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Preface

This book is intended as a thorough but concise course on the funda-
mentals of classical thermodynamics. My overriding objective in writing
has been to achieve a clear and stimulating exposition: to give an account
of the subject that is easy to learn from.

There are many ways of writing a textbook on thermodynamics
because the subject is relevant to so many branches of science. The
terms of reference of Equilibrium thermodynamics are primarily those
of the undergraduate physicist; but it is also suitable for use in materials
sciences, engineering and chemistry. The subject is usually taught in the
first or second year of a UK undergraduate course but the book takes
the student to degree standard and beyond. Prerequisites are a knowl-
edge of elementary mechanics, calculus and electromagnetism, and a
familiarity with school-level thermal physics. In overseas universities,
thermodynamics may be taught somewhat later in an undergraduate
course to allow more time for preparatory work.

Many books and courses on thermal physics attempt to develop
classical thermodynamics and statistical mechanics side by side. Although
it is essential that the relationship between the two be established at
some stage of a scientific undergraduate’s education, it is best to teach
classical thermodynamics first and separately, for the ability to use it
well depends largely on knowing what it can achieve without appealing
to the microscopic nature of things. On the other hand, while it might
be an interesting intellectual exercise to develop thermodynamics
without reference to microscopic structure, it would be obscurantist and
educationally foolish to do so. Therefore, in this book, I make free use
of microscopic ideas to illuminate the subject and to bring out its
relevance to modern physics; but I do not include any statistical
mechanics nor any irreversible thermodynamics: hence the title.

xi



xii Preface

Many current undergraduate courses tend to neglect classical thermo-
dynamics in favour of time spent on statistical mechanics because the
concern of the latter with microscopic models makes it appear more
‘fundamental’. This is educationally unfortunate. It also places the
student at a serious disadvantage when he seeks to take the statistical
approach beyond the most elementary level since the techniques of
classical thermodynamics become essential for the manipulation of statis-
tical results. By the time it is needed, the classical mode of argument
should be as readily called to hand as the techniques of elementary
mathematics.

In writing any book on classical thermodynamics there is the prob-
lem of deciding how to develop the second law. The advocates of a
traditional approach based on the classical statements of Clausius or
Kelvin argue that these are such simple generalizations of everyday
experience that the experimental basis of the law is clearly displayed
and it is therefore easy to accept it. However, within the structure of
the subject, the essential function of the second law is the introduction
of entropy, and to arrive at entropy from the Clausius or Kelvin state-
ments requires a long chain of argument involving heat engines, cyclic
processes and the rest. The advantage that may be gained by giving
insight at an early stage into the functioning of thermal machines is
counterbalanced by the deviousness of the route by which one arrives
at entropy.

At the opposite extreme are the approaches by which the existence
and properties of entropy are set out in a set of axioms. This has the
advantage of introducing entropy directly, but it is too far abstracted
from the experimental foundations for my liking.

Between the extremes lies the statement of Carathéodory which is
based directly on the essential physical facts and leads quickly to entropy.
The arguments are necessarily more abstract than those associated with
the classical statements, but I have found them quite acceptable to the
average student when treated via the idea, introduced by Buchdahl, of
empirical entropy.

In this book I first give the traditional treatment and then break off
in chapter 6 to develop the second law from the statement of
Carathéodory. Chapter 6 may be omitted without disturbing the basic
narrative, but I hope it will not be, for to reassemble the structure of
the second law from the statement of Carathéodory after having first
followed through the traditional development is a great help to a proper
understanding of entropy.



Preface Xiii

At the end of the book, I have gathered together a number of problems
which I hope will prove both instructive and stimulating. Many are based
on old Cambridge University examination questions. Throughout the
book I have, of course, used SI units. As regards choice of symbols and
conventions used for showing units, I have generally followed the recom-
mendations of the Symbols Committee of the Royal Society and current
British Standards. Technical details of temperature scales and ther-
mometry are in line with current decisions of the International Commit-
tee of Weights and Measures.

It would be unwise to write something in the nature of a textbook
without drawing on the experience of those who have tackled the task
before and it would be impossible to acknowledge all those who have
contributed indirectly to its making. Of books I referred to often I should
mention the classic texts of Zemansky and Pippard, and Wilks’ book
on the third law was a great help as I set about writing chapter 12. I
also owe much to members of this laboratory, in particular to Dr John
Ashmead and Professor Sir Brian Pippard for helpful comments and
profitable arguments. Finally, I must thank generations of undergradu-
ates and other readers of earlier versions of this book who, by their
questions, comments and suggestions have contributed in no small
measure to this text. '

C. J. Adkins
Cambridge 1983
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Introduction

1.1. Origins of thermodynamics

The increase of mechanization during the nineteenth century
involved the construction of machines, such as the steam engine, for the
conversion of heat energy into mechanical power. It was from the study
of these heat engines that thermodynamics grew. The initial development
was rapid. By 1900, the subject was firmly established, and although its
application had at first been restricted to thermal engineering, its laws
were soon recognized to be of such great generality as to be useful and
important in many other branches of science also. Broadly speaking,
thermodynamics is applicable to all processes in which temperature or
heat play an important part. In physics, it provides a way of understanding
phenomena as different as thermal radiation on the one hand and the
low temperature properties of paramagnetic salts on the other. It supplies
the basic theory of chemical reactions and underlies much of chemical
engineering. It is applicable not only to steam engines but to refrigeration
and rocketry.

With this very wide range of application, it is possible to adopt various
terms of references within which to develop the subject. We shall choose
examples which are primarily of interest to the physicist. The funda-
mental structure of the subject, however, is little affected by the applica-
tions one has in mind. This is because the basic theory can be developed
in a precise and self-contained way with much of the rigour of a
mathematical argument. To some this makes the subject seem too
abstract and difficult, but we shall try to avoid this impression by
developing the theory in the context of its applications to real physical
systems.
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1.2, The macroscopic approach

Thermodynamics sets out to describe and correlate the directly
observable properties of substances: the volume of a gas, the expansion
of a wire, the polarization of a dielectric. These are all macroscopic
quantities, properties of the materials in bulk. If we were interested in
the pressure exerted by a gas on the walls of its container, we could, in
principle, adopt the microscopic approach and start from the equations
of motion of the individual molecules, examine the statistics of their
motions and finally arrive at an expression for the macroscopic quantity,
pressure, in terms of momentum exchange at the boundaries of the
container. But for many purposes an analysis in microscopic terms is
unnecessary. The laws of thermodynamics enable us to interrelate the
macroscopic quantities without making any microscopic assumptions at
all. The great generality of thermodynamics is a direct consequence of
this. By avoiding commitment to any particular microscopic interpreta-
tion, thermodynamics is not limited to particular applications nor is it
subject to the fashions of microscopic theory.

On the other hand, it is possible to associate particular kinds of
macroscopic behaviour with certain general kinds of microscopic change:
an anomaly in a specific heat, for instance, may result from a change of
atomic ordering in a crystal. However, since no microscopic assumptions
are built into the thermodynamics it is never possible to identify a
microscopic process by thermodynamic reasoning alone.

It is perhaps because thermodynamics is not concerned with funda-
mentals in the microscopic sense that it sometimes does not appeal
readily to the physicist; but he will disregard it at his peril. It is precisely
because it avoids microscopic theories that it is so valuable. It often
yields answers to problems where an understanding of the fundamental
processes involved might be difficult or impossible. It also helps to
prevent mistakes; for any result which does not satisfy the requirements
of thermodynamics must be wrong. But, perhaps more important, a
physicist’s training is not only concerned with learning fundamental
theories but also with developing a sensibility to the way in which physical
systems behave, and here thermodynamics has a peculiar contribution
to make by providing a very general framework of ideas from which the
understanding of particular systems may more readily be achieved.

1.3. The role of the laws

In seeking to derive relationships between directly observable
quantities, thermodynamics is essentially formulating rules which these
quantities must obey under given conditions. These may apply to a
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substance undergoing a particular process, or they may be transformation
rules which are useful in relating quantities which might be difficult to
measure to ones which are more easily measured. For example, we will
see that the ratio of the isothermal to the adiabatic compressibility is
equal to the ratio of the principal heat capacities:

Such a relation follows logically from the laws of thermodynamics. If
they are true, then this relationship must always be true. If an experiment
gave some other result, then there would be something wrong with the
experiment, for otherwise the whole structure of thermodynamics would
collapse.

In order to derive these results in as simple a way as possible, it
becomes necessary to define many new functions and concepts such as
temperature, internal energy and entropy. With a given mass of gas, for
example, we find that we usually only need specify its pressure and its
volume to define its state precisely. These quantities are direct observ-
ables. But if we wish to describe how the pressure and volume will
change if that gas flows down a tube of varying cross-section, it is
convenient to introduce a quantity called enthalpy which is conserved
in the process. These new and more abstract quantities enable us to
characterize processes or conditions in a simple way. They might be
constants in a given process or they might take some extremal value
under given conditions. Having defined these new quantities, we must,
of course, expect them to be related to each other and to the direct
observables in a way which follows logically from their definitions.

Of these new concepts, three are fundamental. Each follows from one
of the laws of thermodynamics. From the zeroth law we are able to give
a precise meaning to femperature. From the first law we are able to
define internal energy, and from the second, entropy.

14. Systems, surroundings, and boundaries

A thermodynamic system is that portion of the universe which
we select for investigation. A system may be simple or complex; it may
be homogeneous or it may consist of many parts. A gas in a cylinder is
a simple system. A mixture of phenol and water is a more complicated
one: it contains two different substances or components, and for certain
concentrations and temperatures separates into two phases. Phase is
defined as a system or part of a system which is homogeneous and has
definite boundaries. A phase may be a chemically pure substance, or it
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may contain more than one component as is the case with the phenol-
water mixture. When the phenol-water mixture separates, both com-
ponents are present in both phases, but in different concentrations.

Everything outside the system is called the surroundings, and the
system is separated from the surroundings by its boundary (Fig. 1.1). In
many cases, the boundary of a system may simply be its surface, as with
a drop of liquid; but it is often convenient to contain the system within
walls of some special kind that allow or prevent various sorts of interac-
tion between the system and its surroundings. When we come to consider
how a system may interact with its surroundings we shall find that
interactions may be divided into two kinds. We may influence a system
by doing work on it, or we may influence it thermally. Compression and
magnetization are examples of work-like processes while heating in a
flame is an example of a thermal process. Then a rigid wall prevents a
system from changing its volume or shape so that no work of a mechanical
nature may be done on it. Walls which prevent any thermal interaction
are called adiabatic,’ and a system enclosed in adiabatic walls is said to
be thermally isolated. Such a system cannot exchange heat with its
surroundings, but it may be possible to do work on it. Any changes
which it undergoes will be adiabatic changes. A Dewar vessel provides
a good approximation to adiabatic walls. A wall which prevents any
interaction between the system and its surroundings is called an isolating
wall, and the system is then said to be (completely) isolated. Walls which
are not adiabatic (but through which a system may be influenced ther-
mally) are called diathermal and two systems separated by a diathermal
wall are said to be in thermal contact.

Fig. 1.1. A thermodynamic system.

system

! Adiathermal is also sometimes used.
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In discussing chemical systems which contain different components,
it is sometimes convenient to have a section of wall through which one
or more of the components may pass while others are contained. Such
a wall is called semipermeable. Hot quartz is permeable to helium but
impermeable to other gases.

A system much used in developing the basic theory of thermodynamics
is that of a gas contained in a smooth cylinder by a frictionless leakproof
piston. This is a particularly helpful model system to refer to as it is
easy to visualize how changes take place and how thermodynamic
parameters may be varied.

1.5. Thermodynamic variables

The thermodynamic variables comprise the direct observables
and the ‘new’ quantities discussed in section 1.3. They may be divided
into two classes. Those of the first class are essentially local in character
and include such quantities as pressure, electric field, force, and density.2
They are known as the intensive variables. Those of the second class
correspond to some measure of the system as a whole and include such
quantities as mass, volume, internal energy, and length. These are
proportional to the mass of the system if the intensive variables are kept
constant, and for this reason are known as extensive variables.

2 These quantities are not strictly local in the sense that it is possible to define
them at a point. For example, we would define the local pressure in a gas by

p = lim (F/a)

where F is the normal force exerted across a small area a. However, when
as lz, where [ is the mean free path of the gas molecules, the discrete
nature of the molecular impacts becomes apparent and this quantity will
fluctuate violently. As a becomes smaller, it becomes necessary to average
over longer and longer times in order to achieve any similarity between
pressure as we have defined it and its macroscopic counterpart. Similar
restrictions apply to other intensive variables. In the case of electric field, the
limit is set by the uncertainty principle, for we would define the local electric
field by

E = lim (p/e)

where p is the rate of change of the momentum of a particle with charge e
which we confine in the volume V. As we make V smaller so as to define E
more nearly at a point, we eventually introduce a large uncertainty in the
momentum of the particle by the restriction ApV '/ ~#, and it becomes
impossible to observe p. Fortunately, these restrictions do not concern us
here, because by adopting the macroscopic approach in thermodynamics we
can never hope to use it to describe systems on the atomic or quantum scale.
Indeed, it is precisely because macroscopic quantities cease to have meaning
that we cannot do so.
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It is often convenient to refer to extensive quantities in terms of their
values per unit mass of the system. They are then called specific variables.
Often, extensive variables are represented by capital letters and the
derived specific quantities by the corresponding small letter. Thus, the
volume of unit mass is called the specific volume and is given the
symbol v.

Another useful convention is to add a suffix m to an extensive quantity
when the amount of substance referred to is one mole. Thus, G, is the
heat capacity at constant pressure (unit, J K'l) and C,,, is the molar
heat capacity at constant pressure (unit, J K ! mol™). The molar suffix
is frequently dropped if there is no danger of confusion.

Many of the direct observables form conjugate pairs such that their
product has the dimensions of energy. For these, the intensive member
of each pair has the character of a force, and the extensive member that
of a displacement. Some of these are listed in Table 1.1, together with
the kind of system to which they particularly apply.

Any quantity which takes a unique value for each state of a system
is called a function of state. The direct observables are obviously functions
of state. In principle, it must be possible to express any function of state
in terms of any set of variables which is sufficient to define the state of
the system.

1.6. Thermodynamic equilibrium

When a system suffers a change in its surroundings, it will usually
be seen to undergo change. If the bulb of a thermometer is placed in a
beaker of warm water, the mercury will begin to expand and will start

Table 1.1. Some conjugate pairs of thermodynamic variables

System Intensive variable Extensive variable

fluid pressure, p volume, V

filament tensional force, f length, L

film surface tension, y area, A

electrical potential difference, & charge, Z

dielectric electric field, E electric dipole moment,” p
magnetic flux density, B magnetic dipole moment, m
all systems temperature, T entropy, $

generalized force, X displacement, x

¢ We prefer to use the conventional symbol p here despite the occasional
possibility of confusion with pressure when problems involve both variables.
In practice, the significance of the symbol is usually obvious from the
dimensions of the quantities with which it appears.
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to rise in the capillary. After. a time, however, the system will be found
to reach a state where no further change takes place and it is then said
‘to have come to thermodynamic equilibrium. In general, the approach
to thermodynamic equilibrium will involve both thermal and work-like
interactions with the surroundings.

Similarly, if we place two systems in thermal contact, we generally
find that changes will occur in both. When there is no longer any change
(each has reached a state of thermodynamic equilibrium) the two systems
are said to be in thermal equilibrium. In this case, we have prevented
work-like interaction and allowed thermal interaction only. We shall
eventually describe such a situation by saying that heat flows from one
system to the other until they are at the same temperature.

