66)

arises in many applications. It arises whenever there is
a large number of possible events T each with a small
probability a/T ; the number of cars passing a given point
during an hour on a mostly empty street, the number of
cosmic rays hitting in a given second, etc.

(b) Show that the Poisson distribution is normalized:∑
n ρn = 1. Calculate the mean of the distribution 〈n〉

in terms of a. Calculate the variance (standard deviation
squared)

〈
(n− 〈n〉)2〉.

(c) As K →∞, show that the probability that n particles
fall in the subvolume V has the Poisson distribution 3.66.
What is a? (Hint: You’ll need to use the fact that
e−a = (e−1/K)Ka → (1 − 1/K)Ka as K → ∞, and the
fact that n � T . Here don’t assume that n is large: the
Poisson distribution is valid even if there are only a few
events.)

From parts (b) and (c), you should be able to conclude
that the variance in the number of particles found in a
volume V inside an infinite system should be equal to N0,
the expected number of particles in the volume:〈

(n− 〈n〉)2〉 = N0. (3.67)

This is twice the squared fluctuations we found for the
case where the volume V was half of the total volume,
equation 3.13. That makes sense, since the particles can
fluctuate more freely in an infinite volume than in a dou-
bled volume.

If N0 is large, the probability Pm that N0 + m particles
lie inside our volume will be Gaussian for any K. (As a
special case, if a is large the Poisson distribution is well
approximated as a Gaussian.) Let’s derive this distribu-
tion for all K. First, as in section 3.2.1, let’s use the weak

44In the range �2/2I 
 kBT 
 �ω, where ω is the vibrational frequency of the
stretch mode and I is the moment of inertia. The lower limit makes the rotations
classical; the upper limit freezes out the vibrations, leaving us with three classical
translation modes and two rotational modes – a total of five degrees of freedom.
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form of Stirling’s approximation, equation 3.10 dropping
the square root: n! ∼ (n/e)n.

(d) Using your result from part (a), write the exact for-
mula for log(Pm). Apply the weak form of Stirling’s for-
mula. Expand your result around m = 0 to second or-
der in m, and show that log(Pm) ≈ −m2/2σ2

K , giving a
Gaussian form

Pm ∼ e−m2/2σ2
K . (3.68)

What is σK? In particular, what is σ2 and σ∞? Your
result for σ2 should agree with the calculation in sec-
tion 3.2.1, and your result for σ∞ should agree with equa-
tion 3.67.

Finally, we should address the normalization of the Gaus-
sian. Notice that the ratio of the strong and weak forms
of Stirling’s formula, (equation 3.10) is

√
2πn. We need

to use this to produce the normalization 1√
2πσK

of our
Gaussian.

(e) In terms of T and n, what factor would the square–
root term have contributed if you had kept it in Stirling’s
formula going from part (a) to part (d)? (It should look
like a ratio involving three terms like

√
2πX.) Show

from equation 3.68 that the fluctuations are small, m =
n − N0 � N0 for large N0. Ignoring these fluctuations,
set n = N0 in your factor, and give the prefactor multiply-
ing the Gaussian in equation 3.68. (Hint: your answer
should be normalized.)

(3.6) Microcanonical Thermodynamics (Thermo-
dynamics, Chemistry)

Thermodynamics was understood as an almost complete
scientific discipline before statistical mechanics was in-
vented. Stat mech can be thought of as the “microscopic”
theory, which yields thermo as the “emergent” theory on
long length and time scales where the fluctuations are
unimportant.

The microcanonical stat mech distribution introduced in
class studies the properties at fixed total energy E, vol-
ume V , and number of particles N . We derived the mi-
croscopic formula S(N,V,E) = kB log Ω(N,V, E). The
principle that entropy is maximal led us to the conclu-
sion that two weakly-coupled systems in thermal equilib-
rium would exchange energy until their values of ∂S

∂E
|N,V

agreed, leading us to define the latter as the inverse of
the temperature. By an analogous argument we find that
systems that can exchange volume (by a thermally in-
sulated movable partition) will shift until ∂S

∂V
|N,E agrees,

and that systems that can exchange particles (by semiper-
meable membranes) will shift until ∂S

∂N
|V,E agrees.

How do we connect these statements with the definitions
of pressure and chemical potential we get from thermo-
dynamics? In thermo, one defines the pressure as minus

the change in energy with volume P = − ∂E
∂V
|N,S , and the

chemical potential as the change in energy with number
of particles µ = ∂E

∂N
|V,S ; the total internal energy satisfies

dE = T dS − P dV + µdN. (3.69)

(a) Show by solving equation 3.69 for dS that ∂S
∂V
|N,E =

P/T and ∂S
∂N
|V,E = −µ/T .

I’ve always been uncomfortable with manipulating dX’s.
Let’s do this the hard way. Our “microcanonical” equa-
tion of state S(N,V,E) can be thought of as a surface
embedded in four dimensions.

(b) Show that, if f is a function of x and y, that
∂x
∂y
|f ∂y

∂f
|x ∂f

∂x
|y = −1. (Draw a picture of a surface

f(x, y) and a triangular path with three curves at con-
stant f , x, and y as in figure 3.3. Specifically, draw a
path that starts at (x0, y0, f0) and moves along a con-
tour at constant f to y0 + ∆y. The final point will be at
(x0 + ∂x

∂y
|f∆y, y0 + ∆y, f0). Draw it at constant x back

to y0, and then at constant y back to (x0, y0, f0). How
much must f change to make this a single-valued func-
tion?) Applying this formula to S at fixed E, derive the
two equations in part (a) again.

(c) Ideal Gas Thermodynamics. Using the micro-
scopic formula for the entropy of a monatomic ideal gas
(from 3.61)

S(N,V,E) =
5

2
NkB +NkB log

[
V

Nh3

(
4πmE

3N

)3/2
]
,

(3.70)
calculate µ.

Maxwell Relations. Imagine solving the microcanoni-
cal equation of state of some material (not necessarily an
ideal gas) for the energy E(S, V,N): it’s the same surface
in four dimensions, but looked at with a different direc-
tion pointing “up”. One knows that the second deriva-
tives of E are symmetric: at fixed N , we get the same
answer whichever order we take derivatives with respect
to S and V .

(d) Use this to show the Maxwell relation

∂T

∂V

∣∣∣∣
S,N

= − ∂P

∂S

∣∣∣∣
V,N

. (3.71)

(This should take about two lines of calculus). Generate
two other similar formulas by taking other second partial
derivatives of E. There are many of these relations.

(e) Stat Mech check of the Maxwell relation. Using
equation 3.70, write formulas for E(S, V,N), T (S,V,N)
and P (S,V,N) for the ideal gas (non trivial!). (This is
different from T and P in part (c), which were functions
of N , V , and E.) Show explicitly that the Maxwell rela-
tion equation 3.71 is satisfied.
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(3.7) Microcanonical Energy Fluctuations. (Basic)

We argued in section 3.3 that the energy fluctuations be-
tween two weakly coupled subsystems are of order

√
N .

Let us calculate them explicitly.

Equation 3.30 showed that for two subsystems with en-
ergy E1 and E2 = E−E1 the probability density of E1 is
a Gaussian with variance (standard deviation squared):

σ2
E1 = −kB/

(
∂2S1/∂E

2
1 + ∂2S2/∂E

2
2

)
. (3.72)

(a) Show that

1

kB

∂2S

∂E2
= − 1

kBT

1

NcvT
. (3.73)

where cv is the inverse of the total specific heat at con-
stant volume. (The specific heat cv is the energy
needed per particle to change the temperature by one
unit: Ncv = ∂E

∂T

∣∣
V,N

.)

The denominator of equation 3.73 is the product of two
energies. The second term NcvT is a system-scale energy:
it is the total energy that would be needed to raise the
temperature of the system from absolute zero, if the spe-
cific heat per particle cv were temperature independent.
However, the first energy, kBT , is an atomic-scale energy
independent of N . The fluctuations in energy, therefore,
scale like the geometric mean of the two, summed over
the two subsystems in equation 3.30, and hence scale as√
N : the total energy fluctuations per particle thus are

roughly 1/
√
N times a typical energy per particle.

This formula is quite remarkable. Normally, to measure a
specific heat one would add a small energy and watch the
temperature change. This formula allows us to measure
the specific heat of an object by watching the equilib-
rium fluctuations in the energy. These fluctuations are
tiny in most experiments, but can be quite substantial in
computer simulations.

(b) If c
(1)
v and c

(2)
v are the specific heats per particle for

the two subsystems, show using equation 3.72 and 3.73
that

1

c
(1)
v

+
1

c
(2)
v

= NkBT
2/σ2

E. (3.74)

We don’t even need to couple two systems. The positions
and momenta of a molecular dynamics simulation (atoms
moving under Newton’s laws of motion) can be thought
of as two subsystems, since the kinetic energy does not
depend on the configuration Q, and the potential energy
does not depend on the momenta P. Let E1 be the kinetic
energy of a microcanonical molecular dynamics simula-
tion with total energy E. Assume that the simulation is
done inside a box with hard walls, so that total momen-
tum and angular momentum are not conserved.45

(c) Using the equipartition theorem, write the temperature
in terms of the mean kinetic energy of the system. Show
that c

(1)
v = 3kB/2 for the momentum degrees of freedom.

In terms of the mean and standard deviation of the kinetic
energy, solve for the total specific heat of the molecular
dynamics simulation (configurational plus kinetic).

45If one uses periodic boundary conditions and the simulation is done with zero
center-of-mass momentum, then the total specific heat for the momentum degrees of

freedom is Nc
(1)
v = (N − 3)kB , since the three center-of-mass degrees of freedom do

not equilibrate with the rest of the system.
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Phase Space Dynamics and
Ergodicity 4

So far, our justification for using the microcanonical ensemble was sim-
ple ignorance: all we know about the late time dynamics is that energy
must be conserved, so we average over all states of fixed energy. Here we
provide a much more convincing argument for the ensemble, and hence
for equilibrium statistical mechanics as a whole. In section 4.1 we’ll
show for classical systems that averaging over the energy surface is con-
sistent with time evolution: Liouville’s theorem tells us that volume in
phase space is conserved, so the trajectories only stir the energy surface
around, they do not change the relative weights of different parts of the
energy surface. In section 4.2 we introduce the concept of ergodicity: an
ergodic system has an energy surface which is well stirred. Using Liou-
ville’s theorem and assuming ergodicity will allow us to show1 that the 1We do not aspire to rigor, but we will

provide physical arguments for rigor-
ously known results: see [63].

microcanonical ensemble average gives the long-time average behavior
that we call equilibrium.

4.1 Liouville’s Theorem

In chapter 3, we saw that treating all states in phase space with a given
energy on an equal footing gave sensible predictions for the ideal gas,
but we did not show that this democratic treatment was necessarily the
correct one. Liouville’s theorem, true for all Hamiltonian systems, will
tell us that all states are created equal.

Systems of point particles obeying Newton’s laws without dissipation
are examples of Hamiltonian dynamical systems. Hamiltonian systems
conserve energy. The Hamiltonian is the function H(P,Q) that gives
the energy for the system for any point in phase space: the equations of
motion are given by

q̇α = ∂H/∂pα (4.1)
ṗα = −∂H/∂qα.

where as usual Ẋ = ∂X/∂t. The standard example of a Hamiltonian,
and the only example we will discuss in this text, is a bunch of particles
interacting with a potential energy V :

H(P,Q) =
∑
α

pα
2/2mα + V (q1, . . . , q3N ). (4.2)
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52 Phase Space Dynamics and Ergodicity

In this case, one immediately finds the expected equations of motion

q̇α = ∂H/∂pα = pα/mα (4.3)
ṗα = −∂H/∂qα = −∂V/∂qα = fα(q1, . . . , q3N ).

where fα is the force on coordinate α. More general Hamiltonians2 arise2You’ll cover Hamiltonian dynamics in
detail in most advanced courses in clas-
sical mechanics. For those who don’t
already know about Hamiltonians, rest
assured that we won’t use anything
other than the special case of Newton’s
laws for point particles: you can safely
ignore the more general case for our
purposes.

when studying, for example, the motions of rigid bodies or mechanical
objects connected by hinges and joints, where the natural variables are
angles or relative positions rather than points in space. Hamiltonians
also play a central role in quantum mechanics.3

3In section 7.1 we discuss the quantum
version of Liouville’s theorem.

Hamiltonian systems have properties that are quite distinct from gen-
eral systems of differential equations. Not only do they conserve energy:
they also have many other unusual properties.4 Liouville’s theorem de-
scribes the most important of these properties.

J

Fig. 4.1 Conserved Current. Think
of the flow in and out of a small volume
∆V in space. The change in the density
inside the volume ∂ρ3D/∂t∆V must
equal minus the flow of material out
through the surface −

∫
J ·dS, which by

Gauss’ theorem equals −
∫
∇ · J dV ∼

−∇ · J ∆V .

Consider the evolution law for a general probability density in phase
space

ρ(P,Q) = ρ(q1, ..., q3N , p1, ...p3N ). (4.4)

(As a special case, the microcanonical ensemble has ρ equal to a con-
stant in a thin range of energies, and zero outside that range.) This
probability density ρ is locally conserved: probability cannot be created
or destroyed, it can only flow around in phase space. As an analogy,
suppose a fluid of mass density ρ3D(x) in three dimensions has a veloc-
ity v(x). Because mass density is locally conserved, ρ3D must satisfy
the continuity equation ∂ρ3D/∂t = −∇ · J, where J = ρ3Dv is the mass
current (figure 4.1). In the same way, the probability density in 6N
dimensions has a phase-space probability current (ρ Ṗ, ρ Q̇) and hence
satisfies a continuity equation

∂ρ

∂t
= −

3N∑
α=1

(
∂(ρq̇α)
∂qα

+
∂(ρṗα)
∂pα

)
(4.5)

= −
3N∑
α=1

(
∂ρ

∂qα
q̇α + ρ

∂q̇α
∂qα

+
∂ρ

∂pα
ṗα + ρ

∂ṗα

∂pα

)
Now, it’s clear what is meant by ∂ρ/∂qα, since ρ is a function of the qα’s
and pα’s. But what is meant by ∂q̇α/∂qα? For our example of point
particles, q̇α = pα/m, which has no dependence on qα; nor does ṗα =
fα(q1, . . . , q3N ) have any dependence on the momentum pα.5 Hence5It would typically generally depend on

the coordinate qα, for example. these two mysterious terms in equation 4.5 both vanish for Newton’s
laws for point particles. Indeed, in a general Hamiltonian system, using
equation 4.1, we find that they cancel:

∂q̇α/∂qα = ∂(∂H/∂pα)/∂qα = ∂2H/∂pα∂qα = ∂2H/∂qα∂pα

= ∂(∂H/∂qα)/∂pα = ∂(−ṗα)/∂pα = −∂ṗα/∂pα. (4.6)

4For the mathematically sophisticated reader, Hamiltonian dynamics preserves
a symplectic form ω = dq1 ∧ dp1 + · · · + dq3N ∧ dp3N : Liouville’s theorem follows
because the volume in phase space is ω3N .
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This leaves us with the equation

∂ρ/∂t+
3N∑
α=1

∂ρ

∂qα
q̇α +

∂ρ

∂pα
ṗα = dρ/dt = 0. (4.7)

This is Liouville’s theorem.
What is dρ/dt, and how is it different from ∂ρ/∂t? The former is

called the total derivative of ρ with respect to time: it’s the evolution
of ρ seen by a particle moving with the flow. In a three dimensional
flow, dρ3D/dt = ∂ρ/∂t+ v · ∇ρ = ∂ρ

∂t +
∑3

i=1 ẋi
∂ρ
∂xi

; the first term is the
change in ρ due to the time evolution at fixed position, and the second is
the change in ρ that a particle moving with velocity v would see if the ρ
field didn’t change in time. Equation 4.7 is the same physical situation,
but in 6N -dimensional phase space.

What does Liouville’s theorem, dρ/dt = 0, tell us about Hamiltonian
dynamics?

• Flows in phase space are incompressible. In fluid mechanics,
if the density dρ3D/dt = 0 it means that the fluid is incompressible.
The density of a small element of fluid doesn’t change as it moves
around in the fluid: hence the small element is not compressing
or expanding. In Liouville’s theorem, it means the same thing: a
small volume in phase space will evolve into a new shape, perhaps
stretched, twisted, or folded, but with exactly the same volume.

t

Fig. 4.2 A small volume in phase
space may be stretched and twisted by
the flow, but Liouville’s theorem shows
that the volume stays unchanged.

• There are no attractors. In other dynamical systems, most
states of the system are usually transient, and the system settles
down onto a small set of states called the attractor. A damped
pendulum will stop moving: the attractor has zero velocity and
vertical angle (exercise 4.1). A forced, damped pendulum will
settle down to oscillate with a particular amplitude: the attractor
is a circle in phase space. The decay of these transients would
seem closely related to equilibration in statistical mechanics, where
at long times all initial states of a system will settle down into
boring static equilibrium behavior.6 Perversely, we’ve just proven 6We’ll return to the question of how ir-

reversibility and damping emerge from
statistical mechanics many times in the
rest of this book. It will always involve
introducing approximations to the mi-
croscopic theory.

that equilibration in statistical mechanics happens by a completely
different mechanism! In equilibrium statistical mechanics all states
are created equal: transient states are temporary only insofar as
they are very unusual, so as time evolves they disappear, to arise
again only as rare fluctuations.

• Microcanonical ensembles are time independent. An initial
uniform density in phase space will stay uniform. More generally,
since energy is conserved, a uniform density over a small shell of
energies (E,E + δE) will stay uniform.

Liouville’s theorem tells us that the energy surface may get stirred
around, but the relative weights of parts of the surface are given by
their phase–space volumes (figure 3.1) and don’t change. This is clearly
a necessary condition for our microcanonical ensemble to describe the
time–independent equilibrium state.
c©James P. Sethna, April 19, 2005 Entropy, Order Parameters, and Complexity
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4.2 Ergodicity

By averaging over the energy surface, statistical mechanics is making a
hypothesis, first stated by Boltzmann. Roughly speaking, the hypothesis
is that the energy surface is thoroughly stirred by the time evolution: it
isn’t divided into some kind of components that don’t intermingle (see
figure 4.3). A system which is thoroughly stirred is said to be ergodic.77Mathematicians distinguish between

ergodic (stirred) and mixing (scram-
bled); we only need to assume ergod-
icity here. See reference [63] for more
information about ergodicity.

The original way of defining ergodicity is due to Boltzmann. Adapting
his definition,

Definition 1: In an ergodic system, the trajectory of almost every8

8What does “almost every” mean?
Technically, it means all but a set of
zero volume (measure zero). Basically,
it’s there to avoid problems with initial
conditions like all the particles moving
precisely at the same velocity in neat
rows.

point in phase space eventually passes arbitrarily close9 to every

9Why not just assume that every
point on the energy surface gets passed
through? Boltzmann originally did
assume this. However, it can be
shown that a smooth curve (our time-
trajectory) can’t fill up a whole volume
(the energy surface).

other point (position and momentum) on the surface of constant
energy.

The most important consequence of ergodicity is that time averages
are equal to microcanonical averages.10 Intuitively, since the trajectory

10If the system equilibrates (i.e.,
doesn’t oscillate forever), the time aver-
age behavior will be determined by the
equilibrium behavior, and then ergod-
icity implies that the equilibrium prop-
erties are equal to the microcanonical
averages.

(P(t),Q(t)) covers the whole energy surface, the average of any property
A(P(t),Q(t)) over time is the same as the average of A over the energy
surface.

This turns out to be tricky to prove, though. It’s easier mathemat-
ically to work with another, equivalent definition of ergodicity. This
definition roughly says the energy surface can’t be divided into compo-
nents which don’t intermingle. Let’s define an ergodic component R of a
set11 S to be a subset that remains invariant under the flow (so r(t) ∈ R

11Here S is the energy surface.

for all r(0) ∈ R).

Definition 2: A time evolution in a set S is ergodic if and only if all
the ergodic components R in S either have zero volume or have a
volume equal to the volume of S.

We can give an intuitive explanation of why these two definitions are
equivalent (but of course it’s hard to prove). A trajectory r(t) of course
must lie within a single ergodic component. If r(t) covers the energy
surface densely (definition 1), then there is ‘no more room’ for a second
ergodic component with non-zero volume (definition 2).12 If there is12Being careful in the definitions and

proofs to exclude different invariant
sets that are infinitely finely inter-
twined is probably why proving things
is mathematically tricky.

only one ergodic component R with volume equal to S (definition 2),
then any trajectory starting in R must get arbitrarily close to all points
in R, otherwise the points in R ‘far’ from the trajectory (outside the
closure of the trajectory) would be an invariant set of non-zero volume.

Using this second definition of ergodic, we can argue that time aver-
ages must equal microcanonical averages. Let’s denote the microcanoni-
cal average of an observable A as 〈A〉S , and let’s denote the time average
starting at initial condition (P,Q) as A(P,Q).

Showing that the time average Ā equals the ensemble average 〈A〉S
for an ergodic system (using this second definition) has three steps.

(1) Time averages are constant on trajectories. If A is a nice
function, (e.g. without any infinities on the energy surface), then

A(P(t),Q(t)) = A(P(t+ τ),Q(t+ τ)); (4.8)
To be pub. Oxford UP, ∼Fall’05 www.physics.cornell.edu/sethna/StatMech/
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Fig. 4.3 KAM tori and non-
ergodic motion. This is a
(Poincaré) cross section of Earth’s
motion in the three-body problem (ex-
ercise 4.2), with Jupiter’s mass set at
almost 70 times its actual value. The
closed loops correspond to trajectories
that form tori in phase space, whose
cross sections look like deformed cir-
cles in our view. The complex filled
region is a single trajectory exhibiting
chaotic motion, and represents an er-
godic component. The tori, each an
ergodic component, can together be
shown to occupy non-zero volume in
phase space, for small Jovian masses.
Note that this system is not ergodic
according to either of our definitions.
The trajectories on the tori never ex-
plore the rest of the energy surface.
The region R formed by the chaotic
domain is invariant under the time
evolution; it has positive volume and
the region outside R also has positive
volume.

the infinite time average doesn’t depend on the values of A during
the finite time interval (t, t + τ). Thus the time average Ā is
constant along the trajectory.13

(2) Time averages are constant on the energy surface. Now
consider the subset Ra of the energy surface where Ā < a, for
some value a. Since Ā is constant along a trajectory, any point
in Ra is sent under the time evolution to another point in Ra, so
Ra is an ergodic component. If our dynamics is ergodic on the
energy surface, that means the set Ra has either zero volume or
the volume of the energy surface. This implies that Ā is a constant
on the energy surface (except on a set of zero volume); its value
is a∗, the lowest value where Ra∗ has the whole volume. Thus the
equilibrium, time average value of our observable A is independent
of initial condition.

(3) Time averages equal microcanonical averages. Is this equi-
librium value given by the microcanonical ensemble average over
S? We need to show that the trajectories don’t dawdle in some
regions of the energy surface more than they should (based on the
thickness of the energy shell, figure 3.1). Liouville’s theorem in

13If we could show that Ā had to be a continuous function, we’d now be able to use
the first definition of ergodicity to show that it was constant on the energy surface,
since our trajectory comes close to every point on the surface. But it will not be
continuous for Hamiltonian systems that are not ergodic. In figure 4.3, consider two
initial conditions at nearby points, one just inside a chaotic region and the other on
a KAM torus. The infinite time averages on the two trajectories for most quantities
will be different: Ā will typically have a jump at the boundary.
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section 4.1 told us that the microcanonical ensemble was time in-
dependent. But then the ensemble average equals the time average
of the ensemble average, which equals the ensemble average of the
time average. But the time average is constant (except on a set of
zero volume), so the ensemble average equals the time average for
all initial conditions (except perhaps a set of zero volume) in an
ergodic system.1414In formulas, 〈A〉S = 〈A(t)〉S =

〈A(P(t),Q(t))〉S , where the average
〈〉S integrates over initial conditions
(P(0),Q(0)) but evaluates A at
(P(t),Q(t)). Averaging over all time,
and using the fact that Ā = a∗ (almost
everywhere), tells us

〈A〉S = lim
T→∞

1

T

∫ T

0
〈A(P(t),Q(t))〉S dt

=

〈
lim

T→∞
1

T

∫ T

0
A(P(t),Q(t)) dt

〉
S

= 〈A(P,Q)〉S = 〈a∗〉S = a∗.
(4.9)

Can we show that our systems are ergodic? Usually not. Ergodic-
ity has been proven for the collisions of hard spheres, and for geodesic
motion on finite surfaces with constant negative curvature,15 but not

15Geodesic motion on a sphere would
be motion at a constant speed around
great circles. Geodesics are the short-
est paths between two points. In gen-
eral relativity, falling bodies travel on
geodesics in space-time.

for many systems of immediate practical importance. Indeed, many
fundamental problems precisely involve systems which are not ergodic.

• KAM tori and the three-body problem. Generations of
mathematicians and physicists have worked on the gravitational
three-body problem.16 The key challenge was showing that the

16Newton solved the gravitational two-
body problem, giving Kepler’s ellipse.

interactions between the planets do not completely mess up their
orbits over long times. One must note that “messing up their or-
bits” is precisely what an ergodic system must do! (There’s just
as much phase space at constant energy with Earth and Venus
exchanging places, and a whole lot more with Earth flying out
into interstellar space.) In the last century17 the KAM theorem

17That is, the 20th century.

was proven, which showed that (for small interplanetary interac-
tions and a large fraction of initial conditions) the orbits of the
planets qualitatively stayed in weakly perturbed ellipses around
the Sun (KAM tori, see figure 4.3). Other initial conditions, intri-
cately intermingled with the stable ones, lead to chaotic motion.
Exercise 4.2 investigates the KAM tori and chaotic motion in a
numerical simulation.
From the KAM theorem and the study of chaos in these systems
we learn that Hamiltonian systems with small numbers of particles
are often, even usually, not ergodic – there are commonly regions
formed by tori of non-zero volume which do not mix with the rest
of the energy surface.

• Fermi, Pasta, Ulam and KdV. You might think that this is
a peculiarity of having only a few particles. Surely if there are
lots of particles, such funny behavior has to go away? On one of
the early computers developed for the Manhattan project, Fermi,
Pasta and Ulam tested this [30]. They took a one-dimensional
chain of atoms, coupled them with anharmonic potentials, and
tried to look for thermalization. To quote them:

“Let us say here that the results of our computa-
tions were, from the beginning, surprising us. Instead
of a continuous flow of energy from the first mode to
the higher modes, all of the problems show an entirely
different behavior. . . . Instead of a gradual increase of
all the higher modes, the energy is exchanged, essen-
tially, among only a certain few. It is, therefore, very
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hard to observe the rate of “thermalization” or mixing
in our problem, and this was the initial purpose of the
calculation.” [30, p.978]

It turns out that their system, in the continuum limit, gave a par-
tial differential equation (the Kortweg-de Vries equation) that was
even weirder than planetary motion: it had an infinite family of
conserved quantities, and could be exactly solved using a combi-
nation of fronts called “solitons”.
The kind of non-ergodicity found in the Kortweg-de Vries equa-
tion was thought to arise in only rather special one–dimensional
systems. The recent discovery of anharmonic localized modes in
generic, three–dimensional systems by Sievers and Takeno [94, 88]
suggests that non-ergodicity my arise in rather realistic lattice
models.

• Phase Transitions. In systems with an infinite number of parti-
cles, one can have phase transitions. Often ergodicity breaks down
in one of the phases. For example, a liquid may explore all of phase
space with a given energy, but an infinite crystal (with a neat grid
of atoms aligned in a particular orientation) will never fluctuate to
change its orientation, or (in three dimensions) the registry of its
grid.18 The real system will explore only one ergodic component 18That is, a 3D crystal has broken

orientational and translational symme-
tries: see chapter 9.

of the phase space (one crystal position and orientation), and we
must do the same when making theories of the system.

• Glasses. There are other kinds of breakdowns of the ergodic hy-
pothesis. For example, glasses fall out of equilibrium as they are
cooled: they no longer ergodically explore all configurations, but
just oscillate about one of many metastable glassy states. Certain
models of glasses and disordered systems can be shown to break
ergodicity - not just into a small family of macroscopic states as
in normal symmetry-breaking phase transitions, but into an infi-
nite number of different, disordered ground states. It is an open
question whether real glasses truly break ergodicity when cooled
infinitely slowly, or whether they are just sluggish, ‘frozen liquids’.

Should we be concerned that we cannot prove that our systems are
ergodic? It is entertaining to point out the gaps in our derivations, espe-
cially since they tie into so many central problems in mathematics and
physics (above). We emphasize that these gaps are for most purposes
purely of academic concern. Statistical mechanics works phenomenally
well in systems with large numbers of interacting degrees of freedom.

Indeed, the level of rigor here is unusual. In more modern applica-
tions19 of statistical mechanics outside of equilibrium thermal systems
there is rarely any justification of the choice of the ensemble comparable
to that provided by Liouville’s theorem and ergodicity.

19In disordered systems, disorder is heuristically introduced with Gaussian or dis-
crete random variables. In stochastic systems Gaussian or white noise is added. In
Bayesian statistics, the user is in charge of determining the prior model probabil-
ity distribution, analogous to Liouville’s theorem determining the measure on phase
space.
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Exercises
(4.1) The Damped Pendulum vs. Liouville’s The-
orem. (Basic, Mathematics)

The damped pendulum has a force −γp proportional to
the momentum slowing down the pendulum. It satisfies
the equations

ẋ = p/M (4.10)

ṗ = −γp−K sin(x).

At long times, the pendulum will tend to an equilibrium
stationary state, zero velocity at x = 0 (or more generally
at the equivalent positions x = 2mπ, for m an integer):
(p, x) = (0, 0) is an attractor for the damped pendulum.
An ensemble of damped pendulums is started with ini-
tial conditions distributed with probability ρ(p0, x0). At
late times, these initial conditions are gathered together
near the equilibrium stationary state: Liouville’s theorem
clearly is not satisfied.

(a) In the steps leading from equation 4.5 to equation 4.7,
why does Liouville’s theorem not apply to the damped pen-
dulum? More specifically, what are ∂ṗ/∂p and ∂q̇/∂q?

(b) Find an expression for the total derivative dρ/dt in
terms of ρ for the damped pendulum. If we evolve a re-
gion of phase space of initial volume A = ∆p∆x how will
its volume depend upon time?

(4.2) Jupiter! and the KAM Theorem (Astro-
physics, Mathematics)

See also the Jupiter Web pages [99].

The foundation of statistical mechanics is the ergodic hy-
pothesis: any large system will explore the entire energy
surface. We focus on large systems because it is well
known that many systems with a few interacting parti-
cles are definitely not ergodic.

The classic example of a non-ergodic system is the Solar
system. Jupiter has plenty of energy to send the other
planets out of the Solar system. Most of the phase-space
volume of the energy surface has eight planets evaporated
and Jupiter orbiting the Sun alone: the ergodic hypothe-
sis would doom us to one long harsh winter. So, the big
question is: Why hasn’t the Earth been kicked out into
interstellar space?

Mathematical physicists have studied this problem for
hundreds of years. For simplicity, they focused on the

three-body problem: for example, the Sun, Jupiter, and
the Earth. The early (failed) attempts tried to do pertur-
bation theory in the strength of the interaction between
planets. Jupiter’s gravitational force on the Earth is not
tiny, though: if it acted as a constant brake or accelerator,
our orbit would be way out of whack in a few thousand
years. Jupiter’s effects must cancel out over time rather
perfectly...

This exercise is mostly discussion and exploration: only
a few questions need to be answered. Download the pro-
gram Jupiter from the appropriate link at the bottom
of reference [99]. (Go to the directory with the binaries
and select Jupiter.) Check that Jupiter doesn’t seem to
send the Earth out of the Solar system. Try increasing
Jupiter’s mass to 35000 Earth masses. (If you type in a
new value, you need to hit Enter to register it.)

Start the program over again (or reset Jupiter’s mass back
to 317.83 Earth masses). Shifting “View” to “Earth’s
trajectory”, run for a while, and zoom in with the right
mouse button to see the small effects of Jupiter on the
Earth. (The left mouse button will launch new trajec-
tories. Clicking with the right button will restore the
original view.) Note that the Earth’s position shifts de-
pending on whether Jupiter is on the near or far side of
the sun.

(a) Estimate the fraction that the Earth’s radius from
the Sun changes during the first Jovian year (about 11.9
years). How much does this fractional variation increase
over the next hundred Jovian years?

Jupiter thus warps Earth’s orbit into a kind of spiral
around a tube. This orbit in physical three-dimensional
space is a projection of the tube in 6N-dimensional phase
space. The tube in phase space already exists for massless
planets...

Let’s start in the non-interacting planet approximation
(where Earth and Jupiter are assumed to have zero mass).
Both Earth’s orbit and Jupiter’s orbit then become cir-
cles, or more generally ellipses. The field of topology does
not distinguish an ellipse from a circle: any stretched,
wiggled rubber band is a circle so long as it forms a curve
that closes into a loop. Similarly, a torus (the surface of
a doughnut) is topologically equivalent to any closed sur-
face with one hole in it (like the surface of a coffee cup,
with the handle as the hole). Convince yourself in this

20Hint: plot the orbit in the (x, y), (x, px), and other planes. It should look like
the projection of a circle along various axes.
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non-interacting approximation that Earth’s orbit remains
topologically a circle in its six-dimensional phase space.20

(b) In the non-interacting planet approximation, what
topological surface is it in in the eighteen-dimensional
phase space that contains the trajectory of the three bod-
ies? Choose between (i) sphere, (ii) torus, (iii) Klein
bottle, (iv) two-hole torus, (v) complex projective plane.21

About how many times does Earth wind around this sur-
face during each Jovian year? (This ratio of years is
called the winding number).

The mathematical understanding of the three-body prob-
lem was only solved in the past hundred years or so, by
Kolmogorov, Arnol’d, and Moser. Their proof focuses on
the topological integrity of this tube in phase space (called
now the KAM torus). They were able to prove stability
if the winding number (Jupiter year over Earth year) is
sufficiently irrational. More specifically, they could prove
in this case that for sufficiently small planetary masses
that there is a distorted torus in phase space, near the
unperturbed one, around which the planets spiral around
with the same winding number.

(c) About how large can you make Jupiter’s mass before
Earth’s orbit stops looking like a torus? (You can hit
“Clear” and “Reset” to put the planets back to a stan-
dard starting point. Otherwise, your answer will depend
upon the location of Jupiter in the sky.) Admire the cool
orbits when the mass becomes too heavy.

Thus, for “small” Jovian masses, the trajectory in phase
space is warped and rotated a bit, so that its toroidal
shape is visible looking at Earth’s position alone. (The
circular orbit for zero Jovian mass is looking at the torus
on edge.)

The fact that the torus isn’t destroyed immediately is a
serious problem for statistical mechanics! The orbit does
not ergodically explore the entire allowed energy surface.
This is a counterexample to Boltzmann’s ergodic “theo-
rem”. That means that time averages are not equal to
averages over the energy surface: our climate would be
very unpleasant, on the average, if our orbit were ergodic.

Let’s use a Poincaré section to explore these tori, and
the chaotic regions between them. If a dynamical system
keeps looping back in phase space, one can take a cross-
section of phase space and look at the mapping from that
cross section back into itself (see figure 4.4).

Fig. 4.4 The Poincaré section of a torus is a circle. The dy-
namics on the torus becomes a mapping of the circle onto itself.

The Poincaré section shown in the figure is a planar cross
section in a three-dimensional phase space. Can we re-
duce our problem to an interesting problem with three
phase-space coordinates? The original problem has an
eighteen dimensional phase space. In the center of mass
frame it has twelve interesting dimensions. If we restrict
the motion to a plane, it reduces to eight dimensions. If
we assume the mass of the Earth is zero (the restricted
planar three body problem) we have five relevant coordi-
nates (Earth xy positions and velocities, and the location
of Jupiter along its orbit). If we remove one more variable
by going to a rotating coordinate system that rotates with
Jupiter, the current state of our model can be described
with four numbers: two positions and two momenta for
the Earth. We can remove another variable by confin-
ing ourselves to a fixed “energy”. The true energy of the
Earth isn’t conserved (because Earth feels a periodic po-
tential), but there is a conserved quantity which is like
the energy in the rotating frame: more details described
under “Help” or on the Web [99] under “Description of
the Three Body Problem”. This leaves us with a trajec-
tory in three dimensions (so, for small Jovian masses, we
have a torus embedded in a three-dimensional space). Fi-
nally, we take a Poincaré cross section: we plot a point of
the trajectory every time Earth passes directly between
Jupiter and the Sun. I plot the distance to Jupiter along
the horizontal axis, and the velocity component towards
Jupiter along the vertical axis; the perpendicular compo-
nent of the velocity isn’t shown (and is determined by the

21Hint: It’s a circle cross a circle, parameterized by two independent angles – one
representing the month of Earth’s year, and one representing the month of the Jovian
year. Feel free to look at part (c) before committing yourself, if pure thought isn’t
enough.
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“energy”).

Set the View to Poincaré. (You may need to expand the
window a bit: sometimes the dot size is too small to see.)
Set Jupiter’s mass to 2000, and run for 1000 years. You
should see two nice elliptical cross-sections of the torus.
As you increase the mass (type in a mass, Enter, Re-
set and Run, repeat), watch the toroidal cross sections
as they break down. Run for a few thousand years at
MJ = 22000Me ; notice the torus has broken into three
circles.

Fixing the mass at MJ = 22000Me , let’s explore the de-
pendence of the planetary orbits on the initial condition.
Select the preset for “Chaos” (or set MJ to 22000 Me,
“View” to Poincaré, and Reset). Clicking on a point
on the screen with the left mouse button will launch a
trajectory with that initial position and velocity towards
Jupiter; it sets the perpendicular component of the ve-
locity to keep the current “energy”. (If you click on a
point where energy cannot be conserved, the program
will tell you so.) You can thus view the trajectories on
a two-dimensional cross-section of the three-dimensional
constant “energy” surface.

Notice that many initial conditions slowly fill out closed
curves. These are KAM tori that have been squashed and
twisted like rubber bands.22 Explore until you find some
orbits that seem to fill out whole regions: these represent
chaotic orbits.23

(d) If you can do a screen capture, print out a Poincaré
section with initial conditions both on KAM tori and in
chaotic regions: label each.24 See figure 4.3 for a small
segment of the picture you should generate.

It turns out that proving that Jupiter’s effects cancel out
depends on Earth’s smoothly averaging over the surface
of the torus. If Jupiter’s year is a rational multiple of
Earth’s year, the orbit closes after a few years and you
don’t average over the whole torus: only a closed spiral.
Rational winding numbers, we now know, leads to chaos
when the interactions are turned on: the large chaotic re-
gion you found above is associated with an unperturbed
orbit with a winding ratio of 3:1. Of course, the rational

numbers are dense: between any two KAM tori there are
chaotic regions, just because between any two irrational
numbers there are rational ones. It’s even worse: it turns
out that numbers which are really, really close to rational

(Liouville numbers like 1+1/10+1/1010 +1/101010
+ . . . )

also may lead to chaos. It was amazingly tricky to prove
that lots of tori survive nonetheless. You can imagine
why this took hundreds of years to understand (especially
without computers).

(4.3) Invariant Measures. (Math, Complexity) (With
Myers. [75])

Reading: Reference [49], Roderick V. Jensen and
Christopher R. Myers, “Images of the critical points of
nonlinear maps” Physical Review A 32, 1222-1224 (1985).

Liouville’s theorem tells us that all available points in
phase space are equally weighted when a Hamiltonian sys-
tem is averaged over all times. What happens for systems
that evolve according to laws that are not Hamiltonian?
Usually, the system does not continue to explore all points
in its state space: at long times it is confined a subset of
the original space known as the attractor.

We consider the behavior of the ’logistic’ mapping from
the unit interval (0, 1) into itself.25

f(x) = 4µx(1− x). (4.11)

We talk of the trajectory of an initial point x0 as the se-
quence of points x0, f(x0), f(f(x0)), . . . , f [n](x0), . . . .
Iteration can be thought of as a time step (one iteration
of a Poincaré return map of exercise 4.2 or one step ∆t
in a time-step algorithm as in exercise 8.9).

Attracting Fixed Point: For small µ, our mapping has
an attracting fixed point. A fixed point of a mapping is
a value x∗ = f(x∗); a fixed point is stable if under small
perturbations shrink:

|f(x∗ + ε)− x∗| ≈ |f ′(x∗)|ε < ε, (4.12)

22You can “Continue” if the trajectory doesn’t run long enough to give you a com-
plete feeling for the cross-section: also, increase the time to run). You can zoom in
with the right mouse button, and zoom out by expanding the window or by using
the right button and selecting a box which extends outside the window.

23Notice that the chaotic orbit doesn’t throw the Earth out of the Solar system.
The chaotic regions near infinity and near our initial condition are not connected.
This may be an artifact of our simplified model: in other larger systems it is believed
that all chaotic regions (on a connected energy surface) are joined through Arnol’d
diffusion.

24At least under Linux, the “Print” feature is broken. Under Linux, try “gimp”:
File Menu, then Acquire, then Screen Shot. Under Windows, alt-Print Screen and
then Paste into your favorite graphics program.

25We also study this map in exercises 5.11, 5.13, and 12.8.
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which happens if the derivative |f ′(x∗)| < 1.26

(a) Iteration: Set µ = 0.2; iterate f for some initial
points 0 < x0 < 1 of your choosing, and convince your-
self that they all are attracted to zero. Plot f and the
diagonal y = x on the same plot. Are there any fixed
points other than x = 0? Repeat for µ = 0.4, and 0.6.
What happens?

Analytics: Find the non-zero fixed point x∗(µ) of the
map 4.11, and show that it exists and is stable for 1/4 <
µ < 3/4. If you’re ambitious or have a computer algebra
program, show that there is a stable period–two cycle for
3/4 < µ < (1 +

√
6)/4.

An attracting fixed point is the antithesis of Liouville’s
theorem: all initial conditions are transient except one,
and all systems lead eventually to the same, time–
independent state. (On the other hand, this is precisely
the behavior we expect in statistical mechanics on the
macroscopic scale: the system settles down into a time–
independent equilibrium state! All microstates are equiv-
alent, but the vast majority of accessible microstates
have the same macroscopic behavior in most large sys-
tems). We could define a rather trivial “equilibrium en-
semble” for this system, which consists of the single point
x∗: any property A(x) will have the long–time average
〈A〉 = A(x∗).
For larger values of µ, more complicated things happen.
At µ = 1, the dynamics can be shown to fill the entire in-
terval: the dynamics is ergodic, and the attractor fills the
entire set of available states. However, unlike the case of
Hamiltonian systems, not all states are weighted equally.

We can find time averages for functions of x in two ways:
by averaging over time (many iterates of the map) or
by weighting an integral over x by the invariant density
ρ(x). The invariant density ρ(x) dx is the probability that
a point on a long trajectory will lie between x and x+dx.
To find it numerically, we iterate a typical point27 x0 a
thousand or so times (Ntransient) to find a point xa on the
attractor, and then collect a long trajectory of perhaps
a million points (Ncycles). A histogram of this trajectory

gives ρ(x). Clearly averaging over this density is the same
as averaging over the trajectory of a million points. We
call ρ(x) an invariant measure because it’s left invariant
under the mapping f : iterating our million–point approx-
imation for ρ once under f only removes the first point
xa and adds one extra point to the end.

(b) Invariant Density: Set µ = 1; iterate f many times,
and form a histogram of values giving the density ρ(x) of
points along the trajectory. You should find that points
x near the boundaries are approached more often than
points near the center.

Analytics: Use the fact that the long time average ρ(x)
must be independent of time, verify for µ = 1 that the
density of points is28

ρ(x) =
1

π
√
x(1− x) . (4.13)

Plot this theoretical curve with your numerical histogram.
(Hint: The points in a range dx of a point x map under f
to a range dy = f ′(x) dx around the image y = f(x).
Each iteration maps two points xa and xb = 1 − xa

to y, and thus maps all the density ρ(xa)|dxa| and
ρ(xb)|dxb| into dy. Hence the probability ρ(y)dy must
equal ρ(xa)|dxa|+ ρ(xb)|dxb|, so

ρ(f(xa)) = ρ(xa)/|f ′(xa)|+ ρ(xb)/|f ′(xb)| (4.14)

Plug equation 4.13 into equation 4.14. You’ll need to
factor a polynomial.)

Mathematicians call this probability density ρ(x)dx the
invariant measure on the attractor.29 To get the long
term average of any function A(x), one can use

〈A〉 =
∫
A(x)ρ(x)dx (4.15)

To a mathematician, a measure is a way of weighting dif-
ferent regions in doing integrals – precisely our ρ(x)dx.
Notice that, for the case of an attracting fixed point, we
would have ρ(x) = δ(x∗).30

26For many dimensional mappings, a sufficient criterion for stability is that all the
eigenvalues of the Jacobian have magnitude smaller than one. A continuous time
evolution dy/dt = F (y), will be stable if dF/dy is smaller than zero, or (for multidi-
mensional systems) if the Jacobian DF has eigenvalues whose real parts are all less
than zero. This is all precisely analogous to discrete and continuous–time Markov
chains, see section 8.3

27For example, we must not choose an unstable fixed point or unstable periodic
orbit!

28You need not derive the factor 1/π, which normalizes the probability density to
one.

29There are actually many possible invariant measures on some attractors: this
one is the SRB measure.[41]

30The case of a fixed point then becomes mathematically a measure with a point
mass at x∗.
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Cusps in the invariant density: At values of µ slightly
smaller than one, our mapping has a rather complex in-
variant density.

(c) Find the invariant density (as described above) for
µ = 0.9. Make your trajectory length Ncycles big enough
and the bin size small enough to see the interesting struc-
tures. Notice that the attractor no longer fills the whole
range (0, 1): locate roughly where the edges are. No-
tice also the cusps in ρ(x) at the edges of the attractor,
and also at places inside the attractor (called boundaries,
see reprint above). Locate some of the more prominent
cusps.

Analytics of cusps: Notice that f ′(1/2) = 0. so by equa-
tion 4.14 we know that ρ(f(x)) ≥ ρ(x)/|f ′(x)| must have
a singularity near x = 1/2: all the points near x = 1/2 are
squeezed together and folded to one side by f . Further
iterates of this singularity produce more cusps: the crease
after one fold stays a crease after being further stretched
and kneaded.

(d) Set µ = 0.9. Calculate f(1/2), f(f(1/2)), . . . and com-
pare these iterates to the locations of the edges and cusps
from part (c). (You may wish to include them both on the
same plot.)

Bifurcation Diagram: The evolution of the attractor
and its invariant density as µ varies is plotted in the bifur-
cation diagram, which is shown for large µ in figure 4.5.
One of the striking features in this plot are the sharp
boundaries formed by the cusps.

µ

x

Fig. 4.5 Bifurcation diagram in the chaotic region. No-
tice the boundary lines threading through the diagram, images
of the crease formed by the folding at x = 1/2 in our map (see
reprint above).

(e) Bifurcation Diagram: Plot the attractor (duplicat-
ing figure 4.5) as a function of µ, for 0.8 < µ < 1. (Pick
regularly spaced δµ, run ntransient steps, record ncycles

steps, and plot. After the routine is working, you should
be able to push ntransient and ncycles both larger than 100,
and δµ < 0.01.)

On the same plot, for the same µs, plot the first eight
images of x = 1/2, that is, f(1/2), f(f(1/2)), . . . . Are the
boundaries you see just the cusps? What happens in the
bifurcation diagram when two boundaries touch? (See the
reprint above.)
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Entropy 5

Entropy is the most influential topic to arise from statistical mechanics.
What does it mean? Can we develop an intuition for it?

We shall see in this chapter that entropy has three related interpreta-
tions.1 Entropy measures the disorder in a system: in section 5.2 we’ll 1Equilibrium is a word with positive

connotations, presumably because it al-
lows us to compute properties easily.
Entropy and the quantities it measures
– disorder, ignorance, uncertainty –
are words with negative connotations,
presumably because entropy interferes
with making efficient heat engines. No-
tice that these connotations are not al-
ways reliable: in information theory, for
example, having high Shannon entropy
is good, reflecting better compression of
data.

see this using the entropy of mixing and the residual entropy of glasses.
Entropy measures our ignorance about a system: in section 5.3 we’ll see
this with examples from nonequilibrium systems and information the-
ory. But we’ll start in section 5.1 with the original interpretation, that
grew out of the 19th century study of engines, refrigerators, and the end
of the universe: Entropy measures the irreversible changes in a system.

5.1 Entropy as Irreversibility: Engines and
Heat Death of the Universe

The early 1800’s saw great advances in understanding motors and en-
gines. In particular, scientists asked a fundamental question: How effi-
cient can an engine be? The question was made more difficult because
there were two relevant principles to be discovered: energy is conserved
and entropy always increases.2 2Some would be pedantic, and say only

that entropy never decreases since a
system in equilibrium has constant en-
tropy. The phrase “entropy always in-
creases” has a ring to it, though. We
can justify using it by noticing that sys-
tems only equilibrate completely after
an infinite time. For example, we’ll
see that Carnot cycles must be run in-
finitely slowly to be truly reversible.

For some kinds of engines, only energy conservation is important.
For example, there are electric motors that convert electricity into me-
chanical work (running an electric train), and generators that convert
mechanical work (from a rotating windmill) into electricity.3 For these

3Electric motors are really the same as
generators run in reverse: turning the
shaft of a simple electric motor can gen-
erate electricity.

electromechanical engines, the absolute limitation is given by the conser-
vation of energy: the motor cannot generate more energy in mechanical
work than is consumed electrically, and the generator cannot generate
more electrical energy than is input mechanically.4 An ideal electrome-

4Mechanical work (force times dis-
tance) is energy; electrical power (cur-
rent times voltage) is energy per unit
time.

chanical engine can convert all the energy from one form to another.
Electric motors and generators are limited only by the conservation of
energy.

Steam engines are more complicated. Scientists in the early 1800’s
were figuring out that heat is a form of energy. A steam engine, running
a power plant or an old-style locomotive, transforms a fraction of the
heat energy from the hot steam (the ‘hot bath’) into electrical energy or
work, but some of the heat energy always ends up ‘wasted’ – dumped
into the air or into the cooling water for the power plant (the ‘cold
bath’). In fact, if the only limitation on heat engines was conservation
of energy, one would be able to make a motor using the heat energy from
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a rock, getting both useful work and a very cold rock.
There is something fundamentally less useful about energy once it

becomes heat. By spreading out the energy among all the atoms in a
macroscopic chunk of material, not all of it can be retrieved again to
do useful work. The energy is more useful for generating power when
divided between hot steam and a cold lake, than in the form of water
at a uniform, intermediate warm temperature. Indeed, most of the time
when we use mechanical or electrical energy, the energy ends up as heat,
generated from friction or other dissipative processes.

The equilibration of a hot and cold body to two warm bodies in an
isolated system is irreversible: one cannot return to the original state
without inputting some kind of work from outside the system. Carnot,
publishing in 1824, realized that the key to producing the most efficient
possible engine was to avoid irreversibility. A heat engine run in reverse
is a refrigerator: it consumes mechanical work or electricity and uses
it to pump heat from a cold bath to a hot one (extracting some of the
heat as work). A reversible heat engine would be able to run forward
generating work by transferring heat from the hot to the cold bath, and
then run backward using the same work to pump the heat back into the
hot bath.

Q  +W2

Q2 Q2

Q  +W2

Refrigerator
Impossible

Engine
Carnot

+∆

∆
∆

W

T2

T1

Power
Plant

Fig. 5.1 How to use an engine which
produces ∆ more work than the Carnot
cycle to build a perpetual motion ma-
chine doing work ∆ per cycle.

If you had an engine more efficient than a reversible one, you could
run it side-by-side with a reversible engine running as a refrigerator
(figure 5.1). The pair of engines would generate work by extracting
energy from the hot bath (as from our rock, above) without adding heat
to the cold one. After we used this work, we could dump the extra
heat from friction back into the hot bath, getting a perpetual motion
machine that did useful work without consuming anything. We postulate
that such perpetual motion machines are impossible. By calculating the
properties of this reversible engine, Carnot placed a fundamental limit
on the efficiency of heat engines and discovered what would later be
called the entropy.

P

P

T

T

Q2

1

2

Fig. 5.2 Prototype Heat Engine:
A piston with external exerted pres-
sure P , moving through an insulated
cylinder. The cylinder can be put into
thermal contact with either of two heat
baths: a hot bath at temperature T1

(say, a coal fire in a power plant) and a
cold bath at T2 (say water from a cold
lake). During one cycle of the piston in
and out, heat energy Q1 flows into the
piston, mechanical energy W is done on
the external world by the piston, and
heat energy Q2 flows out of the piston
into the cold bath.

Carnot considered a prototype heat engine (figure 5.2), given by a
piston with external pressure P , two heat baths at a hot temperature
T1 and a cold temperature T2, with some material inside the piston.
During one cycle of his engine heat Q1 flows out of the hot bath, heat
Q2 flows into our cold bath, and net work W = Q1 −Q2 is done by the
piston on the outside world. To make his engine reversible Carnot must
avoid (i) friction, (ii) letting hot things touch cold things, (iii) letting
high pressures expand into low pressures, and (iv) moving the walls of
the container too quickly (emitting sound or shock waves).

Carnot, a theorist, could ignore the practical difficulties. He imagined
a frictionless piston run through a cycle at arbitrarily low velocities. The
piston was used both to extract work from the system and to raise and
lower the temperature. Carnot connected the gas thermally to each bath
only when its temperature agreed with the bath, so his engine was fully
reversible.

The Carnot cycle moves the piston in and out in four steps (figure 5.3).

• (a→b) The compressed gas is connected to the hot bath, and the piston
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moves outward at a varying pressure; heat Q1 flows in to maintain the
gas at temperature T1.

• (b→c) The piston expand further at varying pressure, cooling the gas
to T2 without heat transfer,

• (c→d) The expanded gas in the piston is connected to the cold bath
and compressed; heat Q2 flows out maintaining the temperature at T2.

• (d→a) The piston is compressed, warming the gas to T1 without heat
transfer, returning it to the original state.

Energy conservation tells us that the net heat energy flowing into the piston,
Q1 −Q2 must equal the work done on the outside world W :

Q1 = Q2 +W. (5.1)

The work done by the piston is the integral of the force exerted times the
distance. The force is the piston surface area times the pressure, and the
distance times the piston surface area is the volume change, giving the simple
result

W =

∫
Fdx =

∫
(F/A)(Adx) =

∫
cycle

P dV = Area inside PV Loop. (5.2)

That is, if we plot P versus V for the four steps of our cycle, the area inside
the resulting closed loop is the work done by the piston on the outside world
(figure 5.2). Volume V

P
re

ss
ur

e 
P Heat In Q

1

Heat Out Q
2

Expand

Compress
PV=N k

B
T

1

PV=N k
B
T

2

a

b

c

d

Fig. 5.3 Carnot Cycle PV Dia-
gram: The four steps in the Carnot
cycle: a→b heat in Q1 at constant tem-
perature T1, b→c expansion without
heat flow, c→d heat out Q2 at constant
temperature T2, and d→a compression
without heat flow to the original vol-
ume and temperature.

Carot realized that all reversible heat engines working with the same tem-
perature baths had to produce exactly the same amount of work for a given
heat flow from hot to cold (none of them could be more efficient than any
other, since they all were the most efficient possible). This allowed him to fill
the piston with the simplest possible material (a monatomic ideal gas), for
which he knew the relation between pressure, volume, and temperature. We
saw in section 3.5 that the ideal gas equation of state is

PV = NkBT (5.3)

and that its total energy is its kinetic energy, given by the equipartition the-
orem

E = 3/2NkBT = 3/2PV. (5.4)

Along a→b where we add heatQ1 to the system, we have P (V ) = NkBT1/V .
Using energy conservation (the first law),

Q1 = Eb − Ea +Wab = 2/3PbVb − 2/3PaVa +

∫ b

a

P dV (5.5)

But PaVa = NkBT1 = PbVb, so the first two terms cancel, and the last term
simplifies

Q1 =

∫ b

a

NkBT1

V
dV = NkBT1 log(Vb/Va). (5.6)

Similarly,
Q2 = NkBT2 log(Vc/Vd). (5.7)

For the other two steps in our cycle we need to know how the ideal gas
behaves under expansion without any heat flow in or out. Again, using the first
law on a small segment of the path, the work done for a small volume change
−PdV must equal the change in energy dE. Using equation 5.3, −P dV =
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−NkBT
V

dV , and using equation 5.4, dE = 3/2NkB dT , so dV/V = −3/2dT/T .
Integrating both sides from b to c, we find∫ c

b

dV

V
= log(Vc/Vb) =

∫ c

b

−3/2
dT

T
= −3/2 log(T2/T1). (5.8)

so Vc/Vb = (T1/T2)
3/2 . Similarly, Vd/Va = (T1/T2)

3/2 . Thus Vc/Vb = Vd/Va,
and hence

Vc

Vd
=
Vc

Vb

Vb

Vd
=
Vd

Va

Vb

Vd
=
Vb

Va
. (5.9)

We can use the volume ratios from the insulated expansion and compres-
sion (equation 5.9) to substitute into the heat flow (equations 5.6 and 5.6) to
find

Q1/T1 = NkB log(Vb/Va) = NkB log(Vc/Vd) = Q2/T2. (5.10)

This was Carnot’s fundamental result: his cycle, and hence all re-
versible engines, satisfies the law

Q1/T1 = Q2/T2. (5.11)

Later scientists decided to define5 the entropy change to be this ratio5The thermodynamic entropy is de-
rived with a heat flow ∆E = Q at
a fixed temperature T , so our statisti-
cal mechanics definition of temperature
1/T = ∂S/∂E (from equation 3.29) is
equivalent to the thermodynamics defi-
nition of entropy ∆S = Q/T (equation
5.12).

of heat flow to temperature:

∆Sthermo = Q/T. (5.12)

For a reversible engine the entropy flow from the hot bath into the
piston Q1/T1 equals the entropy flow from the piston into the cold bath
Q2/T2: no entropy is created or destroyed. Any real engine will create66For example, a small direct heat leak

from the hot bath to the cold bath of δ
per Carnot cycle would generate

Q2 + δ

T2
− Q1 + δ

T1
= δ

(
1

T2
− 1

T1

)
> 0

(5.13)
entropy per cycle.

net entropy during a cycle: no engine can reduce the net amount of
entropy in the universe.

The irreversible increase of entropy is not a property of the microscopic
laws of nature. In particular, the microscopic laws of nature are time
reversal invariant: the laws governing the motion of atoms are the same
whether time is running backward or forward.7 The microscopic laws7More correctly, the laws of nature

are only invariant under CPT: chang-
ing the direction of time (T) along
with inverting space (P) and changing
matter to antimatter (C). Radioactive
beta decay and other weak interaction
forces are not invariant under time re-
versal. The basic conundrum for sta-
tistical mechanics is the same, though:
we can’t tell if we are matter beings liv-
ing forward in time or antimatter be-
ings living backward in time in a mir-
ror. Time running backward would ap-
pear strange even if we were made of
antimatter.

do not tell us the arrow of time. The direction of time in which entropy
increases is our definition of the future.8

8In electromagnetism, the fact that
waves radiate away from sources more
often than they converge upon sources
is a closely related distinction of past
from future.

This confusing point may be illustrated by considering the game of
pool or billiards. Neglecting friction, the trajectories of the pool balls are
also time-reversal invariant. If the velocities of the balls were reversed
halfway through a pool shot, they would retrace their motions, building
up all the velocity into one ball that then would stop as it hit the cue
stick. In pool, the feature that distinguishes forward from backward
time is the greater order at early times: all the momentum starts in one
ball, and is later distributed among all the balls involved in collisions.
Similarly, the only reason we can resolve the arrow of time – distinguish
the future from the past – is that our universe started in an unusual,
low entropy state,9 and is irreversibly moving towards equilibrium.10

9The big bang was hot and probably
close to equilibrium, but the volume per
particle was small so the entropy was
nonetheless low.

10Suppose some miracle (or waiting a really, really long time) produced a sponta-
neous fluctuation of an equilibrium system into a low-entropy, ordered state. Preced-
ing that time, with extremely high probability, all of our laws of macroscopic physics
would appear to run backward. The most probable route building up to an ordered
state from equilibrium is the time reverse of the most probable decay of that ordered
state back to equilibrium.
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The cosmic implications of the irreversible increase of entropy were not
lost on the intellectuals of the 19th century. In 1854, Helmholtz predicted
the heat death of the universe: he suggested that as the universe ages
all energy will become heat, all temperatures will become equal, and
everything will “be condemned to a state of eternal rest”. In 1895, H.G.
Wells in The Time Machine [122, Chapter 11] speculated about the state
of the Earth in the distant future:

“. . . the sun, red and very large, halted motionless upon
the horizon, a vast dome glowing with a dull heat. . . The
earth had come to rest with one face to the sun, even as
in our own time the moon faces the earth. . . There were no
breakers and no waves, for not a breath of wind was stirring.
Only a slight oily swell rose and fell like a gentle breathing,
and showed that the eternal sea was still moving and living.
. . . the life of the old earth ebb[s] away. . . ”

This gloomy prognosis has been re-examined recently: it appears that
the expansion of the universe may provide loopholes. While there is
little doubt that the sun and the stars will indeed die, it may be pos-
sible – if life can evolve to accommodate the changing environments –
that civilization, memory, and thought could continue for an indefinite
subjective time (e.g., exercise 5.1).

5.2 Entropy as Disorder

V V

Fig. 5.4 The pre-mixed state: N/2
white atoms on one side, N/2 black
atoms on the other.

2V

Fig. 5.5 The mixed state: N/2 white
atoms and N/2 black atoms scattered
through the volume 2V .

A second intuitive interpretation of entropy is as a measure of the disor-
der in a system. Scientist mothers tell their children to lower the entropy
by tidying their rooms; liquids have higher entropy than crystals intu-
itively because their atomic positions are less orderly.11 We illustrate

11There are interesting examples of
systems that appear to develop more
order as their entropy (and tempera-
ture) rises. These are systems where
adding order of one, visible type (say,
crystalline or orientational order) al-
lows increased disorder of another type
(say, vibrational disorder). Entropy is
a precise measure of disorder, but is not
the only possible or useful measure.

this interpretation by first calculating the entropy of mixing, and then
discussing the zero-temperature entropy of glasses.

5.2.1 Entropy of Mixing: Maxwell’s Demon and Os-
motic Pressure

Scrambling an egg is a standard example of irreversibility: you can’t
re-separate the yolk from the white. A simple model for scrambling is
given in figures 5.4 and 5.5: the mixing of two different types of particles.
Here the entropy change upon mixing is a measure of increased disorder.

Consider a volume separated by a partition into two equal volumes of vol-
ume V . N/2 indistinguishable ideal gas white atoms are on one side of the
partition, and N/2 indistinguishable ideal gas black atoms are on the other
side. The configurational entropy of this system (section 3.5, ignoring the
momentum space parts) is

Sunmixed = 2 kB log(V
N/2/N/2!) (5.14)

just twice the configurational entropy of N/2 atoms in a volume V . We assume
that the black and white atoms have the same masses and the same total
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energy. Now consider the entropy change when the partition is removed, and
the two sets of atoms are allowed to mix. Because the temperatures and
pressures from both sides are equal, removing the partition does not involve
any irreversible sound emission or heat transfer: any entropy change is due
to the mixing of the white and black atoms. In the desegregated state,12 the12No social policy implications are im-

plied by physics: the entropy of mixing
for a few billion humans would not pro-
vide for an eye blink.

entropy has increased to

Smixed = 2kB log((2V )
N/2/N/2!), (5.15)

twice the entropy of N/2 indistinguishable atoms in a volume 2V . Since
log(2mx) = m log 2 + log x, the change in entropy due to the mixing is

∆Smixing = Smixed − Sunmixed = kB log 2N = NkB log 2. (5.16)

We gain kB log 2 in entropy every time we placed an atom into one
of two boxes without looking which box we chose. More generally, we
might define a counting entropy

Scounting = kB log(Number of configurations) (5.17)

for systems with a discrete number of equally-likely configurations.
This kind of discrete choice arises often in statistical mechanics. In

equilibrium quantum mechanics (for a finite system) the states are quan-
tized: so adding a new (non-interacting) particle into one of m degen-
erate states adds kB logm to the entropy. In communications theory
(section 5.3.2, exercises 5.6 and 5.7), each bit transmitted down your
channel can be in one of two states, so a random stream of bits of length
N has ∆S = kSN log 2.1313Here it is natural to measure entropy

not in units of temperature, but rather
in base 2, so kS = 1/ log 2. This means
that ∆S = N , for a random string of N
bits.

In more general cases, the states available to one particle depend
strongly on the configurations of the other particles. Nonetheless, the
equilibrium entropy still measures the logarithm of the number of differ-
ent states that the total system could be in. For example, our equilib-
rium statistical mechanics entropy Sequil(E) = kB log(Ω(E)) (equation
3.26) is the logarithm of the number of states of energy E, with phase-
space volume h3N allocated to each state.

What would happen if we removed a partition separating N/2 black
atoms on one side from N/2 indistinguishable black atoms on the other?
The initial entropy is the same as above SBB

unmixed = 2 kB log(V
N/2/N/2!),

but the final entropy is now SBB
mixed = kB log((2V )N/N !) Notice we have

N ! rather than the (N/2!)2 from equation 5.15, since all of our particles are
now indistinguishable. Now N ! = (N) · (N−1) · (N−2) · (N−3) . . . and
(N/2!)2 = (N/2) · (N/2) · (N − 2)/2 · (N − 2)/2 . . . : they roughly differ by
2N , canceling the entropy change due to the volume doubling. Indeed,
expanding the logarithm using Stirling’s formula logn! ≈ n logn− n we
find the entropy per atom is unchanged.14 This is why we introduced14If you keep Stirling’s formula to

higher order, you’ll see that the entropy
increases a bit when you remove the
partition. This is due to the number
fluctuations on the two sides that are
now allowed.

the N ! term for indistinguishable particles in section 3.2.1: without it
the entropy would decrease by N log 2 whenever we split a container into
two pieces.15

15This is often called the Gibbs para-
dox.

How can we intuitively connect this entropy of mixing with the ther-
modynamic entropy of pistons and engines in section 5.1? Can we use
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our mixing entropy to do work? Clearly to do so we must discriminate
between the two kinds of atoms. Suppose that the barrier separating the
two walls in figure 5.4 was a membrane that was impermeable to black
atoms but allowed white ones to cross. Since both black and white atoms
are ideal gases, the white atoms would spread uniformly to fill the entire
system, while the black atoms would remain on one side. This would
lead to a pressure imbalance: if the semipermeable wall were used as a
piston, work could be extracted as the black chamber was enlarged to
fill the total volume.16 16Such semipermeable membranes are

quite common not for gases but for di-
lute solutions of ions in water: some
ions can penetrate and others cannot.
The resulting force on the membrane is
called osmotic pressure.

Suppose we had a more active discrimination? Maxwell introduced
the idea of an intelligent ‘finite being’ (later termed Maxwell’s Demon)
that would operate a small door between the two containers. When a
black atom approaches the door from the left or a white atom approaches
from the right the demon would open the door: for the reverse situations
the demon would leave the door closed. As time progresses, this active
sorting would re-segregate the system, lowering the entropy. This is
not a concern for thermodynamics, since of course running a demon
is an entropy consuming process! Indeed, one can view this thought
experiment as giving a fundamental limit on demon efficiency, putting
a lower bound on how much entropy an intelligent being must create in
order to engage in this kind of sorting process (see figure 5.6).

Fig. 5.6 Ion pump. An implemen-
tation of Maxwell’s demon in biology
is Na+/K+-ATPase, an enzyme located
on the membranes of almost every cell
in your body. This enzyme maintains
extra potassium (K+) ions inside the
cell and extra sodium (Na+) ions out-
side the cell. The enzyme exchanges
twoK+ ions from outside for three Na+

ions inside, burning as fuel one ATP
(adenosine with three phosphates, the
fuel of the cell) into ADP (two phos-
phates). When you eat too much salt
(Na+Cl−), the extra sodium ions in
the blood increase the osmotic pressure
on the cells, draw more water into the
blood, and increase your blood pres-
sure. The figure ( c©Nature 2000) shows
the structure of the related enzyme cal-
cium ATPase [118]: the arrow shows
the shape change as the two Ca+ ions
are removed.

5.2.2 Residual Entropy of Glasses: The Roads Not
Taken

In condensed-matter physics, glasses are the prototype of disordered
systems. Unlike a crystal, in which each atom has a set position, a
glass will have a completely different configuration of atoms each time
it is formed. That is, the glass has a residual entropy: as the tempera-
ture goes to absolute zero, the glass entropy does not vanish, but rather
equals kB log Ωglass, where Ωglass is the number of zero-temperature con-
figurations in which the glass might be trapped.

What is a glass?17 Glasses are disordered like liquids, but are rigid

17See also section 12.3.3.

like crystals. They are not in equilibrium: they are formed when liquids
are cooled too fast to form the crystalline equilibrium state.18 You are

18The crystalline state must be nucle-
ated, see section 11.2.

aware of glasses made from silica, like window glass,19 and Pyrex.TM20

You also know some molecular glasses, like hard candy (a glass made
of sugar). Many other materials (even metals)21 can form glasses when
cooled quickly.

19Windows are made from soda-lime glass, with silica (SiO2) mixed with sodium
and calcium oxides.

20PyrexTM is a borosilicate glass (boron and silicon oxides) with a low thermal
expansion, used for making measuring cups that don’t shatter when filled with boiling
water.

21Most metals are polycrystalline. That is, the atoms sit in neat crystalline ar-
rays but the metal is made up of many grains with different crystalline orientations
separated by sharp grain boundaries.
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How is the residual glass entropy measured? First, one estimates the
entropy of the equilibrium liquid;22 then one measures the entropy flow22One can measure the entropy of the

equilibrium liquid Sliquid(T	) by slowly
heating a crystal of the material from
absolute zero and measuring

∫ T�
0 dQ/T

flowing in.

Q/T out from the glass as it is cooled from the liquid down to absolute
zero. The difference

Sresidual = Sliquid(T�) −
∫

1
T

dQ

dt
dt = Sliquid(T�) −

∫ T�

0

1
T

dQ

dT
dT (5.18)

gives the residual entropy.
How big is the residual entropy of a typical glass? The residual en-

tropy is on the order of kB per molecular unit of the glass (SiO2 or
sugar molecule, for example). This means that the number of glassy
configurations eS/kB is enormous (exercise 5.8 part (c)).

How is it possible to measure the number of glass configurations the
system didn’t choose? The glass is, after all, in one particular configura-
tion. How can measuring the heat flow Q(t) out of the liquid as it freezes
into one glassy state be used to measure the number Ωglass of possible
glassy states? In other words, how exactly is the statistical mechanics
definition of entropy Sstat = kB log Ωglass tied to the thermodynamic
definition ∆Sthermo = Q/T ?

i

iV

δ

iq
Fig. 5.7 Double well potential. A
simple model for the potential energy
for one coordinate qi in a glass: two
states separated by a barrier Vi and
with a small energy difference δi.

We need first a simplified model of how a glass might fall out of equilib-
rium as it is cooled.23 We view the glass as a collection of independent
molecular units. Each unit has a double-well potential energy: along
some internal coordinate qi there are two minima with an energy differ-
ence δi and separated by an energy barrier Vi (figure 5.7). This internal
coordinate might represent a rotation of a sugar molecule, or a shift in
the location of an oxygen in a SiO2 network.

Consider the behavior of one of these double-well degrees of freedom.
As we cool our system, the molecular unit will be thermally excited over
its barrier more and more slowly. So long as the cooling rate Γcool is small
compared to this hopping rate, our systems will remain in equilibrium.
However, at the temperature Ti where the two rates cross for our unit

23The glass transition is not a sharp phase transition: the liquid grows thicker
(more viscous) as it is cooled, with slower and slower dynamics, until the cooling
rate becomes too fast for the atomic rearrangements needed to maintain equilibrium
to keep up. At that point, there is a gradual, smeared–out transition over many
degrees Kelvin as the viscosity effectively becomes infinite and the glass becomes
bonded together. The fundamental nature of this transition remains controversial,
and in particular we do not know why the viscosity diverges so rapidly in so many
materials. There are at least three kinds of competing theories for the glass transition:

(1) It reflects an underlying equilibrium transition to an ideal, zero entropy glass
state, which would be formed under infinitely slow cooling

(2) It is a purely dynamical transition (where the atoms or molecules jam together)
with no thermodynamic signature.

(3) It is not a transition at all, but just a crossover where the liquid viscosity jumps
rapidly (say, because of the formation of semipermanent covalent bonds).

Our simple model is not a good description of the glass transition, but is a rather
accurate model for the continuing thermal rearrangements (β-relaxation) at temper-
atures below the glass transition, and an excellent model for the quantum dynamics
(tunneling centers) which dominate many properties of glasses below a few degrees
Kelvin.
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the transitions between the wells will not keep up and our molecular unit
will freeze into position. If the cooling rate Γcool is very slow compared
to the attempt frequency Γ0 (as it almost always is)24 this transition 24Atomic times like 1/Γ0 are around

10−12 per second (an atomic vibration
time), and cooling times are typically
between seconds and years, so the cool-
ing rate is indeed slow compared to mi-
croscopic times.

will be fairly abrupt, and our model glass will freeze into the upper well
with the probability given by the equilibrium distribution at Ti.

T1
g

T2
g

T3
g

T4
g

T5
g

T6
g

T7
g

Fig. 5.8 Roads Not Taken by the
Glass. The branching path of glassy
states in our model. The entropy (both
statistical and thermodynamic) is pro-
portional to the number of branchings
the glass chooses between as it cools. A
particular glass will take one trajectory
through this tree as it cools: nonethe-
less the thermodynamic entropy mea-
sures the total number of states.

Our frozen molecular unit has a population in the upper well given by
the Boltzmann factor e−δi/kBTi times the population in the lower well.
Hence, those centers with δi  kBTi will be primarily in the ground state
(and hence already roughly in equilibrium). However, consider those N
centers with barriers high compared to the asymmetry, so δi 
 kBTi. As
the glass is cooled, one by one these units randomly freeze into one of two
states (figure 5.8). For these centers, both states will be roughly equally
populated when they fall out of equilibrium, so each will contribute
about kB log 2 to the residual entropy. Thus, roughly speaking, the
N units with Ti > δi/kB will contribute about kB log 2 ∼ kB to the
statistical entropy Sstat.25

25We’re losing factors like log 2 because
we’re ignoring those units with kBTi ∼
δi, which freeze into partly occupied
states that aren’t equally occupied, a
case we haven’t treated yet. In sec-
tion 5.3.1 we’ll introduce the general
definition for the statistical entropy:
using it, a (somewhat more compli-
cated) calculation shows that the sta-
tistical and thermal definitions of the
entropy agree without fudging.

What about the thermodynamic entropy? Those centers with kBTi 

δi which equilibrate into the lower well before they freeze will con-
tribute the same amount to the entropy flow into the heat bath as
they would in an equilibrium system. On the other hand, those cen-
ters with kBT  δi will each fail (half the time) to release their energy
δi to the heat bath, when compared to an infinitely slow equilibrium
quench. Since in an equilibrium quench this heat would be transferred
to the bath at a temperature around δi/kB, the missing entropy flow
for that center is ∆Q/T ∼ δi/(δi/kB) ∼ kB. Again, the N units each
contribute around kB to the experimentally measured thermodynamic
residual entropy Sthermo.

Thus the heat flow into a particular glass configuration counts the
number of roads not taken by the glass on its cooling voyage.

5.3 Entropy as Ignorance: Information and
Memory

The most general interpretation of entropy is as a measure of our igno-
rance26 about a system. The equilibrium state of a system maximizes 26In information theory they use the

alternative term uncertainty, which has
misleading connotations from quantum
mechanics: Heisenberg uncertainty has
no associated entropy.

the entropy because we have lost all information about the initial condi-
tions except for the conserved quantities: maximizing the entropy max-
imizes our ignorance about the details of the system. The entropy of a
glass, or of our mixture of black and white atoms, is a measure of the
number of arrangements the atoms could be in, given our ignorance.27 27Again, entropy is a precise measure

of ignorance, but not necessarily a sen-
sible one for all purposes. In partic-
ular, entropy does not distinguish the
utility of the information. Isothermally
compressing a mole of gas to half its
volume decreases our ignorance by 1023

bits: a far larger change in entropy than
would be produced by memorizing all
the written works of human history.

This interpretation – that entropy is not a property of the system,
but of our knowledge about the system28 (represented by the ensemble
of possibilities) – cleanly resolves many otherwise confusing issues. The

28The entropy of an equilibrium system remains purely a property of the compo-
sition of the system, because our knowledge is fixed (at zero). Even systems out
of equilibrium have bounds on the entropy given by the history of heat (entropy)
exchange with the outside world (exercise 5.8).
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atoms in a glass are in a definite configuration, which we could measure
using some futuristic X-ray holographic technique. If we did so, our
ignorance would disappear, and the residual entropy would become zero
for us.29 We could in principle use our knowledge of the glass atom29Of course, the X-ray holographic pro-

cess must create at least as much en-
tropy during the measurement as the
glass loses.

positions to extract extra useful work out of the glass, not available
before measuring the positions.

So far, we have confined ourselves to cases where our ignorance is
maximal, where all allowed configurations are equally likely. What about
systems where we have partial information, where some configurations
are more probable than others? There is a powerful generalization of the
definition of entropy to general probability distributions, which we will
introduce in section 5.3.1 for traditional statistical mechanical systems.
In section 5.3.2 we will show that this nonequilibrium entropy provides
a generally useful measure of our ignorance about a wide variety of
systems, with broad applications outside of traditional physics.

5.3.1 Nonequilibrium Entropy

So far, we have defined the entropy only for systems in equilibrium,
where entropy is a constant. But the second law of thermodynamics
tells us that entropy increases – presupposing some definition of entropy
for non-equilibrium systems. In general, we may describe our partial
knowledge about a system as a probability distribution ρ, defining the
ensemble of states.

Let us start with a probability distribution among a discrete set of
states. We know from section 5.2.1 that the entropy for M equally
likely states (equation 5.17) is S(M) = kB logM . In this case, the prob-
ability of each state is pi = 1/M . If we write S(M) = −kB log(1/M) =
−kB〈log(pi)〉, we get an appealing generalization for the counting en-
tropy for cases where pi is not constant:

Sdiscrete = −kB〈log pi〉 = −kB

∑
i

pi log pi. (5.19)

We shall see in section 5.3.2 and exercise 5.10 that this is clearly the
correct generalization of entropy to systems out of equilibrium.

What about continuum distributions? Any non-equilibrium state of a
classical Hamiltonian system can be described with a probability density
ρ(P,Q) on phase space. The non-equilibrium entropy then becomes

Snonequil = −kB〈log ρ〉 = −kB

∫
ρ log ρ (5.20)

= −kB

∫
E<H(P,Q)<E+δE

dPdQ ρ(P,Q) log ρ(P,Q).

In the case of the microcanonical ensemble where ρequil = 1
Ω(E)δE , the

non-equilibrium definition of the entropy is shifted from our equilibrium
definition S = kB log Ω by a negligable amount kB log(δE)/N per par-
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ticle:30

Smicro = −kB log ρequil = kB log(Ω(E)δE)

= kB log(Ω(E)) + kB log(δE). (5.21)

For quantum systems, the non-equilibrium entropy will written in
terms of the density matrix ρ (section 7.1):

Squantum = −kBTr(ρ log ρ). (5.22)

Finally, notice that Snoneq and Squantum are defined for the microscopic
laws of motion, which (section 5.1) are time-reversal invariant. We can
thus guess that these microscopic entropies will be time–independent,
since microscopically the system does not know in which direction of
time entropy should increase.31 No information is lost (in principle) by 31You can show this explicitly in exer-

cises 5.4 and 7.2).evolving a closed system in time. Entropy (and our ignorance) increases
only in coarse-grained theories where we ignore or exclude some degrees
of freedom (internal or external).

5.3.2 Information Entropy

Understanding ignorance is central to many fields! Entropy as a mea-
sure of ignorance has been useful in everything from the shuffling of
cards to reconstructing noisy images. For these other applications, the
connection with temperature is unimportant, so we don’t need to make
use of Boltzmann’s constant. Instead, we normalize the entropy with
the constant kS = 1/ log(2):

SS = −kS

∑
i

pi log pi. (5.23)

This normalization was introduced by Shannon [112], and the for-
mula 5.23 is referred to as Shannon entropy in the context of informa-
tion theory. Shannon noted that this entropy, applied to the ensemble
of possible messages or images, can be used to put a fundamental limit
on the amount they can be compressed32 to efficiently make use of disk 32Lossless compression schemes (files

ending in gif, png, zip, and gz) remove
the redundant information in the orig-
inal files, and their efficiency is limited
by the entropy of the ensemble of files
being compressed. Lossy compression
schemes (files ending in jpg, mpg, and
mp3) also remove information that is
thought to be unimportant for humans
looking at or listening to the files.

space or a communications channel (exercises 5.6 and 5.7). A low en-
tropy data set is highly predictable: given the stream of data so far, we
can predict the next transmission with some confidence. In language,
twins and long-married couples can often complete sentences for one
another. In image transmission, if the last six pixels were white the
region being depicted is likely a white background, and the next pixel
is also likely white. We need only transmit or store data that violates
our prediction. The entropy measures our ignorance, how likely the best
predictions about the rest of the message are to be wrong.

Entropy is so useful in these various fields because it is the unique
(continuous) function that satisfies three key properties.33 In this sec- 33Unique, that is, up to the overall con-

stant kS or kB .

30The arbitrary choice of the width of the energy shell in the microcanonical en-
semble thus is related to the arbitrary choice of the zero for the entropy of a classical
system. Unlike the shift due to the units of phase space (section 3.5), this shift is
microscopic.
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tion, we will first explain what these three properties are and why they
are natural for any function that measures ignorance. We will show
our nonequilibrium Shannon entropy satisfies these properties; in ex-
ercise 5.10 you will show that this entropy is the only function to do
so.

To take a tangible example of ignorance, suppose your roommate has
lost their keys, and they are asking for your advice. You want to measure
the roommate’s progress in finding the keys by measuring your ignorance
with some function SI . Suppose there are Ω possible sites Ak that
they might have left the keys, which you estimate have probabilities
pk = P (Ak), with

∑Ω
1 pi = 1.

What are the three key properties we want our ignorance function
SI(p1, . . . , pΩ) to have?

(1) Entropy is maximum for equal probabilities. Without further in-
formation, surely the best plan is for your roommate to look first at the
most likely site, which maximizes pi. Your ignorance must therefore be
maximal if all Ω sites have equal likelihood:

SI

(
1/Ω, . . . ,

1/Ω
)
> SI(p1, . . . , pΩ) unless pi = 1/Ω for all i. (5.24)

Does the Shannon entropy obey property (1), equation 5.24?34 We34In exercise 6.7 you’ll show that the
Shannon entropy SS is an extremum
when all probabilities are equal. Here
we provide a proof that is a global max-
imum, using the convexity of x log x
(figure 5.9).

notice that the function f(p) = −p log p is concave (convex downward,
figure 5.9). For a concave function f , the average value of f(p) over a set
of points pk is less than than or equal to f evaluated at the average:35

1/Ω
∑

k

f(pk) ≤ f

(
1/Ω
∑

k

pk

)
. (5.26)

But this tells us that

SS(p1, . . . , pΩ) = −kS

∑
pk log pk = kS

∑
f(pk)

≤ kSΩf

(
1/Ω
∑

k

pk

)
= kSΩf(1/Ω) (5.27)

= −kS

Ω∑
1

1/Ω log(1/Ω) = SS(1/Ω, . . . , 1/Ω).
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Entropy is Concave (Convex downward)
f( λa+(1-λ)b )  >  λf(a) + (1-λ)f(b)

f(a)

f(b)λf(a) + (1-λ) f(b)

f( λa+(1-λ)b )

Fig. 5.9 Entropy is Concave. For
x ≥ 0, f(x) = −x log x is strictly con-
vex downward (concave). That is, for
0 < λ < 1, the linear interpolation lies
below the curve:

f (λa + (1 − λ)b) ≥ λf(a)+(1−λ)f(b).
(5.28)

We know f is concave because its sec-
ond derivative, −1/x, is everywhere
negative.

35Equation 5.26 can be proven by induction from the definition of concave (equa-

tion 5.28). For Ω = 2, we use λ = 1/2, a = p1, and b = p2 to see that f
(

p1+p2
2

)
≥

1
2

(f(p1) + f(p2)) . For general Ω, we use λ = (Ω − 1)/Ω, a = (
∑Ω−1

1 pk)/(Ω − 1),
and b = pΩ to see

f

(∑Ω
k=1 pk

Ω

)
= f

(
Ω − 1

Ω

∑Ω−1
1 pk

Ω − 1
+ 1/ΩpΩ

)
≥ Ω − 1

Ω
f

(∑Ω−1
1 pk

Ω − 1

)
+ 1/Ωf(pΩ)

≥ Ω − 1

Ω

(
Ω−1∑
k=1

1

Ω − 1
f(pk)

)
+ 1/Ωf(pΩ) = 1/Ω

Ω∑
k=1

f(pk) (5.25)

where in the third line we have used the truth of equation 5.26 for Ω−1 to inductively
prove it for Ω.
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(2) Entropy is unaffected by extra states of zero probability. If there
is no possibility that the keys are in your shoe (site AΩ), then your
ignorance is no larger than it would have been if you hadn’t included
your shoe in the list of possible sites:

SI(p1, . . . , pΩ−1, 0) = SI(p1, . . . , pΩ−1). (5.29)

The Shannon entropy obeys property (2) because pΩ log pΩ → 0 as pΩ →
0.

(3) Entropy change for conditional probabilities. This last property for
our ignorance function demands a new concept, conditional probablility.

To aid in the search, you’ll likely ask the roommate where they were
when they last saw the keys. Suppose there are M locations B� that
the roommate may have been (opening the apartment door, driving the
car, in the basement laundry room, . . . ), with probabilities q�. Surely
the likelihood that the keys are currently in a coat pocket is larger if
the roommate was outdoors when the keys were last seen. Let rk� =
P (Ak and B�) be the probability the keys are at site k and were last
seen at location �, and36 36The conditional probability P (A|B)

[read “P of A given B”] times the prob-
ability of B is of course the proba-
bility of A and B both occurring, so
P (A|B)P (B) = P (A andB), implying
ck	q	 = rk	.

P (Ak|B�) = ck� = rk�/q� (5.30)

be the conditional probability, given that they were last seen at B� that
the keys are at site Ak. Clearly∑

k

P (Ak|B�) =
∑

k

ck� = 1 : (5.31)

wherever they were last seen, the keys are now somewhere with proba-
bility one.

Before you ask your roommate where the keys were last seen, you
have ignorance SI(A) = SI(p1, . . . , pΩ) about the site of the keys, and
ignorance SI(B) = SI(q1, . . . , qM ) about the location they were last
seen. You have a joint ignorance about the two questions given by the
ignorance function applied to all Ω ×M conditional probabilities:

SI(AB) = SI(r11, r12, . . . , r1M , r21, . . . , rΩM ) (5.32)
= SI(c11q1, c12q2, . . . , c1MqM , c21q1, . . . , cΩMqM ).

After the roommate answers your question, your ignorance about the
location last seen is reduced to zero (decreased by SI(B)). If the location
last seen was in the laundry room (site B�), the probability for the keys
being at Ak shifts to ck� and your ignorance about the site of the keys
is now

SI(A|B�) = SI(c1�, . . . , cΩ�). (5.33)

So, your combined ignorance has decreased from SI(AB) to SI(A|B�).
We can measure the usefulness of your question by the expected

amount that it decreases your ignorance about where the keys reside.
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The expected ignorance after the question is answered is given by weight-
ing the ignorance after each answer B� by the probability q� of that
answer:

〈SI(A|B�)〉B =
∑

�

q�SI(A|B�). (5.34)

This leads us to the third key property for an ignorance function. If
we start with the joint distribution AB, and then measure B, it would
be tidy if, on average, your joint ignorance declined by your original
ignorance of B:

〈SI(A|B�)〉B = SI(AB) − SI(B). (5.35)

Does the Shannon entropy satisfy equation 5.35, property (3)? The
conditional probability SS(A|B�) = −kS

∑
� ck� log ck�, since ck� is the

probability distribution for the Ak sites given location �. So,

SS(AB) = −kS

∑
k�

ck�q� log(ck�q�)

= −kS

(∑
k�

ck�q� log(ck�) +
∑
k�

ck�q� log(q�)

)

=
∑

�

q�

(
−kS

∑
k

ck� log(ck�)

)
− kS

∑
�

q� log(q�)
�

�
�

��(∑
k

ck�

)
=
∑

�

q�SS(A|B�) + SS(B)

= 〈SS(A|B�)〉B + SS(B) (5.36)

and the Shannon entropy does satisfy condition (3).
If A and B are uncorrelated (for example, if they are measurements

on uncoupled systems), then the probabilities of A won’t change upon
measuring B, so SI(A|B�) = SI(A). Then our third condition implies
SI(AB) = SI(A) + SI(B): our ignorance of uncoupled systems is addi-
tive. This is simply the condition that entropy is extensive. We argued
that the entropy of weakly coupled subsystems in equilibrium must be
additive in section 3.3. Our third condition implies that this remains
true for uncorrelated systems in general.

Exercises

Entropy is an emergent property. Unlike energy conserva-
tion, which is inherited from the microscopic theory, en-
tropy is a constant for a closed system treated microscop-
ically (for Newton’s laws in exercise 5.4(a), for quantum

mechanics in exercise 7.2). Entropy increases because in-
formation is lost – either to the outside world, to unim-
portant or ignored internal degrees of freedom (diffusion
equation, 5.5, Markov chains 8.8), or to measurement in-
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accuracies in the initial state (Lyapunov exponents 5.11,
Poincaré cat map 5.4(b)).37

Entropy is a general measure of ignorance, useful far
outside its traditional applications (6.7) in equilibrium
systems. It is the unique function to have the appropri-
ate properties to measure ignorance (5.10). It has ap-
plications to glasses (5.8) and to defining fractal dimen-
sions (5.13). It is fascinating that entropy – our ignorance
about the system – can exert real forces (e.g. in rubber
bands, 5.9).

Entropy provides fundamental limits on engine effi-
ciency (5.2, 5.3), data compression (5.6, 5.7), memory
storage (where the limit is the formation of a black
hole, 5.12(c)), and to intelligent life at the end of the
universe (5.1).

(5.1) Life and the Heat Death of the Universe.
(Basic, Astrophysics)

Freeman Dyson [28] discusses how living things might
evolve to cope with the cooling and dimming we expect
during the heat death of the universe.

Normally one speaks of living things as beings that con-
sume energy to survive and proliferate. This is of course
not correct: energy is conserved, and cannot be con-
sumed. Living beings intercept entropy flows: they use
low entropy sources of energy (e.g., high temperature so-
lar radiation for plants, candy bars for us) and emit high
entropy forms of the same energy (body heat).

Dyson ignores the survival and proliferation issues; he’s
interested in getting a lot of thinking in before the uni-
verse ends. He presumes that an intelligent being gener-
ates a fixed entropy ∆S per thought.38 (This correspon-
dence of information with entropy is a standard idea from
computer science: see exercises 5.6 and 5.7.)

Energy needed per thought. Assume that the being
draws heat Q from a hot reservoir at T1 and radiates it
away to a cold reservoir at T2.

(a) What is the minimum energy Q needed per thought,
in terms of ∆S and T2? You may take T1 very large.
Related formulæ: ∆S = Q2/T2 − Q1/T1; First Law:
Q1 −Q2 = W (energy is conserved).

Time needed per thought to radiate energy. Dyson
shows, using theory not important here, that the power
radiated by our intelligent–being–as–entropy–producer is

no larger than CT 3
2 , a constant times the cube of the cold

temperature.39

(b) Write an expression for the maximum rate of thoughts
per unit time dH/dt (the inverse of the time ∆t per
thought), in terms of ∆S, C, and T2.

Number of thoughts for an ecologically efficient
being. Our universe is expanding: the radius R grows
roughly linearly in time t. The microwave background
radiation has a characteristic temperature Θ(t) ∼ R−1

which is getting lower as the universe expands: this red-
shift is due to the Doppler effect. An ecologically efficient
being would naturally try to use as little heat as possible,
and so wants to choose T2 as small as possible. It cannot
radiate heat at a temperature below T2 = Θ(t) = A/t.

(c) How many thoughts H can an ecologically efficient be-
ing have between now and time infinity, in terms of ∆S,
C, A, and the current time t0?

Time without end: Greedy beings. Dyson would
like his beings to be able to think an infinite number of
thoughts before the universe ends, but consume a finite
amount of energy. He proposes that his beings need to
be profligate in order to get their thoughts in before the
world ends: he proposes that they radiate at a tempera-
ture T2(t) ∼ t−3/8 which falls with time, but not as fast
as Θ(t) ∼ t−1.

(d) Show that with Dyson’s cooling schedule, the total
number of thoughts H is infinite, but the total energy con-
sumed U is finite.

We should note that there are many refinements on
Dyson’s ideas. There are potential difficulties that may
arise like to quantum limits to cooling or proton decay:
how will we make bodies out of electrons and neutrinos?
And there are different challenges depending on the ex-
pected future of the universe: a big crunch, for example,
where the universe collapses back on itself, demands that
we adapt to heat and pressure (but an infinite number of
thoughts appears to remains possible before the end).