Like mechanics, thermodynamics knows several kinds of equilibrium,
and we define the stability of the equilibrium in a similar way. Thus a
system is said to be in stable equilibrium if, after being slightly displaced,
it returns to its original state. A system is in metastable equilibrium if
it is stable for small displacements but unstable for larger ones. Certain
systems also exhibit neutral equilibrium. Such systems may be displaced
but will remain in the displaced condition when released. If a system is
unstable to infinitesimal displacements it is said to be in unstable equili-
brium.

It is worth pointing out that in the strictest sense neither mechanics
nor thermodynamics knows truly unstable equilibrium, and the reason
in both cases is the same. Equilibrium is defined in terms of macroscopic
variables which are large scale averages of quantities which, on the
microscopic scale, are subject to fluctuations. Pressure exerted by a gas
is the macroscopic average of the impulses from discrete molecular
impacts. The atoms of a solid are always in thermal motion. Although
in large systems these fluctuations may be relatively unimportant, any
fluctuation, however small, is, by definition, sufficient to destroy unstable
equilibrium. Thus no truly unstable equilibrium exists although in some
systems the size of the displacement for which the system remains in
metastable equilibrium may be so small that the system is loosely spoken
of as being unstable. Being defined in terms of macroscopic quantities,
equilibrium is itself a macroscopic concept. We may only apply the idea
of equilibrium to large bodies, to systems of many particles. The
Brownian movement of a colloid particle shows that it is certainly not
in equilibrium. On the other hand, the mean density of colloid particles
at different heights in a suspension does obey rules which may be derived
from our ideas of equilibrium. Some examples of the different kinds of
equilibrium are illustrated in Fig. 1.2.
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1.7. Thermodynamic reversibility

When a system undergoes a series of changes a thermodynamic
process is said to take place. A process is said to be reversible if, and
only if, its direction can be reversed by an infinitesimal change in the
conditions; it is not enough if it may only be reversed by a finite change.
Thermodynamic reversibility requires two conditions to be satisfied: the
process must be quasistatic and there must be no hysteresis.

Quasistatic processes. To be quasistatic, a process must be carried out
so slowly that every state through which the system passes may be
considered an equilibrium state. Strictly speaking, this means that the
process should be carried out infinitely slowly. Fast changes cause dis-
equilibrium between different parts of a system. For example, suppose
a gas is to be compressed from the state (p;, V1) to the state (p2, V2)
(Fig. 1.3). If the compression is performed sufficiently slowly, there will

Fig. 1.2. Different kinds of equilibrium.

Stable equilibrium. A ball in a depression and a cylinder of gas at constant temperature
will both eventually return to their initial states if displaced and released.

Neutral equilibrium. A ball on a horizontal plane may be displaced to any position on
the plane and will remain there when released. Similarly, a system consisting of a liquid
and its vapour at constant temperature also shows neutral equilibrium, for the vapour
pressure depends only on temperature so that as long as both phases are present,
change of volume simply causes condensation or vaporization without change of
pressure and the system remains in equilibrium with its surroundings.

Metastable equilibrium. A ball in a small hollow on an otherwise convex surface is only
stable to small displacements. A mixture of hydrogen and oxygen in a thermally isolated
vessel is also stable to small displacements but a large compression could raise the
temperature sufficiently for the mixture to explode.

STABLE NEUTRAL METASTABLE

mechanical \Q/ g 2 g 2
|

system
vapour pressure

I x

fluid system

(temperature constant)
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always be time for the gas to adjust to the changing environment and
it will never depart significantly from equilibrium with it. Every state
which the gas passes through will be an equilibrium state, and, clearly,
the process may be reversed at any time by reversing the operations on
the system. If, instead, we compress the gas rapidly by a sudden move-
ment of the piston, sound waves or shock waves will be set up in the
gas creating regions of different pressure and temperature. Clearly, such
achange is not reversible. (We cannot extract the sound waves by moving
the piston out again.)

Since an equilibrium state corresponds to definite values of the system
parameters, we may represent a quasistatic process by plotting how the
parameters vary as the system passes from the initial to the final state
(Fig. 1.3). Such a representation is known as an indicator diagram. In a
non-quasistatic change, system parameters do not define the states
through which the system passes nor can they describe the processes it
undergoes. Non-quasistatic processes should therefore not be repre-
sented by a line on an indicator diagram.

Hysteresis. When a process is reversed in a system with hysteresis, the
system does not retrace its previous path, but proceeds by a different
one. A common example is found in the magnetization of iron (Fig.
1.4). If carried out sufficiently slowly, each state through which the
system passes may be considered as an equilibrium state. The variables
are, at all times, well defined and the process may be represented on
an indicator diagram. Nevertheless, here also, it is clear that the system
parameters do not uniquely define the state of the system since their

Fig. 1.3. The indicator diagram for a reversible process in a
simple fluid.
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relationship depends on the previous history of the system. Friction is
a common cause of hysteresis.>

1.8. Degrees of freedom

For any particular system we may list many thermodynamic
variables which describe different aspects of its properties. If they are
functions of state, the values of these variables will be determined by
the state of the system: for a particular state, they will have a particular
set of values. Many of them, however, will be related to one another in
some way. For example, density is the ratio of mass to volume. We may
therefore ask: what is the minimum number of variables whose values

Fig. 1.4. An example of hysteresis: the magnetization of iron.

B

3 Strictly speaking, the distinction between a non-quasistatic process and a
hysteretic process is only one of time scale. If we place a piece of iron in a
magnetic field there is a unique state of the iron corresponding to the lowest
energy configuration of the system. As soon as the field is applied, we are
really placing the iron in a metastable state from which it would have to
proceed to the truly stable state by a series of minute changes on a molecular
scale. The potential barriers between these steps, however, are so large that
the approach to equilibrium only proceeds at an extremely slow rate, one
which is quite negligible on any normal time scale. Since a hysteretic process
is, in this sense, a non-quasistatic one on an enormous time scale, we might
expect there to be inhomogeneities within the system as with normal non-
quasistatic processes. From our knowledge of ferromagnetism we know this
to be the case. The irregularities in the motion of domain walls, which may
be observed under a microscope, indicate the presence of inhomogeneities
which hinder magnetic rearrangement. It is precisely these inhomogeneities
which prevent the attainment of the true equilibrium state within any normal
period of time. Since, by and large, the times taken by thermodynamic
systems to reach true equilibrium tend to one or other of the extremes, it is
convenient to retain the distinction between the non-quasistatic and
hysteretic processes.
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must be specified in order that the state of the system be uniquely
determined? What is the number of independent variables? How many
degrees of freedom does the system have?

The answer to this question obviously depends on the nature of the
system and on how many conditions or constraints we impose on it.
Very often, for a simple system, it is possible to say immediately how
many degrees of freedom it has from a knowledge of its properties. A
wire subject to tension only, for example, has two degrees of freedom,
for we know that its length depends on the temperature and tension
only. In other cases, it may help to make two lists, one of the system’s
variables and one of the conditions which they must satisfy. The number
of degrees of freedom is then the number of variables, n,, less the
number of independent conditions, n.. For a given mass of a simple gas,
we might draw up the following lists:

Variables Conditions
pressure, D M = constant
volume, 1% p=M/V
temperature, T p=p(V,T) (the gaslaw)
mass, M
density, p
n,=5 n.=3
N=n,—n.=2.

There are two degrees of freedom, for which we may choose any
convenient pair of the variables. It does not matter if we include too
many variables in the first list, because any new variable will introduce
a corresponding constraint in the form of an equation relating it to others
already listed. If we had included the compressibility of the gas, for
example, we would also have had the equation defining it in terms of
the pressure and volume:

__i(ﬁ)
KT = % ap T.

The presence of more than one phase in a system or of several
components obviously introduces more variables, but we will postpone
the detailed discussion of such systems until we have found how to
express the condition for them to be in thermodynamic equilibrium
(chapters 7 and 11).

In general, it is found that the number of degrees of freedom possessed
by a system of given composition, including its total mass, is given by

> N=2+n,—n.
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where n,, is the number of ways in which work may be done on the
system and n. is the number of conditions to which it is subjected.
Examples of common constraints might be constancy of mass or con-
stancy of temperature.

Very often, certain coordinates play no significant part in the physical
processes under examination, and it is then possible to disregard them.
We know, for instance, that when a wire is stretched it suffers a very
small change in volume, and that therefore work will be done on it by
the hydrostatic pressure of any surrounding fluid. Strictly, the wire
requires three parameters to define its state, say tension f, length L, and
volume V; but if the hydrostatic pressure is small, the work done by it
may be negligible in comparison with the work done by the tensional
force so that volume changes play no significant part in determin-
ing the simple elastic behaviour. It is then only necessary to retain f
and L. ‘

We shall later use various functions known as the thermodynamic
potentials (chapters 7 et seq.). It is worth mentioning in advance that
the expressions for the differentials of these functions must contain
several independent terms, and that the number of these terms is equal
to the number of degrees of freedom of the system. (Clearly, this must
be the case in the expression for the differential of any function of state.)
However, for the moment, these details need not concern us, for we
shall develop the basic ideas of thermodynamics by referring only to
very simple systems.

1.9. Some useful mathematical results

Differential coefficients relating the rate of change of one ther-
modynamic variable with another are very important in thermodynamics.
They are known as thermodynamic coefficients, and since their manipula-
tion is a vital part of thermodynamic calculation it is important to
understand their meaning and to be familiar with some basic mathemati-
cal results which are of help in handling them.

1.9.1. The reciprocal and reciprocity theorems

Suppose that three variables are related:

F(x,y,z)=0.

Then, in principle, this equation may be rearranged to express one of
the variables in terms of the other two as independent variables:

x=x(y, z).
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Differentiating by parts, we have

ox 0x
dx -(é;)z dy +(5‘;)y dz (1.1)

where the terms in brackets are the partial differentials of x. Formally,
the partial differentials are defined analogously to normal differentials:
+ —_—
(ax) _ i X0+ 8y, 2)—x(y, 2)
z

ay/, " ar-o Sy

(1.2)

Equation (1.1) expresses the change in x which results from changes in
both of the independent variables on which x depends. We may write
an analogous equation for dz:

)
dz = (%) dx + (—Z) dy.
ax/, ay/
Substituting this in (1.1) we obtain

a a a a a
ar=(3),G2), &+ G) ) G) ] 0
az/y\ox/, ay/. \dz/,\dy/,
This result must of course always be true whichever pair of variables

we choose to think of as independent. In particular, we could choose x
and y as independent. Then, if we make dy =0 and dx #0, (1.3) gives

(52),(G0), 1
oz/ \ox/,

(f'f) - (1.4)
az/, a_z)

(ax y
This is the reciprocal theorem which allows us to replace any partial
derivative by the reciprocal of the inverted derivative with the same
variable (s) held constant.

If we now substitute in (1.3) dx =0 and dy # 0 the term in brackets
must be identically zero giving

(), --(2) %),
2,2 -

This is the reciprocity theroem. It may be written starting with any
derivative then following through the other variables in cyclic order.

or,

or,
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(This gives a dimensionless combination.) This relation is most often
used to split up a derivative into a product of more convenient deriva-
tives.

1.9.2. Order of differentiation
Second and higher order derivatives may involve differentiation

with respect to more than one of the independent variables. It is a
general result that the derivative does not depend on the order of
differentiation. We may easily show this for a second order differential.

Suppose that x =x(y, z). For given small changes in y and z we may
find the change in x by expanding x in a Taylor’s series in each variable
in turn. We obtain the result we require by comparing the expressions
we get by going from the initial to the final values of y and z by two
different paths. These are illustrated in Fig. 1.5.

Proceeding first from the initial values of the independent variables
represented by the point 1 to A by changing y, we have, by Taylor’s
theorem,

axl) 1 (ale) 2
=x1+|(—) Sy +z2|—=) By) " +..., 1.5
XA=X1 (ayz)’ 2ay22()’) (1.5)
where the suffixes inside the brackets indicate the point at which the
differentials are evaluated.

Now, proceeding from A to 2,

ox 3
X2=xA+(_—A) 6z +%( XA
az /, a

) 62 +.. .. (1.6)

2
z

Fig. 1.5. Calculating the change in the function x(y, z).

z

0z
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Substituting (1.5) in (1.6), and retaining terms up to second order only,

x2=x1+(ax1) Sy +(ax1) ¢Sz+2(a2 ) (8y)

dy az ay’
a xl) xl)
+2(az (82)*+— (ay yozt... 1.7

If we proceed via B, the only difference is in the last term:

comn (2 r+(25) o 4(25)

+2(Z;‘) 62)*+ y(‘;’;‘) 528y +. (1.8).

Clearly, whichever way x is calculated, the result must be the same so
that the last two terms must be equal:

] (ax) 4 (ax)
az \dy dy \dz

o*x _ 3%x
9z 9y 9y oz’
It should be noticed that if x; and x, are so close that terms above
the first order may be neglected, equations (1.7) and (1.8) are identical
to the simple differential form (1.1).

or,

> (1.9)

1.9.3. Exact differentials

We have seen that if x is a function of y and z, it is always
possible to write the infinitesimal change in x which results from
infinitesimal changes in y and z in the differential form

dx=Ydy+Z dz (1.10)
v=(2)
ay/ .
-(2)
“\az/y

Since dx is the differential of a function of y and z, it may, in principle,
always be integrated. For this reason it is known as an exact or perfect
differential. Clearly, the differential of a function of state must always
be exact since a function of state is, by definition, a single-valued function
of the state variables.

where

and
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If, in thermodynamics, an infinitesimal quantity is not the differential
of a function of state, it is convenient to write it dx, where the stroke
on the d indicates that it is inexact and cannot in general be integrated.
Sometimes, however, knowledge about how a change takes place, infor-
mation about the path by which the system proceeds from its initial to
its final state, makes it possible to integrate an inexact differential, but
this always requires more information than is provided by a knowledge
of the initial and final states alone.

Applying (1.9) to (1.10), we obtain

- )-E),

It may be shown that (1.11) is a necessary and sufficient condition for
dx to be exact.



2

The zeroth law

2.1.  The zeroth law

The zeroth law of thermodynamics is concerned with the proper-
ties of systems in thermal equilibrium, and the concept of temperature
follows directly from it. The statement of the law is as follows:

> If two systems are separately in thermal equilibrium with a third,
then they must also be in thermal equilibrium with each other.

The kind of experiment on which this law is based is illustrated in
Fig. 2.1 where for our three systems we choose a mercury thermometer
and two cylinders of gas. The zeroth law simply says that if there is no
change when the thermometer is placed in thermal contact with system
A nor when it is placed in thermal contact with system B, then there
will be no change if systems A and B are placed in thermal contact with
one another.

Fig. 2.1. An illustration of the zeroth law.
N
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If one chooses to define temperature as the reading given by the
mercury thermometer, then the zeroth law is only saying that if two
bodies are at the same temperature they will be in thermal equilibrium
when placed in thermal contact; the connection between thermal equili-
brium and temperature is trivial. However, it is possible to use the zeroth
law to demonstrate the existence of temperature in a more general
way. The argument does not follow from the zeroth law alone, for
we shall also use our knowledge of the behaviour of real physical
systems.