(5.2) P-V Diagram. (Basic, Thermodynamics)

A monatomic ideal gas in a piston is cycled around the
path in the P-V diagram in figure 5.10 Leg a cools at con-
stant volume by connecting to a heat bath at Tc; leg b
heats at constant pressure by connecting to a heat bath
at Th; leg c compresses at constant temperature while
remaining connected to the bath at Th.

37The statistical mechanics arguments for the increase of entropy all are dependent
in detail on the coarse-grained models involved. Our best and most general argument
that any physical model must have entropy increase is Carnot’s argument: if a sys-
tem could consistently evolve to lower entropy states, one could (perhaps indirectly)
use that system to extract useful work from a rock.

39The constant scales with the number of electrons in the being, so we can think
of our answer ∆t as the time per thought per mole of electrons.
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Fig. 5.10 PV diagram

Which of the following are true?

(T) (F) The cycle is reversible: no net entropy is created
in the universe.

(T) (F) The cycle acts as a refrigerator, using work from
the piston to draw energy from the cold bath into the hot
bath, cooling the cold bath.

(T) (F) The cycle acts as an engine, transferring heat
from the hot bath to the cold bath and doing positive net
work on the outside world.

(T) (F) The work done per cycle has magnitude |W | =
P0V0|4 log 4− 3|.
(T) (F) The heat transferred into the cold bath, Qc has
magnitude |Qc| = (9/2)P0V0.

(T) (F) The heat transferred from the hot bath Qh, plus
the net work W done by the piston onto the gas, equals
the heat Qc transferred into the cold bath.

Related formulæ: PV = NkBT , U = (3/2)NkBT ,
∆S = Q/T , W = − ∫ PdV , ∆U = Q + W . Notice that
the signs of the various terms depend on convention (heat
flow out vs. heat flow in): you should figure the signs on
physical grounds.

(5.3) Carnot Refrigerator. (Basic, Thermodynamics)

Our refrigerator is about 2m × 1m × 1m, and has in-
sulation about 3cm thick. The insulation is probably
polyurethane, which has a thermal conductivity of about
0.02 W/(m K). Assume that the refrigerator interior is at
270K, and the room is at 300K.

(a) How many watts of energy leak from our refrigerator
through this insulation?

Our refrigerator runs at 120 V, and draws a maximum of
4.75 amps. The compressor motor turns on every once in
a while for a few minutes.

(b) Suppose (i) we don’t open the refrigerator door, (ii)
the thermal losses are dominated by the leakage through
the foam and not through the seals around the doors, and
(iii) the refrigerator runs as a perfectly efficient Carnot
cycle. How much power on average will our refrigerator
need to operate? What fraction of the time will the motor
run?

(5.4) Does Entropy Increase? (Mathematics)

The second law of thermodynamics says that entropy al-
ways increases. Perversely, we can show that in an iso-
lated system, no matter what non-equilibrium condition
it starts in, entropy calculated with a complete micro-
scopic description stays constant in time.

Entropy is Constant: Classical. 40 Liouville’s the-
orem tells us that the total derivative of the probability
density is zero: following the trajectory of a system, the
local probability density never changes. The equilibrium
states have probability densities that only depend on en-
ergy and number. Clearly something is wrong: if the
density starts non-uniform, how can it become uniform?

(a) Show for any function f(ρ) that ∂f(ρ)/∂t = −∇ ·
[f(ρ)V] = −∑α ∂/∂pα (f(ρ)ṗα) + ∂/∂qα (f(ρ)q̇α), where

V =
(

Ṗ, Q̇
)

is the 6N dimensional velocity in phase

space. Hence, (by Gauss’s theorem in 6N dimensions),
show

∫
∂f(ρ)/∂t dPdQ = 0, assuming that the probabil-

ity density vanishes at large momenta and positions and
f(0) = 0. Show, thus, that the entropy S = −kB

∫
ρ log ρ

is constant in time.

We will see that the quantum version of the entropy is
also constant for a Hamiltonian system in exercise 7.2.

The Arnol’d Cat. Why do we think entropy increases?
First, points in phase space don’t just swirl in circles: they
get stretched and twisted and folded back in complicated
patterns – especially in systems where statistical mechan-
ics seems to hold! Arnol’d, in a takeoff on Schrödinger’s
cat, suggested the following analogy. Instead of a contin-
uous transformation of phase space onto itself preserving
6N-dimensional volume, let’s think of an area-preserving
mapping of an n × n square in the plane into itself.41

40We’ll see in exercise 7.2 that the non-equilibrium entropy is also constant in
quantum systems.

41For our purposes, the Arnol’d cat just shows that volume preserving transforma-
tions can scramble a small region uniformly over a large one. More general, nonlinear
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Fig. 5.11 Arnol’d Cat Transform, from reference [83]; see movie too [92].

Consider the mapping

Γ

(
x
y

)
=

(
x+ y
x+ 2y

)
modn. (5.37)

See the map in figure 5.11

(b) Check that Γ preserves area. (It’s basically multipli-

cation by the matrix M =

(
1 1
1 2

)
. What is the deter-

minant of M?). Show that it takes a square n × n (or a
picture of n× n pixels) and maps it into itself with peri-
odic boundary conditions. (With less cutting and pasting,
you can view it as a map from the torus into itself.) As a
linear map, find the eigenvalues and eigenvectors. Argue
that a small neighborhood (say a circle in the center of
the picture) will initially be stretched along an irrational
direction into a thin strip (figure 5.12).

Fig. 5.12 A small circular region stretches along an irrational
angle under the Arnold cat map. The center of the figure is
the origin x = 0, y = 0.

When this thin strip hits the boundary, it gets split into
two; in the case of an n × n square, further iterations
stretch and chop our original circle into a thin line uni-
formly covering the square. In the pixel case, there are
always exactly the same number of pixels that are black,
white, and each shade of gray: they just get so kneaded
together that everything looks a uniform color. So, by

area–preserving maps of the plane are often studied as Hamiltonian–like dynamical
systems. Area–preserving maps come up as Poincaré sections of Hamiltonian sys-
tems 4.2, with the area weighted by the inverse of the velocity with which the system
passes through the cross–section. They come up in particular in studies of high–
energy particle accelerators, where the mapping gives a snapshot of the particles
after one orbit around the ring.
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putting a limit to the resolution of our measurement
(rounding errors on the computer, for example), or by
introducing any tiny coupling to the external world, the
final state can be seen to rapidly approach equilibrium,
proofs to the contrary notwithstanding!

(5.5) Entropy Increases: Diffusion.

We saw that entropy technically doesn’t increase for a
closed system, for any Hamiltonian, either classical or
quantum. However, we can show that entropy increases
for most of the coarse-grained effective theories that we
use in practice: when we integrate out degrees of freedom,
we provide a means for the information about the initial
condition to be destroyed. Here you’ll show that entropy
increases for the diffusion equation.

Diffusion Equation Entropy. Let ρ(x, t) obey the one-
dimensional diffusion equation ∂ρ/∂t = D∂2ρ/∂x2. As-
sume that the density ρ and all its gradients die away
rapidly at x = ±∞.42

Derive a formula for the time derivative of the entropy
S = −kB

∫
ρ(x) log ρ(x)dx and show that it strictly in-

creases in time. (Hint: integrate by parts. You should
get an integral of a positive definite quantity.)

(5.6) Information entropy. (Basic, Computer Science,
Mathematics, Complexity)

Entropy is a measure of your ignorance about a system: it
is a measure of the lack of information. It has important
implications in communication technologies: messages
passed across the Ethernet communicate information, re-
ducing the information entropy for the receiver. Shan-
non [112] worked out the use of entropy ideas in commu-
nications, focusing on problems where different messages
have different probabilities. We’ll focus on the simpler
problem where all N messages are equally likely. Shan-
non defines the information entropy of an unread mes-
sage as being log2N = kS logN , where kS = 1/(loge 2)
is analogous to Boltzmann’s constant, and changes from
log-base-e to log-base-2 (more convenient for computers,
which think in base two.)

Your grandparent has sent you an e-mail message. From
the header of the message, you know it contains 1000

characters. You know each character is made of 8 bits,
which allows 28 = 256 different letters or symbols per
character. Assuming all possible messages from your
grandparent are equally likely (a typical message would
then look like G*me‘!8V[beep]. . . ), how many different
messages N could there be? This (unrealistic) assump-
tion gives an upper bound for the information entropy
Smax.

(a) What Smax for the unread message?

Your grandparent writes rather dull messages: they all
fall into the same pattern. They have a total of 16 equally
likely messages. 43 After you read the message, you for-
get the details of the wording anyhow, and only remember
these key points of information.

(b) What is the actual information entropy change
∆SShannon you undergo when reading the message? If
your grandparent writes one message per month, what is
the minimum number of 8-bit characters per year that it
would take to send your grandparent’s messages? (You
may lump multiple messages into a single character.)
(Hints: ∆Sshannon is the change in entropy from before
you read the message to after you read which of 16 mes-
sages it was. The length of 1000 is not important for this
part.)
Remark: This is an extreme form of data compression,
like that used in gif images, zip files (Windows) and gz
files (Unix). We are asking for the number of characters
per year for an optimally compressed signal.

(5.7) Shannon entropy. (Computer Science)

Entropy can be viewed as a measure of the lack of infor-
mation you have about a system. Claude Shannon [112]
realized, back in the 1940’s, that communication over
telephone wires amounts to reducing the listener’s un-
certainty about the sender’s message, and introduced a
definition of an information entropy.

Most natural languages (voice, written English) are
highly redundant; the number of intelligible fifty-letter
sentences is many fewer than 2650, and the number of
ten-second phone conversations is far smaller than the
number of sound signals that could be generated with fre-
quencies between up to 20,000 Hz.44 Shannon, knowing

42Also, you may assume ∂nρ/∂xn log ρ goes to zero at x = ±∞, even though log ρ
goes to −∞.

43Each message mentions whether they won their bridge hand last week (a fifty-
fifty chance), mentions that they wish you would write more often (every time), and
speculates who will win the women’s college basketball tournament in their region
(picking at random one of the eight teams in the league).

44Real telephones don’t span this whole frequency range: they are limited on the
low end at 300–400 Hz, and on the high end at 3000–3500. You can still understand
the words, so this crude form of data compression is only losing non-verbal nuances
in the communication [36].
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statistical mechanics, defined the entropy of an ensemble
of messages: if there are N possible messages that can be
sent in one package, and message m is being transmitted
with probability pm, then Shannon’s entropy is

SI = −kS

N∑
1

pm log pm (5.38)

where instead of Boltzmann’s constant, Shannon picked
kS = 1/ log 2.

This immediately suggests a theory for signal compres-
sion. If you can recode the alphabet so that common
letters and common sequences of letters are abbreviated,
while infrequent combinations are spelled out in lengthly
fashion, you can dramatically reduce the channel capac-
ity needed to send the data. (This is lossless compression,
like zip and gz and gif).

An obscure language A’bç! for long-distance communica-
tion has only three sounds: a hoot represented by A, a
slap represented by B, and a click represented by C. In
a typical message, hoots and slaps occur equally often
(p = 1/4), but clicks are twice as common (p = 1/2).
Assume the messages are otherwise random.

(a) What is the Shannon entropy in this language? More
specifically, what is the Shannon entropy rate (entropy per
sound, or letter, transmitted)?

(b) Show that a communication channel transmitting bits
(ones and zeros) can transmit no more than one unit of
Shannon entropy per bit. (Hint: this should follow by
showing that, for N = 2n messages, equation 5.38 is max-
imized by pm = 1/N . You needn’t prove it’s a global
maximum: check that it is a local extremum. You’ll need
either a Lagrange multiplier or will need to explicitly set
pN = 1−∑N−1

m=1 pm.)

(c) In general, argue that the Shannon entropy gives the
minimum number of bits needed to transmit the ensemble
of messages. (Hint: compare the Shannon entropy of
the N original messages with the Shannon entropy of the
N (shorter) encoded messages.) Calculate the minimum
number of bits per letter on average needed to transmit
messages for the particular case of an A’bç! communica-
tion channel.

(d) Find a compression scheme (a rule that converts a
A’bç! message to zeros and ones, that can be inverted to
give back the original message) that is optimal, in the
sense that it saturates the bound you derived in part (b).
(Hint: Look for a scheme for encoding the message that
compresses one letter at a time. Not all letters need to
compress to the same number of bits.)

Shannon also developed a measure of the channel capacity
of a noisy wire, and discussed error correction codes. . .

(5.8) Entropy of Glasses. [61]

Glasses aren’t really in equilibrium. In particular they
do not obey the third law of thermodynamics, that the
entropy S goes to zero at zero temperature. Experimen-
talists measure a “residual entropy” by subtracting the
entropy change from the known entropy of the equilib-
rium liquid at a temperature T	 at or above the crystalline
melting temperature Tc (equation 5.18):

Sresidual = Sliquid(T	)−
∫ T�

0

1

T

dQ

dT
dT (5.39)

where Q is the net heat flow out of the bath into the glass.

If you put a glass in an insulated box, it will warm up
(very slowly) because of microscopic atomic rearrange-
ments which lower the potential energy. So, glasses don’t
have a well-defined temperature or specific heat. In par-
ticular, the heat flow upon cooling and on heating dQ

dT
(T )

won’t precisely match (although their integrals will agree
by conservation of energy).

Fig. 5.13 Specific heat of B2O3 glass measured while heat-
ing and cooling. The glass was first rapidly cooled from the
melt (500◦C → 50◦C in a half hour), then heated from 33◦C
→ 345◦C in 14 hours (solid curve with squares), cooled from
345◦C to room temperature in 18 hours (dotted curve with di-
amonds), and finally heated from 35◦C → 325◦C (solid curve
with crosses). Figure from reference [117], see also [59].

Thomas and Parks in figure 5.13 are making the approx-
imation that the specific heat of the glass is dQ/dT , the
measured heat flow out of the glass divided by the tem-
perature change of the heat bath. They find that the

45The fact that the energy lags the temperature near the glass transition, in linear
response, leads to the study of “specific heat spectroscopy” [11].
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specific heat defined in this way measured on cooling and
heating disagree. 45 Consider the second cooling curve
and the final heating curve, from 325◦C to room temper-
ature and back. Assume that the liquid at 325◦C is in
equilibrium both before cooling and after heating (and so
has the same liquid entropy Sliquid).

(a) Is the residual entropy, equation 5.39, experimentally
larger on heating or on cooling in figure 5.13? (Hint: Use
the fact that the integrals under the curves,

∫ T�

0
dQ
dT
dT

give the heat flow, which by conservation of energy must
be the same on heating and cooling. The heating curve
shifts weight to higher temperatures: will that increase
or decrease the integral in 5.39?)

(b) By using the second law (entropy can only increase),
show that when cooling and then heating from an equi-
librium liquid the residual entropy measured on cooling
must always be less than the residual entropy measured
on heating. Your argument should be completely gen-
eral, applicable to any system out of equilibrium. (Hint:
Consider the entropy flow into the outside world upon
cooling the liquid into the glass, compared to the entropy
flow from the outside world to heat the glass into the liq-
uid again. The initial and final states of the liquid are
both in equilibrium.)

The residual entropy of a typical glass is about kB per
molecular unit. It’s a measure of how many different
glassy configurations of atoms the material can freeze
into.

(c) In a molecular dynamics simulation with one hundred
indistinguishable atoms, and assuming that the residual
entropy is kB log 2 per atom, what is the probability that
two coolings to zero energy will arrive at equivalent atomic
configurations (up to permutations)? In a system with
1023 molecular units, with residual entropy kB log 2 per
unit, about how many coolings would be needed to arrive
at the original configuration again, with probability 1/2?

(5.9) Rubber Band. (Basic)

L

d

Fig. 5.14 Simple model of a rubber band with N = 100 seg-
ments. The beginning of the polymer is at the top: the end is

at the bottom; the vertical displacements are added for visu-
alization.

Figure 5.14 shows a one–dimensional model for rubber.
Rubber is formed of many long polymeric molecules,
which undergo random walks in the undeformed mate-
rial. When we stretch the rubber, the molecules respond
by rearranging their random walk to elongate in the direc-
tion of the external stretch. In our model, the molecule
is represented by a set of N links of length d, which with
equal energy point either parallel or antiparallel to the
previous link. Let the total change in position to the
right from the beginning of the polymer to the end be L.

As the molecule extent L increases, the entropy of our
rubber molecule decreases.

(a) Find an exact formula for the entropy of this system
in terms of d, N , and L. (Hint: How many ways can one
divide N links into M right–pointing links and N −M
left–pointing links, so that the total length is L?)

The external world, in equilibrium at temperature T , ex-
erts a force pulling the end of the molecule to the right.
The molecule must exert an equal and opposite entropic
force F .

(b) Find an expression for the force −F exerted by the
bath on the molecule in terms of the bath entropy. Hint:
the bath temperature 1

T
= ∂Sbath

∂E
, and force times dis-

tance is energy. Using the fact that the length L must
maximize the entropy of the universe, write a general ex-
pression for F in terms of the internal entropy S of the
molecule.

(c) Take our model of the molecule from part (a), the
general law of part (b), and Stirling’s formula 3.10 (drop-
ping the square root), write the force law F (L) for our
molecule for large lengths N . What is the spring constant
K in Hooke’s law F = −KL for our molecule, for small
L?

Our model has no internal energy: this force is entirely
entropic.

(d) If we increase the temperature of our rubber band while
it is under tension, will it expand or contract? Why?

In a more realistic model of a rubber band, the entropy
consists primarily of our configurational random–walk en-
tropy plus a vibrational entropy of the molecules. If we
stretch the rubber band without allowing heat to flow in
or out of the rubber, the total entropy should stay ap-
proximately constant.46

(e) True or false?

46Rubber is designed to bounce well: little irreversible entropy is generated in a
cycle of stretching and compression, so long as the deformation is not too abrupt.
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(T) (F) When we stretch the rubber band, it will cool: the
configurational entropy of the random walk will decrease,
causing the entropy in the vibrations to decrease, causing
the temperature to decrease.

(T) (F) When we stretch the rubber band, it will cool: the
configurational entropy of the random walk will decrease,
causing the entropy in the vibrations to increase, causing
the temperature to decrease.

(T) (F) When we let the rubber band relax, it will cool:
the configurational entropy of the random walk will in-
crease, causing the entropy in the vibrations to decrease,
causing the temperature to decrease.

(T) (F) When we let the rubber band relax, there must
be no temperature change, since the entropy is constant.

This more realistic model is much like the ideal gas, which
also had no configurational energy.

(T) (F) Like the ideal gas, the temperature changes be-
cause of the net work done on the system.

(T) (F) Unlike the ideal gas, the work done on the rubber
band is positive when the rubber band expands.

You should check your conclusions experimentally: find
a rubber band (thick and stretchy is best), touch it to
your lips (which are very sensitive to temperature), and
stretch and relax it.

(5.10) Deriving Entropy. (Mathematics)

In this exercise, you will show that the unique continuous
function (up to the constant kB) satisfying the three key
properties (equations 5.24, 5.29, and 5.35):

SI

(
1

Ω
, . . . ,

1

Ω

)
> SI(p1, . . . , pΩ) unless pi =

1

Ω
for all i,

(5.40)

SI(p1, . . . , pΩ−1, 0) = SI(p1, . . . , pΩ−1), (5.41)

and
〈SI(A|B	)〉B = SI(AB)− SI(B). (5.42)

where SI(A) = SI(p1, . . . , pΩ), SI(B) = SI(q1, . . . , qM ),
〈SI(A|B	)〉B =

∑
	 q	SI(c1	, . . . , cΩ	) and SI(AB) =

SI(c11q1, . . . , cΩMqM ). The presentation is based on the
proof in the excellent small book by Khinchin [51].

For convenience, define L(g) = SI(1/g, . . . , 1/g).

(a) For any rational probabilities q	, let g be the least com-
mon multiple of their denominators, and let q	 = g	/g for
integers g	. Show that

SI(B) = L(g)−
∑

	

q	L(g	). (5.43)

(Hint: consider AB to have g possibilities of probability
1/g, B to measure which group of size g	, and A to mea-
sure which of the g	 members of group �, figure 5.15.)

1/2

Ak

ck q

B

1/3

1/4

1/4

1/61/2

1/3 1/3 1/3

1/31/31/3

1/4 1/4 1/4 1/4

Fig. 5.15 Rational Probabilities and Conditional En-
tropy. Here the probabilities q	 = (1/6, 1/3, 1/3, 1/2) of
state B	 are rational. We can split the total probability into
g = 12 equal pieces (circles, each probability rk	 = 1/12),
with gk = (2, 3, 3, 4) pieces for the corresponding measure-
ment B	. We can then write our ignorance SI(B) in terms of
the (maximal) equal-likelihood ignorances L(g) = SI (1/g, . . . )
and L(gk), and use the entropy change for conditional proba-
bilities property (equation 5.35) to derive our ignorance SI(B)
(equation 5.43).

(b) If L(g) = kS log g, show that equation 5.43 is the
Shannon entropy 5.23.

Knowing that SI(A) is the Shannon entropy for all ratio-
nal probabilities, and assuming that SI(A) is continuous,
makes SI(A) the Shannon entropy. So, we’ve reduced
the problem to showing L(g) is the logarithm up to a
constant.

(c) Show that L(g) is monotone increasing with g. (Hint:
you’ll need to use both of the first two properties.)

(d) Show L(gn) = nL(g). (Hint: consider n independent
probability distributions each of g equally likely events.
Use the third property recursively on n.)

(e) If 2m < sn < 2m+1, using the results of parts (c)
and (d) show

m

n
<
L(s)

L(2)
<
m+ 1

n
. (5.44)

(Hint: how is L(2m) related to L(sn) and L(2m+1)?)
Show also using the same argument that m

n
< log(s)

log(2)
<

m+1
n

. Hence, show that
∣∣∣L(s)

L(2)
− log(s)

log(2)

∣∣∣ < 1
n

and thus

L(s) = k log s for some constant k.

Hence our ignorance function SI agrees with the formula
for the nonequilibrium entropy, uniquely up to an overall
constant.
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(5.11) Chaos, Lyapunov, and Entropy Increase.
(Math, Complexity) (With Myers. [75])

Let’s consider a dynamical system, given by a map-
pingfrom the unit interval (0, 1) into itself:47

f(x) = 4µx(1− x). (5.45)

where the time evolution is given by iterating the map:

x0, x1, x2, · · · = x0, f(x0), f(f(x0)), . . . (5.46)

In particular, for µ = 1 it precisely folds the unit inter-
val in half, and stretches it (non-uniformly) to cover the
original domain.

The mathematics community lumps together continuous
dynamical evolution laws and discrete mappings as both
being dynamical systems. You can motivate the rela-
tionship using the Poincaré sections (figure 4.4), which
connect a continuous recirculating dynamical system to
the once–return map. The mapping 4.11 is not invert-
ible, so it isn’t directly given by a Poincaré section of a
smooth differential equation48 but the general stretching
and folding exhibited by our map is often seen in driven
physical systems without conservation laws.

In this exercise, we will focus on values of µ near one,
where the motion is mostly chaotic. Chaos is sometimes
defined as motion where the final position depends sensi-
tively on the initial conditions. Two trajectories, starting
a distance ε apart, will typically drift apart in time as
εeλt, where λ is the Lyapunov exponent for the chaotic
dynamics.

Start with µ = 0.9 and two nearby points x0 and
y0 = x0 + ε somewhere between zero and one. Inves-
tigate the two trajectories x0, f(x0), f(f(x0)), . . . f

[n](x0)
and y0, f(y0), . . . . How fast do they separate? Why do
they stop separating? Estimate the Lyapunov exponent.
(Hint: ε can be a few times the precision of the machine
(around 10−17 for double precision arithmetic), so long as
you are not near the maximum value of f at x0 = 0.5.)

Many Hamiltonian systems are also chaotic. Two con-
figurations of classical atoms or billiard balls, with ini-
tial positions and velocities that are almost identical, will
rapidly diverge as the collisions magnify small initial de-
viations in angle and velocity into large ones. It is this
chaos that stretches, folds, and kneads phase space (as in
the Poincaré cat map of exercise 5.4) that is at root our
explanation that entropy increases.49

(5.12) Black Hole Thermodynamics. (Astrophysics)

Astrophysicists have long studied black holes: the end
state of massive stars which are too heavy to support
themselves under gravity (see exercise 7.14). As the mat-
ter continues to fall into the center, eventually the escape
velocity reaches the speed of light. After this point, the
in-falling matter cannot ever communicate information
back to the outside. A black hole of mass M has radius50

Rs = G
2M

c2
, (5.47)

where G = 6.67 × 10−8 cm3/g sec2 is the gravitational
constant, and c = 3× 1010 cm/sec is the speed of light.

Hawking, by combining methods from quantum mechan-
ics and general relativity, calculated the emission of radi-
ation from a black hole.51 He found a wonderful result:
black holes emit perfect black–body radiation at a tem-
perature

Tbh =
�c3

8πGMkB
. (5.48)

According to Einstein’s theory, the energy of the black
hole is E = Mc2.

(a) Calculate the specific heat of the black hole.

The specific heat of a black hole is negative. That is, it
gets cooler as you add energy to it. In a bulk material,
this would lead to an instability: the cold regions would
suck in more heat and get colder. Indeed, a population
of black holes is unstable: the larger ones will eat the
smaller ones.52

47We also study this map in exercises 4.3, 5.13, and 12.8.
48Remember the existence and uniqueness theorems from math class? The invert-

ibility follows from uniqueness.
49There have been speculations by some physicists that entropy increases through

information dropping into black holes – either real ones or tiny virtual black–hole
fluctuations (see exercise 5.12. Recent work has cast doubt that the information is
really lost even then: we’re told it’s just scrambled, presumably much as in chaotic
systems.

50This is the Schwarzschild radius of the event horizon for a black hole with no
angular momentum or charge.

51Nothing can leave a black hole: the radiation comes from vacuum fluctuations
just outside the black hole that emit particles.

52A thermally insulated glass of ice water also has a negative specific heat! The
surface tension at the curved the ice surface will decrease the coexistence tempera-
ture a slight amount (see section 11.2): the more heat one adds, the smaller the ice
cube, the larger the curvature, and the lower the resulting temperature!
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(b) Calculate the entropy of the black hole, by using the
definition of temperature 1

T
= ∂S

∂E
and assuming the en-

tropy is zero at mass M = 0. Express your result in terms
of the surface area A = 4πR2

s, measured in units of the
Planck length L∗ =

√
�G/c3 squared.

As it happens, Bekenstein had deduced this formula for
the entropy somewhat earlier, by thinking about analo-
gies between thermodynamics, information theory, and
statistical mechanics. On the one hand, when black holes
interact or change charge and angular momentum, one
can prove in classical general relativity that the area can
only increase. So it made sense to assume that the en-
tropy was somehow proportional to the area. He then
recognized that if you had some waste material of high
entropy to dispose of, you could ship it into a black hole
and never worry about it again. Indeed, given that the
entropy represents your lack of knowledge about a system,
once matter goes into a black hole one can say that our
knowledge about it completely vanishes.53 (More specif-
ically, the entropy of a black hole represents the inac-
cessibility of all information about what it was built out
of.) By carefully dropping various physical systems into
a black hole (theoretically) and measuring the area in-
crease compared to the entropy increase,54 he was able to
deduce these formulas purely from statistical mechanics.

We can use these results to provide a fundamental bound
on memory storage.

(c) Calculate the maximum number of bits that can be
stored in a sphere of radius one centimeter.

(5.13) Fractal Dimensions. (Math, Complexity) (With
Myers. [75])

There are many strange sets that emerge in science. In
statistical mechanics, such sets often arise at continuous
phase transitions, where self–similar spatial structures
arise (chapter 12. In chaotic dynamical systems, the at-
tractor (the set of points occupied at long times after
the transients have disappeared) is often a fractal (called
a strange attractor. These sets often are tenuous and
jagged, with holes on all length scales: see figures 12.2,
12.3, and 12.14.

We often try to characterize these strange sets by a di-
mension. The dimensions of two extremely different sets

can be the same: the path exhibited by a random walk
(embedded in three or more dimensions) is arguably a
two–dimensional set (note 6 on page 15), but does not lo-
cally look like a surface! However, if two sets have differ-
ent spatial dimensions (measured in the same way) they
surely are qualitatively different.

There is more than one way to define a dimension.
Roughly speaking, strange sets are often spatially inho-
mogeneous, and what dimension you measure depends
upon how you weight different regions of the set. In
this exercise, we will calculate the information dimension
(closely connected to the non-equilibrium entropy!), and
the capacity dimension (originally called the Hausdorff
dimension, also sometimes called the fractal dimension).

To generate our strange set – along with some more or-
dinary sets – we will use the logistic map55

f(x) = 4µx(1− x) (5.49)

that we also study in exercises 5.11, 4.3, and 12.8. The
attractor for the logistic map is a periodic orbit (dimen-
sion zero) at µ = 0.8, and a chaotic, cusped density filling
two intervals (dimension one)56 at µ = 0.9. At the onset
of chaos at µ = µ∞ ≈ 0.892486418 (exercise 12.8) the
dimension becomes intermediate between zero and one:
the attractor is strange, self–similar set.

Both the information dimension and the capacity dimen-
sion are defined in terms of the occupation Pn of cells of
size ε in the limit as ε→ 0.

(a) Write a routine which, given µ and a set of bin sizes
ε,

• Iterates f hundreds or thousands of times (to get on
the attractor)

• Iterates f many more times, collecting points on the
attractor. (For µ ≤ µ∞, you could just integrate 2n

times for n fairly large.)

• For each ε, use a histogram to calculate the proba-
bility Pn that the points fall in the nth bin

• Return the set of vectors Pn[ε].

53Except for the mass, angular momentum, and charge. This suggests that baryon
number, for example, isn’t conserved in quantum gravity. It has been commented
that when the baryons all disappear, it’ll be hard for Dyson to build his progeny out
of electrons and neutrinos: see 5.1.

54In ways that are perhaps too complex to do here.
55We also study this map in exercises 4.3, 5.11, and 12.8.
56See exercise 4.3. The chaotic region for the logistic map isn’t a strange attrac-

tor because it’s confined to one dimension: period doubling cascades for dynamical
systems in higher spatial dimensions likely will have fractal, strange attractors in the
chaotic region.
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You may wish to test your routine by using it for µ = 1
(where the distribution should look like ρ(x) = 1

π
√

x(1−x)
,

exercise 4.3(b)) and µ = 0.8 (where the distribution
should look like two δ-functions, each with half of the
points).

The Capacity Dimension. The definition of the ca-
pacity dimension is motivated by the idea that it takes at
least

Ncover = V/εD (5.50)

bins of size εD to cover a D-dimensional set of volume
V .57 By taking logs of both sides we find logNcover ≈
log V +D log ε. The capacity dimension is defined as the
limit

Dcapacity = lim
ε→0

logNcover

log ε
(5.51)

but the convergence is slow (the error goes roughly as
log V/ log ε). Faster convergence is given by calculating
the slope of logN versus log ε:

Dcapacity = lim
ε→0

d logNcover

d log ε
(5.52)

= lim
ε→0

logNi+1 − logNi

log εi+1 − log εi
.

(b) Use your routine from part (a), write a routine to
calculate N [ε] by counting non-empty bins. Plot Dcapacity

from the fast convergence equation 5.52 versus the mid-
point 1/2(log εi+1 +log εi). Does it appear to extrapolate to
D = 1 for µ = 0.9?58 Does it appear to extrapolate to
D = 0 for µ = 0.8? Plot these two curves together with
the curve for µ∞. Does the last one appear to converge to
D1 ≈ 0.538, the capacity dimension for the Feigenbaum
attractor gleaned from the literature? How small a devia-
tion from µ∞ does it take to see the numerical crossover
to integer dimensions?

Entropy and the Information Dimension. The en-
tropy of a statistical mechanical system is given by equa-
tion 5.20, S = −kBTr(ρ log ρ). In the chaotic regime this
works fine. Our probabilities Pn ≈ ρ(xn)ε, so converting
the entropy integral into a sum

∫
f(x) dx ≈ ∑n f(xn)ε

gives

S = −kB

∫
ρ(x) log(ρ(x)) dx (5.53)

≈ −
∑

n

Pn log(Pn/ε) = −
∑

n

Pn logPn + log ε

(setting the conversion factor kB = 1 for convenience).

You might imagine that the entropy for a fixed point
would be zero, and the entropy for a period-n cycle would
be kB log n. But this is incorrect: when there is a fixed
point or a periodic limit cycle, the attractor is on a set
of dimension zero (a bunch of points) rather than dimen-
sion one. The entropy must go to minus infinity – since we
have precise information about where the trajectory sits
at long times. To estimate the “zero–dimensional” en-
tropy kB log n on the computer, we would take the same
bins as above but sum over bins Pn instead of integrating
over x:

Sd=0 = −
∑

n

Pn log(Pn) = Sd=1 − log(ε). (5.54)

More generally, the ‘natural’ measure of the entropy for
a set with D dimensions might be defined as

SD = −
∑

n

Pn log(Pn) +D log(ε). (5.55)

Instead of using this formula to define the entropy, math-
ematicians use it to define the information dimension

Dinf = lim
ε→0

(∑
Pn logPn

)
/ log(ε). (5.56)

The information dimension agrees with the ordinary di-
mension for sets that locally look like RD. It’s different
from the capacity dimension because the information di-
mension weights each part (bin) of the attractor by the
time spent in it. Again, we can speed up the convergence
by noting that equation 5.55 says that

∑
n Pn logPn is

a linear function of log ε with slope D and intercept SD.
Measuring the slope directly, we find

Dinf = lim
ε→0

d
∑

n Pn(ε) logPn(ε)

d log ε
. (5.57)

(c) As in part (b), write a routine that plots Dinf from
equation 5.57 as a function of the midpoint log ε, as we
increase the number of bins. Plot the curves for µ = 0.9,
µ = 0.8, and µ∞. Does the information dimension agree
with the ordinary one for the first two? Does the last one
appear to converge to D1 ≈ 0.517098, the information
dimension for the Feigenbaum attractor from the litera-
ture?

Most ‘real world’ fractals have a whole spectrum of dif-
ferent characteristic spatial dimensions: they are multi-
fractal.)

57Imagine covering the surface of a sphere in 3D with tiny cubes: the number of
cubes will go as the surface area [2D-volume] divided by ε2.

58In the chaotic regions, keep the number of bins small compared to the number of
iterates in your sample, or you start finding empty bins between points and eventually
get a dimension of zero.
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In this chapter, we explain how to study parts of statistical mechanical
systems. If we ignore most of our system – agreeing not to ask questions
about certain degrees of freedom – the statistical mechanical predictions
about the remaining parts of our system are embodied in a new statisti-
cal ensemble and its associated free energy. These free energies usually
make calculations easier and the physical behavior more comprehensible.
What do we ignore?

We ignore the external world. Most systems are not isolated: they
often can exchange energy, volume, or particles with an outside world in
equilibrium (often called the heat bath). If the coupling to the external
world is weak, we can remove it from consideration. The constant–
temperature canonical1 ensemble (section 6.1) and the Helmholtz free 1Webster’s canonical: reduced to the

simplest or clearest schema possible.
The canonical ensemble will be simpler
to compute with than the microcanon-
ical one.

energy arise from a bath which can exchange energy; the grand canonical
ensemble (section 6.3) and the grand free energy arise from baths which
also exchange particles at fixed chemical potential. For large systems,
these different ensembles predict the same average behavior (apart from
tiny fluctuations): we could in principle do most calculations of interest
in the isolated, microcanonical ensemble. However, calculations using
the appropriate free energy can be much simpler (section 6.2).

We ignore unimportant internal degrees of freedom. In studying (say)
chemical reactions, magnets, or the motion of large mechanical objects,
one is normally not interested in the motions of the individual atoms.
To ignore them in mechanical systems, one introduces friction and noise
(section 6.5). By ignoring them in magnets, one derives lattice models
whose free energies depend only on the spin on each magnetic atom
(section 8.2). By ignoring the atomic motions in chemical reactions, one
derives reaction rate theory (section 6.6).

We coarse grain. Many systems are not homogeneous, because of ini-
tial conditions or boundary conditions; their properties vary in space
and/or time. If these systems are locally near equilibrium, we can ig-
nore the internal degrees of freedom in small volumes, keeping only the
fields which describe the local state. That is, we remove the short dis-
tance fluctuations of the important degrees of freedom, coarse-graining
to include only the long-wavelength fluctuations.2 As an example, in 2These are the order parameter fields

that we will study in detail in chapter 9.section 6.7 we will calculate the free energy density for the ideal gas,
and use it to (again) derive the diffusion equation.

We will calculate free energies explicitly in several important cases in
this chapter. Note that free energies are important tools, however, even
for systems too complex to solve analytically. We provide these solvable
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examples in part to motivate our later work on similar free energies for
systems where microscopic calculations are not feasible.

6.1 The Canonical Ensemble

(s)      (E-E )

E∆

2 s
2 sρ     Ω

  (E-E )Ω

Bath
T

α

System

Fig. 6.1 The canonical ensemble
describes equilibrium systems which
can exchange energy with a heat
bath. The bath is at temperature
T . The probability of a state s of
the system with energy Es is ρ(s) =
exp(−Es/kBT )/Z. The thermody-
namics of the canonical ensemble is em-
bodied in the Helmholtz free energy
A(T, V,N) = E − TS.

The canonical ensemble governs the equilibrium behavior of a system
at fixed temperature. We defined the temperature in section 3.3 by
considering a total system comprised of two weakly coupled parts, with
phase-space coordinates (P1,Q1) and (P2,Q2) that can exchange energy.
We will now focus on the first of these two parts (the system); the second
part (the heat bath) we will assume is large. We are not interested in
measuring any properties that depend upon the heat bath, and want a
statistical ensemble for the system that averages over the relevant states
of the bath.

How does the probability that our system is in a state s depend upon
its energy Es? As we discussed in deriving equation 3.22 (see note 26),
the probability density that our system will be in the particular state
s is proportional to the volume of the energy shell for our heat bath at
bath energy E − Es

ρ(s) ∝ Ω2(E − Es) = exp (S2(E − Es)/kB) (6.1)

since a state s gets a share of the microcanonical probability for each
heat-bath partner it can coexist with at the fixed total energy E.

Let us compare the probability of two typical states A and B of our
equilibrium system. We know that the energy fluctuations are small,
and we assume that the heat bath is large. We can therefore assume
that the inverse temperature 1/T2 = ∂S2

∂E2
of the heat bath is constant in

the range (E − EA, E − EB). Hence,

ρ(sB)/ρ(sA) = Ω2(E − EB)/Ω2(E − EA)

= e(S2(E−EB)−S2(E−EA))/kB = e(EA−EB) (∂S2/∂E)/kB

= e(EA−EB)/kBT2 . (6.2)

This is the general derivation of the Boltzmann factor: the probability
of a particular system state of energy Es is

ρ(s) ∝ exp(−Es/kBT ). (6.3)

We know that the probability is normalized, so

ρ(s) = exp(−Es/kBT )
/∫

dP1dQ1 exp(−H1(P1,Q1)/kBT )

= exp(−Es/kBT )
/∑

n

exp(−En/kBT )

= exp(−Es/kBT )/Z (6.4)

where the normalization factor

Z(T,N, V ) =
∑

n

exp(−En/kBT ) =
∫
dP1dQ1 exp(−H1(P1,Q1)/kBT )

(6.5)
To be pub. Oxford UP, ∼Fall’05 www.physics.cornell.edu/sethna/StatMech/
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is the partition function.3 3To avoid blinding ourselves with in-
tegrals, we will write them as a ‘con-
tinuous sum’:

∫
dP1dQ1 →

∑
n for

the rest of this chapter. This nota-
tion foreshadows quantum mechanics
(chapter 7), where for bound systems
the energy levels are discrete; it also
will be appropriate for lattice systems
like the Ising model (section 8.2), where
we’ve integrated away all the continu-
ous degrees of freedom. No complica-
tions arise from translating the sums
for the equations in this chapter back
into integrals over phase space.

Equation 6.4 is the definition of the canonical ensemble,4 appropriate
for calculating properties of systems which can exchange energy with an
external world with temperature T .

The partition function Z is just the normalization factor that keeps
the total probability summing to one. It may surprise you to discover
that this normalization factor plays a central role in the theory. Indeed,
most quantities of interest can be calculated in two different ways: as an
explicit sum over states (statistical mechanics) or in terms of derivatives
of the partition function (thermodynamics, see section 6.4). Let’s see
how this works by using Z to calculate the mean energy, the specific
heat, and the entropy of a general system.

Internal energy. To calculate the average internal energy of our sys-
tem5 〈E〉, we weight each state by its probability: 5The angle brackets represent canoni-

cal averages.

4A formal method of deriving the canonical ensemble is as a partial trace, remov-
ing the bath degrees of freedom from a microcanonical ensemble. To calculate the
expectation of an operator B that depends only on system coordinates (P1,Q1), we
start by averaging over the energy shell in the entire space, including both the system
coordinates and the bath coordinates (P2,Q2):

Ω(E) =
1

δE

∫
E<H1+H2<E+δE

dP1dQ1dP2dQ2

=

∫
dE1Ω1(E1)Ω2(E −E1). (6.6)

〈B〉 =
1

Ω(E)δE

∫
E<H1+H2<E+δE

dP1dQ1B(P1,Q1) dP2dQ2

=
1

Ω(E)

∫
dP1dQ1B(P1,Q1)Ω2(E −H1(P1,Q1)). (6.7)

Again, if the heat-bath is large the small variations E1 − 〈E1〉 won’t change its

temperature; 1/T2 = ∂S2
∂E2

being fixed implies
∂Ω2(E−E1)

∂E1
= − 1

kBT
Ω2, and hence

Ω2(E − E1) = Ω2(E − 〈E1〉) exp(−(E1 − 〈E1〉)/kBT ). (6.8)

This gives us

Ω(E) =

∫
dE1Ω1(E1)Ω2(E − 〈E1〉) exp(−(E1 − 〈E1〉)/kBT )

= Ω2(E − 〈E1〉)e〈E1〉/kBT

∫
dE1Ω1(E1)e−E1/kBT

= Ω2(E) exp(−〈E1〉/kBT )Z (6.9)

and

〈B〉 =

∫
dP1 dQ1B(P1,Q1)Ω2(E − 〈E1〉)e−(H1(P1,Q1)−〈E1〉)/kBT

Ω2(E − 〈E1〉)e〈E1〉/kBTZ

=
1

Z

∫
dP1dQ1B(P1,Q1) exp(−H1(P1,Q1)/kBT ). (6.10)

By explicitly doing the integrals over P2 and Q2, we have turned a microcanonical
calculation into the canonical ensemble (equation 6.4). Our calculation of the mo-
mentum distribution ρ(p1) in section 3.2.2 was precisely of this form: we integrated
out all the other degrees of freedom, and were left with a Boltzmann distribution for
the x-momentum of particle number one. This process is called integrating out the
degrees of freedom for the heat bath, and is the general way of creating free energies.

c©James P. Sethna, April 19, 2005 Entropy, Order Parameters, and Complexity
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〈E〉 =
∑

n

EnPn =
∑

nEne
−βEn

Z
= −∂Z/∂β

Z

= −∂ logZ/∂β (6.11)

This can be seen as a statistical mechanics derivation (involving sums
over the ensemble) of a thermodynamics relation E = −∂ log Z

∂β .

Specific Heat. Let cv be the specific heat per particle at constant vol-
ume. (The specific heat is the energy needed to increase the temperature
by one unit, ∂〈E〉

∂T .) Using equation 6.11, we get the thermodynamics for-
mula for cv from the second derivative of Z:

Ncv =
∂〈E〉
∂T

=
∂〈E〉
∂β

dβ

dT
= − 1

kBT 2

∂〈E〉
∂β

=
1

kBT 2

∂2 logZ
∂β2

. (6.12)

We can expand the penultimate form of this formula into a statistical
mechanics calculation, finding the intruiguing result

Ncv = − 1
kBT 2

∂〈E〉
∂β

= − 1
kBT 2

∂

∂β

∑
Ene

−βEn∑
e−βEn

= − 1
kBT 2

[(∑
Ene

−βEn
)2

Z2
+
∑

−En
2e−βEn

Z

]
=

1
kBT 2

[
〈E2〉 − 〈E〉2

]
= σE

2/kBT
2, (6.13)

where σE is the root-mean-square fluctuation6 in the energy of our6We’ve used the standard trick 〈(E −
〈E〉)2〉 = 〈E2〉 − 2〈E〈E〉〉 + 〈E〉2 =
〈E2〉−〈E〉2, since 〈E〉 is just a constant
that can be pulled out of the ensemble
average.

system at constant temperature. Equation 6.13 is a remarkable result:
it is a relationship between a macroscopic susceptibility (cv, the energy
changes when the temperature is perturbed) to a microscopic fluctuation
(σE , the energy fluctuation in thermal equilibrium). In general, fluctu-
ations can be related to responses in this fashion. These relations are
extremely useful, for example, in extracting susceptibilities from numer-
ical simulations. No need to make small changes and try to measure the
response: just watch it fluctuate in equilibrium (exercises 3.7 and 8.1).

Are results calculated using the canonical ensemble the same as those
computed from our original microcanonical ensemble? Equation 6.13
tells us that the energy fluctuations are tiny (as we earlier argued in
the microcanonical ensemble (section 3.3). The energy fluctuations per
particle

σE/N =
√
〈E2〉 − 〈E〉2/N =

√
(kBT )(cvT )/

√
N. (6.14)

is 1/
√
N times the geometric mean of two microscopic energies: kBT

(two-thirds the kinetic energy per particle) and cvT (the energy per
particle to heat from absolute zero, if the specific heat were tempera-
ture independent). Hence, for macroscopic systems the behavior in most
regards is the same whether the system is completely isolated (micro-
canonical) or in thermal contact with the rest of the world (canonical).
To be pub. Oxford UP, ∼Fall’05 www.physics.cornell.edu/sethna/StatMech/
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Entropy. Using the general statistical mechanical formula7 for the en-
tropy 5.20, we find

S = −kB

∑
Pn logPn = −kB

∑ exp(−βEn)
Z

log
(

exp(−βEn)
Z

)
= −kB

∑
exp(−βEn)(−βEn − logZ)

Z

= kBβ〈E〉 + kB logZ
∑

exp(−βEn)
Z

= 〈E〉/T + kB logZ, (6.16)

another statistical mechanics derivation of a thermodynamic relation.
Notice that the formulas for 〈E〉, cv, and S all involve derivatives

of logZ. This motivates us to define a free energy for the canonical
ensemble, called the Helmholtz free energy:

A(T, V,N) = −kBT logZ = 〈E〉 − TS. (6.17)

The entropy is minus the derivative of A with respect to T . Explicitly,

∂A

∂T

∣∣∣∣
N,V

= −∂kBT logZ
∂T

= −kB logZ − kBT
∂ logZ
∂β

∂β

∂T

= −kB logZ − kBT 〈E〉/(kBT
2) = −kB logZ − 〈E〉/T

= −S. (6.18)

Why is it called a free energy? First, kBT gives it the dimensions of an
energy. Second, it is the energy available (free) to do work. A heat engine
drawing energy E = Q1 from a hot bath that must discharge an entropy
S = Q2/T2 into a cold bath can do work W = Q1 − Q2 = E − T2S;
A = E − TS is the energy free to do useful work (section 5.1).

Why is this a natural definition? The total phase-space volume, or
weight, associated with the system and bath consistent with the current
values of V and N is Z = exp(−A(T, V,N)/kBT ). This is in precise
analogy with the Boltzmann weight exp(−H1(P1,Q1)/kBT ), which is
the bath phase-space volume consistent with the current position and
momentum of the system. In general, free energies F (X) will remove all
degrees of freedom except for certain constraints X. The phase-space
volume consistent with the constraints X is exp(−F (X))/kBT ).

7Alternatively, we could use the microcanonical definition of the entropy of the
entire system and equation 6.8 to show

S = kB log

∫
dE1Ω1(E1)Ω2(E −E1)

= kB log

∫
dE1Ω1(E1)Ω2(E − 〈E1〉)e−(E1−〈E1〉)/kBT

= kB log Ω2(E − 〈E1〉) + kB log (exp(〈E1〉/kBT )) + kB log

∫
dE1Ω1(E1) exp(−E1/kBT )

= kB log Ω2(E2) + kBβE1 + kB logZ1

= S2 + E1/T − A1/T

so
S1 = E1/T + kB logZ1 = E1/T − A1/T, (6.15)

avoiding the use of the non-equilibrium entropy to derive the same result.
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6.2 Uncoupled Systems and Canonical En-

sembles

The canonical ensemble is much more convenient for doing calculations,
because for systems in which the Hamiltonian splits into uncoupled com-
ponents, the partition function factors into pieces that can be computed
separately.

E∆ E∆

i
R
j

Bath
L R

E
L

E

Fig. 6.2 Uncoupled systems at-
tached to a common heat bath.
Calculating the properties of two
weakly coupled subsystems is easier in
the canonical ensemble than in the mi-
crocanonical ensemble. This is because
energy in one subsystem can be ex-
changed with the bath, and does not
affect the energy of the other subsys-
tem.

Suppose we have a system with two weakly interacting subsystems L
and R, both connected to a heat bath at β = 1/kBT . The states for the
whole system are pairs of states (sL

i , s
R
j ) from the two subsystems, with

energies EL
i and ER

j respectively. The partition function for the whole
system is

Z =
∑
ij

exp
(
−β(EL

i + ER
j )
)

=
∑
ij

e−βEL
i e−βER

j

=

(∑
i

e−βEL
i

)∑
j

e−βER
j


= ZLZR. (6.19)

Thus in the canonical ensemble of uncoupled systems the partition func-
tion factors. The Helmholtz free energy adds

A = −kBT logZ = −kBT log(ZL · ZR) = AL +AR (6.20)

as does the entropy, average energy, and other extensive properties that
one expects to scale with the size of the system.

This is much simpler than the same calculation would be in the mi-
crocanonical ensemble! In a microcanonical ensemble, each subsystem
would compete with the other for the available total energy. Even though
two subsystems are uncoupled (the energy of one is independent of the
state of the other) the microcanonical ensemble intermingles them in the
calculation. By allowing each to draw energy from a large heat bath, the
canonical ensemble allows uncoupled subsystems to become independent
calculations.

We can now immediately do several important cases of uncoupled
systems.
Ideal Gas. Since the different atoms in an ideal gas are uncoupled
with one another, the partition function for the monatomic ideal gas of
classical distinguishable particles of mass m in a cubical box of volume
V = L3 factors into a product over each degree of freedom α:

Zdist
ideal =

3N∏
α=1

(1/h)
∫ L

0

dqα

∫ ∞

−∞
dpαe

−βp2
α/2mα =

(
L

h

√
2πm
β

)3N

=(L
√

2πmkBT/h2)3N = (L/λ)3N .

Here
λ = h/

√
2πmkBT =

√
2π�2/mkBT (6.21)
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is again the thermal de Broglie wavelength (equation 3.63).
The internal energy in the canonical ensemble is

〈E〉 = −
∂ logZideal

∂β
= − ∂

∂β
log(β− 3N

2 ) = 3N/2β = 3NkBT/2 (6.22)

giving us the equipartition theorem for momentum without our needing
to find volumes of spheres in 3N dimensions (section 3.2.2).

For N indistinguishable particles, we have counted each real config-
uration N ! times for the different permutations of particles, so we must
divide Zdist

ideal by N ! just as we did for the phase space volume Ω in
section 3.5.

Zindist
ideal = (L/λ)3N/N ! (6.23)

This doesn’t change the internal energy, but does change the Helmholtz
free energy

Aindist
ideal = − kBT log

(
(L/λ)3N/N !

)
= −NkBT log(V/λ3) − kBT log(N !)

∼−NkBT log(V/λ3) − kBT (N logN −N)

= −NkBT
(
log(V/Nλ3) + 1

)
=NkBT

(
log(ρλ3) − 1

)
. (6.24)

where ρ = N/V is the average density, and we’ve used Stirling’s formula
log(N !) ∼ N logN −N .

Finally, the entropy of N indistinguishable particles, in the canonical
ensemble, is

S = −∂A
∂T

= −NkB

(
log(ρλ3) − 1

)
−NkBT

∂ logT−3/2

∂T
= NkB

(
5/2 − log(ρλ3)

)
(6.25)

as we derived (with much more effort) using the microcanonical ensemble
(equation 3.62).
Classical Harmonic Oscillator and the Equipartition Theorem.
Electromagnetic radiation, the vibrations of atoms in solids, and the
excitations of many other systems near their equilibria can be approxi-
mately described as a set of uncoupled harmonic oscillator modes.8 In

8For example, at temperatures low compared to the melting point a solid or
molecule with an arbitrary many-body interaction potential V(Q) typically only
makes small excursions about the minimum Q0 of the potential. We expand about
this minimum, giving us

V(Q) ≈ V(Q0) +
∑
α

(Q − Q0)α∂αV +
∑
α,β

1/2(Q −Q0)α(Q − Q0)β∂α∂βV + . . . (6.26)

Since the potential is a minimum at Q0, the gradient of the potential must be zero,
so second term on the right-hand side must vanish. The third term is a big 3N × 3N
quadratic form, which we may diagonalize by converting to normal modes qk. (If
the masses of the atoms are not all the same, one must rescale the components of
Q−Q0 by the square root of the corresponding mass before diagonalizing.) In terms
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the canonical ensemble, the statistical mechanics of these systems thus
decomposes into a calculation for each mode separately.

A harmonic oscillator of mass m and frequency ω has a total energy

H(p, q) = p2/2m+mω2q2/2. (6.29)

The partition function for one such oscillator is

Z =
∫ ∞

−∞
dq

∫ ∞

−∞
dp(1/h)e−β(p2/2m+mω2q2/2) =

1
h

√
2π

βmω2

√
2πm
β

=
1

β�ω
. (6.30)

Hence the Helmholtz free energy for the classical oscillator is

Aω(T ) = −kBT logZ = kBT log(�ω/kBT ), (6.31)

the internal energy is

〈E〉ω(T ) = −∂ logZ
∂β

=
∂

∂β
(log β − log �ω) = 1/β = kBT, (6.32)

and of course cv = ∂〈E〉/∂T = kB . This extends the equipartition the-
orem (section 3.2.2) to configuration space: for systems with quadratic
potential energies the internal energy is 1/2kBT per degree of freedom,
where each harmonic oscillator has two degrees of freedom (p and q).
Classical Kinetic Energies. One will notice both for the ideal gas
and for the harmonic oscillator that each component of the momentum
contributed a factor

√
2πm

β to the partition function. As we promised in
section 3.2.2, this will happen in any classical system where the momenta
are uncoupled to the positions: that is, where the kinetic energy does
not depend on the positions of the particles, and the potential energy is
independent of the momenta. (Not all Hamiltonians have this form. For
example, charged particles in magnetic fields will have terms that couple
momenta and positions.) Thus the partition function for any classical
interacting system of non-magnetic particles will be some configurational
piece times

∏
α

√
2πmα

β . This implies that the velocity distribution is
always Maxwellian (equation 1.2) independent of what configuration the
positions have.99This may be counterintuitive: an

atom crossing a barrier has the same
velocity distribution as it had in the
bottom of the well (exercise 6.2). Such
an atom does need to borrow some en-
ergy from the rest of the system, but
in equilibrium it borrows equally from
all modes, and so the crossing atom’s
velocity does not change in the limit of
large system size.

of these normal modes, the Hamiltonian is a set of uncoupled harmonic oscillators

H =
∑

k

p2k/2m +mω2
kq

2
k/2. (6.27)

At high enough temperatures that quantum mechanics can be ignored, we can then
use equation 6.30 to find the total partition function for our harmonic system

Z =
∏
k

Zk =
∏
k

(1/β�ωk). (6.28)

(In section 7.2 we’ll do the quantum harmonic oscillator, which often gives an accurate
theory for atomic vibrations at all temperatures below the melting point.)
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6.3 Grand Canonical Ensemble

The grand canonical ensemble allows one to decouple the calculations
of systems which can exchange both energy and particles with their
environment.

Consider our system in a state s with energy Es and number Ns,
together with a bath with energy E2 = E−Es and number N2 = N−Ns

(figure 3.4). By analogy with equation 6.3 the probability density that
the system will be in state s is proportional to

ρ(s) ∝ Ω2(E − Es, N −Ns) (6.33)
= exp ((S2(E − Es, N −Ns)) /kB)

∝ exp
((

−Es
∂S2

∂E
−Ns

∂S2

∂N

)
/kB

)
= exp (−Es/kBT +Nsµ/kBT )
= exp (−(Es − µNs)/kBT ) ,

where
µ = −T∂S/∂N (6.34)

is the chemical potential. Notice the factor of −T : this converts the
entropy change into an energy change, so the chemical potential is the
energy gain per particle for accepting particles from the bath. At low
temperatures the system will fill with particles until the energy for the
next particle reaches µ.

1 1   (T,V,   )

∆E

N

1 1

∆

µ

BathSystem

µΦ T,

Fig. 6.3 The grand canonical en-
semble describes equilibrium systems
which can exchange energy and par-
ticles with a heat bath. The proba-
bility of a state s of the system with
Ns particles and energy Es is ρ(s) =

exp
(
−Es+µNs

kBT

) /
Z. The thermody-

namics of the canonical ensemble is
embodied in the grand free energy
Φ(T, V, µ).

Again, just as for the canonical ensemble, there is a normalization
factor called the grand partition function

Ξ(T, V, µ) =
∑

n

e−(En−µNn)/kBT ; (6.35)

the probability density of state si is ρ(si) = e−(Ei−µNi)/kBT /Ξ. There
is a grand free energy

Φ(T, V, µ) = −kBT log(Ξ) = 〈E〉 − TS − µN (6.36)

analogous to the Helmholtz free energy A(T, V,N). In exercise 6.4 you
shall derive the Euler relation E = TS−PV +µN , and hence show that
Φ(T, µ, V ) = −PV .

Partial Traces.10 Let us note in passing that we can write the grand
canonical partition function as a sum over canonical partition functions.
Let us separate the sum over states n of our system into a double sum –
an inner restricted sum11 over states of fixed number of particles M in 11This restricted sum is said to inte-

grate over the internal degrees of free-
dom �M .10The classical mechanics integrals over phase space become traces over states in

Hilbert space in quantum mechanics. Removing some of the degrees of freedom in
quantum mechanics is done by a partial trace over the states. The name “partial
trace” for removing some of the degrees of freedom has become standard also in
classical statistical physics.
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the system and an outer sum over M . Let s�M ,M have energy E�M ,M ,
so

Ξ(T, V, µ) =
∑
M

∑
�M

e−(E�M ,M−µM)/kBT

=
∑
M

(∑
�M

e−E�M ,M /kBT

)
eµM/kBT

=
∑
M

Z(T, V,M)eµM/kBT

=
∑
M

e−(A(T,V,M)−µM)/kBT . (6.37)

Again, notice how the Helmholtz free energy in the last equation plays
exactly the same role as the energy plays in equation 6.35: exp(−En/kBT )
is the probability of the system being in a particular system state n, while
exp(−A(T, V,M)/kBT ) is the probability of the system having any state
with M particles.

Using the grand canonical ensemble. The grand canonical en-
semble is particularly useful for non-interacting quantum systems (chap-
ter 7). There each energy eigenstate can be thought of as a separate sub-
system, independent of the others except for the competition between
eigenstates for the particle number. A closely related ensemble emerges
in chemical reactions (section 6.6).

For now, to illustrate how to use the grand canonical ensemble, let’s
compute the number fluctuations. The expected number of particles for
a general system is

〈N〉 =
∑

mNme
−(Em−µNm)/kBT∑

m e−(Em−µNm)/kBT
=
kBT

Ξ
∂Ξ/∂µ = −∂Φ/∂µ. (6.38)

Just as the fluctuations in the energy were related to the specific heat
(the rate of change of energy with temperature, section 6.1), the number
fluctuations are related to the rate of change of particle number with
chemical potential.

∂〈N〉
∂µ

=
∂

∂µ

∑
mNme

−(Em−µNm)/kBT

Ξ

= − 1
Ξ2

(∑
mNme

−(Em−µNm)/kBT
)2

kBT

+
1

kBT

∑
mNm

2e−(Em−µNm)/kBT

Ξ

=
〈N2〉 − 〈N〉2

kBT
=

〈(N − 〈N〉)2〉
kBT

(6.39)

6.4 What is Thermodynamics?

Thermodynamics and statistical mechanics historically were closely tied,
and often they are taught together. What is thermodynamics?
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(0) Thermodynamics: Physics that deals with the mechanical mo-
tions or relations of heat. (Webster’s)

(1) Thermodynamics is the theory that emerges from statisti-
cal mechanics in the limit of large systems. Statistical mechanics
originated as a derivation of thermodynamics from an atomistic micro-
scopic theory (somewhat before the existence of atoms was universally
accepted). Thermodynamics can be viewed as statistical mechanics in
the limit12 as the number of particles N → ∞. When we calculate 12The limit N → ∞ is thus usually

called the thermodynamic limit, even
for systems like second–order phase
transitions where the fluctuations re-
main important and thermodynamics
per se is not applicable.

the relative fluctuations in properties like the energy or the pressure
and show that they vanish like 1/

√
N , we are providing a microscopic

justification for thermodynamics. Thermodynamics is the statistical me-
chanics of near-equilibrium systems when one ignores the fluctuations.

In this text, we will summarize many of the important methods and
results of traditional thermodynamics in the exercises (3.6, 6.4, 6.6, 6.7,
and 6.8). Our discussions of order parameters (chapter 9) will be provid-
ing thermodynamic laws, broadly speaking, for a wide variety of states
of matter.

Statistical mechanics has a broader purview than thermodynamics.
Particularly in applications to other fields like information theory, dy-
namical systems, and complexity theory, statistical mechanics describes
many systems where the emergent behavior does not have a recognizable
relation to thermodynamics.

(2) Thermodynamics is a self-contained theory. Thermodynam-
ics can be developed as an axiomatic system. It rests on the so-called
three laws of thermodynamics, which for logical completeness must be
supplemented by a ‘zeroth’ law. Informally, they are:

(0) Transitivity of equilibria: If two systems are in equilibrium with a
third, they are in equilibrium with one another.

(1) Conservation of energy: The total energy of an isolated system,
including the heat energy, is constant.

(2) Entropy always increases: An isolated system may undergo irre-
versible processes, whose effects can be measured by a state func-
tion called the entropy.

(3) Entropy goes to zero at absolute zero: The entropy per particle of
any two large equilibrium systems will approach the same value13 13This value is set to zero by dividing

Ω(E) by h3N , as in section 3.5.as the temperature approaches absolute zero.

The zeroth law (transitivity of equilibria) becomes the basis for defin-
ing the temperature. Our statistical mechanics derivation of the temper-
ature in section 3.3 provides the microscopic justification of the zeroth
law: systems that can only exchange heat energy are in equilibrium with
one another when they have a common value of 1

T = ∂S
∂E

∣∣
V,N

.
The first law (conservation of energy) is now a fundamental principle

of physics. Thermodynamics automatically inherits it from the micro-
scopic theory. Historically, the thermodynamic understanding of how
work transforms into heat was important in establishing that energy is
conserved. Careful arguments about the energy transfer due to heat flow
and mechanical work14 are central to thermodynamics. 14As we saw in our analysis of the

Carnot cycle in section 5.1.c©James P. Sethna, April 19, 2005 Entropy, Order Parameters, and Complexity
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The second law (entropy always increases) is the heart of thermo-
dynamics.15 It is responsible for everything from forbidding perpetual15In The Two Cultures, C. P. Snow

suggests being able to describe the Sec-
ond Law of Thermodynamics is to sci-
ence as having read a work of Shake-
speare is to the arts. (Some in non-
English speaking cultures may wish to
object.) Remembering which law is
which number is not of great import,
but the concept of entropy and its in-
evitable increase is indeed central.

motion machines to predicting the heat death of the universe (exer-
cise 5.1). Entropy and its increase is not a part of our microscopic laws
of nature, but is the foundation – an axiom – for our macroscopic the-
ory of thermodynamics. The subtleties of how entropy and its growth
emerges out of statistical mechanics was a theme of chapter 5 and is the
focus of several exercises (5.4, 5.5, 7.2, and 8.8).

The third law (entropy goes to zero at T = 0, also known as Nernst’s
theorem), basically reflects the fact that quantum systems at absolute
zero are in a ground state. Since the number of ground states of a
quantum system typically is small16 and the number of particles is16Some systems may have broken sym-

metry states, or multiple degenerate
ground states, but the number of such
states is typically independent of the
size of the system, or at least does not
grow exponentially with the number of
particles, so the entropy per particle
goes to zero.

large, systems at absolute zero have zero entropy per particle.17

17Systems like glasses that have not
reached complete equilibrium can have
non-zero residual entropy as their ef-
fective temperature goes to zero (sec-
tion 5.2.2, exercise 5.8).

The laws of thermodynamics have been written in many equivalent
ways.18 Carathéodory, for example, states the second law as There are
states of a system, differing infinitesimally from a given state, which
are unattainable from that state by any quasi-static adiabatic19 pro-

19Carathéodory is using the term adi-
abatic just to exclude heat flow: we use
it to also imply infinitely slow (quasi-
static) transitions.

cess. The axiomatic form of the subject has attracted the attention of
mathematicians.

In this text, we will not attempt to derive properties axiomatically
or otherwise from the laws of thermodynamics: we focus on statistical
mechanics.

(3) Thermodynamics is a zoo of partial derivatives, trans-
formations, and relations. More than any other field of science,
the thermodynamics literature seems filled with partial derivatives and
tricky relations between varieties of physical quantities.

This is in part because there are several alternative free energies to
choose between. For studying molecular systems one has not only the en-
tropy (or the internal energy), the Helmholtz free energy, and the grand
free energy, but also the Gibbs free energy, the enthalpy, and a number
of others. There are corresponding free energies for studying magnetic
systems, where instead of particles one studies the local magnetization
or spin. There appears to be little consensus between textbooks on the
symbols or even the names of these various free energies.

How do we transform from one free energy to another? Let’s write
out the Helmholtz free energy in more detail:

A(T, V,N) = E − TS(E, V,N). (6.40)

The terms on the right-hand side of the equation involve four variables:
T , V , N , and E. Why is A only a function of three? Consider the
derivative of A = Es − TbSs(Es) with respect to the energy Es of the
system, at fixed bath temperature Tb:

∂A/∂Es = 1 − Tb∂Ss/∂Es = 1 − Tb/Ts. (6.41)

18Occasionally you hear them stated (1) You can’t win, (2) You can’t break even,
and (3) You can’t get out of the game. The connection between (3) and the third
law is unclear.
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Since A represents the system in equilibrium with the bath, the tem-
perature of the system and the bath must agree, and hence ∂A

∂E = 0: A
is independent of E. Physically, energy is transferred until A is a min-
imum; E is no longer an independent variable. This is an example of
a Legendre transformation (see exercise 6.8). Legendre transformations
allow one to change from one type of energy or free energy to another,
by changing from one set of independent variables (here E, V , and N)
to another (T , V , and N).

Thermodynamics seems cluttered in part also because it is so pow-
erful. Almost any macroscopic property of interest can be found by
taking derivatives of the free energy. First derivatives of the entropy,
energy, or free energy give properties like the temperature and pressure.
Thermodynamics introduces a condensed notation to help organize these
derivatives. For example,20

dE = T dS − P dV + µdN. (6.42)

basically asserts that E(S, V,N) satisfies equations 3.29, 3.40, and 3.42:

∂E

∂S

∣∣∣∣
N,V

= T,
∂E

∂V

∣∣∣∣
N,S

= −P, and
∂E

∂N

∣∣∣∣
V,S

= µ. (6.43)

The corresponding equation for the Helmholtz free energy A(T, V,N) is

dA = d(E − TS) = dE − T dS − S dT

= −S dT − P dV + µdN. (6.44)

which satisfies
∂A

∂T

∣∣∣∣
N,V

= −S, ∂A

∂V

∣∣∣∣
N,T

= −P, and
∂A

∂N

∣∣∣∣
V,T

= µ. (6.45)

1

E∆

∆V

1 11
G (T ,P ,N )

BathSystem

T, P

Fig. 6.4 The Gibbs ensemble
G(T, P,N) embodies the thermody-
namics of systems that can exchange
heat and volume with a bath. The en-
thalpy H(E,P,N) is used for systems
that only exchange volume.

Similarly, systems at constant temperature and pressure (for example,
most biological and chemical systems) minimize the Gibbs free energy
(figure 6.4)

G(T, P,N) = E − TS + PV dG = −S dT + V dP + µdN. (6.46)

Systems at constant energy and pressure minimize the enthalpy

H(E,P,N) = E + PV dH = T dS + V dP + µdN, (6.47)

and, as noted in section 6.3, systems at constant temperature, volume,
and chemical potential are described by the grand free energy

Φ(T, V, µ) = E − TS − µN dΦ = −S dT − P dV −N dµ. (6.48)

20These formulas have precise meanings in differential geometry, where the terms
dX are differential forms. Thermodynamics distinguishes between exact differentials
like dS and inexact differentials like work and heat which are not derivatives of
a state function, but path-dependent quantities. Mathematicians have closed and
exact differential forms, which (in a simply connected space) both correspond to
the exact differentials in thermodynamics. The relation between closed and exact
differential forms is the basis for cohomology theory. . . These elegant topics are not
central, though, to statistical mechanics and we will not pursue them here.
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There are also many tricky, unintuitive relations in thermodynam-
ics. The first derivatives must agree around a tiny triangle, yielding a
tricky relation between their products (equation 3.37). Second deriva-
tives of the free energy give properties like the specific heat, the bulk
modulus, and the magnetic susceptibility. The second derivatives must
be symmetric ( ∂2

∂x∂y = ∂2

∂y∂x ), giving tricky Maxwell relations between
what naively seem different susceptibilities (exercise 3.6). There are
further tricks involved with taking derivatives in terms of ‘unnatural
variables’,21 and there are many inequalities that can be derived from21For example, with work you can take

the derivative of S(E,V,N) with re-
spect to P at constant T without re-
expressing it in the variables P and T .

stability criteria.
Of course, statistical mechanics is not really different from thermo-

dynamics in having a zoo of complex relationships. Indeed, statistical
mechanics has its own collection of important relations that connect
equilibrium fluctuations to transport and response, like the Einstein re-
lation connecting fluctuations to diffusive transport in section 2.3 and
the fluctuation-dissipation theorem we will derive in chapter 10. In sta-
tistical mecahnics, though, the focus of attention is usually not on the
zoo of general relations, but on calculating the properties of specific
systems.

6.5 Mechanics: Friction and Fluctuations
m

mg

h

h*

h* h 0

K(h−h )0

Fig. 6.5 A mass on a spring in equilib-
rium sits very close to the minimum of
the energy.

A mass M hangs on the end of a spring with spring constant K and
unstretched length h0, subject to a gravitational field of strength g.
How far does the spring stretch? We have all solved innumerable statics
exercises of this sort in first-year mechanics courses. The spring stretches
to a length h∗ where −mg = K(h∗ − h0). At h∗ the forces balance and
the energy is minimized.

What principle of physics is this? In physics, energy is conserved, not
minimized! Shouldn’t we be concluding that the mass will oscillate with
a constant amplitude forever?

We have now come to the point in your physics education where we
can finally explain why the mass appears to minimize energy. Here our
system (the mass and spring)22 is coupled to a very large number N of22We think of the subsystem as being

just the macroscopic configuration of
mass and spring, and the atoms com-
prising them as being part of the envi-
ronment, the rest of the system.

internal atomic or molecular degrees of freedom. The oscillation of the
mass is coupled to these other degrees of freedom (friction) and will share
its energy with them. The vibrations of the atoms is heat: the energy of
the pendulum is dissipated by friction into heat. Indeed, since the spring
potential energy is quadratic we can use the equipartition theorem: in
equilibrium 1/2K(h − h∗)2 = 1/2kBT . For a spring with K = 10N/m at
room temperature (kBT = 4 × 10−21J),

√
〈(h− h∗)2〉 =

√
kBT/K =

2× 10−11m = 0.2Å. The energy is indeed minimized up to tiny thermal
fluctuations. We’ll return to this question in exercise 10.1.

How do we connect this statistical mechanics picture to the friction
coefficient of the damped harmonic oscillator? A careful statistical me-
chanics treatment (exercise 10.5) gives a law of motion for the mass of
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the form
ḧ = −K

m
(h− h�) − γḣ+ ξ(t) (6.49)

where γ represents the friction or dissipation, and ξ(t) is a random,
time-dependent noise force coming from the internal vibrational degrees
of freedom of the system. This is an example of a Langevin equation. The
strength of the noise ξ depends on the dissipation γ and the temperature
T so as to guarantee a Boltzmann distribution as the steady state. In
general both ξ and γ can be frequency dependent: we’ll study these
issues in detail in chapter 10.

6.6 Chemical Equilibrium and Reaction Rates

In studying chemical reactions, one is often interested in the number
of molecules of various types as a function of time, and not interested
in observing properties depending on the positions or momenta of the
molecules. In this section we develop a free energy to derive the laws
of chemical equilibrium, and in particular the law of mass-action. We
will then discuss more carefully the subtle question of exactly when
the chemical reactions takes place, and motivate the Arrhenius law of
thermally activated reaction rates.

Fig. 6.6 Ammonia collision. The
simple motivating argument for the law
of mass action views the reaction as a
simultaneous collision of all the reac-
tants.

Chemical reactions change one type of molecule into another. For
example, ammonia (NH3) can be produced from hydrogen and nitrogen
through the reaction

3H2 + N2 � 2NH3. (6.50)

All chemical reactions are in principle reversible, although the backward
reaction rate may be very different from the forward rate. In chemical
equilibrium at fixed volume,23 the concentrations [X] of the various 23Experimentally it is more common to

work at constant pressure, which makes
things more complicated but conceptu-
ally no more interesting.

molecules X (in number per unit volume, say), satisfies the law of mass-
action24

24More generally, we can write a reac-
tion as

∑
i νiAi = 0. Here the νi are

the stoichiometries, giving the number
of molecules of type Ai changed dur-
ing the reaction (with νi < 0 for reac-
tants and νi > 0 for products). The law
of mass-action in general states that∏

i[Ai]νi = Keq .

[NH3]2

[N2][H2]3
= Keq(T ). (6.51)

The law of mass action can be motivated by imagining a chemical
reaction arising from a simultaneous collision of all the reactants. The
probability of one nitrogen and three hydrogen molecules colliding in
a small reaction region is proportional to the nitrogen concentration
and to the cube of the hydrogen concentration, so the forward reac-
tion will occur with some rate per unit volume KF [N2][H2]3; similarly
the backward reaction will occur with a rate per unit volume KB[NH3]2

proportional to the probability that two NH3 molecules will collide. Bal-
ancing these two rates to get a steady state gives us equation 6.51 with
Keq = KF /KB.

This motivating argument becomes unconvincing when one realizes
that the actual reaction may proceed through several short-lived inter-
mediate states – at no point is a multiple collision required.25 How can
we derive this law soundly from statistical mechanics?

25The Haber-Bosch process used industrially for producing ammonia involves sev-
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Since we are uninterested in the positions and momenta, at fixed vol-
ume and temperature our system is described by a Helmholtz free energy
A(T, V,NH2 , NN2 , NNH3). When the chemical reaction takes place, it
changes the number of the three molecules, and changes the free energy
of the system:

∆A =
∂A

∂NH2

∆NH2 +
∂A

∂NN2

∆NN2 +
∂A

∂NNH3

∆NNH3

= −3µH2 − µN2 + 2µNH3 . (6.52)

where µX = ∂A
∂X is the chemical potential of molecule X . The reaction

will proceed until the free energy is at a minimum,26 so26More precisely, the equilibrium
probability that a state will be
found with ∆NN2 nitrogens away
from this equilibrium is suppressed
by a factor exp((−3µH2 − µN2 +
2µNH3 )∆NN2/kBT ).

−3µH2 − µN2 + 2µNH3 = 0 (6.53)

in equilibrium. In complete generality, we may deduce that chemical re-
actions proceed in the direction which reduces the net chemical potential
of the system.

To derive the law of mass-action, we must now make an assumption:
that the molecules are uncorrelated in space.27 This makes each molec-27This assumption is often valid also

for ions and atoms in solution: if the
ion-ion interactions can be neglected
and the solute (water) is not impor-
tant, the ions are well described as ideal
gases, with corrections due to integrat-
ing out the solvent degrees of freedom.

ular species into a separate ideal gas. The Helmholtz free energy of the
three gases are of the form

A(N,V, T ) = NkBT
[
log((N/V )λ3) − 1

]
+N∆ (6.54)

where λ = h/
√

2πmkBT is the thermal deBroglie wavelength. The first
two terms give the contribution to the partition function from the posi-
tions and momenta of the molecules (equation 6.24); the last term N∆
comes from the internal free energy of the molecules.28 So, the chemical28If all the molecules remain in their

ground states, ∆ is just given by the
molecular ground state energy.

potential

µ(N,V, T ) =
∂A

∂N
= kBT

[
log((N/V )λ3) − 1

]
+NkBT (1/N) + ∆

= kBT log((N/V )λ3) + ∆
= kBT log(N/V ) + c+ ∆ (6.55)

where the constant c = kBT log(λ3) is temperature and mass dependent,
but independent of density. Using equation 6.55 in equation 6.53, di-
viding by kBT , writing concentrations [X ] = NX/V , and pulling terms
independent of concentrations to the right, we find the law of mass ac-
tion:

−3 log[H2] − log[N2] + 2 log[NH3] = log(Keq)

=⇒ [NH3]2

[H2]3[N2]
= Keq. (6.56)

We also find that the equilibrium rate constant depends exponentially
on the net internal free energy difference29 ∆T = 3∆H2 +∆N2 − 2∆NH3

29For the ammonia reaction, ∆T =
92.4kJ/mole.

eral intermediate states. The the nitrogen and hydrogen molecules adsorb and disas-
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between reactants and products:

Keq ≈ K0 exp(−∆T /kBT ) (6.57)

and the prefactor

K0 =
λ9

H2
λ3

N2

λ6
NH3

=
h6m3

NH3

8k3
Bπ

3T 3m
9/2
H2
m

3/2
N2

∝ T−3. (6.58)

depends weakly on the temperature. The factor e−∆T /kBT represents the
Boltzmann factor favoring a final state with molecular free energy ∆T

lower than the initial state, and K0 is a much weaker factor representing
the larger momentum–space entropy for the four initial molecules versus
the two final molecules.

How do we define, during a messy collision, which atoms belong to
which molecules? Exactly when during the trajectory do we say that
the reaction has occurred? An M -atom chemical reaction (classically) is
a trajectory in a 3M dimensional configuration space. It is traditional
in chemistry to pick out one “reaction coordinate” X , and plot the en-
ergy (minimized with respect to the other 3M−1 coordinates) versus
X . Figure 6.7 shows this energy plot. 30 Notice the energy barrier B
separating the reactants from the products: the atomic configuration at
the top of the barrier is called the transition state. Clearly atoms to the
left of the barrier peak are reactants, and atoms to the right are prod-
ucts. This barrier, in 3M -dimensional configuration space, is actually
a saddlepoint. Dividing the reactants from the products demands the
identification of a 3M−1-dimensional transition state dividing surface.
Our free energyA(T, V,NH2 , NN2 , NNH3) is properly a partial trace, with
all configurations to the left of the transition state B contributing to the
free energy of the reactants and all configurations to the left of B con-
tributing as products. Position X

0
X

B

E
ne

rg
y

B

X

Fig. 6.7 Barrier Crossing Poten-
tial. Energy E as a function of some
reaction coordinate X for a chemical re-
action. The dots schematically repre-
sent how many atoms are at each po-
sition. (The “heights” of the dots are
made up to suggest that they are con-
fined in the well.) The reactants (left)
are separated from the products (right)
by an energy barrier of height B. One
can estimate the rate of the reaction
by calculating the number of reactants
crossing the top of the barrier per unit
time.

How fast does our chemical reaction proceed, if we start out of equilib-
rium with extra reactants? Within the mass-action approximation that
our molecules are not correlated in position, surely the forward reac-
tion rate KF [H2]3[N2] can’t depend on the concentration of the product
[NH3]. If our reactions occur slowly enough so that the molecules remain
in equilibrium at the current concentrations, we can estimate the non-
equilibrium reaction rate by studying the equilibrium transitions from
reactant to product at the same reactant concentration.

sociating into atoms on an iron substrate, the nitrogen atom picks up one hydrogen
atom at a time, and finally the NH3 molecule desorbs into the vapor. The iron acts
as a catalyst. A catalyst, (or enzyme, for catalytic biological proteins) lowers the
energy barrier separating reactants from products, speeding up the reaction rates
without changing the equilibrium concentrations.

30 The picture 6.7 is not completely appropriate for reactions, since in a collision the
reactants and products come and go from infinity, not from the bottom of potential
wells. The figure is applicable and less artificial for many other problems. For
diffusion in crystals, replacing the continuous motions with discrete jumps by lattice
vectors leads to lattice models for alloys, (section 8.2). For systems with double–well
bistable atomic potentials (like glasses (section 5.2.2) and molecules (exercises 10.2
and 10.3)) this partial trace leaves us with a two-state system.
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The reaction rate cannot be larger than the total number of atoms
in equilibrium crossing past the energy barrier from reactant to prod-
uct. It can be smaller if trajectories which do cross the barrier often
immediately re-cross backward before equilibrating on the other side.3131This method of calculating rates

is called transition state theory; the
transition state is the saddlepoint be-
tween the reactants and the products.
Recrossing is a dynamical correction
to transition state theory: see refer-
ence [44].

Such re-crossings are minimized by choosing the transition state divid-
ing surface properly.32 The density of particles at the top of the barrier

32At low temperatures, it is mainly
important that this surface be per-
pendicular to the unstable ‘downward’
eigendirection of the Hessian for the po-
tential energy at the transition state.

is smaller than the density at the bottom of the well by a Boltzmann
factor of exp(−B/kBT ). The rate of the reaction will therefore be of
the thermally activated, or Arrhenius form

Γ = Γ0 exp(−B/kBT ) (6.59)

with some prefactor Γ0. By carefully calculating the population near
the bottom of the well and the population and velocities near the top of
the barrier, one can derive a formula for Γ0 (see exercise 6.2).

This Arrhenius law for thermally activated motion governs not only
chemical reaction rates, but also diffusion constants and more macro-
scopic phenomena like nucleation rates (section 11.2).3333There are basically three ways in

which slow processes arise in physics.
(1) Large systems can respond slowly
to external changes because communi-
cation from one end of the system to the
other is sluggish: examples are the slow
decay at long wavelengths in the diffu-
sion equation (section 2.2) and Gold-
stone modes (section 9.3). (2) Sys-
tems like radioactive nuclei can respond
slowly – decaying with lifetimes of bil-
lions of years – because of the slow rate
of quantum tunneling through barri-
ers. (3) Systems can be slow because
they must thermally activate over bar-
riers (with the Arrhenius rate of equa-
tion 6.59).

6.7 Free Energy Density for the Ideal Gas

In section 2.2 we studied the dynamics of spatially varying densities
of particles (or probability) using the diffusion equation. How is this
connected with free energies and ensembles? Broadly speaking, inhomo-
geneous systems out of equilibrium can also be described by statistical
mechanics, if the gradients in space and time are small enough that the
system is close to a local equilibrium. We can then represent the local
state of the system by order parameter fields, one field for each prop-
erty (density, temperature, magnetization) needed to characterize the
state of a uniform, macroscopic body. We can describe a spatially vary-
ing, inhomogeneous systems that is nearly in equilibrium using a free
energy density, typically depending on the order parameter fields and
their gradients.

We’ll be discussing order parameter fields and free energy densities
for a wide variety of complex systems in chapter 9. There we will use
symmetries and gradient expansions to derive the form of the free energy
density, because it will be too complex to compute directly. In this sec-
tion, we will directly derive the free energy density for an inhomogeneous
ideal gas, to give a tangible example of the general case. We will also
use the free energy density of the ideal gas when we study correlation
functions in section 10.3.

Again, the Helmholtz free energy of an ideal gas is nicely written
(equation 6.24 in terms of the density ρ = N/V and the thermal de-
Broglie wavelength 3.63 λ:

A(N,V, T ) = NkBT
[
log(ρλ3) − 1

]
, (6.60)

Hence the free energy density for nj = ρ(xj)∆V atoms in a small volume
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∆V is

F ideal(ρ(xj), T ) =
A(nj ,∆V, T )

∆V
= ρ(xj)kBT

[
log(ρ(xj)λ3) − 1

]
,

(6.61)

Fig. 6.8 Density fluctuations in
space. If nj is the number of points in
a box of size ∆V at position xj , then
ρ(xj ) = nj/∆V .

Fig. 6.9 Coarse-grained density in
space. The density field ρ(x) repre-
sents all configurations of points Q con-
sistent with the average. Its free energy
density F ideal(ρ(x)) contains contribu-
tions from all microstates (P,Q) with
the correct number of particles per box.
The probability of finding this particu-
lar density is proportional to the inte-
gral of all ways Q that the particles in
figure 6.8 can be arranged to give this
density.

The probability density for a given particle density ρ(x) is

P{ρ} = e−β
∫

dV F ideal(ρ(x))/Z. (6.62)

As usual, the free energy F{ρ} =
∫
F(ρ(x))dx acts just like the energy

in the Boltzmann distribution. We’ve integrated out the microscopic
degrees of freedom (positions and velocities of the individual particles)
and replaced them with a coarse-grained field ρ(x).

The free energy density of equation 6.61 can be used to determine
any equilibrium property of the system that can be written in terms of
the density ρ(x). In chapter 10, for example, we will use it to calculate
correlation functions 〈ρ(x)ρ(x′)〉, and will discuss their relationship with
susceptibilities and dissipation.

The free energy density also provides a framework for discussing the
evolution laws for nonuniform densities. A system prepared with some
nonuniform density will evolve in time ρ(x, t); if in each small volume
∆V the system is close to equilibrium, then one may expect that its
time evolution can be described by equilibrium statistical mechanics
even though it is not globally in equilibrium. A non-uniform density will
have a force which pushes it towards uniformity: the total free energy
will decrease when particles flow from regions of high particle density to
low density. We can use our free energy density to calculate this force,
and then use the force to derive laws (depending on the system) for the
time evolution.

The chemical potential for a uniform system is µ = ∂A
∂N = ∂A/V

∂N/V = ∂F
∂ρ ;

the change in free energy for a change in the average density ρ. For a
non-uniform system, the local chemical potential at a point x is

µ(x) =
δF
δρ

(6.63)

the variational derivative of the free energy density with respect to ρ.
Because our ideal gas free energy has no terms involving gradients of ρ,
the variational derivative δF

δρ equals the partial derivative ∂F
∂ρ :

µ(x) =
δF ideal

δρ
=

δ

δρ

(
ρkBT

[
log(ρλ3) − 1

])
= kBT

[
log(ρλ3) − 1

]
+ ρkBT/ρ

= kBT log(ρλ3). (6.64)

The chemical potential is like a number pressure for particles: a particle
can lower the free energy by moving from regions of high chemical po-
tential to low chemical potential. The gradient of the chemical potential
−∂µ

∂x is thus a pressure gradient, effectively the statistical mechanical
force on an particle.
c©James P. Sethna, April 19, 2005 Entropy, Order Parameters, and Complexity



106 Free Energies

How will the particle density ρ evolve in response to this force µ(x)?
This depends upon the problem. If our density was the density of the
entire gas, the atoms would accelerate under the force – leading to sound
waves.34 There momentum is conserved as well as particle density. If34In that case, we’d need to add the

local velocity field into our description
of the local environment.

our particles could be created and destroyed, the density evolution would
include a term ∂ρ/∂t = −ηµ not involving a current. In systems that
conserve (or nearly conserve) energy, the evolution will depend on Hamil-
ton’s equations of motion for the free energy density: in magnets, the
magnetization responds to an external force by precessing; in superflu-
ids, gradients in the chemical potential are associated with winding and
unwinding the phase of the order parameter field (vortex motion). . .

Let’s focusing the case of a small amount of perfume in a large body
of still air. Here particle density is locally conserved, but momentum
is strongly damped (since the perfume particles can scatter off of the
air molecules). The velocity of our particles will be proportional to the
effective force on them v = −γ ∂µ

∂x , with γ the mobility.35 Hence the35This is linear response. Systems
that are nearly in equilibrium typically
have currents proportional to gradients
in their properties: examples include
Ohm’s law that the electrical current
is proportional to the gradient of the
electromagnetic potential I = V/R =
dφ
dx
/R, thermal conductivity where the

heat flow is proportional to the gradient
in temperature J = κ∇T , and viscous
fluids, where the shear rate is propor-
tional to the shear stress. We’ll study
linear response with more rigor in chap-
ter 10.

current J = ρv of particles will will be

J = γρ(x)
(
−∂µ
∂x

)
= −γρ(x)∂kBT log(ρλ3)

∂x

= −γρ(x)kBT

ρ

∂ρ

∂x
= −γkBT

∂ρ

∂x
(6.65)

and thus the rate of change of ρ is given by the diffusion equation

∂ρ

∂t
= −∇ · J = γkBT

∂2ρ

∂x2
. (6.66)

Notice,

• We again have derived the diffusion equation (equation 2.7) ∂ρ
∂t =

D ∂2ρ
∂x2 , this time by starting with a free energy density from equi-

librium statistical mechanics, and assuming a linear law relating
velocity to force,

• We have rediscovered the Einstein relation (equation 2.22) D =
γkBT ,

• We have asserted that −∂µ
∂x acts just like an external force, even

though µ comes from the ideal gas, which itself has no potential
energy (see exercises 5.9 and 6.11).

Our free energy density for the ideal gas is simpler than the free energy
density of a general system because the ideal gas has no stiffness to
gradients in the density. Our derivation above worked by splitting space
into little boxes: in general, these box regions will not be independent
systems, and there will be a free energy difference that depends on the
change in the coarse-grained fields between boxes – leading to terms
involving gradients of the field.
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Exercises
(6.1) Two–state system. (Basic)

Consider the statistical mechanics of a tiny object with
only two discrete states:36 one of energy E1 and the other
of higher energy E2 > E1.

(a) Boltzmann probability ratio. Find the ratio of
the equilibrium probabilities ρ2/ρ1 to find our system in
the two states, when weakly coupled to a heat bath of tem-
perature T . What is the limiting probability as T → ∞?
As T → 0? Related formula: Boltzmann probability
= Z(T ) exp(−E/kT ) ∝ exp(−E/kT ).

(b) Probabilities and averages. Use the normalization
of the probability distribution (the system must be in one
or the other state) to find ρ1 and ρ2 separately. (That
is, solve for Z(T ) in the ‘related formula’ for part (A).)
What is the average value of the energy E?

(6.2) Barrier Crossing. (Basic, Chemistry)

In this exercise, we will derive the Arrhenius law (equa-
tion 6.59)

Γ = Γ0 exp(−E/kBT ) (6.67)

giving the rate at which chemical reactions cross energy
barriers.

The important exponential dependence on the barrier
height E is the relative Boltzmann probability that a
particle is near the top of the barrier (and hence able
to escape). Here we will do a relatively careful job of
calculating the prefactor Γ0.

Consider a system described by a coordinate X, with an
energy U(X) with a minimum at X0 with energy zero
and an energy barrier at XB with energy U(XB) = B.37

Let the temperature of the system be much smaller than
B/kB. To do our calculation, we will make some approx-
imations. (1) We assume that the atoms escaping across
the barrier to the right do not scatter back into the well.
(2) We assume that the atoms deep inside the well are in
equilibrium. (3) We assume that the particles crossing to
the right across the barrier are given by the equilibrium
distribution inside the well.

(a) Let the probability that a particle has position X
be ρ(X). What is the ratio of probability densities

ρ(XB)/ρ(X0) if the particles near the top of the bar-
rier are assumed in equilibrium with those deep inside
the well? Related formula: Boltzmann distribution
ρ ∝ exp(−E/kBT ).

Fig. 6.10 Well Probability Distribution. The approxi-
mate probability distribution for the atoms still trapped inside
the well.

If the barrier height B � kBT , then most of the par-
ticles in the well stay near the bottom of the well. Of-
ten, the potential near the bottom is accurately described
by a quadratic approximation U(X) ≈ 1/2Mω2(X −X0)

2,
where M is the mass of our system and ω is the frequency
of small oscillations in the well.

(b) In this approximation, what is the probability den-
sity ρ(X) near the bottom of the well? (See fig-
ure 6.10.) What is ρ(X0), the probability density
of having the system at the bottom of the well?
Related formula: Gaussian probability distribution
(1/
√

2πσ2) exp(−x2/2σ2).
Hint: Make sure you keep track of the 2πs.

36Visualize this as a tiny biased coin, which can be in the ‘heads’ or ‘tails’ state but
has no other internal vibrations or center of mass degrees of freedom. Many systems
are well described by large numbers of these two–state systems: some paramagnets,
carbon monoxide on surfaces, glasses at low temperatures, . . .

37This potential could describe a chemical reaction, with X being a reaction coor-
dinate. It could describe the escape of gas from a moon of Jupiter, with X being the
distance from the moon in Jupiter’s direction.
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∆v   t

Fig. 6.11 Crossing the Barrier. The range of positions for
which atoms moving to the right with velocity v will cross the
barrier top in time ∆t.

Knowing the answers from (a) and (b), we know the
probability density ρ(XB) at the top of the barrier. We
need to also know the probability that particles near
the top of the barrier have velocity V , because the
faster-moving parts of the distribution of velocities con-
tribute more to the flux of probability over the barrier
(see figure 6.11). As usual, because the total energy is
the sum of the kinetic and potential energy, the total
Boltzmann probability factors: in equilibrium the parti-
cles will always have a velocity probability distribution
ρ(V ) = 1/

√
2πkBT/M exp(−1/2MV 2/kBT ).

(c) First give a formula for the decay rate Γ (the proba-
bility per unit time that our system crosses the barrier
towards the right), for an unknown probability density
ρ(XB)ρ(V ) as an integral over the velocity V . Then, us-
ing your formulas from parts (A) and (B), give your esti-
mate of the decay rate for our system. Related formula:∫∞
0
x exp(−x2/2σ2) dx = σ2.

How could we go beyond this one-dimensional calcula-
tion? In the olden days, Kramers studied other one–
dimensional models, changing the ways in which the sys-
tem was coupled to the external bath. On the computer,
one can avoid a separate heat bath and directly work with
the full multidimensional configuration space, leading to
transition state theory. The transition–state theory for-
mula is very similar to the one you derived in part (c), ex-
cept that the prefactor involves the product of all the fre-
quencies at the bottom of the well and all the positive fre-
quencies at the saddlepoint at the top of the barrier. (See
reference [44].) Other generalizations arise when crossing
multiple barriers [47] or in non–equilibrium systems [65].

(6.3) Statistical Mechanics and Statistics. (Mathe-
matics)

Consider the problem of fitting a theoretical model to ex-
perimentally determined data. Let our model M predict a

time-dependent function y(M)(t). Let there be N experi-
mentally determined data points yi at times ti with errors
of standard deviation σ. We assume that the experimen-
tal errors for the data points are independent and Gaus-
sian distributed, so that the probability that our model
actually generated the observed data points (the proba-
bility P (D|M) of the data given the model) is

P (D|M) =
N∏

i=1

1√
2πσ

exp

−
(
y(M)(ti)− yi

)2

2σ2

 .
(6.68)

(a) True or false: This probability density corresponds to
a Boltzmann distribution with energy H and temperature
T , with H =

∑N
i=1(y

(M)(ti)− yi)
2/2 and kBT = σ2.

There are two schools of statistics. Among a family of
models, the frequentists will pick the model M with the
largest value of P (D|M). The Bayesians take a different
point of view. They argue that there is no reason to be-
lieve that all models have the same likelihood.38 Suppose
the intrinsic probability of the model (the prior) is P (M).
They use the theorem

P (M |D) = P (D|M)P (M)/P (D) = P (D|M)P (M)
(6.69)

where the last step notes that the probability that you
measured the known data D is presumably one.

The Bayesians often will pick the maximum of P (M |D)
as their model for the experimental data. But, given their
perspective, it’s even more natural to consider the entire
ensemble of models, weighted by P (M |D), as the best
description of the data. This ensemble average then nat-
urally provides error bars as well as predictions for various
quantities.

Consider the problem of fitting a line to two data points.
Suppose the experimental data points are at t1 = 0,
y1 = 1 and t2 = 1, y2 = 2, where both y-values
have uncorrelated Gaussian errors with standard devia-
tion σ = 1/2, as assumed in equation (F.2.1) above. Our
modelM(m, b) is y(t) = mt+b. Our Bayesian statistician
knows that m and b both lie between zero and two, and
assumes that the probability density is otherwise uniform:
P (m, b) = 1/4 for 0 < m < 2 and 0 < b < 2.

(b) Which of the contour plots in figure 6.12 accurately
represent the probability distribution P (M |D) for the
model, given the observed data? (The spacing between
the contour lines is arbitrary.)

38There is no analogue of Liouville’s theorem (chapter 4) in model space.
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(A) (B) (C)

(D) (E)

Fig. 6.12

(6.4) Euler, Gibbs-Duhem, and Clausius-
Clapeyron. (Thermodynamics, Chemistry)

(a) Using the fact that the entropy S(N, V,E) is exten-
sive, show that

N
∂S

∂N

∣∣∣∣
V,E

+ V
∂S

∂V

∣∣∣∣
N,E

+ E
∂S

∂E

∣∣∣∣
N,V

= S. (6.70)

Show from this that in general

S = (E + pV − µN)/T (6.71)

and hence E = TS−pV +µN . This is Euler’s equation.

As a state function, S is supposed to depend only on
E, V , and N . But equation 6.71 seems to show explicit
dependence on T , p, and µ as well: how can this be?

(b) One answer is to write the latter three as functions of
E, V , and N . Do this explicitly for the ideal gas, using
the ideal gas entropy equation 3.61

S(N, V,E) =
5

2
NkB +NkB log

[
V

Nh3

(
4πmE

3N

)3/2
]
,

(6.72)
and your (or the grader’s) results for exercise 3.6(c), and
verify equation 6.71 in that case.

Another answer is to consider a small shift of all six vari-
ables. We know that dE = TdS − pdV + µdN , but
if we shift all six variables in Euler’s equation we get
dE = TdS − pdV + µdN + SdT − V dp+Ndµ. This im-
plies the Gibbs-Duhem relation

0 = SdT − V dp+Ndµ. (6.73)

It means that the intensive variables T , p, and µ are not
all independent.

P
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Critical
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Triple
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Gas

Temperature
Fig. 6.13 Generic phase diagram, showing the coexistence
curves for solids, liquids, and gases.

Clausius-Clapeyron equation. Consider the phase di-
agram 6.13. Along an equilibrium phase boundary, the
temperatures, pressures, and chemical potentials of the
two phases must agree: otherwise a flat interface between
the two phases would transmit heat, shift sideways, or
leak particles, respectively (violating the assumption of
equilibrium).

(c) Apply the Gibbs-Duhem relation to both phases, for
a small shift by ∆T along the phase boundary. Let s1,
v1, s2, and v2 be the molecular entropies and volumes
(s = S/N , v = V/N for each phase); derive the Clausius-
Clapeyron equation for the slope of the coexistence line on
the phase diagram

dP/dT = (s1 − s2)/(v1 − v2). (6.74)

It’s hard to experimentally measure the entropies per par-
ticle: we don’t have an entropy thermometer. But, as you
will remember, the entropy difference upon a phase trans-
formation ∆S = Q/T is related to the heat flow Q needed
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to induce the phase change. Let the latent heat L be the
heat flow per molecule.

(d) Write a formula for dP/dT not involving the entropy.

(6.5) Negative Temperature. (Quantum)

A system of N atoms can be in the ground state or in an
excited state. For convenience, we set the zero of energy
exactly in between, so the energies of the two states of
an atom are ±ε/2. The atoms are isolated from the out-
side world. There are only weak couplings between the
atoms, sufficient to bring them into internal equilibrium
but without other effects.
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Energy E = -N/2 + M ε/3
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Entropies and Energy Fluctuations
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Fig. 6.14 Entropies and energy fluctuations for this problem
with N = 50. The canonical probability distribution for the
energy is for 〈E〉 = −10ε, and kBT = 1.207ε. You may wish
to check some of your answers against this plot.

(a) Microcanonical Entropy. If the net energy is
E (corresponding to a number of excited atoms m =
E/ε+N/2), what is the microcanonical entropy Smicro(E)
of our system? Simplify your expression using Stirling’s
formula, log n! ∼ n log n− n.
(b) Negative Temperature. Find the temperature, us-
ing your simplified expression from part (a). (Why is it
tricky to do it without approximation?) What happens to
the temperature when E > 0?

Having the energy E > 0 is a kind of population inver-
sion. Population inversion is the driving mechanism for
lasers. Microcanonical simulations can lead also to states
with negative specific heats.

For many quantities, the thermodynamic derivatives have
natural interpretations when viewed as sums over states.
It’s easiest to see this in small systems.

(c) Canonical Ensemble: Explicit traces and ther-
modynamics. (i) Take one of our atoms and couple
it to a heat bath of temperature kBT = 1/β. Write
explicit formulas for Zcanon, Ecanon, and Scanon in the
canonical ensemble, as a trace (or sum) over the two
states of the atom. (E should be the energy of each
state multiplied by the probability ρn of that state, S
should be the trace of ρn log ρn.) (ii) Compare the re-
sults with what you get by using the thermodynamic rela-
tions. Using Z from the trace over states, calculate the
Helmholtz free energy A, S as a derivative of A, and
E from A = E − TS. Do the thermodynamically de-
rived formulas you get agree with the statistical traces?
(iii) To remove some of the mystery from the thermo-
dynamic relations, consider the thermodynamically valid
formula E = −∂ logZ/∂β = −(1/Z) ∂Z/∂β. Write out
Z as a sum over energy states, and see that this formula
follows naturally.

(d) What happens to E in the canonical ensemble as
T → ∞? Can you get into the regime discussed in
part (b)?

(e) Canonical-Microcanonical Correspondence.
Find the entropy in the canonical distribution for N of
our atoms coupled to the outside world, from your an-
swer to part (c). How can you understand the value of
S(T = ∞) − S(T = 0) simply? Using the approximate
form of the entropy from part (a) and the temperature
from part (b), show that the canonical and microcanon-
ical entropies agree, Smicro(E) = Scanon(T (E)). (Per-
haps useful: arctanh(x) = 1/2 log ((1 + x)/(1− x)) .) No-
tice that the two are not equal in the figure above: the
form of Stirling’s formula we used in part (a) is not very
accurate for N = 50. Explain in words why the micro-
canonical entropy is smaller than the canonical entropy.

(f) Fluctuations. Show in general that the root-mean-
squared fluctuations in the energy in the canonical dis-
tribution 〈(E − 〈E〉)2〉 = 〈E2〉 − 〈E〉2 is related to the
specific heat C = ∂E/∂T . (I find it helpful to use the for-
mula from part (c.iii), E = −∂ log(Z)/∂β.) Calculate the
root-mean-square energy fluctuations for N of our atoms.
Evaluate it at T (E) from part (b): it should have a par-
ticularly simple form. For large N , are the fluctuations
in E small compared to E?

(6.6) Laplace. (Thermodynamics) 39

Laplace Transform. The Laplace transform of a func-
tion f(t) is a function of x:

L{f}(x) =

∫ ∞
0

f(t)e−xt dt. (6.75)

39Laplace (1749-1827). Math reference [71, sec. 4.3].
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Show that the canonical partition function Z(β) can be
written as the Laplace transform of the microcanonical
volume of the energy shell Ω(E).

(6.7) Lagrange. (Thermodynamics) 40

Lagrange Multipliers. Lagrange multipliers allow one
to find the extremum of a function f(x) given a constraint
g(x) = g0. One extremizes

f(x) + λ(g(x)− g0) (6.76)

as a function of λ and x. The derivative with respect
to λ being zero enforces the constraint and sets λ. The
derivatives with respect to components of x then include
terms involving λ, which act to enforce the constraint.

Let us use Lagrange multipliers to find the maximum of
the nonequilibrium entropy

S = −kB

∫
ρ(P,Q) log ρ(P,Q)

= −kBTr(ρ log ρ) (6.77)

= −kB

∑
pi log pi

constraining the normalization, energy, and number. You
may use whichever form of the entropy you prefer: the
first continuous form will demand some calculus of vari-
ations (see [71, ch. 12]); the last discrete form is mathe-
matically the most straightforward.

(a) Microcanonical: Using a Lagrange multiplier to en-
force the normalization

Tr(ρ) =

∫
EnergySurface

ρ(P,Q) = 1, (6.78)

show that the probability distribution that extremizes the
entropy is a constant (the microcanonical distribution).

(b) Canonical: Integrating over all P and Q, use an-
other Lagrange multiplier to fix the mean energy 〈E〉 =∫
dPdQH(P,Q)ρ(P,Q). Show that the canonical distribu-

tion maximizes the entropy given the constraints of nor-
malization and fixed energy.

(c) Grand Canonical: Summing over different numbers
of particles N and adding the constraint that the average
number is 〈N〉 =

∑
N

∫
dPdQNρN (P,Q), show that you

get the grand canonical distribution by maximizing the en-
tropy.

(6.8) Legendre. (Thermodynamics) 41

Legendre Transforms. The Legendre transform of a
function f(t) is given by minimizing f(x) − xp with re-
spect to p, so that p is the slope (p = ∂f

∂x
):

g(p) = min
x
{f(x)− xp}. (6.79)

We saw in the text that in thermodynamics the Legendre
transform of the energy is the Helmholtz free energy42

A(T,N, V ) = min
E
{E(S,V,N)− TS} . (6.80)

How do we connect this with the statistical mechanical
relation of part (a), which related Ω = exp(S/kB) to
Z = exp(−A/kBT )? Thermodynamics, roughly speak-
ing, is statistical mechanics without the fluctuations.

Using your Laplace transform of exercise 6.6, find an
equation for Emax where the integrand is maximized.
Does this energy equal the energy which minimizes the
Legendre transform 6.80? Approximate Z(β) in your
Laplace transform by the value of the integrand at this
maximum (ignoring the fluctuations). Does it give the
Legendre transform relation 6.80?

(6.9) Molecular Motors: Which Free Energy? (Ba-
sic, Biology)

Figure 6.15 shows a study of the molecular motor that
transcribes DNA into RNA. Choosing a good ensemble
for this system is a bit involved. It is under two constant
forces (F and pressure), and involves complicated chem-
istry and biology. Nonetheless, you know some things
based on fundamental principles. Let us consider the op-
tical trap and the distant fluid as being part of the ex-
ternal environment, and define the “system” as the local
region of DNA, the RNA, motor, and the fluid and local
molecules in a region immediately enclosing the region,
as shown in figure 6.15.

SYSTEM

x

F

40Lagrange (1736-1813).
41Legendre (1752-1833).
42Actually, [6.40] in the text had E as the independent variable. As usual in

thermodynamics, we can solve S(E,V,N) for E(S, V,N).
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Fig. 6.15 An RNA polymerase molecular motor attached to
a glass slide is pulling along a DNA molecule (transcribing it
into RNA). The opposite end of the DNA molecule is attached
to a bead which is being pulled by an optical trap with a con-
stant external force F . Let the distance from the motor to the
bead be x: thus the motor is trying to move to decrease x and
the force is trying to increase x.

Without knowing anything further about the chemistry or
biology in the system, which two of the following must be
true on average, in all cases, according to basic laws of
thermodynamics?

(T) (F) The total entropy of the universe (the system,
bead, trap, laser beam . . . ) must increase or stay un-
changed with time.

(T) (F) The entropy Ss of the system must increase with
time.

(T) (F) The total energy ET of the universe must de-
crease with time.

(T) (F) The energy Es of the system must decrease with
time.

(T) (F) Gs−Fx = Es−TSs +PVs−Fx must decrease
with time, where Gs is the Gibbs free energy of the system.
Related formula: G = E − TS + PV .

Note: F is a force, not the Helmholtz free energy. Pre-
cisely two of the answers are correct.

(6.10) Michaelis-Menten and Hill (Biology, Computa-
tion)

Biological systems often have reaction rates that are sat-
urable: the cell needs to respond sensitively to the in-
troduction of a new chemical S, but the response should
not keep growing indefinitely as the new chemical con-
centration [S] grows.43 Other biological systems act as
switches: they not only saturate, but they change sharply
from one state to another as the concentration of a chem-
ical S is varied. We shall analyze both of these important
biological problems, and at the same time give tangible
examples of how one develops effective dynamical theo-
ries by removing degrees of freedom: here, we remove an
enzyme E from the equations to get an effective reaction
rate, rather than coarse–graining some large statistical
mechanical system.

The rate of a chemical reaction

NS +B → C (6.81)

where N molecules of type S combine with a molecule
of type B to make a molecule of type C will occur with
a reaction rate given by a traditional chemical kinetics
formula:

d[C]

dt
= k[S]N [B]. (6.82)

If the reactants need all to be in a small volume V in order
to react, then [S]N [B]V N is the probability that they are
in location to proceed, and the rate constant k divided
by V N is the reaction rate of the confined molecules.44

Saturation: the Michaelis–Menten equation. Sat-
uration is not seen in ordinary chemical reaction kinetics.
Notice that the reaction rate goes as the N th power of
the concentration [S]: far from saturating, the reaction
rate grows linearly or faster with concentration.

The prototype example of saturation in biological systems
is the Michaelis–Menten reaction form. A reaction of this
form converting a chemical S (the substrate) into P (the
product) has a rate given by the formula

d[P ]

dt
=

vmax[S]

KM + [S]
, (6.83)

where KM is called the Michaelis constant (figure 6.16).
This reaction at small concentrations acts like an ordi-
nary chemical reaction with N = 1 and k = vmax/KM ,
but the rate saturates at Vmax as [S]→∞. The Michaelis
constant KM is the concentration [S] at which the rate is
equal to half of its saturation rate.

0 K
M

, K
H

Substrate concentration [S]

0

V
max

R
at

e 
d[

P
]/d

t

Michaelis Menten
Hill, n=4

Fig. 6.16 Michaelis–Menten and Hill equation forms.

43[S] is the concentration of S (number per unit volume). S stands for substrate.
44The reaction will typically involve crossing an energy barrier E, and the rate will

be given by a Boltzmann probability k = k0 exp(−E/kBT ). The constant of propor-
tionality k0 can in principle be calculated using generalizations of the methods we
used in exercise 6.2.
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We can derive the Michaelis–Menten form by hypothesiz-
ing the existence of a catalyst or enzyme E, which is in
short supply. The enzyme is presumed to be partly free
and available for binding (concentration [E]) and partly
bound to the substrate (concentration [E : S], the colon
denoting the dimer), helping it to turn into the product.
The total concentration [E]+ [E : S] = Etot is fixed. The
reactions are as follows:

E + S �k−1
k1

E : S
kcat→ E + P (6.84)

We must then assume that the supply of substrate is
large, so its concentration changes slowly with time. We
can then assume that the concentration [E : S] is in
steady state, and remove it as a degree of freedom.

(a) Assume the binding reaction (rates k1, k−1, and kcat)
in equation 6.84 are of traditional chemical kinetics form
(equation 6.82), with N = 1 or N = 0 as appropriate.
Write the equation for d[E : S]/dt, set it to zero, and
use it to eliminate [E] in the equation for dP/dt. What
are vmax and KM in the Michaelis-Menten form (equa-
tion 6.83) in terms of the ks and Etot?

We can understand this saturation intuitively: when all
the enzyme is busy and bound to the substrate, adding
more substrate can’t speed up the reaction.

Cooperativity and sharp switching: the Hill equa-
tion. Hemoglobin is what makes blood red: this iron–
containing protein can bind up to four molecules of oxy-
gen in the lungs, and carries them to the tissues of the
body where it releases them. If the binding of all four
oxygens were independent, the [O2] concentration depen-
dence of the bound oxygen concentration would have the
Michaelis–Menten form (figure 6.16): to completely de-
oxygenate the Hemoglobin (Hb) would demand a very
low oxygen concentration in the tissue.

What happens instead is that the Hb binding of oxygen
looks much more sigmoidal – a fairly sharp transition be-
tween nearly 4 oxygens bound at high [O2] (lungs) to
nearly none bound at low oxygen concentrations. This
arises because the binding of the oxygens is enhanced by
having other oxygens bound. This is not because the oxy-
gens somehow stick to one another: instead, each oxygen
deforms the Hb in a non–local allosteric45 fashion, chang-
ing the configurations and and affinity of the other bind-
ing sites.

The Hill equation was introduced for hemoglobin to
describe this kind of cooperative binding. Like the
Michaelis–Menten form, it is also used to describe reac-
tion rates, where instead of the carrier Hb we have an
enzyme, or perhaps a series of transcription binding sites

(see exercise 8.7). In the reaction rate form, the Hill equa-
tion is

d[P ]

dt
=

vmax[S]n

Kn
H + [S]n

, (6.85)

(see figure 6.16). For Hb, the concentration of the n-fold
oxygenated form is given by the right-hand side of equa-
tion 6.85. In both cases, the transition becomes much
more of a switch, with the reaction turning on (or the Hb
accepting or releasing its oxygen) sharply at a particular
concentration (figure 6.16). The transition can be made
more or less sharp by increasing or decreasing n.

The Hill equation can be derived using a simplifying as-
sumption that n molecules bind in a single reaction:

E + nS �ku
kb
E : (nS) (6.86)

where E might stand for hemoglobin and S for the O2

oxygen molecules. Again, there is a fixed total amount
Etot = [E] + [E : nS].

(b) Assume that the two reactions in equation 6.86 have
the chemical kinetics form (equation 6.82) with N = 0 or
N = n as appropriate. Write the equilibrium equation for
E : (nS), and eliminate [E] using the fixed total Etot.

Usually, and in particular for hemoglobin, this coopera-
tivity is not so rigid: the states with one, two, and three
O2 molecules bound also compete with the unbound and
fully bound states. This is treated in an approximate way
by using the Hill equation, but allowing n to vary as a
fitting parameter: for Hb, n ≈ 2.8.

Both Hill and Michaelis–Menten equations are often used
in biological reaction models even when there are no ex-
plicit mechanisms (enzymes, cooperative binding) known
to generate them.

(6.11) Pollen and Hard Squares.

Q
B b

Fig. 6.17 Square pollen grain in fluid of oriented square
molecules, next to a wall. The thin lines represents the exclu-
sion region around the pollen grain and away from the wall.

45Allosteric comes from Allo (other) and steric (structure or space). Allosteric
interactions can be cooperative, as in hemoglobin, or inhibitory.
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We model the entropic attraction between a pollen grain
and a wall using a two-dimensional ideal gas of classical
indistinguishable particles as the fluid. For convenience,
we imagine that the pollen grain and the fluid are formed
from square particles lined up with the axes of the box,
of length B and b, respectively. We assume no inter-
action between the ideal gas molecules (unlike in exer-
cise 3.3); the potential energy is infinite, though, if the
gas molecules overlap with the pollen grain or with the
wall. The container as a whole has one pollen grain, N
gas molecules, and total area L× L.

Assume the pollen grain is close to only one wall. Let
the distance from the surface of the wall to the closest
face of the pollen grain be Q. (A similar square-particle
problem with interacting small molecules was studied in
reference [33].)

(a) What is the area A(Q � 0) available for the gas
molecules, in units of (length)2, when the pollen grain
is far from the wall? What is the overlap of the excluded
regions, A(0) − A(∞), when the pollen grain touches the

wall, Q = 0? Give formulas for A(Q) as a function of Q
for the two relevant regions, Q < b and Q > b.

(b) What is the configuration-space volume Ω(Q) for the
gas, in units of (length)2N? What is the configurational
entropy of the ideal gas, S(Q)? (Write your answers
here in terms of A(Q) to simplify grading.)

Your answers to part (b) can be viewed as giving a free en-
ergy for the pollen grain after integrating over the gas de-
grees of freedom (also known as a partial trace, or coarse-
grained free energy).

(c) What is the resulting coarse-grained free energy of the
pollen grain, F(Q) = E − T S(Q), in the two regions
Q > b and Q < b? Use F(Q) to calculate the force on the
pollen grain for Q < b. Is the force positive (away from
the wall) or negative? Why?

(d) Directly calculate the force due to the ideal-gas pres-
sure on the far side of the pollen grain, in terms of A(Q).
Compare it to the force from the partial trace in part (c).
Why is there no balancing force from the other side? Ef-
fectively how “long” is the far side of the pollen grain?
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Quantum Statistical
Mechanics 7

Quantum statistical mechanics governs most of solid-state physics (met-
als, semiconductors, and glasses) and parts of molecular physics and
astrophysics (white dwarves, neutron stars). It spawned the origin of
quantum mechanics (Planck’s theory of the black-body spectrum) and
provides the framework for our understanding of other exotic quantum
phenomena (Bose condensation, superfluids, and superconductors). Ap-
plications of quantum statistical mechanics are significant components
of courses in these various subjects. We condense our treatment of this
important subject into this one chapter in order to avoid overlap with
other physics and chemistry courses, and also in order to keep our treat-
ment otherwise accessible to outsiders uninitiated into the mysteries of
quantum mechanics.

In this section, we will proceed from the abstract to the concrete,
through a series of simplifications. We begin (section 7.1) by introducing
mixed states for quantum ensembles, and the advanced topic of density
matrices (for non-equilibrium quantum systems which are not mixtures
of energy eigenstates). We illustrate mixed states in section 7.2 by solv-
ing the finite-temperature quantum harmonic oscillator. We discuss the
statistical mechanics of identical particles (section 7.3). We then make
the vast simplification of presuming that the particles are non-interacting
(section 7.4), which leads us to the Bose-Einstein and Fermi distribu-
tions for the filling of single-particle eigenstates. We briefly contrast the
Bose, Fermi, and Maxwell-Boltzmann statistics 7.5. We illustrate how
amazingly useful the non-interacting particle picture is for quantum sys-
tems by solving the classic problems of black-body radiation and bose
condensation (section 7.6), and for the behavior of metals (section 7.7).

7.1 Mixed States and Density Matrices

Classical statistical ensembles are probability distributions ρ(P,Q) in
phase space. How do we generalize them to quantum mechanics? Two
problems immediately arise. First, the Heisenberg uncertainty princi-
ple tells us that one cannot specify both position and momentum for a
quantum system at the same time. The states of our quantum system
will not be points in phase space. Second, quantum mechanics already
has probability densities: even for systems in a definite state1 Ψ(Q) 1Quantum systems with many particles

have wavefunctions that are functions
of all the positions of all the particles
(or, in momentum space, all the mo-
menta of all the particles).
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the probability is spread among different configurations |Ψ(Q)|2 (or mo-
menta |Ψ̃(P)|2). In statistical mechanics, we need to introduce a second
level of probability, to discuss an ensemble that has probabilities pn of
being in a variety of quantum states Ψn(Q). Ensembles in quantum me-
chanics are called mixed states: they are not superpositions of different
wave functions, but incoherent mixtures.22So, for example, if |R〉 is a right-

circularly polarized photon, and |L〉 is
a left-circularly polarized photon, then
the superposition 1√

2
(|R〉 + |L〉) is a

linearly polarized photon, while the
mixture 1/2(|R〉〈R| + |L〉〈L|) is an un-
polarized photon. The superposition is
in both states, the mixture is in per-
haps one or perhaps the other. See ex-
ercise 7.5(a).

Suppose we want to compute the ensemble expectation of an operator
A. In a particular state Ψn, the quantum expectation is

〈A〉pure =
∫

Ψ∗
n(Q)AΨn(Q)d3NQ. (7.1)

So, in the ensemble the expectation is

〈A〉 =
∑

n

pn

∫
Ψ∗

n(Q)AΨn(Q)d3NQ. (7.2)

For most purposes, this is enough! Except for selected exercises in this
chapter, one or two exercises in the rest of the book, and occasional
specialized seminars, formulating the ensemble as a sum over states Ψn

with probabilities pn is perfectly satisfactory. Indeed, for all of the equi-
librium ensembles, the Ψn may be taken to be the energy eigenstates,
and the pn either a constant in a small energy range (for the micro-
canonical ensemble), or exp(−βEn)/Z (for the canonical ensemble), or
exp (−β(En −Nnµ)) /Ξ (for the grand canonical ensemble). For most
practical purposes you may stop reading this section here, and proceed
to the quantum harmonic oscillator.

Advanced Topic: Density Matrices. What do we gain from go-
ing beyond this picture? First, there are lots of mixed states that are
not mixtures of energy eigenstates. Mixtures of energy eigenstates have
time-independent properties, so any time-dependent non-equilibrium en-
semble will be in this class. Second, although one can define the ensem-
ble in terms of a set of states Ψn, the ensemble should be something
one can look at in a variety of bases. Indeed, superfluids and super-
conductors show an energy gap when viewed in the energy basis, but
show an exotic off-diagonal long-range order when looked at in position
space (exercise 9.7). Third, we will see that the proper generalization of
Liouville’s theorem demands the more elegant, operator-based approach.

Our goal is to avoid carrying around the particular states Ψn. Instead,
we will write the ensemble average (equation 7.2) in terms of A and an
operator ρ, the density matrix. For this section, it is convenient to use
Dirac’s bra-ket notation, in which the ensemble average can be written33In Dirac’s notation, 〈Ψ|M|Φ〉 =∫

Ψ∗MΦ. It is particularly useful
when expressing operators in a basis
Ψm; if the matrix elements are Mij =
〈Ψi|M|Ψj〉 then the operator itself can
be written M =

∑
ij Mij |Ψi〉〈Ψj |.

〈A〉 =
∑

n

pn〈Ψn|A|Ψn〉. (7.3)

Pick any complete orthonormal basis Φα. Then the identity operator

1 =
∑
α

|Φα〉〈Φα| (7.4)
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and, plugging the identity (equation 7.4) into equation 7.3 we find

〈A〉 =
∑

n

pn〈Ψn|
(∑

α

|Φα〉〈|Φα|
)

A|Ψn〉

=
∑

n

pn

∑
α

〈Φα|AΨn〉〈Ψn|Φα〉

=
∑
α

〈ΦαA|
(∑

n

pn|Ψn〉〈Ψn|
)
|Φα〉

=Tr(Aρ) (7.5)

where4 4The trace of a matrix is the sum of
its diagonal elements, and is indepen-
dent of what basis you write it in. The
same is true of operators: we are sum-
ming the diagonal elements Tr(M) =∑

α〈Φα|M |Φα〉.

ρ =

(∑
n

pn|Ψn〉〈Ψn|
)

(7.6)

is the density matrix.
Some conclusions we can draw about the density matrix:

Sufficiency. In quantum mechanics, all measurement processes involve
expectation values of operators. Our density matrix therefore suffices to
embody everything we need to know about our quantum system.
Pure states. A pure state, with a definite wavefunction Φ, has ρpure =
|Φ〉〈Φ|. In the position basis |Q〉, this pure-state density matrix has
matrix elements ρpure(Q,Q

′) = 〈Q|ρpure|Q′〉 = Φ∗(Q′)Φ(Q). Thus in
particular we can reconstruct5 the wavefunction from a pure-state den- 5In particular, since Φ is normalized

|Φ∗(Q′)|2 =
∫
dQ|ρ(Q,Q′)|2 and thus

Φ(Q) =
ρ(Q,Q′)√∫
dQ̃|ρ(Q̃,Q′)|2

(7.7)

up to the phase of φ∗(Q′).

sity matrix, up to an overall physically unmeasurable phase. Since our
wavefunction is normalized 〈Φ|Φ〉 = 1, we note also that the square of the
density matrix for a pure state equals itself: ρpure

2 = (|Φ〉〈Φ|)(|Φ〉〈Φ|) =
ρpure,
Normalization. The trace of a pure-state density matrix Trρpure = 1,
since we can pick an orthonormal basis with our wavefunction Φ as the
first basis element, making the first term in the trace sum one and the
others zero. The trace of a general density matrix is hence also one,
since it is a probability distribution of pure-state density matrices:

Trρ = Tr

(∑
n

pn|Ψn〉〈Ψn|
)

=
∑

n

pnTr (|Ψn〉〈Ψn|) =
∑

n

pn = 1.

(7.8)
Canonical Distribution. The canonical distribution can be written
in terms of the Hamiltonian operator H as6 6What is the exponential of a matrix

M? We can define it in terms of a power
series, exp(M) = 1 + M + M2/2! +
M3/3! + . . . , but it is usually easier to
change basis to diagonalize M . In that
basis, any function f(M) is given by

f(ρ) =

f(ρ11) 0 0 . . .
0 f(ρ22) 0 . . .
. . .

 .

(7.9)
At the end, change back to the original
basis.

ρcanon =
exp(−βH)

Z
=

exp(−βH)
Tr exp(−βH)

. (7.10)

Let |En〉 be the orthonormal many-body energy eigenstates. If we eval-
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uate ρcanon in the energy basis,

ρmn = 〈Em|ρcanon|En〉

= 〈Em|
(
e−βH|En〉

)
/Z

= 〈Em|
(
e−βEn |En〉

)
/Z

= e−βEn〈Em|En〉/Z
= e−βEnδmn/Z (7.11)

so ρcanon is diagonal in the energy basis

ρ =
∑

n

exp(−βEn)
Z

|En〉〈En| (7.12)

and is given by the canonical weighting of each of the energy eigenstates,
just as one would expect. Notice that the states Ψn mixed to make the
density matrix need not in general be eigenstates, or even orthogonal.
For equilibrium statistical mechanics, though, life is simpler: the Ψn can
be chosen to be energy eigenstates, and the density matrix is diagonal
in that basis.
Entropy. The entropy for a general density matrix will be

S = −kBTr (ρ log ρ) . (7.13)

Time evolution for the density matrix. The time evolution for the
density matrix is determined by the time evolution of the pure states
composing it:77The pn are the probability that one

started in the state Ψn, and thus clearly
don’t change with time. ∂ρ

∂t
=
∑

n

pn

(
∂|Ψn〉
∂t

〈Ψn| + |Ψn〉
∂〈Ψn|
∂t

)
. (7.14)

Now, the time evolution of the ‘ket’ wavefunction |Ψn〉 is given by op-
erating on it with the Hamiltonian

∂|Ψn〉
∂t

=
1
i�

H|Ψn〉 (7.15)

and the time evolution of the ‘bra’ wavefunction 〈Ψn| is given by the
time evolution of Ψ∗

n(Q):

∂Ψ∗
n

∂t
=
(
∂Ψn

∂t

)∗
=
(

1
i�

HΨn

)∗
= − 1

i�
HΨ∗

n (7.16)

so since H is Hermitian,

∂〈Ψn|
∂t

= − 1
i�
〈Ψn|H. (7.17)

Hence88Notice that this is minus the formula
one uses for the time-evolution of oper-
ators in the Heisenberg representation.

∂ρ

∂t
=
∑

n

pn
1
i�

(
H|Ψn〉〈Ψn| − |Ψn〉〈Ψn|H

)
=

1
i�

(Hρ − ρH)

=
1
i�

[H,ρ]. (7.18)
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Quantum Liouville Equation. This time evolution law is the quan-
tum version of Liouville’s theorem. We can see this by using the equa-
tions of motion 4.1, q̇α = ∂H/∂pα and ṗα = −∂H/∂qα and the definition
of Poisson brackets

{A,B}P =
∑
α

∂A

∂qα

∂B

∂pα
− ∂A

∂pα

∂B

∂qα
(7.19)

to rewrite Liouville’s theorem that the total time derivative is zero (equa-
tion 4.7) into a statement about the partial time derivative:

0 =
dρ

dt
=
∂ρ

∂t
+
∑
α

∂ρ

∂qα
q̇α +

∂ρ

∂pα
ṗα =

∂ρ

∂t
+
∑
α

(
∂ρ

∂qα

∂H
∂pα

− ∂ρ

∂pα

∂H
∂qα

)
(7.20)

so
∂ρ

∂t
= {H,ρ}P . (7.21)

Using the classical↔quantum correspondence between the Poisson brack-
ets and the commutator { }P ↔ 1

i� [ ] the time evolution law 7.18 is
precisely the analogue of Liouville’s theorem 7.21.
Quantum Liouville and Statistical Mechanics. The quantum ver-
sion of Liouville’s equation is not nearly as compelling an argument for
statistical mechanics as was the classical version.

The classical theorem, you remember, stated that dρ/dt = 0. Any
equilibrium state must be time independent ∂ρ/∂t = 0, so this implied
that such a state must have ρ constant along the trajectories. If the
trajectory covers the energy surface (ergodicity), then the probability
density had to be constant on the energy surface, justifying the micro-
canonical ensemble.

For an isolated quantum system, this argument breaks down. The
condition that an equilibrium state must be time independent isn’t very
stringent! Indeed, ∂ρ/∂t = [H,ρ] = 0 for any mixture of many-body
energy eigenstates! In principle, isolated quantum systems are very non-
ergodic, and one must couple them to the outside world to induce tran-
sitions between the many-body eigenstates and proceed to equilibrium.

This may seem less of a concern when one realizes just how peculiar
a many-body eigenstates of a large system really is. Consider an atom
in an excited state contained in a large box. We normally think of
the atom as being in an energy eigenstate, which decays after some
time into a ground state atom plus some photons. Clearly, the atom
was only in an approximate eigenstate (or it would not decay): it is
in a resonance that is an eigenstate if we ignore the coupling to the
electromagnetic field. The true many-body eigenstates of the system are
weird delicate superpositions of states with photons being absorbed by
the atom and the atom emitting photons, carefully crafted to produce
a stationary state. When one starts including more atoms and other
interactions, the true many-body eigenstates are pretty useless things
in most cases.9 Tiny interactions with the outside world disrupt these 9The many-body ground state and

the lowest many-body excitations with
given quantum numbers above the
ground state are important: these
states don’t suffer from decays.

many-body eigenstates, and usually lead efficiently to equilibrium.
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7.2 Quantum Harmonic Oscillator

The quantum harmonic oscillator is a great example of how statistical
mechanics works in quantum systems. Consider a harmonic oscillator of
frequency ω. The energy eigenvalues are En = (n + 1/2)�ω (figure 7.1).
Hence its partition function is a geometric series

∑
xn, which we can

sum to 1/(1 − x):

ω
2

3hω
2

ω
2

ω
2

ω
2

5h

7h

9h

h

Fig. 7.1 The quantum states of
the harmonic oscillator are at equally
spaced energies.

Zqho =
∞∑

n=0

e−βEn =
∞∑

n=0

e−β�ω(n+1/2) (7.22)

= e−β�ω/2
∞∑

n=0

(
e−β�ω

)n
= e−β�ω/2 1

1 − e−β�ω

=
1

eβ�ω/2 − e−β�ω/2
=

1
2 sinh(β�ω/2)

.

The average energy is

〈E〉qho = −∂ logZqho

∂β
=

∂

∂β

[
1/2β�ω + log

(
1 − e−β�ω

)]
= �ω

(
1/2 +

e−β�ω

1 − e−β�ω

)
= �ω

(
1/2 +

1
eβ�ω − 1

)
(7.23)

which corresponds to an average excitation level

〈n〉qho =
1

eβ�ω − 1
. (7.24)

The specific heat is thus
0 1k

B
T / hω

0

k
B

S
pe

ci
fic

 H
ea

t c V

Fig. 7.2 The specific heat for the quan-
tum harmonic oscillator. cV =

∂E

∂T
= kB

(
�ω

kBT

)2
e−�ω/kBT(

1 − e−�ω/kBT
)2 (7.25)

At high temperatures, e−�ω/kBT ≈ 1 − �ω/kBT , so cV → kB as we
found for the classical harmonic oscillator (and as given by the equipar-
tition theorem).

At low temperatures, e−�ω/kBT becomes exponentially small, so the
specific heat goes rapidly to zero as the energy asymptotes to the zero-
point energy 1/2�ω. More specifically, there is an energy gap10 �ω to the10In solid state physics we call this

the energy gap: the minimum energy
needed to add an excitation to the sys-
tem. In quantum field theory, where
the excitations are particles, we call it
the mass of the particle mc2.

first excitation, so the probability of having any excitation of the system
is suppressed by a factor of e−�ω/kBT .

7.3 Bose and Fermi Statistics

In quantum mechanics, indistinguishable particles are not just hard
to tell apart – their quantum wavefunctions must be the same, up to
an overall phase change,11 when the coordinates are swapped (see fig-

11In three dimensions, this phase change must be ±1. In two dimensions one can
have any phase change, so one can have not only fermions and bosons but anyons.
Anyons, with fractional statistics, arise as excitations in the fractional quantized Hall
effect.
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ure 7.3). In particular, for bosons12 the wavefunction is unchanged under
a swap, so

Ψ(r1, r2, . . . , rN ) = Ψ(r2, r1, . . . , rN ) = Ψ(rP1 , rP2 , . . . , rPN ) (7.26)

for any permutation P of the integers 1, . . . , N .13 For fermions14 13 A permutation {P1, P2, . . . PN} is
just a reordering of the integers
{1, 2, . . . N}. The sign σ(P ) of a per-
mutation is +1 if P is an even permu-
tation, and −1 if P is an odd permuta-
tion. Swapping two labels, keeping all
the rest unchanged, is an odd permuta-
tion. One can show that composing two
permutations multiplies their signs, so
odd permutations can be made by odd
numbers of pair swaps, and even per-
mutations are composed of even num-
bers of pair swaps.

Ψ(r1, r2, . . . , rN ) = −Ψ(r2, r1, . . . , rN ) = σ(P )Ψ(rP1 , rP2 , . . . , rPN ).
(7.27)

e−

e−

e−

e−

e−e+

γ

γ

γ

γ

Fig. 7.3 Feynman diagram: iden-
tical particles. In quantum mechan-
ics, two electrons, (or two atoms of the
same isotope) are fundamentally iden-
tical. We can illustrate this with a peek
at an advanced topic mixing quantum
field theory and relativity. Here is a
scattering event of a photon off an elec-
tron, viewed in two reference frames:
time is vertical, a spatial coordinate is
horizontal. On the left we see two ‘dif-
ferent’ electrons, one which is created
along with an anti-electron or positron
e+, and the other which later annihi-
lates the positron. At right we see the
same event viewed in a different refer-
ence frame: here there is only one elec-
tron, which scatters two photons. (The
electron is virtual, moving faster than
light, between the collisions: this is al-
lowed in intermediate states for quan-
tum transitions.) The two electrons on
the left are not only indistinguishable,
they are the same particle! The an-
tiparticle is also the electron, traveling
backward in time.

The eigenstates for systems of identical fermions and bosons are a sub-
set of the eigenstates of distinguishable particles with the same Hamil-
tonian

HΨn = EnΨn; (7.28)

in particular, they are given by the distinguishable eigenstates which
obey the proper symmetry properties under permutations. A non- sym-
metric eigenstate Φ with energy E may be symmetrized to form a bose
eigenstate

Ψsym(r1, r2, . . . , rN ) = (Normalization)
∑
P

Φ(rP1 , rP2 , . . . , rPN ) (7.29)

or antisymmetrized to form a fermion eigenstate

Ψasym(r1, r2, . . . , rN ) = (Normalization)
∑
P

σ(P )Φ(rP1 , rP2 , . . . , rPN )

(7.30)
if the symmetrization or antisymmetrization does not make the sum
zero. These remain eigenstates of energy E, because they are sums of
eigenstates of energy E.

Quantum statistical mechanics for identical particles is given by re-
stricting the ensembles to sum over symmetric wavefunctions for bosons
(or antisymmetric wavefunctions for fermions). So, for example, the
partition function for the canonical ensemble is still

Z = Tr
(
e−βH

)
=
∑

n

e−βEn (7.31)

but now the trace is over a complete set of many-body symmetric (anti-
symmetric) states, and the sum is over the symmetric (antisymmetric)
many-body energy eigenstates.

7.4 Non-Interacting Bosons and Fermions

Many-body quantum statistical mechanics is hard. We now make a
huge approximation: we’ll assume our quantum particles do not interact

12Examples of bosons include mesons, He4, phonons, photons, gluons, W± and Z
bosons, and (presumably) gravitons. The last four mediate the fundamental forces –
the electromagnetic, strong, weak, and gravitational interactions. The spin-statistics
theorem (not discussed here) states that bosons have integer spins. See exercise 7.9.

14Most of the common elementary particles are fermions: electrons, protons, neu-
trons, neutrinos, quarks, etc. Fermions have half-integer spins. Particles made up of
even numbers of fermions are bosons.

c©James P. Sethna, April 19, 2005 Entropy, Order Parameters, and Complexity



122 Quantum Statistical Mechanics

with one another. Just as for the classical ideal gas, this will make our
calculations straightforward.

The non-interacting Hamiltonian is a sum of single-particle Hamilto-
nians H :

HNI =
N∑

j=1

H(pj , rj) =
N∑

j=1

�2

2m
∇2

j + V (rj). (7.32)

Let ψk be the single-particle eigenstates of H

Hψk(r) = εkψk(r). (7.33)

For distinguishable particles, the many-body eigenstates can be written
as a product of orthonormal single-particle eigenstates

ΨNI
dist(r1, r2, . . . , rN ) =

N∏
j=1

ψkj (rj). (7.34)

where we say that particle j is in the single-particle eigenstate kj . The
eigenstates for non-interacting bosons is given by symmetrizing over the
coordinates rj ,

ΨNI
boson(r1, r2, . . . , rN ) = (Normalization)

∑
P

N∏
j=1

ψkj (rPj ), (7.35)

and of course the fermion eigenstates are given by antisymmetrizing1515This antisymmetrization can be writ-
ten as

1√
N !

∣∣∣∣∣∣∣∣∣∣
ψk1(r1) ψk1(r2) . . . ψk1 (rN)
ψk2(r1) ψk2(r2) . . . ψk2 (rN)
. . . . . .

ψkN
(r1) ψkN

(r2) . . . ψkN
(rN)

∣∣∣∣∣∣∣∣∣∣
(7.36)

called the Slater determinant.

ΨNI
fermion(r1, r2, . . . , rN ) =

1√
N !

∑
P

σ(P )
N∏

j=1

ψkj (rPj ). (7.37)

Let’s consider two particles in orthonormal single-particle energy eigen-
states ψk and ψ�. If the particles are distinguishable, there are two
eigenstates ψk(r1)ψ�(r2) and ψk(r2)ψ�(r1). If the particles are bosons,
the eigenstate is 1√

2
(ψk(r1)ψ�(r2) + ψk(r2)ψ�(r1)). If the particles are

fermions, the eigenstate is 1√
2

(ψk(r1)ψ�(r2) − ψk(r2)ψ�(r1)).
What if the particles are in the same single-particle eigenstate ψ�? For

bosons, the eigenstate ψk(r1)ψ�(r2) is already symmetric and normal-
ized.16 For fermions, antisymmetrizing a state where both particles are16Notice that the normalization of the

boson wavefunction depends on how
many single-particle states are multiply
occupied.

in the same state gives zero: ψ�(r1)ψ�(r2) − ψ�(r2)ψ�(r1) = 0. This is
the Pauli exclusion principle: you cannot have two fermions in the same
quantum state.17

17Because the spin of the electron can
be in two directions ±1/2, this means
that two electrons can be placed into
each single-particle spatial eigenstate.

How do we do statistical mechanics for non-interacting fermions and
bosons? Here it is most convenient to use the grand canonical ensemble
(section 6.3), so we can think of each single-particle eigenstate ψk as be-
ing filled independently from the other eigenstates. The grand partition
function hence factors:

ΞNI =
∏
k

Ξk. (7.38)

The grand canonical ensemble thus allows us to separately solve the
problem one eigenstate at a time, for non-interacting particles.
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Bosons. For bosons, all fillings nk are allowed. Each particle in
eigenstate ψk contributes energy εk and chemical potential −µ, so

Ξboson
k =

∞∑
nk=0

e−β(εk−µ)nk =
∞∑

nk=0

(
e−β(εk−µ)

)nk

=
1

1 − e−β(εk−µ)

(7.39)
so the boson grand partition function is

ΞNI
boson =

∏
k

1
1 − e−β(εk−µ)

. (7.40)

The grand free energy is a sum of single-state grand free energies

ΦNI
boson =

∑
k

Φboson
k =

∑
k

kBT log
(
1 − e−β(εk−µ)

)
. (7.41)

Because the filling of different states is independent, we can find out the
expected number of particles in state ψk. From equation 6.38,

〈nk〉 = −∂Φboson
k

∂µ
= −kBT

−βe−β(εk−µ)

1 − e−β(εk−µ)
=

1
eβ(εk−µ) − 1

. (7.42)

This is called the Bose-Einstein distribution.

〈n〉BE =
1

eβ(ε−µ) − 1
. (7.43)

The Bose-Einstein distribution describes the filling of single-particle
-1 0 3(ε − µ)/k

B
T

0

1

4

5

<
n>

(ε
)

Bose-Einstein
Maxwell-Boltzmann
Fermi-Dirac

Fig. 7.4 Bose-Einstein, Maxwell-
Boltzmann, and Fermi-Dirac dis-
tributions, 〈n〉BE(ε) Occupation num-
ber for single-particle eigenstates as
a function of energy ε away from
the chemical potential µ. The Bose-
Einstein distribution diverges as µ ap-
proaches ε; the Fermi-Dirac distribu-
tion saturates at one as µ gets small.

eigenstates by non-interacting bosons. For states with low occupancies,
where 〈n〉 
 1, 〈n〉BE ≈ e−β(ε−µ), and the boson populations correspond
to what we would guess naively from the Boltzmann distribution.18 The

18We will formally discuss the
Maxwell-Boltzmann distribution in
section 7.5.

condition for low occupancies is εk −µ kBT , but perversely this often
arises at high temperatures, when µ gets large and negative. Notice
also that 〈n〉BE → ∞ as µ → εk since the denominator vanishes (and
becomes negative for µ > εk); systems of non-interacting bosons always
have µ less than or equal to the lowest of the single-particle energy
eigenvalues.19

19When the river level gets up to the
height of the fields, your farm gets
flooded.

Notice that the average excitation 〈n〉qho of the quantum harmonic os-
cillator (equation 7.24) is given by the Bose-Einstein distribution (equa-
tion 7.43) with µ = 0. We’ll use this in exercise 7.9 to argue that one
can treat excitations inside harmonic oscillators (vibrations) as particles
obeying Bose statistics (phonons).

Fermions. For fermions, only nk = 0 and nk = 1 are allowed. The
single-state fermion grand partition function is

Ξfermion
k =

1∑
nk=0

e−β(εk−µ)nk = 1 + e−β(εk−µ) (7.44)

so the total fermion grand partition function is

ΞNI
fermion =

∏
k

(
1 + e−β(εk−µ)

)
. (7.45)
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For summing over only two states, it’s hardly worthwhile to work through
the grand free energy to calculate the expected number of particles in a
state:

〈nk〉 =

∑1
nk=0 nk exp(−β(εk − µ)nk)∑1

nk=0 nk exp(−β(εk − µ)
=

e−β(εk−µ)

1 + e−β(εk−µ)
=

1
eβ(εk−µ) + 1

,

(7.46)
leading us to the Fermi-Dirac distribution

f(ε) = 〈n〉FD =
1

eβ(ε−µ) + 1
(7.47)

where f(ε) is also known as the Fermi function. Again, when the oc-
cupancy of state ψk is low, it is approximately given by the Boltzmann
probability distribution, e−β(ε−µ). Here the chemical potential can be
either greater than or less than any given eigenenergy εk. Indeed, at low
temperatures the chemical potential µ separates filled states εk < µ from
empty states εk > µ; only states within roughly kBT of µ are partially
filled.

0 1 2
Energy ε/µ

0

1

f(
ε) ∆ε∼ k

B
T

T=0
Small T

Fig. 7.5 The Fermi distribution
f(ε) of equation 7.47. At low tem-
peratures, states below µ are occupied,
states above µ are unoccupied, and
states within around kBT of µ are par-
tially occupied.

The chemical potential µ is playing a large role in these calculations,
and those new to the subject may wonder how one determines it. You
will see in the exercises that one normally knows the expected number
of particles N , and must vary µ until you reach that value. Hence µ
very directly plays the role of a particle pressure from the outside world,
which is varied until the system is correctly filled.

The amazing utility of non-interacting bosons and fermions.
The classical ideal gas has been a great illustration of statistical mechan-
ics, and does a good job of many gases, but nobody would suggest that
it captures the main features of solids and liquids. The non-interacting
approximation in quantum mechanics turns out to be far more powerful,
for quite subtle reasons.

For bosons, the non-interacting approximation is quite accurate in
three important cases: photons, phonons, and the dilute Bose gas.
In section 7.6 we’ll study two fundamental problems involving non-
interacting bosons: black-body radiation and Bose condensation. The
behavior of superconductors and superfluids share some common fea-
tures with that of the bose gas.

For fermions, the non-interacting approximation would seem to rarely
be useful. Electrons are charged, and the electromagnetic repulsion be-
tween the electrons in an atom, molecule, or material would seem to
always be a major contribution to the energy. Neutrons interact via
the strong interaction, so nuclei and neutron stars would seem also poor
candidates for a non-interacting theory. Neutrinos are hard to pack into
a box.20 There are experiments on cold, dilute gases of fermion atoms2120Just in case you haven’t heard, neu-

trinos are quite elusive. It is said that
if you send neutrinos through a lead
shield, more than half will penetrate
until the thickness is roughly to the
nearest star.
21These use the same techniques which
led to the observation of Bose conden-
sation.

but naively non-interacting fermions would seem a foolish choice to focus
on in an introductory course.

The truth is that the non-interacting Fermi gas describes all of these
systems (atoms, metals, insulators, nuclei, and neutron stars) remark-
ably well. Interacting Fermi systems under most common circumstances
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behave very much like collections of non-interacting fermions in a modi-
fied potential.22 The approximation is so powerful that in most circum- 22In particular, the low-lying excita-

tions above the ground state look qual-
itatively like fermions excited from be-
low the Fermi energy to above the
Fermi energy (electron-hole pairs in
metals and semiconductors). It is not
that these electrons don’t significantly
interact with those under the Fermi sea:
it is rather that these interactions act
to “dress” the electron with a screen-
ing cloud. These dressed electrons and
holes, or quasiparticles, are what act so
much like non-interacting particles.

stances we ignore the interactions: whenever we talk about exciting a ‘1S
electron’ in an oxygen atom, or an ‘electron-hole’ pair in a semiconduc-
tor, we are using this effective non-interacting electron approximation.
The explanation for this amazing fact is called Landau Fermi liquid the-
ory, and lies beyond the purview of this text.23

23We will give a schematic example of
a renormalization-group picture for the
irrelevance of Coulomb repulsion in ex-
ercise 12.5.

7.5 Maxwell-Boltzmann “Quantum” Statis-

tics

In classical statistical mechanics, we treated indistinguishable particles
as distinguishable ones, except that we divided the phase-space volume,
(or the partition function, in the canonical ensemble) by factor N !.

ΩMB
N =

1
N !

Ωdist
N

ZMB
N =

1
N !

Zdist
N (7.48)

This was important to get the entropy to be extensive (section 5.2.1).
This approximation is also used in quantum statistical mechanics, al-
though we should emphasize that it does not describe either bosons,
fermions, or any physical system. These bogus particles are said to obey
Maxwell-Boltzmann statistics.

What is the canonical partition function for the case ofN non-interacting
distinguishable quantum particles?24 If the partition function for one 24More particularly, we want particles

which in principle are distinguishable,
but which our Hamiltonian treats iden-
tically, so they have the same single-
particle eigenstates. Two electrons
with opposite spin in a Helium atom
would be an example. Protons and
neutrons in nuclear physics are often
treated as identical particles with a dif-
ferent “isospin” quantum number.

particle is
Z1 =

∑
k

e−βεk (7.49)

then the partition function for two non-interacting, distinguishable (but
otherwise similar) particles is

ZNI,dist
2 =

∑
k1,k2

e−β(εk1+εk2 ) =

(∑
k1

e−βεk1

)(∑
k2

e−βεk2

)
= Z1

2.

(7.50)
and the partition function for N such distinguishable, non-interacting
particles is

ZNI,dist
2 =

∑
k1,k2,...,kn

e−β(εk1+εk2+···+εkN
) =

N∏
j=1

∑
kj

e−βεkj

 = Z1
N .

(7.51)
So, the Maxwell-Boltzmann distribution for non-interacting particles is

ZNI,MB
2 = Z1

N/N !. (7.52)

Let us illustrate the relation between these three distributions by con-
sidering the canonical ensemble of two non-interacting particles in three
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possible states of energies ε1, ε2, and ε3. The Maxwell-Boltzmann par-
tition function for such a system would be

ZNI,MB
2 =

1
2!
(
e−βε1 + e−βε2 + e−βε3

)2
(7.53)

=1/2e
−2βε1 + 1/2e

−2βε2 + 1/2e
−2βε3

+ e−β(ε1+ε2) + e−β(ε1+ε3) + e−β(ε2+ε3).

The 1/N ! fixes the weights of the singly-occupied states25 nicely: each25More precisely, we mean those many-
body states where the single-particle
states are all singly occupied or vacant.

has weight one in the Maxwell-Boltzmann partition function. But the
doubly occupied states, where both particles have the same wavefunc-
tion, have an unintuitive suppression by 1/2 in the sum.

There are basically two ways to fix this. One is to stop discriminating
against multiply occupied states, and to treat them all democratically.
This gives us non-interacting bosons:

ZNI,boson
2 = e−2βε1 +e−2βε2+e−2βε3+e−β(ε1+ε2)+e−β(ε1+ε3)+e−β(ε2+ε3).

(7.54)
The other way is to squelch multiple occupancy altogether. This leads
to fermions:

ZNI,fermion
2 = e−β(ε1+ε2) + e−β(ε1+ε3) + e−β(ε2+ε3). (7.55)

Thus the Maxwell-Boltzmann distribution treats multiple occupancy of
states in an unphysical compromise between bosons (democratic) and
fermions (forbidden).

We’ve been working in this section with the canonical distribution,
fixing the number of particles to two. This is convenient only for small
systems; normally we’ve used the grand canonical ensemble.26 How26See exercise 7.6 for more details

about the three ensembles and the four
types of statistics.

does the grand canonical ensemble apply to particles with Maxwell-
Boltzmann statistics? The grand partition function is a geometric se-
ries:2727Notice the unusual appearance of eex

in this formula.

ΞNI,MB =
∑
M

1
M !

(
ZNI,MB

M

)M

eMβµ =
∑
M

1
M !

(∑
k

e−βεk

)M

eMβµ

=
∑
M

1
M

(∑
k

e−β(εk−µ)

)M

=
∑
M

e
∑

k e−β(εk−µ)

=
∏
k

ee−β(εk−µ)
. (7.56)

The grand free energy is

ΦNI,MB = −kBT log ΞNI,MB = −kBT
∑

k

Φk (7.57)

with the single-particle grand free energy

Φk = −kBTe
−β(εk−µ). (7.58)
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Finally, the expected28 number of particles in a single-particle eigenstate
with energy ε is

〈n〉MB = −∂Φ
∂µ

= e−β(ε−µ). (7.60)

This is precisely the Boltzmann factor for filling the state that we expect
for non-interacting distinguishable particles.

7.6 Black Body Radiation and Bose Con-
densation

7.6.1 Free Particles in a Periodic Box

Fig. 7.6 The quantum states of a par-
ticle in a one-dimensional box with pe-
riodic boundary conditions are sine and
cosine waves ψn with n wavelengths in
the box, kn = 2πn/L. With a real box
(zero boundary conditions at the walls)
one would have only sine waves, but one
at every half-wavelength, kn = πn/L,
giving the same net density of states.

For this section and the next section on fermions, we shall simplify even
further. We consider particles which are not only non-interacting and
identical, but are also free. That is, they are subject to no external
potential, apart from being confined in a box of volume L3 = V with
periodic boundary conditions. The single-particle quantum eigenstates
of such a system are products of sine and cosine waves along the three
directions – for example, for any three non-negative integers ni,

ψ = (2/L)3/2 sin
(

2πn1

L
x

)
cos
(

2πn2

L
y

)
sin
(

2πn3

L
z

)
. (7.61)

There are eight such states with the same energy, substituting cos for
sin in all possible combinations along the three directions. These are
more conveniently organized if we use the complex exponential instead
of sine and cosine,

ψk = (1/L)3/2 exp(ik · r) (7.62)

with k = 2π
L (n1, n2, n3) and the ni can now be any integer.29 The 29The eight degenerate states are now

given by the choices of sign for the three
integers.

allowed single-particle eigenstates form a regular square grid in the space
of wavevectors k, with an average density (L/2π)3 per unit volume of
k-space.

Density of Plane Waves in k-space = V/8π3 (7.63)

For a large box volume V , the grid is extremely fine, and one can use
a continuum approximation that the number of states falling into a k-
space region is given by its volume times the density (equation 7.63).

k
x

k
y

k
y

k
z

Fig. 7.7 The allowed k-space points
for periodic boundary conditions form a
regular grid. The points of equal energy
lie on a sphere.

Basically, the continuum limit works because the shape of the box
(which affects the arrangements of the allowed k vectors) is irrelevant to
the physics so long as the box is large. For the same reason, the energy
of the single-particle eigenstates is independent of direction: it will be

28It is amusing to note that non-interacting particles fill single particle energy
states according to the same law

〈n〉 =
1

eβ(ε−µ) + c
, (7.59)

with c = −1 for bosons, c = 1 for fermions, and c = 0 for Maxwell-Boltzmann
statistics.
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proportional to |k| for massless photons, and proportional to k2 for
massive bosons and electrons (figure 7.7). This makes the calculations
in the following sections tractable.

7.6.2 Black Body Radiation

Our first application is to electromagnetic radiation. Electromagnetic
radiation has plane-wave modes similar to equation 7.62. Each plane-
wave travels at the speed of light c, so its frequency is ωk = c|k|. There
are two modes per wavevector k, one for each polarization. When one
quantizes the electromagnetic field, each mode becomes a quantum har-
monic oscillator.

Before quantum mechanics, people could not understand how electro-
magnetic radiation could come to equilibrium. The equipartition theo-
rem suggested that if you could come to equilibrium, each mode would
have kBT of energy. Since there are immensely more wavevectors in the
ultraviolet and X-ray ranges than in the infrared and visible, this pre-
dicts that when you open your oven door you’d get a sun tan or worse
(the so-called ultraviolet catastrophe). Simple experiments looking at
radiation emitted from pinholes in otherwise closed boxes held at fixed
temperature saw a spectrum which looked compatible with classical sta-
tistical mechanics for small frequency radiation, but was cut off at high
frequencies.

Let us calculate the equilibrium energy distribution inside our box at
temperature T . The number of single-particle plane-wave eigenstates
g(ω) dω in a small range dω is3030We’re going to be sloppy and use

g(ω) for photons to be eigenstates per
unit frequency, and g(ε) later for single-
particle eigenstates per unit energy =
�· frequency.

g(ω) dω = (4πk2)
(
d|k|
dω

dω

)(
2V

(2π)3

)
(7.64)

where the first term is the surface area of the sphere of radius k, the
second term is the thickness of the sphere for a small dω, and the last
is the density of single-particle plane-wave eigenstate wavevectors times
two (because there are two photon polarizations per wavevector). Know-
ing k2 = ω2/c2 and d|k|/dω = 1/c, we find the density of plane-wave
eigenstates per unit frequency

g(ω) =
V ω2

π2c3
. (7.65)

Now, the number of photons is not fixed: they can be created orFrequency ω
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Fig. 7.8 The Planck black-body
radiation power spectrum, with the
Rayleigh-Jeans approximation, valid
for low frequency ω.

destroyed, so their chemical potential µ is zero.31 Their energy εk = �ωk.
Finally, they are to an excellent approximation identical, non-interacting
bosons, so the number of photons per eigenstate with frequency ω is
〈n〉 = 1

e�ω/kB T−1
. This gives us a number of photons

(# of photons) dω =
g(ω)

e�ω/kBT − 1
dω (7.66)

31 We can also see this from the fact that photons are excitations within a harmonic
oscillator; in section 7.4 we noted that the excitations in a harmonic oscillator satisfy
Bose statistics with µ = 0.
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and an electromagnetic (photon) energy per unit volume u(ω) given by

V u(ω)dω =
�ωg(ω)

e�ω/kBT − 1
dω (7.67)

=
V �

π2c3
ω3 dω

e�ω/kBT − 1
.

This is Planck’s famous formula for black-body radiation.32 At low
frequencies, we can approximate e�ω/kBT−1 ≈ �ω/kBT , yielding the
Rayleigh-Jeans formula

V uRJ(ω)dω = V

(
kBT

π2c3

)
ω2 dω (7.68)

= kBTg(ω)

just as one would expect from equipartition: kBT per classical harmonic
oscillator.

For modes with frequencies high compared to kBT/�, equipartition
no longer holds. The energy gap �ω, just as for the low-temperature
specific heat from section 7.2, leads to an excitation probability that
is suppressed by the exponential Boltzmann factor e−�ω/kBT , as one
can see from equation 7.67 by approximating 1

e�ω/kB T −1
≈ e−�ω/kBT .

Planck’s discovery that quantizing the energy averted the ultraviolet
catastrophe was the origin of quantum mechanics, and led to his name
being given to �.

7.6.3 Bose Condensation

How does our calculation change when the non-interacting free bosons
cannot be created and destroyed? Let us assume that our bosons are
spinless, have mass m, and are non-relativistic so their energy is ε =
p2/2m = −�2∇2/2m. If we put them in our box with periodic bound-
ary conditions, we can make the same continuum approximation to the
density of states as we did in the case of black-body radiation. In equa-
tion 7.63, the number of plane-wave eigenstates per unit volume in k-
space is V/8π3, so the density in momentum space p = �k is V/(2π�)3.
For our massive particles dε/d|p| = |p|/m =

√
2ε/m, so the number of

32Why is this called black body radiation? A black surface absorbs all radiation
at all frequencies. In equilibrium, the energy it absorbs at a given frequency must
equal the energy it emits, otherwise it would push the system out of equilibrium.
(This is called detailed balance, section 8.3.) Since the emission at a surface is largely
independent of the impinging energy, a black body emits a thermal distribution of
photons, equation 7.67.

c©James P. Sethna, April 19, 2005 Entropy, Order Parameters, and Complexity



130 Quantum Statistical Mechanics

plane-wave eigenstates in a small range of energy dε is

g(ε)dε = (4πp2)
(
d|p|
dε

dε

)(
V

(2π�)3

)
= (4π(2mε))

(√
m

2ε
dε

)(
V

(2π�)3

)
=

V m3/2

√
2π2�3

√
ε dε. (7.69)

where the first term is the surface area of the sphere in p space, the
second is the thickness of the sphere, and the third is the density of
plane-wave eigenstates per unit volume in p-space.

Now, we fill each of these single-particle plane-wave eigenstates with
an expected number given by the Bose-Einstein distribution at chemical
potential µ, 1/(e(ε−µ)/kBT − 1), so the total number of particles N must
be given by

N(µ) =
∫ ∞

0

g(ε)
e(ε−µ)/kBT − 1

dε. (7.70)

We must vary µ in this equation to give us the correct number of
particles N . For larger numbers of particles we raise µ, forcing more
particles into each of the single-particle states. There is a limit, however,
to how hard we can push. As we noted in section 7.4, µ cannot be as
large than the lowest single-particle eigenvalue, because at that point
that state gets a diverging number of particles. However, for free bosons
in three dimensions, the integral for N(µ) converges to a finite value.3333At µ = 0, the denominator of the

integrand in equation 7.70 is approxi-
mately ε/kBT for small ε, but the nu-
merator goes as

√
ε, so the integral con-

verges at the lower end:
∫ X
0 ε−

1/2 ∼
1/2ε

1/2 |X0 =
√
X/2.

Thus the largest number of particles N cont
max we can fit into our box

within our continuum approximation for the density of states is the
value of equation 7.70 at µ = 0,34

34The ζ function ζ(s) =
1

(s−1)!

∫∞
0

zs−1

es−1
ds is famous be-

cause it is related to the distribution
of prime numbers, because it is the
subject of the famous unproven Rie-
mann hypothesis (about its zeros in
the complex plane), and because the
values in certain regions form excellent
random numbers.

N cont
max =

∫
g(ε)

eε/kBT − 1
dε. (7.71)

=
V m3/2

√
2π2�3

∫ ∞

0

dε

√
ε

eε/kBT − 1

= V

(√
2πmkBT

h

)3
2√
π

∫ ∞

0

√
z

ez − 1
dz

=
(
V

λ3

)
ζ(3/2).

where ζ is the Riemann zeta function, with ζ(3/2) ≈ 2.612, and where
λ = h/

√
2πmkBT is the thermal de Broglie wavelength we saw first in

the canonical ensemble of the ideal gas, equation 3.63.35 Thus something35This formula has an elegant interpre-
tation: the quantum statistics of the
particles begin to dominate the behav-
ior when they are within a thermal de
Broglie wavelength of one another.

new has to happen at a critical density

N cont
max

V
=
ζ(3/2)
λ3

=
2.612 particles

deBroglie volume
. (7.72)

What happens when we try to cram more particles in? What hap-
pens is that our approximation of the distribution of eigenstates as a
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continuum breaks down. Figure 7.9 shows a schematic of the first few
single-particle eigenvalues. When the distance between µ and the bot-
tom level becomes significantly smaller than the distance between the
bottom and the next level, the continuum approximation (which roughly
treats the single state ε0 as the integral halfway to ε1) becomes qualita-
tively wrong. This lowest state absorbs all the extra particles added to
the system beyond N cont

max .36 This is called Bose-Einstein condensation. 36The next few states have quantitative
corrections, but the continuum approx-
imation is only off by small factors.

Usually, one doesn’t add particles at fixed temperature, one lowers
the temperature at fixed density N/V , where Bose condensation occurs
at temperature

kBT
BEC
c =

h2

2πm

(
N

V ζ(3/2)

)2/3

. (7.73)

Bose condensation was first accomplished experimentally in 1995 (see
exercise 7.11).

µε

ε

0

1

Fig. 7.9 Bose condensation: the chem-
ical potential µ is so close to the ground
state energy ε0 that the continuum ap-
proximation to the density of states
breaks down. The ground state is
macroscopically occupied (that is, filled
by a non-zero fraction of the total num-
ber of particles N).

Bose condensation has also long been considered the underlying prin-
ciple behind superfluidity.37 Liquid He4 undergoes an unusual transi-

37The connection is deep. The den-
sity matrix of a superfluid has an un-
usual property, called off-diagonal long-
range-order, which is also found in the
Bose condensate (see exercise 9.7).

tion at about 2.176K to a state without viscosity: it will swirl round
a circular tube for as long as your refrigeration lasts. The quantitative
study of the superfluid transition involves the interactions between the
helium atoms, and uses the scaling methods we’ll introduce in chap-
ter 12. But it’s interesting to note that the Bose condensation temper-
ature for liquid He4 (with m = 6.65× 10−24gm and volume per particle
V/N = 27.6 cm/mole) is 3.13K: quite close to the superfluid transition
temperature.

7.7 Metals and the Fermi Gas

Fig. 7.10 The Fermi surface for
lithium, from [22]. The Fermi energy
for lithium is 4.74 eV, with one con-
duction electron outside a He closed
shell. Note that for most metals the
Fermi energy is much larger than kB

times the melting point (εF =4.74 eV =
55,000 K, and the melting point is 453
K). Hence they are well described by
the T = 0 Fermi surfaces here, slightly
smeared by the Fermi function shown
in figure 7.5.

We claimed in section 7.4 that many systems of strongly-interacting
fermions (metals, neutron stars, nuclei) are surprisingly well described
by a model of non-interacting fermions. Let’s solve for the properties of
N free non-interacting fermions in a box.

Let our particles be non-relativistic and spin 1/2. The single-particle
eigenstates are the same as those for bosons except that there are two
states (spin up, spin down) per plane wave. Hence the density of states
is given by twice that of equation 7.69:

g(ε) =
√

2V m3/2

π2�3

√
ε. (7.74)

The number of fermions at chemical potential µ is given by integrating
g(ε) times the expected number of fermions in a state of energy ε, given
by the Fermi function f(ε) of equation 7.47:

N(µ) =
∫ ∞

0

g(ε)f(ε) dε =
∫ ∞

0

g(ε)
e(ε−µ)/kBT + 1

dε. (7.75)

What chemical potential will give us N fermions? At non-zero temper-
ature, one must do a self-consistent calculation, but at T = 0 one can find
N by counting the number of states below µ. In the zero-temperature
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limit (figure 7.5) the Fermi function is a step function f(ε) = Θ(µ− ε);
all states below µ are filled, and all states above µ are empty. The zero-
temperature value of the chemical potential is called the Fermi energy
εF . We can find the number of fermions by integrating up to µ = εF :

N =
∫ εF

0

g(ε) dε =
√

2m3/2

π2�3
V

∫ εF

0

√
ε dε =

(2εFm)3/2

3π2�3
V. (7.76)

This formula becomes easier to understand if we realize that we’re filling
all states with wavevector k < kF , where the Fermi wavevector kF is
the length of the wavevector whose eigenenergy equals the Fermi energy:
�k2

F /2m = p2
F /2m = εF , so kF =

√
2εFm/�. The resulting sphere of

occupied states at T = 0 is called the Fermi sphere. The number of
fermions inside the Fermi sphere is thus

N =
kF

3

3π2
=
(
4/3πkF

3V
)( 2V

(2π)3

)
(7.77)

the k-space volume of the Fermi sphere times the k-space density of
states. Knowing the total number of electrons N in volume V at T = 0
thus tells us kF , and hence εF and the chemical potential µ.

We mentioned earlier that the independent fermion approximation
was startlingly useful even though the interactions are not small. Ignor-
ing the Coulomb repulsion between electrons in a metal, or the strong
interaction between neutrons in a neutron star, gives an excellent de-
scription of their actual behavior. Our calculation above, though also
assumed that the electrons are free particles, experiencing no external
potential. This approximation isn’t particularly accurate in general: the
interactions with the atomic nuclei are important, and is primarily what
makes one material different from another. In particular, the atoms in a
crystal will form a periodic potential for the electrons. Rather than using
the Coulomb potential for the nucleus, a better approximation is given
by incorporating the effects of the inner shell electrons into the periodic
potential, and filling the Fermi sea with the remaining conduction elec-
trons. One can show that the single-particle eigenstates in a periodic

Fig. 7.11 The Fermi surface for
aluminum, also from [22]. Aluminum
has a Fermi energy of 11.7 eV, with
three conduction electrons outside a Ne
closed shell.

potential can be chosen to be periodic functions times plane waves (equa-
tion 7.62) of exactly the same wave-vectors as in the free fermion case.
The filling of the Fermi surface in the resulting k-space described here
is changed only insofar as the energies of these single-particle states is
no longer isotropic. Some metals (particularly the alkali metals, like
lithium in figure 7.10) have roughly spherical Fermi surfaces; many (like
aluminum in figure 7.11) are quite intricate, with several pieces to them
(reference [8, Ch. 9-11]).

Exercises
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(7.1) Phase Space Units and the Zero of Entropy.
(Quantum)

In classical mechanics, the entropy S = kB log Ω goes
to minus infinity as the temperature is lowered to zero;
in quantum mechanics the entropy per particle goes to
zero,38 because states are quantized and the ground state
is the only one populated. This is Nernst’s theorem, the
third law of thermodynamics.

The classical phase-space volume Ω has units of
((momentum)×(distance))3N . It’s a little perverse to
take the logarithm of a quantity with units. The obvi-
ous candidate with these dimensions is Planck’s constant
h3N : if we measure phase-space volume in units of h per
dimension, Ω will be dimensionless. Of course, the correct
dimension could be a constant times h, like �. . .

(a) Arbitrary zero of the classical entropy. Show
that the width of the energy shell dE in the definition of
the entropy does not change the classical entropy per par-
ticle S/N . Show that the choice of units in phase space
does changes the classical entropy per particle.

We need to choose the units of classical phase–space
volume so that the entropy agrees with the high–
temperature entropy for the quantum systems. That is,
we need to find out how many quantum eigenstates per
unit volume of classical phase space we should expect at
high energies. We can fix these units by explicitly match-
ing the quantum result to the classical one for a particular
system. Let’s start with a free particle.

(b) Phase–space density of states for a particle in
a one-dimensional box. Show, or note, that the quan-
tum momentum–space density of states for a free quan-
tum particle in a one–dimensional box of length L with
periodic boundary conditions is L/h. Draw a picture of
the classical phase space of this box (p, x), and draw a
rectangle of length L for each quantum eigenstate. Is the
phase-space area per eigenstate equal to h, as we assumed
in 3.5?

This works also for N particles in a three–dimensional
box.

(c) Phase–space density of states for N particles
in a box. Show that the density of states for N free par-
ticles in a cubical box of volume V with periodic boundary
conditions is V N/h3N , and hence that the phase–space
volume per state is h3N .

Can we be sure that the answer is independent of which
system we use to match? Let’s see if it also works for the
harmonic oscillator.

(d) Phase–space density of states for a harmonic
oscillator. Consider a harmonic oscillator with Hamil-
tonian H = p2/2m + 1/2mω

2q2. Draw a picture of the
energy surface with energy E, and find the volume (area)
of phase space enclosed. (Hint: the area of an ellipse is
πr1r2 where r1 and r2 are the largest and smallest radii,
corresponding to the major and minor axes.) What is
the volume per energy state, the volume between En and
En+1, for the eigenenergies En = (n+ 1/2)�ω?

Why must these two calculations agree? How can we
derive this result in general, even for nasty systems of
interacting particles? The two traditional methods for
directly calculating the phase–space units in general sys-
tems – semiclassical quantization [56, ch. 48, p. 170]
and the path–integral formulation of quantum statistical
mechanics [31] – would be too distracting to present here.

Upon some thought, we realize that one cannot choose
different units for the classical phase–space volume for
different systems. They all must agree, because one can
transform one into another. Consider N interacting par-
ticles in a box, at high temperatures where classical sta-
tistical mechanics is valid. Imagine slowly and reversibly
turning off the interactions between the particles (making
them into our ideal gas). We carefully remain at high tem-
peratures, and measure the entropy flow into or out of the
system. The entropy difference will be given by classical
statistical mechanics, whatever units one wishes to choose
for the phase–space volume. The entropy of the interac-
ting system is thus the entropy of the ideal gas (with
volume h per state) plus the classical entropy change –
hence also must use the same phase–space units.39

(7.2) Does Entropy Increase in Quantum Sys-
tems? (Mathematics, Quantum)

We saw in exercise 5.4 that in classical Hamilto-
nian systems the non-equilibrium entropy Snonequil =
−kB

∫
ρ log ρ is constant in a classical mechanical Hamil-

tonian system. We’ll show here that it is constant also in
a closed quantum Hamiltonian system.

A general ensemble in a quantum system is described by
the density matrix ρ. In most of statistical mechanics,

38If the ground state is degenerate, the entropy doesn’t go to zero, but it typically
stays finite as the number of particles N gets big, so for large N the entropy per
particle goes to zero.

39In particular, if we cool the interacting system to zero temperature and remain in
equilibrium, reaching the ground state, that its entropy will go to zero – the entropy
flow out of the system on cooling is given by our classical formula with phase-space
volume measured in units of h.
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ρ is diagonal when we use a basis of energy eigenstates.
Here, since each energy eigenstate is time independent
except for a phase, any mixture of energy eigenstates will
have a constant density matrix, and so will have a con-
stant entropy.

(a) Entropy is Constant: Mixtures of Energy
Eigenstates. Prove that if ρ is a density matrix diagonal
in the basis of energy eigenstates, that ρ is time indepen-
dent. Hence, conclude that the entropy S = Trρ log ρ is
time-independent

Thus, not only are the microcanonical and canonical en-
sembles time independent, but mixing energy eigenstates
in any ratio would be time independent. To justify equi-
libration in quantum systems, one must couple the sys-
tem to the outside world and induce transitions between
eigenstates.

In the particular case of the entropy, the entropy is
time independent even for general, time-dependent den-
sity matrices.

(b) Entropy is Constant: General Density Matri-
ces. Prove that S = Tr (ρ log ρ) is time-independent,
where ρ is any density matrix. (Hint: Show that
Tr(ABC) = Tr(CAB) for any matrices A, B, and C.
Also you should know that an operator M commutes with
any function f(M).)

(7.3) Phonons on a String. (Quantum)

One-dimensional Phonons. A nano-string of length L
with mass per unit length µ under tension τ has a ver-
tical, transverse displacement u(x, t). The kinetic energy
density is (µ/2)(∂u/∂t)2 and the potential energy density
is (τ/2)(∂u/∂x)2.

Write the kinetic energy and the potential energy in new
variables, changing from u(x, t) to normal modes qk(t)
with u(x, t) =

∑
n qkn(t) sin(knx), kn = nπ/L. Show in

these variables that the system is a sum of decoupled har-
monic oscillators. Calculate the density of states per unit
frequency g(ω), the number of normal modes in a fre-
quency range (ω, ω+ ε) divided by ε, keeping ε large com-
pared to the spacing between modes.40 Calculate the spe-
cific heat of the string c(T ) per unit length in the limit
L → ∞, treating the oscillators quantum mechanically.
What is the specific heat of the classical string?

(7.4) Crystal Defects. (Quantum, Basic)

Defects in Crystals. A defect in a crystal has one on-
center configuration with energy zero, and M off-center

configurations with energy ε, with no significant quan-
tum tunneling between the states. The Hamiltonian can
be approximated by the (M + 1)× (M + 1) matrix

H =

0 0 0 · · ·
0 ε 0 · · ·
0 0 ε · · ·

 (7.78)

There are N defects in the crystal, which can be assumed
stuck in position (and hence distinguishable) and assumed
not to interact with one another.

Write the canonical partition function Z(T ), the mean
energy E(T ), the fluctuations in the energy, the entropy
S(T ), and the specific heat C(T ) as a function of tempera-
ture. Plot the specific heat per defect C(T )/N for M = 6;
set the unit of energy equal to ε and kB = 1 for your plot.
Derive a simple relation between M and the change in
entropy between zero and infinite temperature. Check this
relation using your formula for S(T ).

(7.5) Density Matrices. (Quantum)

(a) Density matrices for photons. Write the den-
sity matrix for a photon linearly traveling along z and
linearly polarized along x̂, in the basis where (1, 0) and
(0, 1) are polarized along x̂ and ŷ. Write the density ma-
trix for a right-handed polarized photon, (1/

√
2, i/
√

2),
and the density matrix for unpolarized light. Calculate
Tr(ρ), Tr(ρ2), and S = −kBTr(ρ log ρ). Interpret the
values of the three traces physically: one is a check for
pure states, one is a measure of information, and one is
a normalization.

(b) Density matrices for a spin.(Adapted from
Halperin’s course, 1976.) Let the Hamiltonian for a spin
be

H = −�
2
B · �̂σ (7.79)

where �̂σ = (σx, σy, σz) are the three Pauli spin matrices,
and B may be interpreted as a magnetic field, in units
where the gyromagnetic ratio is unity. Remember that
σiσj − σjσi = 2iεijkσk. Show that any 2× 2 density ma-
trix may be written in the form

ρ = 1/2(1 + p · �̂σ). (7.80)

Show that the equations of motion for the density matrix
i�∂ρ/∂t = [H,ρ] can be written as dp/dt = −B× p.

40This is the density of single–particle eigenstates per unit frequency. In exer-
cise 7.11 we’ll study the density of many-body energy eigenstates g(E) in a trap with
precisely three frequencies (where our g(ω) would be = δ(ω − ω0) + 2δ(ω − ω1)).
Don’t confuse the two.

To be pub. Oxford UP, ∼Fall’05 www.physics.cornell.edu/sethna/StatMech/



7.7 Metals and the Fermi Gas 135

(7.6) Ensembles and Statistics: 3 Particles, 2 Lev-
els. (Quantum)

A system has two single-particle eigenfunctions, with en-
ergies (measured in degrees Kelvin) E0/kB = −10 and
E2/kB = 10. Experiments are performed by adding three
non-interacting particles to these two states, either iden-
tical spin 1/2 fermions, identical spinless bosons, distin-
guishable particles, or spinless identical particles obey-
ing Maxwell-Boltzmann statistics. Please make a table
for this exercise, giving your answers for the four cases
(Fermi, Bose, Dist., and MB) for each of the three parts.
Calculations may be needed, but only the answers will be
graded.
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(a) The system is first held at constant energy. In fig-
ure 7.12 which curve represents the entropy of the fer-
mions as a function of the energy? Bosons? Distinguish-
able particles? Maxwell-Boltzmann particles?
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Fig. 7.13

(b) The system is now held at constant temperature. In
figure 7.13 which curve represents the mean energy of the

fermions as a function of temperature? Bosons? Distin-
guishable particles? Maxwell-Boltzmann particles?
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Fig. 7.14

(c) The system is now held at constant temperature, with
chemical potential set to hold the average number of par-
ticles equal to three. In figure 7.14, which curve repre-
sents the chemical potential of the fermions as a func-
tion of temperature? Bosons? Distinguishable? Maxwell-
Boltzmann?

(7.7) Bosons are Gregarious: Superfluids and
Lasers (Quantum)

Many experiments insert a new particle into a many–body
state: new electrons into a metal, new electrons or elec-
tron pairs into a superconductor, new bosonic atoms into
a superfluid, new photons into a cavity already filled with
light. These experiments explore how the “bare” inserted
particle decomposes into the natural states of the many–
body system. The cases of photons and bosons illustrate
a key connection between laser physics and Bose conden-
sates.

Adding a particle to a Bose condensate. Suppose
we have a non–interacting system of bosonic atoms in a
box with single–particle eigenstates ψn. Suppose the sys-
tem begins in a Bose condensed state with all N bosons
in a state ψ0, so

Ψ
[0]
N (r1, . . . , rN ) = ψ0(r1) . . . ψ0(rN ) (7.81)

Suppose a new particle is gently injected into the sys-
tem, into an equal superposition of the M lowest single–
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particle states.41 That is, if it were injected into an empty
box, it would start in state

φ(rN+1) =
1√
M

(
ψ0(rN+1) + ψ1(rN+1) (7.82)

+ · · ·+ ψM−1(rN+1)
)

The state Φ(r1, . . . rN+1) after the particle is inserted into
the non–interacting Bose condensate is given by sym-
metrizing the product function Ψ

[0]
N (r1, . . . , rN )φ(rN+1)

(equation 7.29).

(a) Calculate the symmetrized initial state of the system
with the injected particle. Show that the ratio of the prob-
ability that the new boson enters the ground state (ψ0) is
enhanced over that of its entering an empty state (ψm for
0 < m < M) by a factor N + 1. (Hint: first do it for
N = 1.)

So, if a macroscopic number of bosons are in one single–
particle eigenstate, a new particle will be much more
likely to add itself to this state than to any of the mi-
croscopically populated states.

Notice that nothing in your analysis depended on ψ0 be-
ing the lowest energy state. If we started with a macro-
scopic number of particles in a single–particle state with
wave-vector k (that is, a superfluid with a supercurrent
in direction k), new added particles, or particles scat-
tered by inhomogeneities, will preferentially enter into
that state. This is an alternative approach to understand-
ing the persistence of supercurrents, complementary to
the topological approach (exercise 9.4).

Adding a photon to a laser beam. In part (a), we
saw that adding a boson to a single–particle eigenstate
with N existing bosons has a probability which is larger
by a factor N +1 than adding a boson to an empty state.
This chummy behavior between bosons is also the princi-
ple behind lasers.42 If we think of an atom in an excited
state, the photon it emits during its decay will prefer to
join the laser beam than to go off into one of its other
available modes. In this factor N + 1, the N represents
stimulated emission, where the existing electromagnetic
field pulls out the energy from the excited atom, and the
1 represents spontaneous emission which occurs even in
the absence of existing photons.

Imagine a single atom in an state with excitation energy
energy E and decay rate Γ, in a cubical box of volume V

with periodic boundary conditions for the photons. By
the energy–time uncertainty principle, 〈∆E∆t〉 ≥ �/2
the energy of the atom will be uncertain by an amount
∆E ∝ �Γ. Assume for simplicity that, in a cubical box
without pre–existing photons, the atom would decay at
an equal rate into any mode in the range E − �Γ/2 <
�ω < E + �Γ/2.

(b) Assuming a large box and a small decay rate Γ, find
a formula for the number of modes M per unit volume V
competing for the photon emitted from our atom. Evalu-
ate your formula for a laser with wavelength λ = 619 nm
and the line-width Γ = 104 radians/sec. (Hint: use the
density of states, equation 7.65.)

Assume the laser is already in operation, so there are N
photons in the volume V of the lasing material, all in one
plane–wave state (a single–mode laser).

(c) Using your result from part (a), give a formula for
the number of photons per unit volume N/V there must
be in the lasing mode for the atom to have 50% likelihood
of emitting into that mode.

The main task in setting up a laser is providing a popu-
lation of excited atoms! Amplification can occur if there
is a population inversion, where the number of excited
atoms is larger than the number of atoms in the lower
energy state (clearly a non-equilibrium condition). This
is made possible by pumping atoms in to the excited state
by using one or two other single–particle eigenstates.

(7.8) Einstein’s A and B (Quantum, Mathematics)

Einstein deduced some basic facts about the interaction of
light with matter very early in the development of quan-
tum mechanics, by using statistical mechanics! In par-
ticular, he established that stimulated emission was de-
manded for statistical mechanical consistency, and found
formulas determining the relative rates of absorption,
spontaneous emission, and stimulated emission. (See [89,
I.42-5]).

Consider a system consisting of non-interacting atoms
weakly coupled to photons (electromagnetic radiation),
in equilibrium at temperature kBT = 1/β. The atoms
have two energy eigenstates E1 and E2 with average pop-
ulations N1 and N2: the relative population is given as

41For free particles in a cubical box of volume V , injecting a particle at the origin
φ(r) = δ(r) would be a superposition of all plane–wave states of equal weight, δ(r) =
1
V

∑
k e

ik·x, appendix A. (In second–quantized notation, a†(x = 0) = 1
V

∑
k a
†
k.)

So, we “gently” add a particle at the origin by restricting this sum to low energy
states. This is how quantum tunneling into condensed states (say, from Josephson
junctions or scanning tunneling microscopes) is usually modeled.

42Laser is an acronym for Light Amplification by the Stimulated Emission of Ra-
diation.
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usual by the Boltzmann distribution〈
N2

N1

〉
= e−β(E2−E1). (7.83)

The energy density in the electromagnetic field is given
by the Planck distribution (equation 7.67):

u(ω) =
�

π2c3
ω3

eβ�ω − 1
. (7.84)

An atom in the ground state will absorb electromag-
netic energy from the photons at a rate that is propor-
tional to the energy density u(ω) at the excitation energy
�ω = E2 − E1. Let us define this absorption rate per
atom to be 2πBu(ω).43

An atom in the excited state E2, with no electromagnetic
stimulation, will decay into the ground state with a rate
A, emitting a photon. Einstein noted that neither A nor
B should depend upon temperature.

Einstein argued that just these two rates would lead to
an inconsistency.

(a) Compute the long–time average ratio N2/N1 assum-
ing only absorption and spontaneous emission. Even in
the limit of weak coupling (small A and B), show that this
equation is incompatible with the statistical distributions
[7.83] and [7.84]. (Hint: Write a formula for dN1/dt,
and set it equal to zero. Is B/A temperature indepen-
dent?)

Einstein fixed this by introducing stimulated emission.
Roughly speaking, an atom experiencing an oscillating
electromagnetic field is more likely to emit photons into
that mode. Einstein found that the stimulated emission
rate had to be a constant 2πB′ times the energy density
u(ω).

(b) Write the equation for dN1/dt, including absorption
(a negative term) and spontaneous and stimulated emis-
sion from the population N2. Assuming equilibrium, use
this equation and equations 7.83 and 7.84 to solve for B,
and B′ in terms of A. These are generally termed the
Einstein A and B coefficients.

Let’s express the stimulated emission rate in terms of the
number of excited photons per mode (see exercise 7.7b
for an alternative derivation).

(c) Show that the rate of decay of excited atoms A +
2πB′u(ω) is enhanced by a factor of 〈n〉+1 over the zero

temperature rate, where 〈n〉 is the expected number of pho-
tons in a mode at frequency �ω = E2 − E1.

(7.9) Phonons and Photons are Bosons. (Quantum)

Phonons and photons are the elementary, harmonic ex-
citations of the elastic and electromagnetic fields. We’ve
seen in 7.3 that phonons are decoupled harmonic oscilla-
tors, with a distribution of frequencies ω. A similar anal-
ysis shows that the Hamiltonian of the electromagnetic
field can be decomposed into harmonic normal modes
called photons.

This exercise will explain why we think of phonons and
photons as particles, instead of excitations of harmonic
modes.

(a) Show that the canonical partition function for a quan-
tum harmonic oscillator of frequency ω is the same as the
grand canonical partition function for bosons multiply fill-
ing a single state with energy �ω, with µ = 0, up to a shift
in the arbitrary zero of the total energy of the system.

The Boltzmann filling of a harmonic oscillator is there-
fore the same as the Bose-Einstein filling of bosons into
a single quantum state, except for an extra shift in the
energy of �ω/2. This extra shift is called the zero point
energy. The excitations within the harmonic oscillator
are thus often considered particles with Bose statistics:
the nth excitation is n bosons occupying the oscillators
quantum state.

This particle analogy becomes even more compelling for
systems like phonons and photons where there are many
harmonic oscillator states labeled by a wavevector k (see
exercise 7.3). Real, massive bose particles like He4 in
free space have single–particle quantum eigenstates with
a dispersion relation εk = �2k2/2m. Phonons and pho-
tons have one harmonic oscillator for every k, with an ex-
citation energy εk = �ωk. If we treat them, as in part (a),
as bosons filling these as single-particle states we find that
they are completely analogous to ordinary massive par-
ticles. The only difference is that the relation between
energy and wave-vector (called the dispersion relation) is
different: for photons, εk = �ωk = �c|k|.44
(b) Do phonons or photons Bose condense at low tem-
peratures? Can you see why not? Can you think of a

43The literature uses ucycles(f) where f = ω/2π is in cycles per second, and has
no factor of 2π. Since ucycles(f)df = u(ω)dω, the absorption rate Bucycles(f) =
Bu(ω)dω/df = 2πBu(ω).

44If massive particles are moving fast, their energies are ε =
√
m2c4 − p2c2. This

formula reduces to p2/2m + mc2 = �2k2/2m + mc2 if the kinetic energy is small
compared to the rest mass mc2. For massless particles, ε = |b|c = �|k|c, precisely
the relation we find for photons (and for phonons at low frequencies). So actually
even the dispersion relation is the same: photons and phonons are massless bosons.
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non–equilibrium Bose condensation of photons, where a
macroscopic occupation of a single frequency and momen-
tum state occurs?

Be careful not to get confused when we put real, mas-
sive bosons into a harmonic oscillator potential (exercise
7.11). There it is best to think of each harmonic oscilla-
tor as being many separate eigenstates being filled by the
atoms.

(7.10) Bose Condensation in a Band. (Basic, Quan-
tum)

The density of states g(E) of a system of non-interacting
bosons forms a band: the single-particle eigenstates are
confined to an energy range Emin < E < Emax, so g(E)
is non-zero in this range and zero otherwise. The sys-
tem is filled with a finite density of bosons. Which of
the following is necessary for the system to undergo Bose
condensation at low temperatures?