2.2, Temperature
We shall demonstrate the existence of temperature by applying

the zeroth law to three systems, 1, 2, and 3, each of which consists of
a certain mass of fluid enclosed in a cylinder fitted with the usual
frictionless piston. For each system we choose as the parameters of state
the pressure p and the volume V. We use system 3 as a reference, setting
itin a chosen state by adjusting the values of p; and V5. Now, in principle,
we know that by suitable manipulations we can obtain any values for
p1 and V; we choose. Also, in the’absence of constraints, they are
independent variables. However, we know from experiment that if we
demand that 1 be in thermal equilibrium with 3 then the new constraint
leaves only one independent variable. That is, if we choose a particular
value for p,, then V; will be uniquely determined. Thus, by choosing a
series of values for p; and determining the corresponding Vs we may
plot all the values of p; and V; which give thermal equilibrium with 3.
Such a plot is an isotherm. To the isotherm and the corresponding
reference state of 3 we may attach an identifying symbol, ®;. By choosing
other reference states, we may plot out as many isotherms of system 1
as we choose, and to each we may attach a label: @,, @3, . . ., etc. (Fig.
2.2). Using the same reference states of 3, corresponding isotherms can
be constructed for 2. The zeroth law then states that systems 1 and 2
will be in thermal equilibrium when they are at any points on correspond -
ing isotherms. They must have some property in common which allows
this to be so. This property is called temperature.

This argument may be presented more formally as follows. We create
a reference state by fixing p; and V3. Then, if we choose a particular
value for p; and demand thermal equilibrium between systems 1 and 3,
V, will be determined. That is, there must be a fixed relationship between
the four variables. This may be expressed in the form

Fl(pl’ Vla P3, V3)=0' (2°1)
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Equation (2.1) expresses the condition for -equilibrium between 1 and
3. Similarly, for 2 and 3 to be in equilibrium we must have

Fy(p2, Va2, p3, V3)=0. 2.2)
These equations may, in principle, be solved for, say, ps:

p3=fi(p1, V1, V) 2.3)

p3=f2(p2, V2, V3). (2.4)
Eliminating p; from equations (2.3) and (2.4) we get

fi(p1, Vi, V3) =fa(p2, V2, V3) 2.5
which may be solved for, say, p;:

p1=8(V1,p2, V2, V3). (2.6)

But, by the zeroth law, if 1 and 2 are separately in equilibrium with 3
they must be in equilibrium with each other. This requires

Fs3(p1, Vi, p2, V2)=0.
Again, we may solve this for p;:

p1=f3(V1, p2, V2). 2.7
Now equation (2.7) states that p, is determined by the three variables
V1, P2, and V alone so that V3 must cancel out in (2.6). Similarly, it
must drop out of the equation in its earlier form, (2.5), also, so that
(2.5) must really be of the form

D,(p1, V1) = D2(p2, V2). (2.8)

Equation (2.8) expresses the condition for thermal equilibrium
between systems 1 and 2. It shows that when two (or more) systems are
in thermal equilibrium there is, for each one, a function of its parameters

Fig. 2.2. Isotherms for a simple fluid.
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which takes a common value for all the systems. Thus, for any system
in thermal equilibrium with a given reference system (i.e., at a given
temperature) we may write

> o(p, V)=0 2.9)

where O is the same for all such systems. Equation (2.9) is called the
equation of state and O is the empirical temperature.

2.3.  Scales of temperature

Temperature, as we have defined it, need not bear any simple
relation to our intuitive ideas of hotness. Strictly speaking, we have done
no more than construct isotherms and attach symbols to them. Clearly,
it is desirable to define temperature in such a way that the temperatures
form an ordered sequence corresponding to our ideas of hotness. This
is what we do when we construct a scale of temperature.

To establish a particular empirical scale we select some system with
suitable thermometric properties and adopt a convenient method of
assigning numerical values for the temperatures of its isotherms. If the
thermometric property we use is x, then the simplest possible procedure
is to take the scale as linearly proportional to x:

O(x)=ax.

We then fix the constant a either by choosing the value of the tem-
perature at one reference point, or by choosing the size of the unit so
that a given number of units lies between two fixed points. Either
procedure will define a unique scale for any one thermometer, but
measurements of a temperature made with different thermometers will
not in general agree with one another because the chosen thermometric
properties may vary with temperature in quite different ways.

24.  The perfect gas scale

In the search for a scale which did not depend on the properties
of a particular substance, it was found that disagreement was small
among measurements based on the behaviour of gases. If we describe
the state of a gas by the two parameters p and V, the simplest way of
constructing a scale is to keep one of the variables fixed and to take
temperature as proportional to the other (Fig. 2.3). Historically, the
constant was chosen to give 100 units between the ice point (the tem-
perature at which ice melts at a pressure of one atmosphere) and the
steam point (the temperature at which water boils at a pressure of one
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atmosphere). Thus, for a constant pressure gas thermometer we would
have

100
0= Vi— V. | % (p = constant) (2.10)
and for a constant volume gas thermometer
®=-10—0p (V = constant) (2.11)
Ps—Pi

where the suffixes ‘s’ and ‘i’ refer to the steam and ice points respectively.
While temperature measurements made in this way are usually in reason-
able agreement with one another, it was found that in the low density
limit (p->0) all gases give the same value for a temperature. The
temperature scale so defined was known as the perfect gas absolute scale.
(The word ‘absolute’ here indicates that there is no shift of the zero by
subtraction of a constant to bring the new zero into the range of everyday
temperatures, as is done for the Celsius scale which is discussed in section
2.6.)

2.5. Thermodynamic temperature'
All gases give the same temperature scale in the low pressure
limit, because in that limit their behaviour tends to that of the ideal or

Fig. 2.3. Construction of a temperature scale based on the
behaviour of a-gas.

The simplest procedure is to keep one parameter constant and to take the
temperature as linearly proportional to the other: @ =aV.

! Previously known as absolute temperature or the Kelvin scale.
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perfect gas. We shall discuss the reasons for this in section 8.3. In section
8.2 we shall show that the equation of state of the perfect gas is
pV=RT

where R is a constant and T is thermodynamic temperature, the funda-
mental measure of temperature which arises naturally in thermodynamic
theory (section 4.6). From the form of this equation we see immediately
why gases in the low pressure limit define a unique scale of temperature:
the ideal gas scale is thermodynamic temperature. In fact, gases in the
ideal limit are quite exceptional in that thermodynamic temperature
appears in such a simple way in their equation of state. This is why
determination of thermodynamic temperature is almost always ulti-
mately based on gas thermometry:

> T=£i_r.% (pV)/R (2.12)

where the size of the unit is determined by the value of R. Originally
R was chosen to give 100 units between the ice and steam points, but
this requires measurements at two reference points. The experimental
uncertainties are reduced if only one reference point is involved. Con-
sequently, in 1954, the Tenth General Conference of Weights and
Measures decided to adopt the other method of fixing the constant of
proportionality, namely to specify the value of the thermodynamic
temperature at one reference point.” Because of its greater reproducibil-
ity than, say, the ice point, the reference point chosen was the triple
point of water - the temperature at which ice, water, and water vapour
coexist in equilibrium. The value of thermodynamic temperature allotted
to this was 273.16; the unit so defined is called the kelvin and is given
the symbol K (no degree sign). Put differently: the kelvin is the fraction
1/273.16 of the thermodynamic temperature of the triple point of water.
Thermodynamic temperatures determined by gas thermometry are
therefore given by

lim (pV)r

p-b
_ - 2.13
> T/K=273.16 . O(pv)" (2.13)
p-)

The reason for the choice of 273.16 K for the triple point of water is
that, to the accuracy of currently available measurements, this gives
exactly 100 K for the difference of the thermodynamic temperatures of
the ice and steam points. The ice point is 273.15 K and the steam point

2 It was Kelvin himself who first suggested that the size of the unit should be

fixed in this way; hence it is appropriate that it should be named after him
(see Thomson (Lord Kelvin), 1854).
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373.15 K. With thermodynamic temperature so defined, the temperature
of the triple point of water is fixed by definition, but we may find, if
measurement techniques improve, that the ice point is not exactly
273.15 K, that the steam point is not exactly 373.15 K, and that there
are not exactly 100 K between them. 0 K is called absolute zero.

2,6. The Celsius scale

For practical purposes it is convenient to have a scale whose
zero is towards the bottom of the range of temperatures commonly
encountered. That used is the Celsius scale, which is formally defined by

> t/°C=T/K-273.15. (2.14)

The symbol ¢ is always used for Celsius temperatures and T is reserved
for thermodynamic temperature. The unit is the degree Celsius (°C,
degree sign included), which is identical in size to the kelvin. On the
Celsius scale, the triple point is 0.01 °C by definition and the ice and
steam points 0 and 100 °C respectively by experiment.

It should be noted that the definition of Celsius temperature makes
it a centigrade scale (to the accuracy of current thermometry). A cen-
tigrade scale is defined as one which has one hundred units between ice
and steam points with values at these points of 0° and 100° respectively.
Centigrade scales may be based on any suitable thermometric quantity
of any convenient system. In general, since different physical quantities
vary differently with temperature, centigrade scales will not agree with
one another, except at 0° and 100° where they must coincide by
definition. The term ‘centigrade temperature’, which was commonly
used before the introduction of the Celsius scale, meant the ideal gas
centigrade scale. It was therefore, to the accuracy of current ther-
mometry, identical to the Celsius scale. ‘Centigrade temperature’ should
now only be used when referring to an empirical centigrade scale.

2.7. Some common thermometers

For the reasons mentioned above, determinations of thermo-
dynamic temperatures are usually ultimately based on gas thermometry;
but gas thermometers are inconvenient and difficult to use, especially
when much accuracy is required. Except when absolute determinations
have to be made, other kinds of thermometers are generally used, the
choice depending on such criteria as convenience or sensitivity rather
than high absolute accuracy. However, if thermodynamic temperature
is required (and not just some convenient empirical scale), practical
thermometers have to be calibrated. To help with this, thermodynamic



24 Equilibrium thermodynamics

temperatures of a number of primary and secondary reference points
have been measured with great accuracy. Table 2.1 lists the standard
and primary reference points and the temperatures assigned to them by
the General Conference of Weights and Measures in 1968. In some
cases the assigned values are given to greater precision than the estimated
uncertainty of the measurements because they are used as defining points
for the International Practical Temperature Scale (see section 2.8).

Thermometers based on the expansion of liquids can cover a remark-
able range of temperature. They are reasonably linear, but not very
sensitive. If much accuracy is required, many corrections have to be
applied. Some liquids that are commonly used are:

mercury between -39 and +350°C
ethyl alcohol between —117 and +78°C
pentane between —130 and +36°C

Table 2.1. Assigned values of International Practical Temperature of
standard and primary reference points®

Tes/K tes/°C

Standard
triple point of water® 273.16 0.01
Primary
triple point of equilibrium hydrogen® 13.81 —259.34
boiling point of equilibrium hydrogen at 25/76 atm

pressure 17.042  —256.108
boiling point of equilibrium hydrogen at 1atm

pressure 20.28 -252.87
boiling point of neon at 1 atm pressure 27.102  -246.048
triple point of oxygen 54.361  -218.789
triple point of argon 83.798  —189.352
boiling point of oxygen at 1 atm pressure 90.188  —182.962
boiling point of water at 1 atm pressure 373.15 100.00
melting point of tin at 1 atm pressure 505.1181 231.9681
melting point of zinc at 1 atm pressure 692.73 419.58
melting point of silver at 1 atm pressure 1235.08 961.93
melting point of gold at 1 atm pressure 1337.58 1064.43

? Values refer to the International Practical Temperature Scale of 1968. For
further information, and details of secondary reference points, see The Interna-
tional Practical Temperature Scale of 1968 (rev. edn 1975).

® The water should have the isotopic composition of ocean water.

¢ Hydrogen has two molecular modifications, ortho and para. The equilibrium
ratio of ortho- to para-hydrogen is temperature dependent, but conversion of
one form to the other is normally slow unless a catalyst is present. In the present
context equilibrium hydrogen means hydrogen in which the ortho/para ratio has
its equilibrium value for the temperature concerned.
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Suitable mixtures of the lighter paraffins extend the range to below
—200°C.

Resistance thermometers, based on the variation of electrical resistance
of a metal with temperature, cover an even greater range. Platinum is
often used as it is comparatively easy to purify, purity improving its
performance at low temperatures, and it also has a high melting point
(1770 °C). Between 70 K and 1200 °C it is capable of very high accuracy.
It is not far from linear, and for moderate accuracy a quadratic relation
between the resistance and thermodynamic temperature, R =
Ro(1+aT +bT?), gives a good fit over the whole temperature range.
For very high precision a cubic term is added below 0°C. Between
1200 °C and the melting point, the thermometer is still useful although
its accuracy falls off at the higher temperatures.

Thermocouples, thermometers using the variation of the Seebeck e.m.f.
with temperature (see section 9.4), cover much the same temperature
range. Several commonly used thermocouples are listed in Table 2.2.
The e.m.f. is generally well represented by an expression of the form
&€= a1(81)+a2(8t)2+a3(8t)3, where 6t is the temperature difference
between the junctions. If one junction is kept at a constant temperature,
then the temperature of the other is given by an expression of the form
& = bo+ byt +byt* +bst®, requiring four fixed points. Over restricted
ranges, the higher terms may be discarded. The small voltages which
have to be measured make it difficult to use thermocouples for highly
accurate work, and their sensitivities are very dependent on any variation
in the purity or composition of the metals used. However, they have
several merits. They can be made very small and will respond quickly
to changes in temperature. They are very useful for measuring small
differences in temperature, and when high accuracy is not required, they
are also very simple to use.

Table 2.2. Some common thermocouples

Approximate Normal working
Pair sensitivity/pV K™ range/°C
copper—constantan® 40 —200 to +300
iron-constantan 50 —200to +750
chromel®~alumel® 40 —200to +1200
platinum-platinum/rhodium? 6 —200to +1450
¢ Usually 60% Cu, 40% Ni. ® 90% Ni, 10% Cr.

¢ 95% Ni plus Al, Si, Mn. 4 90% Pt, 10% Rh.
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Another kind of thermometer which may be used over a very large
range of temperature is based on the temperature variation of the
electrical conductivity of a crystalline semiconductor (see Friedberg,
1955; Kunzler et al.,, 1962). For electrical conduction to occur in a
semiconductor, current carriers (electrons or holes) have to be excited
out of states in which they cannot contribute to current flow, into states
in which they are able to move through the crystal and carry charge.
This excitation normally occurs thermally and results in a strong depen-
dence of conductivity on temperature. Over limited ranges of tem-
perature the conductivity is approximately exponentially dependent on
temperature varying as exp (—e/kT), where ¢ is a constant. If the
semiconductor is chosen so that £ > kT, its resistance will depend strongly
on temperature, but £ must not be too big, or the conductivity becomes
too small and difficult to measure. Materials may be made with values
of ¢ such as to provide good semiconducting thermometers over the
temperature range from well below 1 K to above 300 °C. The variation
of the conductivity is so strong that any one material can only be used
easily over a limited range (say a factor-of ten in 1/T), but this extreme
sensitivity is their great merit. It is not difficult to detect changes in
temperature of 1 part in 10° giving sensitivities of about 10 uK at 1 K
and 1 mK at room temperature. At low temperatures a suitable semicon-
ductor provides one of the most sensitive and reproducible thermometers
available.

Carbon resistors of the type used in electronics also form sensitive
low-temperature thermometers. They are more widely used than semi-
conducting thermometers because they are cheap and readily available.
Their mechanism of electrical conduction is not fully understood, but,
as with crystalline semiconductors, excitation processes are involved (for
transfer of charge between the grains of graphite, for example) and it
is probably these which give rise to the strong temperature dependence.
Carbon resistance thermometers are useful below 20 K. Below about
10K their sensitivities are similar to semiconducting thermometers,
making it possible to measure to about 10 uK at a few kelvins. In both
cases the ultimate sensitivity is set by Johnson noise (Bleaney and
Bleaney, 1976: ch. 23) in the thermometer. This cannot be overcome
by increasing the measuring current through the resistor, because this
eventually results in too much power being dissipated in the ther-
mometer which prevents it from following the temperature of its sur-
roundings.