(a) g(E)/(eβ(E−Emin) + 1) is finite as E → E−min.

(b) g(E)/(eβ(E−Emin) − 1) is finite as E → E−min.

(c) Emin ≥ 0.

(d)
∫ E

Emin
g(E′)/(E′ −Emin) dE′ is a convergent integral

at the lower limit Emin.

(e) Bose condensation cannot occur in a system whose
states are confined to an energy band.

(7.11) Bose Condensation in a Parabolic Potential.
(Quantum)
45

Wieman and Cornell in 1995 were able to get a dilute gas
of rubidium-87 atoms to Bose condense [4].

(a) Is rubidium-87 (37 protons and electrons, 50 neu-
trons) a boson or a fermion?

(b) At their quoted maximum number density of 2.5 ×
1012/cm3, at what temperature T predict

c do you expect the
onset of Bose condensation in free space? They claim
that they found Bose condensation starting at a temper-
ature of Tmeasured

c = 170nK. Is that above or below your
estimate? (Useful constants: h = 6.6262 × 10−27 erg
sec, mn ∼ mp = 1.6726× 10−24 gm, kB = 1.3807× 10−16

erg/K.)

The trap had an effective potential energy that was har-
monic in the three directions, but anisotropic with cylin-
drical symmetry. The frequency along the cylindrical axis
was f0 =120Hz so ω0 ∼ 750Hz, and the two other fre-
quencies were smaller by a factor of

√
8: ω1 ∼ 265Hz.

The Bose condensation was observed by abruptly remov-
ing the trap potential,46 and letting the gas atoms spread
out: the spreading cloud was imaged 60ms later by shin-
ing a laser on them and using a CCD to image the shadow.

For your convenience, the ground state of a parti-
cle of mass m in a one-dimensional harmonic oscilla-
tor with frequency ω is ψ0(x) =

(
mω
π�

)1/4
e−mωx2/2� ,

and the momentum-space wave function is ψ̃0(k) =(
�

πmω

)1/4
e−�k2/2mω .

(c) What is the ground-state wave-function for one
rubidium-87 atom in this potential? What is the wave-
function in momentum space? The probability distribu-
tion of the momentum? What is the ratio of the velocity
widths along the axis and perpendicular to the axis for
the ground state? For the classical thermal distribution
of velocities? If the potential is abruptly removed, what
will the shape of the distribution of positions look like
60ms later, (ignoring the small width of the initial dis-
tribution in space)? Compare your predicted anisotropy
to the false-color images above. If the x axis goes mostly
right and a bit up, and the y axis goes mostly up and a
bit left, which axis corresponds to the axial frequency and
which corresponds to one of the two lower frequencies?

Their Bose condensation isn’t in free space: the atoms
are in a harmonic oscillator potential. In the calculation
in free space, we approximated the quantum states as a
continuum density of states g(E). That’s only sensible
if kBT is large compared to the level spacing near the
ground state.

(d) Compare �ω to kBT at the Bose condensation point
Tmeasured

c in their experiment.

For bosons in a one-dimensional harmonic oscillator of
frequency ω0, it’s clear that g(E) = 1/(�ω0): the number
of states in a small range ∆E is the number of �ω0’s it
contains.

(e) Compute the density of states

g(E) =

∫ ∞
0

dε1dε2dε3 g1(ε1)g2(ε2)g3(ε3)

δ (E − (ε1 + ε2 + ε3)) (7.85)

for a three-dimensional harmonic oscillator, with one fre-
quency ω0 and two of frequency ω1. Show that it’s equal
to 1/∆ times the number of states in �ε space between en-
ergies E and E + ∆. Why is this triangular slab not of
thickness ∆?

45“Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor”, M.H.
Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell, Science
269, 198 (1995). http://jilawww.colorado.edu/bec/.

46Actually, they first slowly reduced it by a factor of 75 and then abruptly reduced
it from there; I’m not sure why, but let’s ignore that complication.

To be pub. Oxford UP, ∼Fall’05 www.physics.cornell.edu/sethna/StatMech/



7.7 Metals and the Fermi Gas 139

Fig. 7.15 Bose-Einstein Condensation at 400, 200, and 50 nano-Kelvin, from
reference [4]. The pictures are spatial distributions 60ms after the potential is re-
moved; the field of view of each image is 200µm×270µm. The left picture is roughly
spherically symmetric, and is taken before Bose condensation; the middle has an el-
liptical Bose condensate superimposed on the spherical thermal background; the right
picture is nearly pure condensate. I believe this may not be the same experiment as
described in their original paper.

Their experiment has N = 2 × 104 atoms in the trap as
it condenses.

(f) By working in analogy with the calculation in free
space, find the maximum number of atoms that can oc-
cupy the three-dimensional harmonic oscillator potential
in part (e) without Bose condensation at temperature
T . (You’ll want to know

∫∞
0
z2/(ez − 1) dz = 2 ζ(3) =

2.40411.) According to your calculation, at what temper-
ature THO

c should the real experimental trap have Bose
condensed?

(7.12) Light Emission and Absorption. (Quantum,
Basic)

The experiment that Planck was studying did not di-
rectly measure the energy density per unit frequency,
equation 7.67 inside a box. It measured the energy ra-
diating out of a small hole, of area A. Let us assume the
hole is on the upper face of the cavity, perpendicular to
the z axis.

What is the photon distribution just inside the boundary
of the hole? Clearly there are few photons coming into
the hole from the outside, so the distribution is depleted
for those photons with vz < 0. However, the photons
with vz > 0 to an excellent approximation should be un-
affected by the hole – since they were emitted from far

distant walls of the cavity, where the existence of the hole
is a negligible perturbation. So, presuming the relevant
photons just inside the hole are distributed in the same
way as in the box as a whole (equation 7.67), how many
leave in a time dt?

c dt

Fig. 7.16 The photons leaving a cavity in a time dt are those
within vzdt of the hole.

As one can see geometrically (figure 7.16), those pho-
tons within vzdt of the boundary will escape in time dt.
The vertical velocity vz = c cos(θ), where θ is the photon
velocity angle with respect to the vertical. The Planck
distribution is isotropic, so the probability that a photon
will be moving at an angle θ is the perimeter of the θ
circle on the sphere divided by the area of the sphere,
2π sin(θ) dθ

4π
= 1/2 sin(θ) dθ.
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(a) Show that the probability density47 ρ(vz) for a par-
ticular photon to have velocity vz is independent of vz in
the range (−c, c), and thus is 1

2c
. (Hint: ρ(vz)∆vz =

ρ(θ)∆θ.)

Clearly, an upper bound on the energy emitted from a
hole of area A is given by the energy in the box as a
whole (eq. 7.67) times the fraction Ac dt

V
of the volume

within c dt of the hole.

(b) Show that the actual energy emitted is 1/4 of
this upper bound. (Hint: You’ll need to integrate∫ c

0
ρ(vz)vz dvz.)

Hence the power per unit area emitted from the small
hole in equilibrium is

Pblack(ω, T ) =
( c

4

) �
π2c3

ω3 dω

e�ω/kBT − 1
. (7.86)

Why is this called black–body radiation? Certainly a
small hole in a large (cold) cavity looks black – any light
entering the hole bounces around inside until it is ab-
sorbed by the walls. Suppose we placed a black object –
a material that absorbed radiation at all frequencies and
angles – capping the hole. This object would absorb radi-
ation from the cavity, rising in temperature until it came
to equilibrium with the cavity – emitting just as much
radiation as it absorbs. Thus the overall power per unit
area emitted by our black object in equilibrium at a given
temperature must equal that of the hole. This must also
be true if we place a selective filter between the hole and
our black body, passing through only particular types of
photons. Thus the emission and absorption of our black
body must agree with the hole for every photon mode in-
dividually, an example of the principle of detailed balance
we will discuss in more detail in section 8.3.

How much power per unit area Pcolored(ω,T ) is emitted in
equilibrium at temperature T by a red or maroon body?
A white body? A mirror? These objects are different in
the fraction of incident light they absorb at different fre-
quencies and angles a(ω, θ). We can again use the prin-
ciple of detailed balance, by placing our colored object
next to a black body and matching the power emitted
and absorbed for each angle and frequency:

Pcolored(ω,T, θ) = Pblack(ω, T )a(ω, θ) (7.87)

Finally, we should calculate Qtot(T ), the total power per
unit area emitted from a black body at temperature T ,
by integrating 7.86 over frequency.

(c) Using the fact that
∫∞
0
x3/(ex − 1) dx = π4/15, show

that

Qtot(T ) =

∫ ∞
0

Pblack(ω, T ) dω = σT 4. (7.88)

and give a formula for the Stefan–Boltzmann constant σ.
The value is σ = 5.67 × 10−5 erg cm−2 K−4 s−1. (Hint:
use this to check your answer.)

(7.13) Fermions in Semiconductors. (Quantum)

Let’s consider a caricature model of a doped semiconduc-
tor [8, ch. 28]. Consider a crystal of phosphorous-doped
silicon, with N − M atoms of silicon and M atoms of
phosphorous. Each silicon atom contributes one electron
to the system, and has two states at energies±∆/2, where
∆ = 1.16eV is the energy gap. Each phosphorous atom
contributes two electrons and two states, one at −∆/2
and the other at ∆/2 − ε, where ε = 0.044eV is much
smaller than the gap.48 (Our model ignores the quantum
mechanical hopping between atoms that broadens the lev-
els at ±∆/2 into the conduction band and the valence
band. It also ignores spin and chemistry: each silicon re-
ally contributes four electrons and four levels, and each
phosphorous five electrons and four levels.) To summa-
rize, our system has N +M spinless electrons (maximum
of one electron per state), N valence band states at en-
ergy −∆/2, M impurity band states at energy ∆/2 − ε,
and N −M conduction band states at energy ∆/2.

(a) Derive a formula for the number of electrons as a
function of temperature T and chemical potential µ for
the energy levels of our system.

(b) What is the limiting occupation probability for the
states as T → ∞, where entropy is maximized and all
states are equally likely? Using this, find a formula for
µ(T ) valid at large T , not involving ∆ or ε.

(c) Draw an energy level diagram showing the filled and
empty states at T = 0. Find a formula for µ(T ) in the
low temperature limit T → 0, not involving the variable
T . (Hint: Balance the number of holes in the impu-
rity band with the number of electrons in the conduction
band. Why can you ignore the valence band?)

(d) In a one centimeter cubed sample, there are M = 1016

phosphorous atoms; silicon has about N = 5×1022 atoms
per cubic centimeter. Find µ at room temperature (1/40

47We’re being sloppy again, using the same name ρ for the probability densities
per unit velocity and per unit angle.

48The phosphorous atom is neutral when both of its states are filled: the upper
state can be thought of as an electron bound to a phosphorous positive ion. The
energy shift ε represents the Coulomb attraction of the electron to the phosphorous
ion: it’s small because the dielectric constant is large (see A&M above).
To be pub. Oxford UP, ∼Fall’05 www.physics.cornell.edu/sethna/StatMech/



7.7 Metals and the Fermi Gas 141

eV) from the formula you derived in part (a). (Probably
trying various µ is easiest: set up a program on your cal-
culator or computer.) At this temperature, what fraction
of the phosphorous atoms are ionized (have their upper
energy state empty)? What is the density of holes (empty
states at energy −∆/2)?

Phosphorous is an electron donor, and our sample is
doped n-type, since the dominant carriers are electrons:
p-type semiconductors are doped with holes.

(7.14) White Dwarves, Neutron Stars, and Black
Holes. (Astrophysics,Quantum)

As the energy sources in large stars are consumed, and the
temperature approaches zero, the final state is determined
by the competition between gravity and the chemical or
nuclear energy needed to compress the material.

A simplified model of ordinary stellar matter is a Fermi
sea of non-interacting electrons, with enough nuclei to
balance the charge. Let’s model a white dwarf (or black
dwarf, since we assume zero temperature) as a uniform
density of He4 nuclei and a compensating uniform den-
sity of electrons. Assume Newtonian gravity. Assume the
chemical energy is given solely by the energy of a gas of
non-interacting electrons (filling the levels to the Fermi
energy).

(a) Assuming non-relativistic electrons, calculate the en-
ergy of a sphere with N zero-temperature non-interacting
electrons and radius R.49 Calculate the Newtonian grav-
itational energy of a sphere of He4 nuclei of equal and
opposite charge density. At what radius is the total en-
ergy minimized?

A more detailed version of this model was studied by
Chandrasekhar and others as a model for white dwarf
stars. Useful numbers: mp = 1.6726 × 10−24 gm,
mn = 1.6749 × 10−24 gm, me = 9.1095 × 10−28 gm,
� = 1.05459 × 10−27 erg sec, G = 6.672 × 10−8 cm3/(gm
s2), 1 eV = 1.60219× 10−12 erg, kB = 1.3807× 10−16 erg
/ K, and c = 3× 1010 cm/s.

(b) Using the non-relativistic model in part (a), calculate
the Fermi energy of the electrons in a white dwarf star
of the mass of the Sun, 2 × 1033 gm, assuming that it is
composed of helium. (i) Compare it to a typical chem-
ical binding energy of an atom. Are we justified in ig-
noring the electron-electron and electron-nuclear interac-
tions (i.e., chemistry)? (ii) Compare it to the temper-
ature inside the star, say 107K. Are we justified in as-
suming that the electron gas is degenerate (roughly zero
temperature)? (iii) Compare it to the mass of the elec-
tron. Are we roughly justified in using a non-relativistic
theory? (iv) Compare it to the mass difference between a
proton and a neutron.

The electrons in large white dwarf stars are relativistic.
This leads to an energy which grows more slowly with
radius, and eventually to an upper bound on their mass.

(c) Assuming extremely relativistic electrons with ε = pc,
calculate the energy of a sphere of non-interacting elec-
trons. Notice that this energy cannot balance against the
gravitational energy of the nuclei except for a special value
of the mass, M0. Calculate M0. How does your M0 com-
pare with the mass of the Sun, above?

A star with mass larger than M0 continues to shrink as it
cools. The electrons (note (b.iv) above) combine with the
protons, staying at a constant density as the star shrinks
into a ball of almost pure neutrons (a neutron star, often
forming a pulsar because of trapped magnetic flux). Re-
cent speculations [85] suggests that the “neutronium” will
further transform into a kind of quark soup with many
strange quarks, forming a transparent insulating mate-
rial.

For an even higher mass, the Fermi repulsion between
quarks can’t survive the gravitational pressure (the
quarks become relativistic), and the star collapses into
a black hole. At these masses, general relativity is im-
portant, going beyond the purview of this course. But
the basic competition, between degeneracy pressure and
gravity, is the same.

49You may assume that the single–particle eigenstates have the same energies and
k–space density in a sphere of volume V as they do for a cube of volume V : just
like fixed versus periodic boundary conditions, the boundary doesn’t matter to bulk
properties.
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Most statistical mechanical systems cannot be solved using paper and
pencil. Statistical mechanics provides general relationships and organiz-
ing principles (temperature, entropy, free energy, thermodynamic rela-
tions) even when a solution is not available. But there are times when
specific answers about specific models or experiments are needed.

There are two basic tools for extracting answers out of statistical me-
chanics for realistic systems. The first is to use perturbation theory,
adding corrections to a simple, solvable model, or to a complex model
in a limit (like low or high temperatures) where its properties are possi-
ble to calculate. Section 8.1 discusses the deep connection between the
convergence of perturbation theory and the existence of phases.

The second tool is simulation. Sometimes one simply simulates the
microscopic theory. For example, a molecular dynamics simulation will
move the atoms according to Newton’s laws. To emulate a microscopic
system connected to a heat bath, one can add friction and noise to the
microscopic theory, in the correct proportions so as to lead to proper
thermal equilibration.1 We will not be discussing such microscopic si- 1For the diffusion equation, the mobil-

ity (friction) γ is related to the diffusion
constant (noise) D by the Einstein rela-
tion 2.22 D/γ = kBT . We will discuss
these relations in more general contexts
in section 10.5.

multions in detail here, but see exercise 10.5.
If one is not interested in the detailed dynamical trajectories of the

system, one can use Monte-Carlo simulation methods to extract the
equilibrium properties from a model. We introduce these methods in
section 8.2 in the context of the Ising model, the most well-studied of
the lattice models in statistical mechanics. The theory underlying the
Monte-Carlo method is the mathematics of Markov Chains, which we
discuss in section 8.3: using more general Markov chains allows for the
development of faster algorithms for reaching equilibrium (exercise 8.5).

Fig. 8.1 The high and low tempera-
ture expansions for the Ising and other
lattice models involve terms which cor-
respond to stick–figure Feynman dia-
grams on the lattice. The first diagram
on the left (the single point) gives the
Curie law at high temperatures, and
the energy–gap formula at low temper-
atures that you derive in exercise 8.1.

8.1 What is a Phase? Perturbation theory.

Much of a typical advanced course in statistical mechanics will be de-
voted to perturbation theory. Lattice theories at high and low temper-
atures T have perturbative expansions in powers of T and 1/T , with
Feynman diagrams involving all ways of drawing stick figures on lattice
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points (figure 8.1).2 Gases at high temperatures and low densities have
virial expansions. Metals at low temperatures have Fermi liquid theory,
where the electron–electron interactions are perturbatively incorporated
by dressing the electrons into quasiparticles. Properties of systems near
continuous phase transitions can be explored by perturbing in the dimen-
sion of space, giving the ε-expansion. Let’s illustrate these expansions in
the particular case of the ideal Bose and Fermi gases, and then discuss
some basic issues about phases and perturbation theory.

In figure 8.2 we plot the specific heat of the ideal Fermi gas, which
we studied in section 7.7.3 At high temperatures, the specific heat per
particle goes to 3/2kB, as we derived for the classical ideal gas. One
can do perturbation theory valid at high temperatures to get the virial
expansion corrections to this classical result. The natural expansion pa-
rameter is the number of particles per de Broglie volume ∆ = λ3N

gV where
λ = h√

2πmkBT
is the thermal deBroglie wavelength from equation 3.63

and g = 2 is the number of spin states of our Fermions:

Cfermion
v = 3/2NkB

(
1 − 0.0884∆ + 0.0066∆2 − 0.0004∆3 + . . .

)
. (8.2)

At low temperatures, the specific heat of the Fermi gas vanishes linearly
0 1 4 5k

B
T / ε
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Fig. 8.2 The specific heat of the
ideal Fermi gas, along with the low–
temperature 8.3 expansion and the
high–temperature 8.2 expansion kept

to first order in ∆ = 4
3
√

π

(
εF

kBT

)3/2
.

in the temperature. At low temperatures one works with the elementary
excitations, which here are excitations of particles and holes away from
the Fermi surface.4 At low temperatures we can again do perturbation
theory, giving us the Sommerfeld expansion, whose first term for the
specific heat is

Cfermion
v =

π2

2
k2

BTNg(εF ) + · · · =
π2

2
Nk2

BT

εF
+ . . . (8.3)
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Fig. 8.3 The specific heat of the
ideal Bose gas, along with the high–
temperature expansion 8.4 to first or-
der in ∆ = ζ(3/2)(Tc/T )3/2. Notice
the cusp at the Bose condensation tem-
perature Tc.

In figure 8.3 we plot the specific heat of the ideal Bose gas, which we
studied in section 7.6.3. At high temperatures we again have a virial
expansion

Cboson,T>Tc
v = 3/2NkB

(
1 + 0.0884∆ + 0.0066∆2 + 0.0004∆3 + . . .

)
,

(8.4)

2The low–temperature expansion of the magnetization per spin of the three–
dimensional Ising model on a cubic lattice starts out

m =1 − 2t3 − 12t5 + 14t6 − 90t7 + 192t8 − 492t9 + 2148t10 − 7716t11 (8.1)

+ 23262t12 − 79512t13 + 252054t14 − 846628t15 + 2753520t16

− 9205800t17 + 30371124t18 − 101585544t19 + 338095596t20 + . . .

(references [82, 27]). where t = e−4J/kBT . The mean magnetization per spin is zero
above Tc: the magnetization has a singularity (no Taylor series) at the critical point.

3 This section does discuss results from quantum mechanical calculations, but the
ideas are relevant to all phases.

4Only states within kBT of εF are thermally excited (figure 7.5) so the energy
shift is roughly the number of excitable states Ng(εF )kBT (equation 7.74) times
their excitation energy kBT , or E(T ) − E(0) ∼ Nk2

BT
2g(εF ). This gives a specific

heat of 2Nk2
BT/εF , linear in temperature. Indeed, the coefficient we get from this

rough argument is only a factor of π2/4 away from the correct first–order term.
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where here g = 1 for spinless bosons. At low temperatures, the behavior
of the ideal Bose gas is particularly simple: the specific heat is exactly

Cboson,T<Tc
v =

15
4
ζ(5/2)/∆, (8.5)

Water

Alcohol

Oil

Two-Phase Mix

Fig. 8.4 A schematic ternary phase di-
agram for mixtures of oil, water, and
alcohol. Each point in the triangle rep-
resents a mixture of percentages of the
three, with the corners being pure wa-
ter, oil, and alcohol. The shaded region
shows where phase separation occurs:
relative concentrations in the shaded
region will separate into a two–phase
mixture given by the endpoints of the
tie–line passing through that point. Oil
and water basically don’t dissolve in
one another: a mixture of the two will
separate into the two separate fluids.
You can go smoothly from one to the
other, though, by first adding alcohol.

What is the fundamental difference between the ideal Fermi and Bose
gases? Only one has a phase transition. For the Fermi gas, perturbation
theory links the high and low temperature regions. For the Bose gas,
the extrapolation from high temperatures does not describe the behavior
below the critical point Tc. The Bose gas has two distinct regions: the
normal phase and the condensed phase.

What is a phase? Perturbation theory works inside phases. More
precisely, inside a phase the properties are analytic (have convergent
Taylor expansions) as functions of the external conditions. If the system
is inside a phase at temperature T0, the specific heat per particle (for
example) will have a Taylor series cv(T − T0) =

∑
an(T − T0)n which

converges in a region about T0.5 Inside a phase, the specific heat, the

5The simplest and most useful se-
ries are usually expanding around the
boundaries of phases (infinite temper-
ature, zero temperature, zero force,
small field . . . ). Some of these pertur-
bation series have zero radius of conver-
gence for that reason: they are asymp-
totic expansions (see exercise 1.4). For
example, Hooke’s law in elastic theory
is the first term in a nonlinear elastic
series, which at non-zero temperature
has zero radius of convergence [16, 17].

pressure P , the density ρ, the elastic constants cijk� . . . all properties are
smooth functions (with convergent power series) of all external parame-
ters. Phase boundaries occur at parameter values where the properties
aren’t smooth – where the continuation of the properties on one side does
not predict the behavior on the other. We could almost define phases as
regions where perturbation theory works – except for the awkward prob-
lem that we don’t want liquids and gases to be called part of the same
fluid ‘phase’, even though they are connected by paths going around the
critical point (figure 8.7).6

6You can also go from the ferromag-
netic phase to the paramagnetic phase
in the Ising model, by first turning on
an external field H, then raising the
temperature to T > Tc, and then low-
ering the field back to zero (figure 8.8).
Introducing this field is clearly cheat-
ing, because it breaks the same up–
down symmetry that the Ising model
spontaneously breaks at low tempera-
tures. Going from liquids to gases, you
don’t even need to cheat.

This leads to an important experimental method. Suppose you’ve
invented a new exotic liquid crystal. How can you tell if it is in an already
known phase? You look for an experimental path, mixing materials
and changing external conditions, for smoothly changing your phase
to the known one. For example, are oil and water both in the same
(fluid) phase? Can we go from one to the other smoothly, without
passing through a phase transition?7 You can’t mix oil and water, but

7This process is sometimes called adi-
abatic continuity. Phases can also be
thought of as universality classes for at-
tracting fixed points: see chapter 12.

you can mix oil and alcohol, and certainly can mix alcohol and water.
Changing the concentrations smoothly starting from oil, going through
pure alcohol, and ending at water demonstrates that these two fluids are
part of the same phase. (see figure 8.4). This argument is also the basis
for much of theoretical physics: if you can go smoothly from A (your
theory) to B (the experiment) by adding corrections, then A and B are
in the same phase: publish!8

8 Some unperturbed theories are better than others, even if they are in the same
phase. The BCS theory is deemed the correct theory of superconductors, despite
the fact that (earlier) theories of Bose condensation of pre-formed electron pairs are
not separated from BCS theory by a phase transition. The Cooper pairs in most
superconductors are large compared to their separation, so they overlap many other
pairs. The BCS theory uses this fact to do calculations that are almost exact for
many systems, without including perturbative corrections.
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8.2 The Ising Model

Fig. 8.5 The 2D square-lattice Ising
model. It is traditional to denote the
values si = ±1 as up and down, or as
two different colors.

Lattice models are a big industry within statistical mechanics. Placing
some degrees of freedom on each site of a regular grid and forming a
Hamiltonian or a dynamical evolution law to equilibrate or evolve the
resulting system forms a centerpiece of computational statistical me-
chanics (as well as the focus of much of the analytical work). Critical
phenomena and phase transitions [12], lattice QCD and quantum field
theories, quantum magnetism and models for high temperature super-
conductors, phase diagrams for alloys [8.2.2], the behavior of systems
with dirt or disorder, and non–equilibrium systems exhibiting avalanches
and crackling noise [12], all make important use of lattice models.

In this section, we will introduce the most studied of these models,
the Ising model.9

9Ising’s name is pronounced “Eesing”,
but the model is usually pronounced
“Eyesing” with a long I sound.

The Ising model is a lattice of sites i with a single, two–state degree
of freedom si on each site that may take values ±1. This degree of
freedom is normally called a ‘spin’.10 We will be primarily interested

10Unlike a true quantum spin 1/2 par-
ticle there are no terms in the Ising
Hamiltonian that lead to superposi-
tions of states with different spins.

in the Ising model in two dimensions on a square lattice, see figure 8.5.
The Hamiltonian for the Ising model is

H = −
∑
〈ij〉

Jsisj −H
∑

i

si. (8.6)

Here the sum 〈ij〉 is over all pairs of spins on nearest-neighbor sites,
and J is the coupling between these neighboring spins. (There are four
neighbors per spin on the 2D square lattice.) Usually one refers to H
as the external field, and the sum M =

∑
i si as the magnetization, in

reference to the Ising model’s original application to magnetic systems.1111We shall use boldface M to denote
the total magnetization, and (especially
in the exercises) will also refer to M =
M/N , the average magnetization per
spin.

We’ll usually assume the model has N spins forming a square, with
periodic boundary conditions.

8.2.1 Magnetism

As a model for magnetism, our spin si = 2σz
i , the z-component of the net

spin of a spin 1/2 atom in a crystal.12 The interactions between spins12Thus σz
j commutes with H, and ev-

ery spin configuration is an energy
eigenstate. The Ising model (equa-
tion 8.6) can be interpreted as a clas-
sical Hamiltonian with discrete states,
as a free energy for a system with dis-
crete states (as for the binary alloy in
section 8.2.2), or as a fully quantum
Hamiltonian for particles of spin 1/2 cou-
pling only via σz . Transverse Ising
models have couplings including other
components of σ, and are challenging
quantum systems.

is Jsisj = 4Jσz
i σ

z
j .13 The coupling of the spin to the external magnetic

field is microscopically −Hsi = gH · σz
i , where g is the gyromagnetic

ratio for the spin (close to two for the electron).
The energy of two spins −Jsisj is −J if the spins are parallel, and

+J if they are antiparallel. Thus if J > 0 the model favors parallel
spins: we say that the interaction is ferromagnetic.14 At low temper-

14“Ferromagnetic” is named after iron
(Fe), which is the most common mate-
rial which has a spontaneous magneti-
zation.

atures, the spins will organize themselves to mostly point up or down,
forming a ferromagnetic phase. As the temperature approaches zero,
all the spins in the Ising model become parallel and the magnetization

13 The interaction between spins is usually better approximated by the dot product
σi · σj = σx

i σ
x
i + σy

i σ
y
i + σz

i σ
z
i , used in the more realistic Heisenberg model. Some

materials have anisotropic crystal structures which make the Ising model at least
approximately valid.
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per spin will approach M = ±1. If J < 0 we call the interaction an-
tiferromagnetic; for our square lattice the spins will tend to align in a
checkerboard fashion at low temperatures (an antiferromagnetic phase).
At high temperatures, we expect entropy to dominate; the spins will
fluctuate wildly in a paramagnetic phase and the magnetization per spin
M for a large system will be near zero.

8.2.2 Binary Alloys

B

A

A A

A

A

B

B B

BB B B

B

BA

Fig. 8.6 The Ising model as a binary
alloy. Atoms in crystals naturally sit on
a regular grid: alloys have more than
one type of element which can sit on
the lattice sites (here, types A and B).

The Ising model is quite a convincing model for binary alloys.15 Imag-

15Indeed, any classical system on a
lattice with local interactions can be
mapped onto an Ising–like model.

ine a square lattice of atoms, which can be either of type A or B (fig-
ure 8.6).16 We set the spin values A = +1 and B = −1. Let the number

16A realistic alloy might mix roughly
half copper and half zinc to make β-
brass. At low temperatures, the cop-
per and zinc atoms sit each on a cubic
lattice, with the zincs in the middle of
the copper cubes, together forming a
body–centered cubic (bcc) lattice. At
high temperatures, the zincs and cop-
pers freely interchange on the two lat-
tices. The transition temperature is
about 733C.

of the two kinds of atoms be NA and NB, with NA +NB = N . Let the
interaction energy between two neighboring atoms be EAA, EBB, and
EAB; these can be thought of as the bond strength – the energy needed
to break the bond. Let the total number of AA nearest–neighbor bonds
be NAA, and similarly for NBB and NAB. Then the Hamiltonian for
our binary alloy is

Hbinary = −EAANAA − EBBNBB − EABNAB. (8.7)

How is this the Ising model? Let’s start by adding a constant −CN
to the Ising model, and plugging in our new variables:

Hising = −J
∑
〈ij〉

sisj −H
∑

i

si − CN

= −J (NAA +NBB −NAB) −H (NA −NB) − CN, (8.8)

since NA − NB = M the sum of the spins, NAA + NBB is the number
of parallel neighbors, and NAB is the number of antiparallel neighbors.
There are two bonds per spin, soNAA+NBB+NAB = 2N ; we substitute
N = 1/2(NAA+NBB +NAB). For every A atom there must be four bonds
ending with an A, and similarly for every B atom there must be four
bonds ending with a B. Each AA bond gives half an A atom worth of
‘bond ends’, and each AB bond gives a quarter, so

NA = 1/2NAA + 1/4NAB and similarly
NB = 1/2NBB + 1/4NAB (8.9)

and we may substitute NA −NB = 1/2(NAA −NBB). We now find

Hising = −J (NAA +NBB −NAB) −H
(
1/2(NAA −NBB)

)
− C

(
1/2(NAA +NBB +NAB)

)
= −(J + 1/2H + 1/2C)NAA − (J − 1/2H + 1/2C)NBB

− (−J + 1/2C)NAB. (8.10)

This is just of the form of the binary alloy Hamiltonian 8.7, with J =
1/4(EAA + EBB − 2EAB), H = EAA − EBB , and C = 1/2(EAA + EBB +
2EAB).
c©James P. Sethna, April 19, 2005 Entropy, Order Parameters, and Complexity
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Now, our model just contains atoms on their lattice sites. Surely if
one kind of atom is larger than the other, it’ll push neighboring atoms
off their sites? We simply include these reshufflings into the energies in
our Hamiltonian 8.7.

What about the vibrations of the atoms about their equilibrium po-
sitions? We can imagine doing a partial trace, as we discussed in sec-
tion 6.6. Just as in exercise 6.2, one can incorporate the entropy due to
the local atomic motions S{si} about their lattice sites into an effective
free energy for each atomic configuration1717This nasty–looking integral over con-

figurations where the atom hasn’t
shifted too far past its lattice site
would normally be approximated by a
Gaussian integral over phonon vibra-
tions, similar to that described in ex-
ercise 6.2(b), figure 6.10.

Fbinary{si} = −kBT log
(∫

dP

∫
ri on site si

dQ e−H(P,Q)/kBT

)
= Hbinary{si} − TS{si}. (8.11)

Again, as in section 6.3, we’re doing a partial trace over states. If we ig-
nore the configurations where the atoms are not near lattice sites, we can
recover the total partition function by summing over spin configurations

Z =
∑
{si}

e−Fbinary{si}/kBT (8.12)

=
∑
{si}

∫
dP

∫
ri on site si

dQ e−H(P,Q)/kBT ≈
∫
dP

∫
dQ e−H(P,Q)/kBT .

(8.13)

Insofar as the entropy in the free energy Fbinary{si} can be approximated
as a sum of pair energies, we again get an Ising model, but now with
temperature dependent parameters.

More elaborate Ising models (with three–site and longer–range in-
teractions, for example) are commonly used to compute realistic phase
diagrams for alloys (reference [125]). Sometimes, though, the interac-
tions introduced by relaxations and thermal fluctuations off lattice sites
have important long–range pieces, which can lead to qualitative changes
in the behavior – for example, turning the transition from continuous to
abrupt.
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Fig. 8.7 A schematic phase diagram
for a typical material. There is a solid
phase at high pressures and low tem-
peratures, a gas phase at low pressures
and high temperatures, and a liquid
phase in a region in between. The solid-
liquid phase boundary corresponds to a
change in symmetry, and cannot end.
The liquid-gas phase boundary typi-
cally does end: one can go continu-
ously from the liquid phase to the gas
phase by increasing the pressure above
Pc, then the temperature above Tc, and
then lowering the pressure again.

8.2.3 Lattice Gas and the Critical Point

The Ising model is also used as a model for the liquid-gas transition. In
this lattice gas interpretation, up-spins (si = +1) count as atoms and
down-spins count as a site without an atom. The gas is the phase with
mostly down spins (negative ‘magnetization’), with only a few up-spin
atoms in the vapor. The liquid phase is mostly atoms (up-spins), with
a few vacancies.

The Ising model description of the gas phase seems fairly realistic.
The liquid, however, seems much more like a crystal, with atoms sitting
on a regular lattice. Why do we suggest that this model is a good way
of studying transitions between the liquid and gas phase?

Unlike the binary alloy problem, the Ising model is not a good way
to get quantitative phase diagrams for fluids. What it is good for is to
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understand the properties near the critical point. As shown in figure 8.7,
one can go continuously between the liquid and gas phases: the phase
boundary separating them ends at a critical point Tc, Pc, above which
the two phases blur together seamlessly, with no jump in the density
separating them. Down

c
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Fig. 8.8 The phase diagram for the
Ising model. Below the critical tem-
perature Tc, the H = 0 line separates
two ‘phases’, an up-spin and a down-
spin phase. Above Tc the behavior is
smooth as a function of H; below Tc

there is a jump in the magnetization as
one crosses H = 0.

The Ising model, interpreted as a lattice gas, also has a line H = 0
along which the density (magnetization) jumps, and a temperature Tc

above which the properties are smooth as a function of H (the para-
magnetic phase). The phase diagram 8.8 looks only topologically like
the real liquid-gas coexistence line 8.7, but the behavior near the criti-
cal point in the two systems is remarkably similar. Indeed, we will find
in chapter 12 that in many ways the behavior at the liquid–gas critical
point is described exactly by the three-dimensional Ising model.

8.2.4 How to Solve the Ising Model.

How do we solve for the properties of the Ising model?

(1) Solve the one–dimensional Ising model, as Ising did.18 18This is a typical homework exercise
in a course like ours: with a few hints,
you can do it too.

(2) Have an enormous brain. Onsager solved the two–dimensional
Ising model in a bewilderingly complicated way. Since Onsager,
many great minds have found simpler, elegant solutions, but all
would take at least a chapter of rather technical and unillumi-
nating manipulations to duplicate. Nobody has solved the three-
dimensional Ising model.

(3) Do Monte Carlo on the computer.19 19Or, do high temperature expansions,
low temperature expansions, transfer
matrix methods, exact diagonalization
of small systems, 1/N expansions in the
number of states per site, 4 − ε expan-
sions in the dimension of space, . . .

The Monte Carlo20 method involves doing a kind of random walk
through the space of lattice configurations. We’ll study these methods
in great generality in section 8.3. For now, let’s just outline the Heat
Bath Monte Carlo method.
Heat Bath Monte Carlo for the Ising Model

• Pick a site i = (x, y) at random.
• Check how many neighbor spins are pointing up:

mi =
∑
j:〈ij〉

sj =



4 (4 neighbors up)
2 (3 neighbors up)
0 (2 neighbors up)

−2 (1 neighbor up)
−4 (0 neighbors up)

(8.14)

• Calculate E+ = −Jmi −H and E− = +Jmi +H , the energy for
spin i to be +1 or −1 given its current environment.

• Set spin i up with probability e−βE+/(e−βE+ + e−βE−) and down
with probability e−βE−/(e−βE+ + e−βE−).

• Repeat.

20Monte Carlo is a gambling center in Monaco. Lots of random numbers are
generated there.
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The heat-bath algorithm just thermalizes one spin at a time: it sets
the spin up or down with probability given by the thermal distribution
given that its neighbors are fixed. Using it, and fast modern computers,
you can simulate the Ising model fast enough to explore its behavior
rather thoroughly, as we will in a variety of exercises.

8.3 Markov Chains

The heat-bath Monte-Carlo algorithm is an example of a Markov chain.
Markov models are important not only for lattice Monte Carlo, but
are generally useful in computational mathematics. In particular, they
have become important in bioinformatics and speech recognition, where
one attempts to deduce the hidden Markov model which describes the
patterns and relations in speech or the genome.

A Markov chain has a finite set of states {α}, through which the
system evolves in a discrete series of steps n.21 The probabilities of21There are analogues of Markov

chains that are continuous in time
and/or continuous in space.

moving to different new states in a Markov chain depends only on the
current state.22 That is, the system has no memory of the past evolution.

22More generally, systems which lack
memory are called Markovian.

For example, an N -state Ising model has 2N states S = {si}. A
Markov chain for the Ising model has a transition rule, which at each
step shifts the current state S to a state S′ with probability PS′⇐S.2323We put the subscripts in this order

because we will use P as a matrix,
which will take a probability vector Pβα

from one step (α) to the next (β), equa-
tion 8.15.

For the heat–bath algorithm, PS′⇐S is equal to zero unless S′ and S are
the same except for at most one spin flip.

There are many problems outside of mainstream statistical mechanics
that can be formulated in this general way. For example, exercise 8.3
discusses a model with 1001 states (different numbers α of red bacteria),
and transition rates Pα+1⇐α, Pα−1⇐α, and Pα⇐α. In general, we want
to understand the probability of finding different states after long times.
Under what circumstances will an algorithm, defined by our matrix P ,
take our system into thermal equilibrium?

Let the probabilities of being in various states α at step n be arranged
in a vector �ρα(n). Then the rates24 Pβα for moving from α to β in a24We heretofore leave out the left ar-

row. general Markov chain have the following properties:

• Time evolution: The probability vector at step n+ 1 is

�ρβ(n+ 1) =
∑

α

Pβα�ρα(n),

�ρ(n+ 1) = P · �ρ(n). (8.15)

• Positivity: The matrix elements are probabilities, so

0 ≤ Pβα ≤ 1. (8.16)

• Conservation of Probability: The state α must go somewhere,
so ∑

β

Pβα = 1 (8.17)

• Not symmetric! Typically Pβα �= Pαβ .
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This last point isn’t a big surprise: it should be much more likely to go
from a high–energy state to a low one than from low to high. However,
this asymmetry means that much of our mathematical intuition and
many of our tools, carefully developed for symmetric and Hermitian
matrices, won’t apply to our transition matrix Pαβ . (In particular, we
cannot assume in general that we can diagonalize our matrix.)

What can we know about the Markov chain and its asymmetric matrix
P? We’ll outline the relevant mathematics, proving what is convenient
and illuminating and simply asserting other truths.

It is true in great generality that our matrix P will have eigenvalues.
Also, it is true that for each distinct eigenvalue there will be at least one
right eigenvector25 25For example, the matrix

(
0 1
0 0

)
has a double eigenvalue of zero, but
only one left and right eigenvector with
eigenvalue zero.

P · �ρλ = λ�ρλ (8.18)

and one left eigenvector

�σλT · P = λ�σλT . (8.19)

However, for degenerate eigenvalues there may not be multiple eigenvec-
tors, and the left and right eigenvectors usually will not be equal to one
another.26 26We won’t prove these truths. They

perhaps may be motivated by stating
another truth we won’t demonstrate:
a general matrix M can be put into
Jordan canonical form by a suitable
change of basis S: M = SJS−1. The
matrix J is block diagonal, with one
eigenvalue λ associated with each block
(but perhaps multiple blocks per λ). A
given (say, 3 × 3) block will be of the

form

λ 1 0
0 λ 1
0 0 λ

 with λ along the di-

agonal and 1 in the elements imme-
diately above the diagonal. The first
column of the block is associated with
the right eigenvector for λ; the last row
is associated with the left eigenvector.
(The word canonical here means “sim-
plest form”, and doesn’t indicate a con-
nection with the canonical ensemble.)

For the particular case of our transition matrix P , we can go further.
If our Markov chain reaches an equilibrium state at long times, that
state must be unchanged under the time evolution P . That is, P ·�ρ = �ρ,
and thus the equilibrium probability density is a right eigenvector with
eigenvalue one. We can show that our Markov chain transition matrix
P has such a right eigenvector.

Theorem 8.1. P has at least one right eigenvector �ρ∗ with eigenvalue
one.

Sneaky Proof: P has a left eigenvector �σ∗ with eigenvalue one: the
vector all of whose components are one, �σ∗T = (1, 1, 1, . . . , 1):

(�σ∗T · P )α =
∑

β

σ∗
βPβα =

∑
β

Pβα = 1 = σ∗
β . (8.20)

Hence P must have an eigenvalue equal to one, and hence it must also
have a right eigenvector with eigenvalue one.

We can also show that all the other eigenvalues have right eigenvectors
that sum to zero, since P conserves probability: 27

Theorem 8.2. Any right eigenvector �ρλ with eigenvalue λ different from
one must have components that sum to zero.

27One can also view this theorem as saying that all the right eigenvectors except
ρ∗ are orthogonal to the left eigenvector σ∗.
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Proof: �ρλ is a right eigenvector, P · �ρλ = λ�ρλ. Hence

λ
∑

β

ρλ
β =

∑
β

(
λρλ

β

)
=
∑

β

(∑
α

Pβαρ
λ
α

)
=
∑

α

∑
β

Pβα

 ρλ
α

=
∑

α

ρλ
α. (8.21)

This implies that either λ = 1 or
∑

α ρ
λ
α = 0.

Markov chains can have more than one stationary probability distri-
bution.28 They can have transient states, which the system eventually28A continuum example of this is given

by the KAM theorem of exercise 4.2.
There is a probability density smeared
over each KAM torus which is time-
independent.

leaves never to return.29 They can also have cycles, which are proba-

29Transient states are important in dis-
sipative dynamical systems, where they
are all the states not on the attractors.

bility distributions which like a clock 1 → 2 → 3 → · · · → 12 → 1 shift
through a finite number of distinct classes of states before returning to
the original one. All of these are obstacles in our quest for finding the
equilibrium states in statistical mechanics. We can bypass all of them
by studying ergodic Markov chains.30 A finite–state Markov chain is er-

30We’re compromising here between
the standard Markov-chain usage in
physics and in mathematics. Physi-
cists usually ignore cycles, and call al-
gorithms which can reach every state
ergodic (what mathematicians call irre-
ducible). Mathematicians use the term
ergodic to exclude cycles and exclude
probability running to infinity (not im-
portant here, where we have a finite
number of states). They also allow er-
godic chains to have transient states:
only the “attractor” need be connected.
Chains with Pn everywhere positive,
that we’re calling ergodic, are called
by the mathematicians regular Markov
chains. In the exercises, to prove a
system is ergodic just show that it
can reach everywhere (irreducible) and
doesn’t have cycles.

godic if its transition matrix to some power n has all positive (non-zero)
matrix elements: Pn

βα > 0 for all states α and β.31

31That is, after n steps every state
has non–zero probability to reach every
other state.

We use a famous theorem, without proving it here:

Theorem 8.3 (Perron–Frobenius Theorem). Let A be a matrix
with all non–negative matrix elements such that An has all positive ele-
ments. Then A has a positive eigenvalue λ0, of multiplicity one, whose
corresponding right and left eigenvectors have all positive components.
Furthermore any other eigenvalue λ of A must be smaller, |λ| < λ0.

For an ergodic Markov chain, we can use theorem 8.2, to see that the
Perron–Frobenius eigenvector with all positive components must have
eigenvalue λ0 = 1. We can rescale this eigenvector to sum to one,
proving that an ergodic Markov chain has a unique time–independent
probability distribution �ρ∗.

What’s the difference between our definition of ergodic Markov chains,
and the definition of ergodic we used in section 4.2 in reference to tra-
jectories in phase space? Clearly the two concepts are related: ergodic
in phase space meant that we eventually come close to all states on the
energy surface, and for finite Markov chains it is the stronger condi-
tion that we have non-zero probability of getting between all states in
the chain after precisely n steps. Indeed, one can show for finite state
Markov chains that if one can get from every state α to every other state
β by a sequence of moves (that is, the chain is irreducible), and if the
chain is not cyclic, then it is ergodic (proof not given here). Any algo-
rithm that has a finite probability for each state to remain unchanged
(Pαα > 0 for all states) is automatically free of cycles (clocks which lose
time will get out of synchrony).

It is possible to show that an ergodic Markov chain will take any initial
probability distribution �ρ(0) and converge to equilibrium, but the proof
in general is rather involved. We can simplify it by specializing one more
time, to Markov chains that satisfy detailed balance.
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A Markov chain satisfies detailed balance if there is some probability
distribution �ρ∗ such that32 32There is an elegant equivalent def-

inition of detailed balance directly in
terms of P and not involving the equi-
librium probability distribution �ρ∗: see
exercise 8.4.

Pαβρ
∗
β = Pβαρ

∗
α (8.22)

for each state α and β. In words, the probability flux from state α to
β (the rate times the probability of being in α) balances the probability
flux back, in detail (i.e., for every pair of states).

If a physical system is time reversal invariant (no dissipation, no mag-
netic fields), and its states are also invariant under time reversal (no
states with specified velocities or momenta) then its dynamics automat-
ically satisfy detailed balance. This is true because the equilibrium state
is also the equilibrium state under time reversal, so the probability flow
from β → α must equal the time–reversed flow from α → β. Quan-
tum systems undergoing transitions between energy eigenstates in per-
turbation theory usually satisfy detailed balance, since the eigenstates
are time-reversal invariant. Most classical models (like the binary alloy
in 8.2.2) have states involving only configurational degrees of freedom,
which again satisfy detailed balance.

Detailed balance allows us to find a complete set of eigenvectors and
right eigenvalues for our transition matrix P . One can see this with
a simple transformation. If we divide both sides of equation 8.22 by√
ρ∗βρ∗α, we create a symmetric matrix Qαβ

Qαβ = Pαβ

√
ρ∗β
ρ∗α

= Pαβρ
∗
β/
√
ρ∗αρ∗β (8.23)

= Pβαρ
∗
α/
√
ρ∗αρ∗β = Pβα

√
ρ∗α
ρ∗β

= Qβα.

This particular symmetric matrix has eigenvectors Q · τλ = λτλ which
can be turned into right eigenvectors of P when rescaled33 by

√
ρ∗: 33This works in reverse to get the right

eigenvectors of P from Q. One mul-
tiplies τλ

α by
√
ρ∗α to get ρλ

α, and di-
vides to get σλ

α, so if detailed balance
holds, σλ

α = ρλ
α/ρ
∗
α. In particular,

σ1 = σ∗ = (1, 1, 1, . . . )T , as we saw
in theorem 8.1.

ρλ
α = τλ

α

√
ρ∗α : (8.24)

∑
α

Pβαρ
λ
α =

∑
α

Pβα(τλ
α

√
ρ∗α) =

∑
α

Qβα

√
ρ∗β
ρ∗α

 (τλ
α

√
ρ∗α) (8.25)

=
∑
α

(
Qβατ

λ
α

)√
ρ∗β = λ(τλ

β

√
ρ∗β) = λρλ

β .

Now for the main theorem underlying the algorithms for equilibrating
lattice models in statistical mechanics.

Theorem 8.4 (Main Theorem). A system with a finite number of
states can be guaranteed to converge to an equilibrium distribution �ρ∗if
the computer algorithm

• is Markovian (has no memory),
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• is ergodic (can reach everywhere and is acyclic) and
• satisfies detailed balance.

Proof: Let P be the transition matrix for our algorithm. Since the
algorithm satisfies detailed balance, P has a complete set of eigenvectors
�ρλ. Since our algorithm is ergodic there is only one right eigenvector �ρ1

with eigenvalue one, which we can choose to be the stationary distribu-
tion �ρ∗; all the other eigenvalues λ have |λ| < 1. Decompose the initial
condition �ρ(0) = a1�ρ

∗ +
∑

|λ|<1 aλ�ρ
λ. Then3434The eigenvectors closest to one will

be the slowest to decay. You can get
the slowest characteristic time τ for
a Markov chain by finding the largest
|λmax| < 1 and setting λn = e−nτ .

�ρ(n) = P · �ρ(n− 1) = Pn · �ρ(0) = a1�ρ
∗ +

∑
|λ|<1

aλλ
n�ρλ. (8.26)

Since the (finite) sum in this equation decays to zero, the density con-
verges to a1�ρ

∗. This implies both that a1 = 1 and that our system
converges to �ρ∗ as n→ ∞.

Thus, to develop a new equilibration algorithm, one need only ensure
that it is Markov, ergodic, and satisfies detailed balance (exercise 8.5).

Exercises

Exercise 8.1 introduces the Ising model, its phase dia-
gram, magnetization and magnetization fluctuations, and
low and high temperature behavior. Exercises 8.2 and 8.3
introduce simple examples of Markov chains. Exercise 8.5
explores the heat bath, Metropolis, and Wolff cluster-flip
algorithm for equilibrating the Ising model. Exercises 8.6
and 8.7 explore the Gillespie algorithm for stochastic sim-
ulations of chemical reactions in small systems like bi-
ological cells where number fluctuations can be impor-
tant. In exercise 8.8 you will show that entropy increases
for Markov chains. Exercise 8.9 introduces methods for
solving ordinary differential equations that are used for
molecular dynamics simulations, emphasizing the three
themes of accuracy, stability, and fidelity. Finally, exer-
cises 8.10 and 8.11 introduce the simulation of networks
and their connectivity, using the classic examples of small-
world and percolation networks.

(8.1) The Ising Model. (Computational)

You’ll need the program ising, available on the Web [105].
The Ising Hamiltonian is

H = −J
∑
〈ij〉

SiSj −H
∑

i

Si, 3.7.1

where Si = ±1 are “spins” on a square lattice, and the
sum

∑
〈ij〉 is over the four nearest-neighbor bonds (each

pair summed once). It’s conventional to set the coupling
strength J = 1 and Boltzmann’s constant kB = 1, which
amounts to measuring energies and temperatures in units
of J . The constant H is called the external field, and
M =

∑
i Si is called the magnetization.

As noted in class, the Ising model can be viewed as an
anisotropic magnet with Si being 2σz for the spin at site i,
or it can represent the occupancy of a lattice site (atom
or no atom for a lattice gas simulation, copper or gold
for a binary alloy, . . . ). As a lattice gas, M gives the
net concentration, and H corresponds to a chemical po-
tential. Our simulation doesn’t conserve the number of
spins up, so it’s not a natural simulation for a bulk lattice
gas. You can think of it as a grand canonical ensemble,
or as a model for a lattice gas on a surface exchanging
atoms with the vapor above.

Play with it. At high temperatures, the spins should not
be strongly correlated. At low temperatures the spins
should align all parallel, giving a large magnetization.
Can you roughly locate the phase transition? Can you
see growing clumps of aligned spins as T → Tc+ (i.e., T
approaching Tc from above)?

(a) Phase diagram. Draw a rough phase diagram in
the (H,T ) plane, showing (i) the “spin up” phase where
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〈M〉 > 0, (ii) the “spin down” phase with 〈M〉 < 0, (iii)
the paramagnetic phase line where M = 0, (iv) the fer-
romagnetic phase line where |〈M〉| > 0 for large systems
even though H = 0, and (v) the critical point, where at
H = 0 the system develops a non-zero magnetization.

Correlations and Susceptibilities: Analytical.
The partition function for the Ising model is Z =∑

n exp(−βEn), where the states n run over all 2N pos-
sible configurations of the spins, and the free energy
F = −kT logZ.

(b) Show that the average of the magnetization M equals
− (∂F/∂H) |T . Derive the formula writing the suscepti-
bility χ0 = (∂M/∂H) |T in terms of 〈(M − 〈M〉)2〉 =
〈M2〉 − 〈M〉2. (Hint: remember our derivation of for-
mula 6.13 〈(E− 〈E〉)2〉 = kBT

2C?)

Notice that the program outputs, at each temperature
and field, averages of several quantities: 〈|M |〉, 〈(M −
〈M〉)2〉, 〈E〉, 〈(E − 〈E〉)2〉. Unfortunately, E and M in
these formulas are measured per spin, while the formulas
in the class and the exercise are measured for the system
as a whole. You’ll need to multiply the squared quantities
by the number of spins to make a comparison. To make
that easier, change the system size to 100×100, using con-
figure. While you’re doing that, increase speed to ten or
twenty to draw the spin configuration fewer times. To
get good values for these averages, equilibrate for a given
field and temperature, “reset”, and then start averaging.

(c) Correlations and Susceptibilities: Numerical.
Check the formulas for C and χ from part (b) at H = 0
and T = 3, by measuring the fluctuations and the av-
erages, and then changing by ∆H = 0.02 or ∆T = 0.1
and measuring the averages again. Check them also for
T = 2, where 〈M〉 �= 0.35

There are systematic series expansion for the Ising model
at high and low temperatures, using Feynman diagrams
(see section 8.1). The first terms of these expansions are
both famous and illuminating.

Low Temperature Expansion for the Magnetiza-
tion. At low temperatures we can assume all spins flip
alone, ignoring clusters.

(d) What is the energy for flipping a spin antiparallel to
its neighbors? Equilibrate at low temperature T = 1.0,
and measure the magnetization. Notice that the primary
excitations are single spin flips. In the low temperature
approximation that the flipped spins are dilute (so we may

ignore the possibility that two flipped spins touch or over-
lap), write a formula for the magnetization. (Remember,
each flipped spin changes the magnetization by 2.) Check
your prediction against the simulation. (Hint: see equa-
tion 8.1.)

The magnetization (and the specific heat) are exponen-
tially small at low temperatures because there is an energy
gap to spin excitations in the Ising model,36 just as there
is a gap to charge excitations in a semiconductor or an
insulator.

High Temperature Expansion for the Susceptibil-
ity. At high temperatures, we can ignore the coupling to
the neighboring spins.

(e) Calculate a formula for the susceptibility of a free spin
coupled to an external field. Compare it to the suscepti-
bility you measure at high temperature T = 100 for the
Ising model (say, ∆M/∆H with ∆H = 1. Why is H = 1
a small field in this case?)

Your formula for the high-temperature susceptibility is
known more generally as Curie’s law.

(8.2) Coin Flips and Markov Chains. (Mathematics,
Basic)

A physicist, testing the laws of chance, flips a coin repeat-
edly until it lands tails.

(a) Treating the two states of the physicist (“still flipping”
and “done”) as states in a Markov process. The current

probability vector then is �ρ =

(
ρflipping

ρdone

)
. Write the tran-

sition matrix P, giving the time evolution P · �ρn = �ρn+1,
assuming that the coin is fair.

(b) Find the eigenvalues and right eigenvectors of P.
Which eigenvector is the steady state ρ∗? Call the other
eigenvector ρ̃. For convenience, normalize ρ̃ so that its
first component equals one.

(c) Assume an arbitrary initial state is written ρ0 =
Aρ∗ + Bρ̃. What are the conditions on A and B needed
to make ρ0 a valid probability distribution? Write ρn as
a function of A and B, ρ∗ and ρ̃.

(8.3) Red and Green Bacteria (Mathematics) (From
Princeton. [119])

A growth medium at time t = 0 has 500 red bacteria and
500 green bacteria. Each hour, each bacterium divides

35Be sure to wait until the state is equilibrated before you start! Below Tc this
means the state should not have red and black ‘domains’, but be all in one ground
state. You may need to apply a weak external field for a while to remove stripes at
low temperatures.

36Not all real magnets have a gap: if there is a spin rotation symmetry, one can
have gapless spin waves, like phonons for spins.
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in two. A color-blind predator eats exactly 1000 bacteria
per hour.37

(a) After a very long time, what is the probability dis-
tribution for the number α of red bacteria in the growth
medium?

(b) Roughly how long will it take to reach this final
state?38

(c) Assume that the predator has a 1% preference for
green bacteria (implemented as you choose). Roughly how
much will this change the final distribution?

(8.4) Detailed Balance. (Basic)

In an equilibrium system, for any two states α and β
with equilibrium probabilities ρ∗α and ρ∗β, detailed bal-
ance states (equation 8.22) that

Pβ⇐αρ
∗
α = Pα⇐βρ

∗
β, (8.27)

that is, the equilibrium flux of probability from α to β
is the same as the flux backward from β to α. It’s both
possible and elegant to reformulate the condition for de-
tailed balance so that it doesn’t involve the equilibrium
probabilities. Consider three states of the system, α, β,
and γ.

(a) Assume that each of the three types of transitions
among the three states satisfies detailed balance. Elim-
inate the equilibrium probability densities to write the un-
known rate Pα⇐β in terms of the five other rates. (Hint:
see equation below for answer.)

If we view the three states α, β, and γ to be around a cir-
cle, you’ve derived a relationship between the rates going
clockwise and the rates going counter-clockwise around
the circle,

Pα⇐βPβ⇐γPγ⇐α = Pα⇐γPγ⇐βPβ⇐α. (8.28)

It is possible to show conversely that if every triple of
states in a Markov chain satisfies the condition you de-
rived then it satisfies detailed balance (i.e., that there is
at least one probability density ρ∗ which makes the prob-
ability fluxes between all pairs of states equal). The only
complication arises because some of the rates can be zero.

(b) Suppose P is the transition matrix for some Markov
process satisfying the condition 8.28 for every triple of

states α, β, and γ. Assume for simplicity that there is
a state α with non-zero transition rates from all other
states δ. Construct a probability density ρ∗δ that demon-
strates that P satisfies detailed balance (equation 8.27).
(Hint: If you assume a value for ρ∗α, what must ρ∗δ be to
ensure detailed balance for the pair? Show that this can-
didate distribution satisfies detailed balance for any two
states.)

(8.5) Heat Bath, Metropolis, and Wolff. (Mathe-
matics, Computation)

There are a number of different methods for equilibrat-
ing lattice simulations like the Ising model. They give
the model different dynamics, but keep the equilibrium
properties unchanged. This is guaranteed by the theo-
rem we asserted in class on Markov processes: if they
are ergodic and obey detailed balance, they converge to
the equilibrium distribution. We’ll first look at the two
most common algorithms. We’ll then consider the most
sophisticated, sneaky use of the theorem I know of.

The simulation ising in exercise 8.1 uses the heat-bath
algorithm, which thermalizes one spin at a time:

Heat Bath

(a) Pick a spin at random,

(b) Calculate the energies E↑ and E↓ for the spin being
up or down given its current environment.

(c) Thermalize it: place it up with probability
e−βE↑/(e−βE↑ + e−βE↓), down with probability
e−βE↓/(e−βE↑ + e−βE↓).

Another popular choice is the Metropolis algorithm,
which also flips a single spin at a time:

Metropolis

(a) Pick a spin at random,

(b) Calculate the energy ∆E for flipping the spin.

(c) If ∆E < 0 flip it; if ∆E > 0, flip it with probability
e−β ∆E.

(a) Show that Heat Bath and Metropolis satisfy detailed
balance. Note that they are ergodic and Markovian (no
memory), and hence argue that they will lead to thermal
equilibrium. Is Metropolis more efficient (fewer random
numbers needed to get to equilibrium)? Why?

37This question is purposely open–ended, and rough answers to parts (b) and (c)
within a factor of two are perfectly acceptable. Numerical and analytical methods
are both feasible.

38Within the accuracy of this question, you may assume either that one bacterium
reproduces and then one is eaten 1000 times per hour, or that at the end of each
hour all the bacteria reproduce and then 1000 are consumed. The former method is
more convenient for analytical work finding eigenvectors; the latter can be used to
motivate approaches using the diffusion of probability with an α–dependent diffusion
constant.
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Near the critical point Tc where the system develops
a magnetization, any single-spin-flip dynamics becomes
very slow. Wolff (Phys. Rev. Lett. 62, 361 (1989)), im-
proving on ideas of Swendsen and Wang (Phys. Rev. Lett.
58, 86 (1987)), came up with a clever method to flip whole
clusters of spins.

Fig. 8.9 Cluster Flip. The region inside the dotted line is
flipped in one Wolff move. Let this configuration be A.

Fig. 8.10 Cluster Flip. Let this configuration be B. Let
the cluster flipped be C. Notice that the boundary of C has
n ↑= 2, n ↓= 6.

Wolff Cluster Flips

(a) Pick a spin at random, remember its direction D =
±1, and flip it.

(b) For each of the four neighboring spins, if it is in the
direction D, flip it with probability p.

(c) For each of the new flipped spins, recursively flip
their neighbors as in (2).

Because with finite probability you can flip any spin,
the Wolff algorithm is ergodic. It’s obviously Markovian
when viewed as a move which flips a cluster. Let’s see
that it satisfies detailed balance, when we pick the right
value of p for the given temperature.

(b) Show for the two configurations shown above that
EB − EA = 2(n↑ − n↓)J. Argue that this will be true for
flipping any cluster of up spins to down.

The cluster flip can start at any site α in the cluster C.
The ratio of rates ΓA→B/ΓB→A depends upon the num-
ber of times the cluster chose not to grow on the bound-
ary. Let PC

α be the probability that the cluster grows in-
ternally from site α to the cluster C (ignoring the moves
which try to grow outside the boundary). Then

ΓA→B =
∑

α

PC
α (1− p)n↑ , (8.29)

ΓB→A =
∑

α

PC
α (1− p)n↓ , (8.30)

since the cluster must refuse to grow n↑ times when start-
ing from the up-state A, and n↓ times when starting from
B.

(c) What value of p lets the Wolff algorithm satisfy de-
tailed balance at temperature T?

Find a Windows machine. Download the Wolff simula-
tion [106]. Using the parameter reset (top left) reset the
temperature to 2.3, the algorithm to Heat Bath, and the
height and width to 512. Watch the slow growth of the
characteristic cluster sizes. Now change to Wolff, and see
how much faster the code is. Also notice that each sweep
almost completely rearranges the pattern: the correlation
time is much smaller for the Wolff algorithm. (See [78,
secs. 4.2 and 4.3] for more details on the Wolff algorithm.)

(8.6) Stochastic Cells. (Biology, Computation) (With
Myers. [75])

Living cells are amazingly complex mixtures of a vari-
ety of complex molecules (RNA, DNA, proteins, lipids
. . . ) that are constantly undergoing reactions with one
another. This complex of reactions has been compared
to computation: the cell gets input from external and in-
ternal sensors, and through an intricate series of reactions
produces an appropriate response. Thus, for example, re-
ceptor cells in the retina ‘listen’ for light and respond by
triggering a nerve impulse.

The kinetics of chemical reactions are usually described
using differential equations for the concentrations of the
various chemicals, and rarely are statistical fluctuations
considered important. In a cell, the numbers of molecules
of a given type can be rather small: indeed, there is (of-
ten) only one copy of the relevant part of DNA for a given
reaction. It’s an important question whether and when
we may describe the dynamics inside the cell using con-
tinuous concentration variables, even though the actual
numbers of molecules are always integers.
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Fig. 8.11 Dimerization reaction. A Petri net diagram for
a dimerization reaction, with dimerization rate kb and dimer
dissociation rate ku.

Consider a dimerization reaction: a molecule M (called
the “monomer”) joins up with another monomer and be-
comes a dimer D: 2M ←→ D. Proteins in cells often
form dimers: sometimes (as here) both proteins are the
same (homodimers) and sometimes they are different pro-
teins (heterodimers). Suppose the forward reaction rate
is ku and the backward reaction rate is kd. Figure 8.11
shows this as a Petri net [39] with each reaction shown
as a box with incoming arrows showing species that are
consumed by the reaction, and outgoing arrows showing
species that are produced by the reaction: the number
consumed or produced (the stoichiometry) is given by
a label on each arrow.39 There are thus two reactions:
the backward unbinding reaction rate per unit volume is
ku[D] (each dimer disassociates with rate ku), and the
forward binding reaction rate per unit volume is kb[M ]2

(since each monomer must wait for a collision with an-
other monomer before binding, the rate is proportional
to the monomer concentration squared).40

The brackets [] denote concentrations. We assume, as
does reference [29], that the volume per cell is such that
one molecule per cell is 1nM (10−9 moles per liter). For
convenience, we shall pick nanomoles as our unit of con-
centration, so [M ] is also the number of monomers in the

cell. Assume kb = 1nM−1s−1 and ku = 2 s−1, and that
at t = 0 all N monomers are unbound.

(a) Continuum dimerization. Write the differential equa-
tion for dM/dt treating M and D as continuous variables.
(Hint: remember that two M molecules are consumed in
each reaction.) What are the equilibrium concentrations
for [M ] and [D] for N = 2 molecules in the cell, assum-
ing these continuous equations and the values above for kb

and ku? For N = 90 and N = 10100 molecules? Numer-
ically solve your differential equation for M(t) for N = 2
and N = 90, and verify that your solution settles down to
the equilbrium values you found.

For large numbers of molecules in the cell, we expect that
the continuum equations may work well, but for just a few
molecules there surely will be relatively large fluctuations.
These fluctuations are called shot noise, named in early
studies of electrical noise at low currents due to individ-
ual electrons in a resistor. We can implement a Monte–
Carlo algorithm to simulate this shot noise.41 Suppose
the reactions have rates Γi, with total rate Γtot =

∑
i Γi.

The idea is that the expected time to the next reaction
is 1/Γtot, and the probability that the next reaction will
be j is Γj/Γtot. To simulate until a final time tf , the
algorithm runs as follows:

(a) Calculate a list of the rates of all reactions in the
system.

(b) Find the total rate Γtot.

(c) Pick a random time twait with probability distribu-
tion ρ(t) = Γtot exp(−Γtot t).

(d) If the current time t plus twait is bigger than tf , no
further reactions will take place: return.

(e) Otherwise,

• Increment t by twait,
• Pick a random number r uniformly distributed

in the range [0,Γtot),
• Pick the reaction j for which

∑
i<j Γi ≤ r <∑

i<j+1 Γi (that is, r lands in the jth interval
of the sum forming Γtot).

• Execute that reaction, by incrementing each
chemical involved by its stoichiometry.

(f) Repeat.

39An enzyme that is necessary but not consumed is shown with an incoming and
outgoing arrow.

40In the discrete case, the rate will be proportional to M(M −1), since a monomer
cannot collide with itself.

41In the context of chemical simulations, this algorithm is named after Gille-
spie [35]; the same basic approach was used just a bit earlier in the Ising model
by Bortz, Kalos and Lebowitz [13], and is called continuous–time Monte Carlo in
that context.
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As mentioned earlier, the binding reaction rate for M
total monomers binding is no longer kbM

2 for discrete
molecules: it’s kbM(M − 1) (where again [M ] ≈M for a
one nanoliter cell, when using concentrations in nanomo-
lar).42

(b) Stochastic dimerization. Implement this algorithm for
the dimerization reaction of part (a). Simulate for N = 2,
N = 90, and N = 10100 and compare a few stochastic re-
alizations with the continuum solution. How large a value
of N do you need for the individual reactions to be well
described by the continuum equations (say, fluctuations
less than ±20% at late times)?

Measuring the concentrations in a single cell is often a
challenge. Experiments often average over many cells.
Such experiments will measure a smooth time evolution
even though the individual cells are noisy. Let’s investi-
gate whether this ensemble average is well described by
the continuum equations.

(c) Average Stochastic dimerization. Find the average
of many realizations of your stochastic dimerization in
part (b), for N = 2 and N = 90, and compare with your
deterministic solution. How much is the long–term av-
erage shifted by the stochastic noise? How large a value
of N do you need for the ensemble average of M(t) to be
well described by the continuum equations (say, shifted by
less than 5% at late times)?

(8.7) The Repressilator. (Biology, Computation)
(With Myers. [75])

Reading: Reference [29], Michael B. Elowitz and Stanis-
law Leibler, “A synthetic oscillator network of transcrip-
tional regulators” Nature 403, 335-338 (2000).

The ‘central dogma’ of molecular biology is that the flow
of information is from DNA to RNA to proteins: DNA is
transcribed into RNA, which then is translated into pro-
tein.

Now that the genome is sequenced, it is thought that we
have the parts list for the cell. ‘All’ that remains is to fig-
ure out how they work together. The proteins, RNA, and
DNA form a complex network of interacting chemical re-
actions, which governs metabolism, responses to external
stimuli, reproduction (proliferation), differentiation into
different cell types, and (when the system perceives itself
to be breaking down in dangerous ways) programmed cell
death, or apoptosis.

Our understanding of the structure of these interacting
networks is growing rapidly, but our understanding of
the dynamics is still rather primitive. Part of the dif-
ficulty is that the cellular networks are not neatly sepa-

rated into different modules: a given protein may partici-
pate in what would seem to be several separate regulatory
pathways. In this exercise, we will study a model gene
regulatory network, the Repressilator. This experimen-
tal system involves three proteins each of which inhibits
the formation of the next. They were added to the bac-
terium E. coli, with hopefully minimal interactions with
the rest of the biological machinery of the cell. We will
implement the stochastic model that the authors used to
describe their experimental system [29], in order to

• Implement in a tangible system an example both
of the central dogma and of transcriptional regula-
tion: the control by proteins of DNA expression into
RNA,

• Introduce sophisticated Monte–Carlo techniques for
simulations of stochastic reactions,

• Introduce methods for automatically generating
continuum descriptions from reaction rates, and

• Illustrate the shot noise fluctuations due to small
numbers of molecules and the telegraph noise fluc-
tuations due to finite rates of binding and unbinding
of the regulating proteins.

Figure 8.12 shows the biologist’s view of the repressilator
network. Three proteins (TetR, λCI, and LacI) each re-
press the formation of the next. We shall see that, under
appropriate circumstances, this can lead to spontaneous
oscillations: each protein peaks in turn, suppressing the
suppressor of its suppressor, leading to its own later de-
crease.

  CIλ LacI

TetR

Fig. 8.12 The biologist’s view of the Repressilator network.
The T-shapes are blunt arrows, signifying that the protein at
the tail (bottom of the T) suppresses the production of the pro-
tein at the head. Thus LacI (pronounced lack-eye) suppresses
TetR (tet are), which suppresses λ CI (lambda-see-one). This
simple description summarizes a complex series of interactions
(see figure 8.13).

42Without this change, if you start with an odd number of cells your concentrations
can go negative!
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The biologists’ notation summarizes a much more com-
plex picture. The LacI protein, for example, can bind to
one or both of the transcriptional regulation or operator
sites ahead of the gene that codes for the tetR mRNA.43

When bound, it largely blocks the translation of DNA
into tetR.44 The level of tetR will gradually decrease as
it degrades; hence less TetR protein will be translated
from the tetR mRNA. The resulting network of ten re-
actions is depicted in figure 8.13, showing one third of
the total repressilator network. The biologist’s shorthand
(figure 8.12 does not specify the details of how one protein
represses the production of the next. The larger diagram,
for example, includes two operator sites for the repressor
molecule to bind to, leading to three states (P0, P1, and
P2) of the promotor region depending upon how many
LacI proteins are bound.

Fig. 8.13 The Petri net version [39] of one–third of the Re-
pressilator network (the LacI repression of TetR). (Thanks to
Myers [75]). The solid lighter vertical rectangles represent
binding reactions A + B → C, with rate kb[A][B]; the open
vertical rectangles represent unbinding C → A+ B, with rate
ku[C]. The horizonal rectangles represent catalyzed synthesis
reactions C → C + P , with rate γ[C]; the darker ones repre-
sent transcription (formation of mRNA), and the lighter one
represent translation (formation of protein). The black verti-
cal rectangles represent degredation reactions, A → nothing
with rate kd[A]. (The stoichiometry of all the arrows is one.)
The LacI protein (top) can bind to the DNA in two promoter
sites ahead of the gene coding for tetR: when bound, it largely
blocks the transcription (formation) of tetR mRNA. P0 repre-
sents the promotor without any LacI bound; P1 represents the
promotor with one site blocked, and P2 represents the doubly-
bound promotor. LacI can bind to one or both of the promotor
sites, changing Pi to Pi+1, or correspondingly unbind: the un-
binding rate for the protein is modeled in reference [29] to
be faster when only one site is occupied. The unbound P0

state transcribes tetR mRNA quickly, and the bound states
transcribe it slowly (leaky repression). The tetR mRNA then
catalyzes the formation of the TetR protein.45

If you are not provided with it, you may retrieve a sim-
ulation package for the Repressilator from the book Web
site [108].

(a) Run the simulation for at least 6000 seconds and plot
the protein, RNA, and promotor states as a function of
time. Notice that

• The protein levels do oscillate, as in figure 1(c) in
reference [29],

• There are significant noisy–looking fluctuations,

• There are many more proteins than RNA

We will study this noise in parts (c) and (d); it will be due
to the low numbers of RNA molecules in the cell, and to
the discrete fluctuations between the three states of the
promotor sites. Before we do this, we should (a) increase
the efficiency of the simulation, and (b) compare it to
the continuum simulation that would be obtained if there
were no fluctuations.

To see how important the fluctuations are, we should
compare the stochastic simulation to the solution of the
continuum reaction rate equations (as we did in exer-
cise 8.6). In reference [29], the authors write a set of

43Messenger RNA (mRNA) codes for proteins. Other forms of RNA can serve as
enzymes or parts of the machinery of the cell.

44RNA polymerase, the molecular motor responsible for transcribing DNA into
RNA, needs to attach to the DNA at a promotor site. By binding to the adjacent
operator sites, our repressor protein inhibits this attachment and hence partly blocks
transcription. The residual transcription is called ‘leakiness’.

45Proteins by convention have the same names as their mRNA, but start with
capitals where the mRNA start with small letters.
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six differential equations giving a continuum version of
the stochastic simulation. These equations are simplified:
they both ‘integrate out’ or coarse–grain away the promo-
tor states from the system, deriving a Hill equation (see
exercise 6.10) for the mRNA production, and they also
rescale their variables in various ways. Rather than typ-
ing in their equations and sorting out these rescalings, it
is convenient and illuminating to write a routine to gen-
erate the continuum differential equations directly from
our reaction rates.

(b) Write a DeterministicRepressilator, derived from Re-
pressilator just as StochasticRepressilator was. Write a
routine dcdt(c, t), that

• Sets the chemical amounts in the reaction network
to the values in the array c,

• Sets a vector dcdt (of length the number of chemi-
cals) to zero,

• For each reaction,

– compute its rate
– for each chemical whose stoichiometry is

changed by the reaction, add the stoichiometry
change times the rate to the corresponding en-
try of dcdt.

Call a routine to integrate the resulting differential equa-
tion (as described in the last part of exercise 8.9, for ex-
ample), and compare your results to those of the stochas-
tic simulation.

The stochastic simulation has significant fluctuations
away from the continuum equation. Part of these fluc-
tuations are due to the fact that the numbers of proteins
and mRNAs are small: in particular, the mRNA numbers
are significantly smaller than the protein numbers.

(c) Write a routine that creates a stochastic repressi-
lator network that multiplies the mRNA concentrations
by RNAFactor without otherwise affecting the continuum
equations. (That is, multiply the initial concentrations
and the transcription rates by RNAFactor, and divide
the translation rate by RNAFactor.) Try boosting the
RNAFactor by ten and one hundred. Do the RNA and
protein fluctuations become significantly smaller? This
noise, due to the discrete, integer values of chemicals in
the cell, is analogous to the shot noise seen in electrical
circuits due to the discrete quantum of electric charge. It
scales, as do most fluctuations, as the square root of the
number of molecules.

A continuum description of the binding of the proteins
to the operator sites on the DNA seems particularly du-
bious: a variable that must be zero or one is replaced
by a continuous evolution between these extremes. (Such
noise in other contexts is called telegraph noise – in anal-
ogy to the telegraph, which is either silent or sending as

the operator taps the key.) The continuum description
is accurate in the limit where the binding and unbinding
rates are fast compared to all of the other changes in the
system: the protein and mRNA variations then see the
average, local equilibrium concentration. On the other
hand, if the rates are slow compared to the response of
the mRNA and protein, the latter can have a switching
appearance.

(d) Incorporate a telegraphFactor into your stochastic re-
pressilator routine, that multiplies the binding and un-
binding rates. Run for 1000 seconds with RNAFactor=10
(to suppress the shot noise) and telegraphFactor = 0.001.
Do you observe features in the mRNA curves that appear
to switch as the relevant proteins unbind and bind?

Advanced Algorithms: The simulation you will be
given implements the Gillespie algorithm discussed in ex-
ercise 8.6. At each step, the rates of all possible reactions
are calculated, in order to randomly choose when and
which the next reaction will be. For a large, loosely con-
nected system of reactions there is no need to recalculate
each rate – only the rates which have changed due to the
previous reaction. To do so, we must keep track of the de-
pendency network (which chemical amounts affect which
reactions change the amounts of which chemicals [74]).

(e) Alter the reaction network to store the current re-
action rates. Add a function UpdateRates(reac) to the
reaction network, which for each chem whose stoichiom-
etry is changed by reac, updates the rates for each re-
action affected by the amount of chem. Alter the Step
method of the stochastic repressilator simulation to use
the stored current reaction rates (rather than recomputing
them) and to call UpdateRates with the chosen reaction
before returning. Time your new routine, and compare to
the speed of the old one. A network of thirty reactions
for fifteen chemical components is rather small on biolog-
ical scales. The dependency network algorithm should be
significantly faster for large systems.

(8.8) Entropy Increases! Markov chains. (Math)
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Entropy is Concave (Convex downward)
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Fig. 8.14 For x ≥ 0, f(x) = −x log x is strictly convex
downward (concave) as a function of the probabilities: for
0 < λ < 1, the linear interpolation lies below the curve.

Convexity arguments are a basic tool in formal statistical
mechanics. The function f(x) = −x log x is strictly con-
cave (convex downward) for x ≥ 0 (figure 8.14): this is
easily shown by noting that its second derivative is nega-
tive in this region.

(a) Convexity for sums of many terms. If
∑

α µα = 1,
and if for all α both µα ≥ 0 and xα ≥ 0, show by induc-
tion on the number of states M that if g(x) is concave for
x ≥ 0,

g(
M∑

α=1

µαxα) ≥
M∑

α=1

µαg(xα). (8.31)

(Hint: In the definition of concave, f(λa + (1 − λ)b) ≥
λf(a) + (1− λ)f(b), take (1− λ) = µM+1 and b = xM+1.
Then a is a sum of M terms, rescaled from their original
values. Do the coefficients of xα in a sum to one? Can
we apply induction?)

Microcanonical Entropy is Maximum. In exer-
cise 6.7, you showed that the microcanonical ensemble
was an extremum of the entropy, using Lagrange multi-
pliers. We can use the convexity of −x log x to show that
it’s actually a global maximum.

(b) Using equation 8.31 for g(x) = −x log x and µα =
1/M , show that the entropy for a system of M states
−kB

∑
α ρα log ρα ≤ kB logM , the entropy of the (uni-

form) microcanonical ensemble.

Markov Chains: Entropy Increases! In exercise 5.4
you noticed that, formally speaking, entropy doesn’t in-

crease in Hamiltonian systems. Let us show that it does
increase for Markov chains.46

The Markov chain is implicitly exchanging energy with
a heat bath at the temperature T . Thus to show that
the entropy for the world as a whole increases, we must
show that ∆S − ∆E/T increases, where ∆S is the en-
tropy of our system and ∆E/T is the entropy flow from
the heat bath. Hence, showing that entropy increases for
our Markov process is equivalent to showing that the free
energy E − TS decreases.

Let Pαβ be the transition matrix for a Markov process,
satisfying detailed balance with energy Eα at tempera-
ture T . The current probability of being in state α is ρα.
The free energy

F = E − TS =
∑

α

ραEα + kBT
∑

α

ρα log ρα. (8.32)

(c) Show that the free energy decreases for a Markov pro-
cess. In particular, using equation 8.31, show that the
free energy for ρ

(n+1)
β =

∑
α Pβαρ

(n)
α is less than or equal

to the free energy for ρ(n). You may use the properties
of the Markov transition matrix P , (0 ≤ Pαβ ≤ 1 and∑

α Pαβ = 1), and detailed balance (Pαβρ
∗
β = Pβαρ

∗
α,

where ρ∗α = exp(−Eα/kBT )/Z). (Hint: you’ll want to
use µα = Pαβ in equation 8.31, but the entropy will in-
volve Pβα, which is not the same. Use detailed balance
to convert from one to the other.)

(8.9) Solving ODE’s: The Pendulum (Computa-
tional) (With Myers. [75])

Reading: Numerical Recipes [84], chapter 16.

Physical systems usually evolve continuously in time:
their laws of motion are differential equations. Computer
simulations must approximate these differential equations
using discrete time steps. In this exercise, we will intro-
duce some common methods for simulating differential
equations using the example of the pendulum:

d2θ

dt2
= θ̈ = −(g/L) sin(θ). (8.33)

This equation gives the motion of a pendulum with a
point mass at the tip of a massless rod47 of length L:
rederive it using a free body diagram.

Go to our Web site [108] and download the pendulum
files for the language you’ll be using. The animation

46We know that the Markov chain eventually evolves to the equilibrium state, and
we argued that the latter minimizes the free energy. What we’re showing here is that
the free energy goes continuously downhill for a Markov chain.

47We’ll depict our pendulum emphasizing the rod rather than the mass: the equa-
tion for a physical rod without an end mass is similar.
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should show a pendulum oscillating from an initial con-
dition θ0 = 2π/3, θ̇ = 0; the equations being solved have
g = 9.8m/s2 and L = 1m.

There are three independent criteria for picking a good
algorithm for solving differential equations: fidelity, ac-
curacy, and stability.

Fidelity. Notice that in our time step algorithm, we
did not do the straightforward choice – using the current
(θ(t), θ̇(t)) to produce (θ(t+δ), θ̇(t+δ)). Rather, we used
θ(t) to calculate the acceleration and update θ̇, and then
used θ̇(t+ δ) to calculate θ(t+ δ).

θ̇(t+ δ) = θ̇(t) + θ̈(t) δ (8.34)

θ(t+ δ) = θ(t) + θ̇(t+ δ) δ

Wouldn’t it be simpler and make more sense to up-
date θ and θ̇ simultaneously from their current values,
so θ(t + δ) = θ(t) + θ̇(t) δ? (This simplest of all time-
stepping schemes is called the Euler method, and should
not be used for ordinary differential equations (although
it is sometimes used in partial differential equations.)

(a) Try it. First, see why reversing the order of the up-
dates to θ and θ̇,

θ(t+ δ) = θ(t) + θ̇(t) δ

θ̇(t+ δ) = θ̇(t) + θ̈(t) δ (8.35)

in our loop would give us a simultaneous update. Swap
these two lines in the code, and watch the pendulum swing
for several turns, until it starts looping the loop. Is the
new algorithm as good as the old one? (Make sure you
switch the two lines back afterwards.)

The simultaneous update scheme is just as accurate as
the one we chose, but it is not as faithful to the physics
of the problem: its fidelity is not as good. For subtle rea-
sons we won’t explain here, updating first θ̇ and then θ
allows our algorithm to exactly conserve an approxima-
tion to the energy: it’s called a symplectic algorithm.48

Improved versions of this algorithm – like the Verlet al-
gorithms below – are often used to simulate systems that
conserve energy (like molecular dynamics) because they
exactly49 simulate the dynamics for an approximation to

the Hamiltonian – preserving important physical features
not kept by just approximately solving the dynamics.

Accuracy. Most computational methods for solving dif-
ferential equations (and many other continuum problems
like integrating functions) involve a step size δ, and be-
come more accurate as δ gets smaller. What is most im-
portant is not the error in each time step, but the ac-
curacy of the answer after a fixed time T , which is the
accumulated error after T/δ time steps. If this accumu-
lated error varies as δn, we say that the algorithm has
nth order cumulative accuracy. Our algorithm is not very
high order!

(b) Plot the pendulum trajectory θ(t) for time steps δ =
0.1, 0.01, and 0.001. Zoom in on the curve at one of the
coarse points (say, t = 1) and compare the values from
the three time steps. Does it appear that this time is con-
verging50 as δ → 0? From your measurement, what order
accuracy is our method?

We can write higher–order symplectic algorithms. The
approximation to the second derivative

θ̈ ≈ (θ(t+ δ)− 2θ(t) + θ(t− δ)) /δ2 (8.36)

(which you can verify with a Taylor expansion is correct
to O(δ4)) motivates the Verlet Algorithm

θ(t+ δ) = 2θ(t)− θ(t− δ) + θ̈ δ2. (8.37)

This algorithm is a bit awkward to start up since you need
to initialize51 θ(t− δ); it’s also often convenient to know
the velocities as well as the positions. The Velocity Verlet
algorithm fixes both of these problems; it is motivated by
the constant acceleration formula x(t) = x0 + v0t+

1/2at
2:

θ(t+ δ) = θ(t) + θ̇(t) δ + 1/2θ̈(t) δ
2 (8.38)

θ̇(t+ δ/2) = θ̇(t) + 1/2θ̈(t) δ

θ̇(t+ δ) = θ̇(t+ δ/2) + 1/2θ̈(t+ δ) δ.

The trick that makes this algorithm so good is to cleverly
split the velocity increment into two pieces, half for the

48It conserves a symplectic form. In non-mathematician’s language, this means our
time-step perfectly simulates a Hamiltonian system satisfying Liouville’s theorem and
energy conservation, but with an approximation to the true energy.

49Up to rounding errors
50You may note that the approximate answers seem to extrapolate nicely to the

correct answer. Using this can allow one to converge more quickly to the correct an-
swer. This is called Richardson extrapolation and is the basis for the Bulirsch–Stoer
methods.

51Since we start with θ̇ = 0, the simulation is symmetric under reversing the sign
of time and you can get away with using θ(t− δ) = θ(t) + 1/2θ̈ +O(δ4).
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acceleration at the old position and half for the new po-
sition.52 (You’ll want to initialize θ̈ once before starting
the loop.)

(c) Pick one of the Verlet algorithms, implement it, and
plot the trajectory for time steps δ = 0.1, 0.01, and 0.001.
You should see a dramatic improvement in convergence.
What cumulative order accuracy does Verlet have?53

Stability. In many cases high accuracy is not crucial.
What prevents us from taking enormous time steps? In a
given problem, there is usually a typical fastest time scale:
a vibration or oscillation period (as in our exercise) or a
growth or decay rate. When our time step becomes a sub-
stantial fraction of this fastest time scale, algorithms like
ours usually become unstable: the first few time steps
may be fairly accurate, but small errors build up until
the errors become unacceptable (indeed, often ones first
warning of problems are machine overflows).

(d) Plot the pendulum trajectory θ(t) for time steps δ =
0.1, 0.2, . . . , 0.8, using a small amplitude oscillation
θ0 = 0.01, θ̇0 = 0.0, up to tmax = 10. At about what δc

does it go unstable? Looking at the first few points of the
trajectory, does it seem like sampling the curve at steps
much larger than δc would miss the oscillations? At δc/2,
how accurate is the amplitude of the oscillation? (You’ll
need to observe several periods in order to estimate the
maximum amplitude of the solution.)

In solving the properties of large, nonlinear systems (e.g.,
partial differential equations (PDEs) and molecular dy-
namics) stability tends to be the key difficulty. The
maximum stepsize depends on the local configuration,
so highly nonlinear regions can send the system unsta-
ble before one might expect. The maximum safe stable
stepsize often has accuracy far higher than needed; in-
deed, some algorithms become less stable if the stepsize
is decreased!54

ODE packages: higher order, variable stepsize, stiff sys-
tems . . .

The Verlet algorithms are not hard to code, and we use
higher–order symplectic algorithms in Hamiltonian sys-
tems mostly in unusual applications (planetary motion)
where high accuracy is demanded, because they are typ-

ically significantly less stable. In systems of differential
equations where there is no conserved energy or Hamil-
tonian, or even in Hamiltonian systems (like high–energy
collisions) where accuracy at short times is more crucial
than fidelity at long times, we use general purpose meth-
ods.

The general–purpose solvers come in a variety of basic
algorithms (Runge–Kutta, predictor–corrector, . . . ), and
methods for maintaining and enhancing accuracy (vari-
able step size, Richardson extrapolation). There are also
implicit methods for stiff systems. A system is stiff if there
is a large separation between the slowest and fastest rele-
vant time scales: implicit methods often allow one to take
time steps much larger than the fastest time scale (un-
like the explicit Verlet methods you studied in part (d),
which go unstable). Large, sophisticated packages have
been developed over many years for solving differential
equations – switching between algorithms and varying
the time steps to most efficiently maintain a given level
of accuracy. They solve dy/dt = dydt(y, t), where for
us y = [θ, θ̇] and dydt = [θ̇, θ̈]. They typically come
in the form of subroutines or functions, which need as
arguments

• Initial conditions y0,

• The right–hand side dydt, a function of the vec-
tor y and time t, which returns a vector giving the
current rate of change of y, and

• The initial and final times, and perhaps intermedi-
ate times, at which the trajectory y(t) is desired.

They often have options that

• Ask for desired accuracy goals, typically a rela-
tive (fractional) accuracy and an absolute accuracy,
sometimes set separately for each component of y,

• Ask for and return derivative and time step informa-
tion from the end of the last step (to allow efficient
restarts after intermediate points),

• Ask for a routine that computes the derivatives of
dydt with respect to the current components of y
(for use by the stiff integrator), and

52You may check that both Verlet algorithms give exactly the same values for
θ(t0 + nδ).

53The error in each time step of the Verlet algorithm is of order δ4. It’s usually said
that the Verlet algorithms have third order accuracy, naively assuming that running
for a time T should have errors bounded by the number of time steps T/δ times the
error per time step δ4. However, one can check that the errors in successive time
steps build up quadratically at short times (i.e., the velocity errors build up linearly
with time), so after T/δ time steps the accumulated error is δ4 (T/δ)2 ∝ δ2. We’ll
use “cumulative order” of the algorithm to distinguish it from the naive order.

54For some partial differential equations, decreasing the spacing ∆x between points
can lead to instabilities unless the time step is also decreased.
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• Return information about the methods, time steps,
and performance of the algorithm.

You will be supplied with one of these general–purpose
packages, and instructions on how to use it.

(e) Write the function dydt, and use the general pur-
pose solver to solve for the motion of the pendulum as in
parts (a)-(c), and informally check that the trajectory is
accurate.

(8.10) Small World Networks. (Complexity, Compu-
tation) (With Myers. [75])

Many interesting problems arise from studying proper-
ties of randomly generated networks. A network is a col-
lection of nodes and edges, with each edge connected to
two nodes, but with each node potentially connected to
any number of edges. A random network is constructed
probabilistically according to some definite rules; study-
ing such a random network usually is done by studying
the entire ensemble of networks, each weighted by the
probability that it was constructed. Thus these problems
naturally fall within the broad purview of statistical me-
chanics.

Fig. 8.15 A network is a collection of nodes (circles) and edges
(lines between the circles).

One of the more popular topics in random network the-
ory is the study of how connected they are. “Six degrees
of separation” is the phrase commonly used to describe
the interconnected nature of human acquaintances: vari-
ous somewhat uncontrolled studies have shown that any
random pair of people in the world can be connected to
one another by a short chain of people (typically around
six), each of whom knows the next fairly well. If we repre-
sent people as nodes and acquaintanceships as neighbors,
we reduce the problem to the study of the relationship
network.

In this exercise, we will generate some random networks,
and calculate the distribution of distances between pairs

of points. We’ll study small world networks [121, 76],
a theoretical model that suggests how a small num-
ber of shortcuts (unusual international and intercultural
friendships, ) can dramatically shorten the typical chain
lengths. Finally, we’ll study how a simple, universal scal-
ing behavior emerges for large networks with few short-
cuts.

On the Web site for this book [108], you’ll find some hint
files and graphic routines to facilitate working this ex-
ercise, for a variety of languages and systems (currently
Python under Unix and Windows).

Constructing a small world network. The L nodes in
a small world network are arranged around a circle. There
are two kinds of edges. Each node has Z short edges con-
necting it to its nearest neighbors around the circle (up
to a distance Z/2). In addition, there are p × L × Z/2
shortcuts added to the network, which connect nodes at
random (see figure 8.16). (This is a more tractable ver-
sion [76] of the original model [121], which rewired a frac-
tion p of the LZ/2 edges.)

(a) Define a network object on the computer. For this
exercise, the nodes will be represented by integers. Imple-
ment a network class, with five functions:

(1) HasNode(node), which checks to see if a node is al-
ready in the network,

(2) AddNode(node), which adds a new node to the sys-
tem (if it’s not already there),

(3) AddEdge(node1, node2), which adds a new edge to
the system,

(4) GetNodes(), which returns a list of existing nodes,
and

(5) GetNeighbors(node), which returns the neighbors
of an existing node.

Write a routine to construct a small–world network,
which (given L, Z, and p) adds the nodes and the short
edges, and then randomly adding the shortcuts. Use the
software provided to draw this small world graph, and
check that you’ve implemented the periodic boundary con-
ditions correctly (each node i should be connected to nodes
(i− Z/2)modL, . . . , (i+ Z/2)modL).
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Fig. 8.16 Small world network, with L = 20, Z = 4, and
p = 0.2.55

Measuring the minimum distances between
nodes. The most studied property of small world graphs
is the distribution of shortest paths between nodes. With-
out the long edges, the shortest path between i and j will
be given by hopping in steps of length Z/2 along the
shorter of the two arcs around the circle: there will be
no paths of length longer than L/Z (halfway around the
circle), and the distribution ρ(�) of path lengths � will
be constant for 0 < � < L/Z. When we add shortcuts,
we expect that the distribution will be shifted to shorter
path lengths.

(b) Write three functions to find and analyze the path
length distribution:

(1) FindPathLengthsFromNode(graph, node), which
returns for each node2 in the graph the shortest
distance from node to node2. An efficient algo-
rithm is a breadth first traversal of the graph, work-
ing outward from node in shells. There will be a
currentShell of nodes whose distance will be set
to � unless they have already been visited, and a
nextShell which will be considered after the cur-
rent one is finished (looking sideways before forward,
breadth–first):

• Initialize � = 0, the distance from node to itself
to zero, and currentShell = [node]

• While there are nodes in the new
currentShell:

– Start a new empty nextShell

– For each neighbor of each node in the cur-
rent shell, if the distance to neighbor has

not been set, add the node to nextShell

and set the distance to �+ 1
– Add one to �, and set the current shell to

nextShell

• Return the distances

This will sweep outward from node, measuring the
shortest distance to every other node in the network.
(Hint: Check your code with a network with small
N and small p, comparing a few paths to hand–
calculations from the graph image generating as in
part (a).)

(2) FindPathLengthHistogram(graph), which com-
putes the probability ρ(�) that a shortest path will
have length �, by using FindPathLengthsFromNode
repeatedly to find the mean over all pairs of nodes.
Check your function by testing that the histogram of
path lengths at p = 0 is constant for 0 < � < L/Z,
as advertised. Generate graphs at L = 1000 and
Z = 2 for p = 0.02 and p = 0.2: display the cir-
cle graphs and plot the histogram of path lengths.
Zoom in on the histogram: how much does it change
with p? What value of p would you need to get ‘six
degrees of separation’?

(3) FindAveragePathLength(graph), which similarly
computes the mean 〈�〉 over all pairs of nodes. Com-
pute � for Z = 2, L = 100, and p = 0.1 a few times:
your answer should be around � = 10. Notice that
there are substantial statistical fluctuations in the
value from sample to sample. Roughly how many
long bonds are there in this system? Would you ex-
pect fluctuations in the distances?

(c) Plot the average path length between nodes �(p) di-
vided by �(p = 0) for Z = 2, L = 50, with p on a semi-log
plot from p = 0.001 to p = 1. Compare with figure 2
of Watts and Strogatz [121]. You should find roughly the
same curve, with the values of p shifted by a factor of 100.
(They do L = 1000 and Z = 10).

Large N and the emergence of a continuum limit.
We can understand the shift in p of part (c) as a contin-
uum limit of the problem. In the limit where the number
of nodes N becomes large and the number of short cuts
pLZ/2 stays fixed, this network problem has a nice limit
where distance is measured in radians ∆θ around the cir-
cle. Dividing � by �(p = 0) ≈ L/(2Z) essentially does
this, since ∆θ = πZ�/L.

(d) Create and display a circle graph of your geometry
from part (c) [Z = 2, L = 50] at p = 0.1; create
and display circle graphs of Watts and Strogatz’ geom-
etry [Z = 10, L = 1000] at p = 0.1 and p = 0.001. Which

55There are seven new shortcuts, where pLZ/2 = 8; one of the added edges over-
lapped an existing edge or connected a node to itself.
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of their systems looks statistically more similar to yours?
Plot (perhaps using the scaling collapse routine provided)
the rescaled average path length πZ�/L versus the total
number of shortcuts pLZ/2, for a range 0.001 < p < 1,
for L = 100 and 200 and Z = 2 and 4.

In this limit, the average bond length 〈∆θ〉 should be a
function only of M . Since reference [121] ran at a value of
ZL a factor of 100 larger than ours, our values of p are a
factor of 100 larger to get the same value of M = pLZ/2.
Newman and Watts [79] derive this continuum limit with
a renormalization–group analysis (chapter 12).

(e) Real Networks. From the book Web site [108], or
through your own researches, find a real network56 and
find the mean distance and histogram of distances between
nodes.

Fig. 8.17 Small world network with L = 500, K = 2 and
p = 0.1, with node and edge sizes scaled by the square root of
their betweenness.

In the small–world network, a few long edges are crucial
to efficient transfer through the system (transfer of infor-
mation in a computer network, transfer of disease in a
population model, . . . ). It is often useful to measure how
crucial a given node or edge is to these shortest paths.
We say a node or edge is “between” two other nodes if it
is along a shortest path between them. We measure the
“betweenness” of a node or edge as the total number of
such shortest paths passing through, with (by convention)
the initial and final nodes included in the ‘between’ nodes;
see figure 8.17. (If there are K multiple shortest paths
of equal length between two nodes, each path adds 1/K
to its intermediates.) The efficient algorithm to measure

betweenness is a depth–first traversal quite analogous to
the shortest–path–length algorithm discussed above.

(f) Betweenness. (Advanced) Read references [77]
and [37] , discussing the algorithms for finding the be-
tweenness. Implement them on the small world net-
work, and perhaps the real–world network you analyzed
in part (e). Visualize your answers by using the graphics
software provided on the book Web site [108].

(8.11) Building a Percolation Network. (Complex-
ity,Computation) (With Myers. [75])

Figure 8.18 shows what a large sheet of paper, held at
the edges, would look like if small holes were successively
punched out at random locations. Here the ensemble av-
erages over the different choices of random locations for
the holes; this figure shows the sheet just before it fell
apart. Of course, certain choices of hole positions would
cut the sheet in two far earlier (a straight line across the
center) or somewhat later (checkerboard patterns), but
for the vast majority of members of our ensemble the pa-
per will have the same kinds of hole patterns seen here.
Again, it is easier to analyze all the possible patterns of
punches than to predict a particular pattern.

Percolation theory is the study of the qualitative change
in connectivity of a large system as its components are
randomly removed. Outside physics, it has become a pro-
totype of criticality at continuous transitions, presumably
because the problem is simple to state and the analysis
does not demand a background in equilibrium statisti-
cal mechanics.57 In this exercise, we’ll study bond per-
colation (figure 8.18) and site percolation (8.19) in two
dimensions.

56Noteworthy examples include movie-actor costars, “Six degrees of Kevin Bacon”
or baseball players who played on the same team.
c©James P. Sethna, April 19, 2005 Entropy, Order Parameters, and Complexity



168 Calculation and Computation

Fig. 8.18 Bond Percolation network. Each bond on a
10×10 square lattice is present with probability p = 0.4. This
is below the percolation threshold p = 0.5 for the infinite lat-
tice, and indeed the network breaks up into individual clusters
(each shaded separately). Note the periodic boundary condi-
tions. Note there are many small clusters, and only a few large
ones, here twelve clusters of size S = 1, three of size S = 2,
and one cluster of size S = 29 (black). For a large lattice
near the percolation threshold the probability distribution of
cluster sizes ρ(S) forms a power law (exercise 12.9).

On the Web site for this book [108], you’ll find some hint
files and graphic routines to facilitate working this ex-
ercise, for a variety of languages and systems (currently
Python under Unix and Windows).

Bond percolation on a square lattice.

(a) Define a 2D bond percolation network with periodic
boundary conditions on the computer, for size L× L and
bond probability p. For this exercise, the nodes will be rep-
resented by pairs of integers (i, j). You’ll need the method
GetNeighbors(node), which returns the neighbors of an
existing node. Use the bond-drawing software provided
to draw your bond percolation network for various p and
L, and use it to check that you’ve implemented the peri-
odic boundary conditions correctly. (There are two basic
approaches. You can start with an empty network and
use AddNode and AddEdge in loops to generate the nodes,
vertical bonds, and horizontal bonds (see exercise 8.10).
Alternatively, and more traditionally, you can set up a
2D array of vertical and horizontal bonds, and implement
GetNeighbors(node) by constructing the list of neighbors
from the bond networks when the site is visited.)

The percolation threshold and duality. In most con-
tinuous phase transitions, one of the challenges is to find

the location of the transition. We chose bond percolation
on the square lattice because one can argue, in the limit
of large systems, that the percolation threshold pc = 1/2.
The argument makes use of the dual lattice.

The nodes of the dual lattice are the centers of the squares
between nodes in the original lattice. The edges of the
dual lattice are those which do not cross an edge of the
original lattice. Since every potential dual edge crosses
exactly one edge of the original lattice, the probability p∗

of having bonds on the dual lattice is 1 − p where p is
the probability of bonds for the original lattice. If we can
show that the dual lattice percolates if and only if the
original lattice does not, then pc = 1/2. This is easiest to
see graphically:

(b) Generate and print a small lattice with p = 0.4, pick-
ing one where the largest cluster does not span across ei-
ther the vertical or the horizontal direction (or print fig-
ure 8.18). Draw a path on the dual lattice spanning the
system from top to bottom and from left to right. (You’ll
be emulating a rat running through a maze.) Is it clear
for large systems that the dual lattice will percolate if and
only if the original lattice does not?

Finding the clusters. (c) Write two functions that
together find the clusters in the percolation network:

(1) FindClusterFromNode(graph, node, visited),
which returns the cluster in graph containing node,
and marks the sites in the cluster as having been
visited. The cluster is of course the union of node,
the neighbors, the neighbors of the neighbors, etc.
The trick is to use the set of visited sites to avoid
going around in circles. The efficient algorithm is a
breadth first traversal of the graph, working outward
from node in shells. There will be a currentShell

of nodes whose neighbors have not yet been checked,
and a nextShell which will be considered after the
current one is finished (breadth–first):

• Initialize visited[node]=True,
cluster=[node], and
currentShell=graph.GetNeighbors(node).

• While there are nodes in the new
currentShell:

– Start a new empty nextShell

– For each node in the current shell, if the
node has not been visited,

∗ add the node to the cluster,
∗ mark the node as visited,
∗ and add the neighbors of the node to the

nextShell

– Set the current shell to nextShell

• Return the cluster
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(2) FindAllClusters(graph), which sets up the
visited set to be False for all nodes, and calls
FindClusterFromNode(graph, node, visited) on
all nodes that haven’t been visited, collecting the re-
sulting clusters. Optionally, you may want to order
the clusters from largest to smallest, for convenience
in graphics (and in finding the largest cluster).

Check your code by running it for small L and using the
graphics software provided. Are the clusters, drawn in
different colors, correct?

Site percolation on a triangular lattice. Universal-
ity states that the statistical behavior of the percolation
clusters at long length scales should be independent of
the microscopic detail. That is, removing bonds from a
square lattice should leave the same fractal patterns of
holes, near pc, as punching out circular holes in a sheet
just before it falls apart. Nothing about your algorithms
from part (c) depended on their being four neighbors of a
node, or their even being nodes at all sites. Let’s imple-
ment site percolation on a triangular lattice (figure 8.19):
nodes are occupied with probability p, with each node
connected to any of its six neighbor sites that are also
filled (punching out hexagons from a sheet of paper). The
triangular site lattice also has a duality transformation,
so again pc = 0.5.

Fig. 8.19 Site Percolation network. Each site on a 10×10
triangular lattice is present with probability p = 0.5, the per-
colation threshold for the infinite lattice. Note the periodic
boundary conditions at the sides, and the shifted periodic
boundaries at the top and bottom.

It is computationally convenient to label the site at (x, y)

on a triangular lattice by [i, j], where x = i + j/2 and

y =
√

3
2
j. If we again use periodic boundary conditions

with 0 ≤ i < L and 0 ≤ j < L, we cover a region in the
shape of a 60◦ rhombus.58 Each site [i, j] has six neigh-
bors, at [i, j] + e with e = [1, 0], [0, 1], [−1, 1] upward and
to the right and minus the same three downward and left.

(d) Generate a site percolation network on a triangu-
lar lattice.You can treat the sites one at a time, using
AddNode with probability p, and check HasNode(neighbor)
to bond to all existing neighbors. Alternatively, you can
start by generating a whole matrix of random numbers
in one sweep to determine which sites are occupied by
nodes, add those nodes, and then fill in the bonds. Check
your resulting network by running it for small L and us-
ing the graphics software provided. (Notice the shifted
periodic boundary conditions at the top and bottom, see
figure 8.19.) Use your routine from part (c) to generate
the clusters, and check these (particularly at the periodic
boundaries) using the graphics software.

(e) Generate a small square–lattice bond percolation clus-
ter, perhaps 30×30, and compare with a small triangular–
lattice site percolation cluster. They should look rather
different in many ways. Now generate a large59 cluster of
each, perhaps 1000 × 1000 (or see figure 12.9). Stepping
back and blurring your eyes, do the two look substantially
similar?

Chapter 12 and 12.9 will discuss percolation theory in
more detail.

(8.12) Hysteresis Model: Computational Methods.
(Complexity)

Fig. 8.20 Barkhausen noise experiment.

58The graphics software uses the periodic boundary conditions to shift this rhom-
bus back into a rectangle.

59Your code, if written properly, should run in a time of order N , the number of
nodes. If it seems to slow down more than a factor of 4 when you increase the length
of the side by a factor of two, check for inefficiencies.
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Fig. 8.21 Hysteresis loop with subloops.

Fig. 8.22 Tiny jumps: Barkhausen noise.
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Fig. 8.23 Avalanche propagation in the hysteresis model.
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Fig. 8.24 Number of domains flipped per time step for the
avalanche shown in figure 12.2. Notice how the avalanche al-
most stops several times: if the forcing were slightly smaller
compared to the disorder, the avalanche would have separated
into smaller ones. The fact that the disorder is just small
enough to keep the avalanche growing is the criterion for the
phase transition, and the cause of the self–similarity. At the
critical point, a partial avalanche of size S will on average trig-
ger another one of size S.
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Order Parameters, Broken
Symmetry, and Topology 9

This chapter is slightly modified from
a lecture given at the Santa Fe insti-
tute [96].

As a kid in elementary school, I was taught that there were three states
of matter: solid, liquid, and gas. The ancients thought that there were
four: earth, water, air, and fire, which was considered sheer superstition.
In junior high, I remember reading a book called The Seven States of
Matter. At least one was “plasma”, which made up stars and thus most
of the universe,1 and which sounded rather like fire to me. 1They hadn’t heard of dark matter

back then.

Fig. 9.1 Quasicrystals. Much of this
chapter will discuss the properties of
crystals. Crystals are surely the oldest
known of the broken–symmetry phases
of matter, and remain the most beau-
tiful illustrations. It’s amazing that in
the past few years, we’ve uncovered an
entirely new class of crystals. Shown
here is a photograph of a quasicrys-
talline metallic alloy, with icosahedral
symmetry. Notice that the facets are
pentagonal: our old notions of crystals
had to be completely revised to include
this type of symmetry.

The original three, by now, have become multitudes. In important
and precise ways, magnets are a distinct form of matter. Metals are
different from insulators. Superconductors and superfluids are striking
new states of matter. The liquid crystal in your wristwatch is one of a
huge family of different liquid crystalline states of matter [26] (nematic,
cholesteric, blue phase I, II, and blue fog, smectic A, B, C, C∗, D, I,
...). There are over 200 qualitatively different types of crystals, not
to mention the quasicrystals (figure 9.1). There are disordered states
of matter like spin glasses, and states like the fractional quantum hall
effect with excitations of charge e/3 like quarks. Particle physicists tell
us that the vacuum we live within has in the past been in quite different
states: in the last vacuum but one, there were four different kinds of
light [24] (mediated by what is now the photon, the W+, the W−, and
the Z particle).

When there were only three states of matter, we could learn about
each one and then turn back to learning long division. Now that there
are multitudes, though, we’ve had to develop a system. Our system is
constantly being extended and modified, because we keep finding new
phases which don’t fit into the old frameworks. It’s amazing how the
500th new state of matter somehow screws up a system which worked
fine for the first 499. Quasicrystals, the fractional quantum hall effect,
and spin glasses all really stretched our minds until (1) we understood
why they behaved the way they did, and (2) we understood how they
fit into the general framework.

In this chapter, I’m going to tell you the system.
The system consists of four basic steps [73]. First, you must identify

the broken symmetry. Second, you must define an order parameter.
Third, you are told to examine the elementary excitations. Fourth, you
classify the topological defects. Most of what I say in this chapter I
take from Mermin [73], Coleman [24], and deGennes [26], and I heartily
recommend these excellent articles. We take each step in turn.
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9.1 Identify the Broken Symmetry

What is it which distinguishes the hundreds of different states of matter?
Why do we say that water and olive oil are in the same state (the liquid
phase), while we say aluminum and (magnetized) iron are in different
states? Through long experience, we’ve discovered that most phases
differ in their symmetry.2BA

Fig. 9.2 Which is more symmet-
ric? (A) The cube has many symme-
tries. It can be rotated by 90◦, 180◦,
or 270◦ about any of the three axes
passing through the faces. It can be
rotated by 120◦ or 240◦ about the cor-
ners and by 180◦ about an axis passing
from the center through any of the 12
edges. (B) The sphere, though, can be
rotated by any angle. The sphere re-
spects rotational invariance: all direc-
tions are equal. The cube is an ob-
ject which breaks rotational symmetry:
once the cube is there, some directions
are more equal than others.

Consider figures 9.2, showing a cube and a sphere. Which is more
symmetric? Clearly, the sphere has many more symmetries than the
cube. One can rotate the cube by 90◦ in various directions and not
change its appearance, but one can rotate the sphere by any angle and
keep it unchanged.

A B

Fig. 9.3 Which is more symmet-
ric? At first glance, water seems to
have much less symmetry than ice. (A)
The picture of “two–dimensional” ice
clearly breaks the rotational invariance:
it can be rotated only by 120◦ or 240◦.
It also breaks the translational invari-
ance: the crystal can only be shifted by
certain special distances (whole num-
ber of lattice units). (B) The pic-
ture of water has no symmetry at all:
the atoms are jumbled together with
no long–range pattern at all. Water,
though, isn’t a snapshot: it is better to
think of it as a combination (or ensem-
ble) of all possible snapshots. Water
has a complete rotational and transla-
tional symmetry: the pictures will look
the same if the container is tipped or
shoved.

In figure 9.3, we see a 2-D schematic representation of ice and water.
Which state is more symmetric here? Naively, the ice looks much more
symmetric: regular arrangements of atoms forming a lattice structure.
The water looks irregular and disorganized. On the other hand, if one
rotated figure 9.3B by an arbitrary angle, it would still look like water!
Ice has broken rotational symmetry: one can rotate figure 9.3A only by
multiples of 60◦. It also has a broken translational symmetry: it’s easy
to tell if the picture is shifted sideways, unless one shifts by a whole
number of lattice units. While the snapshot of the water shown in the
figure has no symmetries, water as a phase has complete rotational and
translational symmetry.

9.2 Define the Order Parameter

Particle physics and condensed–matter physics have quite different philo-
sophies. Particle physicists are constantly looking for the building blocks.
Once pions and protons were discovered to be made of quarks, they be-
came demoted into engineering problems. Now quarks and electrons and
photons seem to be made of strings, and strings are hard to study exper-
imentally (so far). Condensed–matter physicists, on the other hand, try
to understand why messy combinations of zillions of electrons and nuclei
do such interesting simple things. To them, the fundamental question is
not discovering the underlying quantum mechanical laws, but in under-
standing and explaining the new laws that emerge when many particles
interact.3

As one might guess, we don’t always keep track of all the electrons
and protons. We’re always looking for the important variables, the im-
portant degrees of freedom. In a crystal, the important variables are the

2This is not to say that different phases always differ by symmetries! Liquids and
gases have the same symmetry. It is safe to say, though, that if the two materials
have different symmetries, they are different phases.

3The particle physicists use order parameter fields too. Their order parameter
fields also hide lots of details about what their quarks and gluons are composed of.
The main difference is that they don’t know of what their fields are composed. It
ought to be reassuring to them that we don’t always find our greater knowledge very
helpful.
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Fig. 9.4 Magnet. We take the mag-

netization �M as the order parame-
ter for a magnet. For a given ma-
terial at a given temperature, the
amount of magnetization | �M | = M0

will be pretty well fixed, but the en-
ergy is often pretty much indepen-
dent of the direction M̂ = �M/M0 of
the magnetization. (You can think of
this as a arrow pointing to the north
end of each atomic magnet.) Often,
the magnetization changes directions
smoothly in different parts of the ma-
terial. (That’s why not all pieces of
iron are magnetic!) We describe the
current state of the material by an or-
der parameter field �M(x).
The order parameter field is usually
thought of as an arrow at each point
in space. It can also be thought of
as a function taking points in space x
into points on the sphere | �M | = M0.
This sphere S2 is the order parameter
space for the magnet.

motions of the atoms away from their lattice positions. In a magnet, the
important variable is the local direction of the magnetization (an arrow
pointing to the “north” end of the local magnet). The local magneti-
zation comes from complicated interactions between the electrons, and
is partly due to the little magnets attached to each electron and partly
due to the way the electrons dance around in the material: these details
are for many purposes unimportant.

n

Fig. 9.5 Nematic liquid crystals are
made up of long, thin molecules that
prefer to align with one another. (Liq-
uid crystal watches are made of nemat-
ics.) Since they don’t care much which
end is up, their order parameter is not a
vector n̂ along the axis of the molecules,
but is instead a unit vector up to the
equivalence n̂ ≡ −n̂.

The important variables are combined into an “order parameter field”.
In figure 9.4, we see the order parameter field for a magnet.4 At each

4Most magnets are crystals, which al-
ready have broken the rotational sym-
metry. For some “Heisenberg” mag-
nets, the effects of the crystal on the
magnetism is small. Magnets are re-
ally distinguished by the fact that they
break time–reversal symmetry: if you
reverse the arrow of time, the magneti-
zation changes sign.

position x = (x, y, z) we have a direction for the local magnetization
�M(x). The length of �M is pretty much fixed by the material, but the
direction of the magnetization is undetermined. By becoming a magnet,
this material has broken the rotational symmetry. The order parameter
�M labels which of the various broken symmetry directions the material
has chosen.

The order parameter is a field: at each point in our magnet, �M(x)
tells the local direction of the field near x. Why do we do this? Why
would the magnetization point in different directions in different parts
of the magnet? Usually, the material has lowest energy when the order
parameter field is uniform, when the symmetry is broken in the same
way throughout space. In practice, though, the material often doesn’t
break symmetry uniformly. Most pieces of iron don’t appear magnetic,
simply because the local magnetization points in different directions at
different places. The magnetization is already there at the atomic level:
to make a magnet, you pound the different domains until they line up.
We’ll see in this chapter that most of the interesting behavior we can
c©James P. Sethna, April 19, 2005 Entropy, Order Parameters, and Complexity
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study involves the way the order parameter varies in space.

Fig. 9.6 The nematic order param-
eter space is a half-sphere, with an-
tipodal points on the equator identified.
Thus, for example, the path shown over
the top of the hemisphere is a closed
loop: the two intersections with the
equator correspond to the same orienta-
tions of the nematic molecules in space.

The order parameter field �M(x) can be usefully visualized in two
different ways. On the one hand, one can think of a little vector attached
to each point in space. On the other hand, we can think of it as a
mapping from real space into order parameter space. That is, �M is a
function which takes different points in the magnet onto the surface of
a sphere (figure 9.4). As we mentioned earlier, mathematicians call the
sphere S2, because it locally has two dimensions. (They don’t care what
dimension the sphere is embedded in.)

Choosing an order parameter is an art. Usually it’s a new phase which
we don’t understand yet, and guessing the order parameter is a piece of
figuring out what’s going on. Also, there is often more than one sensible
choice. In magnets, for example, one can treat �M as a fixed–length vec-
tor in S2, labeling the different broken symmetry states. This topological
order parameter is the best choice at low temperatures, where we study
the elementary excitations and topological defects. For studying the
transition from low to high temperatures, when the magnetization goes
to zero, it is better to consider �M as a ‘soft–spin’ vector of varying length
(a vector in R3), as in exercise 9.5. Finding the simplest description for
your needs is often the key to the problem.

Before varying our order parameter in space, let’s develop a few more
examples. The liquid crystal in LCD displays (like those in digital
watches) are nematics. Nematics are made of long, thin molecules which
tend to line up so that their long axes are parallel. Nematic liquid
crystals, like magnets, break the rotational symmetry. Unlike magnets,
though, the main interaction isn’t to line up the north poles, but to line
up the axes. (Think of the molecules as American footballs: the same
up and down.) Thus the order parameter isn’t a vector �M but a head-
less vector �n ≡ −�n. The order parameter space is a hemisphere, with
opposing points along the equator identified (figure 9.6). This space is
called RP 2 by the mathematicians (the projective plane), for obscure
reasons.

Fig. 9.7 Two dimensional crystal.
A crystal consists of atoms arranged in
regular, repeating rows and columns.
At high temperatures, or when the
crystal is deformed or defective, the
atoms will be displaced from their lat-
tice positions. The displacements �u are
shown. Even better, one can think of
u(x) as the local translation needed to
bring the ideal lattice into registry with
atoms in the local neighborhood of x.
Also shown is the ambiguity in the defi-
nition of u. Which “ideal” atom should
we identify with a given “real” one?
This ambiguity makes the order param-
eter u equivalent to u+max̂+naŷ. In-
stead of a vector in two dimensions, the
order parameter space is a square with
periodic boundary conditions.

For a crystal, the important degrees of freedom are associated with the
broken translational order. Consider a two-dimensional crystal which
has lowest energy when in a square lattice, but which is deformed away
from that configuration (figure 9.7). This deformation is described by
an arrow connecting the undeformed ideal lattice points with the actual
positions of the atoms. If we are a bit more careful, we say that �u(x)
is that displacement needed to align the ideal lattice in the local region
onto the real one. By saying it this way, �u is also defined between the
lattice positions: there still is a best displacement which locally lines up
the two lattices.

The order parameter �u isn’t really a vector: there is a subtlety. In
general, which ideal atom you associate with a given real one is ambigu-
ous. As shown in figure 9.7, the displacement vector �u changes by a
multiple of the lattice constant a when we choose a different reference
atom:

�u ≡ �u+ ax̂ = �u+max̂+ naŷ. (9.1)
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Fig. 9.8 Order parameter space
for a two-dimensional crystal.
Here we see that a square with pe-
riodic boundary conditions is a torus.
(A torus is a surface of a doughnut, in-
ner tube, or bagel, depending on your
background.)

The set of distinct order parameters forms a square with periodic bound-
ary conditions. As figure 9.8 shows, a square with periodic boundary
conditions has the same topology as a torus, T2. (The torus is the surface
of a doughnut, bagel, or inner tube.)

Finally, let’s mention that guessing the order parameter (or the broken
symmetry) isn’t always so straightforward. For example, it took many
years before anyone figured out that the order parameter for supercon-
ductors and superfluid Helium 4 is a complex number ψ. The order
parameter field ψ(x) represents the “condensate wave function”, which
(extremely loosely) is a single quantum state occupied by a large fraction
of the Cooper pairs or helium atoms in the material. The corresponding
broken symmetry is closely related to the number of particles. In “sym-
metric”, normal liquid helium, the local number of atoms is conserved:
in superfluid helium, the local number of atoms becomes indeterminate
(exercise 9.7)! (This is because many of the atoms are condensed into
that delocalized wave function.) Anyhow, the magnitude of the complex
number ψ is a fixed function of temperature, so the topological order
parameter space is the set of complex numbers of magnitude |ψ|. Thus
the order parameter space for superconductors and superfluids is a circle
S1.

Now we examine small deformations away from a uniform order pa-
rameter field.
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9.3 Examine the Elementary Excitations

Its amazing how slow human beings are. The atoms inside your eyelash
collide with one another a million million times during each time you
blink your eye. It’s not surprising, then, that we spend most of our time
in condensed–matter physics studying those things in materials that
happen slowly. Typically only vast conspiracies of immense numbers of
atoms can produce the slow behavior that humans can perceive.

Fig. 9.9 The order parameter field for
a one–dimensional crystal is the local
displacement u(x). Long–wavelength
waves in u(x) have low frequencies, and
cause sound.
Crystals are rigid because of the bro-
ken translational symmetry. Because
they are rigid, they fight displacements.
Because there is an underlying trans-
lational symmetry, a uniform displace-
ment costs no energy. A nearly uni-
form displacement, thus, will cost little
energy, and thus will have a low fre-
quency. These low–frequency elemen-
tary excitations are the sound waves in
crystals.

A good example is given by sound waves. We won’t talk about sound
waves in air: air doesn’t have any broken symmetries, so it doesn’t
belong in this chapter.5 Consider instead sound in the one-dimensional

5We argue here that low frequency ex-
citations come from spontaneously bro-
ken symmetries. They can also come
from conserved quantities: since air
cannot be created or destroyed, a long–
wavelength density wave cannot relax
quickly.

crystal shown in figure 9.9. We describe the material with an order
parameter field u(x), where here x is the position within the material
and x−u(x) is the position of the reference atom within the ideal crystal.

Now, there must be an energy cost for deforming the ideal crystal.
There won’t be any cost, though, for a uniform translation: u(x) ≡ u0

has the same energy as the ideal crystal. (Shoving all the atoms to
the right doesn’t cost any energy.) So, the energy will depend only on
derivatives of the function u(x). The simplest energy that one can write
looks like

E =
∫
dx 1/2κ

(
du

dx

)2

. (9.2)

Higher derivatives won’t be important for the low frequencies that hu-
mans can hear.6 Now, you may remember Newton’s law F = ma. The

6Terms with high derivatives become
small when you look on long length and
time scales. If the displacement u varies
on a characteristic length scale D, for
example, the nth derivative ∂nu/∂xn ∼
1/Dn. (Test this: take the 400th
derivative of u(x) = cos(2πx/D).)
Higher powers of the displacement gra-
dients ∂u

∂x

n ∼ 1/Dn are also small.

force here is given by the derivative of the energy F = −(dE/du). The
mass is represented by the density of the material ρ. Working out the
math (a variational derivative and an integration by parts, for those who
are interested) gives us the equation

ρü = κ(d2u/dx2). (9.3)

The solutions to this equation

u(x, t) = u0 cos(2π(x/λ− νλt)) (9.4)

represent phonons or sound waves. The wavelength of the sound waves
is λ, and the frequency is νλ. Plugging 9.4 into 9.3 gives us the relation

νλ =
√
κ/ρ/λ. (9.5)

The frequency gets small only when the wavelength gets large. This
is the vast conspiracy: only huge sloshings of many atoms can happen
slowly. Why does the frequency get small? Well, there is no cost to a
uniform translation, which is what 9.4 looks like for infinite wavelength.
Why is there no energy cost for a uniform displacement? Well, there is a
translational symmetry: moving all the atoms the same amount doesn’t
change their interactions. But haven’t we broken that symmetry? That
is precisely the point.

Long after phonons were understood, Jeremy Goldstone started to
think about broken symmetries and order parameters in the abstract. He
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found a rather general argument that, whenever a continuous symmetry
(rotations, translations, SU(3), ...) is broken, long–wavelength modula-
tions in the symmetry direction should have low frequencies. The fact
that the lowest energy state has a broken symmetry means that the sys-
tem is stiff: modulating the order parameter will cost an energy rather
like that in equation 9.2. In crystals, the broken translational order
introduces a rigidity to shear deformations, and low frequency phonons
(figure 9.9). In magnets, the broken rotational symmetry leads to a mag-
netic stiffness and spin waves (figure 9.10). In nematic liquid crystals,
the broken rotational symmetry introduces an orientational elastic stiff-
ness (they pour, but resist bending!) and rotational waves (figure 9.11).

Fig. 9.10 Magnets: spin waves.
Magnets break the rotational invari-
ance of space. Because they resist
twisting the magnetization locally, but
don’t resist a uniform twist, they have
low energy spin wave excitations.

Fig. 9.11 Nematic liquid crystals:
rotational waves. Nematic liquid
crystals also have low–frequency rota-
tional waves.

In superfluids, the broken gauge symmetry leads to a stiffness which
results in the superfluidity. Superfluidity and superconductivity really
aren’t any more amazing than the rigidity of solids. Isn’t it amazing
that chairs are rigid? Push on a few atoms on one side, and 109 atoms
away atoms will move in lock–step. In the same way, decreasing the
flow in a superfluid must involve a cooperative change in a macroscopic
number of atoms, and thus never happens spontaneously any more than
two parts of the chair ever drift apart.

The low–frequency Goldstone modes in superfluids are heat waves!
(Don’t be jealous: liquid helium has rather cold heat waves.) This is
often called second sound, but is really a periodic modulation of the
temperature which passes through the material like sound does through
a metal.

O.K., now we’re getting the idea. Just to round things out, what
about superconductors? They’ve got a broken gauge symmetry, and
have a stiffness to decays in the superconducting current. What is the
low energy excitation? It doesn’t have one. But what about Goldstone’s
theorem? Well, you know about physicists and theorems . . .

That’s actually quite unfair: Goldstone surely had conditions on his
theorem which excluded superconductors. Actually, I believe Goldstone
was studying superconductors when he came up with his theorem. It’s
just that everybody forgot the extra conditions, and just remembered
that you always got a low frequency mode when you broke a continu-
ous symmetry. We condensed-matter physicists already knew why there
isn’t a Goldstone mode for superconductors: my Ph.D. advisor (P.W.
Anderson) had shown that it was related to the Meissner effect. The
high energy physicists forgot, though, and had to rediscover it for them-
selves. Now we all call the loophole in Goldstone’s theorem the Higgs
mechanism, because (to be truthful) Higgs and his high–energy friends
found a simpler and more elegant explanation than we condensed-matter
physicists had.

I’d like to end this section, though, by bringing up another exception
to Goldstone’s theorem: one we’ve known about even longer, but which
we don’t have a nice explanation for. What about the orientational
order in crystals? Crystals break both the continuous translational order
and the continuous orientational order. The phonons are the Goldstone
modes for the translations, but there are no orientational Goldstone

c©James P. Sethna, April 19, 2005 Entropy, Order Parameters, and Complexity



178 Order Parameters, Broken Symmetry, and Topology

modes.7 I think understanding this simply and elegantly is one of the
most interesting unsolved basic questions in the subject.

9.4 Classify the Topological Defects

Fig. 9.12 Dislocation in a crystal.
Here is a topological defect in a crys-
tal. We can see that one of the rows of
atoms on the right disappears halfway
through our sample. The place where
it disappears is a defect, because it
doesn’t locally look like a piece of the
perfect crystal. It is a topological defect
because it can’t be fixed by any local
rearrangement. No reshuffling of atoms
in the middle of the sample can change
the fact that five rows enter from the
right, and only four leave from the left!
The Burger’s vector of a disloca-
tion is the net number of extra rows
and columns, combined into a vector
(columns, rows).

When I was in graduate school, the big fashion was topological defects.
Everybody was studying homotopy groups, and finding exotic systems
to write papers about. It was, in the end, a reasonable thing to do.8

8The next fashion, catastrophe theory,
never became particularly important.

It is true that in a typical application you’ll be able to figure out what
the defects are without homotopy theory. You’ll spend forever drawing
pictures to convince anyone else, though. Most important, homotopy
theory helps you to think about defects.

A defect is a tear in the order parameter field. A topological defect is
a tear that can’t be patched. Consider the piece of 2-D crystal shown
in figure 9.12. Starting in the middle of the region shown, there is
an extra row of atoms. (This is called a dislocation.) Away from the
middle, the crystal locally looks fine: it’s a little distorted, but there is
no problem seeing the square grid and defining an order parameter. Can
we rearrange the atoms in a small region around the start of the extra
row, and patch the defect?

No. The problem is that we can tell there is an extra row without
ever coming near to the center. The traditional way of doing this is to
traverse a large loop surrounding the defect, and count the net number
of rows crossed on the path. In the path shown, there are two rows going
up and three going down: no matter how far we stay from the center,
there will naturally always be an extra row on the right.

How can we generalize this basic idea to a general problem with a
broken symmetry? Remember that the order parameter space for the
2-D square crystal is a torus (see figure 9.8). Remember that the order
parameter at a point is that translation which aligns a perfect square grid
to the deformed grid at that point. Now, what is the order parameter
far to the left of the defect (a), compared to the value far to the right
(d)? Clearly, the lattice to the right is shifted vertically by half a lattice
constant: the order parameter has been shifted halfway around the torus.
As shown in figure 9.13, along the top half of a clockwise loop the order

7In two dimensions, crystals provide another loophole in a well-known result,
known as the Mermin-Wagner theorem. Hohenberg, Mermin, and Wagner, in a se-
ries of papers, proved in the 1960’s that two-dimensional systems with a continuous
symmetry cannot have a broken symmetry at finite temperature. At least, that’s the
English phrase everyone quotes when they discuss the theorem: they actually prove it
for several particular systems, including superfluids, superconductors, magnets, and
translational order in crystals. Indeed, crystals in two dimensions do not break the
translational symmetry: at finite temperatures, the atoms wiggle enough so that the
atoms don’t sit in lock-step over infinite distances (their translational correlations de-
cay slowly with distance). But the crystals do have a broken orientational symmetry:
the crystal axes point in the same directions throughout space. (Mermin discusses
this point in his paper on crystals.) The residual translational correlations (the local
alignment into rows and columns of atoms) introduce long-range forces which force
the crystalline axes to align, breaking the continuous rotational symmetry.
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Fig. 9.13 Loop around the dis-
location mapped onto order pa-
rameter space. How do we think
about our defect in terms of order pa-
rameters and order parameter spaces?
Consider a closed loop around the de-
fect. The order parameter field u
changes as we move around the loop.
The positions of the atoms around the
loop with respect to their local “ideal”
lattice drifts upward continuously as
we traverse the loop. This precisely
corresponds to a loop around the or-
der parameter space: the loop passes
once through the hole in the torus. A
loop around the hole corresponds to
an extra column of atoms.
Moving the atoms slightly will deform
the loop, but won’t change the num-
ber of times the loop winds through
or around the hole. Two loops which
traverse the torus the same number of
times through and around are equiva-
lent. The equivalence classes are la-
beled precisely by pairs of integers
(just like the Burger’s vectors), and
the first homotopy group of the torus
is Z × Z.

parameter (position of the atom within the unit cell) moves upward,
and along the bottom half, again moves upward. All in all, the order
parameter circles once around the torus. The winding number around
the torus is the net number of times the torus is circumnavigated when
the defect is orbited once.

This is why they are called topological defects. Topology is the study
of curves and surfaces where bending and twisting is ignored. An order
parameter field, no matter how contorted, which doesn’t wind around
the torus can always be smoothly bent and twisted back into a uni-
form state. If along any loop, though, the order parameter winds either
around the hole or through it a net number of times, then enclosed in
that loop is a defect which cannot be bent or twisted flat: the winding
number can’t change by an integer in a smooth and continuous fashion.

Fig. 9.14 Defect line in a nematic
liquid crystal. You can’t lasso the
sphere, but you can lasso a hemisphere!
Here is the defect corresponding to the
path shown in figure 9.6. As you pass
clockwise around the defect line, the or-
der parameter rotates counterclockwise
by 180◦.
This path on figure 9.6 would actu-
ally have wrapped around the right–
hand side of the hemisphere. Wrapping
around the left–hand side would have
produced a defect which rotated clock-
wise by 180◦. (Imagine that!) The path
in figure 9.6 is halfway in between, and
illustrates that these two defects are re-
ally not different topologically.

How do we categorize the defects for 2-D square crystals? Well, there
are two integers: the number of times we go around the central hole, and
the number of times we pass through it. In the traditional description,
this corresponds precisely to the number of extra rows and columns of
atoms we pass by. This was called the Burger’s vector in the old days,
and nobody needed to learn about tori to understand it. We now call it
the first Homotopy group of the torus:

Π1(T2) = Z × Z (9.6)

where Z represents the integers. That is, a defect is labeled by two
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integers (m,n), where m represents the number of extra rows of atoms
on the right-hand part of the loop, and n represents the number of extra
columns of atoms on the bottom.

Here’s where in the chapter I show the practical importance of topo-
logical defects. Unfortunately for you, I can’t enclose a soft copper tube
for you to play with, the way I do in the lecture. They’re a few cents
each, and machinists on two continents have been quite happy to cut
them up for my demonstrations, but they don’t pack well into books.
Anyhow, most metals and copper in particular exhibits what is called
work hardening. It’s easy to bend the tube, but it’s amazingly tough to
bend it back. The soft original copper is relatively defect–free. To bend,
the crystal has to create lots of line dislocations, which move around to
produce the bending.9 The line defects get tangled up, and get in the9This again is the mysterious lack of

rotational Goldstone modes in crystals. way of any new defects. So, when you try to bend the tube back, the
metal becomes much stiffer. Work hardening has had a noticeable im-
pact on the popular culture. The magician effortlessly bends the metal
bar, and the strongman can’t straighten it . . . Superman bends the rod
into a pair of handcuffs for the criminals . . .

Fig. 9.15 Hedgehog defect. Mag-
nets have no line defects (you can’t
lasso a basketball), but do have point
defects. Here is shown the hedgehog
defect, �M(x) = M0 x̂. You can’t sur-
round a point defect in three dimen-
sions with a loop, but you can enclose
it in a sphere. The order parameter
space, remember, is also a sphere. The
order parameter field takes the enclos-
ing sphere and maps it onto the order
parameter space, wrapping it exactly
once. The point defects in magnets
are categorized by this wrapping num-
ber: the second Homotopy group of the
sphere is Z, the integers.

Before we explain why these curves form a group, let’s give some
more examples of topological defects and how they can be classified.
Figure 9.15 shows a “hedgehog” defect for a magnet. The magnetization
simply points straight out from the center in all directions. How can we
tell that there is a defect, always staying far away? Since this is a point
defect in three dimensions, we have to surround it with a sphere. As we
move around on this sphere in ordinary space, the order parameter moves
around the order parameter space (which also happens to be a sphere,
of radius | �M |). In fact, the order parameter space is covered exactly
once as we surround the defect. This is called the wrapping number, and
doesn’t change as we wiggle the magnetization in smooth ways. The
point defects of magnets are classified by the wrapping number:

Π2(S2) = Z. (9.7)

Here, the 2 subscript says that we’re studying the second Homotopy
group. It represents the fact that we are surrounding the defect with a
2-D spherical surface, rather than the 1-D curve we used in the crystal.10

10The zeroth homotopy group classi-
fies domain walls. The third homo-
topy group, applied to defects in three-
dimensional materials, classifies what
the condensed matter people call tex-
tures and the particle people sometimes
call skyrmions. The fourth homotopy
group, applied to defects in space–time
path integrals, classifies types of instan-
tons.

You might get the impression that a strength 7 defect is really just
seven strength 1 defects, stuffed together. You’d be quite right: occa-
sionally, they do bunch up, but usually big ones decompose into small
ones. This doesn’t mean, though, that adding two defects always gives
a bigger one. In nematic liquid crystals, two line defects are as good as
none! Magnets didn’t have any line defects: a loop in real space never
surrounds something it can’t smooth out. Formally, the first homotopy
group of the sphere is zero: you can’t loop a basketball. For a nematic
liquid crystal, though, the order parameter space was a hemisphere (fig-
ure 9.6). There is a loop on the hemisphere in figure 9.6 that you can’t
get rid of by twisting and stretching. It doesn’t look like a loop, but you
have to remember that the two opposing points on the equator really
represent the same nematic orientation. The corresponding defect has
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Fig. 9.16 Multiplying two loops.
The product of two loops is given
by starting from their intersection,
traversing the first loop, and then
traversing the second. The inverse of
a loop is clearly the same loop traveled
backward: compose the two and one
can shrink them continuously back to
nothing. This definition makes the
homotopy classes into a group.
This multiplication law has a physical
interpretation. If two defect lines co-
alesce, their homotopy class must of
course be given by the loop enclosing
both. This large loop can be deformed
into two little loops, so the homotopy
class of the coalesced line defect is the
product of the homotopy classes of the
individual defects.

a director field n which rotates 180◦ as the defect is orbited: figure 9.14
shows one typical configuration (called an s = −1/2 defect). Now, if
you put two of these defects together, they cancel. (You can draw the
pictures in exercise 9.2.) Nematic line defects add modulo 2, like clock
arithmetic in elementary school:

Π1(RP 2) = Z2. (9.8)

Two parallel defects can coalesce and heal, even though each one indi-
vidually is stable: each goes halfway around the sphere, and the whole
loop can be shrunk to zero.

Finally, why are these defect categories a group? A group is a set
with a multiplication law, not necessarily commutative, and an inverse
for each element. For the first homotopy group, the elements of the
group are equivalence classes of loops: two loops are equivalent if one
can be stretched and twisted onto the other, staying on the manifold at
all times.11 For example, any loop going through the hole from the top
(as in the top right-hand torus in figure 9.16) is equivalent to any other
one. To multiply a loop u and a loop v, one must first make sure that
they meet at some point (by dragging them together, probably). Then
one defines a new loop u⊗ v by traversing first the loop u and then v.12

The inverse of a loop u is just the loop which runs along the same path
in the reverse direction. The identity element consists of the equivalence
class of loops which don’t enclose a hole: they can all be contracted

11A loop is a continuous mapping from the circle into the order parameter space:
θ → u(θ), 0 ≤ θ < 2π. When we encircle the defect with a loop, we get a loop in
order parameter space as shown in figure 9.4: θ → �x(θ) is the loop in real space, and
θ → u(�x(θ)) is the loop in order parameter space. Two loops are equivalent if there
is a continuous one-parameter family of loops connecting one to the other: u ≡ v if
there exists ut(θ) continuous both in θ and in 0 ≤ t ≤ 1, with u0 ≡ u and u1 ≡ v.

12 That is, u⊗ v(θ) ≡ u(2θ) for 0 ≤ θ ≤ π, and ≡ v(2θ) for π ≤ θ ≤ 2π.
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smoothly to a point (and thus to one another). Finally, the multipli-
cation law has a direct physical implication: encircling two defect lines
of strength u and v is completely equivalent to encircling one defect of
strength u⊗ v.

This all seems pretty trivial: maybe thinking about order parameter
spaces and loops helps one think more clearly, but are there any real uses
for talking about the group structure? Let me conclude this chapter with
an amazing, physically interesting consequence of the multiplication laws
we described.

Fig. 9.17 Defect entanglement.
Can a defect line of class α pass by a
line of class β, without getting topolog-
ically entangled?

Can two defect lines cross one another? Figure 9.17 shows two defect
lines, of strength (homotopy type) α and β, which are not parallel.
Suppose there is an external force pulling the α defect past the β one.
Figure 9.18 shows the two line defects as we bend and stretch one to
pass by the other. There is a trail left behind of two parallel defect
lines. α can really leave β behind only if it is topologically possible to
erase the trail. Can the two lines annihilate one another? Only if their
net strength is zero, as measured by the loop in 9.18.

Now, get two wires and some string. Bend the wires into the shape
found in figure 9.18. Tie the string into a fairly large loop, surround-
ing the doubled portion. Wiggle the string around, and try to get the
string out from around the doubled section. You’ll find that you can’t
completely remove the string, (No fair pulling the string past the cut
ends of the defect lines!) but that you can slide it downward into the
configuration shown in 9.19.

Fig. 9.18 We see that we can pass by if
we leave a trail: is the connecting dou-
ble line topologically trivial? Encircle
the double line by a loop. The loop can
be wiggled and twisted off the double
line, but it still circles around the two
legs of the defects α and β.

Fig. 9.19 The homotopy class of the
loop is precisely βαβ−1α−1, which is
trivial precisely when βα = αβ. Thus
two defect lines can pass by one another
if their homotopy classes commute!

Now, in 9.19 we see that each wire is encircled once clockwise and
once counterclockwise. Don’t they cancel? Not necessarily! If you look
carefully, the order of traversal is such that the net homotopy class is
βαβ−1α−1, which is only the identity if β and α commute. Thus the
physical entanglement problem for defects is directly connected to the
group structure of the loops: commutative defects can pass through one
another, noncommutative defects entangle.

I’d like to be able to tell you that the work hardening in copper is
due to topological entanglements of defects. It wouldn’t be true. The
homotopy group of dislocation lines in fcc copper is commutative. (It’s
rather like the 2-D square lattice: if α = (m,n) and β = (o, p) with
m,n, o, p the number of extra horizontal and vertical lines of atoms,
then αβ = (m+ o, n+ p) = βα.) The reason dislocation lines in copper
don’t pass through one another is energetic, not topological. The two
dislocation lines interact strongly with one another, and energetically get
stuck when they try to cross. Remember at the beginning of the chapter,
I said that there were gaps in the system: the topological theory can
only say when things are impossible to do, not when they are difficult
to do.

I’d like to be able to tell you that this beautiful connection between
the commutativity of the group and the entanglement of defect lines is
nonetheless is important in lots of other contexts. That too would not be
true. There are two types of materials I know of which are supposed to
suffer from defect lines which topological entangle. The first are biaxial
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nematics, which were thoroughly analyzed theoretically before anyone
found one. The other are the metallic glasses, where David Nelson has a
theory of defect lines needed to relieve the frustration. Nelson’s defects
don’t commute, and so can’t cross one another. He originally hoped to
explain the freezing of the metallic glasses into random configurations
as an entanglement of defect lines. Nobody has ever been able to take
this idea and turn it into a real calculation, though.

Exercises

(9.1) Topological Defects in the XY Model. (Math)

Let the order parameter field m(x, y) of a two–
dimensional XY model be a unit vector field in the plane
(order parameter space S1). The topological defects are
characterized by their winding number s, since Π1(S1) =
Z. The winding number is the number of counter–
clockwise orbits around the order parameter space for a
single counter–clockwise path around the defect.

B

C

A

Fig. 9.20 Two topological defects, circumscribed by loops A
and B running counter–clockwise; the pair of defects is circum-
scribed by a path C also going counter–clockwise. The path
in order parameter space mapped to from C, as a homotopy
group element, is the group product of the paths from A and
B.

(a) What are the winding numbers of the two defects sur-
rounded by paths A and B in figure 9.20? What should
the winding number be around path C, according to the
group multiplication law for Π1(S1)?

(b) Copy the figure onto a separate sheet of paper, and
fill in the region around A and B past C with a smooth,
nonsingular, non-vanishing order parameter field of unit
vectors. (Hint: You can use your answer for (b) to check
your answer for (a).)

φ

dL
Fig. 9.21 The curve D encircles the defect once; d� is a unit
vector tangent to D running counter–clockwise. Define φ to
be the angle between the unit vector m and the x-axis.

For this model, we can find a formula for the winding
number as an integral around the defect. Let D encircle
a defect counter–clockwise once (figure 9.21).

(c) Show that the winding number is given by the line
integral around the curve D

s =
1

2π

∮ 2∑
j=1

(m1∂jm2 −m2∂jm1)d�j (9.9)

where the two coordinates are x1 and x2, ∂j =
∂

∂xj
, and

�j is the tangent vector to the contour being integrated
around (so the integral is of the form

∮
v · d�). (Hint:

m = (cos(φ), sin(φ)), and the integral of a directional
derivative ∇f · d� is the difference in f between the two
endpoints.)

One can often find formulas of this kind (e.g., the wrap-
ping number of a vector order parameter around the
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sphere Π2(S2) is given by an integral of the Jacobian of
the mapping).13

(9.2) Topological Defects in Nematic Liquid Crys-
tals. (Soft Condensed Matter)

The winding number S of a defect is θnet/2π, where θnet is
the net angle of rotation that the order parameter makes
as you circle the defect. The winding number is positive
if the order parameter rotates in the same direction as
the traversal (left 9.22), and negative if you traverse in
opposite directions (right).

As you can deduce topologically (middle figure 9.22), the
winding number is not a topological invariant in gen-
eral. It is for superfluids S1 and crystals TD, but not for
Heisenberg magnets or nematic liquid crystals (shown).
If we treat the plane of the figure as the equator of the
hemisphere, you can see that the S = 1/2 defect rotates
around the sphere around the left half of the equator,
and the S = −1/2 defect rotates around the right half of
the equator. These two paths can be smoothly deformed
into one another: the path shown on the order parameter
space is about half-way between the two.

Which part of figure 9.23 represents the defect configura-
tion in real space halfway between S = 1/2 and S = −1/2,
corresponding to the intermediate path shown in the mid-
dle above? (The changing shapes denote rotations into
the third dimension.)

(9.3) Defect Energetics and Total Divergence
Terms. (Soft Condensed Matter)

Fig. 9.24 Hedgehog defect.

A hypothetical liquid crystal is described by a unit-vector
order parameter n̂, representing the orientation of the
long axis of the molecules. (Think of it as a nematic liq-
uid crystal where the heads of the molecules all line up

as well.)14 The free energy density is normally written

Fbulk[n̂] =
K11

2
(div n̂)2 +

K22

2
(n̂ · curl n̂)2

+
K33

2
(n̂× curl n̂)2. (9.10)

(9.11)

Assume a spherical droplet of radius R0 contains a hedge-
hog defect (shown above) in its center, with order parame-
ter field n̂(r) = r̂ = r/|r| = (x, y, z)/

√
x2 + y2 + z2. The

hedgehog is a topological defect, which wraps around the
sphere once.

(a) Show that curl n̂ = 0 for the hedgehog. Calculate the
free energy of the hedgehog, by integrating F [n̂] over the
sphere. Compare the free energy to the energy in the same
volume with n̂ constant (say, in the x̂ direction).

There are other terms allowed by symmetry that are usu-
ally not considered as part of the free energy density, be-
cause they are total divergence terms. Any term in the
free energy which is a divergence of a vector field, by
Gauss’ theorem, is equivalent to the flux of the vector
field out of the boundary of the material. For periodic
boundary conditions such terms vanish, but our system
has a boundary.

(b) Consider the effects of an additional term Fdiv[n̂] =
K0(div n̂), allowed by symmetry, in the free energy F [n̂].
Calculate its contribution to the energy of the hedgehog,
both by integrating it over the volume of the sphere and by
using Gauss’ theorem to calculate it as a surface integral.
Compare the total energy

∫ Fbulk + Fdiv d
3r with that of

the uniform state with n̂ = x̂, and with the anti-hedgehog,
n̂(r) = −r̂. Which is lowest, for large R0? How does the
ground state for large R0 depend on the sign of K0?

Clearly, the term K0 from part (b) is not negligible! Liq-
uid crystals in many cases appear to have strong pinning
boundary conditions, where the relative angle of the or-
der parameter and the surface is fixed by the chemical
treatment of the surface. Some terms like K0 are not in-
cluded in the bulk energy because they become too large:
they rigidly constrain the boundary conditions and be-
come otherwise irrelevant.

(9.4) Superfluid Order and Vortices. (Quantum)

Superfluidity in helium is closely related to Bose conden-
sation of an ideal gas: the strong interactions between

13They can be useful, for example, in path integrals for changing the weights of
different topological sectors, or in Landau theories to add counter-terms in the free
energy that change the core energies of defect lines.

14The order parameter is the same as the Heisenberg antiferromagnet, but the
latter has a symmetry where the order parameter can rotate independently from the
spatial rotations, which isn’t true of liquid crystals.
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S=1/2 S=−1/2

Fig. 9.22 Defects in Nematic Liquid Crystals. The molecules in nematic liq-
uids have long-range order in the orientation of their long axes, but the direction of
the heads of the molecules do not order. The dots on each molecule are not physical,
they are are a guide to help you trace the orientations: we paint them starting on
the left and moving clockwise around the defect. Note in the pictures in 9.23 that
the changing shapes represent the rotations of the long axes of the molecules out of
the plane of the figure.

(A) (A) (B) (B) (C) (C)

(D) (D) (E) (E)

Fig. 9.23
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the helium atoms quantitatively change things, but many
properties are shared. In particular, we describe the su-
perfluid in terms of a complex number ψ(r), which we
think of as a wavefunction which is occupied by a large
fraction of all the atoms in the fluid.

(a) If N non-interacting bosons reside in a state χ(r),
write an expression for the net current density J(r).15

Write the complex field χ(r) in terms of an amplitude
and a phase, χ(r) = |χ(r)| exp(iφ(r)). We write the su-
perfluid density as ns = N |χ|2. Give the current J in
terms of φ and ns. What is the resulting superfluid veloc-
ity, v = J/ns? (It should be independent of ns.)

The Landau order parameter in superfluids ψ(r) is tra-
ditionally normalized so that the amplitude is the square
root of the superfluid density: in part (a), ψ(r) =√
Nχ(r).

In equilibrium statistical mechanics, the macroscopically
occupied state is always the ground state, which is real
and hence has no current. We can form non-equilibrium
states, however, which macroscopically occupy other
quantum states. For example, an experimentalist might
cool a torus filled with helium while it’s moving: the
ground state in the moving reference frame obviously has
a current in the unmoving laboratory frame. More com-
monly, the helium is prepared in a rotating state.

(b) Consider a torus filled with an ideal Bose gas at T = 0
with the hole along the vertical axis: the superfluid is con-
densed into a state which is rotating around the hole. Us-
ing your formula from part (a) and the fact that φ+ 2nπ
is indistinguishable from φ for any integer n, show that
the circulation

∮
v ·dr around the hole is quantized. What

is the quantum of circulation?

Superfluid helium can’t swirl except in quantized units!
Notice that you’ve now explained why superfluids have
no viscosity. The velocity around the torus is quantized,
and hence it cannot decay continuously to zero: if it starts
swirling with non–zero n around the torus, it must swirl
forever.16 This is why we call them superfluids.

In bulk helium this winding number labels line defects
called vortex lines.

(c) Treat φ(r), the phase of the superconducting wave
function, as the topological order parameter of the super-
fluid. Is the order parameter a closed loop (topologically
a circle, S1)? Classify the types of vortex lines in a su-
perfluid. (That is, either give the first Homotopy group
of the order parameter space, or give the allowed values
of the quantized circulation around a vortex.)

(9.5) Landau Theory for the Ising model.

This chapter has focused on the topological order param-
eter, which labels the different ground states of the sys-
tem when there is a spontaneously broken symmetry. To
study the defect cores, interfaces, and high temperatures
near phase transitions, one would like an order parameter
which can vary in magnitude as well as direction.

In section 6.7, we explicitly computed a free energy for
the ideal gas as a function of the density. Can we use
symmetry and gradient expansions to derive free energy
densities for more realistic systems – even systems that
we don’t understand microscopically? Lev Landau used
the approach we discuss here to develop theories of mag-
nets, superconductors, and superfluids – before the latter
two were understood in microscopic terms.17 In this ex-
ercise, you will develop a Landau18 theory for the Ising
model.

Here we outline the general recipe, and ask you to im-
plement the details for the Ising model. Along the way,
we will point out places where the assumptions made in
Landau theory can break down – often precisely in the
cases where the theory is most useful.

(1) Pick an Order Parameter Field.

Remember that the Ising model had a high-temperature
paramagnetic phase with zero magnetization per spin m,
and a low-temperature ferromagnetic phase with a net
magnetization per spin ±m(T ) that went to one at T = 0.

15You can use the standard quantum mechanics single-particle expression
J = (i�/2m)(ψ∇ψ∗ − ψ∗∇ψ) and multiply by the number of particles, or you can
use the many particle formula J(r) = (i�/2m)

∫
d3r1 . . . d3rN

∑
	 δ(r	−r)(Ψ∇	Ψ

∗−
Ψ∗∇	Ψ) and plug in the condensate wave function Ψ(r1 . . . rN) =

∏
n χ(rn).

16Or at least until a dramatic event occurs which changes n, like a vortex line
passing across the torus, demanding an activation energy proportional to the width
of the torus. See also exercise 7.7.

17Physicists call this Landau theory. Rather similar formalisms have been de-
veloped in various other fields of physics and engineering, from liquid crystals to
“rational mechanics” treatments of martensites (see exercises 11.6 and 11.5). The
vocabulary is often different (Frank, Ericsen and Leslie instead of Landau, constitu-
tive relations rather than free energies, and internal state variables rather than order
parameters) but the basic approach is similar.

18More properly, a Ginsburg-Landau theory, because we include gradient terms in
the free energy density, which Landau first did in collaboration with Ginsburg.
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The Ising model picks one of the two equilibrium states
(up or down): we say it spontaneously breaks the up-
down symmetry of the Hamiltonian19

Hence the natural20 order parameter is the scalar m(x, t),
the local magnetization averaged over some volume ∆V .
This can be done by averaging the magnetization in small
boxes, as in section 6.7.

(a) If there are n spins in the volume ∆V , what value
will m(x) take at temperatures high compared to the in-
teraction J in the Ising model? What values will it take
at temperatures very low compared to J?

(2) Write a General Local21 Free Energy Density,
for long wavelengths and translational symmetry.

A local free energy is one which depends on the order
parameter field and its gradients:

F ising{m,T} =F(x,m, ∂jm,∂j∂km, . . . ) (9.12)

As in section 9.3, we Taylor expand in gradients.22 Keep-
ing terms with up to two gradients of m (and, for sim-
plicity, no gradients of temperature), we find

F ising{m,T} = A(m,T ) + Vi(m,T )∂im (9.13)

+Bij(m,T )∂i∂jm+ Cij(m,T )(∂im)(∂jm).

(b) What symmetry tells us that the unknown functions
A, B, and C do not depend on position x? If the mag-
netization varies on a length scale D, how much smaller
would a term involving three derivatives be than the terms
B and C that we have kept?

(3) Impose the other symmetries of the problem.

The Ising model has an up-down symmetry23 so the free
energy density F ising{m} = F{−m}. Hence the coeffi-
cients A and C are functions of m2, and the functions
Vi(m,T ) = mvi(m

2, T ) and Bij(m) = mbij(m).

The two-dimensional Ising model on a square lattice is
symmetric under 90◦ rotations. This tells us that vi = 0
because no vector is invariant under 90◦ rotations. Sim-
ilarly, b and C must commute with these rotations, and
so must be multiples of the identity matrix.24 Hence we
have

F ising{m,T} =A(m2, T ) +mb(m2, T )∇2m

+ C(m2, T )(∇m)2. (9.15)

Many systems are isotropic: the free energy density is
invariant under all rotations. For isotropic systems, the
material properties (like the functions A, Bij , and Cij

in equation 9.13) must be invariant under rotations. All

19Real magnets break time-reversal symmetry. A magnetic field changes sign un-
der time reversal (M → −M as t → −t). One can see this by considering a current
loop generating a field: under time reversal the current reverses direction.

20Landau has a more systematic approach, based on group representation theory,
which can be quite useful in more complex systems.

21What about things like the Coulomb interaction, which depends on fields emit-
ted from distant regions? Treat the electric fields explicitly! If the system has
long-range interactions, one should incorporate the relevant (electric, elastic, grav-
itational, . . . ) fields into the free energy as order parameters. Broadly speaking,
for a complete description the order parameter should incorporate long-range fields,
conserved quantities, and all broken symmetries.

22Notice that this Taylor expansion will not be valid if the order parameter varies
quickly on the microscopic length scales – such as at sharp interfaces or in the cores
of topological defects. Landau theory is often nonetheless used to study such prob-
lems: it may not be quantitatively valid, but it provides a solvable if uncontrolled
approximation to the real behavior.

23The equilibrium state may not, but the model – and hence the free energy density
– certainly does.

24 Let’s see this explicitly. Under a 90◦ rotation R =

(
0 1
−1 0

)
about the point x,

mvi(m)∂im goes to mvi(m)Rij∂jm. These must be equal for all fields m, implying

that (v1, v2) = (v1, v2)

(
0 1
−1 0

)
= (−v2, v1), showing that v = 0. Similarly, the

matrix C rotates to

RCR−1 =

(
0 1
−1 0

)(
C11 C12

C21 C22

) (
0 −1
1 0

)
=

(
C22 −C12

−C21 C11

)
(9.14)

so for C to be invariant it must satisfy C11 = C22 and C12 = C21 = 0: C is a multiple
of the identity. Similar arguments show that any two-index tensor with hexagonal
symmetry (dimension D = 2), cubic symmetry (D = 3), or hypercubic symmetry
(D > 3) must be a multiple of the identity as well.
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terms in a local free energy for an isotropic system must
be writable in terms of dot and cross products of the gra-
dients of the order parameter field.

(c) Would the free energy density of equation 9.15 change
for a magnet that had a continuous rotational symmetry?

(4) Simplify using total divergence terms.

Free energy densities are intrinsically somewhat arbitrary.
If one adds to F a gradient of any smooth vector function
∇ · ξ(m), the integral will differ only by a surface term∫ ∇·ξ(m) dV =

∫
ξ(m) ·dS. In many circumstances, sur-

face terms may be ignored. (i) If the system has periodic
boundary conditions, then the integral

∫
ξ(m)·dS = 0 be-

cause the opposite sides of the box will cancel. (ii) Large
systems will have surface areas which are small compared
to their volumes, so often the surface terms can often be
ignored,

∫ ∇ · ξ(m)dV =
∫

ξ(m) · dS ∼ L2 � ∫ FdV ∼
L3. (iii) Total divergence terms can be interchanged for
changes in the surface free energy, which depends upon
the orientation of the order parameter with respect to the
boundary of the sample.25 What this means in practice
is that we can integrate any of our terms by parts, chang-
ing the free energy only by a ignorable surface term. This
allows us to integrate terms in the free energy by parts:
schematically, by subtracting a total divergence ∇(uv)
from the free energy we can exchange a term u∇v for
a term −v∇u. For example, we can subtract a term
−∇ · (mb(m2, T )∇m) from the free energy 9.15

F ising{m,T} = A(m2, T ) +mb(m2, T )∇2m

+ C(m2, T )(∇m)2 −∇ (mb(m2, T ) · ∇m)
=A(m2, T ) + C(m2, T )(∇m)2 −∇ (mb(m2, T )

) · ∇m
=A(m2, T ) + C(m2, T )(∇m)2

− (b(m2, T ) + 2m2b′(m2, T )
)
(∇m)2

=A(m2, T ) (9.16)

+
(
C(m2, T )− b(m2, T )− 2m2b′(m2, T )

)
(∇m)2,

replacing
(
mb(m2, T )

)
(∇2m) with the equivalent term

−(∇m)(∇(mb(m2, T )∇m) · ∇m). Thus we may absorb
the b term proportional to ∇2m into an altered c =
C(m2, T )− b(m2, T )− 2m2b′(m2, T ) term times (∇m)2:

F ising{m,T} = A(m2, T ) + c(m2, T )(∇m)2. (9.17)

-2 -1 0 1 2

Magnetization m per spin

µ>0
µ=0
µ=0

Fig. 9.25 The Landau free energy density for the Ising
model 9.18, at positive, zero, and negative values of the
quadratic term µ.

(5) (Perhaps) Assume the order parameter is
small.26

If we assume m is small, we may Taylor expand A and c
in powers of m2:27 A(m2, T ) = f0 + µ(T )

2
m2 + g

4!
m4 and

c(m2, T ) = 1/2K, leading to the traditional Landau free
energy for the Ising model

F ising = 1/2K(∇m)2+f0+(µ(T )/2)m2+(g/4!)m4 (9.18)

where f0, g and K can also depend upon T .

The free energy density of equation 9.18 is one of the most
extensively studied models in physics. The field theorists
use φ instead of m for the order parameter, and call it the
φ4 model. Ken Wilson added fluctuations to this model
in developing the renormalization group (chapter 12).

Notice that the Landau free energy density has a qual-
itative change at µ = 0. For positive µ it has a single
minimum at m = 0; for negative µ it has two minima at
m = ±√−6µ/g. Is this related to the transition in the
Ising model from paramagnetic phase m = 0 to ferromag-
netic phase at Tc?

The free energy density already incorporates (by our as-
sumptions) fluctuations in m on length-scales small com-
pared to the coarse-graining length W . If we ignored

25See exercise 9.3 and reference [60]. One must also be wary of total divergence
terms for systems with topological defects, which count as internal surfaces: see
reference [95].

26Notice that this approximation is not valid for abrupt phase transitions, where
the order parameter is large until the transition and zero afterward. Again, Landau
theories for abrupt transitions are often qualitatively illuminating anyhow.

27The symbols used varies. The factors of 1/2 and 1/4! are traditional in the field
theory community: they make later calculations simpler.
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fluctuations on scales larger than W then the free en-
ergy of the whole system28 would be given by the volume
times the free energy density, and the magnetization at
a temperature T would be given by minimizing the free
energy density. The quadratic term µ(T ) would vanish
at Tc, and if we expand µ(T ) ∼ a(T − Tc) + . . . we find
m = ±√6a/g

√
Tc − T near the critical temperature.

This is qualitatively correct, but quantitatively wrong.
The magnetization does vanish at Tc with a power law
m ∼ (Tc − T )β, but the exponent β is not generally 1/2:
in two dimensions it is β2d = 1/8 and in three dimen-
sions it is β3d = 0.31. These exponents (particularly the
presumably non-rational one in 3D) cannot be fixed by
keeping more or different terms in the analytic Landau
expansion:

(d) Show that the power-law βLandau = 1/2 is unchanged
in the limit T → Tc by keeping additional terms in the
Landau expansion ( h

6!
m6 in equation 9.18). (That is,

show that m(T )/(T −Tc)
β goes to a constant as T → Tc.)

(Hint: you should get a quadratic equation for m2. Keep
the root that vanishes at T = Tc, and expand in pow-
ers of h.) Explore also the alternative, non-generic phase
transition where g ≡ 0 but h > 0: what is β for that

transition?

As we see in figure 9.26 there is no length W above which
the Ising model near Tc looks smooth and uniform. The
Landau free energy density gets corrections on all length
scales: for the infinite system the free energy has a singu-
larity at Tc (making our power-series expansion for F ising

inadequate). The Landau free energy density is only be
a starting point for studying continuous phase transi-
tions;29 we must use the renormalization-group methods
of chapter 12 to explain and predict these singularities.

28 The free energy density F shown in figure 9.25 is qualitatively different from
the total free energy F in two other ways. (1) We expand F as a power series in the
order parameters and gradients, but one should not expect generally to be able to
expand F in this way. You may have wondered how we knew that we could expand
F . How did we know that the free energy density didn’t vary as

√
m, or |m|? (The

free energy of the infinite system below Tc, for example, has a term M(T )|H|, which
has a cusp because M changes sign abruptly at H = 0. The free energy of a finite
system will not have a cusp, since both signs of the total magnetization occur with
finite, smooth dependence on H.)

Because we’re coarse-graining over a small region of size W 3, our free energy den-
sity is much the same as that of a finite sample of size W 3. One can show that
the free energy is an analytic function of β = 1/kBT for a finite system, since it’s a
rapidly convergent sum of exponentials e−En/kBT . Similarly, one expects that the
free energy of a finite system will be analytic in other external parameters or con-
straints. (At least for sensible choices: if one chose y = m6 as the order parameter,
the free energy would involve powers of y1/3.) There are no phase transitions in
finite systems at non-zero temperature, since phase transitions are precisely when
power series and analyticity breaks down.

(2) The total free energy density has no barrier between the two signs of magnetiza-
tion! A typical macroscopic system L×L×L at low temperatures with zero net mag-
netizationis composed of two equal-sized domains, one magnetized upward and one
downward. Its total free energy is of order a surface tension (the free energy per unit
area for an interface) σ times the cross sectional area, σL2, and so contributes a free
energy per spin of σ/L – an amount that vanishes for large systems. The free energy F
of the macroscopic system is convex: λF (m0)+(1−λ)F (m1) ≥ F (λm0 + (1 − λ)m1)
by exactly this argument: the left-hand side is the free energy of a mixture of two
subregions of fractional size λ and 1− λ with the same average magnetization as the
right-hand side.

29An important exception to this is superconductivity, where the Cooper pairs are
large compared to their separation. Because they overlap so many neighbors, the
fluctuations in the order parameter field are suppressed, and Landau theory is valid
even very close to the phase transition.
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Fig. 9.26 A snapshot of the Ising model at Tc. Notice that
there are fluctuations on all length scales.

In many cases Landau theory is used even when can’t
be justified quantitatively starting from the microscopic
theory. For properties that are independent of the micro-
scopic theory (universal properties near critical points,
hydrodynamic properties at long wavelengths) one can
use Landau theory as the basic theoretical starting point
for modeling: the free energy 9.18 (commonly written in
terms of φ and termed φ4 theory) is the starting point of
many field theory discussions and the Hamiltonian used
by Wilson to develop the renormalization group (chap-
ter 12). For other properties (calculating energies of dif-
ferent phases, or calculating the energies and structures
of defects and interfaces) Landau theory provides useful
insights even though it can’t be trusted quantitatively.

(9.6) Bloch walls in Magnets.

The free energy density of an Ising magnet below Tc can
be roughly approximated as a double well potential (equa-
tion 9.18), with two minima at ±m0:

F = 1/2K(∇m)2 + (µ(T )/2)m2 + (g/4!)m4 (9.19)

= 1/2K(∇m)2 + (g/4!)(m2 −m2
0)

2. (9.20)

This exercise studies the structure of the domain wall, or
Bloch wall, separating a region of positive magnetization
from one of negative magnetization.

Consider a magnetization m(x) varying only along the x
direction, with m(−∞) = −m0 and m(∞) = m0. In be-
tween, it must pass through a barrier region with m ≈ 0.
The stiffness K penalizes sharp gradients in the magneti-
zation; g penalizes regions with magnetization away from
the equilibria at ±m0. In part (a), we give a rough ar-
gument for the width of the Bloch wall, in terms of K,
m0, and g, by balancing the gradient cost of a thin wall
against the barrier cost of a thick wall.

The second term in F is a double-wall potential, with a
barrier B separating two wells, with units energy per unit
volume. An interface between m = −m0 and m = +m0

with width ∆ will have a energy cost ∼ B × ∆ per unit
area due to the barrier, which wants ∆ to be as small as
possible. The first term in F is a stiffness of the order
parameter against rapid changes in m, adding an energy
per unit area ∼ K∆ × (m0/∆)2.

(a) Using these rough estimates find B, minimize the
sum, and give a rough value for the energy per unit area
of the Bloch wall in terms of K, m0, and g.

The rest of this exercise will lead you through a varia-
tional calculation of the shape of the Bloch wall (see [71,
Chapter 12], for information about the calculus of varia-
tions).

(b) Find the equation satisfied by that m(x) which mini-
mizes F =

∫ F dx, given the boundary conditions. (This
is the Euler-Lagrange equation from the calculus of vari-
ations.)

(c) Show that the solution m(x) has the property that the
combination

E = (K/2)(∂m/∂x)2 − (g/4!)(m2 −m2
0)

2 (9.21)

is independent of x. (Hint: what is ∂E/∂x?)

E is analogous to the energy of a particle in an inverted
potential well, with x playing the role of time and the po-
tential being the negative of the g term in the original free
energy density, with the double-well at ±m0 becoming a
potential with two hills. (The conservation law comes
from the symmetry of the Bloch wall under translations.)
Solving for the minimum m(x) is finding the classical tra-
jectory in the inverted potential: it rolls down one hill and
rolls back up the second one.

(d) Argue from the boundary conditions that E = 0. Us-
ing that, find the minimum free energy path m(x) sat-
isfying the boundary conditions m(±∞) = ±m0. Was
your wall thickness estimate of part (a) roughly cor-
rect? (Hint: if you know dy/dx = f(y), you know∫
dy/f(y) =

∫
dx.)

(9.7) Superfluids: Density Matrices and ODLRO.
(Quantum) 30

Density Matrices. We saw in the last problem that a
Bose-condensed ideal gas can be described in terms of a
complex number ψ(r) representing the eigenstate which
is macroscopically occupied. For superfluid helium, the
atoms are in a strongly interacting liquid state when it
goes superfluid. We can define the order parameter ψ(r)
even for an interacting system using the reduced density
matrix.

Suppose our system is in a mixture of many-body states
Ψα with probabilities Pα. The full density matrix in the
position representation, you will remember, is

ρ̂(r′1, . . . , r
′
N , r1, . . . , rN ) (9.22)

=
∑

α

PαΨ∗(r′1, . . . , r
′
N )Ψ(r1, . . . , rN ).

(Properly speaking, these are the matrix elements of the
density matrix in the position representation: rows are la-
beled by {r′i}, columns are labeled by {rj}.) The reduced

30See references [5, 6].
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density matrix ρ̂(r′, r) (which I’ll call the density matrix
thereafter) is given by setting r′j = rj for all but one of
the particles and integrating over all possible positions,
multiplying by N :

ρ̂2(r
′, r) = (9.23)

N

∫
d3r2 . . . d

3rN ρ̂(r
′, r2 . . . , rN , r, r2, . . . , rN ).

(For our purposes, the fact that it’s called a matrix is not
important: think of ρ̂2 as a function of two variables.)

(a) What does the reduced density matrix ρ2(r
′, r) look

like for a zero–temperature Bose condensate of non-
interacting particles, condensed into a normalized single–
particle state χ(r).

An alternative, elegant formulation for this density ma-
trix is to use second-quantized creation and annihilation
operators instead of the many-body wavefunctions. These
operators a†(r) and a(r) add and remove a boson at a spe-
cific place in space. They obey the commutation relations

[a(r), a†(r′)] = δ(r− r′) (9.24)

[a(r), a(r′)] = [a†(r), a†(r′)] = 0.

and the vacuum has no particles, so

a(r)|0〉 = 0 (9.25)

〈0|a†(r) = 0.

(b) Let’s calculate formula 9.23 for a pure state. First
we need to create a wave-function using the creation and
annihilation operators as a ket:

|Ψ〉 =(1/
√
N !)

∫
d3r1 . . . d

3rN (9.26)

Ψ(r1, . . . rN )a†(r1) . . . a
†(rN )|0〉.

(9.27)

Show that the ket is normalized if the symmetric Bose
wavefunction Ψ is normalized. (Hint: Using equa-
tion 9.24 to pull the a’s to the right through the a†’s,
you should get a sum of N ! terms, each a product of N δ-
functions, setting different permutations of r1 . . . rN equal
to r′1 . . . r

′
N .) Show that 〈Ψ|a†(r′)a(r)|Ψ〉, the overlap of

a(r)|Ψ〉 with a(r′)|Ψ〉 for the pure state |Ψ〉 gives the the
reduced density matrix 9.23.

Since this is true of all pure states, it’s true of mixtures
of pure states as well: hence the reduced density matrix
is the same as the expectation value 〈a†(r′)a(r)〉.
In a non-degenerate Bose gas, in a system with Maxwell-
Boltzmann statistics, or in a Fermi system, one can cal-
culate ρ̂2(r

′, r) and show that it rapidly goes to zero
as |r′ − r| → ∞. This makes sense: in a big system,

a(r)|Ψ(r)〉 leaves a state with a missing particle localized
around r, which will have no overlap with a(r′)|Ψ〉 which
has a missing particle at the distant place r′.
ODLRO and the superfluid order parameter. This
is no longer true in superfluids: just as in the condensed
Bose gas of part (a), interacting, finite-temperature su-
perfluids have a reduced density matrix with off-diagonal
long-range order (ODLRO):

ρ̂2(r
′, r)→ ψ∗(r′)ψ(r) as |r′ − r| → ∞. (9.28)

It’s called long-range order because there are correlations
between distant points: it’s called off-diagonal because
the diagonal of this density matrix in position space is
r = r′. The order parameter for the superfluid is ψ(r),
describing the long-range piece of this correlation.

(c) Show that equation 9.28 determines ψ(r) up to an
overall constant multiplicative phase exp(iφ0). Hint:
ρ(a, r) is ψ(r) up to a constant ψ∗(a), so long as r
is far from a. If b and c are far from a, show that
|ψ∗(a)| = √

ρ(a, c)ρ(b, a)/ρ(b, c). Finally, you’ll need to
patch the region where r is near a. What is ψ(r) for the
non-interacting Bose condensate of part (a), in terms of
the condensate wave function χ(r)?

This correlation function is analogous in many ways to
the density-density correlation function we defined for
gases C(r′, r) = 〈ρ(r′)ρ(r)〉 and the correlation function
for magnetization 〈M(r′)M(r)〉. The fact that ρ̂2 is long
range is analogous to the fact that 〈M(r′)M(r)〉 ∼ 〈M〉2
as r′ − r → ∞: the long-range order in the direction of
magnetization is the analog of the long-range phase rela-
tionship in superfluids.

N bosonsII

a (r’)+

I
a(r)

Fig. 9.27 Particles in superfluids are delocalized: the num-
ber of particles in a subvolume is not well defined. Annihi-
lating a boson at r in region I, insofar as the boson comes
out of the condensate, is equivalent to annihilating it at r′.
The probability overlap between these two states is precisely
ρ̂2(r′, r) = ψ∗(r′)ψ(r).

Number conservation and ψ. Figure 9.27 illustrates
the fact that the local number of particles in a subvolume
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of a superfluid is indeterminate. Our ground state locally
violates conservation of particle number.31 If the number
of particles in a local region isn’t well defined, perhaps
we can think of the local state as some kind of superpo-
sition of states with different particle number? Then we
could imagine factoring the off-diagonal long-range order
〈a†(r′)a(r)〉 ∼ ψ∗(r′)ψ(r) into order 〈a†(r′)〉〈a(r)〉, with
ψ(r) = 〈a〉. (This is obviously zero in a closed system,
since a(r) changes the total number of particles.) The
immediate question is how to set the relative phases of
the parts of the wave-function with differing numbers of
particles. Let’s consider a region small enough that we
can ignore the spatial variations.

(d) Consider a zero-temperature Bose condensate of N
non-interacting particles in a local region. Let the state
into which the bosons condense, χ(r) = χ = |χ| exp(iφ),
be spatially uniform. What is the phase of the N-particle
bose-condensed state?

The phase exp(iφ(r)) is the relative phase between the
components of the local Bose condensates with N and
N − 1 particles. The superfluid state is a coherent su-
perposition of states with different numbers of particles in
local regions. How odd!

Momentum conservation comes from translational sym-
metry; energy conservation comes from time translational
symmetry; angular momentum conservation comes from
rotational symmetry. What symmetry leads to number
conservation?

(e) Consider the Hamiltonian H for a system that con-
serves the total number of particles, written in second
quantized form (in terms of creation and annihilation op-
erators). Argue that the Hamiltonian is invariant un-
der a global symmetry which multiplies all of the cre-
ation operators by exp(iζ) and the annihilation operators
by exp(−iζ). (This amounts to changing the phases of
the N-particle parts of the wave-function by exp(iNζ).)
(Hint: note that all terms in H have an equal number of
creation and annihilation operators.)

The magnitude |ψ(r)|2 describes the superfluid density
ns. As we saw above, ns is the whole density for a
zero temperature non-interacting Bose gas; it’s about
one percent of the density for superfluid helium, and
about 10−8 for superconductors. If we write ψ(r) =√
ns(r) exp(iφ(r)), then the phase φ(r) labels which of

the broken-symmetry ground states we reside in.32

Broken Gauge invariance. We can draw a deep con-
nection with quantum electromagnetism by promoting
this global symmetry into a local symmetry. Consider the
effects of shifting by a spatially dependent phase ζ(x). It
won’t change the potential energy terms, but will change
the kinetic energy terms because they involve gradients.
Consider the case of a single-particle pure state. Our
wave-function χ(x) changes into χ̃ = exp(iζ(x))χ(x), and
p2

2m
χ̃ =

(�

i
∇)2

2m
χ̃ includes terms involving ∇ζ.

(f) Show that this single-particle Hamiltonian is invariant
under a transformation which changes the phase of the
wavefunction by exp(iζ(x)) and simultaneously replaces p
with p− �∇ζ.
This invariance under multiplication by a phase is closely
related to gauge invariance in electromagnetism. Remem-
ber in classical electromagnetism the vector potential A
is arbitrary up to adding a gradient of an arbitrary func-
tion Λ: changing A→ A +∇Λ leaves the magnetic field
unchanged, and hence doesn’t change anything physical.
There choosing a particular Λ is called choosing a gauge,
and this arbitrariness is called gauge invariance. Also re-
member how we incorporate electromagnetism into the
Hamiltonian for charged particles: we change the kinetic
energy for each particle of charge q to (p − q

c
A)2/2m,

using the “covariant derivative” �

i
∇− q

c
A.

In quantum electrodynamics, particle number is not con-
served, but charge is conserved. Our local symmetry,
stemming from number conservation, is analogous to the
symmetry of electrodynamics when we multiply the wave
function by exp(i(q/e)ζ(x)), where −e is the charge on
an electron.

(g) Consider the Hamiltonian for a charged particle in
a vector potential H = ( �

i
∇ − q

c
A)2/2m + V (x). Show

that this Hamiltonian is preserved under a transformation
which multiplies the wave-function by exp(i(q/e)ζ(x)) and
performs a suitable gauge transformation on A. What is
the required gauge transformation?

To summarize, we found that superconductivity leads to
a state with a local indeterminacy in the number of par-
ticles. We saw that it is natural to describe local re-
gions of superfluids as coherent superpositions of states
with different numbers of particles. The order param-
eter ψ(r) = 〈a(r)〉 has amplitude given by the square
root of the superfluid density, and a phase exp(iφ(r))
giving the relative quantum phase between states with

31This isn’t just the difference between canonical and grand canonical ensembles.
Grand canonical ensembles are probability mixtures between states of different num-
bers of particles: superfluids have a coherent superposition of wave-functions with
different numbers of particles.

32ψ(r) is the Landau order parameter; the phase φ(r) is the topological order
parameter.
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different numbers of particles. We saw that the Hamilto-
nian is symmetric under uniform changes of φ: the super-
fluid ground state breaks this symmetry just as a mag-
net might break rotational symmetry. Finally, we saw
that promoting this global symmetry to a local one de-
manded changes in the Hamiltonian completely analogous
to gauge transformations in electromagnetism: number
conservation comes from a gauge symmetry. Superfluids

spontaneously break gauge symmetry!

In the references to this exercise, you can find more along
these lines. In particular, number N and phase φ turn
out to be conjugate variables. The implied equation
i�Ṅ = [H, N ] = i∂H/∂φ gives the Josephson current,
and is also related to the the equation for the superfluid
velocity we derived in exercise 9.4, and so on...
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Correlations, Response,
and Dissipation 10

This chapter focuses on the space and time dependence of statistical me-
chanical systems, and the relations between correlations, response, and
dissipation. We introduce and derive several famous, powerful, and cen-
tral results in this (otherwise somewhat dry) discussion. More informa-
tion can be found in references [20, chapter 8] (classical), [32] (quantum),
and [70].

Fig. 10.1 The 2-D square–lattice Ising
model, quenched (abruptly cooled)
from high temperatures to zero temper-
ature [103]. The model quickly sepa-
rates into local blobs of up and down
spins, which grow and merge, coarsen-
ing to larger blob sizes (section 11.3.1).

Fig. 10.2 An STM image of a surface,
created by bombarding a close–packed
gold surface with noble–gas atoms, and
then allowing the irregular surface to
thermally anneal (Tatjana Curcic and
Barbara H. Cooper) [25]. The figure
shows individual atomic–height steps;
the arrows show a single step pit inside
another pit. The characteristic sizes of
the pits and islands grow as the surface
evolves and flattens.

We start by studying the spatial and temporal cohesiveness of a sys-
tem, using correlation functions (section 10.1). In section 10.2 we note
that diffraction experiments measure correlation functions in a system.

We then specialize to studying correlations in equilibrium, where many
subtle relations can be derived. We’ll focus in the text on the special case
of the ideal gas; in some extended footnotes we’ll give the formalism for
more general order parameter fields. In section 10.3 we illustrate how to
use equilibrium statistical mechanics to calculate correlations at equal
times. Since there are no equal–time correlations in a classical ideal
gas, we find white noise. In section 10.4 we use Onsager’s Regression
Hypothesis to derive the time–dependence of the correlations in our ideal
gas.

We then examine how systems respond, in space and time, to a small
external perturbation. This linear response is described in general by a
susceptibility, which we introduce in section 10.5. We note there that the
imaginary part of the frequency–dependent susceptibility is related to
dissipation, and the real part to elastic response. We show that the static
susceptibility is proportional to the equal–time correlation function. We
derive the Fluctuation–Dissipation Theorem, giving the dynamic suscep-
tibility in terms of the time–dependent correlation function. Finally, in
section 10.6 we use causality – the fact that the response cannot precede
the perturbation – to derive the Kramers–Krönig relation connecting
the imaginary (dissipative) part of the AC susceptibility to the real (re-
sponsive) part.

10.1 Correlation Functions: Motivation

We’ve learned how to derive the laws giving the equilibrium states of a
system (figure 10.3) and the evolution laws of systems as they approach
equilibrium (figures 10.1 and 10.2). How, though, do we characterize the
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196 Correlations, Response, and Dissipation

resulting behavior? How do we extract from our ensemble of systems
some testable numbers or functions that measure the patterns in space
and time, that we can use to compare experiment and theory?

In figures 10.1 and 10.2 we see two systems that can be roughly charac-
terized as blobs which gradually merge and grow with time. The first is
the Ising model at low temperature, showing the spin S(x, t) at position
x and time t: the up–spin and down–spin regions are competing to de-
termine which will take over as the broken–symmetry ground state. The
second is a gold surface that is thermally flattening from an irregular ini-
tial shape, showing the height h(x, t); here the blobs are pits and islands.
One should of course directly study (and publish) snapshots like these,
and make available animations of the evolution [25, 103]. Such visual
images incorporate a full, rich description of individual members of the
ensemble of models – but it’s hard to quantify whether experiments and
theory agree by comparing snapshots of a random environment. How
can we characterize the ensemble as a whole, pulling out functions and
numbers to characterize, say, the typical blob size as a function of time?

Fig. 10.3 The 2-D square–lattice Ising
model near the critical temperature Tc.
Here the ‘islands’ come in all sizes, and
the equilibrium fluctuations happen on
all time scales: see chapter 12.

Figure 10.3 shows the Ising model at Tc, where fluctuations occur on
all length and time scales. The visual pictures are cool, but how do we
pull out functions that describe how likely a black region will extend a
distance r, or survive for a time τ?
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Fig. 10.4 A schematic equal–time cor-
relation function C(r, τ = 0) for the 2D
Ising model at a temperature just above
and just below the critical temperature
Tc. At r = 0 the correlation function
is 〈S2〉 = 1. The distance ξ(T ) after
which the correlation function decays
exponentially to its long–distance value
(zero or m2) is the correlation length.
At Tc the correlation length diverges,
leading to fluctuations on all scales.

We typically characterize such systems using correlation functions.
Consider the alignment of two Ising spins S(x, t) and S(x + r, t) in the
coarsening figure 10.1: spins at the same time t, but separated by a
distance r. If |r| is much larger than a typical blob size L(t), the spins
will have a 50/50 chance of being aligned or misaligned, so their average
product will be near zero. If |r| is much smaller than a typical blob size
L, the spins will typically be aligned parallel to one another (both +1
or both −1), so their average product will be near one. The equal–time
spin–spin correlation function

Ccoar(r) = 〈S(x, t)S(x + r, t)〉 (10.1)

will go from one at x = 0 to zero at x  L(t), and will cross 1/2 at a
characteristic blob size L(t). In non–equilibrium problems like this one,
the system is evolving in time, so the equal–time correlation function
also evolves. We’ll discuss coarsening in more detail in section 11.3.1
and exercises 11.3 and 12.1.

The correlation function in general contains more information than
just the typical blob size. For the equilibrium Ising model, it also con-
tains information about how much a spin influences its distant neighbors.
Even at high temperatures, if a spin is up its immediate neighbors are
more likely to point up than down. As the temperature approaches
the ferromagnetic transition temperature Tc, this preference extends to
further neighbors, roughly extending to a distance ξ(T ) (figure 10.4).
Below Tc we have long–range order: even very distant neighbors will
tend to align with our spin, since the two broken–symmetry equilibrium
states each have net magnetization per spin m. Above Tc the correlation
function goes to zero at long distances r; below Tc it goes to m2, since
To be pub. Oxford UP, ∼Fall’05 www.physics.cornell.edu/sethna/StatMech/
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the two spins become uncorrelated

〈S(x, t)S(x + r, t)〉 ∼ 〈S(x, t)〉〈S(x + r, t)〉 = m2. (10.2)

What happens at the critical temperature? As we approach Tc the cor-
relation length ξ(T ) diverges. At Tc the equal–time correlation function
C(r, 0) is a power law at long distances (figure 10.5), representing the
fact that there are correlations at all length scales. Similarly, the (equal–
position) spin–spin correlation function in time C(0, τ) = 〈s(t)s(t + τ)〉
gets small rapidly after times τ larger than the typical lifetime of a cor-
related region; at the critical point this lifetime diverges (giving critical
slowing down, see exercise 8.5), and the spin–spin correlation function
also decays as a power law, C(0, τ) ∼ τ−(d−2+η)/z at Tc. We’ll see how
to explain these power laws in chapter 12.
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Fig. 10.5 The schematic Ising equal–
time correlation function on a log–log
plot, at Tc (straight line, representing
the power law C ∼ r−(d−2+η), chap-
ter 12), and just above Tc (where the
dependence shifts to C ∼ e−r/ξ(T ) at
distances beyond the correlation length
ξ(T )).

In other systems, one might study the atomic density–density corre-
lation functions C(r, τ) = 〈ρ(x + r, t+ τ)ρ(x, t)〉,1 or the height–height

1Here ρ(x, t) =
∑

j δ(x−xj) just mea-
sures the positions of the centers for
each atom; no coarse–graining is im-
plied.

correlation function for a surface (figure 10.2), or the phase–phase cor-
relations of the superfluid order parameter (exercise 9.7), . . .