In the range from 5 K to somewhat below 1K, liquid *He is used as
a refrigerant. The lighter isotope, *He, has a lower boiling point and is
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useful between about 1 K and 0.3 K. In both cases the temperature can
be found by measuring the vapour pressure. Very accurate vapour
pressure tables and interpolation formulae are available for both isotopes
(see Durieux and Rusby, 1983). Secondary thermometers for use below
5 K are often calibrated by helium vapour pressure thermometry.

Carbon and semiconductor resistance thermometers may be used
below 1 K, but extrapolation downwards from the helium range soon
becomes very inaccurate and it becomes necessary to use a thermometer
whose law is known, or can be found. The magnetic susceptibility of
some paramagnetic salts varies with temperature below a few kelvins.
The susceptibility may easily be measured (usually it is done by determin-
ing the inductance of a coil surrounding a sample of the salt), and this
provides the basis of susceptibility thermometry. As long as the tem-
perature is not too low, the susceptibility x is well described by Curie’s
law, x = a/T where a is a constant, and temperatures may be found by
extrapolation from the helium range. Although Curie’s law eventually
breaks down, these thermometers may be used for lower temperatures
as long as their susceptibility remains appreciably temperature depen-
dent. However, the determination of thermodynamic temperature then
requires a calibration procedure which depends on the second law, and
will be discussed in section 8.8.2. Cerium magnesium nitrate is par-
ticularly useful at low temperatures as it obeys Curie’s law to a few per
cent down to below 4 mK, and may be extrapolated to this temperature
from the helium range.

None of the thermometers described above is useful far above the
gold point (1064 °C) and in this range radiation pyrométers are used.
These are based on measurement of the radiation emitted by a body
when hot. Both the colour and the total amount of radiation change
with temperature (see section 8.9) and both these properties are used
in pyrometry. Optical pyrometers use the colour of the radiation emitted
by the hot body and usually consist of some device for matching the
colour of an electric lamp filament to that of the radiation. Broad band
radiation pyrometers measure the power radiated in a range of
wavelengths selected by filters and are based on Planck’s law (section
8.9.5). Total radiation pyrometers measure the total power emitted and
are based on Stefan’s law (section 8.9.4).

Ranges over which various kinds of thermometer operate are shown
in Fig. 2.4. The. choice for a particular application does not simply
depend on the range of temperature to be measured, but also on the
conditions under which measurement has to be made. Such factors as
size, speed of response, and sensitivity will often determine the ultimate
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choice. For detailed discussion of experimental techniques involved in
thermometry the student should consult other texts.’

2.8. The International Practical Temperature Scale
The experimental difficulties of accurate measurement of ther-
modynamic temperature with gas or other primary thermometers make
it necessary for laboratories and standards institutions to have available
a set of convenient practical thermometers whose behaviour is known
in sufficient detail for them to be used for accurate interpolation between
basic reference points whose thermodynamic temperatures have been
determined with precision. This is the raison d’étre of the International
Practical Temperature Scale. The International Committee of Weights
and Measures
(a) selects a set of reference points and assigns to these points
values of thermodynamic temperature in the light of best avail-
able measurements,
(b) selects a set of thermometers for interpolation between the
reference points, and
(c) agrees on the interpolation procedures to be used.
The reference points with their assigned temperatures, together
with the specified thermometers and interpolation procedures, establish
an empirical scale which is arranged to coincide as closely as possible
with thermodynamic temperature.

Fig. 2.4. Useful ranges of different kinds of thermometer.
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3 For detailed discussion of a wide range of experimental techniques, see
Billing and Quinn (1975).
For a discussion of low temperature thermometry, see Rose-Innes (1973).
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The current scale uses three thermometers:

Range Instrument
13.81 Kto 903.89K platinum resistance thermometer
903.89 Kto 1337.58 K platinum/(platinum + 10% rhodium)
thermocouple
above 1337.58 K radiation pyrometer

These are calibrated against the standard and primary reference points
listed in Table 2.1. Full details, including relevant experimental informa-
tion, are given in The International Practical Temperature Scale of 1968.
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The first law

3.1. Background to the first law

The first law of thermodynamics is essentially an extension of
the principle of the conservation of energy to include systems in which
there is flow of heat. Historically, it marks the recognition of heat as a
form of energy.

The work which led up to this is well known. There were two rival
theories of the nature of heat. According to the caloric theory, heat, or
caloric, was an indestructible fluid which permeated matter and flowed
from hot bodies to colder ones. According to the molecular motion
theory, heat was associated with rapid vibrations of the molecules of
which matter was composed. Of the two, the caloric theory had the
greater support until the middle of the last century, although some of
the most significant experiments were done much earlier.

In 1761 Black had studied the melting of ice. He noted that the
temperature of a pail of ice-cold water placed in a warm room rose
quite quickly, whereas, if the pail contained ice, the temperature
remained constant for many hours while the ice melted. If caloric flowed
into the pail from the surroundings when it contained ice-cold water, it
must also do so when it contained ice. Therefore, he argued, ice-cold
water must contain more caloric than ice. In 1799 Davy showed that
both wax and ice could be made to melt by rubbing two pieces together.
According to the caloric theory, rubbing squeezed caloric out of the
solid so that the liquid produced by friction should contain less caloric
than the solid. Clearly, the liquid could not at the same time contain
both more and less heat than the solid.

At about the same time, Rumford showed that the heat produced by
trying to drill a gun barrel with a blunt tool was apparently inexhaustible.
It depended only on the continuance of work, and in no way was affected
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by the previous treatment that the metal had had. He argued that no
material substance could be supplied indefinitely by a body, but that
heat must be some form of motion imparted by the process of drilling.
However, it was not until Joule’s work of the 1840s that the molecular
motion theory was put on a sound basis by his demonstration of the
direct quantitative equivalence of work and heat. In his experiments,
he produced heating in various thermally isolated systems by performing
work on them. He used many ways of doing the work: viscous dissipation
in liquids, friction between solids, and, later, electrical heating. He
compared the amounts of work required to produce a given amount of
heat, using as his measure of heat the temperature rise which would be
produced in unit mass of water.' He found that if the only effect of the
work was to produce heating, then, in all cases, the amount of work and
the corresponding amount of heat were in a fixed proportion to one
another thus implying a direct equivalence of heat and work as forms
of energy. These ideas are expressed more precisely through the formal
statement of the first law and the development which follows from it.

3.2.  The first law

In his experiments, Joule compared heat and work as means of
effecting a change of state. However, it is convenient to introduce the
idea of heat as a form of energy by placing the emphasis rather differently.
The first law does this by making a general statement about the behaviour
of systems whose state is changed under conditions of thermal isolation.
The formal statement is as follows:

> If the state of an otherwise isolated system is changed by the
performance of work, the amount of work needed depends solely
on the change effected and not on the means by which the work
is performed nor on the intermediate stages through which the
system passes between its initial and final states.

The kind of experiment visualized in this statement is illustrated in
Fig. 3.1, where different paths between the initial and final states are
explored and the work required compared. In fact, such different paths.
have never been studied carefully. Once heat was accepted as a form
of energy, the idea of the conservation of energy in this context was
accepted readily enough. Certainly, the consequences of the first law

! Making the reference to water required a knowledge of the relative thermal
capacities of the materials involved. These had been found earlier by Black
using the method of mixtures (see page 34), which he was the first person to
develop as a calorimetric technique.
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have been tested thoroughly. If further justification is needed for it, it
may be found in the truth of what follows from it.

3.3. Internal energy

If, as the first law states, a definite amount of energy is always
associated with a given change of state (effected under adiabatic condi-
tions), then the total energy of the system must be a function of state.
We call it the internal energy, U. Thus, when a change of state is brought
about by the performance of work alone, the work done on the system
is simply the change in the internal energy in going from the initial to
the final state:

AU=W. (3.1)
U is a function of state because W is independent of path.

34. Heat

Equation (3.1) applies to a thermally isolated system. However,
we know that it is also possible to change the state of a system without
doing work on it. We may use heat alone, or any combination of heat
and work. Thus, when a system is not thermally isolated equation (3.1)
is no longer valid. It must now be modified to

> AU=Q+W (3.2)

Fig. 3.1. Different adiabatic paths between two states of a fluid.

1A2. An adiabatic compression followed by electrical work at constant volume
performed via a ‘heater’ of negligible thermal capacity immersed in the system.
IB2. The same processes, but in the reverse order.

1C2. A complex route requiring simultaneous electrical and mechanical work.

p 2
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where Q is a measure of the extent to which the change is not adiabatic.
Q is called heat. It is this form of the first law which led to its common
statement as ‘Energy is conserved if heat is taken into account’.

We have thus defined heat as a form of energy entirely equivalent in
its effect on the total energy of a system to energy communicated by
the performance of some kind of work. The distinction between heat
and work is not always clear-cut in the sense that it is not always easy
to decide whether a particular energy contribution should be classed as
heat or work. In the illustration of Fig. 3.1, we chose to count energy
supplied by an electric ‘heater’ as work and this is entirely justified, for,
if the heater and fluid were placed together in an opaque box so that
we knew nothing of the detailed composition of the system, we should
certainly know only that a certain amount of electrical work (equal to
| VI dt) was performed on it. Alternatively, we might have chosen not
to make the heater part of the system but to attach it from outside by
a thermal link. In this case, we should intuitively have considered the
energy to be supplied as heat. Probably, the most convenient distinction
is made in terms of whether the energy enters the system by a macroscopi-
cally ordered action or by one where order exists on the microscopic
scale only. In the former case, the energy would be communicated by
work and in the latter by heat. Thus, when a piston moves in a cylinder,
the movement is macroscopic in the sense that the velocity of the piston
is superimposed on all its molecules, and the piston does work on the
gas. On the other hand, if the piston is hot, the (thermal) motions of its
molecules are not correlated, energy is communicated to the gas by
processes which are ordered on the microscopic scale only and we say
that heat flows. That it should be impossible always to make a sharp
distinction between heat and work is not surprising, for it is precisely
the function of the first law to state that they are, in certain ways,
equivalent.

According to the first law, then, when a system undergoes a given
change, AU is necessarily defined since U is a function of state, and so
the sum Q + W is defined, but not Q or W separately. Only if we know
how the system passes from its initial to its final state can Q and W be
determined separately. Thus, for a given infinitesimal change we write

>  dU=4Q+dW (3.3)

where the symbol d indicates that the infinitesimal quantities dQ and
dW are not exact differentials: they cannot be evaluated from a knowl-
edge of the initial and final states alone; Q and W are not functions of
state. However, if the system is constrained so that the path of the
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infinitesimal change is defined,” then dQ and dW are separately deter-
mined and may be treated as well-behaved differentials; dU is, of course,
always exact since U is a function of state. Equation (3.3) is known as
the differential form of the first law.

In interactions between systems which are completely isolated from
their surroundings, it is clear that the total internal energy must be
conserved, for, if we think of the group of systems as making up one
larger complex system, no heat or work enters the composite system
from outside so that its total energy cannot change. In the special case
when the systems interact by exchange of heat alone, heat is also
‘conserved’, for we have

AU =X AU =% (Q: + W) =0.
But

W:=0
SO

Q=0 (3.4)

i.e., heat is ‘conserved’.

This is the basis of the method of mixtures used in calorimetry. Two
or more systems are brought into thermal contact (mixed, perhaps
literally), and in reaching thermal equilibrium, heat flows from one to
another. Since no work is normally involved in the process (such effects
as the change of hydrostatic pressure when a body is immersed are
usually negligible) heat is conserved. If one substance, say water, is
chosen as a reference, its temperature can be used as a measure of its
internal energy, and its change in temperature is a measure of the heat
exchanged. This was the principle used by Joule.

When using the first law in the form of equation (3.2) or (3.3), it is
important to be clear about the signs of the terms. If AU is the change
in internal energy of the system in going from its initial to its final state,
then W must be the work done on the system and Q the heat transferred
to the system. Having adopted this convention, it is possible to define
hotter and colder. These are comparative terms and we define them by
referring to the direction of heat flow when systems being compared are
placed in thermal contact. We say that heat flows from the hotter body
to the colder. Thus, in any given interval of time, Q is negative for the
hotter body and positive for the colder.

2 We have already had an example of a very simple constraint. For a thermally
isolated system, dQ = 0. We shall later discuss more complicated constraints
like dU =0.
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That the first law in the form of (3.3) cannot, in general, be integrated
is a disadvantage. Later, we shall replace dQ and dW by functions of
state, and so obtain an equation in which all the terms are uniquely
defined in any given change regardless of the path of the change. In this
new form, the first law becomes much more powerful. However, we
may only do this when we have considered the second law. For the
moment we turn to the evaluation of W for various systems.

3.5. Work in various systems

It is always possible to express the work done on a system in
terms of its parameters of state if the changes in which the work is
performed are tlwrmodynamically reversible. When this is the case,
system parameters also describe the action of external forces. For
example, if a fluid is enclosed in a cylinder by a piston with friction,
then the force that has to be applied to the piston to overcome the
friction and compress the fluid is greater than the force exerted on the
fluid by the piston. Thus the external work done on the whole system
(fluid and its container) is greater than the work done on the fluid alone
and cannot be expressed in terms of the fluid’s parameters of state. If
the friction is negligible, however, the work done on the fluid becomes
equal to that done by external forces and both can be expressed in terms
of the system parameters.

When changes take place reversibly, the work done on a system is

aW =Y X, dx;

where X; and x; are the forces and their conjugate displacements. We
shall show that the work is of this form in several special cases.

3.5.1.  Work by hydrostatic pressure
Consider a fluid contained in a cylinder by a frictionless, tight
fitting piston (Fig. 3.2). Let the surface area of the piston be A and the

Fig. 3.2. Compression of a fluid.
F=pA

ot

pV
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pressure exerted by the fluid, p. Then the force which must be exerted
on the piston to contain the fluid is F = pA.

Now, suppose the piston is moved in a small distance d¢. The work
done on the fluid is

dW=Fd¢=pAd¢=—-pdV
where dV is the change in volume of the fluid. The sign should be noted.
In increasing its volume a fluid does work on its surroundings. We shall
use this result a great deal since, as is customary in following through
the development of thermodynamics, we shall generally use a fluid system
as a convenient model.

In the case of work done on a solid by hydrostatic pressure, we immerse
the solid in an incompressible fluid and again contain the whole in a
cylinder with piston (Fig. 3.3). Since the fluid is incompressible, no work
can be done on it by changing the pressure and all the work done by
the piston must be communicated to the solid. Thus for work done on
a system by hydrostatic pressure we always have

dw =-pdvV. 3.5)
To integrate (3.5) we need to know the conditions under which the
change takes place. We consider some illustrative examples.

For an isothermal change in an ideal gas (see section 8.2), we use the
equation of state:

pV =RT
giving

W =p;ViIn(pa/p1) =RT In (p2/p1). (3.6)
For a reversible adiabatic change in an ideal gas, we have

pV?” = constant

Fig. 3.3. Application of
hydrostatic pressure to a solid.

:
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giving
1
W=——=(p2V2—p1 V). (3.7
vy—1

In the case of a solid, we will calculate the work in the general case
and then simplify the result for simple constraints. (We could have
done the same thing in the case of the gas.) We proceed as follows:

We must first make a choice of independent variables. Since we are
often interested in changes occurring at constant pressure or constant
temperatures we shall take p and T. Then dW will separate into two
terms, one corresponding to pressure changes and one to temperature
changes.