0
k

0k +k

k

Fig. 10.6 X-ray Scattering. A
beam of wave-vector k0 scatters off a
density variation ρ(x) with wave-vector
k to a final wave-vector k0 + k; the in-
tensity of the scattered beam is propor-
tional to |ρ̃(k)|2: see [8, chapter 6].

10.2 Experimental Probes of Correlations

Many scattering experiments directly measure correlation functions. X-
rays measure the electron density–density correlation function, neutrons
can measure spin–spin correlation functions, and so on. Elastic scatter-
ing gives the equal–time correlation functions, while inelastic scattering
can give the time–dependent correlation functions.

Let’s briefly summarize how this works for X-ray elastic scattering.
In X-ray diffraction experiments2 a plane–wave beam of wave–vector k0

scatters off of the sample, with the emitted radiation along wave–vector
k0+k proportional to ρ̃e(k), the Fourier transform of the electron density
ρe(x) in the sample. The intensity of the scattered beam |ρ̃e(k)|2 can
be measured, for example, by exposing photographic film with different
geometries and experimental conditions. But this square is given by the
Fourier transform of the equal–time electron3 density–density correlation
function Cee(r) = 〈ρe(x + r, t)ρe(x, t)〉, as seen by a general and useful

2Medical X-rays and CAT scans measure the penetration of X-rays, not their
diffraction.

3Since the electrons are mostly tied to atomic nuclei, Cee(r) is writable in terms of
the corresponding atom–atom correlation function, called pair distribution function
C(r). This is done using form factors: see [8, chapter 6].
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calculation (equation A.20):

|ρ̃(k)|2 = ρ̃(k)∗ρ̃(k) =
∫
dx′ e−ik·x′

ρ(x′)
∫
dx eik·xρ(x)

=
∫
dxdx′ eik·(x−x′)ρ(x′)ρ(x) =

∫
dr eik·r

∫
dx′ ρ(x′)ρ(x′ + r)

=
∫
dr eik·rV 〈ρ(x)ρ(x + r)〉 = V

∫
dr eik·rC(r)

= V C̃(k) (10.3)

In the same way, other scattering experiments also measure two–point
correlation functions, averaging over the entire illuminated sample.

Real space microscopy experiments and k-space diffraction experi-
ments provide complementary information about a system. The real–
space images are direct and easily appreciated and comprehended by the
human mind. They are invaluable for studying unusual events (which
would be swamped in a bulk average), distributions of local geometries
(individual ensemble elements rather than averages over the ensemble),
and physical dynamical mechanisms. The k-space methods, on the other
hand, by averaging over the entire sample, can provide great precision,
and have close ties with calculational methods and analytical methods
(as presented in this chapter). Indeed, often one will computationally
Fourier transform measured real–space data in order to generate corre-
lation functions.

10.3 Equal–Time Correlations in the Ideal

Gas

For the rest of this chapter we will consider systems which are in equi-
librium and close to equilibrium, where we can relate the correlations,
response, and dissipation functions. Let’s start by calculating the equal–
time correlation function. We focus on the ideal gas, which is both the
simplest and the most difficult case. In the exercises, you can calcu-
late correlation functions that are algebraically more challenging (exer-
cise 10.4) but the ideal gas case is both conceptually subtle and funda-
mental. In particular, the ideal gas is the special case called white noise
where there are no correlations between different points in space.

The Helmholtz free energy density of the ideal gas is

F ideal(ρ(x), T ) = ρ(x)kBT
[
log(ρ(x)λ3) − 1

]
(10.4)

(equation 6.61). The probability P{ρ(x)} of finding a particular density
profile ρ(x) as a fluctuation is proportional to

P{ρ(x)} ∝ e−β
∫ F(ρ(x))dx. (10.5)
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Let’s assume the fluctuations are small, and linearize about 〈ρ〉 = ρ0:

F(ρ(x)) = F0 +
δF
δρ

∣∣∣∣
ρ0

(ρ− ρ0) + 1/2
δ2F
δρ2

∣∣∣∣
ρ0

(ρ− ρ0)2

= F0 + µ0(ρ− ρ0) + 1/2α(ρ− ρ0)2 (10.6)

where µ0 = δF
δρ

∣∣∣
ρ0

is the chemical potential and the coefficient of the

quadratic term is

α =
∂2F
∂ρ2

∣∣∣∣
ρ0

= kBT/ρ0 = P0/ρ
2
0 (10.7)

(since the pressure P0 = NkBT/V = ρkBT ). Only the integral of the
free energy matters, so∫

F(ρ(x)) dx = V F0 + µ0������
∫

(ρ− ρ0) dx +
∫

1/2α(ρ− ρ0)2 dx (10.8)

where µ0 drops out because the average of ρ equals ρ0. We can also drop
F0 because it changes the free energy of all configurations by a constant,
and doesn’t change their relative probabilities.4 So the effective free 4Each Boltzmann factor shifts by

e−βVF0 , so Z shifts by the same fac-
tor, so the ratio giving the probability
is independent of F0.

energy of the ideal gas, for small density fluctuations, is

F(ρ) = 1/2α(ρ − ρ0)2 (10.9)

and the probability of finding a density fluctuation is

P{ρ(x)} ∝ e−β
∫ 1/2α(ρ−ρ0)2 dx. (10.10)

We can now calculate the expectation value of the equal–time density–
density correlation function

CIdeal(r, 0) = 〈ρ(x, t)ρ(x + r, t)〉 − ρ2
0 = 〈(ρ(x, t)− ρ0)(ρ(x + r, t)− ρ0)〉

(10.11)
where we subtract off the square of the average density, so that we
measure the correlations between the fluctuations of the order parameter
about its mean value. (Subtracting the means gives us the connected
correlation function.) If we break up the ideal gas into tiny boxes of size
∆V , the probability of having density ρ(xj) in volume j is

Pj(ρ) ∝ e
− 1/2α(ρ−ρ0)2∆V

kBT = e−
(ρ−ρ0)2

2/(βα ∆V ) . (10.12)

This is a Gaussian of root-mean-square width σ =
√

1/(βα∆V ), so
the mean square fluctuations inside a single box is 〈(ρ− ρ0)2〉 = 1

βα ∆V .
The density fluctuations in different boxes are uncorrelated. This means
CIdeal(r, 0) = 0 for r reaching between two boxes, and CIdeal(0, 0) =

1
βα ∆V within one box.

What does it mean for CIdeal to depend on the box size ∆V ? The
fluctuations become stronger as the box gets smaller. We’re of course
familiar with this: in section 3.2.1 and equation 3.67 we saw using the
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microcanonical ensemble that the square of the number fluctuations in
a small subvolume of ideal gas was equal to the expected number of
particles 〈(N − 〈N〉)2〉 ∼ N .5

How do we write the correlation function, though, in the limit ∆V →
0? It must be infinite at r = 0, and zero for all non-zero r. As usual,
it is proportional the Dirac δ-function, this time in three dimensions
δ(r) = δ(rx)δ(ry)δ(rz). The equal–time connected correlation function
for the ideal gas is

CIdeal(r, 0) =
1
βα

δ(r). (10.14)

The correlation function of an uncorrelated system is white noise.66White light is a mixture of all fre-
quencies of light with equal amplitude
and random phases (exercise A.7). Our
noise has the same property. The
Fourier transform of C(r, 0), C̃(k, t =
0) = 1

V
|ρ̃(k)|2 (as in equation 10.3), is

constant, independent of the wavevec-
tor k. Hence all modes have equal
weight. To show that the phases are
random, we can express the free en-
ergy (equation 10.8) in Fourier space,
where it is a sum over uncoupled har-
monic modes: hence in equilibrium
they have random relative phases (see
exercise 10.4).

We can see that the constant outside is indeed 1/βα, by using equa-
tion 10.14 to check that the mean square fluctuations of the integral of
ρ inside the box of volume ∆V is indeed 1

βα ∆V :

〈(ρ− ρ0)2〉box =

〈(
1

∆V

∫
∆V

(ρ(x) − ρ0) dx
)2
〉

=
1

(∆V )2

∫
∆V

dx
∫

∆V

dx′〈(ρ(x) − ρ0)(ρ(x′) − ρ0)〉

=
1

(∆V )2

∫
∆V

dx
∫

∆V

dx′ 1
βα

δ(x − x′)

=
1

βα(∆V )2

∫
∆V

dx =
1

βα∆V
. (10.15)

10.4 Onsager’s Regression Hypothesis and
Time Correlations

Equilibrium statistical mechanics does not determine the dynamics: air
has sound waves and perfume in still air diffuses, but both are good ideal
gases. In studying the time evolution of correlations, we could work
with the microscopic laws: indeed, most treatments of this topic start
from quantum mechanics [32]. Instead, we will rely on the macroscopic
evolution laws to specify our dynamics.

How are the density fluctuations in an ideal gas of perfume correlated
in time? In particular, suppose at t = 0 there is a rare fluctuation,
increasing the density of perfume at one point (figure 10.7). How will it
decay to a more typical density profile as time passes?

Macroscopically our perfume obeys the diffusion equation of chapter 2.
There we derived the evolution laws for imposed initial non–equilibrium

5So, using equation 10.7 and the ideal gas law P0V = NkBT = N/β, the density
fluctuations

〈(ρ − ρ0)
2〉 =

(N − 〈N〉)2

(∆V )2
=

N

(∆V )2
=

ρ0

∆V
(10.13)

=
1

(ρ0/P0)(P0/ρ20)∆V
=

1
N

P0V
α∆V

=
1

βα∆V

just as we computed from F ideal.
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density profiles, and ignored the spontaneous thermal fluctuations. A
macro–scale initial condition (figure 10.8) will evolve according to the
diffusion equation ∂ρ

∂t = D∇2ρ. The confusing point about the micro-
scopic density (figure 10.7) is that it introduces new spontaneous thermal
fluctuations while it flattens old ones.

In this text, we have been rather casual in denoting averages, using
the same symbol 〈〉 for averages over time and space, and averages over
microcanonical, canonical, and grand canonical ensembles. In this sec-
tion and in some of the exercises we’ll be doing several different kinds of
averages, and we need to distinguish between them. Our microcanon-
ical, canonical, and grand canonical ensemble averages cannot be used
to calculate quantities depending on more than one time (because the
equilibrium ensembles are independent of dynamics). Let’s write 〈〉eq for
these equal–time equilibrium averages. The time–time correlation func-
tions are defined by an equilibrium ensemble of time evolutions, which
may include noise from the environment.7 Let us denote these averages 7Our perfume molecules will be buf-

feted by the surrounding air molecules,
which we are not explicitly integrating
over. Bath–induced noise like this is of-
ten modeled using Langevin equations
(exercise 10.5).

by 〈〉ev. Thus 〈〉ev generalizes 〈〉eq to operators at non-equal times. Fi-
nally, let’s write [A]Ai

for the noisy evolution average of A(x, t), fixing
the initial condition A(x, 0) = Ai(x) at time zero. This averages over
all the new spontaneous density fluctuations, allowing us to examine the
decay of an initial spontaneous density fluctuation, or perhaps an initial
imposed density profile. t=0

t=τ

Fig. 10.7 An unusual fluctuation at
t = 0 will slowly decay to a more typical
thermal configuration at a later time τ .

t=0
t=τ

Fig. 10.8 An initial condition with the
same density will slowly decay to zero.

We will assume that this last average fixing the initial condition obeys
the same diffusion equation that governs the macroscopic time evolution.
For our diffusion of perfume, this means

∂

∂t
[ρ(x, t)]ρi

= D∇2 [ρ(x, t)]ρi
. (10.16)

Generalizing this formula to arbitrary systems and putting it into words,
leads us to Onsager’s Regression Hypothesis [81],

. . . we may assume that a spontaneous deviation from the
equilibrium decays according to the same laws as one that
has been produced artificially.

It is clear now that we may calculate the density–density correlation
function 〈ρ(r + r′, t+ t′)ρ(r′, t′)〉ev by taking our evolution ensemble for
fixed initial condition [ρ(x, t)]ρi

and then taking a thermal average over
initial conditions ρ(x, 0) = ρi(x). We may use the fact that our system is
homogeneous and time–independent to measure our correlation function
starting at the origin:

C(r, τ) = 〈(ρ(x + r, t+ τ) − ρ0)(ρ(x, t) − ρ0)〉ev
= 〈(ρ(r, τ) − ρ0)(ρ(0, 0) − ρ0)〉ev (10.17)

=
〈
([ρ(r, τ)]ρi

− ρ0)(ρi(0) − ρ0)
〉

eq
.

In words, averaging over both initial conditions and noise 〈〉ev is the
same as first averaging over noise []

i
and then over initial conditions
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〈〉eq. We know from Onsager’s regression hypothesis that

∂CIdeal

∂t
=
〈
∂

∂t
[ρ(r, t)]ρi

(ρi(0) − ρ0)
〉

eq

=
〈
D∇2 [ρ(r, t)]ρi

(ρi(0) − ρ0)
〉

eq

= D∇2
〈
[ρ(r, t)]ρi

(ρi(0) − ρ0)
〉

eq

= D∇2 〈(ρ(r, t) − ρ0)(ρ(0, 0) − ρ0)〉ev
= D∇2CIdeal(r, t). (10.18)

The correlation function C obeys the same equation as the decays of
imposed initial conditions. This is true in general.8

Thus to solve in a general system for the correlation function C, we
must calculate as the initial condition the instantaneous correlations
C(x, 0) using equilibrium statistical mechanics, and evolve it according
to the macroscopic evolution law. In the case of the ideal perfume gas,
the equal–time correlations (equation 10.14) are CIdeal(x, 0) = 1

βαδ(x),
and the evolution law is given by the diffusion equation. We know how an
initial δ -function distribution evolves under the diffusion equation: it’s
given by the Green’s function from section 2.4.2. The Greens function
for the diffusion equation in one dimension (equation 2.33) is G(x, t) =

1√
4πDt

e−x2/4Dt. In three dimensions we take the product along x, y,

8We can use Onsager’s regression hypothesis to calculate the correlation function
C for a general order parameter s(x, t)? Suppose that the macroscopic time evolution
of s(x, t), to linear order in deviations away from its average value s̄, is given by some
Greens function (section 2.4.2):

smacro(x, t) = s̄−
∫
G(x − x′, t)(smacro(x′, 0) − s̄) dx′. (10.19)

For convenience, let’s set s̄ = 0. This convolution simplifies if we Fourier transform
in position x but not in time t, using the convolution theorem for Fourier transforms
(equation A.22):

ŝmacro(k, t) = Ĝ(k, t)ŝ(k, 0), (10.20)

where we use a hat to denote the Fourier transform in position space. Onsager’s re-
gression hypothesis says that a spontaneous thermal fluctuation will evolve according
to the same law,

[ŝ(k, t)]ŝi
= Ĝ(k, t)ŝi(k) = Ĝ(k, t)ŝ(k, t = 0) (10.21)

so the connected correlation function

C(r, t) = 〈s(r, t)s(0, 0)〉ev =
〈
[s(r, t)]si

si(0)
〉

eq
(10.22)

evolves by

Ĉ(k, t) =
〈
[ŝ(k, t)]si

si(0)
〉

eq
=
〈
Ĝ(k, t)ŝ(k, 0)si(0)

〉
eq

= Ĝ(k, t)Ĉ(k, 0) (10.23)

Again, the correlation function obeys the same evolution law as the decay of an
imposed initial condition.

To be pub. Oxford UP, ∼Fall’05 www.physics.cornell.edu/sethna/StatMech/



10.5 Susceptibility and the Fluctuation–Dissipation Theorem 203

and z to get G, and then divide by βα, to get the correlation function

CIdeal(r, t) =
1
βα

G(r, t) =
1
βα

(
1√

4πDt

)3

e−r2/4Dt. (10.24)

This is the correlation function for an ideal gas satisfying the diffusion
equation.

10.5 Susceptibility and the Fluctuation–Dis-
sipation Theorem

How will our system ring or yield when we kick it? The susceptibility
χ(r, τ) gives the response at a distance r and time τ from the kick. Let
us formulate susceptibility for a general order parameter s(x, t), kicked
by an external field f(x, t). That is, we assume that f appears in the
free energy functional

F = F0 + Ff (10.25)

as a term
Ff (t) = −

∫
dx f(x, t)s(x, t). (10.26)

You can think of f as a force density pulling s upward. If s is the particle
density ρ, then f is minus an external potential −V (x) for the particles;
if s is the magnetization M of an Ising model, then f is the external
field H ; if s is the polarization P of a dielectric material, then f is an
externally applied vector electric field E(x, t). For convenience, we will
assume in this section that s̄ = 0.9 9Or rather, we define the order param-

eter s as the deviation from the equilib-
rium value in the absence of a field.

How will the order parameter field s respond to the force f? If the
force is a weak perturbation, we can presume a linear response, but
perhaps one which is non–local in space and time. So, s(x, t) will depend
upon f(x′, t′) at all earlier times t′ < t:

s(x, t) =
∫
dx′
∫ t

−∞
dt′ χ(x − x′, t− t′)f(x′, t′). (10.27)

This non–local relation becomes much simpler if we Fourier trans-
form10 s, f , and χ in space and time. The AC susceptibility11 χ̃(k, ω) 10We will use Ã(k, ω) to represent

the Fourier transform of the function
A(x, t) with respect to both space and
time. Later in this section we will use
B̃(k) to represent the Fourier transform
of the static function B(x) with respect
to space, and Â(k, t) to represent the
Fourier transform of A(x, t) in space x
alone.

satisfies
s̃(k, ω) = χ̃(k, ω)f̃(k, ω), (10.28)

since as usual the Fourier transform of the convolution is the product
of the Fourier transforms (equation A.22). The function χ is the sus-
ceptibility of the order parameter s to the external field f . For example,
the polarization versus field is defined in terms of the polarizability α:12

12Because P and E are vectors, α will
be a matrix in anisotropic materials.

P̃(k, ω) = α̃(k, ω)Ẽ(k, ω), the magnetization from an external field is
M̃(k, ω) = χ̃(k, ω)H̃(k, ω), and so on.

11 AC stands for ‘alternating current’, the kind of electricity that is used in most
buildings except in rural areas: the voltage fluctuates periodically in time. The
current from batteries is DC or direct current, which doesn’t vary in time. Somehow
we’ve started using AC for frequency dependent properties in general.
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10.5.1 Dissipation and the imaginary part χ′′(ω)

In general the real–space susceptibility χ(x, t) is real, but the AC sus-
ceptibility

χ̃(k, ω) =
∫
dxdt eiωteik·xχ(x, t) = χ′(k, ω) + iχ′′(k, ω) (10.29)

has a real part χ′ = Re[χ̃] and an imaginary part χ′′ = Im[χ̃].13 It is13Some use the complex conjugate of
our formulas for the Fourier transform
(see section A.1), substituting −i for
i in all the formulas. Their χ′′ is the
same as ours, because they define it to
be minus the imaginary part of their
Fourier transformed susceptibility.

clear from the definition that χ̃(−k,−ω) = χ̃∗(k, ω); for a system with
inversion symmetry x ↔ −x we see further that χ(x, t) = χ(−x, t) and
hence χ̃(k,−ω) = χ̃∗(k, ω), so χ′ is even in ω and χ′′ is odd. χ′ gives
the in–phase response to a sinusoidal force, and χ′′ gives the response
that lags in phase.14

14If we apply f(t) = cos(ωt), so f̃(ω) =
1/2(δ(ω) + δ(−ω)), then then the re-
sponse is s̃(ω) = χ̃(ω)f̃(ω) so

s(t) =
1

2π

∫
e−iωts̃(ω) dω (10.30)

=
1

4π

(
e−iωtχ(ω) + eiωtχ(−ω)

)
=

1

4π

(
e−iωt(χ′(ω) + iχ′′(ω))

+ eiωt(χ′(ω) − iχ′′(ω)
)

=
1

2π

(
χ′(ω) cos(ωt) + χ′′(ω) sin(ωt)

)
.

Hence χ′ gives the immediate in–phase
response, and χ′′ gives the out–of–
phase delayed response.

The imaginary part χ′′ in general gives the amount of dissipation
induced by the external field. The dissipation can be measured directly
(for example, by measuring the resistance as a function of frequency
of a wire) or by looking at the decay of waves in the medium (optical
and ultrasonic attenuation and such). We know that ‘energy’ is the
integral of ‘force’ f times ‘distance’ ∂s, or force times velocity ∂s/∂t
integrated over time. Ignoring the spatial dependence for simplicity, the
time average of the power p dissipated per unit volume is

p = lim
T→∞

1
T

∫ T

0

f(t)
∂s

∂t
dt = lim

T→∞
1
T

∫ T

0

−s(t)∂f
∂t

dt (10.31)

where we’ve averaged over a time T and integrated by parts, assuming
the boundary terms are negligible for T → ∞. Assuming an AC force
f(t) = Re[fωe

−iωt] = 1/2(fωe
−iωt + f∗

ωe
iωt),

p(ω) = lim
T→∞

1
T

∫ T

0

s(t)
iω

2
(fωe

−iωt − f∗
ωe

iωt) dt, (10.32)

where the motion s(t) is in turn due to the forcing at earlier times

s(t) =
∫ ∞

−∞
dt′ χ(t− t′)f(t′) (10.33)

=
∫ ∞

−∞
dτ χ(τ)f(t− τ)

=
∫ ∞

−∞
dτ

χ(τ)
2

(fωe
−iω(t−τ) + f∗

ωe
iω(t−τ)).

Plugging [10.33] into [10.32], we get

p(ω) = lim
T→∞

1
T

∫ T

0

dt

∫ ∞

−∞
dτ
iωχ(τ)

4
(10.34)

(fωe
−iω(t−τ) + f∗

ωe
iω(t−τ))(fωe

−iωt − f∗
ωe

iωt)

=
∫ ∞

−∞
dτ
iωχ(τ)

4
lim

T→∞
1
T

∫ T

0

dt[
f2

ωe
−iω(2t−τ) − f∗

ω
2eiω(2t−τ) + |fω|2(e−iωτ − eiωτ )

]
.
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The first and second term are zero, and the third gives a sine,15 so

p(ω) =
ω|fω|2

2

∫ ∞

−∞
dτχ(τ) sin(ωτ) =

ω|fω|2
2

Im[χ(ω)]

=
ω|fω|2

2
χ′′(ω). (10.35)

Let’s interpret this formula in the familiar case of electrical power dis-
sipation in a wire. Under a (reasonably low frequency) AC voltage
V cos(ωt), a wire of resistance R dissipates power V 2/R. A wire of
length L and cross-section A has electric field E = V/L and resistance
R = L

σA where σ is the conductivity of the metal. So the dissipated
power per unit volume p = 1/2

(EL)2

L/σA
1

LA = 1/2σE
2; at general frequencies

the conductivity is defined so that p(ω) = 1/2σ(ω)|E(ω)|2. Equation 10.35
thus tells us in this context that σ(ω) = α′′(ω); the imaginary part of
the polarizability divided by the frequency.

10.5.2 Static susceptibility χ̃0(k)

In many cases, we are interested in how a system responds to a static
external force – rather than kicking a system, we lean on it. Under
a point-like force, the dimple formed in the order parameter field is
described by the static susceptibility χ0(r).

If the external force is time independent (so f(x′, t′) = f(x′)) the
system will reach a perturbed equilibrium, and we may use equilibrium
statistical mechanics to find the resulting static change in the average
order parameter field s(x). The non-local relation between s and a small
field f is given by the static susceptibility, χ0:

s(x) =
∫
dx′ χ0(x − x′)f(x′). (10.36)

If we take the Fourier series of s and f , we may represent this relation
in terms of the Fourier transform of χ0 in analogy to equation 10.28:

s̃k = χ̃0(k)f̃k. (10.37)

As an example, the free energy density for the ideal gas in the lin-
earized approximation of section 10.3, is F = 1/2α(ρ − ρ0)2. For a spa-
tially varying static external potential f(x) = −V (x), this is minimized
by ρ(x) = ρ0 + f(x)/α, so (comparing to equation 10.36) we find the
static susceptibility is

χIdeal
0 (r) = δ(r)/α, (10.38)

and in Fourier space it is χ̃0(k) = 1/α. χ0 is the “spring constant”
giving the response to a constant external force.

15In particular, limT→∞(1/T )
∫ T
0 dte±2iωt = 0, limT→∞(1/T )

∫ T
0 dte0iωt = 1,

and i(e−iωτ − eiωτ ) = 2 sin(ωτ).
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Notice for the ideal gas that the static susceptibility χIdeal
0 (r) and the

equal–time correlation function CIdeal(r, 0) = δ(r)
βα are proportional to

one another: χIdeal
0 (r) = βCIdeal(r, 0). This can be shown to be true in

general for equilibrium systems:16

χ0(r) = βC(r, 0) (10.42)

the ω = 0 static susceptibility χ0 is given by dividing the instantaneous
correlation function C by kBT – both in real space and also in Fourier
space:

χ̃0(k) = βĈ(k, 0). (10.43)

This fluctuation-response relation should be intuitively reasonable: a
system or mode which is easy to perturb will also have big fluctuations.

16To calculate the static susceptibility for a general system, we formally find the
expectation value 〈s̃k〉eq for a given f̃k, and then take the derivative with respect to

f̃k to get χ̃0(k). The interaction term in the free energy equation 10.26 reduces in
the case of a static force to

Ff = −
∫

dx f(x)s(x) = −V
∑
k

f̃ks̃−k (10.39)

where V is the size of the system (we assume periodic boundary conditions) and the
sum over k is the sum over allowed wave-vectors in the box (appendix A). (We use
Fourier series here instead of Fourier transforms because it makes the calculations
more intuitive: we get factors of the volume rather than δ-function infinities.) The
expectation value of the order parameter in the field is

〈s̃k〉eq =
Tr
[
s̃ke
−β(F0−V

∑
k f̃ks̃−k)

]
Tr
[
e−β(F0−V

∑
k f̃ks̃−k)

] =
1

β

∂ logZ

∂fk
(10.40)

where Tr integrates over all order parameter configurations s. The susceptibility is
given by differentiating equation 10.40:

χ̃0(k) =
∂ 〈s̃k〉eq
∂f̃k

∣∣∣∣∣
f=0

(10.41)

=
Tr
[
s̃k(βV s̃−k)e−β(F0−V

∑
k f̃k s̃−k)

]
Tr
[
e−β(F0−V

∑
k f̃ks̃−k)

]
∣∣∣∣∣∣
f=0

−
Tr
[
s̃ke
−β(F0−V

∑
k f̃ks̃−k)

]
Tr
[
(βV s̃−k)e−β(F0−V

∑
k f̃ks̃−k)

]
Tr
[
e−β(F0−V

∑
k f̃ks̃−k)

]2
∣∣∣∣∣∣∣
f=0

=βV (〈s̃ks̃−k〉 − 〈s̃k〉〈s̃−k〉) = βV
〈
(s̃k − 〈s̃k〉)2

〉
=βĈ(k, 0).

where the last equation is the Fourier equality of the correlation function to the
absolute square of the fluctuation (equation A.20, except that, because we’re using
Fourier series instead of Fourier transforms, there are two extra factors of V and the
〈sk〉 subtraction gives us the connected correlation function, with s̄ subtracted off).

Note that in equation 10.40 that 〈s̃k〉 = 1
β

∂ log Z
∂fk

and in equation 10.41 Ĉ(k, 0) =
1

β2
∂ log Z

∂f2
k

: as usual, everything is calculated by taking derivatives of the partition

function. The higher connected correlation functions can be gotten in turn by taking
higher derivatives of logZ. This is a common theoretical technique: to calculate
correlations in an ensemble, add a force coupled to the corresponding field and take
derivatives.
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How is the static susceptibility χ0(r) related to our earlier dynamic
susceptibility χ(r, t)? We can use the dynamic susceptibility (equa-
tion 10.27) in the special case of a time–independent force

s(x, t) =
∫
dx′
∫ t

−∞
dt′ χ(x − x′, t− t′)f(x′) (10.44)

=
∫
dx′
∫ ∞

0

dτ χ(x − x′, τ)f(x′),

to derive a formula for χ0:

χ0(r) =
∫ ∞

0

dt χ(r, t) =
∫ ∞

−∞
dt χ(r, t). (10.45)

Here we use the fact that the physical world obeys causality (effects
cannot precede their cause) to set χ(r, t) = 0 for t < 0 (see figure 10.10).
By integrating over time in equation 10.45 we extract the ω = 0 Fourier
component, so the k dependent static susceptibility is the zero–frequency
limit of the AC susceptibility:

χ̃0(k) = χ̃(k, ω = 0). (10.46)

Often, one discusses the uniform susceptibility of a system – the re-
sponse to an external field uniform in space and time. The specific heat
of section 6.1 and the magnetic susceptibility of exercise 8.1 are the uni-
form k = 0 value of the static susceptibility to changes in temperature
and field. For the uniform static susceptibility, s =

∫
dx′χ0(x − x′)f =

χ̃0(k = 0)f , so the uniform susceptibility is given by χ̃0(k) at k = 0.
Knowing χ̃0(k) = βĈ(k, t = 0) (equation 10.43), we can relate the uni-
form susceptibility to the k = 0 component of the equal-time correlation
function. But at k = 0, the correlation function is given by the average
square of the order parameter, so

kBT χ̃0(k = 0) = Ĉ(k = 0, t = 0) =
∫
dr〈s(r + x)s(x)〉

=
∫
dr

1
V

〈∫
dx s(r + x)s(x)

〉
=

1
V

〈∫
dr′s(r′)

∫
dx s(x)

〉
=

1
V

〈(∫
s(x)dx

)2
〉

(10.47)

We’ve thus connected a uniform linear response to the fluctuations of
the whole system. We’ve done this in special cases twice before, in exer-
cise 8.1(b) where the fluctuations in magnetization gave the susceptibil-
ity in the Ising model, and equation 6.13 where the energy fluctuations
were related to the specific heat.17 17The energy fluctuations in equa-

tion 6.13 have a slightly different for-
mula. The inverse temperature β al-
ready couples to the energy fluctua-
tions, so there is no separate conjugate
force.

10.5.3 χ(r, t) and Fluctuation–Dissipation

Now we turn to computing the dynamic susceptibility. It too is related
to the correlation function, via the fluctuation-dissipation theorem.
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How can we compute χ(r, t) the space-time evolution after we kick
the system at r = t = 0? We know the time evolution starting from an
imposed initial condition is given by the Greens function G(r, t). We can
impose an initial condition using a static force f(x, t) = f(x) for t < 0,
and release it at t = 0 so f(x, t) = 0 for t > 0. We can then match18 the
Green’s function time evolution s(x, t) =

∫
dx′G(x − x′, t)s(x′, 0) with

that given by the susceptibility s(x, t) =
∫ 0

−∞ dt′
∫
dx′f(x′)χ(x− x′, t−

t′).
Let’s work it out for the ideal gas, where χ0(r) = δ(r)/α (equa-

tion 10.38), so ρ(x, 0) = f(x)/α. The subsequent time evolution is
given by the Greens function G(x, t), which we’ve seen for the ideal gas
gives the correlation function CIdeal(x, t) = G(x, t)/(βα) by Onsager’s

18 We can do this for a general order parameter field s(x, t). We start with an
initial condition defined by a static external field f(x), which is given by

ŝ(k, t = 0) = χ̃0(k)f̃(k). (10.48)

The subsequent time evolution is given by convolving with the Greens function G(x, t)
(equation 2.36), which is the same as multiplying by Ĝ(k, t):

ŝ(k, t) = χ̃0(k)f̃(k)Ĝ(k, t) (10.49)

We can also find an equation for ŝ(k, t) by using the dynamic susceptibility, equa-
tion 10.27, and the fact that f(t′) = 0 for t′ > 0:

s(x, t) =

∫
dx′
∫ t

−∞
dt′χ(x − x′, t− t′)f(x′, t′)

=

∫
dx′
∫ 0

−∞
dt′χ(x − x′, t− t′)f(x′)

=

∫
dx′
∫ ∞

t
dt′χ(x − x′, τ)f(x′) (10.50)

so

ŝ(k, t) =

∫ ∞
t

dτχ̂(k, τ)f̃(k). (10.51)

This is true for any f̃(k), so with equation 10.49, we find∫ ∞
t

dτχ̂(k, τ) = χ̃0(k)Ĝ(k, t) (10.52)

Now from the last section, equation 10.43, we know χ̃0(k) = βĈ(k, 0). From the On-
sager regression hypothesis, the Greens function Ĝ(k, t) for s has the same evolution
law as is obeyed by the correlation function C (equation 10.23), so

Ĉ(k, 0)Ĝ(k, t) = Ĉ(k, t) (10.53)

Hence ∫ ∞
t

dτχ̂(k, τ) = βĈ(k, 0)Ĝ(k, t)

= βĈ(k, t) (10.54)

Differentiating both sides with respect to time yields the fluctuation-dissipation the-
orem in k-space:

χ̂(k, t) = −β ∂Ĉ(k, t)

∂t
. (10.55)
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regression hypothesis (equation 10.24):

ρ(x, t) =
∫
dx′ρ(x′, 0)G(x − x′, t) (10.56)

=
∫
dx′ f(x′)

α
G(x − x′, t)

=
∫
dx′f(x′)βCIdeal(x − x′, t)

We match against ρ(x, t) written using the dynamical susceptibility.
Since f(x, t) = 0 for t > 0 the formula involves integrals up to time
zero: we change variables to τ = t− t′:

ρ(x, t) =
∫
dx′
∫ 0

−∞
dt′f(x′)χ(x − x′, t− t′) (10.57)

=
∫
dx′f(x′)

∫ ∞

t

dτχ(x − x′, τ).

Comparing these two formulas, we see that

βCIdeal(r, t) =
∫ ∞

t

dτχ(r, τ). (10.58)

Taking the derivative of both sides, we derive one form of the Fluctuation–
Dissipation Theorem:

χIdeal(r, t) = −β ∂C
Ideal

∂t
(t > 0) (10.59)
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C
(0

,t)

Fig. 10.9 The time–time correlation
function C(r = 0, τ) for a hypotheti-
cal system with two characteristic re-
laxation times.
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χ(
0,
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Fig. 10.10 The susceptibility χ(r =
0, t) for the same hypothetical system
as in figure 10.4. χ(r, t) gives the re-
sponse to an impulse a time t in the
past; causality requires that there be
no response preceding the impulse, so
χ(r, t) = 0 for t < 0.

The fluctuation–dissipation theorem in this form is true in general for
the linear response of classical equilibrium systems (see note 18). The
linear dynamic susceptibility χ of a general order parameter field s(x, t)
with correlation function C(x, t) is given by

χ(x, t) = −β ∂C(x, t)
∂t

(t > 0). (10.60)

What happens for t < 0? The correlation function must be symmetric
in time (figure 10.9) since the equilibrium state is invariant under time
reversal symmetry:

C(r, τ) = 〈s(x, t)s(x + r, t+ τ)〉 (10.61)
= 〈s(x, t)s(x + r, t− τ)〉 = C(r,−τ).

But χ must be zero for t < 0 (figure 10.10) by causality:

χ(r, t) = 0 (t < 0). (10.62)

We can see why it is called the fluctuation-dissipation theorem by
looking at the AC version of the law. Again, for convenience, we ignore
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the spatial degrees of freedom. Using equations 10.60 and 10.62, and
integrating by parts, we find

χ̃(ω) =
∫ ∞

−∞
dtχ(t)eiωt = −β

∫ ∞

0

dt
∂C

∂t
eiωt

= − βC(t)eiωt
∣∣∞
0

+ iωβ

∫ ∞

0

dtC(t)eiωt. (10.63)

Now, the first term is real and C(t) = C(−t), so we may write the
imaginary part of the susceptibility as

χ′′(ω) = Im[χ̃(ω)] = βω

∫ ∞

0

dtC(t) cos(ωt) (10.64)

=
βω

2

∫ ∞

−∞
dtC(t)eiωt =

βω

2
C̃(ω).

Using this result and equation 10.35 relating the dissipation to χ′′ and
putting back the spatial pieces,

p(ω) =
ω|fω|2

2
χ′′(ω) =

ω|fω|2
2

βω

2
C̃(ω)

=
βω2|fω|2

4
C̃(ω). (10.65)

This tells us that the power dissipated, p(ω) under an external forc-
ing fω is given in terms of the correlation function of the spontaneous
fluctuations C(ω): hence the name fluctuation–dissipation theorem.

We’ve ignored quantum mechanics in our derivation19 and indeed19Usually, one derives the fluctuation–
dissipation theorem quantum mechani-
cally, and then uses it to derive the On-
sager regression hypothesis [32].

there are quantum-mechanical correction of order �. The fully quantum
version of the fluctuation–dissipation theorem is

χ′′(k, ω) = Im[χ̃(k, ω)] =
1
2�

(1 − e−β�ω)C̃(k, ω). (10.66)

At high temperatures, 1 − e−β�ω ∼ β�ω and we regain our classical
result, equation 10.64.

10.6 Causality and Kramers Krönig

The susceptibility χ(t) (again, dropping the positions for simplicity) is
a real-valued function on the half-line t > 0. The frequency-dependent
susceptibility is composed of two real-valued functions χ′(ω) and χ′′(ω)
on the entire line. We can use the symmetries χ̃(−ω) = −χ̃∗(ω) to reduce
this to two real-valued functions on the half-line ω > 0, but it still seems
like χ̃(ω) contains twice the information of χ(t). It makes it plausible
that χ′ and χ′′ might be related somehow. Suppose we measure the
frequency–dependent absorption of the material, and deduce χ′′(k, ω).
Can we find the real part of the susceptibility χ′(k, ω)?

It’s a remarkable fact that we can find a formula for χ′(ω) in terms
of χ′′(ω). This relation is called the Kramers–Krönig relation, and it
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follows from causality. For this argument, you’ll need to know some
complex analysis.20 20If you haven’t heard of Cauchy’s the-

orem, read on – you’ll be getting a pre-
view of the key result in complex anal-
ysis.

We know that χ(t) = 0 for t < 0, because the laws of nature are
causal: the response cannot precede the perturbation. What does this
imply about χ(ω) =

∫
dt χ(t)eiωt? Consider the function χ as a function

of a complex frequency ω = u+ iv:

χ(u+ iv) =
∫

dtχ(t)eiute−vt (10.67)

converges nicely for v > 0, but looks dubious for v < 0. In the complex ω
plane, this implies that χ(ω) is analytic in the upper half plane (v > 0).21

Also, it seems likely that there will be singularities (e.g. poles) in χ̃(ω)
in the lower half-plane.

ω

Fig. 10.11 A contour C in the com-
plex ω′ plane. The horizontal axis is
Re(ω′) and the vertical axis is Im(ω′).
The integration contour runs along the
real axis from −∞ to ∞ with a tiny
semicircular detour near a pole at ω.
The contour is closed with a semicircle
back at infinity, where χ(ω′) is vanishes
rapidly. The contour encloses no sin-
gularities, so Cauchy’s theorem tells us
the integral around it is zero. Detour-
ing the tiny semicircle below the axis
gives the full residue of the pole at ω:
plowing straight through, giving the in-
tegral along the real ω′ axis, gives half
of the residue of the pole.

We now apply deep results of complex analysis. Cauchy’s theorem
states that the line integral of a complex function around a contour is
zero,

∮
C
f(ω′)dω′ = 0, if the function f is analytic everywhere inside the

contour. Cauchy’s integral theorem 22 states under the same conditions
that if the contour C circles a point ω counterclockwise once, then∮

C

f(ω′)
ω′ − ω

dω′ = 2πi f(ω). (10.69)

Now consider the contour in figure 10.11, and the ordinary line integral∫∞
−∞

χ(ω′)
ω′−ω dω

′. If we change this integral to avoid the pole at ω = ω′

by deforming it in a tiny semicircle above the real axis as shown, and
close the contour in the upper half plane, then (since χ is analytic in
the upper half plane) Cauchy’s theorem says the integral is zero. If we
deform it in a tiny semicircle below the real axis our path circles the pole
counterclockwise once, and hence the integral is 2πiχ(ω). An expansion
about the point ω′ = ω tells us that if we plow directly through the
pole on the real axis23 then the integral around the semicircle is the 23We must take the principle value,

symmetrically approaching the pole
from both sides

average of these two results, πiχ(ω). But the integral back along the
large semicircle can be shown to vanish as the radius goes to infinity, so
we find an equation for the line integral giving χ(ω) in terms of itself:

χ(ω) =
1
πi

∫ ∞

−∞

χ(ω′)
ω′ − ω

dω′. (10.70)

21Analytic means that Taylor series about points with v > 0 converge. It’s amazing
how many functions in physics are analytic: it seems we almost always can assume
power series make sense. We’ve discussed in section 8.1 that all properties of materials
are analytic functions of the parameters inside phases; we’ve discussed in exercise 9.5
how the free energy for finite systems and for finite coarse–grainings is an analytic
function of the natural variables in a system. Here we find yet another excuse for
finding analytic functions: causality!

22The integral theorem looks like a complete miracle, but it follows pretty simply
from Cauchy’s theorem: one deforms the path using Cauchy’s theorem to a small
circle L = ω + ε eiθ around the singularity at ω, where the integral∮

L
f(ω′)/(ω′ − ω) dω′ ≈ f(ω)

∮
L

1/(ω′ − ω) dω′

= f(ω) log(ε exp(iθ))|2π
0 = 2πif(ω) (10.68)

is well approximated by a log. Cauchy’s theorem, on the other hand, is a miracle.
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Notice the i in the denominator. This implies that the real part of the
integral gives the imaginary part of χ and vice versa. In particular,

χ′(ω) = Re[χ(ω)] =
1
π

∫ ∞

−∞

Im[χ(ω′)]
ω′ − ω

dω′ =
1
π

∫ ∞

−∞

χ′′(ω′)
ω′ − ω

dω′.

(10.71)
This is the Kramer’s Krönig relation. It’s traditional to simplify it a bit
more, by noticing that χ′′(ω) = −χ′′(−ω), so

χ′(ω) =
1
π

∫ ∞

0

χ′′(ω′)
(

1
ω′ − ω

− 1
−ω′ − ω

)
dω′

=
2
π

∫ ∞

0

χ′′(ω′)
ω′

ω′2 − ω2
dω′. (10.72)

Hence in principle one can measure the imaginary, dissipative part of
a frequency–dependent susceptibility and do a simple integral to get
the real, reactive part. In practice this is a challenge, since one must
know (or approximate) the imaginary part at all frequencies, from deep
infrared to X-ray.

Exercises

(10.1) Fluctuations in Damped Oscillators.

Let us explore further the fluctuating mass-on-a-spring
example of section 6.5. We saw there that the coupling
of the macroscopic motion to the internal degrees of free-
dom will eventually damp the oscillations: the remain-
ing motions were microscopic for macroscopic springs and
masses. These remanent thermal fluctuations can be im-
portant, however, for nanomechanical and biological sys-
tems. In addition, the damped harmonic oscillator is a
classic model for many other physical processes, such as
dielectric loss in insulators. (See [70] for a nice treatment
by an originator of this subject.)

Consider a damped, simple harmonic oscillator, forced
with an external force f , obeying the equation of motion

d2θ

dt2
= −ω2

0θ − γ dθ
dt

+ f(t)/m. (10.73)

(a) Susceptibility. Find the AC susceptibility χ̃(ω) for
the oscillator. Plot χ′ and χ′′ for ω0 = m = 1 and
γ = 0.2, 2, and 5. (Hint: Fourier transform the equation
of motion, and solve for θ̃ in terms of f̃ .)

(b) Causality and Critical Damping. Check, for pos-
itive damping γ, that your χ(ω) is causal (χ(t) = 0 for
t < 0), by examining the singularities in the complex ω

plane (section 10.6). At what value of γ do the poles begin
to sit on the imaginary axis? The system is overdamped,
and the oscillations disappear, when the poles are on the
imaginary axis.

At this point, it would be natural to ask you to verify
the Kramers-Krönig relation, equation 10.72, and show
explicitly that you can write χ′ in terms of χ′′. That
turns out to be tricky both analytically and numerically,
though: if you’re ambitious, try it.

(c) Dissipation and Susceptibility. Given a forcing
f(t) = A cos(ωt), solve the equation and calculate θ(t).
Calculate the average power dissipated by integrating your
resulting formula for f dθ/dt. Do your answers for the
power and χ′′ agree with the general formula for power
dissipation, equation 10.35?

(d) Correlations and Thermal Equilibrium. Use
the fluctuation–dissipation theorem to calculate the cor-
relation function C̃(ω) from χ′′(ω), (see equation 10.64),
where

C(t− t′) = 〈θ(t)θ(t′)〉. (10.74)

Find the equal-time correlation function C(0) = 〈θ2〉, and
show that it satisfies the equipartition theorem. (Hints:
our oscillator is in a potential well V (θ) = 1/2mω

2
0θ

2. You
will need to know the integral

∫∞
−∞

1
ω2+(1−ω2)2

dω = π.)
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(10.2) Telegraph Noise and RNA Unfolding. (Biol-
ogy)

RNA, ribonucleic acid, is a long polymer like DNA, with
many functions in living cells. It has four monomer units
(A, U, C, and G: DNA has T instead of U24) The se-
quence of monomers can encode information for building
proteins, and can also cause the RNA to fold into shapes
that are important to its function.

Michelle Wang’s group here studies the strength of these
hairpins by pulling on them (see data from a different
group, above). Under a sufficiently large force, the hair-
pin will unzip. Near the threshold for unzipping, the RNA
is found to jump between the zipped and unzipped states,
giving telegraph noise, figure 10.14. Just as the current
in a telegraph signal is either on or off, these systems
are bistable and make transitions from one state to the
other. When these systems are in equilibrium, they pro-
vide a prototype statistical mechanics problem: a system
in a double well. (See exercise 6.2.)

Fig. 10.12 Hairpins in RNA, from reference [64]. A length
of RNA attaches to an inverted, complementary strand imme-
diately following.

The two RNA configurations presumably have different
energies (Ez, Eu) entropies (Sz, Su) and volumes (Vz, Vu)
for the local region around the zipped and unzipped
states, respectively. The environment is at temperature
T and pressure P . Let ρz be the fraction of the time
our molecule is zipped at a given external force F , and
ρu = 1− ρz be the unzipped fraction of time.

Fig. 10.13 Experimental setup from reference [64], used
to apply a force F to the RNA: the two ends are attached,
via complementary DNA strands, to two beads which are then
pulled apart. The RNA has two metastable states over a range
of forces: the hairpin, zipped configuration shown and an un-
zipped configuration. Let the difference in length between the
zipped and unzipped configuration be L.

Fig. 10.14 Telegraph Noise in RNA unzipping, from ref-
erence [64]. As the force increases, the fraction of time spent
in the zipped state decreases.

Of the following statements, which are true, assuming
that the pulled RNA is in equilibrium?

(T) (F) ρz/ρu = exp((Stot
z − Stot

u )/kB), where Stot
z and

Stot
u are the total entropy of the universe when the RNA

is in the zipped and unzipped states, respectively.

(T) (F) ρz/ρu = exp(−(Ez −Eu)/kBT ).

(T) (F) ρz/ρu = exp(−(Gz − Gu)/kBT ), where Gz =
Ez−TSz +PVz and Gu = Eu−TSu +PVu are the Gibbs
energies in the two states.

24Adenine, Uracil, Cytosine, and Guanine; DNA has Thymine [80].
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Fig. 10.15 Telegraph Noise in a metallic nanobridge. Resistance versus time
R(t) for a copper constriction, from reference [87]. We label α the state with low
resistance Rα, and β the state with high resistance Rβ . The two states probably
represent a local shift of an atom or a small group of atoms in the constriction from
one metastable state to another.

(T) (F) ρz/ρu = exp(−(Gz − Gu + FL)/kBT ), where
L is the extra length of the unzipped RNA and F is the
applied force.

(10.3) Telegraph Noise in Nanojunctions.

Many systems in physics exhibit telegraph noise.

The junction has two states, α and β. It makes transi-
tions at random, with rate Pβ←α = Pβα from α to β and
rate Pαβ from β to α.

Master Equation. Consider an ensemble of many iden-
tical copies of this system. Let the state of this ensemble
at time t be given by �ρ(t) = (ρα, ρβ), a vector of proba-
bilities that the system is in the two states. This vector
thus evolves according to the master equation

d�ρ/dt = M · �ρ. (10.75)

(a) What is the 2 × 2 matrix M for our system? (It’s
different from the discrete-time case we studied earlier.
Notice under Pαβ, ρα increases and ρβ decreases.) At
long times, what fraction of the time will our system be
in the α state, 〈ρα〉 = limt→∞ ρα(t)?

(b) Find the eigenvalue–eigenvector pairs for M .25 Which
corresponds to the stationary state �ρ(∞) from part (a)?
Suppose that at t = 0 the system is known to be in the
α state, �ρ(0) = (1, 0). Write this initial condition in the
basis of eigenvectors, and hence give a formula for the
subsequent time evolution ρα(t). What is the rate of de-
cay to the stationary state?

Let’s call your answer for ρα(t) = Pαα(t) to emphasize
the fact that it is the probability of being in the α state
at time t′ + t, given that it is in the α state at time
t′. You may wish to check that Pαα(0) = 1, and that
Pαα(t)→ 〈ρα〉 as t→∞.

(c) Correlation function. Let R(t) be the resistance
as a function of time, hopping between Rα and Rβ, as

shown in figure 10.15, and let R̄ be the time average of
the resistance. Write a formula for the connected corre-
lation function C(t) = 〈(R(t′) − R̄)(R(t′ + t) − R̄)〉 in
terms of Pαα(t)? For ease of grading, please do not plug
in your answer for the latter from part (b). (Hint: what
is 〈(R(t′)−Rβ)(R(t′+t)−Rβ)〉, in terms of Pαα(t)? What
is it in terms of C(t)?)

You may wish to check that your C(t) → 0 as t → ∞,
and that C(0) = 〈ρα〉(Rα − R̄)2 + 〈ρβ〉(Rβ − R̄)2.

Nanojunctions, especially at higher temperatures, often
show more than two metastable states in the experimen-
tal bandwidth (fluctuating neither too fast or too slowly
to measure). Usually these form independent two-level
fluctuators (atomic rearrangements too far apart to inter-
act substantially), but sometimes more complex behavior
is seen. Figure 10.16 shows three resistance states, which
we label α, β, and γ from lowest resistance to highest.
We notice from figure 10.16 that the rates Pγβ and Pβγ

are the highest, followed by the rates Pαγ and Pγα. There
are no transitions seen going between states α and β, at
least as far as I can see.

There is a large current flowing through the nanojunction,
allowing the resistance to be measured. Whether these
transitions are equilibrium fluctuations, perhaps with a
field–dependent effective temperature, or whether they
are non–equilibrium transitions induced by the external
field, could be tested if these last two rates could be mea-
sured. If detailed balance is violated, the system is out of
equilibrium.

(d) Detailed Balance. What is the ratio between the
two rates Pαβ and Pβα, assuming that the system satis-
fies detailed balance, in terms of these four rates? (Hint:
see exercise 8.4.)

(10.4) Coarse-Grained Magnetic Dynamics. 26

25More specifically, the right eigenvectors M · �ρλ = λ�ρλ
26Math reference: [71, sec. 4.1, ch. 12].
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Fig. 10.16 Telegraph Noise in a metallic nanobridge with three metastable
states. From reference [86].

A one-dimensional classical magnet above its critical
point is described by a free energy density

F [M ] = (C/2)(∇M)2 + (B/2)M2 (10.76)

where M(x) is the variation of the magnetization with
position along the single coordinate x. The average mag-
netization is zero, and the total free energy of the config-
uration M(x) is F [M ] =

∫ F [M ]dx.

The methods we used to find the correlation functions and
susceptibilities for the diffusion equation can be applied
with small modifications to this (mathematically more
challenging) magnetic system.

Assume for simplicity that the magnet is of length L, and
that it has periodic boundary conditions. We can then
write M(x) in a Fourier series (equation A.2)

M(x) =

∞∑
n=−∞

M̃n exp(−iknx) (10.77)

with kn = 2πn/L and (equation A.1)

M̃n = (1/L)

∫ L

0

M(x) exp(iknx). (10.78)

(a) Show that (as always, for linear systems with trans-
lation invariance) the free energy F [M ], when written in

terms of M̃n, becomes an independent sum over modes,
with a quadratic energy in each mode.27 (Hint: The only

subtle case is M̃2
n: break it into real and imaginary parts.)

What is
〈
|M̃n|2

〉
eq

, by equipartition? Argue that

〈
M̃−mM̃n

〉
eq

=
kBT

L(Ck2
n +B)

δmn (10.79)

(b) Calculate the equal-time correlation function
for the magnetization in equilibrium, C(x, 0) =
〈M(x, 0)M(0, 0)〉eq . (First, find the formula for the
magnet of length L, in terms of a sum over n. Then con-
vert the sum to an integral:

∫
dk ↔∑k δk = 2π/L

∑
k.)

You’ll want to know the integral∫ ∞
−∞

eiuv/(1 + a2u2) du = (π/a) exp(−|v|/a). (10.80)

Assume the magnetic order parameter is not conserved,
and is overdamped, so the time derivative of [M ]Mi

is
given by the mobility γ times the variational derivative
of the free energy:

∂ [M ]Mi

∂t
= −γ δF

δM
. (10.81)

M evolves in the direction of the total force on it.28 The
term δF/δM is the variational derivative:29

δF = F [M + δM ]− F [M ]

=

∫
F [M + δM ]−F [M ] dx

=

∫
(δF/δM)δM dx. (10.82)

(c) Calculate δF/δM . As in the derivation of the Euler-
Lagrange equations, you’ll need to integrate one term by
parts to factor out the δM .

(d) From your answer to part (c), calculate the Greens
function for [M ]Mi

, G(x, t) giving the time evolution of
an initial condition Mi(x) = M(x, 0) = G(x, 0) = δ(x).
(Hint: You can solve this with Fourier transforms.)

The Onsager regression hypothesis tells us that the time
evolution of a spontaneous fluctuation (like those giving
C(x, 0) in part (b)) is given by the same formula as the

27Notice that this implies that the phases of the different modes are uncorrelated
in equilibrium.

28Remember that the average [M ]Mi
is over all future evolutions given the initial

condition Mi(x) = M(x, 0).
29This formula is analogous to taking the gradient of a scalar function of a vector,

f(�y + �δ) − f(�y) ≈ ∇f · �δ, with the dot product for vector gradient replaced by the
integral over x for derivative in function space.
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evolution of an imposed initial condition (given by the
Greens function of part (d)).

C(x, t) = 〈M(x, t)M(0, 0)〉ev (10.83)

=
〈
[M(x, t)]Mi

M(0, 0)
〉

eq
(10.84)

=

〈∫ ∞
−∞

M(x′, 0)G(x− x′, t) dx′M(0, 0)

〉
eq

=

∫ ∞
−∞

C(x′, 0)G(x− x′, t) dx′.

(e) Using the Onsager regression hypothesis calcu-
late the space-time correlation function C(x, t) =
〈M(x, t)M(0, 0)〉ev. (This part is a challenge: your an-
swer will involve the error function.) If it’s convenient,
plot it for short times and for long times: does it look like
exp(−|y|) in one limit and exp(−y2) in another?

The fluctuation–dissipation theorem can be used to relate
the susceptibility χ(x, t) to the time dependent impulse
to the correlation function C(x, t) (equation 10.60). Let
χ(x, t) represent the usual response of M to an external
fieldH(x′, t′) (equation 10.27) with the interaction energy
being given by

∫
M(x)H(x)dx.

(f) Calculate the susceptibility χ(x, t) from C(x, t). Start
by giving the abstract formula, and then plug in your an-
swer from part (e).

(10.5) Noise and Langevin equations.

In this chapter, we have never explicitly discussed how the
energy removed from a system by damping is returned to
the system to maintain thermal equilibrium. This energy
input is through the thermal fluctuation noise introduced
through the coupling to the heat bath. In this exercise we
will derive a Langevin equation incorporating both noise
and dissipation (see also [20, section 8.8]).

We start with a system with coordinate P,Q and internal
potential energy V (Q), coupled linearly to a heat bath
through some coupling term Q · F:

H =
P2

2m
+ V (Q) +Hbath(y1, y2, y3, . . . )−Q · F(y1, . . . ).

(10.85)

In the absence of the coupling to our system, assume that
the bath would contribute an external noise Fb(t) with
mean zero. In the presence of the coupling to the sys-
tem, the mean value of the force will develop a non-zero
expectation value

〈F(t)〉 =
∫ t

−∞
dt′ χb(t− t′)Q(t′), (10.86)

where χb(t−t′) is the susceptibility of the bath to the mo-
tion of the system Q(t). Our system then has an equation

of motion with a random noise F and a time-retarded in-
teraction due to χb:

mQ̈ = −∂V
∂Q

+ Fb +

∫ t

−∞
dt′ χb(t− t′)Q(t′). (10.87)

We can write this susceptibility in terms correlation func-
tion of the noise in the absence of the system

Cb(t− t′) = 〈Fb(t)Fb(t
′)〉 (10.88)

using the fluctuation-dissipation theorem

χb(t− t′) = −β ∂Cb

∂t
. t > t′. (10.89)

(a) Integrating by parts and keeping the boundary terms,
show that the equation of motion has the form

mQ̈ = −∂V̄
∂Q

+ Fb − β
∫ t

−∞
dt′ Cb(t− t′)Q̇(t′). (10.90)

What is the ‘potential of mean force’ V̄ , in terms of V
and Cb?

(b) If the correlations in the bath are short-lived com-
pared to the time-scales of the system, we can approxi-
mate Q̇(t′) ≈ Q̇(t) in equation 10.90, leading to a viscous
friction force −γQ̇. What is the formula for γ?

(c) Conversely, for a model system with a perfect viscous
friction law −γQ̇ at temperature T , derive the equation
for correlation function for the noise Cb(t − t′). No-
tice that viscous friction implies a memoryless, Markovian
heat bath, and vice-versa.

Langevin equations are useful both in analytic calcula-
tions, and as one method for maintaining a constant tem-
perature in molecular dynamics simulations.

(10.6) Fluctuations, Correlations, and Response:
Ising

This exercise again uses the program ising, down-
loadable from the Web [105].

This time we’ll consider the Ising Hamiltonian in a time-
dependent external field H(t),

H = −J
∑
〈ij〉

SiSj −H(t)
∑

i

Si, (10.91)

and look at the fluctuations and response of the time-
dependent magnetization M(t) =

∑
i Si(t). Our Ising

model simulation outputs both the time-dependent mag-
netization per spinm(t) = (1/N)

∑
i Si and the time-time

correlation function of the magnetization per spin,

c(t) =
〈
(m(0)− 〈m〉eq)(m(t)− 〈m〉eq)

〉
ev
. (10.92)

To be pub. Oxford UP, ∼Fall’05 www.physics.cornell.edu/sethna/StatMech/



10.6 Causality and Kramers Krönig 217

(select autocorrelation in the menu above the plot). We’ll
be working above Tc, so 〈m〉eq = 0. Note, as before,
that most of our formulas in class are in terms of the to-
tal magnetization M = Nm and its correlation function
C = N2c.

The time-time correlation function will start non-zero,
and should die to zero over time. Suppose we start with
a non-zero small external field, and turn it off at t = 0:
H(t) = H0Θ(−t)? The magnetization M(t) will be non-
zero at t = 0, but will decrease to zero over time. By
the Onsager regression hypothesis, these two time decays
should look the same.

Run the Ising model, changing the size to 200×200. Equi-
librate at T = 3 and H = 0, reset, do a good measure-
ment of the time-time autocorrelation function, and copy
graph. Rescale the graph using configure to focus on the
short times where things are interesting. Now equilibrate
at T = 3, H = 0.05, set H = 0 and reset, and run for a
short time.

(a) Does the shape and the time-scale of the magnetiza-
tion decay look the same as that of the autocorrelation
function? Note down the values for c(0), C(0), m(0),
and M(0).

Response Functions and the Fluctuation-
Dissipation Theorem. The response function χ(t)
gives the change in magnetization due to an infinitesimal
impulse in the external field H . By superposition, we
can use χ(t) to generate the linear response to any exter-
nal perturbation. If we impose a small time-dependent
external field H(t), the average magnetization

M(t)− 〈M〉eq =

∫ t

−∞
dt′χ(t− t′)H(t′), (10.93)

where 〈M〉eq is the equilibrium magnetization without
the extra field H(t) (zero for us, above Tc).

(b) Using equation 10.93, write M(t) for the step down
H(t) = H0Θ(−t), in terms of χ(t).

The fluctuation-dissipation theorem states that this re-
sponse

χ(t) = −βdC(t)/dt. (10.94)

where C(t) =
〈
(M(0)− 〈M〉eq)(M(t)− 〈M〉eq)

〉
ev

is the

time-time correlation function for the total magnetiza-
tion.

(c) Use equation 10.94 and your answer to part (b) to
predict the relationship between the demagnetization M(t)
and the correlation C(t) you measured in part (a). How
does your analytical ratio compare with the t = 0 ratio
you noted down in part (a)?

(10.7) Spin Correlation Functions and Susceptibil-
ities. (From Halperin. [43])

A spin in a solid has two states, sz = ±1/2 with magne-
tizations M = gµBsz, where gµB is a constant30 Due to
fluctuations in its environment, the spin can flip back and
forth thermally between these two orientations. In an ex-
ternal magnetic field H , the spin has energy −M ·H . Let
M(t) be the magnetization of the spin at time t. Given
a time-dependent small external field H(t) along z, the
expectation value of M satisfies

d [M(t)]Mi
/dt = −Γ [M(t)]Mi

+ Γχ0H(t) (10.95)

where Γ is the spin equilibration rate and χ0 is the static
magnetic susceptibility, and the averaging [ ]Mi

is over
the noise provided by the environment, fixing the initial
condition Mi = M(0).

(a) In the case that the field H is time independent, you
can use equilibrium statistical mechanics to determine
M(H). Using this formula for small H, determine χ0

(which should be independent of H but dependent on tem-
perature).

(b) Use the Onsager regression hypothesis to compute
C(t) = 〈M(t)M(0)〉ev at zero external field H = 0. What

should it be for times t < 0? What is C̃(ω), the Fourier
transform of C(t)?

(c) Assuming the classical fluctuation-dissipation theorem
(classical if �ω � T ), derive the frequency dependent sus-
ceptibility χ(t) and χ̃(ω).

(d) Compute the energy dissipated by the oscillator for an
external magnetic field H(t) = H0 cos(ωt).

30g is the gyromagnetic ratio for the spin, and µB = e�/2me is the Bohr magneton.
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Abrupt Phase Transitions 11

Water remains liquid as it is cooled, until at 0C it abruptly freezes into
ice. Water remains liquid as it is heated, until at 100C it abruptly turns
to vapor. The transitions from crystal to liquid, and liquid to gas are
abrupt. Both transition temperatures depend on the pressure, leading
to the familiar phase diagram 11.1.

(T ,P )v vS
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Gas
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P
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e

Liquid

Fig. 11.1 PT Phase Diagram.
Schematic phase diagram for a typical
material. The liquid–gas line gives the
vapor pressure Pv(T ) or the liquid–gas
transition temperature Tv(P ). (Ice is
(atypically) less dense than water, so
the solid–liquid boundary for H2O will
slope to the left.)

Most phase transitions are abrupt. They occur with discontinuities
in most physical properties: the density, compressibility, viscosity, spe-
cific heat, dielectric constant, and thermal conductivity all jump to new
values. Furthermore, in most cases these transitions occur without any
precursors, any hints that a change is about to occur: pure water does
not first turn to slush and then to ice,1 and water vapor at 101C has

1Water with impurities like salt does
form slush. Slush is formed by ice
that is mostly pure H2O surrounded by
rather salty water. The salt lowers the
freezing point: as the ice freezes it ex-
pels the salt, lowering the freezing point
of the remaining liquid.

no little droplets of water inside.2

2More precisely, there are only ex-
ponentially rare droplet fluctuations,
which will be important for nucleation,
section 11.2.

There is nothing abrupt, however, in boiling away a pan of water.3

This is because one is not controlling the temperature directly, but rather
is adding energy at a constant rate. Consider an insulated, flexible
container of H2O at fixed pressure, as we slowly add energy to it. When
the system first reaches the liquid–gas transition, a small bubble of gas
will form at the top: this bubble will gradually grow, inflating and filling
the container over a range of energies. The transition from liquid to gas
at fixed energy passes through an intermediate two–phase region: the
temperature of the system stays constant until the last liquid is gone.
It’s more typical to measure this two–phase region at fixed temperature
as the volume is varied, yielding the phase diagram figure 11.2.

To avoid these two–phase mixtures, we choose to work in the variables
P and T , so we use the Gibbs free energy4

4 We could also avoid the two–phase
mixtures by using the grand free en-
ergy, Φ(T, V,N) = E − TS − µN . The
grand partition function allows the to-
tal number of particles to vary, so when
the liquid turns to gas the molecules in
the extra volume are simply removed.

G(T, P,N) = E − TS + PV. (11.1)

As usual (section 6.5), whichever state minimizes G wins.5 The Euler

5Minimizing G for the system maxi-
mizes the entropy for the universe as
a whole (the system plus the bath with
which it exchanges energy and volume):
see section 6.5.

relation (exercise 6.4) E = TS−PV +µN tells us that G = µN . So, the
state with the lower chemical potential will be favored, and the phase
transition will occur when µliq = µgas. That makes sense: at a liquid–
vapor boundary, one can exchange energy, volume, or particles. Energy
will exchange until the temperatures are equal, volume will exchange

3The latent heat at a phase transition is the energy change between the two phases
(or, more specifically, the change in enthalpy E+PV ). The latent heat of boiling for
water is 2500 J/gm = 600 calories/gm and the calorie is defined to make the specific
heat of water one calorie per gram per C. Hence, at a constant energy input from
your stove, it takes six times as long to boil away the water as it takes to raise it
from freezing to boiling ((1 cal/gm C) × 100 C), which should seem about right to
the cooks among the readers.
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until the pressures are equal, and then particles will move from liquid
to gas until the chemical potentials are equal.
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Fig. 11.2 TV Phase Diagram. A
schematic liquid–gas phase diagram at
fixed N , showing the two–phase region.
The horizontal tie–lines represent the
phase separation: a system with vol-
ume and temperature at a point in this
region will separate into regions of liq-
uid and gas on the two endpoints of the
corresponding tie-line. See figure 12.7
for real experimental coexistence lines,
and figure 8.4 for a similar phase dia-
gram as a function of concentration.

Remembering the shorthand thermodynamic relation dE = TdS −
PdV +µdN , we find dG = −SdT+V dP+µdN . Varying the temperature
at fixed pressure and number of particles, we thus learn that

∂G

∂T

∣∣∣∣
P,N

= −S. (11.2)

Figure 11.3 shows the Gibbs free energy versus temperature for the liquid
and gas. At the phase boundary, the two free energies agree. The
difference in slopes of the two lines is given by the difference in entropies
between the liquid and the gas (equation 11.2). The thermodynamic
definition of the entropy S = dQ/T (section 5.1) tells us that the entropy
difference is given by the latent heat times the number of particles over
the transition temperature,

∆S = L/Tv. (11.3)

Tv

Vapor

Supersaturated

Gas

Liquid
Superheatedliquid

G

T

Fig. 11.3 Gibbs free energy:
liquid–gas. The Gibbs free energy
for the liquid and gas phases along
an isobar (constant pressure, horizontal
dashed line in figure 11.1). The phase
transition occurs when the two curves
cross.

The fact that the Gibbs free energy has a kink at the phase transition
reflects the jump in the entropy between liquid and gas – abrupt phase
transitions will have jumps in the first derivatives of their free energies.
This led early workers in the field to term these transitions first–order
transitions.6

Notice that we continue to draw the free energy curves for the liquid
and vapor on the ‘wrong’ sides of the phase boundary. It is a common
experimental fact that one can supercool vapors significantly beyond
their condensation point.7 With careful experiments on pure liquids,

7That’s precisely what occurs when the
relative humidity goes beyond 100%.

one can also significantly superheat the liquids. Theoretically the issue
is subtle. Some theories of these transitions have well–defined metastable
phases of the “wrong” type.8 However, there certainly is no equilibrium

8The fact that the transition is abrupt
is implemented in these ‘mean field’
theories by having two separate free
energy minima: the transition arises
when one minimum passes the other,
but both exist before and after the tran-
sition.

vapor state below Tv. More sophisticated approaches (not discussed
here) give an imaginary part to the free energy density of the metastable
phase (see [58, 16]).9

9Just as the lifetime of a resonance in
quantum mechanics is related to the
imaginary part of its energy E + i�Γ,
so similarly is the rate per unit volume
of nucleation of the new phase (sec-
tion 11.2) related to the imaginary part
of the free energy density.

11.1 Maxwell Construction.

Figure 11.4 shows the pressure versus volume as we expand our material
at constant temperature. The liquid turns metastable as the volume
increases, when the pressure reaches the vapor pressure for that tem-
perature. The gas becomes metastable at that same pressure when the
volume decreases. The metastable states are well defined only near the
vapor pressure, where nucleation is slow (section 11.2) and lifetimes are
reasonably large. The dashed line shows a region which is completely

6We avoid using this term, and the analogous term second–order for continuous
phase transitions. This is not only because their origin is obscure: but also because in
the latter case it is misleading: the thermodynamic functions at a continuous phase
transition have power–law singularities or essential singularities, not plain disconti-
nuities in the second derivative (chapter 12).
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unstable: a mixture of molecules prepared uniformly in space in this
region will spontaneously separate into finely intertangled networks of
the two phases10 (section 11.3.1). 10This spontaneous separation is

termed spinodal decomposition. In
the past, the endpoints of the dashed
curve were called spinodal points, but
there is reason to doubt that there is
any clear transition between nucleation
and spontaneous separation, except in
mean-field theories.
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Fig. 11.4 The pressure versus volume
curve along an isotherm (dashed verti-
cal line at constant temperature in fig-
ure 11.1). At low volumes the material
is liquid: as the volume crosses into the
two phase region in figure 11.2 the liq-
uid becomes metastable. At high vol-
umes the gas phase is stable, and again
the metastable gas phase extends into
the two–phase region. The dots rep-
resent the coexistence point where the
pressures and chemical potentials of the
two phases are equal.
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Fig. 11.5 Maxwell Equal Area
Construction. The Gibbs free en-
ergy difference between two points at
equal pressures is given by the differ-
ence in areas scooped out in the PV
curves shown (upward diagonal area
minus downward diagonal area).

How did we know to draw the coexistence line at the pressure we
chose in figure 11.4? How can we find the vapor pressure at which the
liquid and gas coexist at this temperature? We know from the last
section that the coexistence line occurs when the chemical potentials
agree µliq = µgas, and hence when their Gibbs free energies agree Gliq =
Nµliq = Nµgas = Ggas. Since dG = −SdT + V dP + µdN , at constant
temperature and number ∂G

∂P

∣∣
T,N

= V . Hence, we know that

∆G =
∫ Pgas

Pliq

V (P ) dP = 0. (11.4)

Now this integral may seem trivial, because the limits of integration are
both equal to the vapor pressure, Pliq = Pgas = Pv(T ). But this formula
represents the sum of four pieces (figure 11.5):

∆G =
∫ Pmin

Pliq

V (P ) dP+
∫ Pliq

Pmin

V (P ) dP+
∫ Pmax

Pgas

V (P ) dP+
∫ Pgas

Pmax

V (P ) dP

(11.5)
remembering that Pliq = Pgas. Notice that the first and last terms are
negative, since Pliq > Pmin and Pmax > Pgas. These three integrals
have a nice graphical interpretation, shown in figure 11.5: the first two
subtract to give the area with stripes up and to the right and the last two
subtract to give minus the area with stripes down and to the right. These
two areas must agree at the vapor pressure. The transition pressure
equalizes the areas in the PV diagram. This is the Maxwell equal–area
construction.11

11.2 Nucleation: Critical Droplet Theory.

On a humid night, as the temperature drops, the air may become su-
persaturated with water vapor. How does this metastable vapor turn
into drops of dew (near the ground) or into the tiny water droplets that
make up clouds (farther up)?

We’ve seen (figure 11.3) that the Gibbs free energy difference between
the gas and the liquid grows as the temperature decreases below Tv.
We can estimate the chemical potential difference driving the formation
of drops: we know ∂G/∂T = −S (equation 11.2), and ∆S = L/Tv

(equation 11.3), so

∆µ = (Ggas −Gliq)/N =

(
∂(Ggas −Gliq)

∂T

∣∣∣∣
P,N

∆T

)/
N

= ∆S∆T/N = (L/Tv)(∆T/N) = �∆T/Tv (11.6)

11The Maxwell construction only makes sense, one must remember, for theories
like mean-field theories where one has an unstable branch for the P (V ) curve.
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where � is the latent heat per particle.
What is the obstacle impeding the formation of the droplets? It is

the surface tension σ between the liquid and the gas phase. The surface
tension is the Gibbs free energy per unit area of the interface between
liquid and gas. Like tension in a rope, the interface between two phases
can exert a force, pulling inward to minimize its area.12

liq
ρ

R

Surface Tension
σ

Fig. 11.6 The nucleation of a new
phase happens through a rare thermal
fluctuation, where a droplet of the new
phase forms of sufficient size to get
it over the free energy barrier of fig-
ure 11.7.
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Fig. 11.7 Free energy barrier for
droplet formation.

To make a large droplet you must grow it from zero radius (fig-
ure 11.6). Since cost of the surface tension cost grows with the sur-
face area A and the bulk free energy gain grows as the volume V , tiny
droplets will cost the system more than they gain. Consider the energy
of a spherical droplet of radius R. The surface Gibbs free energy is σA.
If the liquid has ρliq particles per unit volume, and each particle provides
a Gibbs free energy gain of ∆µ = �∆T/Tv, the bulk free energy gain is
V ρliq∆µ. Hence

Gdroplet(R) = σA− V ρliq∆µ = 4πR2σ − (4/3πR3)ρliq(�∆T/Tv). (11.7)

This free energy is plotted in figure 11.7. Notice that at small R where
surface tension dominates it rises quadratically, and at large R where
the bulk chemical potential difference dominates it drops as the cube of
R. The gas will stay a gas until a rare thermal fluctuation pays the free
energy cost to reach the top of the barrier, making a critical droplet.
The critical droplet radius Rc and the free energy barrier B are found
by finding the maximum of G(R):

∂Gdroplet

∂R

∣∣∣∣
Rc

= 8πσRc − 4πρliq(�∆T/Tv)R2
c = 0 (11.8)

Rc =
2σTv

ρliq�∆T
(11.9)

B =
16πσ3T 2

v

3ρ2
liq�

2

1
(∆T )2

. (11.10)

The probability of finding a critical droplet per unit volume is given by
exp(−B/kBT ) times a prefactor. The nucleation rate per unit volume
is the net flux of droplets passing by Rc, which is the velocity over the
barrier times a correction for droplets recrossing, times the probability of
being on top of the barrier.13 The prefactors are important for detailed13See exercise 6.2 for the similar prob-

lem of calculating chemical reaction
rates. 12How do we define the surface tension? Suppose we treat the two side boundaries

of a constant pressure system (in zero gravity) so that one (like wax) prefers the
gas and the other prefers the liquid phase. (We’ll have periodic boundary conditions
in the other two directions, or use a large, thin container.) The equilibrium state
will then be forced to create an interface somewhere between, of area A given by
the cross-sectional area of our container. We can compare its Gibbs free energy Glg

with that of system prepared with two liquid–loving surfaces Gll and two gas–loving

surfaces Ggg. The surface tension is then σ =
Glg−1/2(Gll+Ggg)

A
, to cancel out the

interaction free energies with the side-walls. It doesn’t matter where the interface
lies, since the bulk free energies per particle agree in the two phases µliq = µgas

For curved interfaces, there will be a pressure difference between the two phases,
so we need to use the grand potential Φ(T, V, µ) instead of the Gibbs free energy
G(T, P,N) (see note 4 on page 219). There are also subtle questions about how to
define the location of curved interfaces [57, Chapter XV].
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theories, but the main experimental dependence is the exponentially
small probability for having a critical droplet: our net droplet nucleation
rate per unit volume Γ has the form

Γ = (Prefactors)e−B/kBT . (11.11)

Notice:

Fig. 11.8 Equilibrium shape of a lead
crystal at about 300 C [90, 98]. No-
tice the flat facets, which correspond
to low–energy high–symmetry surfaces.
There are three interesting statisti-
cal mechanics problems associated with
these facets that we will not discuss
in detail. (1) The crystalline orienta-
tions with flat facets are in a differ-
ent phase than the rounded regions:
they are below their roughening transi-
tion. (2) The equilibrium crystal shape,
which minimizes the free energy, can be
viewed as a Legendre transform of that
free energy. (3) At lower temperatures
the entire equilibrium crystal shape can
be faceted (below the edge and corner
rounding transitions): we predict that
the coarsening length will grow only
logarithmically in time in this phase
(figure 11.14).

• The critical droplet radius Rc ∝ 1/∆T : if you undercool the gas
only a tiny amount, you need a big droplet to overcome the surface
tension.

• The barrier height B ∝ 1/(∆T )2. The energy barrier for nucle-
ation diverges at Tv.

• The droplet nucleation rate Γ ∝ exp(−C/(∆T )2). It can be really
tiny for small undercoolings.14

14The decay rate has an essential sin-
gularity at Tv: it is zero to all orders in
perturbation theory in ∆T . In some
ways, this is why one can study the
metastable states – perturbation theory
naturally ignores the fact that they are
unstable.

The rates we have calculated are for homogeneous nucleation: the rate
of forming the new phase in a perfectly clean system without boundaries.
In practice, this is rarely the situation. Because nucleation is so strongly
suppressed by the surface tension, the system will almost always be able
to find a way of bypassing at least part of the energy barrier. That’s why
dewdrops form on grass (or your windshield), rather than always forming
in the air and dropping to the ground: the surface tension between water
and grass is much lower than that between water and air, so a roughly
hemispherical droplet can form – dividing the free energy barrier B in
two. In the upper atmosphere, nucleation occurs on small dust particles
– again, lowering the interfacial area needed to get a droplet of a given
curvature.15

15Actually, in many clouds the temper-
ature is low enough that ice crystals nu-
cleate, rather than water droplets. Cer-
tain plant pathogens (Pseudomonas sy-
ringae) make proteins that are designed
to efficiently nucleate ice crystals: the
bacteria use the frost damage on the
plants to invade. Humans use these
proteins in snow–making machines at
ski resorts.

Finally, we should mention that the nucleation of crystalline phases
won’t proceed with precisely spherical droplets. Because crystals have
anisotropic surface tension, the maximum number of particles for a given
surface energy is given not by a sphere, but by the equilibrium crystal
shape (the same shape that a crystal will form in equilibrium at constant
number of particles, figure 11.8).

11.3 Morphology of abrupt transitions.

What happens after the phase transition is nucleated (or when the un-
dercooling is so large that the transition occurs immediately)? This
question leads us into a gigantic, rich subject that mostly belongs to
geology, engineering, and materials science rather than to statistical me-
chanics. We will give a brief introduction, with emphasis on topics where
statistical mechanics is useful.

11.3.1 Coarsening.

What do salad dressing, cast iron, and rocks have in common? Coars-
ening is crucial to all three. When you shake up the salad dressing, the
oil and vinegar get jumbled together in small droplets. When you stop
c©James P. Sethna, April 19, 2005 Entropy, Order Parameters, and Complexity
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shaking, the tiny droplets merge into bigger ones, gradually making for
a coarser and coarser mixture until all the oil is on the top.

Molten iron, before it is cast, has a fair percentage of carbon dissolved
in it. As it cools, this dissolved carbon precipitates out (with many nuclei
forming as in section 11.2 and then growing until the carbon runs out),
staying dispersed through the iron in particles whose size and number
depend on the cooling schedule. The hardness and brittleness of cast iron
depends on the properties of these carbon particles, and thus depends
on how the iron is cooled.

Fig. 11.9 The spin configuration of
the Ising model at T = 0 with non-
conserved dynamics, after roughly a
time of twenty sweeps through the lat-
tice.

Fig. 11.10 The same model as fig-
ure 11.9, after roughly 200 sweeps.
Notice the characteristic morphologies
look similar, except that the later pic-
ture has a length scale roughly three
times larger (

√
10 ≈ 3).

Rocks often have lots of tiny grains of different materials: quartz, al-
kali feldspar, and plagioclase in granite; plagioclase feldspar and calcium-
rich pyroxene in basalt, . . . Different rocks have different sizes of these
grains. Rocks formed from lava of erupting volcanoes have very fine
grains: rocks deep underground cooled from magma over eons form large
grains. For a particular grain to grow, the constituent atoms must dif-
fuse through neighboring grains of other materials – a process that gets
very slow as the grains get larger. Polycrystals form also from cooling
single materials: different liquid regions will nucleate crystalline grains
in different orientations, which then will grow and mush together. Here
the grains can grow by stealing one another’s molecules, rather than
waiting for their brand of molecules to come from afar.

One can also see coarsening on the computer. Figures 11.9 and 11.10
show two snapshots of the Ising model, quenched to zero temperature,
at times differing by roughly a factor of ten. Notice that the patterns
of up and down spins look statistically similar in the two figures, except
that the overall length scale L(t) has grown larger at later times. This
is the characteristic feature that underlies all theories of coarsening: the
system is statistically similar to itself at a later time, except for a time–
dependent length scale L(t).

The basic results about coarsening can be derived by arguments that
are almost simplistic. Consider a snapshot of a coarsening system (fig-
ure 11.11). In this snapshot, most features observed have a characteristic
length scale R ∼ L(t). The coarsening process involves the smaller fea-
tures shrinking to zero, so as to leave behind only features on larger
scales. Thus we need to understand how long it takes for spheres and
protrusions on a scale R to vanish, to derive how the size L(t) of the
remaining features grows with time. L(t) is the size R0 of the smallest
original feature that has not yet shrunk to zero.

The driving force behind coarsening is surface tension: the system can
lower its free energy by lowering the interfacial area between the different
domains. We’ll focus on the evolution of a sphere as a solvable case. The
surface tension energy for a sphere of radius R is Fsurface = 4πR2σ, so
there is an inward force per unit area, (or traction) τ :

τ =
∂Fsurface

∂R
/(4πR2) = 2σ/R. (11.12)

A general surface has two radii of curvature R1 and R2 which can be pos-
itive or negative: the traction τ is perpendicular to the surface and given
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by the same formula 11.12 with 1/R replaced with the mean curvature
1/2( 1

R1
+ 1

R2
).

There are two broad classes of coarsening problems: ones with con-
served and non-conserved order parameters. Oil and vinegar, cast iron
and granite have conserved order parameters; to grow a domain one must
pull molecules through the other materials. The single–component poly-
crystals and the Ising model shown in figures 11.9 and 11.10 are non–
conserved: spins are free to flip from one orientation to the other, and
molecules are free to shift from one grain orientation to another.

τ

R
τ
R

Fig. 11.11 Curvature–driven inter-
face motion. The surface tension σ at
the interface produces a traction (force
per unit area) τ = 2σκ that is propor-
tional to the local mean curvature of
the surface κ at that point. The coars-
ening morphology has a characteristic
length R, so it has a characteristic mean
curvature κ ∼ 1/R. For non–conserved
order parameters, these forces will lead
to a length scale L(t) ∼ t1/2.

Surface

R R
Hydrodynamic

Flow

Bulk
Diffusion

Diffusion

Fig. 11.12 Coarsening for con-
served order parameter. Differ-
ences in local mean curvature drives
the growth in the case of a conserved
order parameter. Atoms will diffuse
from regions of high positive curvature
to regions of low or negative curvature.
Bulk diffusion dominates on long length
scales (L(t) ∼ t1/3): surface diffusion
can be important when the scales are
small L(t) ∼ t1/4). For liquids, hydro-
dynamic flow makes things more com-
plicated [114].

For a non–conserved order parameter, the interface will generally move
with a velocity proportional to the traction, with some coefficient γ:

dR

dt
= −γτ = −γ 2σ

R
. (11.13)

We can solve for the time tf it takes for the sphere to disappear, and
hence find out how L(t) grows for the non–conserved case:∫ 0

R0

RdR =
∫ tf

0

−2σγdt

R2
0/2 = 2σγtf

L(t) ∼ R0 =
√

4σγt ∝
√
t. (11.14)

More complex geometries with protrusions and necks and such are not
possible to solve explicitly, but in general features with a length scale
R evolve on a time scale t ∝ R2, so the typical length scales grow as
L(t) ∼ tβ with β = 1/2.

The argument for the case of a conserved order parameter is quite
similar in spirit (figure 11.12). Here the curvature sets up a gradient in
the chemical potential ∂µ

∂x which causes molecules to diffuse from regions
of high positive curvature to regions of low or negative curvature. The
current per unit area will be given by the diffusion constant times the
chemical potential gradient:

J = D
∂µ

∂x
. (11.15)

The chemical potential change for moving a molecule from our sphere of
radius R to some flat interface is just the free energy change for removing
one particle: if ρ is the density of particles per unit volume, then the
number of particles in our sphere is N = 4/3πR

3ρ and

∆µ =
dFsurface

dR

/dN
dR

= (8πσR)/(4πR2ρ) =
2σ
Rρ

. (11.16)

The distance ∆R from our sphere to another region of the same phase is
(by our assumption of only one characteristic length scale) also of order
R, so

J ∼ D
∆µ
∆R

∼ 2Dσ
ρR2

. (11.17)
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The rate of change of volume of the droplet is the current density J
times the area of the droplet:

dVdroplet

dt
=4/3π

(
3R2 dR

dt

)
(11.18)

= −AdropletJ = −(4πR2)
2Dσ
ρR2

= −8πDσ/ρ

dR

dt
= − (2Dσ/ρ)(1/R2)∫ 0

R0

R2dR =
∫ tf

0

−2Dσ/ρ dt

R3
0/3 =(2Dσ/ρ)tf

L(t) ∼ R0 =
(

6Dσ
ρ

t

)1/3

∝ t1/3. (11.19)

This crude calculation – almost dimensional analysis – leads us to the
correct conclusion that conserved order parameters should coarsen with
L(t) ∼ tβ with β = 1/3, if bulk diffusion dominates the transport.

Fig. 11.13 Anisotropic Coarsen-
ing: Logarithmic Growth. A
cross section of a 803 Ising model
with a second–neighbor antiferromag-
netic bond, quenched to low temper-
atures [113]. Notice the large facets
along the coordinate axes. This is re-
flected, for example, in an anisotropy in
the late–time correlation function: the
correlations along the axes are signifi-
cantly shorter–range than those along
the face or body diagonals.

Fig. 11.14 Logarithmic Growth of
an Interface. A simplified model of
an interface perpendicular to a body
diagonal in the Ising model of fig-
ure 11.13, [113]. Notice that the in-
terface is lowering its energy by poking
out into facets along the cubic direc-
tions (a kind of facet coarsening). This
process gets much slower as the faces
get longer, because the energy barrier
needed to flip a face grows linearly with
its length.

The subject of coarsening has many further wrinkles.

• Surface Diffusion. Often the surface diffusion rate is much
higher than the bulk diffusion rate: the activation energy to hop
on a surface is much lower than to remove a molecule completely.
The current in surface diffusion goes as J times a perimeter (sin-
gle power of R) instead of JA; repeating the analysis above gives
L(t) ∼ t

1/4 . In principle, surface diffusion will always be less im-
portant than bulk diffusion as t → ∞, but often it will dominate
in the experimental range of interest.

• Hydrodynamics. In fluids, there are other important mecha-
nisms for coarsening. For example, in binary liquid mixtures (oil
and water) near 50/50, the two phases form continuous interpen-
etrating networks. Different regions of the network can have dif-
ferent curvatures and pressures, leading to coarsening via hydro-
dynamic flow [114].

• Non-universality. Much of the motivation for studying coars-
ening by physicists has been the close analogies with the scaling
and power laws seen in continuous phase transitions (chapter 12
and exercise 12.1). However, there are important differences. The
power laws in coarsening are simpler and in a way more univer-
sal – the 1/2 and 1/3 power laws we derived above are independent
of the dimension of space, for example. However, for coarsening
in crystals the scaling behavior and morphology is not universal:
they will depend upon the anisotropic free energies and mobilities
of the interfaces [91]. For example, adding next–neighbor antifer-
romagnetic bonds to the three-dimensional Ising model leads to
a strongly cubic anisotropy (figure 11.13). Basically each combi-
nation of materials and temperatures will have different scaling
functions at late times. In retrospect this is reassuring: there is
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such a bewildering variety of microstructures in materials science
and mineralogy that it made no sense for one scaling function to
rule them all.

• Glassy logarithmic coarsening. A hidden assumption in much
of the coarsening theory is that rearrangements can happen one
molecule at a time. For example, if you need to remove a whole
layer at a time, the dynamics may slow down dramatically as the
sizes of the layers grows. This is precisely what happens in the
3D Ising model with antiferromagnetic next–neighbor bonds men-
tioned above (figure 11.14, [113]).16 The energy barrier needed to
flip a layer of spins grows proportionally to L, leading to a loga-
rithmic growth law L(t) ∼ log(t).

11.3.2 Martensites.

Fig. 11.15 Martensite. A partic-
ularly nice example of a martensitic
structure, from [23]. The light and dark
stripes represent two different marten-
sitic variants – that is, the crystal go-
ing through the phase transition can
stretch in different directions, and the
two colors indicate that the local lattice
is stretching along two different axes.
The tilted square region occupying
most of the photograph couldn’t change
its overall shape without putting in-
compatible strains on the neighboring
domains. By making this striped pat-
tern, or laminate, the martensite can
form an average of the different stretch-
ing directions that gives zero net strain.

Many crystals will undergo abrupt structural rearrangements as they are
cooled – phase transitions between different crystal structures. A good
example might be a cubic crystal stretching along one axis and shrinking
along the other two. These transitions often are problematic: when part
of the sample has transformed and the rest has not, the tearing stress
at the interface often shatters the crystal.

In many materials17 the crystalline shape transition bypasses large–
scale stress buildup in the crystal by developing intricate mixed struc-
tures. Figure 11.15 shows a picture of a martensite, showing how it
forms a patterned microstructure in order to stretch locally without an
overall net strain.

The tools used to study martensites are not statistical mechanics, but
mathematics.18 Their basic goal, however, is to minimize the kinds of
non–convex free energies that we introduced in exercise 9.5 for fixed
boundary conditions; see exercises 11.5 and 11.6.

11.3.3 Dendritic Growth.

Fig. 11.16 Dendrites. Crystals grow-
ing into a melt will typically not grow
compactly: the tips grow faster than
the grooves. Here is shown some crys-
tals growing into a melt in a thin film
being pulled through a temperature
gradient [12].

Why do snowflakes form? The nucleation of new ice crystals in the upper
atmosphere initially forms roughly spherical crystals of ice. As the ice
crystals continue to grow, however, an instability develops. The tips of
the ice crystals that extend furthest into the surrounding supersaturated
vapor will grow fastest, both because they see the highest concentration
of water vapor and because the heat released by freezing diffuses away
fastest at the tips. The characteristic six–fold patterns arise because
each snowflake is a single crystal with six–fold symmetry, and different

16This slowdown happens below the “corner rounding transition” described in the
caption to figure 11.8.

17Notably including iron! Steel has both the complications of carbon particle
coarsening and martensitic domain structure, both of which are important for its
structural properties and both of which depend in detail on the heating and beating
it undergoes during its manufacture.

18All the pathological functions you find in real analysis – continuous but nowhere
differentiable functions – are practical tools for studying martensites.
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crystal surface orientations grow at different rates. The immense variety
of snowflake shapes reflects the different thermal and humidity variations
experienced by each snowflake.

The same kind of branched patterns, called dendrites,19 also form in19Dendron is Greek for tree.

other growing crystals, for precisely the same reasons. Frost on your
window is one obvious example (again water condensing from vapor);
figure 11.16 shows a single (cubic) solvent crystal growing into a mix-
ture of solvent and polymer. Here instead of heat being trapped in the
grooves, the slowly–diffusing polymer is being trapped there and slow-
ing down the solidification process. Many practical metals and alloys
used in manufacturing are composed microscopically of tiny dendritic
structures packed together.

Exercises

(11.1) van der Waals Water. (Chemistry)

The van der Waals (vdW) equation

(P +N2a/V 2)(V −Nb) = NkBT (11.20)

is often applied as an approximation to real liquids and
gases. It’s qualitatively quite useful, but we’ll see that in
detail it doesn’t work well, either far from the transition
or near the transition.

(a) Figure 11.17 shows the vdW pressure versus volume
curves for one mole of H2O. Detach the page or trace
over it. By hand, roughly implement the Maxwell con-
struction for each curve, and sketch the region in the
P−V plane where liquid and gas can coexist. (At constant
pressure, the phase with lower Gibbs free energy wins, but
at constant volume and temperature the liquid evaporates
until the pressure rises to the coexistence, or vapor pres-
sure.)

The Critical Point. The top of the coexistence curve is
the pressure, density, and temperature at which the dis-
tinction between liquid and gas disappears. It’s the focus
of much study, as the prime example of a critical point,
with self-similar fluctuations and scaling behavior.

(b) Draw this point in on your sketch from part (a).
The vdW constants are fit to the critical temperature
Tc = 647.3K and pressure Pc = 22.09MPa = 220.9 ×
106dyne/cm2; check that your estimate for the critical
point roughly agrees with the values quoted. I’ve found few
references that quote the critical volume per mole, and the
two I’ve found disagree: one says around 50 cm3/mole
and one says around 55. Plot the true critical point on

the figure. Is the location of the critical density of water
predicted well by the vdW equation of state?