To put dW =—-p dV in terms of the variables p and T we must
substitute for dV. In general, we will not know the functional form of V':

V=V(pT)
so we write dV in a general form:
1% 1%
v=(—) d +(—) dT
d ap T p T p
=—Vkrdp+ VB, dT
18V . .
KT=—%, (5 ) . isothermal compressibility
and
1 . . . .
Br= v (a_T_ ) = isobaric cubic expansivity.
Then
P3 T,
W= I pxrV dp — I pB,V dT. 3.8)
p1 T,

In the cases of isothermal and isobaric (constant pressure) changes,
we may simplify and approximate the general expression as follows. For
an isothermal change we have

Py

W= J pxrV dp =3xrV(p5 —pi) (3.9)
pP3

since V and «r are nearly constant for a solid. For an isobaric change,
T3

w=— [ pV8, dT ~—pVB,(T:-Ty) (3.10)

T



38 Equilibrium thermodynamics

since p is constant and V' and B, are nearly so for a solid. Note that the
work is done by the hydrostatic pressure in both cases; the difference
lies in the cause of the volume change. In the first case it is the change
in pressure that causes the volume to change through the compressibility;
in the second it is the temperature change through the expansivity.

3.5.2. Work against surface tension
The surface tension, v, of a liquid is defined as the work required
isothermally to increase the area of surface by unity. Thus,

dW =y dA. (3.11)

It is found experimentally that y is normally independent of area and
depends only on temperature, so that for a finite increase of area under
isothermal conditions we have

W=y(A:-A)).

It is a consequence of the fact that work is required to increase the
area of a surface, that there is a pressure difference across a curved
surface. The magnitude of the pressure difference may be derived by
considering the work done as the surface is extended. We illustrate this
by discussing the spherical case.

Consider a drop of liquid suspended from the end of a fine capillary
(Fig. 3.4). We increase the size of the drop by depressing the piston to
force liquid down the capillary into the drop. If the excess pressure in
the drop is p, the work done in a small displacement d¢ of the piston is

dW =F d¢ =+p dV =paxr’dr

Fig. 3.4. Work against surface tension.
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where +dV is the volume change of the drop (and —dV the volume
change of the liquid in the cylinder; cf. equation (3.5)) and r is the drop
radius. But, from the definition of surface tension, we also have

dW =y dA =8myrdr.

Equating the two expressions for §W we obtain

2

p= 44 (3.12)
r

This is the pressure difference across a single spherical surface. A bubble

has two surfaces and the excess pressure is twice as big.

3.5.3. Work by an electric field
The relevant variables are defined by the equations
D=coe.E=€.E+P (3.13)
Xe=€—1=P/ecE (3.14)
where D is electric displacement, €, is the permittivity of a vacuum, e,
is relative permittivity, E is electric field strength, P is electric polariz-
ation, and yx. is electric susceptibility (see Bleaney and Bleaney, 1976:
ch. 1).

An electric field can do work on any polarizable material. Consider
such a material, which need not be isotropic, to fill the space between
the plates of a parallel-plate capacitor (Fig. 3.5). Let the separation of
the plates be d and their area A, and suppose that d°« A so that edge
corrections may be neglected. When a potential difference is applied to
the capacitor, an electric field is set up between the plates and the
dielectric is polarized.

Fig. 3.5. Polarization of a dielectric.
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Let the potential difference across the capacitor be € and the total
charge on the plates Z. Then, if n is a unit vector perpendicular to the
plates, we have

€=F -nd (3.15)
and by Gauss’ theorem,
Z =D - nA. (3.16)

From the boundary condition on E at the surface of the conductors and
symmetry, £ must be parallel to n although, if the medium is not
isotropic, D need not be.

If the charge on the capacitor is increased by a small amount dZ, the
work done by the battery is

aw=¢dzZ
=AdE -dD
=VE -dD
where V is the volume between the plates of the capacitor. With
equation (3.13) this becomes
dW =(eoE -dE+E -dP)V. 3.17)
Now this is the fotal work done on the volume subjected to the field.
The first of the above terms is present in the absence of the material

and represents the change of energy stored in the capacifor when empty.
The work done on the dielectric is thus

dW=E -dPV. (3.18)
If the fields vary with position, this generalizes to

dW=J (E-dP)dV, (3.19)

and if E and P are uniform throughout the material, equation (3.19)
becomes

dW=E -dp (3.20)
where p is the total electric dipole moment of the specimen.

3.5.4. Work by a magnetic field
The relevant variables are defined by the equations

B = popH = po(H + M) (3.21)
Xm=p—1=M/H (3.22)
where B is magnetic induction, u, is the permeability of a vacuum, w,

is relative permeability, H is magnetic field strength, M is magnetization,
and x, is magnetic susceptibility (see Bleaney and Bleaney, 1976: ch. 4).
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A magnetic field can do work on any magnetizable material. Consider
such a material to be subjected to a magnetic field by being placed inside
a solenoid (Fig. 3.6(a)). Without loss of generality we may assume the
solenoid to be resistanceless, so that the battery only does work against
e.m.f.s which are induced in the solenoid either as a direct result of
changing the current (via the solenoid’s self-inductance L;;) or by
changes in the magnetization of the material which will also alter the
flux linking the electric circuit. For convenience we represent an elemen-
tary dipole in the material by a small current loop of area a carrying a
current i, (Fig. 3.6(b)). We need not assume that the magnetic induction
in the solenoid is uniform. Instead, we put B = bi,, where i, is the current
in the solenoid and # may vary with position.

The magnetic moment of the elementary current loop is

m' =ia (3.23)
and the mutual inductance between the loop and the solenoid is
Li;=b-a. (3.24)
Hence, the back e.m.f. in the solenoid is
di; di,

dr

where the summation is over all the elementary current loops. The rate
of working by the battery is therefore

dW . di di
dt 11[L11 : lez d:]

Hence, during an infinitesimal change in conditions, the work done is
dW = i1L11 dl1 +i1 ZL12 dlz
2

Ly, d—t+§L12 -

=i{Ly1di; +Y.B-dm’ (3.25)

Fig. 3.6. Calculating the work done by a magnetic field.
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where we have used equations (3.23) and (3.24). The first term, however,
is the work that would have been done in the absence of the magnetic
material and is the change in the energy stored in the inductor when
empty. The work done on the material is thus

dW =Y B -dm’'.
If the fields vary with position, this generalizes to

dW=J'(B°dM)dV, (3.26)

and if B and M are uniform throughout the material, equation (3.26)
becomes

dW =B -dm (3.27)
where m is the fotal magnetic moment of the specimen.’

Some of the various expressions for work done on a system in an
infinitesimal reversible change are collected together in Table 3.1. We
have not given a formal derivation of the first two since they follow
trivially from fundamental definitions. It should be pointed out that
when writing down the first law in the form dU =dQ +dW, all the
effective work terms must be included in dW.

3.6. Heat capacities
The first law allows us to express the heat absorbed by a system
during a reversible change as

dQ =dU -¥ X, dx..

Table 3.1. Some common contributions to the work done on a system in
infinitesimal reversible changes

System subject

to work by: aw

tensional force fdL
electric current &dZ
hydrostatic pressure -pdV
change of surface area vydA
electric field E-dp
magnetic field B-dm
generalized forces X, dx;

3 We shall use this form for magnetic work throughout this book. However, it
should be noted that it is possible to specify the thermodynamic system in a
different way so as to obtain an alternative expression which turns out to be
more useful in the context of statistical mechanics. The difference between
the two forms is discussed in the appendix.
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dQ/da is called a general heat capacity of the system and expresses the
rate at which heat is absorbed when the variable « is changed. @ may
be any function of state. As usual, the heat absorbed in a given change
is not defined unless the path of the change is defined. Hence dQ/da
remains undefined in the absence of constraints. To define the path of
a change in an n-parameter system, we need (n —1) constraints. The
heat capacity is then defined and it may be written as

dQ B,‘y,.../da

where 3, v, . .. are the constraints.*

The various heat capacities are usually represented by the symbol C
to which is added a suffix indicating the constraints and a superscript in
brackets showing the variable with respect to which the differential is
made. Thus, we write

d O B.Ys...

=Com.e
da BYs...
For example,
aOV_ (T
ar ~ €V

is the rate at which heat is absorbed as temperature is changed with the
volume kept constant.

In the case of thermal capacities for increase of temperature, the
superscript is usually omitted, as with the principal heat capacities, C,
and Cy (see section 8.1).

Heat capacities are clearly extensive quantities and it is often con-
venient to use the heat capacity per unit mass: the specific heat capacity.
This is sometimes loosely abbreviated to specific heat. The specific
quantity, as usual, is given a small letter symbol. Thus, ¢, and cy are
the principal specific heat capacities.

We may illustrate these general remarks by reference to a simple
system subject to work by hydrostatic pressure. The first law becomes

dQ=dU +pdV.

4 Differentials of this kind are sometimes called curve differentials since the
possible states of the constrained system may be represented by a curve in
system-coordinate space. For example, the possible states of a gas held at a
constant pressure are represented by an isobar. dQ,/dT measures the rate at
which heat is absorbed as the system is caused to move along the isobar by
increasing its temperature.
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Suppose we wish to use T and V as independent variables. Then we
must express dU in terms of d7 and dV:

aU oU
== + g
av-(37), a7+ (Gv) av
Substituting,

dQ =(%)VdT+[p+(3L‘i)T] av.

If we apply the constraint that V is constant, we have the usual heat
capacity at constant volume,

dQy (U
ar~Gr),
(This is an obvious result since if there is no volume change no work
can be done and any change in internal energy must simply be equal to
the heat entering the system.) The corresponding specific heat capacity is

om L) (20
v oT aT/

However, if T is constant, we have a new kind of heat capacity:

dQr aU
Y =—= +(—) 29
T Tav P\, (3.29)

cP = (3.28)

being the amount of heat absorbed per unit volume increase as the
system moves along an isotherm: a sort of latent heat, since temperature
does not change.

We may obtain similar expressions if we choose p and T as our
independent variables. To substitute in the first law we first obtain dU
and dV in terms of dp and dT":

dU=(a—q) dp +(6U) dT

ap oT
and
_(V )
dv—(ap) dp+ (aT drT.
Then

w@=(5),+0(5) Joo+|Gr),+o(7) ] ar w20

In this case, the two heat capacities are

;104 1%
(p) _ (=2 - 31
cr (ap)1~+p(ap)-p (3.31)
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and
cn = (%{)p* p (%) k (3.32)
Similar expressions are obtained with p and V as independent variables.
It should be noted that substitution of (3.31) and (3.32) in (3.30) gives
dQ=CP dp+C;" dT
which is simply an expansion of dQ in terms of dp and dT:

dQr dQ,
dQ = ap dp+—= T dT.

This looks like the usual partial differential form; but it must be remem-

bered that Q is not a function of p and T, and that although all the

terms on the right-hand side of the equation are well-behaved functions

of state, their integrals still depend on path and dQ is undefined in the

absence of a constraint.

3.7.  Enthalpy
Cy took a particularly simple form in terms of the internal

energy:

U
cv=(57). [(3.28)]
but the other principal heat capacity had a more complicated form:
104 1%
+rl =) - .
G= (aT) p(aT),, [(3.32)]

It would be convenient to construct an energy function H, which would
give C, in a form similar to (3.28). That is,

aH
C,= (aT) (3.33)
Equating (3.33) and (3.32),

(), G), o (), [sr wrv],

A suitable function is thus
> H=U+pV. (3.34)
H is called enthalpy. As all the terms on the right-hand side of (3.34)

are functions of state, H must also be a function of state. Its differential
form follows immediately from (3.34):

dH=dU+pdV+V dp=dQ+V dp. (3.35)
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We see from (3.33) and (3.35) that when a system undergoes a reversible
isobaric change, the change in H is equal to the heat absorbed:

dH =dQ,. (3.36)
Since many processes of interest do take place at constant pressure, H
has sometimes been given the misleading name of heat content.
Equation (3.36) is true whatever the system. In particular, it also
applies to one in which a chemical reaction takes place. In this case, AH
becomes the heat of reaction. This property of enthalpy makes it an
important quantity in chemical thermodynamics.

3.8. Flow processes

Any process in which there is a steady flow of some working
substance through a device which permits the transformation of internal
energy into external energy (e.g., potential energy) or work is called a
flow process. Enthalpy is also an important quantity for flow processes.

The general case of a flow process is represented in Fig. 3.7. Let the

parameters of the working substance at the inlet and outlet be

pressure p1 and p,

specific volume vy and v,

specific internal energy  u; and u,

speed of flow Viand ¥V,

height ziand z,.
Suppose also that in flowing through the device unit mass does external

work w (work on the surroundings by the working substance), and
absorbs heat q. Then the energy carried into the device by unit mass is

Uy +3V1 +gz21

Fig. 3.7. The general flow process.
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(internal energy plus kinetic energy plus potential energy). However,
this is not the total energy entering the device at the inlet, for the source
of the working substance also does mechanical work on the device as
the fluid enters. (One may visualize that the pressure is maintained by
a piston which has to move forward against the pressure p; to force the
fluid in.) As unit mass flows, the mechanical work done is

Ip dV =p,v;.

This contribution is known as flow work. Similarly, at the outlet the
device has to supply work to force the working substance out against
the pressure p,.

Thus, the total energy transferred across the inlet as unit mass
flows is

1gr2
ur+pio1+30 +gzi,
and a similar expression applies at the outlet. Then, since conditions are

steady, we may apply the conservation of energy to the region of space
enclosed by the broken line in Fig. 3.7. This gives

(u1+p1vy +373% +gz1)—(uz +P202+%°V§ +gz)=w—q
ie.,
> w=(h1—h)+3(Vi-V3)+g(z1—2,)+q (3.37)

where h is the specific enthalpy.

Equation (3.37) is essentially the general form of the first law applied
to steady mass flow. To calculate how the enthalpy changes in a particular
flow process we require the results of the second law; but it should be
noted that, thus far, we have had to make no assumptions about the
nature of the processes taking place in the device. In particular, they
need not be thermodynamically reversible. Thus (3.37) may be applied
to a wide range of processes and is of considerable importance in many
branches of pure and applied science. A few simple cases will serve to
illustrate this.

3.8.1. The constant flow calorimeter

In a constant flow calorimeter, kinetic and potential energy
terms are usually negligible and no work is exchanged with the surround-
ings. In this case, (3.37) reduces to

hz-‘h1=q (3.38)

i.e., the heat absorbed is equal to the increase in enthalpy.
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If the fluid is a liquid, energy changes due to (thermal) expansion are
normally negligible and (h;—h1) =c,AT =cyAT. In the case of a gas,
however, expansion has to be taken into account and the application of
(3.38) is less trivial.

3.8.2. The porous plug or throttle valve

The purpose of a porous plug or throttle valve is to reduce
the pressure of a flowing fluid without doing external work. Since heat
exchanges and work against gravity are usually unimportant, (3.37)
reduces to

hi—h=%Y5-77). (3.39)

In many cases, the kinetic energy before expansion (i.e., on the high
pressure side) is also negligible and we simply have

hi—hy =373 (3.40)
The fluid achieves a large drop in pressure and a small amount of kinetic
energy is produced. In the limiting case, where there is sufficient friction
to make all kinetic energy terms negligible, we simply have h; = h,. This
is the condition which applies in the Joule-Kelvin expansion which will

be dealt with more fully in section 9.2 after we have discussed the second
law. It should be noted that a process of this sort is highly irreversible.

3.8.3. The ideal nozzle

The ideal nozzle is the opposite extreme from the perfect
throttle. Here, the intention is to create as high a velocity as possible
by keeping friction and turbulence small. Often, the kinetic energy before
the nozzle is small and we again have

hi—hy =373 [(3.40)]
but now there is a large drop in enthalpy and a high kinetic energy after
expansion.

In a jet engine the w and z terms of (3.37) are unimportant. The fuel
provides a large q and so raises"to a high value the specific enthalpy of
the gas which has been drawn into the system. This is accompanied by
a large rise in pressure. The high enthalpy fluid is then expanded in the
nozzle at the back of the engine, in the course of which the enthalpy is
reduced and the energy converted into kinetic form in the emerging
gases. The enthalpy is never reduced to its initial low value but the
whole process tends towards a complete conversion of g into kinetic
energy. The purpose of after-burners on a jet engine is to increase ¥,
still more by adding yet more heat after the initial expansion.
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3.8.4. The turbine

In the turbine, the object is to obtain the greatest possible
external work. In this case, the device is designed to reduce kinetic
energy terms to a minimum and (3.37) becomes

hi—ha=w. (3.41)

3.8.5. Streamline flow

Consider an area A, in a region of steady streamline flow
(Fig. 3.8). The streamlines which pass through the edges of A, generate
a tube of flow. Equation (3.37) may be applied to any length of such a
tube. Then w becomes the viscous work, if any, across the bounding
streamlines and q the heat entering across them.

When viscous losses and flow of heat are negligible, (3.37) simplifies

to

u+p/p +3¥*+¢ = constant (3.42)
where p is the density and ¢ the potential energy per unit mass. The
constancy of this quantity along a streamline is a fundamental result of
hydrodynamics known as Bernoulli’s theorem. If the fluid is incompress-
ible, this further simplifies to

p/p +3¥V*+ ¢ = constant. (3.43)

Fig. 3.8. Application of the first law to streamline flow.
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The second law

4.1.  The function of the second law

The first law of thermodynamics is a generalization of the
principle of conservation of energy to include heat. It places a restriction
on the changes of a system which are energetically possible. Not all such
changes occur, however, and we have already acknowledged this fact in
discussing thermal equilibrium and hotness. If two bodies are placed in
thermal contact it would be energetically possible for their temperatures
to diverge; it would not violate the first law. However, we know that
this does not happen. The temperatures converge and eventually thermal
equilibrium is established. Thus there is an essential irreversibility of
nature, a natural direction for change, which we need to take into account
in trying to describe thermal processes. The first function of the second
law is to express this irreversibility.

Secondly, although we know that work may be converted into heat
by a suitable dissipative mechanism (Joule’s paddle wheels, or a resistor),
we have not examined the conversion of heat into work. The first law
emphasized the equivalence of heat and work as forms of energy, but
it tells us nothing about the conversion from one form to the other; and,
in particular, it tells us nothing about the efficiency with which heat may
be converted into work, a matter of enormous practical importance. The
second function of the second law is to express the inherent limit to the
efficiency with which heat may be converted into work.

4.2. Cyclic processes and heat engines

Now, in order to convert heat into work, we require some
suitable thermodynamic machine which will consume heat and produce
work. Clearly, if we are to discuss the efficiency of conversion, the
machine itself must not suffer any permanent change in use; it must
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play a passive role in the sense that after it has completed an appropriate
series of processes it must return to its initial state. Any series of processes
by which a system is returned to its initial state is called a cycle. The
machine, which will contain the system and a mechanism for causing it
to undergo the cycle, is then called a heat engine, and it is convenient
to refer to the system with which the engine operates as the working
substance.

In general, a heat engine will absorb and reject heat during various
parts of its cycle. We must expect there to be some heat rejected, for
else (applying the first law to the engine) all the absorbed heat would
have to be converted into work, giving 100 per cent efficiency which,
as we shall see, is unobtainable even with an ideal heat engine.

We define the thermal efficiency m of a heat engine as the proportion
of the absorbed heat which is turned into work:

_workout W
T~ heatin Q¢
where Q; and W are the heat absorbed and the work done in one cycle.
Then, applying the first law to one cycle of the heat engine in the form
W =Q:—- Q,, where Q: is the heat rejected, we have (see Fig. 4.1),

n =1—93. 4.1)

1
There is one particularly simple cyclic process which plays an important
part in the development of thermodynamics. Known as a Carnot cycle,
it consists of four distinct processes:
(a) The working substance expands isothermally and reversibly at
temperature ®; absorbing heat Q.

Fig. 4.1. Application of the first law to a heat engine.

heat engine
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(b) The working substance expands adiabatically and reversibly, the
temperature changing from @, to @,.
(c) The working substance is compressed isothermally and revers-
ibly at @, rejecting heat Q.
(d) The working substance is compressed adiabatically and revers-
ibly from @, to the initial state at ©;.
The cycle thus consists of the intersection of two adiabatics and two
isotherms. During each part of the cycle, work is exchanged with the
surroundings so that the net work done by the system in the whole cycle
is

W=—Z§X,~dxi.

For a simple two-parameter system, this is numerically equal to the area
enclosed by the cycle when plotted in the X—x coordinate plane.

Carnot cycles for two simple systems are illustrated in Fig. 4.2. The
two examples chosen show how dissimilar Carnot cycles for different
systems may appear. In the case of an ideal gas, the isotherms are
rectangular hyperbolae, while for a paramagnetic material obeying
Curie’s law, y = a/T, they are straight lines through the origin.

Since every process in a Carnot cycle is reversible, the whole cycle
must be reversible. Driven backwards, a Carnot engine extracts heat
from a body at a colder temperature and rejects heat to one at a hotter:
it transfers heat in the ‘unnatural’ direction at the expense of mechanical
work.

It should be pointed out that if a single working substance undergoes
a reversible cycle in which heat is exchanged at two temperatures only,
then the cycle is necessarily a Carnot cycle, for those parts of the cycle

Fig. 4.2. Carnot cycles in a gas, (a), and a paramagnetic
material, (5). AB and CD are isothermal processes. BC and DA
are adiabatic.
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not involving the transfer of heat must necessarily be (reversible)
adiabatics.

4.3. Statements of the second law

There are two well-known classical statements of the second
law.! The first places the emphasis on the efficiency of conversion of
heat into work and the second on the irreversibility of nature.

The Kelvin statement:
> No process is possible whose sole result is the complete conversion
of heat into work.

The Clausius statement:

> No process is possible whose sole result is the transfer of heat from
a colder to a hotter body.

The Kelvin form states that it is impossible to achieve 100 per cent
efficiency in the conversion of heat into work. In the Clausius form, the
law denies the possibility of reversing the natural tendency for heat to
flow from hotter to colder without external interference (in the form of
work, for example).

We may simply demonstrate these two statements of the second law
to be equivalent by showing that if one is untrue, then the other must
be untrue also. We shall prove this one way round only. We shall show
that if the Clausius statement is untrue then the Kelvin one must also
be untrue. To do this we start with an engine which violates the Clausius
statement. We then combine this engine with a normal heat engine (i.e.,
one which does not violate either statement) in such a way as to construct
a composite engine which violates the Kelvin statement. We proceed as
follows:

Suppose we have an engine which violates the Clausius statement of
the second law by extracting heat from a cold reservoir at ®, and
delivering heat to a hotter reservoir at ®; (engine 1 of Fig. 4.3). Since
no work is involved the heat absorbed must equal that delivered in each
cycle. We now take any heat engine and operate it in the normal way
so that heat is absorbed at the hotter reservoir, rejected at the colder
and work is done (engine 2 of Fig. 4.3). Suppose that in some given
time the first engine transfers Q, from @, to ®;. Then we operate the

! In chapter 6 we shall discuss the second law starting from a statement due to
Carathéodory. Although his formulation is much more economical than those
of Kelvin or Clausius, it is framed in less practical terms, and its approach
will be appreciated more easily when we have developed the subject a little
further.
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second engine at such a rate that during the same period it rejects Q,
at @,. If the heat it absorbs in that period is Q;, the work done is
W = Q;— Q.. We now consider the two engines, taken together, to form
a composite engine, and we see that the net effect of the composite
engine is to exchange no heat at the cold reservoir but only to extract
heat, (Q1—Q>), at ®; and do an equal amount of work. The existence
of such an engine violates the Kelvin statement.

The proof that if the Kelvin statement is untrue then the Clausius
statement is also untrue, proceeds in an analogous manner. Both proofs
together show that the truth of either form of the second law is both a
necessary and a sufficient condition for the truth of the other.

It is worth pointing out that the first and second laws imply the
impossibility of two different forms of perpetual motion. The first law
does not allow perpetual motion of the first kind: a machine cannot
operate continuously by creating its own energy (because energy is
conserved). The second law forbids perpetual motion of the second kind :
a machine cannot be made which runs continuously by using the internal
energy of a single heat reservoir (Kelvin statement). This would not
violate the first law. A further possible way of obtaining perpetual motion
would be to remove all dissipative effects such as friction, viscosity, or
electrical resistance, so that motion, once started in some device, would

Fig. 4.3. Proof that the untruth of the Clausius statement of the
second law implies the untruth of the Kelvin statement.

hot reservoir: O,

cold reservoir: @,
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persist. This would be perpetual motion of the third kind. It is not forbidden
by either the first or the second law but it is known from experience to
be impossible to achieve in any system governed by classical laws.”

44. Hotness and temperature

We may now pause to clear up a minor point which we have
glossed over somewhat. We have defined temperature in terms of thermal
equilibrium between two bodies. We have defined hotness in terms of
the natural direction of heat flow between bodies which are not in
equilibrium. But we have assumed that there is a direct correspondence
between hotness and temperature. This assumption is well founded on
experience but, in fact, it is possible to prove its correctness directly
from the second law. It will suffice for this proof if we may show the
truth of the following statement: If one body at ®, is hotter than one
body at @,, all bodies at ®; are hotter than all bodies at O,.

To prove this theorem we make use of a special kind of heat leak
which consists of a Carnot engine C whose work output is dissipated as
heat at the colder reservoir. It thus serves to transfer heat in the natural
direction, from hot to cold, but by a process we may analyse.

Consider two of the bodies at ®,, A and B, and one at ®,, D, and
suppose that A is hotter than D (Fig. 4.4). We first operate the Carnot
heat leak in an infinitesimally small cycle between A and D. Then, by
the Clausius statement of the second law, the direction of heat flow must
be from A to D. The isothermal process which the Carnot engine
performs while in contact with A is determined by the condition that
the working substance in the engine be in thermal equilibrium with A
throughout the process. But, from the definition of empirical tem-
perature, B is in equilibrium with A, and therefore, by the zeroth law,
the Carnot engine would also be in equilibrium with B throughout the
0, isothermal process. Thus, the Carnot engine would perform identical
cycles whichever body at ®, provides the heat source, and consequently
the direction of heat flow will be the same. It therefore follows that,
unless the Clausius statement is to be violated, all bodies at ®; must be
hotter than D. By applying a similar argument to bring in other bodies
at @,, this conclusion immediately generalizes into the statement that
we originﬁlly set out to prove. Thus the unique correspondence of hotness
and temperature is established.

2 Superconductivity, the lossless flow of electric current, and superfluidity, the
viscousless flow of one form of liquid helium, are essentially macroscopic
quantum effects. These will be discussed in more detail in sections 10.8.3,
10.8.2 and 10.10.
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4.5. Carnot’s theorem

Carnot’s theorem is the first step in the arguments which lead
from the classical statements of the second law to thermodynamic tem-
perature. The theorem states:

> No engine operating between two given reservoirs can be more
efficient than a Carnot engine operating between the same two
reservoirs.

To prove this we show that if the theorem is untrue, we may construct
out of a Carnot engine and one of these more efficient engines a
composite engine which violates one of the statements of the second
law. We shall arrange to violate the Clausius statement.

Consider a Carnot engine C and the hypothetical engine of greater
efficiency, H, operating between reservoirs at ®; and @,. The energy
changes during one cycle of the engines are shown in Fig. 4.5. If the
efficiency of the hypothetical engine is greater than that of the Carnot
engine, we have

Nu>"c
i.e.,

W, W,

JH TC

Qum Qa

Since a Carnot engine is reversible we may drive it backwards with the

4:2)

Fig. 4.4. Demonstration of the correspondence between hotness and
temperature.
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mechanical energy from H. We may also choose the size of the Carnot
engine’s cycle, for, although the isotherms are fixed by ®, and ®, we
may move the positions of the adiabatics as we please. This allows us to
arrange that, in one cycle of each engine, C uses exactly as much
mechanical work as H produces.3 That is,

We= Wh. (4.3)
Then from (4.2)
Qc1>0Qu. 4.4)

We now see that the composite engine consisting of C and H taken
together does no work but extracts heat from the cold reservoir and
delivers an equal amount to the hot reservoir given by

Qc1—Qu1>0 by (4.4).
The composite engine therefore violates the Clausius statement of the
second law, so that our hypothetical engine cannot exist and the theorem
is proved.

Corollary. In Carnot’s theorem we have shown that 7Tcamot = Mother-
If the hypothetical engine in the above proof were replaced by any

Fig. 4.5. Proof of Carnot’s theorem.

0,

We=0c1- 0c;

3 If we did not wish to adjust the size of the Carnot cycle, we could arrange
for there to be no surplus mechanical energy by adjusting the relative rates
of working of the engines as we did in the proof of the equivalence of the

two forms of the second law. The argument would then follow through in
exactly the same way.
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reversible engine R, we should have shown that nc=ng. But now, since
both engines are reversible, the Carnot engine could have been used to
drive the other engine backwards giving the result nc < ngr. These condi-
tions may only both be satisfied if nc = nr. Thus we have shown that:

> All reversible engines operating between the same reservoirs are
equally efficient.

It follows that the efficiency of any reversible engine operating between
two reservoirs must be a function of the temperatures of the reservoirs
only. That is, for any reversible engine,
> 2i_je,0 @.5)

Q:
where f is a universal function of @, and 0,.

As mentioned earlier, the only reversible cycle in which a single
working substance exchanges heat at two temperatures only is necessarily
a Carnot cycle; but the second engine in the above argument may be
as complex as we please (it might contain several subsidiary cyclic
processes, for example) provided that it is reversible and exchanges heat
with its surroundings via the two reservoirs only. A Carnot engine is
the simplest engine fulfilling these conditions. An example of a more
complicated one occurs in section 4.6.

4.6. Thermodynamic temperature

We may now use (4.5) to arrive at a definition of thermodynamic
temperature. Consider two Carnot engines, the first, C,, operating
between reservoirs at ®; and @, and the second, C,, operating between
@, and ;. Let C; absorb Q; at ®; and reject Q, at @,. Adjust the
relative sizes of the cycles so that C, absorbs Q, at ®, and rejects Qs
at @5 (Fig. 4.6). Then from (4.5) we have for C,

%=f(®l, 0,), .6)
and for C,
%j=f'(®2, 05). @)

But since no net heat is exchanged at ®,, the @, reservoir is superfluous.
(The two engines could exchange the heat directly while performing
exactly the same cycles.) Thus the ®, reservoir may be bypassed while
equations (4.6) and (4.7) remain unaffected. However, we may then
consider the two Carnot engines to form a composite (reversible) engine
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exchanging heat at ®, and @ only.* Applying (4.5) to the composite
engine

Q

=2=£"(8;, 85). 4.8)

Qs
From (4.6), (4.7), and (4.8)

(04, ©3) =£(0,, ©,)f'(6,, 85).
But the left-hand side is independent of ®,, so that ®, must cancel out
from the terms on the right. This can only happen if the fs factorize in
the form T(®,)/T(0,) where the T's are universal quantities depending
on the empirical temperatures only. Returning to equation (4.6), we
may therefore put

—=— 4.9)

which defines thermodynamic temperature apart from the constant of

Fig. 4.6. Derivation of thermodynamic temperature.
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* Alternatively, since the @, reservoir is unchanged by the operation of the
engines, we could include it with them as part of the composite engine.
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proportionality which fixes the size of the unit. In other words, thermody-
namic temperature is defined so that:

> The ratio of the thermodynamic temperatures of two reservoirs is
equal to the ratio of the amounts of heat exchanged at those
reservoirs by a reversible engine operating between them.