(c) Your sketch may not be precise enough to tell this, but
the vdW phase boundaries meet at the critical point with a
quadratic maximum. Your plot thus shows 1/ρ	− 1/ρg ∼
(P − Pc)

1/2, where ρ	 and ρg are the densities on the co-
existence boundary (moles per volume) at the pressure P .
Similarly, one can show that the vdW equation of state
implies that

ρ	 − ρg ∼ (Tc − T )1/2 ∼ (−t)1/2. (11.21)

Compare this latter prediction with Yeomans figure 2.2.
What critical exponent β does the van der Waals equa-
tion predict, assuming equation 11.21?
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Fig. 11.17 Pressure versus volume for a van der Waals ap-
proximation to H2O, with a = 0.5507 Joules meter cubed per
mole squared (a = 1.51957 × 10−35 ergs cm3 per molecule),
and b = 3.04×10−5 meter cubed per mole (b = 5.04983×10−23

cm3 per molecule), from reference [120].

Interfaces and the chemical potential µ[ρ(x)]. The
chemical potential per particle for the vdW equation of
state is

µ[ρ] = −kBT +P/ρ−aρ+kBT log(λ3ρ)−kBT log(1−bρ)
(11.22)

where ρ = N/V is the density.

(d) Show that µ is minimized when ρ satisfies the vdW
equation of state.
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Fig. 11.18 Chemical potential µ[ρ] of water fit with the van
der Waals equation, as in figure 11.17, at T = 373K and
P = 1.5 × 107dynes/cm2.

(e) According to the caption to figure 11.18, what is the
vdW approximation to the vapor pressure at 373K =
100C? Atmospheric pressure is around one bar =
0.1MPa = 106dynes/cm2. How close is the vdW ap-
proximation to the true vapor pressure of water? (Hint:
what happens when the vapor pressure hits atmospheric
pressure?)

We can view figure 11.18 as a kind of free energy barrier
for the formation of a liquid-gas interface. If µ0 is the
common chemical potential shared by the water and the
vapor at this temperature, the extra Gibbs free energy
for a density fluctuation ρ(x) is

∆G =

∫
ρ(x) (µ[ρ(x)]− µ0) d

3x (11.23)

since ρ(x)d3x is the number of particles that suffer the
chemical potential rise µ[ρ(x)] in the volume d3x.

(f) At room temperature, the interface between water and
water vapor is very sharp: perhaps a molecule thick. This
of course makes the whole idea of using a coarse-grained
free energy problematical. Nonetheless, assuming an in-
terfacial width of two or three Ångstroms, use the vdW
model for the chemical potential (figure 11.18) and equa-
tion 11.23 to roughly estimate the surface tension of water
(the extra Gibbs free energy per unit area, roughly the bar-
rier height times thickness). (One mole = 6.023 × 1023

molecules.) How does your answer compare with the mea-
sured value at the boiling point, 59 dynes/cm?

(11.2) Nucleation in the Ising Model.

The Ising model is not only our prototype for a second-
order phase transition and the first triumph of the renor-
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malization group; it is also our best model for nucleation
and for the dynamics of phase separation.

The Ising model can be used to study the nucleation of
one phase inside another. Supercooling water and wait-
ing for an ice crystal nucleus to form can be shown to be
quite analogous to changing a magnet from external field
Hext > 0 to Hext < 0 at a temperature T < Tc. The
analogy with changing the temperature or pressure of a
gas and waiting for a raindrop is even better.

Start up the Ising model simulation, available on the
Web [105]. Run at T = 1.5 and the default size 40 × 40.
Set initial conditions to M = 1, and hit the init button to
start all spins up. Set Hext = −0.3 and watch the spins.
It should flip the system over to M = −1, with the down
phase starting in a small, roughly circular cluster of spins,
which then grows to fill the system. (You may need to hit
“run” more than once: the nucleation time at H = −0.3
is roughly equal to the default number of sweeps.) The
cluster may start near a boundary or corner: the system
has periodic boundary conditions.

(a) Using the right-hand graph of magnetization versus
time, measure the average time it takes to cross zero
(which we will call the time to nucleate the down phase) by
averaging ten measurements. I recommend the sequence
init, reset, run. You can set speed (the number of sweeps
per draw) up to 10 or 100 until the bottleneck is the nu-
merics. You can also copy graph on one run, and steal
data on subsequent runs, to put all the magnetizations on
one graph: zoom in with the right mouse button and hold
down the left mouse button to pull off numerical (x, y)
data points. Similarly measure the average time to nucle-
ate the down phase for (Hext = −0.2), changing number
of sweeps to 104 and speed to 100. Since the nucleation
center can be located at any site on the lattice, the nu-
cleation rate scales with the number of spins in the sys-
tem. Calculate, for both fields, the nucleation rate per
spin Γexp(H).

The nucleation rate is often estimated using “critical
droplet theory”. Small droplets of the stable phase will
shrink due to surface tension σ: large ones grow due
to the free energy difference per unit area Hext∆M(T ),
where ∆M is the magnetization difference between the
two states. Presuming that the temperature is high and
the droplet large and the times long (so that continuum
theories are applicable), one can estimate the critical ra-
dius Rc for nucleation.

(b) Give the formula for the free energy of a flipped cluster
of radius R as a function of σ, H, and ∆M . Give formu-
las for Rc (the critical droplet size where the free energy is
a local maximum), the resulting barrier B to nucleation,
and the predicted rate Γtheory = exp(−B/T ) (assuming a
prefactor of roughly one attempt per sweep per spin). At

low temperatures, σ ∼ 2J ≡ 2 and ∆M ≈ 2, since the
system is almost fully magnetized and σ is the number of
broken bonds (2J each) per unit length of interface. Make
a table with rows for the two fields you simulated and with
columns for H, Rc, B, Γtheory, and Γexp from (a).

This should work pretty badly. Is the predicted droplet
size large enough (several lattice constants) so that the
continuum theory should be valid?

We can test these ideas better by starting with droplets
of down spins (white) in an up background. Use a small
system (40×40). You can make such a droplet by setting
the initial conditions in the upper left to M=1, and then
flipping a circle of spins in the center by clicking on them
with the left mouse button (the only one on Macs). Af-
ter making the circle, you can store and then recall it for
re-use many times. You’ll want to set speed (the number
of sweeps per draw) to one, since the droplet will grow or
shrink rather quickly.

(c) Start with H = −0.2, T = 1.5 and a down-spin droplet
of radius five (diameter of ten). Does it grow more often
than it shrinks, or vice-versa? (Testing this should be fast.
Set speed to 100, number of sweeps to 1000, reset, then
recall/run/repeat ten times. On the magnetization curve,
count the fraction f of times out of ten that the system
flipped down.) Make a table of the values of H and f you
measure. Vary the field H until the probabilities roughly
match: find the field for Rc = 5 to within 0.1. For what
field is the theoretical critical droplet radius Rc = 5 at
T = 1.5?

In part (b) we found that critical droplet theory worked
badly for predicting the nucleation rate. In part (c) we
found that it worked rather well (within a factor of two)
at predicting the relationship between the critical droplet
size and the external field. This is mostly because the nu-
cleation rate depends exponentially on the barrier, so a
small error in the barrier (or critical droplet radius) makes
a big error in the nucleation rate. You’ll notice that the-
ory papers rarely try to predict rates of reactions. They
will almost always instead compare theoretical and ex-
perimental barrier heights (or here, critical droplet radii).
This avoids embarrassment!

This free energy barrier to nucleation is what allows su-
percooled liquids and supersaturated vapor to be stable
for long periods.

(11.3) Coarsening and Criticality in the Ising
Model.

If you suddenly cool water vapor at constant volume far
below the transition, you can go into a region of the phase
diagram where there is no barrier to nucleation. In this re-
gion, one observes spinodal decomposition: in the absence
of gravity, gas and liquid phase separate slowly, forming

To be pub. Oxford UP, ∼Fall’05 www.physics.cornell.edu/sethna/StatMech/



11.3 Morphology of abrupt transitions. 231

elaborate intertwining regions of the two phases. This
can be observed in salad dressings (oil and water after
shaking) and is an important source of the morphology
of many materials (from rocks to Pyrex glassware). Sim-
ilar behavior is seen even for weak undercoolings when
the nucleation rate is large.

More generally, we call coarsening the process by which
phases separate from one another: the surface tension
drives the tiny fingers and droplets to shrink, leading to
a characteristic length scale that grows with time. In our
Ising model, the magnetization (or the number of up-spin
“atoms”, viewed as a lattice gas) is not conserved, so the
coarsening behavior is somewhat different from that seen
in spinodal decomposition.

Start up the Ising model again [105]. Using the configure
menu, set the lattice width and height to a reasonably
large value (280×280 works well on my computer). De-
magnetize the sample by selecting T=inf from the initial
conditions. Now set T below Tc (say, T = 1.5), set the
external field to zero, and let it run with speed one (one
sweep at a time). (As the pattern develops, the changes
occur more slowly and you may want to increase speed
to 10 or more.) The pattern looks statistically the same
at different times, except for a typical coarsening length
that is growing. How can we define and measure the typ-
ical length scale L(t) of this pattern?

(a) Argue that at zero temperature the total energy above
the ground state energy is proportional to the perimeter
separating up-spin and down-spin regions. (At finite tem-
peratures, there is a contribution from thermally flipped
spins, which shouldn’t really count as perimeter for coars-
ening.) Argue that the inverse of the perimeter per unit
area is a reasonable definition for the length-scale of the
pattern.

(b) Initialize at T=inf, set temperature and external field
to zero and number of sweeps to one, run for one sweep,
and measure the mean energy per unit area 〈E〉 (displayed
on the upper right). Measure the mean energy as a func-
tion of time for t = 2, 4, 8, . . . , 1024: reset/run/measure
〈E〉/double number of sweeps/repeat. (You’re measuring
the average perimeter length over the last half of the time
interval, but that scales in the same way as the perimeter
does.) Feel free to turn speed up in later stages. Make a
table with columns for t, 〈E(t)〉, and L(t) ∝ 1/(〈E〉+ 2).
Make a log-log plot of your estimate of the coarsening
length L(t) ∝ 1/(〈E〉 + 2) versus time. What power law
does it grow with? What power law did we expect?

Self-Similarity at the Critical Point. We’ll use the

(numerically easier) hysteresis model as our example of
a system with critical fluctuations and scaling, but we
should at least see the Ising model critical point.

Run a large system (280 × 280 or so) at zero external
field and T = Tc = 2/ log(1 +

√
2) = 2.26919. (Set

speed large enough so that graphics is not the bottleneck,
and run for at least a couple hundred sweeps to equi-
librate.) You should see a fairly self-similar structure,
with fractal-looking up-spin clusters inside larger down-
spin structures inside . . . (c) Can you find a nested chain
of three clusters? Four?

(11.4) Nucleation of Dislocation Pairs.

Consider a two-dimensional crystal under shear shown in
figure 11.19.20 The external force is being relieved by the
motion of the upper half of the crystal to the left with
respect to the bottom half of the crystal by one atomic
spacing a. If the crystal is of length L, the energy released
by this shuffle when it is complete will be |F |a = σxyLa.
This shuffling has only partially been completed: only
the span R between the two edge dislocations has been
shifted (the dislocations are denoted by the conventional
“tee” representing the end of the extra column of atoms).
Thus the strain energy released by the dislocations so far
is

|F |aR/L = σxyRa. (11.24)

This energy is analogous to the bulk free energy
gained for vapor droplet in a superheated fluid
(http://www.lassp.cornell.edu/sethna/Nucleation/).

σxy

F/L = σxy

R
x

y

F/L = 

b

b

Fig. 11.19 Dislocation Pair in a 2D Hexagonal Crys-
tal, (Nick Bailey). The loop around the defect on the right

20A similar problem, for superfluids, was studied in references [2, 3], see also [116].
The complete solution is made more complex by the effects of other dislocation pairs
renormalizing the elastic constants at high temperatures.
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shows an extra atom along the bottom row. By the conventions
used in materials physics (assuming here that the dislocation
“points” up out of the paper, see Hirth and Lothe, Theory of
Dislocations, second edition, figure 1.20, p. 23). this edge dis-
location has Burgers vector b = ax̂, where a is the distance
between neighboring atoms. Similarly, the defect on the left
has an extra atom in the top row, and has b = −ax̂. The de-
fects are centered at the same height, separated by a distance
R. The crystal is under a shear stress σxy = F/L, where the
force F = ±σxyLŷ is applied to the top and bottom as shown
(but the crystal is kept from rotating).

The dislocations, however, cost energy (analogous to the
surface tension of the vapor droplet). They have a fixed
core energy C that depends on the details of the inter-
atomic interaction, and a long-range interaction energy
which, for the geometry shown in figure 11.19, is

µ

2π(1− ν)a
2 log(R/a). (11.25)

Here µ is the 2D shear elastic constant21 and ν is Poisson’s
ratio. For this exercise, assume the temperature is low (so
that the energies given by equations 11.24 and 11.25 are
good approximations for the appropriate free energies).
By subtracting the energy gained from the dislocation
from the energy cost, one finds in analogy to other crit-
ical droplet problems a critical radius Rc and a barrier
height for thermally nucleated dislocation formation B.

Of the following statements, which are true?

(T) (F) The critical radius Rc is proportional to 1/σxy.

(T) (F) The energy barrier to thermal nucleation is pro-
portional to 1/σ2

xy.

(T) (F) The rate Γ of thermal nucleation of disloca-
tions predicted by our critical droplet calculation is of the
form Γ = Γ0(T ) (σxy/µ)D/kBT , for a suitable material-
dependent function Γ0(T ) and constant D.

Dislocations mediate plastic shear. For a small sample,
each pair of dislocations nucleated will travel to opposite
boundaries of the system and lead to a net shear of one
lattice constant. Thus, at any non-zero temperature and
external stress, a (two-dimensional) crystal will shear at
a non-zero rate. How is the crystal, then, different in its
response from a liquid? To be specific,

(T) (F) According to our calculation, the response of a
two-dimensional crystal under stress is indistinguishable
from that of a liquid: even at low temperatures, the strain
rate due to an external shear force is proportional to the
stress.

(11.5) Oragami Microstructure. (Mathematics)

Figure 11.15 shows the domain structure in a thin sheet
of material that has undergone a martensitic phase tran-
sition. These phase transitions change the shape of the
crystalline unit cell: for example, the high temperature
phase might be cubic, and the low temperature phase
might be stretched along one of the three axes and con-
tracted along the other two. These three possibilities are
called variants. A large single crystal at high tempera-
tures thus can transform locally into any one of the three
variants at low temperatures.

The order parameter for the martensitic transition is a
deformation field y(x), representing the final position y
in the martensite of an original position x in the unde-
formed, unrotated austenite. The variants differ by their
deformation gradients ∇y representing the stretch, shear,
and rotation of the unit cells during the crystalline shape
transition.

In this exercise, we develop an analogy due to Richard
James [48] between martensites and paper folding. Con-
sider a piece of graph paper, white on one side and lined
on the other, lying flat on a table. This piece of paper
has two distinct low energy states, one variant with white
side up and one variant with lined side up.

The (free) energy density for the paper is independent of
rotations, but grows quickly when the paper is stretched
or sheared. The paper, like martensites, can be repre-
sented as a deformation field y(x), representing the final
position y of a point x of the paper placed horizontally on
the table with the lined–side up. Clearly, y(x) must be
a continuous function to avoid ripping the paper. Since
the energy is independent of an overall translation of the
paper on the table, it can depend only on gradients of
the deformation field. To lowest order,22 the energy den-
sity can be written in terms of the deformation gradient
∇y = ∂jyi:

F = α|(∇y)T∇y − I|2 = α(∂iyj∂iyk − δjk)2 (11.26)

The constant α is large, since paper is hard to stretch.
In this problem, we’ll be interested in the zero–energy
ground states for the free energy.

(a) Show that the zero–energy ground states of the pa-
per free energy density (equation 11.26) include the two
variants and rotations thereof, as shown in figure 11.20.
Specifically, show that any rotation yi(xj) = Rijxj of

21The 2D elastic constants µ and ν can be related to their 3D values; in our
notation µ has units of energy per unit area.

22Including higher derivatives of the deformation field into the energy density would
lead to an energy per unit length for the creases.
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the lined-side-up position is a ground state, where Rij =(
cos θ	 − sin θ	

sin θ	 cos θ	

)
, and also that flipping the paper to

the white-side-up and then rotating yi(xj) = RikPkjxj =(
cos θw − sin θw

sin θw cos θw

)(
1 0
0 −1

)(
x
y

)
gives a ground state.

l
θwθcθ

SO(2) SO(2) P

Fig. 11.20 The allowed zero-energy deformation gradients
for a piece of paper lying flat on a table. Let θ be the angle
between the x-axis of the graph paper and the near edge of the
table. The paper can be rotated by any angle θ	 (so the defor-
mation gradient is a pure rotation in the group23 SO(2)). Or,
it can be flipped over horizontally ((x, y) → (x,−y), multiply-

ing by P =

(
1 0
0 −1

)
) and then rotated by θw (deformation

gradient in the set SO(2)·P). An interface between two of these
ground states is a straight crease at angle θc (figure 11.21).

In the real martensite, there are definite rules for bound-
aries between variants: given one variant, only certain
special orientations are allowed for the boundary and the
other variant. A boundary in our piece of paper between
a lined-up and white-up variant lying flat on the table is
simply a crease (figure 11.21).
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Fig. 11.21 Crease. An interface between two ground states
θ	 = 0 and θw for our paper on the table is a straight crease
with angle θc.

(b) Place a piece of paper long-edge downward on the ta-
ble. Holding the left end fixed θ	 = 0, try folding it along
crease lines at different angles θc. Find a definite rela-
tion between the crease angle θc and the angle θw of the
right-hand portion of the paper.

Suppose the crease is along an axis ĉ. We can derive the
general relation governing a crease by noting that y along
the crease must agree for the white and the lined faces,
so the directional derivative Dy ·c = (ĉ ·∇)y must agree.

(c) Given the relation you deduced for the geometry in
part (b), show that the difference in the directional deriva-
tives (Dy	 − Dyw) is zero along c, (Dy	 − Dyw) · c =
(∂jy

	
i − ∂jy

w
i )cj = 0. (Hints: Dy	 is the identity.

cos(2θ) = cos2 θ − sin2 θ, sin(2θ) = 2 sin θ cos θ.)

In general, two variants with deformation gradients A and
B of a martensite can be connected together along a flat
boundary perpendicular to n if there are rotation matri-
ces R1 and R2 such that24

R2B −R1A = a⊗ n. (11.27)

This ensures that the directional derivatives of y along
the boundary directions (perpendicular to n) will be the
same for the two variants, and hence that the deformation
field is continuous at the boundary.

As can be seen in figure 11.15, the real martensite did
not transform by stretching uniformly along one axis. In-
stead, it formed multiple thin layers of two of the variants.

23A matrix M is orthogonal if MTM = I, the matrix times its transpose is the
identity. The set of all n × n orthogonal matrices forms a group, O(n). Since
det(AB) = det(A) det(B), and det(MT ) = det(M), orthogonal matrices M either
have det(M) = 1 (so-called special orthogonal matrices, in the group SO(n)) or
det(M) = −1 (in which case they are the product of a special orthogonal matrix
times the reflection P ). Thus O(n) as a set or manifold always comes in two distinct
components. Hence in part (a) you’re showing that all elements of O(2) are ground
states for the paper.

24That is, the difference is a rank one matrix, with zero eigenvalues along all di-
rections perpendicular to n.
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It can do so for a modest energy cost because the surface
energy of the boundary between two variants is low.

The martensite is driven to this laminated structure to
satisfy boundary conditions. Steels go through a marten-
sitic transition: as the blacksmith cools the horseshoe,
local crystalline regions of the iron stretch along one of
several possible axes. The red-hot horseshoe does not
change shape overall as it is plunghed into the water,
though. This is for two reasons. First, if part of the
horseshoe started stretching before the rest, there would
be big stresses at the boundary between the transformed
and untransformed regions. Second, a horseshoe is made
up of many different crystalline grains, and the stretch-
ing is along different axes in different grains. Instead, the
horseshoe, to a good approximation, picks a local mix-
ture between the different variants that overall produces
no net average stretch.

This is done by creating finely divided structures, like
the laminated structure seen in figure 11.15.25 At the
boundaries of the square region, the martensite mustn’t
stretch, so it produces a fine laminated structure where
the stretching in one domain cancels the contraction for
its neighbors.

Our paper folding example forms a similar microstructure
when we insist that the boundary lie along a curve other
than the natural one.

Fig. 11.22 Two–dimensional oragami example of microstruc-
ture formation by Richard James [48].

(d) Go to the book Web site [108] and print out a full-
sized version of figure 11.22. Cut out the hexagon, and
fold along the edges. Where does the boundary go?26

The mathematicians and engineers who study these prob-
lems take the convenient limit where the energy of the
boundaries between the variants (the crease energy in
our exercise) goes to zero. In that limit, the microstruc-
tures can become infinitely fine, and only quantities like
the relative mixtures between variants are well defined.
It’s a wonderful (and rare) example where the pathologi-
cal functions of real analysis describe important physical
phenomena.

(11.6) Minimizing Sequences and Microstructure.
(Mathematics)

The martensitic morphology seen in figure 11.15 is a finely
divided mixture between two different crystal variants.
This layered structure (or laminate) is produced by the

25The laminated microstructure of the real martensite is mathematically even more
strange than that of the paper. The martensite, in the limit where the boundary en-
ergy is ignored, has a deformation gradient which is discontinuous everywhere in
the region; our folded paper has a deformation gradient which is discontinuous only
everywhere along the boundary. See exercise 11.6

26The proof that the diagram can be folded along the creases is a special case of
a general theorem [48], that any network of creases where all nodes have four edges
and opposite opening angles add up to 180◦ can be folded onto the plane, a condition
which is possible, but challenging, to derive from equation 11.27. Deducing the final
shape of the boundary can be done by considering how the triangles along the edge
overlap after being folded.

27Except on the boundaries between domains, which although dense still techni-
cally have measure zero.
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material to minimize the strain energy needed to glue
the different domains together. If the interfacial energy
needed to produce the boundaries between the domains
were zero, the layering could become infinitely fine, lead-
ing to a mathematically strange function. The displace-
ment field y(x) in this limit would be continuous, and at
each point27 x it would have a gradient which agrees with
one of the ground states. However, the gradient would
be discontinuous everywhere, jumping from one variant
to the next each time a boundary between domains is
crossed.

It is in this weird limit that the theory of martensites
becomes elegant and comprehensible. If you are thinking
that no such function y(x) exists, you are of course cor-
rect: one can approach zero strain energy with finer and
finer laminates, but no function y(x) actually can have
zero energy. Just as for the function in figure 11.23, the
greatest lower bound of the martensitic energy exists, but
is not attained.

1

Fig. 11.23 The function g(x) =

{
x2 x 	= 0
1 x = 0

has a minimum

value g = 0, but never attains that minimum.

A minimizing sequence for a function g(x) with lower
bound g0 is a sequence of arguments x1, x2, . . . for which
g(xn) > g(xn+1) and lim g(xn) = g0.

(a) Find a minimizing sequence for the somewhat silly
function g in figure 11.23.

This kind of microstructure often arises in systems with
non-convex free energy densities. Consider a problem

where the energy of a function y(x) is given by

F [y] =

∫ 1

0

(y′2 − 1)2 + y2 dx. (11.28)

with boundary conditions y(0) = y(1) = 0. This energy
is low if y(x) stays near zero and the slope dy/dx = y′(x)
stays near ±1. The latter is why it is non-convex: there
are two values of the slope which have low energy density,
but intermediate values of the slope have higher energy
density.28 This free energy is similar to that for the two-
dimensional paper folding exercise 11.5; you could think
of it as the folding of a one-dimensional sheet of paper
(y′ = ±1 representing face-up and face-down states) in a
potential y2 pulling all points to the origin, forcing the
paper to crumple into a small ball.

Microstructure Theorem 1. F [y] of equation 11.28
does not attain its minimum.

(b) Prove Microstructure Theorem 1. In particular,

• Show that zero is a lower bound for the energy F.
• Construct a minimizing sequence of functions yn(x)

for which limF [yn] = 0.
• Show that the second term of F [y] is zero only for
y(x) = 0, which does not minimize F.

(Advanced.) Young Measures. It is intuitively clear
that any minimizing sequence for the free energy of equa-
tion 11.28 must have slopes that approach y′ ≈ ±1, and
yet have values that approach y ≈ 0. Mathematically, we
introduce a probability distribution (the Young measure)
νx(S) giving the probability of having slope S = y′(x+ ε)
for points x+ ε near x.

(c) Argue that the Young measure which describes min-
imizing sequences for the free energy in equation 11.28
is νx(S) = 1/2δ(S − 1) + 1/2δ(S + 1). (Hint: The
free energy is the sum of two squares. Use the first
term to argue that the Young measure is of the form
νx(S) = a(x)δ(S − 1) + (1 − a(x))δ(S + 1). Then write
〈y(x)〉 as an integral involving a(x), and use the second
term in the free energy to show a(x) = 1/2.)

28A function f [x] is convex if f [λa + (1 − λ)b] ≤ λf [a] + (1 − λ)f [b]; graphically,
the straight line segment between the two points (a, f [a]) and (b, f [b]) lies below f if
f is convex. The free energy F in equation 11.28 is non-convex as a function of the
slope y′.
c©James P. Sethna, April 19, 2005 Entropy, Order Parameters, and Complexity
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Fig. 12.1 The Ising model at the
critical temperature Tc, separating the
magnetized phase T < Tc from the
zero–magnetization phase T > Tc. The
white and black regions represent pos-
itive and negative magnetizations s =
±1. Unlike the abrupt transitions stud-
ied in chapter 11, here the magnetiza-
tion goes to zero continuously as T →
Tc from below.

Continuous phase transitions are fascinating. In figure 12.1 we again
show the Ising model at its critical temperature. Above the critical
point Tc, the Ising model has zero net magnetization; below Tc it has
a non–zero magnetization ±M(T ) which has one of two possible signs.
Unlike the case of an abrupt transition (chapter 11), the magnetization
vanishes as T is raised to Tc. At Tc, we see large fluctuations in the
magnetization in space (figure 12.1) and time: instead of picking one of
the up–spin, down–spin, or zero–magnetization states, the Ising model
at Tc is a kind of fractal1 blend of all three.

This fascinating behavior is not confined to equilibrium phase tran-
sitions. Figure 12.3 shows the percolation transition. An early paper
which started the widespread study of this topic [62] described punch-
ing holes at random places in a conducting sheet of paper and measuring
the conductance. Let the probability of punching a hole in a given region
be (1 − p); then for p near one (no holes) the conductivity is large, but
decreases as p decreases. After enough holes are punched (at a particular
pc), the sheet falls apart and, naturally, the conductance goes to zero.
The conductivity they measured fell to a very small value as the number
of holes approached the critical concentration, because the conducting
paths were few and tortuous just before the sheet fell apart. Thus this
model too shows a continuous transition – a qualitative change in behav-
ior at pc at which the properties are singular but continuous. Figure 12.3
shows a percolation model implemented on the computer (exercise 8.11)
where bonds between grid points are removed rather than circular holes.

Fig. 12.2 A medium–sized avalanche
(flipping 282,785 domains) in a model
of avalanches and hysteresis in mag-
nets (see exercises 8.12, 12.10 and fig-
ure 12.14). The shading depicts the
time evolution: the avalanche started
in the dark region in the back, and the
last spins to flip are in the upper, front
region. The sharp changes in shading
are real, and represent sub–avalanches
separated by times where the avalanche
almost stops (see figure 8.24).

Many physical systems involve events of a wide range of sizes (fig-
ure 12.2). We often find such systems particularly important, since the
largest events often are catastrophic. Figure 12.4 shows the energy re-
leased in earthquakes in 1995 versus time. The earth’s crust responds
to the slow motion of the tectonic plates in continental drift through
a series of sharp, impulsive earthquakes. The same kind of crackling
noise arises in many other systems, from crumpled paper [46] to Rice
Krispies

TM
[53, 109]. The number D(S) of these impulsive events (called

avalanches) of size S often forms a power law over many decades of sizes
(figure 12.5).

In the last few decades, it has been recognized that many of these

1 The term fractal was coined to describe sets which have characteristic dimensions
that are not integers: it roughly corresponds to non-integer Hausdorff dimensions in
mathematics. The term has entered the popular culture, and is associated with
strange, rugged sets like those depicted in the figures here.
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Fig. 12.3 Percolation. If we take a
square lattice of sites, with bonds be-
tween nearest neighbor sites, and re-
move bonds with probability 1 − p =
1/2, a largest cluster for a 1024x1024
lattice is shown in the center picture.
It happens that pc = 1/2 for 2D bond
percolation on the square lattice, and
one can see the biggest cluster just
barely hangs together, with holes on
all length scales. At larger proba-
bilities of retaining bonds p = 0.51,
the largest cluster is intact with only
small holes (top): at smaller p =
0.49 the sheet falls into small frag-
ments (bottom, shades denote clus-
ters). Percolation has a phase tran-
sition at pc, separating a connected
phase from a fragmented phase. See
exercises 8.11 and 12.9.

To be pub. Oxford UP, ∼Fall’05 www.physics.cornell.edu/sethna/StatMech/



12.1 Universality. 239

systems can be studied as critical points – continuous transitions be-
tween qualitatively different states. There are many theoretical models
of earthquakes with this property, one of which is shown in figure 12.6.
There are also many critical point models of other systems exhibit-
ing crackling noise. Figure 12.2 shows the domains flipped in a single
avalanche in a model of hysteresis studied by the author ([109], exer-
cises 8.12 and 12.10). We’ll see that this model also has a continuous
transition between qualitatively different behaviors, and that we can un-
derstand most of the properties of large avalanches in the system using
the same tools developed for studying equilibrium phase transitions. 0 100 200 300
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Fig. 12.4 Earthquake energy release
on the Earth versus time for 1995.
This time series, when sped up, sounds
quite similar to the noise formed by
crumpling paper, or the electromag-
netic waves emitted by iron as it is mag-
netized [53].
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Fig. 12.5 Histogram of the number
of earthquakes in 1995 as a function
of their size S (see figure 12.4). No-
tice the logarithmic scales: the smallest
earthquakes shown are a million times
smaller and a thousand times more
probable than the largest earthquakes.
The fact that this distribution is well
described by a power law (straight line
on the log–log plot) is the Gutenberg–

Richter law ∼ S−
2/3 .

Fig. 12.6 The Burridge–Knopoff
model of earthquakes, with the earth-
quake fault modeled by blocks pulled
from above and sliding with friction on
a surface below. It was later realized by
Carlson and Langer [19] that this model
evolves into a state with a large range of
earthquake sizes even for regular arrays
of identical blocks.

The renormalization–group and scaling methods we use to study these
critical points are deep and powerful. Much of the history and practice
in the field revolves around complex perturbative schemes to implement
these methods (approximately) for various specific systems. In this chap-
ter, we will focus on the key ideas most useful in exploring experimental
systems and new theoretical models, and will not discuss the perturba-
tive methods for calculating critical exponents.

In section 12.1 we will examine the striking phenomenon of universal-
ity: two systems, microscopically completely different, can exhibit the
precisely the same critical behavior near their phase transitions. We’ll
provide a theoretical rationale for universality in terms of a renormalization–
group flow in a space of all possible systems.

In section 12.2 we’ll explore the characteristic self–similar structures
found at continuous transitions. Self–similarity is the explanation for
the fractal–like structures seen at critical points: a system at its critical
point looks the same when rescaled in length (and time). We’ll show
that power laws and scaling functions are simply explained from the
assumption of self–similarity.

Finally, in section 12.3 we’ll give an overview of the wide variety of
types of systems that are being understood using renormalization–group
and scaling methods.

12.1 Universality.

Quantitative theories of physics are possible because macroscale phe-
nomena are often independent of microscopic details.2 We saw in chap-
ter 2 that the diffusion equation was independent of many details of the
underlying random collision processes. Fluid mechanics relies upon the
emergence of simple laws – the Navier–Stokes equations – from complex

2 One should be careful here: much of theoretical particle physics is based on a
kind of anti–universality: in their experience, only a few microscopic theories can
possibly yield the behavior they observe at low energies (corresponding to our long
length and time scales). One must note, however, that the mundane types of univer-
sality remain underpinnings for particle physics. For example, the utility of numerical
lattice simulations (lattice QCD, for example) depends upon the fact that a suitably
chosen simulation which breaks translational, rotational, and Lorentz symmetries
can flow to a fixed point that exhibits these symmetries – many different lattice
regularizations will flow to the same low–energy, long–wavelength theory.
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underlying microscopic interactions: if the macroscopic fluid motions de-
pended in great detail on the shapes and interactions of the constituent
molecules, we could not write simple continuum laws. Similarly, our ev-
eryday use of quantum mechanics relies on the fact that the behavior of
electrons, nuclei, and photons are largely independent of the microscopic
details – quantum electrodynamics is an effective theory for low energies
which emerges out of more complicated unified theories.33Indeed, the first theories of renormal-

ization grew out of understanding how
this emergence happens in relativistic
quantum systems.

The behavior near continuous transitions is unusually independent
of the microscopic details of the system. Figure 12.7 shows that the
liquid and gas densities ρ�(T ) and ρg(T ) for a variety of atoms and
small molecules appear quite similar when rescaled to the same critical
density and temperature. This similarity is partly for simple reasons: the
interactions between the molecules is roughly the same in the different
systems up to overall scales of energy and distance. Hence argon and
carbon monoxide satisfy

ρCO(T ) = AρAr(BT ) (12.1)

for some overall changes of scale A, B. However, figure 12.8 shows a com-
pletely different physical system – interacting electronic spins in nickel,
going through a ferromagnetic transition. The magnetic and liquid–gas
theory curves through the data are the same if we allow ourselves to not
only rescale T and the order parameter (ρ and M , respectively), but
also allow ourselves to tilt the temperature axis using a more general
coordinate change

ρAr(T ) = A(M(BT ), T ) (12.2)

whereB = TM
c /T �g

c is as usual the rescaling of temperature and A(M,T ) =
a1M + a2 + a3T = (ρcρ0/M0)M + ρc(1 + s) −

(
ρcs/T

�g
c

)
T is a simple

shear coordinate transformation from (ρ, T �g) to (M,TM ) which untilts
the axis.4

This would perhaps not be a surprise if these two phase diagrams
had parabolic tops: the local maximum of an analytic curve generically55The term generic is a mathematical

term which roughly translates as ‘ex-
cept for accidents of zero probability’,
like finding a function with zero second
derivative at the maximum. We’ll see
that the ρ(T ) curve has a non-analytic
power-law singularity at its peak.

looks parabolic. But the jump in magnetization and density near Tc

both vary as (Tc − T )β for an exponent β ≈ 0.325, distinctly different
from the square–root singularity β = 1/2 of a generic analytic function.

Also, there are many other properties (susceptibility, specific heat,
correlation lengths) which have power–law singularities at the critical
point, and all of these power laws for the liquid–gas systems agree with
the corresponding exponents for the magnets. We call this universality.
When two different systems have the same singular properties at their

4Nature doesn’t anticipate our choice of ρ and T for variables: at the liquid–gas
critical point the natural measure of density is temperature dependent: A(M,T ) is
the coordinate change to the natural coordinates. As it happens, there is another
correction proportional to (Tc−T )(1−α), where α ∼ 0.1 is the specific heat exponent.
It can also be seen as a kind of tilt, from a pressure–dependent effective Ising–model
coupling strength. It’s small for the simple molecules in figure 12.7, but significant for
liquid metals [38]. Both the tilt and this 1 − α correction are subdominant, meaning
that they vanish faster as we approach Tc than the order parameter (Tc − T )β .
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Fig. 12.7 Universality: Liquid–Gas Critical Point. The liquid–gas coexistence
lines (ρ(T )/ρc versus T/Tc) for a variety of atoms and small molecules, near their
critical points (Tc, ρc) [42]. The curve is a fit to the argon data, ρ/ρc = 1 + s(1 −
T/Tc) ± ρ0(1 − T/Tc)β with s = 0.75, ρ0 = 1.75, and β = 1/3 (reference [42]).
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Fig. 12.8 Universality: Ferromagnetic-Paramagnetic Critical Point. Mag-
netization versus temperature for a uniaxial antiferromagnet MnF2 [45]. We’ve
shown both branches ±M(T ) and swapped the axes so as to make the analogy with
the liquid–gas critical point apparent (figure 12.7). Notice that both the magnet
and the liquid–gas critical point have order parameters that vary as (1 − T/Tc)β

with β ≈ 1/3. (The liquid–gas coexistence curves are tilted: the two theory curves
would align if we defined an effective magnetization for the liquid gas critical point
ρeff = ρ−0.75ρc(1−T/Tc) (thin midline, figure 12.7).) This is not an accident: both
are in the same universality class, along with the three-dimensional Ising model, with
the current estimate for β = 0.325 ± 0.005 [124, Chapter 28].
c©James P. Sethna, April 19, 2005 Entropy, Order Parameters, and Complexity



242 Continuous Transitions

Fig. 12.9 Universality in Percolation. Universality suggests that the entire
morphology of the percolation cluster at pc should be independent of microscopic
details. On the top, we have bond percolation, where the bonds connecting nodes
on a square lattice are occupied at random with probability p: the top right shows
the infinite cluster on a 1024× 1024 lattice at pc = 0.5. On the bottom, we have site
percolation on a triangular lattice, where it is the hexagonal sites that are occupied
with probability p = pc = 0.5. Even though the microscopic lattices and occupation
rules are completely different, the resulting clusters look statistically identical. (One
should note that the site percolation cluster is slightly less dark. Universality holds
up to overall scale changes, here up to an change in the density.)
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critical points, we say they are in the same universality class. Impor-
tantly, the theoretical Ising model (despite its drastic simplification of
the interactions and morphology) is also in the same universality class
as these experimental uniaxial ferromagnets and liquid–gas systems – al-
lowing theoretical physics to be directly predictive in real experiments.

To get a more clear feeling about how universality arises, consider site
and bond percolation in figure 12.9. Here we see two microscopically
different systems (left) from which basically the same behavior emerges
(right) on long length scales. Just as the systems approach the threshold
of falling apart, they become similar to one another! In particular, all
signs of the original lattice structure and microscopic rules have disap-
peared.6 6Notice in particular the emergent

symmetries in the problem. The large
percolation clusters at pc are statis-
tically both translation invariant and
rotation invariant, independent of the
grids that underly them. In addition,
we’ll see that there is an emergent scale
invariance – a kind of symmetry con-
necting different length scales (as we
also saw for random walks, figure 2.2).

Thus we observe in these cases that different microscopic systems look
the same near critical points, if we ignore the microscopic details and
confine our attention to long length scales. To study this systematically,
we need a method to take a kind of continuum limit, but in systems
which remain inhomogeneous and fluctuating even on the largest scales.
This systematic method is called the renormalization–group.7

The renormalization group starts with a remarkable abstraction: it
works in an enormous “system space”. Different points in system space
represent different materials under different experimental conditions,
and different physical models of these materials with different inter-
actions and evolution rules. So, for example, in figure 12.10 we can
consider the space of all possible models for hysteresis and avalanches
in three dimensional systems. There is a different dimension in this sys-
tem space for each possible parameter in theoretical models (disorder,
coupling, next–neighbor coupling, dipolar fields, etc.) and also for each
parameter in an experiment (chemical composition, temperature, and
annealing time). A given theoretical model, will traverse a line in sys-
tem space as a parameter is varied: the line at the top of figure might
represent our model of hysteresis and avalanches (exercise 8.12) as the
strength of the disorder R is varied.

The renormalization group studies the way in which system space
maps into itself under coarse–graining. The coarse–graining operation
shrinks the system and removes microscopic degrees of freedom. Ignor-
ing the microscopic degrees of freedom yields a new physical system with
identical long–wavelength physics, but with different (renormalized) val-
ues of the parameters.8 8Many detailed mathematical tech-

niques have been developed to imple-
ment this coarse–graining operation –
ε-expansions, real–space renormaliza-
tion groups, Monte–Carlo renormaliza-
tion groups, etc. These methods are
both approximate and technically chal-
lenging. Except for the simple case of
the random walk in the exercises (12.6,
12.7) we will not cover the methods
used to implement coarse–graining, fo-
cusing instead on the behavior that we
can explain by hypothesizing the ex-
istence of renormalization–group flows
and fixed points.

Under coarse–graining, we often find a fixed point S∗ to this mapping
in system space. All the systems that flow into this fixed point un-
der coarse–graining will share the same long–wavelength properties, and
will hence be in the same universality class. The renormalization group

7The word renormalization grew out of quantum electrodynamics, where the ef-
fective charge on the electron changes size (norm) as a function of length scale. The
word group is usually thought to refer to the family of coarse–graining operations
that underly the method (with the group product being repeated coarse–graining).
However, there is no inverse operation to coarse–graining, so the renormalization
group does not satisfy the definition of a mathematical group.
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Fig. 12.10 Renormalization–
Group Flow. The renormalization–
group is the theory of how coarse–
graining to longer length scales
introduces a mapping from the space
of physical systems into itself. Con-
sider the space of all possible models
of avalanches in hysteresis [109].
Each model can be coarse–grained,
removing some fraction of the mi-
croscopic degrees of freedom and
introducing more complicated rules
so that the remaining domains still
flip at the same external fields. This
defines a mapping from system space
into itself. A fixed point S∗ under
this mapping will be self–similar
(figure 12.14) because it maps into
itself under a coarse–graining change
in length scale. Points like Rc that
flow into S∗ will also show this
self–similar behavior on scales large
enough that they’ve flowed close
to S∗: they all share the same
universality class. Notice also that
as our system approaches near Rc,
the coarse–grained versions of the
system flow alongside the unstable
curve U flowing out of S∗: for this
reason, systems close to their critical
point share universal properties too
(figure 12.15).
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explains the physical phenomenon of universality as the attraction of dif-
ferent physical systems to the same long–wavelength fixed-point theory,
under a coarse–graining transformation.

Figure 12.10 depicts the flows in system space. It’s a two–dimensional
picture of an infinite–dimensional space. You can think of it as a planar
cross–section in system space, which we’ve chosen to include the line for
our model and the fixed point S∗: in this interpretation the arrows and
flows denote projections, since the real flows will point somewhat out of
the plane. Alternatively, you can think of it as the curved surface swept
out by our model in system space as it coarse–grains, in which case you
should ignore the parts of the figure below the roughly horizontal curve
U .

Figure 12.10 shows the case of a fixed–point S∗ that has one unstable
direction, leading outward along the curve U .9 Points deviating from S∗ 9The unstable manifold of the fixed

point.in that direction will not flow to it under coarse–graining, but rather will
flow away from it. Fixed points with unstable directions correspond to
continuous transitions between qualitatively different states. In the case
of hysteresis and avalanches, there is a phase consisting of models where
all the avalanches remain small, and another phase consisting of models
where one large avalanche sweeps through the system, flipping most of
the domains. The surface C which flows into S∗ represents systems at
their critical points: hence our model exhibits avalanches of all scales at
Rc where it crosses C.10 10Because S∗ has only one unstable di-

rection, C has one less dimension than
system space (mathematically we say C
has co-dimension one) and hence can
divide system space into two phases. C
is the stable manifold, or basin of at-
traction, for S∗.

Other cases , with two tuning parameters to set to find the critical
point (like the liquid–gas transition [Tc, Pc]), will have fixed–points with
two unstable directions in system space. What happens when we have
no unstable directions? The fixed point Sa in figure 12.11 represents an
entire region of system space that shares long–wavelength properties: it
represents a phase of the system. Usually phases don’t show fluctuations
on all scales: such fluctuations arise near transitions because the system
doesn’t know which of the available neighboring phases to prefer. How-
ever, there are cases where the fluctuations persist even inside phases,
leading to generic scale invariance. A good example is the case of the
random walk (section 2.1, exercises 12.6 and 12.7), where a broad range
of microscopic rules lead to the same long–wavelength random walks,
where fluctuations remain important on all scales without tuning any
parameters.
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Fig. 12.11 Attracting fixed point.
Often there will be fixed points that
attract in all directions. These fixed
points describe phases rather than
phase transitions. Most phases are
rather simple, with fluctuations that
die away on long length scales. When
fluctuations remain important, they
will exhibit self–similarity and power
laws called generic scale invariance.

Sometimes the external conditions acting on a system naturally drive
it to stay near or at a critical point, allowing one to spontaneously
observe fluctuations on all scales. A good example is provided by certain
models of earthquake fault dynamics. The upper part of figure 12.12
shows the renormalization–group flows for these models of earthquakes.
The horizontal axis represents the external stress on the earthquake
fault. For small external stresses, the faults remain stuck, and there
are no earthquakes. For strong external stresses, the faults slide with
an average velocity v, with some irregularities but no large events. The
earthquake fixed point S∗

eq describes the transition between the stuck
and sliding phases, and shows earthquakes of all scales. The earth,
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however, does not apply a constant stress to the fault: rather, continental
drift applies a constant, extremely small velocity vs (of the order of
centimeters per year). The lower part of figure 12.12 shows the velocity
versus external force for this transition, and illustrates how forcing at a
small external velocity naturally sets the earthquake model at its critical
point – allowing spontaneous generation of critical fluctuations, called
self–organized criticality.
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Fig. 12.12 Self–Organized Crit-
icality. (Top) The renormalization–
group flows in a space of earthquake
models. The critical manifold C sep-
arates a phase of stuck faults from a
phase of sliding faults, with the transi-
tion due to the external stress F across
the fault. Only along C does one find
self–similar behavior and a spectrum
of earthquakes. (Bottom) The veloc-
ity of the fault will vary as a power law
v ∼ (F−Fc)β near the critical force Fc.
The motion of the continental plates,
however, drives the fault at a constant,
very slow velocity vs, automatically set-
ting F to Fc and yielding earthquakes
of all sizes.

12.2 Scale Invariance

The other striking feature of continuous phase transitions is the common
occurrence of self–similarity, or scale invariance. We can see this vividly
in the snapshots of the critical point in the Ising model (figure 12.1),
percolation (12.3), and the avalanche in our hysteresis model (12.2).
Each shows roughness, irregularities, and holes on all scales at the critical
point. This roughness and fractal–looking structure stems at root from
a hidden symmetry in the problem: these systems are (statistically)
invariant under a change in length scale.

Consider the figures in 2.2, 12.13 and 12.14, depicting self–similarity
in random walks, the 2D Ising model, and a cross section of our model of
avalanches and hysteresis in 3D, respectively. In each set, the upper right
figure shows a large system, and each succeeding picture zooms in by
another factor of two. In the Ising model, some figures may look slightly
more black (-1) than white (+1) and others vice versa, representing the
inability of the Ising model at Tc to decide on a ground state. All have
patterns of white and black which have similar irregular boundaries,
and similar holes within holes. In the hysteresis model, all the figures
show a large avalanche spanning the system (black), with a variety of
smaller avalanches of various sizes, each with the same kind of irregular
boundary seen in 3D in figure 12.2. If you blur your eyes a bit, all the
figures should look roughly alike. This rescaling and eye-blurring process
are, at root, the renormalization–group transformation we discussed in
section 12.1.

This scale–invariance can be thought of as a new symmetry that
emerges at critical points. Almost as the expectation of any function of
two positions x1, x2 in a translation–invariant system can be written in
terms of the separation between the two points 〈g(x1, x2)〉 = G(x2−x2),
scale invariance will allow us to write functions of N variables in terms of
scaling functions of N −1 variables – except that these scaling functions
are typically multiplied by power laws in one of the variables.

Let’s begin with the case of functions of one variable. Consider the
avalanche size distribution D(S) for a model, say real earthquakes (fig-
ure 12.4) or our model for hysteresis, at the critical point. Imagine
taking the same system, but increasing the units of length with which
we measure the system – stepping back, blurring our eyes, and looking
at the system on a coarse–grained level.11 Imagine that we multiply the11Figure 12.14 shows this done repeat-

edly by a factor of two: starting at
the lower right at the most fine–grained
level, and ending at the upper left at
the coarsest.

spacing between markings on our rulers by a small amount B = (1 + ε).
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12.2 Scale Invariance 247

Fig. 12.13 Ising Model at Tc: Scale Invariance. Magnifications of a snapshot
of the two dimensional Ising model 12.1 at its critical point, each one doubling the
magnification (B = 2). (Each plot is the lower right–hand quarter of the previous.)
At the largest magnifications, the individual lattice sites become apparent, but all
effects of the lattice quickly disappear at larger magnifications. The larger scales look
the same, in a statistical sense.
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Fig. 12.14 Avalanches: Scale Invariance. Magnifications of a cross section of
all the avalanches in a run of our hysteresis model, each one the lower right–hand
quarter of the previous. The system started with a billion domains (10003). Each
avalanche is shown in a different shade. Again, the larger scales look statistically the
same. See exercises 8.12 and 12.10
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After coarsening, any length scales in the problem (like the correlation
length ξ) will be divided by B. The avalanche sizes S after coarse–
graining will also be smaller by some factor C = (1 + cε).12 Finally, 12This factor is precisely the kind of

quantity that one calculates using the
various technical implementations of
the renormalization group. If the size
of the avalanche were the cube of its
length, then c would equal 3 since (1 +
ε)3 = 1+3ε+O(ε2). The fact that c can
be less than the dimension tells us that
in general the avalanches can be frac-
tal (figure 12.2): c will be the fractal
dimension of the avalanche.

the overall scale of D(S) after coarse–graining will be rescaled by some
factor A = (1 + aε).13 Hence under the coarse–graining

13The same avalanches occur inde-
pendent of your measuring instru-
ment, but the probability density D(S)
changes, because the fraction of large
avalanches depends upon how many
small avalanches you measure, and be-
cause the fraction per unit S changes as
the scale of S changes.

ξ′ = ξ/B = ξ/(1 + ε)
S′ = S/C = S/(1 + cε) (12.3)
D′ = AD = D(1 + aε).

Now the probability that the coarse–grained system has an avalanche of
size S′ is given by the rescaled probability that the original system had
an avalanche of size S = (1 + cε)S′:

D′(S′) = AD(CS′) = (1 + aε)D
(
(1 + cε)S′). (12.4)

D′(S′) is the distribution measured with the new ruler: a smaller avalanche
with a larger relative probability. Because we are at a self–similar crit-
ical point, the coarse–grained distribution D′(S′) should equal D(S′).
Making ε infinitesimal leads us to a differential equation

D(S′) = D′(S′) = (1 + aε)D
(
(1 + cε)S′)

0 = aεD + cεS′ dD
dS

dD

dS
= −aD

cS
(12.5)

which has the general solution14 14Since
∫
dD/D = −a/c

∫
dS/S,

logD = K − (a/c) logS for some in-
tegration constant K = logD0D = D0S

−a/c. (12.6)

Because the properties shared in a universality class only hold up to
overall scales, the constant D0 is system dependent. However, the ex-
ponents a, c, and a/c are universal – independent of experiment within
large universality classes of systems. Some of these exponents have stan-
dard names: the exponent c giving the fractal dimension of the avalanche
is usually called df or 1/σν. The exponent a/c giving the size distribu-
tion decay is called τ in percolation and in most models of avalanches
in magnets.15 and is related to the Gutenberg–Richter exponent in the
earthquake community16 (figure 12.5). 16We must not pretend that we’ve

explained the Gutenberg–Richter law.
There are many different models that
give exponents ≈ 2/3, but it remains
controversial which of these, if any, are
correct for real world earthquakes.

Most measured quantities depending on one variable will have sim-
ilar power–law singularities at the critical point. Thus the correlation
function of the Ising model at Tc (figure 10.4) decays with distance x
in dimension d as C(x) ∝ x−(d−2+η) and the distance versus time for
random walks (section 2.1) grows as t

1/2 , both because these systems are
self–similar.17 17Power laws are the only self–similar

function! If f(x) = x−α, then on a
new scale multiplying x by B, f(Bx) =
B−αx−α ∝ f(x).

15Except ours, where we used τ to denote the avalanche size decay at the critical
field and disorder: integrated over the hysteresis loop Dint ∝ S−τ̄ with τ̄ = τ + σβδ.
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Universality is expected also near to the critical point. Here as one
coarsens the length scale a system will be statistically similar to itself at a
different set of parameters. Thus a system undergoing phase separation
(section 11.3.1, exercise 12.1), when coarsened, is similar to itself at an
earlier time (when the domains were smaller), a percolation cluster just
above pc (top figure 12.3) when coarsened is similar to one generated
further from pc (hence with smaller holes), and so on.

For a magnet slightly below Tc, a system coarsened by a factor B =
(1 + ε) will be similar to one farther from Tc by a factor E = (1 + ε/ν)
(figure 12.15). Similar to the case of the avalanche size distribution,
the coarsened system must have its magnetization rescaled upward by
A = (1+βε/ν) to match that of the lower–temperature original magnet
(figure 12.15):

M ′(Tc − t) =AM(Tc − t) = M(Tc − Et)

(1 + βε/ν)M(Tc − t) =M
(
Tc − t(1 + ε/ν)

)
. (12.7)

Again, taking ε infinitesimal leads18 us to the conclusion that M ∝ tβ ,18Notice that increasing t decreases T
here. providing a rationale for the power–laws seen in magnetism and the

liquid–gas transition (figures 12.7 and 12.8). Similarly, the specific heat,
correlation length, correlation time, susceptibility, and surface tension
of an equilibrium system will have power–law divergences (T − Tc)−X ,
where by definition X is α, ν, zν, γ, and −2ν, respectively. One can also
vary the field H away from the critical point and measure the resulting
magnetization, which varies as H1/δ.

To specialists in critical phenomena, these exponents are central: whole
conversations often rotate around various combinations of Greek letters.
We know how to calculate critical exponents from the various analytical
approaches,19 and they are also simple to measure (although hard to19They can be derived from the eigen-

values of the linearization of the
renormalization–group flow around the
fixed point S∗ in figure 12.10, see exer-
cise 12.7.

measure well).
Critical exponents are not everything, however. Many other scaling

predictions are easily extracted from numerical simulations. Universal-
ity should extend even to those properties that we haven’t been able to
write formulas for. In particular, there are an abundance of functions of
two and more variables that one can measure. Figure 12.16 shows the
distribution of avalanche sizesDint(S,R) in our model of hysteresis, inte-
grated over the hysteresis loop (figure 8.21), at various disordersR above
Rc (exercise 8.12). Notice that only at Rc ≈ 2.16 do we get a power–law
distribution of avalanche sizes; at larger disorders there are extra small
avalanches, and a strong decrease in the number of avalanches beyond
a certain size Smax(R).

Let’s derive the scaling form for Dint(S,R). We first change from a
and b to the traditional exponent names in our scaling equations 12.3:

S′ = S
/(

1 +
1
σν
ε

)
D′ = D

(
1 +

τ̄

σν
ε
)

(12.8)
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Fig. 12.15 Scaling Near Critical-
ity. If two points in system space flow
towards one another under coarse–
graining, their behavior must be sim-
ilar on long length scales. Here we
measure a function f(x) at two tem-
peratures for our system (top line) at
two different temperatures, Tc − t and
Tc−Et. The dots represent successive
coarse–grainings by a factor B: under
this renormalization group f → f ′ →
f ′′ → f [3] . . . . Here f(Tc − t, x) after
four coarse–grainings maps to nearly
the same system as f(Tc − Et, x) af-
ter three coarse–grainings. We thus
know, on long length scales, that
f ′(Tc − t, x) must agree with f(Tc −
Et, x): the system is similar to it-
self at a different set of external pa-
rameters. In particular, each coarse–
graining step changes x by a factor B
and f by some factor A, so f [n](Tc −
t, x) = Anf(Tc − t, Bnx). Equating
f [n](Tc−t, x) = f [n−1](Tc−Et, x) for
large n, we find Anf(Tc − t, Bnx) =
An−1f(Tc−Et,Bn−1x) implying that
Af(Tc − t, By) = f(Tc − Et, y) for
large distances y = Bn−1x.

f(T −t,x)c

T
 −

t
ccT
 −

E
t

cf(T −Et,x)

f[4]
f[3]

f’’

 cf’(T −t,x)

Fig. 12.16 Avalanche Size Dis-
tribution: The distribution of
avalanche sizes in our model for hys-
teresis. Notice the logarithmic scales.
(We can measure D(S) of 10−14 by
running billions of spins and binning
over ranges ∆S 105.) Although only
at Rc ≈ 2.16 do we get a pure power
law (D(S) ∝ S−τ̄ , straight dashed
line) we get two decades of avalanche
sizes even a factor of two away from
the critical point. Notice that the
power law at Rc does not describe the
data well except very close to the criti-
cal point: be warned that a power law
measured over two decades of size (al-
though often publishable [66]) will not
yield a reliable exponent. Notice that
the scaling curves (thin lines) work
well even far from Rc. Inset: We plot
D(S) rescaled by Sτ̄ versus Sσ(R −
Rc)/R to extract the universal scaling
curve D(X) (equation 12.15). Varying
the critical exponents and Rc to get a
good collapse allows us to measure the
exponents long before the power laws
are reliable, see exercise 12.9, part (g).
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A system at R = Rc +r after coarse–graining will be similar to a system
further from the critical disorder, at R = Rc +Er = Rc + r(1 + ε/ν), so

D(S′, Rc + Er) = D′(S′, Rc + r) = AD(CS′, Rc + r) (12.9)

D(S′, Rc + (1 + ε/ν)r) =
(
1 +

τ̄

σν
ε
)
D

((
1 +

1
σν
ε

)
S′, Rc + r

)
(12.10)

To facilitate deriving the scaling form for multiparameter functions,
it is helpful to change coordinates to scaling variables. Consider the
combination X = Sσr. After coarse–graining S′ = S/C and shifting to
the higher disorder r′ = Er this combination is unchanged:

S′σr′ = (S/C)σ(Er) =
(
S/

(
1 +

1
σν
ε

))σ

((1 + ε/ν)r)

= Sσr

(
1 + ε/ν

(1 + ε/σν)σ

)
= Sσr +O(ε2). (12.11)

Let D̄(S,X) = D(S,R) be the size distribution as a function of S and
X . Then D̄ coarse–grains much like a function of one variable, since X
stays fixed. Equation 12.10 now becomes

D̄(S′, X ′) = D̄(S′, X) =
(
1 +

τ̄

σν
ε
)
D̄

((
1 +

1
σν
ε

)
S′, X

)
(12.12)

so
τ̄

σν
D̄ = − 1

σν

∂D̄

∂S
(12.13)

and hence
D̄(S,X) = S−τ̄D(X) (12.14)

for some scaling function D(X). This function corresponds to the (non–
universal) constant D0 in equation 12.6, except here the scaling function
is another universal prediction of the theory (up to overall scale factors
in X and D). Rewriting things in terms of the original variables, we
find the scaling form for the avalanche size distribution:

D(S,R) ∝ S−τ̄D(Sσ(R−Rc)). (12.15)

We can use a scaling collapse of the experimental or numerical data to
0.0001 0.001 0.01

t=1-T/T
c

1.5

2.5

(ρ
s/ρ

)t-2
/3

0.05 bar
7.27 bar
12.13
18.06
24.10
29.09

Fig. 12.17 Superfluid density in
Helium: scaling plot. This clas-
sic experiment [40, 1] in 1980 mea-
sured the superfluid density ρs(T ) in
helium to great precision to within a
small distance from the critical tem-
perature Tc. Notice the logarithmic
scale on the horizontal axis: the lowest
pressure data (saturated vapor pressure
≈ 0.0504 bar) spans three decades of
temperature shift from Tc. This plot
emphasizes the deviations from the ex-
pected power law.

extract this universal function, by multiplying D by the power Sτ and
plotting against X = Sσ(R − Rc): the inset of figure 12.16 shows this
scaling collapse.20

Similar universal scaling functions appear in many contexts. Just for
the equilibrium properties of magnets near Tc, there are scaling func-
tions for the magnetization M(H,T ) = (Tc − T )βM

(
H/(Tc − T )βδ

)
,

20Depending on the application, one may choose different forms of the scaling
variable, or pull out powers of different parameters. Hence we could have used
Sr1/σ = X1/σ instead of X as our scaling variable, and we also can write D(S,R) ∝
S−τ̄ (Sσr)τ̄/σ D(Sσr)

(Sσr)τ̄/σ = rτ̄/σD̃(Sσr).
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for the correlation function in space and time at different temperatures
C(x, t, T ) = x−(2−d+η)C

(
x/|T − Tc|−ν , t/|T − Tc|−zν

)
, and a finite–size

scaling function for the magnetization in a box of size L with, say, peri-
odic boundary conditions M(T, L) = (Tc − T )βM

(
L/(Tc − T )−ν

)
.

12.3 Examples of Critical Points.

Fig. 12.18 The superconductor–
insulator transition. [69] Thin films
of amorphous bismuth are insulators
(resistance grows to infinity at zero
temperature), while films above about
12 Åwent superconducting (resistance
goes to zero at a temperature above
zero).

Fig. 12.19 Scaling collapse at the
superconductor–insulator transi-
tion. [69] Resistance plotted against
the temperature, rescaled by a factor t
to get a good collapse. Notice the char-
acteristic pair of scaling curves, the top
one F− for the insulators d < dc and
the bottom one F+ for the supercon-
ductors d > dc.

Ideas from statistical mechanics have found broad applicability in sci-
ences and intellectual endeavors far from their roots in equilibrium ther-
modynamic systems. The scaling and renormalization–group methods
introduced in this chapter have seen a particularly broad range of appli-
cations: we will touch upon a few in this conclusion to our text.

12.3.1 Traditional Equilibrium Criticality: Energy
versus Entropy.

Scaling and renormalization–group methods have of course been cen-
tral to the study of continuous phase transitions in equilibrium systems.
Ising models, Potts models,21 Heisenberg models, phase transitions in

21Potts models are Ising–like models
with N states per site rather than two.

liquid crystals (like the nematic to smectic-A transition), wetting tran-
sitions, equilibrium crystal shapes, two–dimensional melting, roughen-
ing (figure 11.8) and other phase transitions on surfaces – these are
the grindstone problems on which our renormalization–group tools were
sharpened.

The transition in all of these systems represents the competition be-
tween energy and entropy, with energy favoring order at low temper-
atures and entropy destroying it at high temperatures. Figure 12.17
shows the results of a classic, amazing experiment – the analysis of the
superfluid transition in helium (the same order parameter, and hence
the same universality class, as the XY model). The superfluid density
is expected to have the form

ρs ∝ (Tc − T )β(1 + d(Tc − T )x) (12.16)

where x is a universal, subdominant correction to scaling. Since β ≈ 2/3,
they plot ρs/(T − Tc)2/3 so that deviations from the simple expectation
are highlighted. The slope in the top, roughly straight curve reflects
the difference between their measured value of β = 0.6749± 0.0007 and
their multiplier 2/3. The other curves show the effects of the subdomi-
nant correction, whose magnitude d increases with increasing pressure.
Current experiments improving on these results are being done in the
space shuttle, in order to reduce the effects of gravity.

12.3.2 Quantum Criticality: Zero-point fluctuations
versus energy.

Thermal fluctuations do not exist at zero temperature, but there are
many well studied quantum phase transitions which arise from the com-
c©James P. Sethna, April 19, 2005 Entropy, Order Parameters, and Complexity
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petition of potential energy and quantum fluctuations (from the kinetic
energy). Many of the earliest studies focused on the metal–insulator
transition and the phenomenon of localization, where disorder can lead
to insulators even when there are states at the Fermi surface. Scal-
ing and renormalization–group methods played a central role in this
early work, and the states near the mobility edge separating localized
from extended states are self–similar and fractal. The Kondo effect,
macroscopic quantum tunneling (testing the fundamentals of quantum
measurement theory), transitions between quantum Hall plateaus, and
superconductor–normal metal transitions (the Bose Glass) are other ac-
tive areas of research. Figures 12.18 and 12.19 show a recent experiment
showing a transition directly from a superconductor to an insulator, as
the thickness of the film is varied. The resistance is expected to have
the scaling form

R(d, T ) = RcF±
(
(d− dc)T−1/νz

)
(12.17)

and they plot R(d, T ) versus t(d − dc), varying t until it gives a nice
collapse (main figure 12.19).

F

A F

Fig. 12.20 Frustration. A spin glass
has a collection of magnetic ions with
interactions of random sign. Here we
see a triangle of Ising ±1 spins with
one antiferromagnetic bond – one of
the three bonds must be unsatisfied in
any spin configuration: the system is
said to be frustrated. These systems go
through a phase transition from a disor-
dered paramagnet to a state that is dis-
ordered in space, but has long–range or-
der in time: hence the name spin glass.

The resulting curve for t(T ) (inset, figure 12.19) forms a nice power–
law, allowing them to measure νz = 1.2 ± 0.2. While it is clear that
scaling and renormalization–group ideas are applicable to this problem,
we should note that as of the time this text was written, no theory yet
convincingly explains these observations.

12.3.3 Glassy Systems: Random but Frozen.

Many materials form glasses. Window glasses are made of silicon dioxide
and various other oxides, but sugars will also form glasses when cooled
quickly (hard candy): you can even form metallic glasses by cooling
metal alloys quickly. Glasses are out of equilibrium: their relaxation
times diverge as they are cooled, and they stop rearranging at a typical
temperature known as the glass transition temperature. Many other
disordered systems – spin glasses, random–field Ising models, precursor
tweed phases in martensites – also appear to be glassy, in that their
relaxation times get very slow as they are cooled, and they freeze in
to disordered configurations.22 This freezing process is sometimes de-
scribed as developing long–range order in time, or as a broken ergodicity
(see section 4.2).

The basic reason that many of the glassy systems freeze into ran-
dom states is frustration. Frustration was defined first for spin glasses,
which are formed by randomly substituting magnetic atoms into a non-
magnetic host. The magnetic spins are coupled to one another at ran-
dom – some pairs prefer to be parallel (ferromagnetic couplings) and
some antiparallel (antiferromagnetic). Whenever strongly–interacting

22Glasses are different from disordered systems. The randomness in disordered
systems is fixed, and occurs in both the high and low temperature phases: the disorder
in the traditional configurational glasses freezes in as it cools.
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Fig. 12.21 Frustration and Curvature. Many materials without disorder are
frustrated as well: sometimes this leads to glassy ground states [107], sometimes to
exotic phases with complex structures [97]. One kind of frustration arises when the
energetically favorable local packing of atoms or molecules is incompatible with the
demands of building large structures: here we show two artistic renditions (courtesy
Pamela Davis [52]). On the left we see the classic problem faced by mapmakers:
the peel of an orange (or the crust of the earth) cannot be mapped smoothly onto
a flat space without stretching and tearing it. On the left we see the analogous
problem faced in many metallic–glass forming liquids whose atoms locally prefer to
form nice compact tetrahedra: twenty tetrahedra cannot be glued together to form
an icosahedron. Just as the orange peel can be nicely fit together on the sphere, the
metallic glasses are unfrustrated in curved space [95].

spins form a loop with an odd number of antiferromagnetic bonds (fig-
ure 12.20) we have frustration: one of the bonds will have to be left in
an unhappy state, since there must be an even number of spin inversions
around the loop (figure 12.20).

Real configurational glasses are not as fully understood as systems
with frozen–in disorder. It is believed in many cases, however, that
frustration is also important for configurational glasses (figure 12.21).

1

x*(  )µ

µ

µ
µ

2

Fig. 12.22 Bifurcation diagram for
period doubling cascade. The at-
tractor as a function of µ for the Feigen-
baum logistic map f(x) = 4µx(1 − x).
For small µ < µ1, repeatedly iterat-
ing f(f(f(. . . (f(x))))) . . . converges to
a stable fixed point x∗(µ). In a series
of bifurcations, this stable fixed point
shifts into a stable two–cycle at µ1, a
four–cycle at µ2, an eight–cycle at µ3

. . . , where the 2n-cycle passes through
all 2n points in a little dance before
repeating. This series of period dou-
bling bifurcations come more and more
closely together, until at µ∞ the system
goes into a chaotic state. At the onset
of chaos, this attractor shows a self–
similar scaling: the bifurcations con-
verge geometrically so that

µ∞ − µn ∝ δn (12.18)

where δ = 4.669201609102990 . . . is
a universal constant, shared by for a

The statistical mechanical study of glasses and glassy systems remains
a developing and controversial field. In spin glasses, the mathematical
and computational sophistication is high, but basic conceptual questions
remain: it is acknowledged that there is a transition to a true spin–glass
state, but we still don’t know whether the ground state of the spin–glass
in an infinite system should be viewed as being a unique spin configur-
ation (up to inversion of all spins) or many competing configurations:
cluster and replica methods based on these two different assumptions
remain in competition. For configurational glasses, it remains an impor-
tant and open question whether there is an underlying thermodynamic
glass transition [111] or whether the observed transition is a kind of
jamming transition in the dynamics.

What is clear both theoretically and experimentally is that these sys-
tems in practice do fall out of equilibrium, and a given cooling schedule
will result in a large ensemble of low–temperature metastable states
c©James P. Sethna, April 19, 2005 Entropy, Order Parameters, and Complexity
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(with a considerable residual entropy, see exercise 5.8). There is one
particular disordered magnetic system, the random–field Ising model,
where it’s been proven (in three dimensions, for weak disorder) that the
ground state is ferromagnetic, and it is understood in detail how the
system nonetheless gets stuck in metastable states, as the coarsening
of a quenched unmagnetized state develops diverging energy barriers as
it is cooled. Our model for hysteresis and avalanches described earlier
(and in exercise 8.12) describes the transitions between these metastable
states in the random–field Ising model, except that our transitions are
not driven by temperature, but by ramping up an external field.

12.3.4 Dynamical Systems and the Onset of Chaos.

Much of statistical mechanics focuses on systems with large numbers of
particles, or systems connected to a large external environment. Con-
tinuous transitions also arise in isolated or simply driven systems with
few relevant degrees of freedom, where they are called bifurcations. A
bifurcation is a qualitative change in behavior which arises when a pa-
rameter in a set of differential equations passes through a critical value.
The study of these bifurcations is the theory of normal forms (exer-
cise 12.3). Bifurcation theory contains analogies to universality classes,
critical exponents, and analytic corrections to scaling.

Dynamical systems, even when they contain only a few degrees of free-
dom, can exhibit immensely complex, chaotic behavior (exercise 4.2).2323Indeed, it is likely that chaos in large

systems is the fundamental underpin-
ning both for the increase of entropy 5.4
and of the validity of the ergodic hy-
pothesis that we can average properties
over the energy surface (section 4.2).

The mathematical trajectories formed by chaotic systems at late times
– the attractors – are often fractal in structure, and many concepts and
methods from statistical mechanics are useful in studying these sets.24

The place where renormalization–group methods have had a spectac-
ular impact, however, is in the study of the onset of chaos. Figure 12.22
shows a simple dynamical system undergoing a series of bifurcations
leading to a chaotic state. Feigenbaum (exercise 12.8) analyzed the se-
ries using a renormalization group, coarse graining not in space but in
time. Again, this behavior is universal – exactly the same series of bi-
furcations (up to smooth coordinate changes) arise in other maps and
in real physical systems. Other renormalization–group calculations have
been important for the study of the transition to chaos from quasiperi-
odic motion, and for the chaotic breakdown of the last KAM torus in
Hamiltonian systems (see exercise 4.2).

Exercises

24For example, statistical mechanical ensembles become invariant measures, and
the attractors are characterized by various kinds of entropy.
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(12.1) Scaling: Critical Points and Coarsening.

Near critical points, the self-similarity under rescaling
leads to characteristic power-law singularities. These de-
pendences may be disguised, however, by less-singular
corrections to scaling. You may find Yeoman’s ta-
bles 2.3, 2.4, and 3.1 helpful in defining exponents.

(a) An experiment measures the susceptibility χ(T ) in a
magnet for temperatures T slightly above the ferromag-
netic transition temperature Tc. They find their data is
fit well by the form

χ(T ) = A(T −Tc)
−1.25 +B+C(T −Tc) +D(T −Tc)

1.77.
(12.19)

Assuming this is the correct dependence near Tc, what is
the critical exponent γ?

When measuring functions of two variables near critical
points, one finds universal scaling functions. The whole
function is a prediction of the theory!

(b) The pair correlation function C(r, T ) = 〈S(x)S(x+r)〉
is measured in another, three-dimensional system just
above Tc. It is found to be spherically symmetric, and
of the form

C(r, T ) = r−1.026f(r(T − Tc)
0.59), (12.20)

where the function f(x) is found to be roughly exp(−x).
What is the critical exponent ν? The exponent η?

During coarsening, we found that the system changed
with time, with a length scale that grows as a power
of time: L(t) ∼ t1/2 for a non-conserved order param-
eter, and L(t) ∼ t1/3 for a conserved order parameter.
These exponents, unlike critical exponents, are simple ra-
tional numbers that can be derived from arguments akin
to dimensional analysis. Associated with these diverg-
ing length scales there are scaling functions. Coarsening
doesn’t lead to a system which is self-similar to itself at
equal times, but it does lead to a system which at two dif-
ferent times looks the same – apart from a shift of length
scales.

An Ising model with non-conserved magnetization is
quenched to a temperature T well below Tc. After a long
time t0, the correlation function looks like C(r, T, t0) =
c(r).

(c) Assume that the correlation function at short dis-
tances C(0, T, t) will be time independent, and that the

correlation function at later times will have the same
functional form apart from a rescaling of the length.
Write C(r, T, 2t0) in terms of c(r). Write a scaling form

C(r, T, t) = t−ωC(r/tρ, T ). (12.21)

Use the time-independence of C(0, T, t) and the fact that
the order parameter is not conserved to predict the nu-
merical values of the exponents ω and ρ.

It was only recently made clear that the scaling function
C for coarsening does depend on temperature (and is, in
particular, anisotropic for low temperature, with domain
walls lining up with lattice planes). Low-temperature
coarsening isn’t as “universal” as continuous phase tran-
sitions are: even in one model, different temperatures can
have different scaling functions.

(12.2) RG Trajectories and Scaling.

An Ising model near its critical temperature Tc is de-
scribed by two variables: the distance to the critical tem-
perature t = (T−Tc)/Tc, and the external field h = H/J .
Under a coarse-graining of length x′ = (1− ε) x, the sys-
tem is observed to be similar to itself 25 at a shifted
temperature t′ = (1 + aε) t and a shifted external field
h′ = (1 + bε)h, with b > a > 0 (so there are two relevant
eigendirections, with the external field more relevant than
the temperature).

(a) Which diagram from figure 12.23 has curves consis-
tent with this flow, for b > a > 0?

The magnetization M(t, h) is observed to rescale under
this same coarse-graining operation to M ′ = (1 + cε)M ,
so M ((1 + aε) t, (1 + bε)h) = (1 + cε)M(t, h).

(b) Suppose M(t, h) is known at t = t1, the line of filled
circles in the various figures in part (a). Give a formula
for M(2t1, h) (open circles) in terms of M(t1, h

′). (Hint:
Find the scaling variable in terms of t and h which is con-
stant along the renormalization-group trajectories shown
in (a). Write a scaling form for M(t, h) in terms of this
scaling variable, and find the critical exponents in terms
of a, b, and c. From there calculating M(t, h) at t = 2t1
should be possible, given the values at t = t1.)

(12.3) Bifurcation Theory and Phase Transitions.
(Mathematics)

25By emphasizing self-similarity, we can view these flows in the two-dimensional
space of the original model – but the self-similarity is only approximate, valid suffi-
ciently near to the critical point. The renormalization-group flows are in the infinite-
dimensional space of Hamiltonians, and the irrelevant directions perpendicular to t
and h cause corrections far from t = (T −Tc)/Tc = h = 0. It’s equivalent to view the
flows in part (a) as the flows on the unstable manifold of the renormalization-group
fixed point, if you prefer.
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Fig. 12.24 Pitchfork Bifurcation diagram. The flow di-
agram for the pitchfork bifurcation (equation 12.23). The
dashed line represents unstable fixed points, the solid thick
lines stable fixed points. The thin lines and arrows represent
the dynamical evolution directions. It’s called a pitchfork be-
cause of the three tines on the right emerging from the handle
on the left.

Dynamical systems theory is the study of the time evolu-
tion given by systems of differential equations. Let x(t)
be a vector of variables evolving in time t, let λ be a vec-
tor of parameters governing the differential equation, and
let Fλ(x) be the differential equations26

ẋ = Fλ(x). (12.22)

The typical focus of the theory is not to solve the dif-

ferential equations for general initial conditions, but to
study the qualitative behavior. In general, they focus on
bifurcations – special values of the parameters λ where
the behavior of the system changes qualitatively.

(a) Pitchfork. Consider the differential equation in one
variable x(t) with one parameter µ

ẋ = µx− x3. (12.23)

Show that there is a bifurcation at µc = 0, by showing that
an initial condition with large x(0) will evolve qualitatively
differently at late times for µ > 0 versus for µ < 0. Hint:
Although you can solve this differential equation explic-
itly, we recommend instead that you argue this qualita-
tively from the bifurcation diagram in figure 12.24: a few
words should suffice.

Dynamical systems theory has much in common with
equilibrium statistical mechanics of phases and phase
transitions. The liquid–gas transition is characterized by
external parameters λ = (P, T,N), and has a current
state described by x = (V,E, µ). Equilibrium phases
correspond to fixed points (x∗(µ) with ẋ∗ = 0) in the
dynamics, and phase transitions correspond to bifurca-
tions.27 For example, the power laws we find near con-
tinuous phase transitions have simpler analogues in the
dynamical systems.

(b) Find the critical exponent β giving the size of the non–
zero fixed points as a function of µ, x∗(µ) ∝ (µ− µc)

β .

26As before, we use ẋ = dx
dt

. This form of the differential equation can also be
used to encode second–order differential equations like ẍ = −ω2x: one doubles the
number of variables to ẋ = v, v̇ = −ω2x.

27In section 8.1, we noted that inside a phase all properties are analytic in the
parameters. Similarly, bifurcations are values of λ where nonanalyticities in the
long–time dynamics are observed.
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Just as there are universality classes of continuous phase
transitions, where quite different systems scale in the
same way near the critical points, quite different dynami-
cal systems can have the same behaviors near bifurcation
points.

(c) At what value λc does the differential equation

ṁ = m− tanh (λm) . (12.24)

have a bifurcation? Does the fixed–point value m∗(λ) be-
have as a power–law m∗ ∼ |λ − λc|β near λc (up to cor-
rections with higher powers of λ−λc)? Does the value of
β agree with that of the pitchfork bifurcation?

There is a common approximate method for studying
phase transitions called mean–field theory, where the fluc-
tuating environment of each degree of freedom is replaced
by the average behavior. In the Ising model on a square
lattice, this amounts to assuming each spin sj = ±1 has
four neighbors which are magnetized with the average
magnetization m = 〈sj〉. This leads to a one–spin mean-
field Hamiltonian

H = −4Jmsj . (12.25)

(d) At temperature kBT , what is the value for 〈sj〉 in
equation 12.25, given m? At what temperature Tc is the
phase transition, in mean field theory? (Hint: at what
temperature is a non–zerom self–consistent?) Argue from
part (c) that m ∝ (Tc − T )β. Is this value for the crit-
ical exponent β correct for the Ising model in either two
dimensions (β = 1/8) or three dimensions (β ≈ 1/3)?28

Just as there are different universality classes for con-
tinuous phase transitions with different renormalization–
group fixed points, there are different classes of bifurca-
tions each with its own normal form. Some of the other
important normal forms include the saddle–node bifurca-
tion,

ẋ = µ− x2, (12.26)

transcritical exchange of stability,

ẋ = µx− x2, (12.27)

and the Hopf bifurcation,

ẋ = (µ− (x2 + y2))x− y
ẏ = (µ− (x2 + y2))y + x. (12.28)

(12.4) Onset of Lasing as a Critical Point. (Quan-
tum, Mathematics) (Thanks Gaeta, Sievers. [34])

Lasers represent a stationary, condensed state. It is dif-
ferent from a phase of matter not only because it’s made
up out of energy, but also because it’s intrinsically a non–
equilibrium state. In a laser entropy is not maximized,
free energies are not minimized – and yet the state has a
robustness and integrity reminiscent of phases in equilib-
rium systems.

In this exercise, we’ll study a system of excited atoms
coupled to a photon mode just before it begins to lase.
We’ll see that it exhibits the diverging fluctuations and
scaling that we’ve studied near critical points.

Let’s consider a system of atoms weakly coupled to a pho-
ton mode. We assume that N1 atoms are in a state with
energy E1, N2 atoms are in a higher energy E2, and that
these atoms are strongly coupled to some environment
that keeps these populations fixed.29 Below the onset
of lasing, the probability ρn(t) that the photon mode is
occupied by n photons obeys

dρn

dt
= a
(
nρn−1N2 − nρnN1 − (n+ 1)ρnN2

+ (n+ 1)ρn+1N1

)
. (12.29)

The first term on the right–hand side represents the rate
at which one of the N2 excited atoms atom experiencing
n− 1 photons will emit a photon; the second term repre-
sents the rate at which one of the N1 lower–energy atoms
will absorb one of n photons; the third term represents
emission in an environment with n photons, and the last
represents absorption with n + 1 photons. The fact that
absorption in the presence of m photons is proportional

28Note that m(T ) is a power law only to lowest order near Tc: in phase transitions
there are corrections to scaling. In normal form theory, one can show that the dy-
namics for a general system exhibiting a pitchfork bifurcation as µ is varied can be
transformed by a change of coordinates y(x, µ) into the normal form given by equa-
tion 12.23. If there are many coordinates x (equation 12.22), the extra coordinates
all exponentially shrink to zero as time elapses. This smooth coordinate transform
introduces the extra subdominant power laws found in part (c). In phase transi-
tions, these smooth coordinate transformations give analytic corrections to scaling;
there are also singular corrections to scaling that arise from irrelevant flows in the
renormalization group that do not have analogues in bifurcation theory.

29That is, we assume that the atoms are being pumped into state N2 to compen-
sate for both decays into our photon mode and decays into other channels. This
usually involves exciting atoms into additional atomic levels.
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to m and emission is proportional to m+ 1 is a property
of bosons (exercises 7.7 and 7.8(c)). The constant a > 0
depends on the lifetime of the transition, and is related
to the Einstein A coefficient (exercise 7.8).

(a) Find a simple expression for d〈n〉
dt

, where 〈n〉 =∑∞
m=0mρm is the mean number of photons in the mode.

(Hint: Collect all terms involving ρm.) Show that for
N2 > N1 that this mean number grows indefinitely with
time, leading to a macroscopic occupation of photons into
this single state – a laser.30

Diverging Correlation Energy and Critical Slow-
ing Down. Now, let us consider our system just before
it begins to lase. Let ε = (N2 − N1)/N1 be our mea-
sure of how close we are to the lasing instability. We
might expect the value of 〈n〉 to diverge as ε → 0 like
ε−ν for small ε. Near a phase transition, one also nor-
mally observes critical slowing down: to equilibrate, the
phase must communicate information over large distances
of order the correlation length, which takes a time which
diverges as the correlation length diverges. Let us define
a critical exponent ζ for our lasing system, so that the
typical relaxation time is proportional to |ε|−ζ as ε→ 0.

(b) For ε < 0, below the instability, solve your equation
from part (a) for the long–time stationary value of 〈n〉.
What is ν for our system? For a general initial condition
for the mean number of photons, solve for the time evolu-
tion. It should decay to the long–time value exponentially.
Does the relaxation time diverge as ε→ 0? What is ζ?

(c) Solve for the stationary state ρ∗ for N2 < N1. (Your
formula for ρ∗n should not involve ρ∗.) If N2/N1 is
given by a Boltzmann probability at temperature T , is ρ∗

the thermal equilibrium distribution for the quantum har-
monic oscillator at that temperature? Warning: The
number of bosons in a phonon mode is given by the
Bose–Einstein distribution, but the probability of differ-
ent occupations in a quantum harmonic oscillator is given
by the Boltzmann distribution (see section 7.2 and exer-
cise 7.9).

We might expect that near the instability the probability
of getting n photons might have a scaling form

ρ∗n(ε) ∼ n−τD(n|ε|ν ). (12.30)

(d) Show, for small ε, that there is a scaling form for ρ∗,
with corrections that go to zero as ε→ 0, using your an-
swer to part (c). What is τ? What is the function D(x)?
(Hint: In deriving the form of D, ε is small, but nεν is of
order one. If you were an experimentalist doing scaling

collapses, you’d plot nτρn versus x = n|ε|−ν ; try chang-
ing variables in nτρn to replace ε by x, and choose τ to
eliminate n for small ε.)

(12.5) Superconductivity and the Renormalization
Group.

This exercise touches upon many advanced topics.
There’s a lot of background discussion, which is largely
irrelevant to doing the exercise. It’s OK to skip to the
questions if you find the motivations confusing.

Ordinary, low–temperature superconductivity is due to
the interaction of electrons with phonons. The phonons
produce an effective attractive interaction between cer-
tain pairs of electrons which in the end leads to super-
conductivity. These phonon–mediated interactions are
confined to those electrons within a region �ωD in en-
ergy around the Fermi energy εF ; here ωD is a measure
of the highest phonon frequency.

Ordinary superconductivity happens at a rather low tem-
perature: in contrast to to phonon energies (hundreds
of degrees Kelvin times kB) or electronic energies (tens
of thousands of degrees Kelvin), phonon–mediated su-
perconductivity in most materials happens below a few
Kelvin. This is largely explained by the BCS theory of
superconductivity, which predicts that the transition tem-
perature for weakly coupled superconductors is

Tc = 1.764�ωDe
− 1

V g(εF ) (12.31)

where V is an attraction between electron pairs mediated
by the phonons, and g(εF ) is the density of states (DOS)
of the electron gas (equation 7.74) at the Fermi energy.

If V is small, e
− 1

V g(εF ) can be exponentially small, ex-
plaining why materials often have to be so cold to go
superconducting.

Superconductivity was discovered decades before it was
explained. Many looked for explanations which would
involve interactions with phonons, but there was a se-
rious obstacle. People had studied the interactions of
phonons with electrons, and had shown that the system
stays metallic (no superconductivity) to all orders in per-
turbation theory.

(a) Taylor expand Tc (equation 12.31) about V = 0+

(about infinitesimal positive V ). Guess or show the value
of all the terms in the Taylor series. Can we expect to
explain superconductivity at positive temperatures by per-
turbing in powers of V ?

There are two messages here.

30The number of photons will eventually stop growing when they begin to pull
energy out of the N2 excited atoms faster than the pumping can replace them –
invalidating our equations.
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• Proving something to all orders in perturbation the-
ory doesn’t make it true.

• Since phases are regions in which perturbation the-
ory converges (see section 8.1), the theorem is not a
surprise. It’s a condition for a metallic phase with
a Fermi surface to exist at all.

In recent times, people have developed a renormalization–
group description of the Fermi liquid state and its insta-
bilities.31 Discussing Fermi liquid theory, the BCS theory
of superconductivity, or this renormalization–group de-
scription would take us far into rather technical subjects.
However, we can illustrate all three by analyzing a rather
unusual renormalization–group flow.

Roughly speaking, the renormalization–group treatment
of Fermi liquids says that the Fermi surface is a fixed
point of a coarse–graining in energy. That is, they start
with a system space consisting of a partially–filled band
of electrons with an energy width W , including all kinds
of possible electron–electron repulsions and attractions.
They coarse–grain by perturbatively eliminating (inte-
grating out) the electronic states near the edges of the
band,

W ′ = (1− δ)W. (12.32)

incorporating their interactions and effects into altered in-
teraction strengths among the remaining electrons. These
altered interactions give the renormalization–group flow
in the system space. The equation for W gives the change
under one iteration (n = 1): we can pretend n is a con-
tinuous variable and take δn→ 0, so W ′−W

δ
→ dW

dn
, and

hence

dW/dn = −W. (12.33)

When they do this calculation, they find

• The non–interacting Fermi gas we studied in sec-
tion 7.7 is a fixed–point of the renormalization group.
All interactions are zero at this fixed point. Let V
represent one of these interactions.32

• The fixed point is unstable to an attractive interac-
tion V > 0, but is stable to a repulsive interaction
V < 0.

• Attractive forces between electrons grow under
coarse–graining and lead to new phases, but re-
pulsive forces shrink under coarse–graining, leading
back to the metallic free Fermi gas.
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Fig. 12.25 The renormalization flows defined by equa-
tions 12.34 and 12.35. The temperature T is relevant at the
free Fermi gas fixed point; the coupling V is marginal. The
distinguished curve represents a phase transition boundary
Tc(V ). Below Tc, for example, the system is superconduct-
ing; above Tc it is a (finite–temperature) metal.

This is quite different from our renormalization group
treatment of phase transitions, where relevant directions
like the temperature and field were unstable under coarse
graining, whether shifted up or down from the fixed point,
and other directions were irrelevant and stable (figure 4
in the Nature paper). For example, the temperature of
our Fermi gas is a relevant variable, which rescales under
coarse–graining like

T ′ = (1 + aδ)T

dT/dn = aT. (12.34)

Here a > 0, so the effective temperature becomes larger
as the system is coarse–grained. How can they get a vari-
able V which grows for V > 0 and shrinks for V < 0?

• When they do the coarse–graining, they find that
the interaction V is marginal: to linear order it nei-
ther increases nor decreases.

The next allowed term in the Taylor series near the fixed
point gives us the coarse–grained equation for the inter-
action

V ′ = (1 + bδV )V

dV/dn = bV 2. (12.35)

31There are also other instabilities of Fermi liquids. Charge–density waves, for
example, form due to electron–phonon coupling, and they too have the characteristic

e−
1

aV dependence on the coupling V .
32V will be the pairing between opposite–spin electrons near the Fermi surface for

superconductors.
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• They find b > 0.

(b) True or false? (See figure 12.25.)

(T) (F) For V > 0 (attractive interactions), the interac-
tions get stronger with coarse–graining.

(T) (F) For V < 0 (repulsive interactions), coarse–
graining leads us back to the free Fermi gas, explaining
why the Fermi gas describes metals (section 7.7).

(T) (F) Temperature is an irrelevant variable, but dan-
gerous.

(T) (F) The scaling variable

x = TV −βδ (12.36)

is unchanged by the coarse–graining (second equations
in 12.34 and 12.35), where β and δ are universal critical
exponents:33 hence x labels the progress along the curves
in figure 12.25 (increasing in the direction of the arrows).

(T) (F) The scaling variable

y = Te
a

bV (12.37)

is unchanged by the coarse–graining, so each curve in fig-
ure 12.25 has a fixed value for y.

Now, without knowing anything about superconductiv-
ity, let’s presume that our system goes superconducting
at some temperature Tc(V ) when the interactions are
attractive. When we coarse–grain a system that is at
the superconducting transition temperature, we must get
another system that is at its superconducting transition
temperature.

(c) What value for a/b must they calculate in order to get
the BCS transition temperature (equation 12.31) from this
renormalization group? What is the value of the scaling
variable (whichever you found in part (b)) along Tc(V )?

Thus the form of the BCS transition temperature at small
V , equation 12.31, can be explained by studying the
Fermi gas without reference to the superconducting phase!

(12.6) RG and the Central Limit Theorem: Short.
(Math) 34

If you’re familiar with the renormalization group and
Fourier transforms, this problem can be stated very
quickly. If not, you’re probably better off doing the long
version (following page).

Write a renormalization-group transformation T taking
the space of probability distributions into itself, that takes
two random variables, adds them, and rescales the width
by the square root of two. Show that the Gaussian of

width σ is a fixed point. Find the eigenfunctions fn and
eigenvectors λn of the linearization of T at the fixed point.
(Hint: it’s easier in Fourier space.) Describe physically
what the relevant and marginal eigenfunctions represent.
By subtracting the fixed-point distribution from a bino-
mial distribution, find the leading correction to scaling,
as a function of x. Which eigenfunction does it repre-
sent? Why is the leading irrelevant eigenvalue not domi-
nant here?

(12.7) RG and the Central Limit Theorem: Long.
(Math) 35

In this exercise, we will develop a renormalization group
in function space. We’ll be using maps (like our renormal-
ization transformation T ) that take a function ρ of x into
another function of x; we’ll write T [ρ] as the new func-
tion, and T [ρ](x) as the function evaluated at x. We’ll
also make use of the Fourier transform (equation A.5)

F [ρ](k) =

∫ ∞
−∞

eikxρ(x) dx; (12.38)

F maps functions of x into functions of k. When conve-
nient, we’ll also use the tilde notation: ρ̃ = F [ρ], so for
example (equation A.6)

ρ(x) =
1

2π

∫ ∞
−∞

e−ikxρ̃(k) dk; (12.39)

The central limit theorem states that the sum of many
independent random variables tends to a Gaussian, what-
ever the original distribution might have looked like. That
is, the Gaussian distribution is the fixed point function
for large sums. When summing many random numbers,
the details of the distributions of the individual random
variables becomes unimportant: simple behavior emerges.
We’ll study this using the renormalization group, giving
an example where we can explicitly implement the coarse–
graining transformation. Here our system space is the
space of probability distributions ρ(x). There are four
steps in the procedure:

1. Coarse grain. Remove some fraction (usually half)
of the degrees of freedom. Here, we will add pairs of ran-
dom variables: the probability distribution for sums of
N independent random variables of distribution f is the
same as the distribution for sums of N/2 random vari-
ables of distribution f ∗ f , where ∗ denotes convolution.

(a) Argue that if ρ(x) is the probability that a random
variable has value x, that the probability distribution of

33Thus δ is not the infinitesimal change in parameter.
34See reference [21].
35See reference [21].
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the sum of two random variables drawn from this distri-
bution is the convolution

C[ρ](x) = (ρ ∗ ρ)(x) =

∫ ∞
−∞

ρ(x− y)ρ(y)dy. (12.40)

Remember (equation A.22) the Fourier transform of the
convolution is the product of the Fourier transforms, so

F [C[ρ]](k) = (ρ̃(k))2 . (12.41)

2. Rescale. The behavior at larger lengths will typi-
cally be similar to that of smaller lengths, but some of
the constants will shift (or renormalize). Here the mean
and width of the distributions will increase as we coarse–
grain. We confine our main attention to distributions of
zero mean. Remember that the width (standard devia-
tion) of the sum of two random variables drawn from ρ
will be

√
2 times the width of one variable drawn from ρ,

and that the overall height will have to shrink by
√

2 to
compensate. We define a rescaling operator S√2 which
reverses this spreading of the probability distribution:

S√2[ρ](x) =
√

2ρ(
√

2x). (12.42)

(b) Show that if ρ is normalized (integrates to one), so is
S√2[ρ]. Show that the Fourier transform

F [S√2[ρ]](k) = ρ̃(k/
√

2). (12.43)

Our renormalization-group transformation is the compo-
sition of these two operations,

T [ρ](x) = S√2[C[ρ]](x) =
√

2

∫ ∞
−∞

ρ(
√

2x− y)ρ(y)dy.
(12.44)

Adding two Gaussian random variables (convolving their
distributions) and rescaling the width back should give
the original Gaussian distribution: the Gaussian should
be a fixed point.

(c) Show that the Gaussian distribution

ρ∗(x) = (1/
√

2πσ) exp(−x2/2σ2) (12.45)

is indeed a fixed point in function space under the op-
eration T . You can do this either by direct integration,
or by using the known properties of the Gaussian under
convolution.

(d) Use equations 12.41 and 12.43 to show that

F [T [ρ]](k) = T̃ [ρ̃](k) = ρ̃(k/
√

2)2. (12.46)

Calculate the Fourier transform of the fixed point ρ̃∗(k)
(or see exercise A.5). Using equation 12.46, show that
ρ̃∗(k) is a fixed point in Fourier space under our coarse-
graining operator T̃ .36

These properties of T and ρ∗ should allow you to do most
of the rest of the exercise without any messy integrals.

The central limit theorem tells us that sums of random
variables have probability distributions that approach
Gaussians. In our renormalization group framework, to
prove this we need to show that our Gaussian fixed point
is attracting: that all nearby probability distributions will
flow under iterations of T to ρ∗.37

3. Linearize about the Fixed Point. Consider a
function near the fixed point: ρ(x) = ρ∗(x) + εf(x). In
Fourier space, ρ̃(k) = ρ̃∗(k) + εf̃(k). We want to find the
eigenvalues λn and eigenfunctions fn of the derivative of
the mapping T . That is, they must satisfy

T [ρ∗ + εfn] = ρ∗ + λnεfn +O(ε2). (12.47)

T̃ [ρ̃∗ + εf̃n] = ρ̃∗ + λnεf̃n +O(ε2).

(e) Show using equations 12.46 and 12.47 that the trans-
forms of the eigenfunctions satisfy

f̃n(k) = (2/λn)ρ̃∗(k/
√

2)f̃n(k/
√

2). (12.48)

4. Find the Eigenvalues and Calculate the Uni-
versal Critical Exponents.

(f) Show that f̃n(k) = (ik)nρ̃∗(k) is the Fourier transform
of an eigenfunction (i.e., that it satisfies 12.48.) What is
the eigenvalue λn?

The directions with eigenvalues greater than one are
called relevant: they are dangerous, corresponding to de-
viations from our fixed point that grow under coarse-
graining. The directions with eigenvalues equal to one
are called marginal: they don’t get smaller (to linear or-
der) and are thus also potentially dangerous. When you
find relevant and marginal operators, you always need to
understand each of them on physical grounds.

(g) The eigenfunction f0(x) with the biggest eigenvalue
corresponds to an unphysical perturbation: why? (Hint:
probability distributions must be normalized to one.) The
next two eigenfunctions f1 and f2 have important physi-
cal interpretations. Show that ρ∗ + εf1 to lowest order is

36To be explicit, the operator T̃ = F ◦ T ◦ F−1 is a renormalization-group trans-
formation that maps Fourier space into itself.

37This won’t quite be true: there will be three relevant directions in function space
that we’ll need to consider by hand: the width, the mean, and the normalization.
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equivalent to a shift in the mean of ρ, and ρ∗ + εf2 is a
shift in the standard deviation σ of ρ∗.

All other eigenfunctions should have eigenvalues λn less
than one. This means that a perturbation in that direc-
tion will shrink under the renormalization–group trans-
formation: non-Gaussian wiggles fn(x) in the distribu-
tion will die out:

TN(ρ∗ + εfn)− ρ∗ ∼ λN
n εfn. (12.49)

The first two irrelevant eigenfunctions are easier to write
in Fourier space: they are

f3(x) ∝ ρ∗(x)(3x/σ − x3/σ3) (12.50)

f4(x) ∝ ρ∗(x)(3− 6x2/σ2 + x4/σ4)

For second order phase transitions, temperature is typ-
ically a relevant direction, with eigenvalue greater than
one. This implies that the deviation of the tempera-
ture from the critical point grows under coarse–graining:
on longer and longer length scales the system looks far-
ther and farther from the critical point (figure 12.10).
Specifically, if the temperature is just above the phase
transition, the system appears “critical” on length scales
smaller than the correlation length, but on larger length
scales the effective temperature has moved far above the
transition temperature and the system looks fully disor-
dered.

In our problem, the relevant directions are comprehensi-
ble: they change the width and the means of the Gaus-
sian. In a formal sense, we have a line of fixed points and
an unstable direction: the renormalization group doesn’t
tell us that by subtracting the mean and rescaling the
width all of the distributions would converge to the same
Gaussian.

Corrections to Scaling and Coin Flips. Does any-
thing really new come from all this analysis? One nice
thing that comes out is the leading corrections to scaling.
The fixed point of the renormalization group explains the
Gaussian shape of the distribution of N coin flips in the
limit N →∞, but the linearization about the fixed point
gives a systematic understanding of the corrections to the
Gaussian distribution for large but not infinite N .

Usually, the largest eigenvalues are the ones which domi-
nate. In our problem, consider adding a small perturba-
tion to the fixed point f∗ along the two leading irrelevant

directions f3 and f4:

ρ(x) = ρ∗(x) + ε3f3(x) + ε4f4(x). (12.51)

What happens when we add 2	 of our random variables
to one another (corresponding to � applications of our
renormalization group transformation T )? The new dis-
tribution should be given by

T 	(ρ)(x) ∼ ρ∗(x) + λ	
3ε3f3(x) + λ	

4ε4f4(x). (12.52)

Since 1 > λ3 > λ4, the leading correction should be dom-
inated by the perturbation with the largest eigenvalue.

(h) Plot the difference between the binomial distribution
of N coin flips and a Gaussian of the same mean and
width, for N = 10 and N = 20. (The Gaussian has
mean of N/2 and standard deviation

√
N/2, as you can

see from the case N = 1.) Does it approach one of the
eigenfunctions f3 or f4 (equations 12.50)?

(i) Why didn’t a perturbation along f3(x) dominate the
asymptotics? What symmetry forced ε3 = 0? Should flips
of a biased coin break this symmetry?

We should mention that there are other fixed points for
sums of many random variables. If the variance of the
original probability distribution is infinite, one can get
so-called Levy distributions.

(12.8) Period Doubling. (Math, Complexity) (With
Myers. [75])

Chaos is often associated with dynamics which stretch
and fold: when a batch of taffy is being pulled, the mo-
tion of a speck in the taffy depends sensitively on the
initial conditions. A simple representation of this physics
is provided by the map38

f(x) = 4µx(1− x) (12.53)

restricted to the domain (0, 1). It takes f(0) = f(1) = 0,
and f(1/2) = µ. Thus, for µ = 1 it precisely folds the
unit interval in half, and stretches it to cover the original
domain.

The study of dynamical systems (e.g., differential equa-
tions and maps like equation 12.53) often focuses on the
behavior after long times, where the trajectory moves
along the attractor.39 We can study the onset and be-
havior of chaos in our system by observing the evolution
of the attractor as we change µ. For small enough µ, all

38We also study this map in exercises 4.3, 5.11, and 5.13; parts (a) and (b) below
overlap somewhat with exercise 4.3.

39In statistical mechanics, we also focus on the behavior at long times, which we call
the equilibrium state. Microscopically our systems do not settle down onto attrac-
tors: Liouville’s theorem 4.1 guarantees that no points of phase space attract others.
Of course we have attractors for the macroscopic variables in statistical mechanics.
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points shrink to the origin: the origin is a stable fixed
point which attracts the entire interval x ∈ (0, 1). For
larger µ, we first get a stable fixed point inside the inter-
val, and then period doubling.

0 1x0

1

f(
x)

Fig. 12.26 Period–eight cycle. Iterating around the attrac-
tor of the Feigenbaum map at µ = 0.9.

(a) Iteration: Set µ = 0.2; iterate f for some initial
points x0 of your choosing, and convince yourself that
they all are attracted to zero. Plot f and the diagonal
y = x on the same plot. Are there any fixed points other
than x = 0? Repeat for µ = 0.3, µ = 0.7, and 0.8. What
happens?

On the same graph, plot f , the diagonal y = x,
and the segments {x0, x0}, {x0, f(x0)}, {f(x0), f(x0)},
{f(x0), f(f(x0))}, . . . (representing the convergence of the
trajectory to the attractor: see figure 12.26). See how
µ = 0.7 and 0.8 differ. Try other values of µ.

By iterating the map many times, find a point a0 on the
attractor. As above, then plot the successive iterates of a0

for µ = 0.7, 0.8, 0.88, 0.89, 0.9, and 1.0.

You can see at higher µ that the system no longer set-
tles into a stationary state at long times. The fixed
point where f(x) = x exists for all µ > 1/4 – but for
larger µ it is no longer stable. If x∗ is a fixed point (so
f(x∗) = x∗) we can add a small perturbation f(x∗+ ε) ≈
f(x∗) + f ′(x∗)ε = x∗ + f ′(x∗)ε; the fixed point is stable
(perturbations die away) if |f ′(x∗)| < 1.40

In this particular case, once the fixed point goes un-
stable the motion after many iterations becomes peri-
odic, repeating itself after two iterations of the map –
so f(f(x)) has two fixed points. Notice that by the chain

rule d f(f(x))
dx

= f ′(x)f ′(f(x)), and indeed

d f [n]

dx
=
d f(f(. . . f(x) . . . ))

dx
(12.54)

= f ′(x)f ′(f(x)) . . . f ′(f(. . . f(x) . . . )) (12.55)

so the stability of a period N orbit is determined by the
product of the derivatives of f at each point along the
orbit.

(b) Analytics: Find the fixed point x∗(µ) of the
map 12.53, and show that it exists and is stable for
1/4 < µ < 3/4. If you’re ambitious or have a computer
algebra program, show that there is a stable period–two
cycle for 3/4 < µ < (1 +

√
6)/4.

(c) Bifurcation Diagram: Plot the attractor as a func-
tion of µ, for 0 < µ < 1: compare with figure 12.22. (Pick
regularly spaced δµ, run ntransient steps, record ncycles

steps, and plot. After the routine is working, you should
be able to push ntransient and ncycles both larger than 100,
and δµ < 0.01.) Also plot the attractor for another one–
humped map

fsin(x) = B sin(πx), (12.56)

for 0 < B < 1. Do the bifurcation diagrams appear simi-
lar to one another?

α

δ

Fig. 12.27 Self–similarity in period doubling bifurca-
tions. The period doublings occur at geometrically spaced
values of the control parameter µ∞ − µn ∝ δn, and the at-
tractor at the nth period doubling is similar to one half of
the attractor at the (n+1)th period doubling, except inverted
and larger, rescaled by a factor of α. The boxes shown in the
diagram illustrate this self-similarity: each box looks like the
next, except expanded by δ along the horizontal µ axis and
flipped and expanded by α along the vertical axis.

Notice the complex, structured, chaotic region for large µ
(which we study in exercise 4.3). How do we get from a

40In a continuous evolution, perturbations die away if the Jacobian of the deriva-
tive at the fixed point has all negative eigenvalues. For mappings, perturbations die
away if all eigenvalues of the Jacobian have magnitude less than one.
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stable fixed point µ < 3/4 to chaos? The onset of chaos in
this system occurs through a cascade of period doublings.
There is the sequence of bifurcations as µ increases – the
period two cycle starting at µ1 = 3/4, followed by a period
four cycle starting at µ2, period eight at µ3 – a whole
period doubling cascade. The convergence appears geo-
metrical, to a fixed point µ∞:

µn ≈ µ∞ −Aδn (12.57)

so
δ = lim(µn−1 − µn−2)/(µn − µn−1) (12.58)

and there is a similar geometrical self-similarity along the
x axis, with a (negative) scale factor α relating each gen-
eration of the tree (figure 12.27).

In exercise 4.3, we explained the boundaries in the chaotic
region as images of x = 1/2. These special points are also
convenient for studying period doubling. Since x = 1/2
is the maximum in the curve, f ′(1/2) = 0. If it were
a fixed point (as it is for µ = 1/2), it would not only
be stable, but unusually so: a shift by ε away from the
fixed point converges after one step of the map to a dis-
tance εf ′(1/2) + ε2/2f ′′(1/2) = O(ε2). We say that such
a fixed point is superstable. If we have a period N or-
bit that passes through x = 1/2, so that the N th iterate
fN (1/2) ≡ f(. . . f(1/2) . . . ) = 1/2, then the orbit is also su-
perstable, since (by equation 12.54) the derivative of the
iterated map is the product of the derivatives along the
orbit, and hence is also zero.41

These superstable points happen roughly halfway be-
tween the period–doubling bifurcations, and are easier to
locate, since we know that x = 1/2 is on the orbit. Let’s
use them to investigate the geometrical convergence and
self–similarity of the period doubling bifurcation diagram
from part (d). For this part and part (h), you’ll need a
routine that finds the roots G(y) = 0 for functions G of
one variable y.

(d) The Feigenbaum Numbers and Universality:
Numerically, find the values of µs

n at which the 2n–cycle
is superstable, for the first few values of n. (Hint: define

a function G(µ) = f
[2n]
µ (1/2) − 1/2, and find the root as a

function of µ. In searching for µs
n, you’ll want to search

in a range (µs
n−1 + ε, µs

n + (µs
n − µs

n−1)/A) where A ∼ 3
works pretty well. Calculate µ0 and µ1 by hand.) Cal-

culate the ratios
µs

n−1−µs
n−2

µs
n−µs

n−1
: do they appear to converge

to the Feigenbaum number δ = 4.6692016091029909 . . . ?
Extrapolate the series to µ∞ by using your last two reliable

values of µs
n and equation 12.58. In the superstable orbit

with 2n points, the nearest point to x = 1/2 is f [2n−1](1/2).
42

Calculate the ratios of the amplitudes f [2n−1](1/2) − 1/2 at
successive values of n; do they appear to converge to the
universal value α = −2.50290787509589284 . . . ? Calcu-
late the same ratios for the map f2(x) = B sin(πx): do
α and δ appear to be universal (independent of the map-
ping)?

The limits α and δ are independent of the map, so long as
it folds (one hump) with a quadratic maximum. They are
the same, also, for experimental systems with many de-
grees of freedom which undergo the period-doubling cas-
cade. This self–similarity and universality suggests that
we should look for a renormalization–group explanation.

0 1x0

1

f(
f(

x)
) 

=
 f

[2
] (x

)

Fig. 12.28 Renormalization–group transformation.
The renormalization–group transformation takes g(g(x)) in the
small window with upper corner x∗ and inverts and stretches
it to fill the whole initial domain and range (0, 1) × (0, 1).

41This is also why there is a cusp in the density at the boundaries in the chaotic re-
gion: the derivative of the function is zero, so points near x = 1/2 become compressed
into a small region to one side of f(1/2).

42This is true because at the previous superstable orbit, 2n−1 iterates returned us
to the original point x = 1/2.
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0 1x0

1

f[2
56

] (x
)

Fig. 12.29 Self-similar iterated function in period dou-

bling. The function limn→∞ f [2n](x) is self-similar at the
period–doubling fixed point µ∞.

(e) Coarse–graining in time. Plot f(f(x)) vs. x for
µ = 0.8, together with the line y = x (or see figure 12.28).
Notice that the period–two cycle of f , naturally, become a
pair of stable fixed points for f [2]. (We’re coarse–graining
in time – removing every other point in the time series,
by studying f(f(x)) rather than f .) Compare the plot
with that for f(x) vs. x for µ = 0.5. Notice that the
region around the stable fixed points for f [2] = f(f(x))
looks quite a bit like that around the fixed point for f at
the smaller value of µ. Plot f [4](x) at µ = 0.875; notice
again the small one–humped map near x = 1/2.

The fact that the one–humped map reappears in smaller
form just after the period–doubling bifurcation is the ba-
sic reason that succeeding bifurcations so often follow one
another. The fact that many things are universal is due
to the fact that the little one–humped maps have a shape
which becomes independent of the original map after sev-
eral period doublings.

Let’s define this renormalization–group transformation T ,
taking function space into itself. Roughly speaking, T
will take the small upside–down hump in f(f(x)) (fig-
ure 12.28), invert it, and stretch it to cover the inter-
val from (0, 1). Notice in your graphs for part (g) that
the line y = x crosses the plot f(f(x)) not only at
the two points on the period–two attractor, but also (of
course) at the old fixed point x∗[f ] for f(x). This un-
stable fixed point plays the role for f [2] that the origin
played for f : our renormalization–group rescaling must
map (x∗[f ], f(x∗)) = (x∗, x∗) to the origin. The cor-
ner of the window that maps to (1, 0) is conveniently

located at 1 − x∗, since our map happens to be sym-
metric43 about x = 1/2. For a general one–humped map
g(x) with fixed point x∗[g] the side of the window is thus
of length 2(x∗[g] − 1/2). To invert and stretch, we must
thus rescale by a factor α[g] = −1/(2(x∗[g] − 1/2)). Our
renormalization–group transformation is thus a mapping
T [g] taking function space into itself, where

T [g](x) = α[g] (g (g(x/α[g] + x∗[g]))− x∗[g]) . (12.59)

(This is just rescaling x to squeeze into the window, ap-
plying g twice, shifting the corner of the window to the
origin, and then rescaling by α to fill the original range
(0, 1) × (0, 1).)

(f) Scaling and the Renormalization Group: Write
routines that calculate x∗[g] and α[g], and define the
renormalization–group transformation T [g]. Plot T [f ],
T [T [f ]], . . . and compare them. Are we approaching a
fixed point f∗ in function space?

This explains the self–similarity: in particular, the value
of α[g] as g iterates to f∗ becomes the Feigenbaum num-
ber α = −2.5029 . . .

(g) Universality and the Renormalization Group:
Using the sine function of equation 12.56, plot T [T [fsin]]
and compare with T [T [f ]]. Are they approaching the same
fixed point?

By using this rapid convergence in function space, one
can prove both that there will (often) be an infinite geo-
metrical series of period doubling bifurcations leading to
chaos, and that this series will share universal features
(exponents α and δ and features) that are independent of
the original dynamics.

(12.9) Percolation and Universality. (Complexity)
(With Myers. [75])

Cluster Size Distribution: Power laws at pc. A sys-
tem at its percolation threshold pc is self–similar. When
looked at on a longer length scale (say, with a ruler with
notches spaced 1 + ε farther apart, for infinitesimal ε),
the statistical behavior of the large percolation clusters
should be unchanged, if we simultaneously rescale vari-
ous measured properties according to certain rules. Let
x be the length and S be the size (number of nodes)
in a percolation cluster, and let n(S) be the probabil-
ity that a given cluster will be of size S at pc.

44 The
cluster measured with the new ruler will have a length
x′ = x/ (1− ε), a size S′ = S/ (1 + cε), and will occur
with probability n′ = (1 + aε)n.

43For asymmetric maps, we would need to locate this other corner f(f(xc)) = x∗
numerically. As it happens, this asymmetry is irrelevant at the fixed point.

44Hence the probability that a given node is in a cluster of size S is proportional
to Sn(S).
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(a) In precise analogy to our analysis of the avalanche
size distribution (equations 12.3 through 12.6), show that
the probability is a power law, n(S) ∝ S−τ . What is τ ,
in terms of a and c?

In two dimensions, there are exact results known for many
properties of percolation. In particular, it is known that45

τ = 187/91. You can test this numerically, either with
the code you developed for exercise 8.11, or by using the
software at our Web site [108].

(b) Calculate the cluster size distribution n(S), both for
bond percolation on the square lattice and for site per-
colation on the triangular lattice, for a large system size
(perhaps L × L with L = 400) at p = pc.

46 At some
moderate size S you will begin occasionally to not have
any avalanches: plot log(n(S)) versus log(S) for both
bond and site percolation, together with the power law
n(S) ∝ S−187/91 predicted by the exact result. To make
better use of the data, one should bin the avalanches into
larger groups, especially for larger sizes where the data
is sparse. It’s a bit tricky to do this nicely, and you can
get software to do this at our Web site [108]. Do the plots
again, now with all the data included, using bins that start
at size ranges 1 ≤ S < 2 and grow by a factor of 1.2 for
each bin. You should see clear evidence that the distri-
bution of clusters does look like a power law (a straight
line on your log–log plot), and fairly convincing evidence
that the power law is converging to the exact result at
large S and large system sizes.

The Size of the Infinite Cluster: Power laws near
pc. Much of the physics of percolation above pc revolves
around the connected piece left after the small clusters fall
out, often called the percolation cluster. For p > pc this
largest cluster occupies a fraction of the whole system,
often called P (p).47 The fraction of nodes in this largest
cluster for p > pc is closely analogous to the T < Tc mag-
netization M(T ) in the Ising model (figure 12.8) and the
density difference ρl(T )− ρg(T ) near the liquid–gas crit-
ical point (figure 12.8). Indeed, the value P (p) goes to
zero continuously as p→ pc.

Systems that are not at pc are not self–similar. However,
there is a scaling relation between systems at differing val-
ues of p− pc: a system coarsened by a factor (1 + ε) will

be similar to one farther from pc by a factor (1 + ε/ν),
except that the percolation cluster fraction P must be
rescaled upward by (1 + βε/ν).48 This last rescaling re-
flects the fact that the percolation cluster becomes more
dense as you coarse grain, filling in or blurring away the
smaller holes. You may check, just as for the magnetiza-
tion (equation 12.7), that

P (p) ∼ (pc − p)β. (12.60)

In two dimensions, β = 5/36 and ν = 4/3.

(c) Calculate the fraction of nodes P (p) in the largest
cluster, for both bond and site percolation, at a series of
points p = pc + 2−n for as large a percolation lattice as
is convenient, and a good range of n. (Once you get your
method debugged, n = 10 on a L×L lattice with L = 200
should be numerically feasible.) Do a log–log plot of P (p)
versus p − pc, and compare along with the theory predic-
tion, equation 12.60 with β = 5/36.

You should find that the numerics in part (c) are not
compelling, even for rather large system sizes. The two
curves look a bit like power laws, but the slopes βeff on
the log-log plot don’t agree with one another or with the
theory. Worse, as you get close to pc the curves, although
noisy, clearly are not going to zero. Of course this is true:
there will always be a largest cluster, and it is only as the
system size L→∞ that the largest cluster can vanish as
a fraction of the system size.

Finite Sized Scaling (advanced). We can extract better
values for β from small simulations by explicitly including
the length L into our analysis. Let P (p,L) be the mean
fraction of nodes49 in the largest cluster for a system of
size L.

(d) On a single graph, plot P (p,L) versus p for bond per-
colation L = 5, 10, 20, 50, and 100, focusing on the re-
gion around p = pc where they differ from one another.
(At L = 10 you’ll want p to range from 0.25 to 0.75; for
L = 50 the range should be from 0.45 to 0.55 or so.) Five
or ten points will be fine. You’ll discover that the sample–
to–sample variations are large (another finite–size effect),
so average each curve over perhaps ten or twenty realiza-
tions.

45A non-obvious result!
46Conveniently, the critical probability pc = 1/2 for both these systems, see exer-

cise 8.11, part(c). This enormously simplifies the scaling analysis, since we don’t
need to estimate pc as well as the critical exponents.

47For p < pc, there will of course still be a largest cluster, but it will not grow
much bigger as the system size grows and the fraction P (p) → 0 for p < pc as the
system length L → ∞.

49You can take a microcanonical–style ensemble over all systems with exactly pL2

sites or 2pL2 bonds, but it’s simpler just to do an ensemble average over random
number seeds.
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Each curve P (p,L) is rounded near pc, as the character-
istic cluster lengths reach the system box length L. Thus
this rounding is itself a symptom of the universal long–
distance behavior, and we can study the dependence of
the rounding on L to extract better values of the critical
exponent β. We’ll do this using a scaling collapse, rescal-
ing the horizontal and vertical axes so as to make all the
curves fall onto a single scaling function.

First, we must derive the scaling function for P (p, L). We
know that

L′ = L/(1 + ε) (12.61)

(pc − p)′ = (1 + ε/ν)(pc − p)
since the system box length L rescales like any other
length. It is convenient to change variables from p to
X = (pc − p)L1/ν : let P (p, L) = P̄ (L, (pc − p)L1/ν).

(e) Show that X is unchanged under coarse–graining
(equation 12.61). (You can either show X ′ = X up to
terms of order ε2, or you can show dX/dε = 0.)

The combination X = (pc − p)L1/ν is another scaling
variable. The combination ξ = |p − pc|−ν is the way in
which lengths diverge at the critical point, and is called
the correlation length. Two systems of different lengths
and different values of p should be similar if the lengths
are the same when measured in units of ξ. L in units
of ξ is L/ξ = Xν , so different systems with the same
value of the scaling variable X are statistically similar.
We can turn this verbal assertion into a mathematical
scaling form by studying how P̄ (L,X) coarse–grains.

(f) Using equations 12.61 and the fact that P rescales up-
ward by (1 + βε/ν) under coarse–graining, write the sim-
ilarity relationship for P̄ corresponding to equation 12.12
for D̄(S,R). Following our derivation of the scaling
form for the avalanche size distribution (through equa-
tion 12.15), show that P̄ (L,X) = L−β/νP(X) for some
function P(X), and hence

P (p,L) ∝ L−β/νP((p− pc)L
1/ν) (12.62)

Presuming that P(X) goes to a finite value as X → 0,
derive the power law giving the percolation cluster size
L2P (pc, L) as a function of L. Derive the power law vari-
ation of P(X) as X → ∞ using the fact that P (p,∞) ∝
(p− pc)

β .

Now, we can use equation 12.62 to deduce how to rescale
our data. Clearly we can find the finite–sized scaling func-
tion P by plotting Lβ/νP (p,L) versus X = (p− pc)L

1/ν ,
again with ν = 4/3 and β = 5/36.

(g) Plot Lβ/νP (p,L) versus X for X = −0.8,+0.8, plot-
ting perhaps five points for each curve, for both site perco-
lation and bond percolation. Use system sizes L = 5, 10,
20, and 50. Average over many clusters for the smaller
sizes (perhaps 400 for L = 5), and over at least ten even
for the largest.

Your curves should collapse onto two scaling curves, one
for bond percolation and one for site percolation.50 No-
tice here that the finite–sized scaling curves collapse well
for small L, where we would need to go to much larger L
to see good power laws in P (p) directly (part (c)). No-
tice also that both site percolation and bond percolation
collapse for the same value of β, even though the rough
power laws from part (c) seemed to differ. In an experi-
ment (or a less thoroughly understood theory), one would
use these collapses to estimate pc, β, and ν.

(12.10) Hysteresis Model: Scaling and Exponent
Equalities. (Complexity)

Find a Windows machine. Download Matt Kuntz’ hys-
teresis simulation from our course Web site [55, 54].

Run it with the default parameters (two dimensions,
R = 0.9, 1000×1000) You can use the center buttons
in the upper right of the subwindow and main window to
make them expand to fill the screen.

The simulation is a simplified model of magnetic hystere-
sis, described in [109]; see also [110]. The spins si begin
all pointing down, and flip upward as the external field H
grows from minus infinity, depending on the spins of their
neighbors and a local random field hi. The flipped spins
are colored as they flip, with spins in the same avalanche
sharing the same color. An avalanche is a collection of
spins all triggered from the same original spin. In the
parameter box, the Disorder is the ratio R of the root-
mean-square width

√
〈h2

i 〉 to the ferromagnetic coupling
J between spins:

R =
√
〈h2〉/J. (12.63)

Examine the M(H) curve for our model (the fourth but-
ton, marked with the S curve) and the dM/dH curve
(the fifth button, marked with a spiky curve). The in-
dividual avalanches should be visible on the first graph
as jumps, and the second graph as spikes. This kind of
time series (a set of spikes or pulses with a broad range of

50These two curves would also collapse onto one another, given a suitable rescaling
of the horizontal and vertical axes, if we did the triangular lattice in a square box
instead of the rectangular box we get from shearing an L×L lattice. The finite–size
scaling function will in general depend on the boundary condition, and in particular
on the shape of the box.
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sizes) we hear as crackling noise. You can go to our site
http://simscience.org/crackling/ to hear the noise result-
ing from our model, as well as crackling noise we’ve assem-
bled from crumpling paper, from fires and Rice Krispies c©,
and from the earth (earthquakes in 1995, sped up to audio
frequencies).

Examine the avalanche size distribution (button A). The
(unlabeled) vertical axis on the log-log plot gives the
number of avalanches D(S,R); the horizontal axis gives
the size S (with S = 1 on the left-hand side). Equiva-
lently, D(S,R) is the probability distribution that a given
avalanche during the simulation will have size S. The
graph is created as a histogram, and the curve changes
color after the first bin with zero entries (after which the
data becomes much less useful, and should be ignored).

Examine also the spin-spin correlation function C(x,R)
(button C). It shows a log-log plot of the probabil-
ity (vertical-axis) that an avalanche initiated at a point
x0 will extend to include a spin x1 a distance x =√

(x1 − x0)2 away.

Two dimensions is fun to watch, but the scaling behavior
is rather confusing. In three dimensions we have good
evidence for scaling and criticality at a phase transition
in the dynamical evolution. Well below Rc ∼ 2.16 (for
the cubic lattice), one large avalanche flips most of the
spins. Well above Rc all avalanches are fairly small: at
very high disorder each spin flips individually. We mea-
sure the critical disorder as the point, as L → ∞, where
one first finds spanning avalanches, which extend from
one side of the simulation to the other.

Simulate a 3D system with L = 100 (one million spins)
at R = Rc = 2.16 (or larger, if you have a fast machine).
It’ll be faster if you use the sorted list algorithm (which
takes much more memory, though, and will pause for a
while before starting). The display will show a 100×100
cross-section of the 3D avalanches. Notice that there are
many tiny avalanches, and a few blobs. Usually you will
find one large colored region spanning most of the system.
Look at theM(H) curve (the bottom half of the hysteresis
loop, given by the button with the slanted S-like curve).
It has many small vertical jumps (avalanches), and one
large one (corresponding to the spanning avalanche).

(a) What fraction of the system is flipped by the one
largest avalanche, in your simulation? Compare this with
the hysteresis curve at R = 2.4 > Rc. Does it have a
similar big jump, or is it continuous?

Below Rc we get a big jump; above Rc all avalanches
are small compared to the system size. If the system size
were large enough, we believe the fraction of spins flipped
by the spanning avalanche at Rc would go to zero. The
largest avalanche would nonetheless span the system –

just like the percolation cluster at pc spans the system
but occupies volume zero in the limit of large systems.

The other avalanches form a nice power-law size distri-
bution: let’s measure it carefully. Do a set of 10 runs
(# Runs 10) at L = 100 and R = Rc = 2.16. (If your
machine is slow, do five or even one run. If your machine
is fast, or you need to eat dinner anyhow, do 10 runs at
L = 200. Make sure you don’t run out of RAM, though:
if you do, shift to the bits algorithm.)

Watch the avalanches. Notice that sometimes the second-
largest avalanche in the view (the largest being the “back-
ground color”) is sometimes pretty small: this is often
because the cross section we view missed it. Look at the
avalanche size distribution. (You can watch it as it aver-
ages over simulations.) Print it out when the simulations
finish by selecting the graph and selecting Print... from
the Simulation menu. Notice that at Rc you find a pretty
good power law distribution (a straight line on the log-
log plot). This critical exponent is usually denoted by the
exponent combination τ + σβδ:

D(S,Rc) ∼ S−(τ+σβδ). (12.64)

(b) From your plot, measure this exponent combination
from your simulation. It should be close to two. Is your
estimate larger or smaller than two?

This power-law distribution is to magnets what the
Gutenberg-Richter law is to earthquakes. The power law
stems naturally from the self-similarity

We want to explore how the avalanche size distribution
changes as we move above Rc. We’ll do a series of three
or four runs at different values of R, and then graph the
avalanche size distributions after various transformations.
To store the data files, Matt’s program assumes that you
have a certain set of folders. In the directory where the
program HysteresisWin.exe resides, add a folder named
data and in it put a directory named average. The pro-
gram will save data files into those directories (but won’t
create them for you). Check Output Data Files on the
dialog box before starting the runs away from Rc.

Do a run at R = 6 and R = 4 with L = 100, and make
sure you have files aval histo D3 LX in your data direc-
tory. Do runs at R = 3, R = 2.5, and R = 2.16 at
L = 200, using the bits algorithm if you start running
out of RAM (and your disk starts swapping, making a
lot of noise). Bits will start faster than sorted list, but it
will take a long time searching for the last few spins: be
patient if you don’t get the output files for a while after
it looks like it’s finished.

(c) Copy and edit your avalanche size distribution files,
removing the data after the first bin with zero avalanches
in it. Start up a graphics program, and plot the curves on
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a log-log plot: they should look like power laws for small
S and cut off at larger S. Enclose a copy of your plot.

We expect the avalanche size distribution to have the scal-
ing form

D(S,R) = S−(τ+σβδ)D(S(R−Rc)
1/σ). (12.65)

sufficiently close to Rc. This form is “self universal”:
a system at 2(R − Rc) has the same distribution as a
system at R − Rc except for an overall change A in
probability and B in the size scale of the avalanches, so
D(S,R−Rc) ≈ AD(BS, 2(R−Rc)).

(d) What are A and B in this equation for the scaling
form given by equation 12.65?

Of course, at R = 4 and 6 we expect substantial correc-
tions! Let’s see how well the collapse works anyhow.

(e) Multiply the vertical axis of each curve by Sτ+σβδ.
This then should give four curves D(S(R−Rc)

1/σ) which
are (on a log-log plot) roughly the same shape, just shifted
sideways horizontally (rescaled in S by the typical largest
avalanche size, proportional to 1/(R −Rc)

1/σ). Measure
the peak of each curve. Make a table with columns R,
Speak, and R − Rc (with Rc ∼ 2.16). Do a log-log plot
of R − Rc versus Speak, and estimate σ in the expected
power law Speak ∼ (R−Rc)

−1/σ.

(f) Do a scaling collapse: plot Sτ+σβδD(S,R) versus
(R − Rc)

1/σ S for the avalanche size distributions with
R > Rc. How well do they collapse onto a single curve?

This problem gives nice answers only near Rc, where you
need very large systems to get good curves! Olga Perkovic
worked really hard on extracting critical exponents some
years back for her Ph.D. thesis.
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Appendix: Fourier
Methods A

Why are Fourier methods important? Why is it so common and useful
for us to transform functions of time and space y(x, t) into functions of
frequency and wave-vector ỹ(k, ω)?

• Humans hear frequencies. The human ear analyzes pressure vari-
ations in the air into different frequencies. Large frequencies ω are
perceived as high pitches; small frequencies are low pitches. The
ear, very roughly, does a Fourier transform of the pressure P (t)
and transmits |P̃ (ω)|2 to the brain.1 1Actually, this is how the ear seems to

work, but not how it does work. First,
the signal to the brain is time depen-
dent, with the tonal information chang-
ing as a word or tune progresses: it’s
more like a wavelet transform, giving
the frequency content in various time
slices. Second, the phase information
in P̃ is not completely lost: power and
pitch is the primary signal, but the rel-
ative phases of different pitches is also
perceptible. Third, experiments have
shown that the human ear is very non-
linear in its mechanical response.

• Scattering experiments measure Fourier components. Many exper-
imental methods scatter waves (light, X-rays, electrons, or neu-
trons) off of materials (section 10.2). These experiments typically
probe the absolute square of the Fourier amplitude of whatever is
scattering the incoming beam.

• Common mathematical operations become simpler in Fourier space.
Derivatives, correlation functions, and convolutions can be written
as simple products when the functions are Fourier transformed.
This has been important to us when calculating correlation func-
tions (equation 10.3), summing random variables (exercise 1.2 and
exercise 12.7) and calculating susceptibilities (equations 10.28, 10.37,
and 10.51). In each case, we turn a calculus calculation into alge-
bra.

• Linear equations in translationally-invariant systems have solu-
tions in Fourier space. We have used Fourier methods for solving
the diffusion equation (section 2.4.1 and equation 10.20), and more
broadly in our study of correlation functions and susceptibilities
(chapter 10).

In section A.1 we introduce the conventions typically used in physics
for the Fourier series, Fourier transform, and fast Fourier Transform. In
section A.2 we derive their integral and differential properties. In sec-
tion A.3,we interpret the Fourier transform as an orthonormal change-
of-basis in function space. And finally, in section A.4 we explain why
Fourier methods are so useful for solving differential equations by ex-
ploring their connection to translational symmetry.
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A.1 Fourier Conventions

Here we define the Fourier series, the Fourier transform, and the fast
Fourier transform, as they will be used in this text.

The Fourier series for periodic functions of period T is

ỹm =
1
T

∫ T

0

y(t) exp(iωmt)dt, (A.1)

where ωm = 2πm/T , with integer m. The Fourier series can be re-
summed to retrieve the original function using the inverse Fourier series:

y(t) =
∞∑

m=−∞
ỹm exp(−iωmt). (A.2)

In a three–dimensional box of volume V = L × L × L with periodic
boundary conditions, these formulas become

ỹk =
1
V

∫
y(x) exp(ik · x)dV, (A.3)

and
y(x) =

∑
k

ỹk exp(−ik · x). (A.4)

where the k run over a lattice of wave vectors k(m,n,o) = [2πm
L , 2πn

L , 2πo
L ]

in the box.

y(
  )

ω-5 -4 -3 -2 -1

~

0 1 2 3 4 5ωωωωω... ω ω ω ω ωω

ω

Fig. A.1 Approximating the in-
tegral as a sum. By approximat-
ing the integral

∫
ỹ(ω) exp(iωt) dω as a

sum over the equally spaced points ωm,∑
m ỹ(ω) exp(iωmt)∆ω, we can con-

nect the formula for the Fourier trans-
form to the formula for the Fourier se-
ries, explaining the factor 1/2π in equa-
tion A.6.

The Fourier transform is defined for functions on the entire infinite
line:

ỹ(ω) =
∫ ∞

−∞
y(t) exp(iωt) dt (A.5)

where now ω takes on all values.2 We regain the original function by

2Why do we divide by T or L for the
series and not for the transform? Imag-
ine a system in an extremely large box.
Fourier series are used for functions
which extend over the entire box: hence
we divide by the box size to keep them
finite as L → ∞). Fourier transforms
are usually used for functions which
vanish quickly, so they remain finite as
the box size gets large.

doing the inverse Fourier transform.

y(t) =
1
2π

∫ ∞

−∞
ỹ(ω) exp(−iωt) dω. (A.6)

This is related to the inverse Fourier series by a continuum limit (fig-
ure A.1:

1
2π

∫
dω ≈ 1

2π

∑
ω

∆ω =
1
2π

∑
ω

2π
T

=
1
T

∑
ω

(A.7)

where the 1/T here compensates for the factor of T in the definitions
of the forward Fourier series. In three dimensions the Fourier transform
formula A.5 is largely unchanged,

ỹ(k) =
∫
y(x) exp(ik · x)dV (A.8)

while the inverse Fourier transform gets the cube of the prefactor.

y(x) =
1

(2π)3

∫ ∞

−∞
ỹ(k) exp(−ik · x) dk. (A.9)
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The Fast Fourier transform (FFT) starts with N equally spaced data
points y�, and returns a new set of complex numbers ỹFFT

m :

ỹFFT
m =

N−1∑
�=0

y� exp(i2πm�/N), (A.10)

with m = 0, . . . N − 1. The inverse of the FFT is given by

y� = (1/N)
N−1∑
m=0

ỹFFT
m exp(−i2πm�/N). (A.11)

The FFT essentially samples the function y(t) at equally spaced points
points t� = �T/N for � = 0, . . .N − 1.

ỹFFT
m =

N−1∑
�=0

y� exp(iωmt�). (A.12)

It is clear from equation A.10 that ỹFFT
m+N = ỹFFT

m , so the fast Fourier
transform is periodic with period ωN = 2πN/T . The inverse transform
can also be written

y� = (1/N)
N/2∑

m=−N/2+1

ỹFFT
m exp(−iωmt�) (A.13)

where we have centered3 the sum ωm at ω = 0 by using the periodicity.4 3If N is odd, to shift the Fourier series
to place zero in the center of a plot the
sum should be taken over −(N−1)/2 ≤
m ≤ (N − 1)/2.

Often the values y(t) (or the data points y�) are real. In this case,
equations A.1 and A.5 show that the negative Fourier amplitudes are
the complex conjugates of the positive ones: ỹ(ω) = ỹ∗(−ω). Hence for
real functions the real part of the Fourier amplitude will be even and
the imaginary part will be odd.5 5This allows one to write slightly faster

FFTs specialized for real functions.
One pays for the higher speed by an
extra step in unpacking the resulting
Fourier spectrum.

The reader may wonder why there are so many versions of roughly
the same Fourier operation.

(1) The function y(t) can be defined on a finite interval with periodic
boundary conditions on (0, T ) (series, FFT) or defined in all space
(transform). In the periodic case, the Fourier coefficients are de-
fined only at discrete wavevectors ωm = 2πm/T consistent with
the periodicity of the function: in the infinite system the coeffi-
cients are defined at all ω.

(2) The function y(t) can be defined at a discrete set of N points
tn = n∆t = nT/N (FFT), or at all points t in the range (series,
transform). If the function is defined only at discrete points, the
Fourier coefficients are periodic with period ωN = 2π

∆t = 2πN/T .6 6There is one more logical possibility: a
discrete set of points that fill all space:
the atomic displacements in an infinite
crystal, for example. In Fourier space,
such a system has continuous k with pe-
riodic boundary conditions at the edges
of the Brillouin zone at ±K/2 = ±π/a.

4Notice that the FFT returns the negative ω Fourier coefficients as the last half of
the vector, m = N/2+1, N/2+2, . . . . (This works because −N/2+j and N/2+j differ
by N , the periodicity of the FFT). One must be careful about this when using Fourier
transforms to solve calculus problems numerically. For example, to solve the diffusion

equation (section 2.4.1) one must multiply the first half of the vector by e−Dk2
mt =

e−D(m 2π
L )2t but multiply the second half by e−D(K−km)2t = e−D((N−m) 2π

L )2 t.
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The reader may wonder also why our formulas may be different from
those found in other texts. These conventions differ substantially be-
tween fields.

• Some use the notation j =
√
−1 instead of i.

• More substantively, some use the complex conjugate of our for-
mulas, substituting −i for i in all the formulas.7 This alternative7Changing i → −i in the time se-

ries formulas, for example, would make
χ′′(ω) = −Im[χ(ω)] in equation 10.29
and would make χ analytic in the lower
half-plane in figure 10.11.

convention of course makes no change for any real quantity.
• Some use a 1/

√
T and 1/

√
2π factor symmetrically on the Fourier

and inverse Fourier operations.
• Some use frequency and wavelength (f = 2πω and λ = 2π/k)

instead of angular frequency ω and wavevector k. This makes the
transform and inverse transform more symmetric, and avoids some
of the prefactors.

Our Fourier conventions are those most commonly used in physics, at
least for time–frequency transformations. For spatial Fourier transforms,
physicists sometimes use the complex conjugate of our formulas.88This inconsistent convention can be

convenient for wave problems, be-
cause a single Fourier mode then has
the form exp (i(k · x− ωt)), which (for
ω > 0 is a wave propagating in
the direction k: our more consistent
convention unintuitively produces the
wave exp (−i(k · x + ωt)) which unin-
tuitively propagates in the direction
−k. In particular, if we use a sin-
gle Fourier component with our conven-
tions exp(−iωt−ik ·x for Schrödinger’s
equation for a free particle, then the en-
ergy E = i� ∂

∂t
= �ω and the momen-

tum p = −i� ∂
∂x

= −�k.

A.2 Derivatives, Convolutions, and Corre-

lations

The important differential and integral operations become multiplica-
tions in Fourier space. A calculus problem in t or x thus becomes an
algebra exercise in ω or k.

Integrals and derivatives. Because d
dte

−iωt = −iωeiωt, the Fourier
coefficient for the derivative of a function y(t) is −iω times the Fourier
coefficient of the function:

dy/dt =
∑

ỹm (−iωm exp(−iωmt)) =
∑

(−iωmỹm) exp(−iωmt)
(A.14)

so
d̃y

dt

∣∣∣∣∣
ω

= −iωỹω. (A.15)

This holds also for the Fourier transform and the fast Fourier transform.
Since the derivative of the integral gives back the original function, the
Fourier transform for the indefinite integral of a function y is thus given
by dividing by −iω

˜∫
y(t)dt =

ỹω

−iω = i
ỹω

ω
(A.16)

except at ω = 0.99If the mean of the function is zero,
then ỹ(ω)/ω = 0/0 is undefined at
ω = 0. This makes sense: the indef-
inite integral has an arbitrary integra-
tion constant, which gives its Fourier
series an arbitrary value at ω = 0. If
the mean of the function ȳ is not zero,
then the integral of the function will
have a term ȳ(t − t0). Hence it is not
periodic (for Fourier series) or square
integrable (for Fourier transforms).

These relations are invaluable in the solution of many linear partial
differential equations. For example, we saw in section 2.4.1 that the
diffusion equation

∂ρ

∂t
= D

∂2ρ

∂x2
(A.17)
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becomes trivial when we Fourier transform x to k:

∂ρ̃k

∂t
= −Dk2ρ̃, (A.18)

ρ̃k(t) = ρk(0) exp(−Dk2t). (A.19)

Convolutions and correlation functions. The absolute square of
the Fourier transform10 |ỹ(ω)|2 is given by the Fourier transform of the 10The absolute square of the Fourier

transform of a time signal is called the
power spectrum.

correlation function C(τ) = 〈y(t)y(t+ τ)〉 (see equation 10.3):

|ỹ(ω)|2 = ỹ(ω)∗ỹ(ω) =
∫
dt′ e−iωt′y(t′)

∫
dt eiωty(t)

=
∫
dtdt′ eiω(t−t′)y(t′)y(t) =

∫
dτ eiωτ

∫
dt′ y(t′)y(t′ + τ)

=
∫
dτ eiωτT 〈y(t)y(t+ τ)〉 = T

∫
dτ eiωτC(τ)

= T C̃(ω), (A.20)

where T is the total time t during which the Fourier spectrum is be-
ing measured. Thus, as noted in section 10.2, scattering experiments,
by measuring the square of the Fourier transform, give us the spatial
correlation function for the system.

The convolution11 h(z) of two functions f(x) and g(y) is defined as 11Convolutions show up in sums and
Greens functions. The sum z = x + y
of two random vector quantities with
probability distributions f(x) and g(y)
has a probability distribution given
by the convolution of f and g (exer-
cise 1.2): (The value x is chosen for
the first random variable with probabil-
ity density f(x): to get a sum of z the
second variable y must have the value
z−x, with probability density g(z−x).)
An initial condition f(x, t0) propagated
in time to t0 + τ is given by convolv-
ing with a Greens function g(y, τ) (sec-
tion 2.4.2).

h(z) =
∫
f(x)g(z − x) dx. (A.21)

The Fourier transform of the convolution is the product of the Fourier
transforms. In three dimensions,12

12Clearly the convolution and correla-
tion theorems are closely related: we
do convolutions in time and correla-
tions in space to illustrate both the one-
dimensional and vector versions of the
calculation.

f̃(k)g̃(k) =
∫
eik·xf(x)dx

∫
eik·yg(y)dy

=
∫
eik·(x+y)f(x)g(y)dxdy =

∫
eik·zdz

∫
f(x)g(z − x)dx

=
∫
eik·zh(z)dz = h̃(k). (A.22)

A.3 Fourier Methods and Function Space

.
There is a nice analogy between the space of vectors r in three di-

mensions and the space of functions y(t) periodic with period T , which
provides a simple way of thinking about Fourier series. It is natural to
define our function space to including all complex functions y(t). (After
all, we want the complex Fourier plane-waves e−iωmt to be in our space.)
Let us list the features in common:

• Vector Space. A vector r = (r1, r2, r3) in R3 can be thought
of as a real-valued function on the set {1, 2, 3}. Conversely, the
function y(t) can be thought of as a vector with one component
for each t ∈ [0, T ).
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Mathematically, this is an evil analogy. Most functions which have
independent random values for each point t are undefinable, un-
integrable, and generally pathological. The space becomes well
defined if we confine ourselves to functions y(t) whose absolute
squares |y(t)|2 can be integrated. This vector space of functions is
called L2.

• Inner Product. The analogy to the dot product of two 3D vec-
tors r · s = r1s1 + r2s2 + r3s3 is an inner product between two
functions y and z:

y · z =
1
T

∫ T

0

y(t)z∗(t) dt. (A.23)

You can think of this inner product as adding up all the products
ytz

∗
t over all points t, except that we weight each point by dt/T .

• Norm. The distance between two 3D vectors r and s is given
by the norm of the difference |r − s|. The norm of a vector is
the square root of the dot product of the vector with itself, so
|r − s| =

√
(r − s) · (r − s). To make this inner product norm

work in function space, we need to know that the inner product
of a function with itself is never negative. This is why, in our
definition A.23, we took the complex conjugate of z(t). This norm
on function space is called the L2 norm,

||y||2 =

√
1
T

∫ T

0

|y(t)|2. (A.24)

Thus our restriction to square-integrable functions makes the norm
of all functions in our space finite.1313Another important property is that

the only vector whose norm is zero is
the zero vector. There are many func-
tions whose absolute squares have in-
tegral zero, like the function which is
zero except at T/2, where it is one, and
the function which is zero on irrationals
and one on rationals. Mathematicians
finesse this difficulty by defining the
vectors in L2 not to be functions, but
rather to be equivalence classes of func-
tions whose relative distance is zero.
Hence the zero vector in L2 includes all
functions with norm zero.

• Basis. A natural basis for R3 is given by the three unit vectors x̂1,
x̂2, x̂3. A natural basis for our space of functions is given by the
functions f̂m = e−iωmt, with ωm = 2πm/T to keep them periodic
with period T .

• Orthonormality. The basis in R3 is orthonormal, with x̂i · x̂j

equaling one if i = j and zero otherwise. Is this also true of the
vectors in our basis of plane waves? They are normalized

||f̂m||22 =
1
T

∫ T

0

|e−iωmt|2 dt = 1. (A.25)

They are also orthogonal, with

f̂m · f̂n =
1
T

∫ T

0

e−iωmteiωnt dt =
1
T

∫ T

0

e−i(ωm−ωn)t dt

=
1

−i(ωm − ωn)T
e−i(ωm−ωn)t

∣∣∣T
0

= 0 (A.26)

unless m = n, since e−i(ωm−ωn)T = e−i2π(m−n) = 1.
• Coefficients. The coefficients of a 3D vector are given by taking

dot products with the basis vectors: rn = r · x̂n. The analogy in
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function space gives us the definition of the Fourier coefficients,
equation A.1:

ỹm = y · f̂m =
1
T

∫ T

0

y(t) exp(iωmt)dt. (A.27)

• Completeness. We can write an arbitrary 3D vector r by sum-
ming the basis vectors weighted by the coefficients: r =

∑
rnx̂n.

The analogy in function space gives us the formula A.2 for the
inverse Fourier series:

y =
∞∑

m=−∞
ỹmf̂m

y(t) =
∞∑

m=−∞
ỹm exp(−iωmt). (A.28)

One says that a basis is complete if any vector can be expanded in
that basis. Our functions f̂m are complete in L2.14 14You can imagine that proving they

are complete would involve showing
that there are no functions in L2 which
are “perpendicular” to all the Fourier
modes. This is the type of tough ques-
tion that motivates the mathematical
field of real analysis.

Our coefficient equation A.27 follows from our completeness equa-
tion A.28 and orthonormality:

ỹ�
?= y · f̂� =

(∑
m

ỹmf̂m

)
· f̂�

=
∑
m

ỹm

(
f̂m · f̂�

)
= ỹ� (A.29)

or, writing things out

ỹ�
?=

1
T

∫ T

0

y(t)eiω�t dt

=
1
T

∫ T

0

(∑
m

ỹme
−iωmt

)
eiω�t dt

=
∑
m

ỹm

(
1
T

∫ T

0

e−iωmteiω�t dt

)
= ỹ�. (A.30)

Our function space, together with our inner product (equation A.23),
is a Hilbert space (a complete inner product space).

A.4 Fourier and Translational Symmetry

Why are Fourier methods so useful? In particular, why are the solu-
tions to linear differential equations so often given by plane waves: sines
and cosines and eikx?15 Most of our basic equations are derived for 15It’s true, we’re making a big deal

about what’s usually called the separa-
tion of variables method. But why does
separation of variables so often work,
and why does it always end up with
sines?

systems with a translational symmetry. Time translational invariance
holds for any system without an explicit external time–dependent force;
invariance under spatial translations holds for all homogeneous systems.
c©James P. Sethna, April 19, 2005 Entropy, Order Parameters, and Complexity
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Why are plane waves special for systems with translational invariance?
Plane waves are the eigenfunctions of the translation operator. Define
T∆, an operator which takes function space into itself, and acts to shift
the function a distance ∆ to the right:1616That is, if g = T∆{f}, then g(x) =

f(x − ∆), so g is f shifted to the right
by ∆. T∆{f}(x) = f(x− ∆). (A.31)

Any solution f(x, t) to a translation–invariant equation will be mapped
by T∆ onto another solution. Moreover, T∆ is a linear operator (trans-
lating the sum is the sum of the translated functions). If we think of
the translation operator as a big matrix acting on function space, we
can ask for its eigenvalues and eigenvectors (now called eigenfunctions)
fk.1717You are familiar with eigenvectors of

3 × 3 symmetric matrices M , which go
to multiples of themselves when mul-
tiplied by M , M · �en = λn�en. The
translation T∆ is a linear operator on
function space just as M is a linear op-
erators on R3.

T∆{fk}(x) = fk(x− ∆) = λkfk(x). (A.32)

This equation is of course solved by our complex plane waves solutions
fk(x) = e−ikx with λk = eik∆.18

18The real exponential eAx is also

an eigenstate, with eigenvalue e−A∆.
Indeed, the analogous eigenstate for
time translations is the solution for
the time–translation–invariant diffu-
sion equation, which we’ve seen has so-
lutions which decay in time as e−ωkt,
with ωk = Dk2. Exponentially decay-
ing solutions in space also arise in some
translation–invariant problems, such as
quantum tunneling into barriers and
the penetration of electromagnetic ra-
diation (light) into metals.

∆T {f}(x)

∆
f(x)

Fig. A.2 The mapping T∆ takes func-
tion space into function space, shifting
the function to the right by a distance
∆. For a physical system that is trans-
lation invariant, a solution translated
to the right is still a solution.

Why are these eigenfunctions useful? The time evolution of an eigen-
function must have the same eigenvalue λ! The argument is something
of a tongue–twister: translating the time evolved eigenfunction gives the
same answer as time evolving the translated eigenfunction, which is time
evolving λ times the eigenfunction, which is λ times the time evolved
eigenfunction.19

The fact that the different eigenvalues don’t mix under time evolu-
tion is precisely what made our calculation work: time evolving A0e

−ikx

had to give a multiple A(t)e−ikx since there is only one eigenfunction
of translations with the given eigenvalue. Once we’ve reduced the par-
tial differential equation to a differential equation for a few eigenstate
amplitudes, the calculation becomes analytically simple enough to do.

Quantum physicists will recognize the tongue–twister above as a state-
ment about simultaneously diagonalizing commuting operators: since
translations commute with time evolution, one can find a complete set
of translation eigenstates which are also time evolution solutions. Math-
ematicians will recognize it from group representation theory: the solu-
tions to a translation–invariant linear differential equation form a repre-
sentation of the translation group, and hence they can be decomposed
into irreducible representations of that group. These approaches are ba-
sically equivalent, and very powerful. One can also use these approaches
for systems with other symmetries. For example, just as the invariance

19Written out in equations, this simple idea is even more obscure. Let Ut be the
time–evolution operator for a translationally invariant equation (like the diffusion
equation of section 2.2). That is, Ut{ρ} evolves the function ρ(x, τ) into ρ(x, τ + t).
(Ut is not translation in time, but evolution in time.) Because our system is transla-
tion invariant, translated solutions are also solutions for translated initial conditions:
T∆{Ut{ρ}} = Ut{T∆{ρ}}. Now, if ρk(x, 0) is an eigenstate of T∆ with eigenvalue λk,
is ρk(x, t) = Ut{ρk}(x) an eigenstate with the same eigenvalue? Yes indeed:

T∆{ρk(x, t)} = T∆{Ut{ρk(x, 0)}} = Ut{T∆{ρk(x, 0)}} (A.33)

= Ut{λkρk(x, 0)} = λkUt{ρk(x, 0)} = λkρk(x, t).

because the evolution law Ut is linear.
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of homogeneous systems under translations leads to plane-wave solutions
with definite wave vector k,

• The invariance of isotropic systems (like the hydrogen atom) under
the rotation group leads naturally to solutions involving spherical
harmonics with definite angular momenta � and m,

• The invariance of the strong interaction under SU(3) leads natu-
rally to the ‘8-fold way’ families of mesons and baryons, and

• The invariance of our universe under the Poincaré group of space–
time symmetries (translations, rotations, and Lorentz boosts) leads
naturally to particles with definite mass and spin!

Exercises

(A.1) Fourier for a Waveform. (Basic,Math)

A musical instrument playing a note of frequency ω1 gen-
erates a pressure wave P (t) periodic with period 2π/ω1:
P (t) = P (t+ 2π/ω1). The complex Fourier series of this
wave (equation A.2) is zero except for m = ±1 and ±2,
corresponding to the fundamental ω1 and the first over-
tone. At m = 1, the Fourier amplitude is 2−i, at m = −1
it is 2 + i, and at m = ±2 it is 3. What is the pressure
P (t)?

(A) exp ((2 + i)ω1t) + 2 exp (3ω1t)

(B) exp ((2ω1t)) exp (i(ω1t)) ∗ 2 exp (3ω1t)

(C) cos 2ω1t− sinω1t+ 2 cos 3ω1t

(D) 4 cosω1t− 2 sinω1t+ 6 cos 2ω1t

(E) 4 cosω1t+ 2 sinω1t+ 6 cos 2ω1t

(A.2) Relations between the Fouriers. (Math)

In this exercise, we explore the relationships between the
Fourier series and the fast Fourier transform. The first
is continuous and periodic in real space, and discrete and
unbounded in Fourier space; the second is discrete and pe-
riodic both in real and in Fourier space. Thus, we must
again convert integrals into sums (as in figure A.1).

As we take the number of points N in our FFT to ∞ the
spacing between the points gets smaller and smaller, and
the approximation of the integral as a sum gets better
and better.

Let y	 = y(t	) where t	 = �(T/N) = �(∆t). Approxi-
mate the Fourier series integral A.1 above as sum over
y	, (1/T )

∑N−1
	=0 y(t	) exp(−iωmt	)∆t. For small positive

m, give the constant relating ỹF F T
m to the Fourier series

coefficient ỹm.

(A.3) Fourier Series: Computation. (Math,Basic)

In this exercise, we will use the computer to illustrate fea-
tures of Fourier series and discrete fast Fourier transforms
using sinusoidal waves. Download the program Fourier
from the course Web page [108], or the hints file for the
programming language of your choice.

First, we will take the Fourier series of periodic functions
y(x) = y(x + L) with L = 20. We will sample the func-
tion at N = 32 points, and use a FFT to approximate
the Fourier series. The Fourier series will be plotted as
functions of k, at −kN/2, . . . , kN/2−2, kN/2−1. (Remem-
ber that the negative m points are given by the last half
of the FFT.)

(a) Analytically derive the Fourier series ỹm in this inter-
val for cos(k1x) and sin(k1x). (Hint: they are zero except
at two values of m = ±1.)

(b) What spacing δk between k-points km do you expect
to find? What is kN/2? Evaluate each both as a formula
involving L and numerically for L = 20.

Start the program Fourier. You should have a graph of a
cosine wave A cos(k(x−x0)), evaluated at 32 points from
x = 0 to 20 as described above, with k = k1 = 2π/L,
A = 1, and x0 = 0. You should also have a graph of the
Fourier series of the cosine: black is the real part, red is
the imaginary part. Play with the program, trying var-
ious combinations of the real-space, Fourier-space, and
parameter options.20

20You can always return to the initial configuration by quitting the program and
starting again.
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(c) Check your predictions from part (a) for the Fourier
series for cos(k1x) and sin(k1x). Check your predictions
from part (b) for δk and for kN/2. Zoom in on the plots to
get better accuracy for your measurements. (Hint: you
can find kN/2 by observing the range on the Fourier series
plot, which should go from k−N/2 to kN/2−1 for even N .)

Increase the number of waves, keeping the number of data
points fixed. Notice that the Fourier series looks fine, but
that the real-space curves quickly begin to vary in ampli-
tude, much like the patterns formed by beating (superim-
posing two waves of different frequencies). By increasing
the number of data points, you can see that the beating
effect is due to the small number of points we sample. Of
course, even for large numbers of sampled points N , at
very small wavelengths (when we get close to kN/2) beat-
ing will still happen. Try various numbers of waves m up
to and past m = N/2.

The Fourier series ỹm runs over all integers m. The fast
Fourier transform runs only over 0 ≤ m < N . There are
three ways to understand this difference: function space
dimension, wavelengths, and aliasing.

Function space dimension. The space of periodic
functions y(x) on 0 ≤ x < L is infinite, but we are sam-
pling them only at N = 32 points. The space of possible
fast Fourier series must also have N dimensions. Now,
each coefficient of the FFT is complex (two dimensions),
but the negative frequencies are complex conjugate to
their positive partners (giving two net dimensions for the
two wavevectors km and k−m ≡ kN−m). If you’re fussy,
ỹ0 has no partner, but is real (only one dimension), and
if N is even ỹ−N/2 also is partnerless, but is real. So N
k-points are generated by N real points.

Wavelength. The points that we sample the function
are spaced δx = L/N apart. It makes sense that the
fast Fourier transform would stop when the wavelength
becomes close to δx: how can we resolve wiggles shorter
than our sample spacing?

(d) Give a formula for y	 for a cosine wave at kN , the
first wavelength not calculated by our FFT. It should sim-
plify to a constant. Give the simplified formula for y	 at
kN/2, the first missing wavevector after we’ve shifted the
large m’s to N −m to get the negative frequencies. Check
your prediction for what y	 looks like for cos(kNx) and
cos(kN/2x) using the program Fourier. The Fourier se-
ries for the latter should have only one spike, at the edge
of the plot.

So, the FFT returns Fourier components only until there
is one point per bump (half-period) in the cosine wave.

Aliasing. Suppose our function really does have wig-
gles with shorter distances than our sampling distance
δx. Then its fast Fourier transform will have contribu-
tions to the long-wavelength coefficients ỹF F T

m from these

shorter wavelength wiggles: specifically ỹm±N , ỹm±2N ,
etc.

(e) Let’s work out a particular case of this: a short-
wavelength cosine wave. On our sampled points x	, show
that exp(ikm±Nx	) = exp(ikmx	). Show that the short
wavelength wave cos(km+Nx	) = cos(kmx	), and hence
that its fast Fourier transform will be a bogus peak at the
long wavelength km. Check your prediction for the trans-
forms of cos(kx) for k > kN/2 using the program.

If you sample a function at N points with Fourier com-
ponents beyond kN/2, their contributions get added to
Fourier components at smaller wave-vectors. This is
called aliasing, and is an important source of error in
Fourier methods. We always strive to sample enough
points to avoid it.

You should see at least once how aliasing affects the FFT
of functions that are not sines and cosines. Go back to
the default values for the program, and shift to the func-
tion Packet. Change the width σ of the packet to make
it thinner. Notice that when the packet begins to look
ratty (as thin as the spacing between the sampled points
x	) the Fourier series hits the edges and overlaps: high
frequency components are “folded over” or aliased into
the lower frequencies.

Make sure you understand the Fourier series for cosines
and sines with various numbers of wavelengths: how x0

changes cosines to sines, how the wave-vector k is related
to L and the number of wavelengths, how the real and
imaginary parts vary with the phase of the wave, and
why the imaginary parts of the Fourier series for sin(kx)
have the signs that they do.

Windowing. One often needs to take Fourier series of
functions which are not periodic in the interval. Set the
number of data points N to 256 (powers of two are faster)
and compare m = 20 with an “illegal” non-integer value
m = 20.5. Notice that the real-space function y(x) is
not periodic in the interval [0, L) for m = 20.5. Notice
that the Fourier series looks pretty complicated. Each of
the two peaks has broadened into a whole staircase. Try
looking at the power spectrum (which is proportional to
|ỹ|2), and again compare m = 20 with m = 20.5. This is
a numerical problem known as windowing, and there are
various schemes to minimize its effects as well.

(A.4) Fourier Series of a Sinusoid. (Basic,Math)

Which picture in figure A.3 represents the Fourier se-
ries (equation A.2) associated with the function f(x) =
3 sin(x) + cos(2x)? (The solid line is the real part, the
dashed line is the imaginary part.)

(A.5) Fourier Transforms and Gaussians: Compu-
tation. (Math,Basic)
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Fig. A.3

In this exercise, we will use the computer to illustrate
features of Fourier transforms, focusing on the particular
case of Gaussian functions, but illustrating general prop-
erties. Download the program Fourier from the course
Web page [108], or the hints file for the programming
language of your choice.

The Gaussian distribution (also known as the normal dis-
tribution) has the form

G(x) =
1√
2πσ

exp
(−(x− x0)

2/2σ2
)
. (A.34)

where σ is the standard deviation and x0 is the center.
Let

G0(x) =
1√
2π

exp
(−x2/2

)
(A.35)

be the Gaussian of mean zero and σ = 1. The Fourier
transform of G0 is another Gaussian, of standard devia-
tion one, but no normalization factor:21

G̃0(k) = exp(−k2/2). (A.37)

In this exercise, we study how the Fourier transform of
G(x) varies as we change σ and x0.

Widths. As we make the Gaussian narrower (smaller
σ), it becomes more pointy. Shorter lengths mean higher
wave-vectors, so we expect that its Fourier transform will
get wider.

(a) Starting with the Gaussian with σ = 1, zoom in to
measure the width of its Fourier transform at some con-
venient height. (The full width at half maximum, FWHM,
is a sensible choice.) Change σ to 2 and to 0.1, and mea-
sure the widths, to verify that the Fourier space with goes
inversely with the real width.

(b) Show that this rule is true in general. Change vari-
ables in equation A.5 to show that if z(x) = y(Ax), that
z̃(k) = ỹ(k/A)/A. Using equation A.35 and this general
rule, write a formula for the Fourier transform of a Gaus-
sian centered at zero with arbitrary width σ.

(c) Compute the product ∆x∆k of the FWHM of the
Gaussians in real and Fourier space. (Your answer should
be independent of the width σ.) This is related to the
Heisenberg uncertainty principle, ∆x∆p ∼ �, which you
learn about in quantum mechanics.

Translations. Notice that a narrow Gaussian centered
at some large distance x0 is a reasonable approximation

21 There is a misleadingly elementary-looking derivation of this formula, which is
useful to see even though it’s only correct for an advanced reason. We complete the
square inside the exponent, and change variables from x to y = x− ik:

G̃0(k) =

∫ ∞
−∞

eikxG0(x) dx =
1√
2π

∫ ∞
−∞

eikx exp(−x2/2) dx

=
1√
2π

∫ ∞
−∞

exp(−(x− ik)2/2) dx exp((−ik)2/2)

=

[∫ ∞−ik

−∞−ik

1√
2π

exp(−y2/2) dy
]

exp(−k2/2). (A.36)

If we are sloppy about the integration limits, this would give us the answer: the term
inside the brackets is one (the integral of a normalized Gaussian), leaving us with
exp(−k2/2). However, the change-of-variables here changes the path in the complex
plane: the integration contour is along the line Im[y] = −k. To justify shifting this
path, we need advanced methods from complex analysis: Cauchy’s theorem, the fact
that the exponential has no singularities in the complex plane, and the fact that
exp(−y2) gets very small along the two closing segments at large Re[y] = ±X.
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to a δ-function. We thus expect that its Fourier trans-
form will be similar to the plane wave G̃(k) ∼ exp(ikx0)
we would get from δ(x− x0).

(d) Change the center of the Gaussian. How does the
Fourier transform change? Convince yourself that it is
being multiplied by the factor exp(ikx0). How does the
power spectrum |G̃(ω)|2 change as we change x0?

(e) Show that this rule is also true in general. Change
variables in equation A.5 to show that if z(x) = y(x−x0)
then z̃(k) = exp(ikx0)ỹ(k). Using this general rule, ex-
tend your answer from part (b) to write the formula for
the Fourier transform of a Gaussian of width σ and center
x0.

(A.6) Uncertainty. (Basic,Math)
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)

G
0
(x)

G(x)

Fig. A.4 Real Space Gaussians

The dashed line in figure A.4 shows

G0(x) = 1/
√

2π exp(−x2/2). (A.38)

The dark line shows another function G(x). The areas
under the two curves G(x) and G0(x) are the same. The
dashed lines in the choices of figure A.5 represent the
Fourier transform G̃0(k) = exp(−k2/2). Which part in
figure A.5 has a solid curve that represents the Fourier
transform of G?

(A.7) White Noise. (Math)

White light is a mixture of light of all frequencies. White
noise is a mixture of sound of all frequencies, with con-
stant average power per unit frequency. The hissing noise

you hear on radio and TV between stations is approxi-
mately white noise: there are a lot more high frequencies
than low ones, so it sounds high-pitched.

Download the program Fourier from the course Web
page [108], or the hints file for the programming language
of your choice.

What kind of time signal would generate white noise?
Start Fourier, and select the function White Noise. You
should see a jagged, random function: each y	 = y(�L/N)
is chosen independently as a random number.22 Change
the number of data points to, say, 1024.

You should also see the Fourier transform of the noise
signal. The Fourier transform of the white noise looks
amazingly similar to the original signal. It is different,
however, in two important ways. First, it is complex:
there is a real part (black) and an imaginary part (red).
The second is for you to discover.

Zoom in near k = 0 on the Fourier plot, and describe
how the Fourier transforms of the noisy signal are differ-
ent from random. In particular, what symmetry do the
real and imaginary parts have? Can you show that this is
true for any real function y(x)?

Now select the Power Spectrum for the right graph. The
average power at a certain frequency in a time signal f(t)
is proportional to |f̃(k)|2, which is what we plot on the
right side. Check that the power is noisy, but on average
is crudely independent of frequency. (You can check this
best by varying the random number seed.) White noise is
usually due to random, uncorrelated fluctuations in time.

(A.8) Fourier Matching. (Basic,Math)

Which of the first six parts (1-6) of figure A.6 is the
Fourier representation of each of the last three parts (A-
C)? (Dark line is real part, lighter dotted line is imaginary
part.) (This exercise should be fairly straightforward af-
ter doing exercises A.3, A.5 and A.7.)

(A.9) Fourier Series and Gibbs Phenomenon.
(Math)

22We choose the numbers with probability given by the Gaussian distribution
G0(y), but it would look about the same if we took numbers with a uniform proba-
bility in, say, the range (−1, 1).
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In this exercise, we’ll look at the Fourier series for a couple
of functions, the step function (above) and the triangle
function.

Consider a function y(x) which is A in the range 0 <
x < L/2 and minus A in the range L/2 < x < L (shown
above). It’s a kind of step function, since it takes a step
downward at L/2.23

(a) As a crude approximation, the step function looks a
bit like a chunky version of a sine wave, A sin(2πx/L). In
this crude approximation, what would the complex Fourier

series be (equation A.2)?

(b) Show that the odd coefficients for the complex Fourier
series of the step function are ỹm = 2Ai/(mπ) (m odd).
What are the even ones? Check that the coefficients ỹm

with m = ±1 are close to those you guessed in part (a).

(c) Setting A = 2 and L = 10, plot the partial sum of the
Fourier series (equation A.1) for m = −n,−n+ 1, . . . , n
with n = 1, 3, and 5. (You’ll likely need to combine
the coefficients ỹm and ỹ−m into sines or cosines, unless
your plotting package knows about complex exponentials.)
Does it converge to the step function? If it is not too
inconvenient, plot the partial sum up to n = 100, and
concentrate especially on the overshoot near the jumps in
the function at 0, L/2, and L. This overshoot is called
the Gibbs phenomenon, and occurs when you try to ap-
proximate functions y(x) with discontinuities.

One of the great features of the Fourier series is that it
makes taking derivatives and integrals easier. What does
the integral of our step function look like? Let’s sum the
Fourier series for it!

(d) Calculate the Fourier series of the integral of the step
function, using your complex Fourier series from part (b)
and the formula A.16 for the Fourier series of the inte-
gral. Plot your results, doing partial sums up to ±m = n,
with n = 1, 3, and 5, again with A = 2 and L = 10.
Would the derivative of this function look like the step
function? If it’s convenient, do n = 100, and notice there
are no overshoots.

23It can be written in terms of the standard Heaviside step function Θ(x) = 0 for
x < 0 and Θ(x) = 1 for x > 0, as y(x) = A (1 − 2Θ(x− L/2)).
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[70] Paul C. Martin. Problème à n corps (many-body physics). In
Measurements and Correlation Functions, pages 37–136. Gordon
and Breach, New York, 1968.

[71] Jon Mathews and Robert L. Walker. Mathematical Methods of
Physics. Addison-Wesley, Redwood City, California, 1964.

[72] Gary McGath and Sergey Buldyrev. The self–avoiding random
walk. polymer.bu.edu/java/java/saw/saw.html. BU Center for
Polymer Studies.

[73] N. D. Mermin. Lattice gas with short–range pair interactions and
a singular coexistence–curve diameter. Physical Review Letters,
26:957–959, 1971.

To be pub. Oxford UP, ∼Fall’05 www.physics.cornell.edu/sethna/StatMech/

http://polymer.bu.edu/java/java/saw/saw.html
http://polymer.bu.edu/java/java/saw/saw.html


BIBLIOGRAPHY 291

[74] Jehoshua Bruck Michael Gibson. Efficient exact stochastic simu-
lation of chemical systems with many species and many channels.
J. Phys. Chem., 104:1876–1899, 2000.

[75] Christopher R. Myers. This exercise, and the associated software,
was written in collaboration with Christopher R. Myers.

[76] Mark E. J. Newman. Models of the small world. J. Stat. Phys.,
101:819–841, 2000.

[77] Mark E. J. Newman. Scientific collaboration networks. ii. short-
est paths, weighted networks, and centrality. Physical Review E,
64:016132, 2001.

[78] Mark E. J. Newman and G. T. Barkema. Monte Carlo Methods
in Statistical Physics. Oxford University Press, Oxford, 1999.

[79] Mark E. J. Newman and D. J. Watts. Renormalization–group
analysis of the small–world network model. Physics Letters A,
263:341–346, 1999.

[80] National Institute of Health. National human genome re-
search institute – talking glossary: Rna. www.genome.gov
/Pages/Hyperion//DIR/VIP/Glossary/Illustration/rna.shtml.

[81] L. Onsager. Motion of ions – principles and concepts. Science, 166
(3911):1359, 1969. 1968 Nobel Prize lecture.

[82] Giorgio Parisi. Statistical Field Theory. Perseus Book Group,
1988.

[83] Leon Poon. Cat map. University of Maryland Chaos Group,
www-chaos.umd.edu/misc/catmap.html.

[84] William H. Press, Saul A. Teukolsky, William T. Vetterling, and
Brian P. Flannery. Numerical Recipes in C++ [C, Fortran, ...],
The Art of Scientific Computing, 2nd ed. Cambridge University
Press, Cambridge, 2002.

[85] K. Rajagopal and F. Wilczek. Enforced electrical neutrality of the
color–flavor locked phase. Physical Review Letters, 86:3492–3495,
2001.

[86] Kristen S. Ralls and Robert A. Buhrman. Microscopic study of
1/f noise in metal nanobridges. Phys. Rev. B, 44:5800–17, 1991.

[87] Kristen S. Ralls, Daniel C. Ralph, and Robert A. Buhrman.
Individual-defect electromigration in metal nanobridges. Phys.
Rev. B, 40:11561–70, 1989.

[88] K. O. Rasmussen, T. Cretegny, P. G. Kevrekidis, and N. Gronbech-
Jensen. Statistical mechanics of a discrete nonlinear system. Phys.
Rev. Lett., 84:3740, 2000.

[89] Matthew Sands Richard P. Feynman, Robert B. Leighton. The
Feynman Lectures on Physics. Addison-Wesley, Menlo Park, CA,
1963.

[90] Craig Rottman, Michael Wortis, J. C. Heyraud, and J. J.
Métois. Equilibrium shapes of small lead crystals: Observation
of pokrovsky-talapov critical behavior. Physical Review Letters,
52:1009–1012, 1984.

[91] Andrew D. Rutenberg and Ben P. Vollmayr-Lee. Anisotropic
coarsening: Grain shapes and nonuniversal persistence exponents.
Phys. Rev. Lett., 83:3772–3775, 1999.

c©James P. Sethna, April 19, 2005 Entropy, Order Parameters, and Complexity

http://www.genome.gov/Pages/Hyperion//DIR/VIP/Glossary/Illustration/rna.shtml
http://www.genome.gov/Pages/Hyperion//DIR/VIP/Glossary/Illustration/rna.shtml
http://www-chaos.umd.edu/misc/catmap.html
http://www-chaos.umd.edu/misc/catmap.html


292 BIBLIOGRAPHY

[92] Evelyn Sander. Marlowe the cat starring in the arnol’d cat map
movie. math.gmu.edu/∼sander/movies/arnold.html.

[93] Daniel V. Schroeder. Thermal Physics. Addison-Wesley Longman,
San Francisco, 2000.

[94] U. T. Schwarz, L. Q. English, and A. J. Sievers. Experimental
generation and observation of intrinsic localized spin wave modes
in an antiferromagnet. Phys. Rev. Lett., 83:223, 1999.

[95] James P. Sethna. Frustration, curvature, and defect lines in metal-
lic glasses and cholesteric blue phases. Physical Review B, 31:6278,
1985.

[96] James P. Sethna. Order parameters, broken symmetry, and
topology. In 1991 Lectures in Complex Systems: The Pro-
ceedings of the 1991 Complex Systems Summer School, Santa
Fe, New Mexico, volume XV. Addison Wesley, 1992.
www.lassp.cornell.edu/sethna/OrderParameters/Intro.html.

[97] James P. Sethna. The blue phases. www.lassp.cornell.edu
/sethna/LiquidCrystals/BluePhase, 1995.

[98] James P. Sethna. Equilibrium crystal shapes.
www.lassp.cornell.edu sethna/CrystalShapes, 1995.

[99] James P. Sethna. Jupiter! the three body problem.
www.physics.cornell.edu/sethna/teaching/sss/jupiter/jupiter.htm,
1996.

[100] James P. Sethna. Cracks and elastic theory. www.lassp.cornell.edu
/sethna/Cracks/Zero Radius of Convergence.html, 1997.

[101] James P. Sethna. Quantum electrodynamics has zero radius of
convergence. www.lassp.cornell.edu/sethna/Cracks/QED.html,
1997.

[102] James P. Sethna. Stirling’s formula for n! www.lassp.cornell.edu
/sethna/Cracks/Stirling.html, 1997.

[103] James P. Sethna. What is coarsening? www.lassp.cornell.edu
/sethna/Coarsening/What Is Coarsening.html, 1997.

[104] James P. Sethna. What is the radius of convergence? www.lassp
.cornell.edu/sethna/Cracks/What Is Radius of Convergence.html,
1997.

[105] James P. Sethna. The ising lab. www.physics.cornell.edu/sethna
/teaching/sss/ising/ising.htm, 1998.

[106] James P. Sethna. Wolff algorithm ising model. www.physics
.cornell.edu/sethna/StatMech/LmcSolution.exe, 2000.

[107] James P. Sethna. Frustration and curvature.
www.lassp.cornell.edu /sethna/FrustrationCurvature, 2002.

[108] James P. Sethna. Entropy, order parameters, and emergent prop-
erties web site. www.physics.cornell.edu/sethna/StatMech/, 2004.

[109] James P. Sethna, Karin A. Dahmen, and Christopher R. Myers.
Crackling noise. Nature, 410:242, 2001.

[110] James P. Sethna and Matthew C. Kuntz James P. Sethna. Hys-
teresis and avalanches. www.lassp.cornell.edu /sethna/hysteresis/,
1996.

To be pub. Oxford UP, ∼Fall’05 www.physics.cornell.edu/sethna/StatMech/

http://math.gmu.edu/~sander/movies/arnold.html
http://math.gmu.edu/~sander/movies/arnold.html
http://www.lassp.cornell.edu/sethna/OrderParameters/Intro.html
http://www.lassp.cornell.edu/sethna/OrderParameters/Intro.html
http://www.lassp.cornell.edu/sethna/LiquidCrystals/BluePhase
http://www.lassp.cornell.edu/sethna/LiquidCrystals/BluePhase
http://www.lassp.cornell.edusethna/CrystalShapes
http://www.lassp.cornell.edusethna/CrystalShapes
http://www.physics.cornell.edu/sethna/teaching/sss/jupiter/jupiter.htm
http://www.physics.cornell.edu/sethna/teaching/sss/jupiter/jupiter.htm
http://www.lassp.cornell.edu/sethna/Cracks/Zero_Radius_of_Convergence.html
http://www.lassp.cornell.edu/sethna/Cracks/Zero_Radius_of_Convergence.html
http://www.lassp.cornell.edu/sethna/Cracks/QED.html
http://www.lassp.cornell.edu/sethna/Cracks/QED.html
http://www.lassp.cornell.edu/sethna/Cracks/Stirling.html
http://www.lassp.cornell.edu/sethna/Cracks/Stirling.html
http://www.lassp.cornell.edu/sethna/Coarsening/What_Is_Coarsening.html
http://www.lassp.cornell.edu/sethna/Coarsening/What_Is_Coarsening.html
http://www.lassp.cornell.edu/sethna/Cracks/What_Is_Radius_of_Convergence.html
http://www.lassp.cornell.edu/sethna/Cracks/What_Is_Radius_of_Convergence.html
http://www.physics.cornell.edu/sethna/teaching/sss/ising/ising.htm
http://www.physics.cornell.edu/sethna/teaching/sss/ising/ising.htm
http://www.physics.cornell.edu/sethna/StatMech/LmcSolution.exe
http://www.physics.cornell.edu/sethna/StatMech/LmcSolution.exe
http://www.lassp.cornell.edu/sethna/FrustrationCurvature
http://www.lassp.cornell.edu/sethna/FrustrationCurvature
http://www.physics.cornell.edu/sethna/StatMech/
http://www.physics.cornell.edu/sethna/StatMech/
http://www.lassp.cornell.edu/sethna/hysteresis/
http://www.lassp.cornell.edu/sethna/hysteresis/


BIBLIOGRAPHY 293

[111] James P. Sethna, Joel D. Shore, and Ming Huang. Scaling theory
for the glass transition. Physical Review B, 44:4943, 1991. (Based
on discussions with Daniel Fisher, see erratum Phys. Rev. B 47,
14661 (1993)).

[112] Claude E. Shannon. A mathematical theory of communication.
The Bell System Technical Journal, 27:379–423, 1948.

[113] Joel D. Shore, Mark Holzer, and James P. Sethna. Logarithmically
slow domain growth in nonrandom frustrated systems: Ising mod-
els with competing interactions. Phys. Rev. B, 46:11376–11404,
1992.

[114] Eric D. Siggia. Late stages of spinodal decomposition in binary
mixtures. Phys. Rev. A, 20:595, 1979.

[115] Public Broadcasting System. The formula that shook the world.
www.pbs.org/wgbh/nova/stockmarket/formula.html , 2000.

[116] Lei-Han Tang and Qing-Hu Chen. Finite-size and boundary effects
on the i-v characteristics of two-dimensional superconducting net-
works. Physical Review B, 67:024508, 2003.

[117] S. B. Thomas and G. S. Parks. J. Phys. Chem., 35:2091, 1931.
[118] Chikashi Toyoshima, Masayoshi Nakasako, Hiromi Nomura, and

Haruo Ogawa. Crystal structure of the calcium pump of sarcoplas-
mic reticulum at 2.6̊a resolution. Nature, 405:647–655, 2000.

[119] Princeton University. Adapted from author’s graduate preliminary
exam, fall 1977.

[120] Richard Vawter. Van der waals equation of state. www.ac.wwu.edu
/∼vawter/PhysicsNet/Topics/Thermal/vdWaalEquatOfState.html.

[121] Duncan J. Watts and Stephen H. Strogatz. Collective dynamics
of “small–world” networks. Nature, 393:440–442, 1998.

[122] H. G. Wells. The Time Machine. Online., several places, 1895.
[123] H. Yin, M. D. Wang, K. Svoboda, R. Landick, S. M. Block, and

J. Gelles. Modeling molecular motors. Science, 270:1653–1657,
1995.

[124] J. Zinn-Justin. Quantum field theory and critical phenomena (3rd
edition). Oxford University Press, Oxford, 1996.

[125] A. Zunger, L. G. Wang, G. L. W. Hart, and M. Sanatai. Ob-
taining ising-like expansions for binary alloys from first principles.
Modelling Simul. Mater. Sci. Eng., 10:685–706, 2002.

c©James P. Sethna, April 19, 2005 Entropy, Order Parameters, and Complexity

http://www.pbs.org/wgbh/nova/stockmarket/formula.html
http://www.pbs.org/wgbh/nova/stockmarket/formula.html
http://www.ac.wwu.edu/~vawter/PhysicsNet/Topics/Thermal/vdWaalEquatOfState.html
http://www.ac.wwu.edu/~vawter/PhysicsNet/Topics/Thermal/vdWaalEquatOfState.html

	Why Study Statistical Mechanics?
	Exercises
	Quantum Dice.
	Probability Distributions.
	Waiting times.
	Stirling's Approximation and Asymptotic Series.
	Random Matrix Theory.


	Random Walks and Emergent Properties
	Random Walk Examples: Universality and Scale Invariance
	The Diffusion Equation
	Currents and External Forces.
	Solving the Diffusion Equation
	Fourier
	Green

	Exercises
	Random walks in Grade Space.
	Photon diffusion in the Sun.
	Ratchet and Molecular Motors.
	Solving Diffusion: Fourier and Green.
	Solving the Diffusion Equation.
	Frying Pan
	Thermal Diffusion.
	Polymers and Random Walks.


	Temperature and Equilibrium
	The Microcanonical Ensemble
	The Microcanonical Ideal Gas
	Configuration Space
	Momentum Space

	What is Temperature?
	Pressure and Chemical Potential
	Entropy, the Ideal Gas, and Phase Space Refinements
	Exercises
	Escape Velocity.
	Temperature and Energy.
	Hard Sphere Gas
	Connecting Two Macroscopic Systems.
	Gauss and Poisson.
	Microcanonical Thermodynamics
	Microcanonical Energy Fluctuations.


	Phase Space Dynamics and Ergodicity
	Liouville's Theorem
	Ergodicity
	Exercises
	The Damped Pendulum vs. Liouville's Theorem.
	Jupiter! and the KAM Theorem
	Invariant Measures.


	Entropy
	Entropy as Irreversibility: Engines and Heat Death
	Entropy as Disorder
	Mixing: Maxwell's Demon and Osmotic Pressure
	Residual Entropy of Glasses: The Roads Not Taken

	Entropy as Ignorance: Information and Memory
	Nonequilibrium Entropy
	Information Entropy

	Exercises
	Life and the Heat Death of the Universe.
	P-V Diagram.
	Carnot Refrigerator.
	Does Entropy Increase?
	Entropy Increases: Diffusion.
	Information entropy.
	Shannon entropy.
	Entropy of Glasses.
	Rubber Band.
	Deriving Entropy.
	Chaos, Lyapunov, and Entropy Increase.
	Black Hole Thermodynamics.
	Fractal Dimensions.


	Free Energies
	The Canonical Ensemble
	Uncoupled Systems and Canonical Ensembles
	Grand Canonical Ensemble
	What is Thermodynamics?
	Mechanics: Friction and Fluctuations
	Chemical Equilibrium and Reaction Rates
	Free Energy Density for the Ideal Gas
	Exercises
	Two--state system.
	Barrier Crossing.
	Statistical Mechanics and Statistics.
	Euler, Gibbs-Duhem, and Clausius-Clapeyron.
	Negative Temperature.
	Laplace.
	Lagrange.
	Legendre.
	Molecular Motors: Which Free Energy?
	Michaelis-Menten and Hill
	Pollen and Hard Squares.


	Quantum Statistical Mechanics
	Mixed States and Density Matrices
	Quantum Harmonic Oscillator
	Bose and Fermi Statistics
	Non-Interacting Bosons and Fermions
	Maxwell-Boltzmann ``Quantum'' Statistics
	Black Body Radiation and Bose Condensation
	Free Particles in a Periodic Box
	Black Body Radiation
	Bose Condensation

	Metals and the Fermi Gas
	Exercises
	Phase Space Units and the Zero of Entropy.
	Does Entropy Increase in Quantum Systems?
	Phonons on a String.
	Crystal Defects.
	Density Matrices.
	Ensembles and Statistics: 3 Particles, 2 Levels.
	Bosons are Gregarious: Superfluids and Lasers
	Einstein's A and B
	Phonons and Photons are Bosons.
	Bose Condensation in a Band.
	Bose Condensation in a Parabolic Potential.
	Light Emission and Absorption.
	Fermions in Semiconductors.
	White Dwarves, Neutron Stars, and Black Holes.


	Calculation and Computation
	What is a Phase? Perturbation theory.
	The Ising Model
	Magnetism
	Binary Alloys
	Lattice Gas and the Critical Point
	How to Solve the Ising Model.

	Markov Chains
	Exercises
	The Ising Model.
	Coin Flips and Markov Chains.
	Red and Green Bacteria
	Detailed Balance.
	Heat Bath, Metropolis, and Wolff.
	Stochastic Cells.
	The Repressilator.
	Entropy Increases! Markov chains.
	Solving ODE's: The Pendulum
	Small World Networks.
	Building a Percolation Network.
	Hysteresis Model: Computational Methods.


	Order Parameters, Broken Symmetry, and Topology
	Identify the Broken Symmetry
	Define the Order Parameter
	Examine the Elementary Excitations
	Classify the Topological Defects
	Exercises
	Topological Defects in the XY Model.
	Topological Defects in Nematic Liquid Crystals.
	Defect Energetics and Total Divergence Terms.
	Superfluid Order and Vortices.
	Landau Theory for the Ising model.
	Bloch walls in Magnets.
	Superfluids: Density Matrices and ODLRO.


	Correlations, Response, and Dissipation
	Correlation Functions: Motivation
	Experimental Probes of Correlations
	Equal--Time Correlations in the Ideal Gas
	Onsager's Regression Hypothesis and Time Correlations
	Susceptibility and the Fluctuation--Dissipation Theorem
	Dissipation and the imaginary part ''()
	Static susceptibility "03650(k)
	(r,t) and Fluctuation--Dissipation

	Causality and Kramers Krönig
	Exercises
	Fluctuations in Damped Oscillators.
	Telegraph Noise and RNA Unfolding.
	Telegraph Noise in Nanojunctions.
	Coarse-Grained Magnetic Dynamics.
	Noise and Langevin equations.
	Fluctuations, Correlations, and Response: Ising
	Spin Correlation Functions and Susceptibilities.


	Abrupt Phase Transitions
	Maxwell Construction.
	Nucleation: Critical Droplet Theory.
	Morphology of abrupt transitions.
	Coarsening.
	Martensites.
	Dendritic Growth.

	Exercises
	van der Waals Water.
	Nucleation in the Ising Model.
	Coarsening and Criticality in the Ising Model.
	Nucleation of Dislocation Pairs.
	Oragami Microstructure.
	Minimizing Sequences and Microstructure.


	Continuous Transitions
	Universality.
	Scale Invariance
	Examples of Critical Points.
	Traditional Equilibrium Criticality: Energy versus Entropy.
	Quantum Criticality: Zero-point fluctuations versus energy.
	Glassy Systems: Random but Frozen.
	Dynamical Systems and the Onset of Chaos.

	Exercises
	Scaling: Critical Points and Coarsening.
	RG Trajectories and Scaling.
	Bifurcation Theory and Phase Transitions.
	Onset of Lasing as a Critical Point.
	Superconductivity and the Renormalization Group.
	RG and the Central Limit Theorem: Short.
	RG and the Central Limit Theorem: Long.
	Period Doubling.
	Percolation and Universality.
	Hysteresis Model: Scaling and Exponent Equalities.


	Appendix: Fourier Methods
	Fourier Conventions
	Derivatives, Convolutions, and Correlations
	Fourier Methods and Function Space
	Fourier and Translational Symmetry
	Exercises
	Fourier for a Waveform.
	Relations between the Fouriers.
	Fourier Series: Computation.
	Fourier Series of a Sinusoid.
	Fourier Transforms and Gaussians: Computation.
	Uncertainty.
	White Noise.
	Fourier Matching.
	Fourier Series and Gibbs Phenomenon.