In section 8.2 we shall show that it is thermodynamic temperature
which appears in the equation of state of the perfect gas. This is why
measurements of thermodynamic temperature are usually ultimately
based on gas thermometry (see sections 2.4-2.6).

In terms of thermodynamic temperature, the efficiency of a reversible
engine operating between two reservoirs at temperatures T, and T,
becomes
w Q . T

n=g=l-g=1-1- (4.10)

4.7.  Uniqueness of reversible adiabatics

In the various proofs we have given above, we have assumed
that the path followed by a system in the course of a reversible adiabatic
change is uniquely defined. In particular, we have assumed that if a
system sets off along an adiabatic path from a particular state on one
isotherm, it will always intersect another isotherm at the same point. If
this were not the case, the Carnot cycle which the system performs
would not be defined and the work done in the cycle would not be
determined uniquely. The assumption that the adiabatics are uniquely
defined amounts to assuming that there must be some function of state
which is constant for (reversible) changes in which dQ = 0, the constancy
of this quantity determining what states are accessible to the system.
However, we know that Q is not a function of state, and therefore the
assumption we have made needs further justification.

One way out of this difficulty is simply to appeal to experimental
evidence that reversible adiabatic processes are uniquely defined.
However, it is easy to show that this must be so in the case of a
two-parameter system.

The reversible adiabatic is the curve for which

dQ=dU+pdv =0. 4.11)
We choose p and V as independent variables and rearrange this equation
into a linear differential form in dp and dV. In terms of dp and dV, dU

becomes

U U
dU=(—) d +(—) : .
), ¥+ () av 4.12)
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Substituting in (4.11)
aU ) { aU
=) dap+ +(—)}dv=o 4.1

( ), 2 (Gy) (4.13)

which is the differential equation which the system parameters must

obey for a reversible adiabatic change. Now the coefficients of dp and

dV in (4.13) are both functions of state so that the directions of adiabatic

changes are uniquely determined for all states of the system by an

equation of the form
Fi(p, V)dp+F,(p, V)dV =0. 4.14)

Equation (4.13) may therefore be integrated from any initial state to
give unique adiabatics. The proof does not, however, generalize to cases
where there are more than two independent variables.” Thus, for the
moment, we may only take adiabatics to be unique and the proofs we
have given earlier using Carnot engines to be valid for systems with two
degrees of freedom only. However, when we come to discuss cyclic
processes, we shall be able to derive results from them which are valid
for many-parameter systems. Eventually we shall show that there is a
function of state, entropy, which is conserved in reversible adiabatic
processes. It then follows immediately that adiabatic surfaces exist for
many-parameter systems, since they are surfaces on which the function
of state, entropy, is constant (see sections 5.2 and 6.2). This also shows
the earlier results to be valid without restriction.

Incidentally, we have not shown that an adiabatic may not cut an
isothermal more than once; but this is immediately precluded by the
second law, for an engine based on a system in which this occurs would
violate the Kelvin statement.

5 If one thinks of dp and dV as infinitesimal vectors in p-V space, then
equation (4.14) simply states that any permitted infinitesimal change,
represented by the vector (dp, dV), must be perpendicular to the vector
(F1(p, V), Fy(p, V)) since their scalar product is zero. Since the coordinate
space has two dimensions only, this condition defines a unique line. With
three degrees of freedom, it defines a plane containing the initial state, and
the condition is satisfied by any line lying in that plane. With this extra
degree of freedom it would, in general, be possible to pass from any point in
system coordinate space to any other while always satisfying the adiabatic
condition at all points of the path. All states of the system would then be
mutually accessible by adiabatic paths and there would be no unique
adiabatic surfaces. This shows why the above argument cannot be
generalized to systems with more than two degrees of freedom. We shall
postpone demonstration of the general result until we have introduced
entropy in chapter 5.
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4.8. Refrigerators and heat pumps

In the proof of Carnot’s theorem, we used the reversible
property of a Carnot engine. By the expenditure of mechanical work it
was made to run backwards, extracting heat from a cold reservoir and
rejecting it to a hot one (Fig. 4.7). Any device which, by the use of
mechanical work, transfers heat continually from colder to hotter is
called a refrigerator or a heat pump.

Refrigerators. The function of a refrigerator is to extract heat from a
body which is at a lower temperature than the surroundings. The
efficiency or figure of merit of a refrigerator should therefore be defined
in terms of the amount of heat extracted for a given expenditure of
mechanical work. For a perfect refrigerator, using a Carnot engine,

A
"W S To (4.15)

The efficiency of the ideal refrigerator is shown in Fig. 4.8. For
moderate degrees of cooling the efficiency is high. Down to T>/T; =0-5
more heat is absorbed than work required; but for a given extraction
of heat the work required becomes very large as the temperature ratio
is increased. For a domestic refrigerator the upper temperature is usually
kept close to room temperature by exchange of heat with the surround-
ings through cooling fins, while the lower temperature is kept somewhat
below freezing point. With 73 =312 K and T, =260K, n,=5. On the
other hand, to absorb 4 watts of heat at 1 K with an ideal refrigerator
working from room temperature would require more than 1 kW of
power. (This shows why it becomes increasingly difficult to obtain cooling

Fig. 4.7. A Carnot engine driven backwards absorbs heat at cold
reservoir and rejects heat at a hotter.

T
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at very low temperatures.) In practice, efficiencies will fall well below
these ideal figures.

Heat pumps. The function of a heat pump is to deliver heat to some
body which is at a higher temperature than its surroundings. The
efficiency or figure of merit of a heat pump should therefore be defined
in terms of the amount of heat delivered at the higher temperature for
a given expenditure of mechanical work. For a perfect heat pump, using
a Carnot engine,

np=—=—l_=1+n,. (4.16)

Fig. 4.9 shows the efficiency of an ideal heat pump. For small tem-
perature differences considerably more heat is supplied than power
consumed. This makes the heat pump very attractive as a device for
heating buildings, heat being extracted from the surrounding atmosphere
and delivered to the building at a little above room temperature. Taking
T,=320K and T,=280K, 8 kW of heating would involve a power
consumption of only 1kW. Unfortunately, the high cost and low
efficiency of any practical plant make this method of heating of doubtful
economic advantage and it has rarely been used. As the temperature
ratio increases the potential advantage of the heat pump becomes smal-
ler. When T, - 0 the heat delivered becomes equal to the work required
and the heat pump has no advantage over a device which turns the work
directly into heat such as a simple electric heater.

Fig. 4.8. The efficiency of an ideal refrigerator.
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4.9. Real heat engines

In completely general terms, little can be said about the efficien-
cies of real heat engines although a crude comparison with a Carnot
cycle is sometimes possible. If we know the extremes of temperature
involved in the cycle of the real engine, then certainly its efficiency must
be less than that of a Carnot engine operating between reservoirs at
these extremes. Such a simple comparison is sufficient to show why the
early steam engines were so inefficient. Steam was available at somewhat
above atmospheric pressure, at a temperature of say 390 K, and was
condensed by water at a temperature somewhat below normal boiling
point, say 350 K. The efficiency of a Carnot engine operating between
these temperatures would only be 10 per cent and, of course, for the
steam engines it was much smaller still. In the modern steam engine,
the efficiency has been improved by using high pressure steam and
forcing T; up; but the steam engine is still an inefficient means of
generating mechanical power from heat because of the comparatively
limited temperature range which is practicable. In contrast, one would
expect the internal combustion engine to be capable of much higher
efficiencies because of the extremely high temperatures which are invol-
ved in the explosion.

To discuss a real heat engine in any detail it is always necessary to
invent an idealized cycle which may be used as a reasonable representa-
tion of the cycle of the real engine. Calculations based on such an
idealized cycle will give an upper limit to the efficiency of the real heat
engine. Idealization involves two basic approximations. The first is that

Fig. 4.9. The efficiency of an ideal heat pump.
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the working substance is a single pure substance. In the case of an
internal combustion engine, this is clearly far from the truth. The working
substance is, in fact, a mixture of gases and vapours and its composition
changes during the cycle. For the internal combustion engine, air is
usually chosen to represent the working substance. Cycles based on air
are known as ‘air standard cycles’.

The second approximation consists of replacing the real cycle by a
reversible cycle. Again, this is clearly far from the truth. Most real cycles
proceed rapidly and the conditions are far from quasistatic: heat flows
through finite temperature gradients; there is friction and turbulence.
In practice, it is usually this approximation which introduces the greatest
errors.

We shall illustrate the use of an idealized cycle by considering one
example, that of the petrol engine.

4.9.1. The petrol engine

In the petrol engine, the cycle consists of six parts. Four of these
involve motion of the piston and are called strokes. The cycle proceeds
as follows:

1. Intake stroke. The mixture of petrol and air is drawn into the
cylinder through the intake valve by the movement of the piston.

2. Compression stroke. The intake valve closes and the piston moves
up the cylinder compressing the mixture rapidly. The compression is
nearly adiabatic and there is a considerable temperature rise.

3. Explosion. When fully compressed, the mixture is caused to
explode. There is negligible movement of the piston during the explosion
so that the volume remains unchanged, but a very high temperature and
pressure are reached.

4. Power stroke. The hot combustion products expand, doing
mechanical work on the piston. There is a considerable drop in pressure
and temperature.

5. Valve exhaust. At the end of the power stroke the exhaust valve
opens. The combustion products which are still at a high pressure flow
out rapidly into the atmosphere. There is a sudden drop in pressure.

6. Exhaust stroke. The piston moves up the cylinder forcing the
remaining gases out into the atmosphere. The exhaust valve then closes
and the intake valve opens in readiness for the next intake stroke.

The petrol engine cycle is clearly highly irreversible. The idealized
cycle which replaces it is known as the air standard Otto cycle and is
illustrated in Fig. 4.10. Air is taken as the working substance and is
assumed to obey the ideal gas laws (see section 8.2) with constant
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principal heat capacities. All processes are assumed to be reversible.
The various parts of the petrol engine cycle are then represented as
follows:

5-1. The intake stroke. A quasistatic isobaric intake of air at po to a
volume V.

1->2. The compression stroke. A quasistatic adiabatic compression from
V1 to V, during which the temperature rises from T; to T, according
to the ideal gas equation,

T,V ' =T,vi"! 4.17)
where v is the ratio of the principal heat capacities.

2-3. The explosion. A quasistatic isovolumic rise of temperature and
pressure brought about by the absorption of heat from a series of
reservoirs between T, and T3.°

3> 4. The power stroke. A quasistatic adiabatic expansion producing a
drop in temperature according to

T,vit=T,vi . (4.18)

Fig. 4.10. The air standard Otto cycle.
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6 The series of reservoirs is necessary so that no temperature difference ever
occurs between the system and the reservoir supplying heat. If a temperature
difference were set up, the flow of heat would then become
thermodynamically irreversible.
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4- 1. Valve exhaust. A quasistatic isovolumic drop of temperature to
T, (and of pressure to po) brought about by exchange of heat with a
series of reservoirs between T4 and T;.

1- 5. Exhaust stroke. A quasistatic isobaric expulsion of the air.

Clearly, the two isobaric processes S 1 and 1> 5 cancel one another
out, and in calculating the efficiency we only need to consider the rest

of the cycle.
The heat absorbed along 2> 3 is
TS
Ol = Cv dT = Cv(T3 - T2)9
T2

and rejected along 4> 1 is
Tl

Q= C,dT =C,(T4s—Th).

Ts
Applying the first law, the efficiency is
_W_0:-0;_ 1_(T4—T1).
Q: Q: (T3-T>)
From (4.17) and (4.18)
(Te~TY VY™ =(T:-T) VI

Hence

— Vi v — (vy—1)
n—1-(—) —1-1/r (4.19)
Vi
where r is called the compression (or expansion) ratio.

To obtain the highest efficiency, the expansion ratio has to be as large
as possible. However, it cannot be made too large because eventually
regions in the fuel mixture detonate during the combustion rather than
burning smoothly. The resulting pinking or knocking is mechanically
bad for the engine and also reduces the efficiency. With modern fuels
a compression ratio of about 10.5 can be used. Taking y = 1.4 for air,
this gives a theoretical maximum efficiency of 61 per cent. In a real
engine, the efficiency probably only reaches half this value.



Entropy

5.1. Clausius’ theorem

So far, we have only discussed cycles in which the system
exchanges heat at two temperatures only. For heat engines based on
such cycles we have, according to Carnot’s theorem,

N = Nrev

where 7., is the efficiency of a reversible engine operating between the
same temperatures. Substituting for the efficiencies,

02 Or2
1-—=1-
Ol Orl
Q_Qu_T:
Ol Orl Tl
by the definition of thermodynamic temperature. Therefore,
Q:_ Q1
T, T,

Taking the heat entering the system as positive, we may write this’
Q
—=0. 51
) T (5.1

We shall now prove a corresponding result for general cyclic processes
of any degree of complexity. In particular, there will be no restrictions
on the number of degrees of freedom of the system nor on the tem-
perature at which it may exchange heat with its surroundings.

! 1t should be noted that the inequality becomes stronger as the engine
becomes less efficient and less reversible. We shall later see how this comes
about in a more general way.
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To make the system execute the cycle, an appropriate series of
adjustments has to be made to its parameters (involving work) and at each
stage the appropriate amount of heat has to be supplied. The cycle itself
may be irreversible, but we may supply the heat reversibly by operating
a minute Carnot engine between the system and a large reservoir at
constant temperature (Fig. 5.1). By ensuring that the Carnot engine is
in thermal equilibrium with the reservoir or system during the transfer
of heat, no irreversibility is involved there. The series of processes
followed by the Carnot engine C is as follows. All are reversible.

(a) Cis at Ty,
(b) Cis compressed (or expanded) adiabatically until its temperature
is T.
(c) Cis placed in contact with the system and absorbs or supplies
heat by an isothermal change at 7.
(d) Cisexpanded (or compressed) adiabatically until its temperature
is To.
(e) C is placed in contact with the reservoir and compressed (or
expanded) isothermally at T, until it regains its original state.
In this way, the complex engine executes its cycle in infinitesimal steps
and no assumptions are made about the uniqueness of its adiabatics nor
about2 whether the working substance can depart from the specified
cycle.

Fig. 5.1. Proof of Clausius’ theorem.

g
system \/ T O T,
\ C

N

2 A misleading method which is often used to prove Clausius’ theorem is to
superimpose on the general cycle a mesh of adiabatics and isotherms so as to
subdivide it into infinitesimal cycles to which (5.1) is applied. There are two
objections to this. In the first place, the argument depends on the assumption
that the system could exist in all of the states involved in the subdivision.
Clearly, this might not be true. The second, and more serious objection is
that we have not yet proved the existence of unique adiabatic surfaces for
systems of more than two variables. Thus the result would not be of general
validity.



70 Equilibrium thermodynamics

If the heat supplied to the working substance at T in one journey of
the Carnot engine is dQ, the corresponding heat absorbed from the
Teservoir is

To
T da.

Hence, the heat absorbed from the reservoir in one complete cycle of
the complex engine is

dQ
TO ? = 09

by the Kelvin statement of the second law. However, T is necessarily
positive, and therefore,

> § d_fl?_ =0 for any cycle. (5.2)
If the complex cycle were reversible we could have executed it in the
opposite direction and derived the result

§d7,q20. (5.3)

But (5.2) applies to any cycle and therefore necessarily to reversible
cycles in particular. Hence, if the cycle is reversible both (5.2) and (5.3)
must be satisfied, giving

> § g,l—,g =0 for reversible cycle. (5.4)

The two results (5.2) and (5.4) together form Clausius’ theorem, which
may be stated formally as follows:

d
> For any closed cycle, §?O =0, where the equality necessarily

holds for a reversible cycle.

Clausius’ inequality is very important, for our whole treatment of
irreversible processes will follow from it.

It is important to be clear about the significance of T in the above
results. In an irreversible cycle the various parts of the system might
not always be in equilibrium with one another and, in particular, there
might be temperature differences, making it impossible to define a
temperature for the system as a whole. In the proof, T is the temperature
of the Carnot engine as the heat is transferred across the boundary of
the system. Thus the T appearing in the integrals is the temperature at
which heat is supplied to the system. Only if the source of heat is in
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thermal equilibrium with the system as a whole does it become the
temperature of the system also.

5.2. Entropy
We now define a new variable, the entropy S, by the relation

aQ
dsS =—
T
for an infinitesimal reversible change. To emphasize that the equality

holds for reversible changes only, the definition of S is written

dOrev
T .

Then for a finite reversible change of state, the change in entropy is
given by

2

dorev
S-S =.[ —_
e

> ds = (5.5

(5.6)

We shall now show that entropy is a function of state.

Proof that S is a function of state. Construct any reversible cycle and
select any two states A and B on it (Fig. 5.2). The Clausius’ theorem states

ACBDA ACBDA

Fig. 5.2. Proof that entropy is a function of state.




72 Equilibrium thermodynamics

from the definition of S, all processes being reversible;

§ ds = J. ds + I ds.

ACBDA ACB BDA

Therefore,

I ds = J' dS =Sg—Sa.

ACB ADB

If the path via D is kept fixed and the path via C varied, we see that

J’ dS =SB—SA
ACB

always takes the same value for any reversible path from A to B. Hence,
apart from an arbitrary additive constant, S must be uniquely defined
for every state of the system: i.e., S is a function of state.

Since S is a function of state, dS must be a perfect differential (i.e.,
it is uniquely defined for any given change of state and can therefore
always be integrated). But we have defined S by the equation

dOrev
T

where dQ is not a perfect differential. Thus we have discovered that
there is an integrating factor for dQ;.,, namely, 1/T.

It also follows immediately that adiabatics exist and are unique for
systems of any number of degrees of freedom, for they are simply the
surfaces of constant entropy, the isentropes. This deals with the point
we had to leave in section 4.7.

ds =

5.3. Entropy in irreversible changes

Since entropy is a function of state, the change in entropy
accompanying a given change of state must always be the same, however
the change of state occurs. Only when the change takes place reversibly,
however, is the entropy change related to the heat transfer by the
equation

ss-[

for we imposed the condition of reversibility in the initial definition.
What is the relationship between entropy change and heat transfer in
irreversible processes?
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Consider an irreversible change, A - B. Construct any reversible path.
R between A and B, thus forming an irreversible cycle ABRA (Fig.
5.3). For the irreversible cycle Clausius’ theorem gives

dQ
T =0.
Taking the integral in two parts,
B A
dQ J’ dQ
[ T+ [ F=o
Airl'cv Brcv
i.e.,
B B
J dQ dQ
— s _
T T
Airrev Arev
But
B
dQ
— =8-S
J;mv T B A
by definition of entropy. Thus
B
dQ
J' ‘7_,— =S B— SA,
Airl'ew
or,
dQ
ds= T

Fig. 5.3. Determination of the behaviour of entropy in an
irreversible change.
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for a differential irreversible change. Thus, we have the general result
> ds=dQ/T 5.7

for any infinitesimal change where the equality necessarily applies if the
change is reversible. Again, T is the temperature at which the heat is
supplied to the system. Only when the source of heat is in thermal
equilibrium with the system as a whole does it become the temperature
of the system also.

Equation (5.7) is extremely important. It contains all the information
required for dealing with efficiency and irreversibility in thermal pro-
cesses. It may therefore be thought of as the focal point of the second
law since it is through it that the objectives of the second law are realized.

For a system which is thermally isolated (or completely isolated)
dQ =0. Applying (5.7) we see that dS = 0. This general result is known
as the law of increase of entropy which may be stated formally as:

> The entropy of an isolated system cannot decrease.

A particular application of this law is that it may be used to determine the
equilibrium configuration of an isolated system. In approaching
equilibrium the entropy of the system can only increase. Therefore, the
final equilibrium configuration is that for which the entropy is as large as
possible. Later, when we come to discuss the interpretation of entropy, we
shall see how this principle may be applied.

It should be noted that the law of increase of entropy provides a
natural direction to the time sequence of natural events. Within the
mechanistic framework of Newtonian mechanics all processes are revers-
ible in time. (The equations remain unaltered in form on replacing ¢ by
—t.) Why then is there the inevitable sequence to events, the so called
‘arrow of time’? Thermodynamics does not answer this problem but it
does provide a new insight. The natural direction of events is that in
which entropy increases. All changes are therefore part of the irreversible
progress towards universal equilibrium. Thus, the arrow of time results
from there not being thermodynamic equilibrium throughout the uni-
verse. As long as temperature differences or density differences exist
natural evolution will continue and events will be directed forwards
towards equilibrium.

5.4. The entropy form of the first law

From the first law we were able to deduce the existence of
internal energy U, a function of state. For any change of state, however
it occurs, the change in U is given by equation (3.3), namely:

dU =4Q +aw
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where dQ and dW are not differentials of functions of state and are
therefore not individually defined for a given change of state. To'separate
the contributions to U from heat and work the constraints on the system
have to be known so that the path of the change may be found. If the
change takes place reversibly, the work done may be expressed in terms
of the system’s parameters of state in the form Y X; dx;, and only when
the path is known can this be integrated. Thus, taking a simple fluid as
our model, we have

dU =dQ +3dwW always (5.8)

dW=—-pdV for reversible changes (5.9
and we have defined entropy such that

dQ=Tds for reversible changes. (5.10)
Substituting (5.9) and (5.10) in (5.8) we obtain

dU=TdS—pdV for reversible changes. (5.11)

However, in this equation all the variables are functions of state so that
all the differentials are perfect. As a result, integration of this equation
must be independent of the path of integration and the equation may
be applied to any change of state, however accomplished. To use the
equation we only require that initial and final states be defined and that
there is some reversible path between them. To find the change in
internal energy accompanying an irreversible change we choose any
convenient reversible path between initial and final states and integrate
(5.11) along it. Thus, by expressing dU in terms of state functions only,
we have

> dU=TdS—-pdV - always. (5.12)

Changes in any state function may be calculated by a convenient revers-
ible path in the same way.

For irreversible changes, the equalities (5.9) and (5.10) do not hold.
We have already shown that in this case (5.10) becomes the inequality
dQ =T dS so that for (5.12) to remain true W =—p dV. This is what
one would expect. In the presence of irreversibility (when there is friction,
for example), the total work done is greater than that which would be
required to effect the same change in volume of the system without the
irreversibility.

The general form of the first law is thus

dU=TdS+Y X dx; (5.13)

where X; and x; are the intensive variables and their conjugate extensive
variables. It is clear from its definition, that entropy is an extensive
variable so that from the form of (5.13) thermodynamic temperature
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must be its corresponding intensive variable. The term T dS is thus
entirely similar to the work terms and may be grouped with them. This
gives the first law in a condensed form:

dU =3 X, dx, (5.14)

where the summation necessarily includes the term T dS which is rel-
evant to all systems.

S.5. Entropy and the degradation of energy

The work that can be extracted from a system in an infinitesimal
change of state is dW =dQ —dU. We have shown that dQ is related to
the entropy change by dQ = T, dS, where Ty is the temperature at which
the heat is supplied, so that dW must satisfy the inequality dW =
TodS —dU. Thus, for a given change of state (so that dU and dS are
fixed), the maximum amount of work is extracted from the system when
the equality applies; that is, when the change is reversible. In this case,
the total entropy change of the system and its surroundings is zero,” for,
in any process involving reversible exchange of heat with the surround-
ings, dSsystem = —dSsurroundings; Whereas, in an irreversible change, the
entropy change of the surroundings (assuming no irreversibility there)
is dSo=—dQ/T,, while that of the system satisfies the inequality dS =
dQ/To. In this case, the entropy of the universe may increase, and, if
it does, we are able to extract less work from the system than would
have been the case if the same change had been made reversibly. Thus,
associated with the increase of entropy is the ‘loss’ of some energy which
could have been used for work. Clearly, this energy does not vanish,
for this would violate the first law, but rather it takes a form from which
it may be converted into work with less efficiency than previously. The
energy becomes degraded in that it is less useful for work. We may
illustrate this by a simple example.

Consider two bodies 1 and 2 which are at temperature T; and T>.
Suppose that T;>T,. Then if we connect the bodies together by a
thermal resistance and allow a small quantity of heat q to flow, the total
change of entropy is

AS = AS; +AS; = q(%——%—) >0, while T, > T>.
2 1

Thus, the entropy increases and will continue to increase as long as the
heat flows, bringing the bodies towards equilibrium.

® In this kind of situation, one often speaks of the entropy of the universe as
being conserved. This is simply a convenient way of lumping together the
system and its surroundings.
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Now suppose that instead of allowing q to flow from 1 to 2 we used
it to operate a Carnot engine from which to obtain mechanical work.
Let us suppose that T, is the temperature of the coldest reservoir we
have to hand for use with the Carnot engine. Then, by extracting q from
1 we could have obtained work

To
W, = (1 ——).
1=49 T,

If, however, we first allow q to flow from 1 and 2 and then use it to

operate the Carnot engine we only obtain

To)
= —-—l< .
W, q(l ) <™

Thus, in the course of the irreversible heat conduction the energy has
become degraded to the extent that the useful work we may obtain from
it has been decreased by

AW=W1—W2=T0AS.

The increase in entropy in an irreversible change is thus a measure
of the extent to which energy becomes degraded in that change. Con-
versely, in order to extract the maximum amount of useful work from
a system or set of systems, changes must be performed in a reversible
manner so that total entropy (entropy of the system and its surroundings)
is conserved.

It is worth pointing out that if the two bodies in the above illustration
were allowed to reach thermal equilibrium (a) by heat conduction and
(b) by operating a Carnot engine between them and extracting work,
the final equilibrium temperatures would be different in the two cases.
In the first, U; + U, is conserved and the final temperature is

TV = (O T+ C.To)/(C1+C,)
where the C5 are the thermal capacities, which, for simplicity, we have
taken to be constants. In the second case, S$;+S, is conserved and
W =—A(U,+ U,). In the isentropic process, the final temperature is
given by

T§S) - T[IC,/(C,+C2)]T[2C2/(C,+C2)] < T;U). (5.15)

The difference in the final temperature corresponds to the lower value
for the total internal energy which results from work having been done.

5.6. Entropy and order
We have shown that the equilibrium state of an isolated system
is that for which the entropy takes on its maximum value, so that in
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terms of macroscopic variables the maximization of entropy is the
condition for determining the equilibrium configuration. An alternative
approach would be to apply probability theory at the microscopic level
to the various possible configurations of the system and to seek that
configuration whose probability is greatest. This is the method of the
discipline known as Statistical Mechanics or Statistical Thermodynamics
(see Rosser, 1982, or Kittel and Kroemer, 1980). The exact definition
of the statistical probability of a particular macroscopic state, for which
we shall use the symbol g, is outside the scope of this book, but its
relationship to entropy is so important in making it possible to link
macroscopic and microscopic properties that some discussion of it is
essential.

In seeking the most probable configuration of a system we are, in
fact, seeking the configuration of the greatest disorder permitted by the
constraints to which the system is subjected. A configuration which
requires particular conditions of order (such as that no molecules should
be in a particular region of space), is clearly less likely to occur spon-
taneously than one in which no conditions are specified. Thus the most
probable configuration, the equilibrium configuration, is that in which
the disorder is as great as possible. The statistical probability of a
particular configuration is therefore a measure of its disorder. Without
involving ourselves in the exact definition of g we may illustrate its
connection with disorder by taking a simple example.

Consider a fixed mass of gas in a container. We divide the container
into two equal parts, A and B, and consider the probability that the
molecules will all be in one half. The probability that a particular
molecule will be in A is clearly 3. The probability of finding two particular
molecules in A at the same time is 3 X 3. Extending the argument to all
N molecules, the probability that all molecules will be in A at any
particular time is (3)". We may therefore compare the statistical probabil-
ity that all the molecules are in A, ga, with that for the molecules to
occur randomly throughout the whole box, ga+s:

Er _ N, (5.16)
8A+B
(If the box contains 1 mol of the gas, we have N =6 X 10 and we see
that the chance of finding all the gas in one half of the box is about 1
in 10"**1° This would occur spontaneously about once in 10*%*1%*
universes: a rare event.)
This simple illustration demonstrates the connection between statis-
tical weight and disorder. We have shown that for equilibrium the
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macroscopic quantity entropy must be maximized and how the corres-
ponding microscopic condition is the maximization of g, which is related
to the disorder in the system. Can we arrive at an explicit connection
between entropy and order? We may see what this might be by consider-
ing two systems, 1 and 2. Entropy is an extensive variable (section 5.4),
so that the total entropy of the two systems taken together is

Sl+2=Sl+Sz. ' (5.17)
The probability of finding the systems simultaneously in particular
configurations we specify for them is the product of the probabilities for
each system alone:

81+2=8182. (5.18)
Clearly, (5.17) and (5.18) are satisfied simultaneously if

S=king,
where k is a constant. We may prove that this is necessarily the form
of the relation as follows.
Suppose

S=f(g).
Then, according to (5.17) and (5.18),

f(g182) =f(g1) +f(g2)-
Differentiating twice, with respect to first g; and then g,

f'(g182) +£1821"(8182) =0
or,

f'®)/f'(g)=-1/g.
Integrating,

In f'(g) = —In (g) + constant
or

fg)=k/g
where k is a constant. Therefore,

fg)=klIng+go
or

S=king+S,
where S is the constant of integration which it is convenient to take as
zero corresponding to a statistical probability of unity for a completely

ordered state. Thus we have proved that the relation between the entropy
and the statistical probability is

> S=king. ' (5.19)
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This is the important Boltzmann relation which links classical thermody-
namics with the microscopic properties of a system. We may show that
k is Boltzmann’s constant, R/Na, by considering again the perfect gas
contained in a box. We calculate the difference in entropy between the
state in which the gas is entirely in one half of the box, and that in which
it is uniformly distributed throughout the box. We do this by first
imagining that the gas is constrained to one half of the box by a partition
and that the partition is then punctured to allow the gas to fill the whole
box. In the (irreversible) expansion dQ = dW = 0. Therefore,

dU=TdS-pdV=0.
We may now choose a convenient reversible path by which to evaluate

the terms in the latter equation since all these are functions of state.
For dU =0,

p
dS=—dV.
T V.

Using the perfect gas law, equation (8.10), and considering one mole
p R

TV
giving
_ dav Vo _
AS=R v =R In Vl—R In2=kNaIn2

where k is Boltzmann’s constant and N, is the Avogadro constant.
Comparing with (5.16) and (5.19) we see that k in (5.19) is indeed
Boltzmann’s constant.

Thus the entropy of a system is a measure of the disorder within it.
This now makes it possible to interpret the degradation of energy
discussed in the previous section. If energy is to be extracted from a
system as efficiently as possible, that energy should be stored in an
ordered form. A mechanical storage device such as a spring is ideal but
thermal energy is also useful, particularly if the temperature is high, for
T is the intensive variable coupled with S. When energy is degraded in
an irreversible change it takes a less ordered form. This is obvious in
the case of mechanical friction where ordered mechanical energy is
dissipated as the disordered molecular motions of heat; but it applies
also to the flow of heat down a temperature gradient where the non-
equilibrium ordering of thermal energy, corresponding to the existence
of the temperature difference, is reduced.

The direct relationship of entropy to disorder is extremely important
in providing a link between macroscopic variables and microscopic
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processes. We shall illustrate this relationship with a few simple
examples.

5.6.1. Heat capacities
Thermal energy is stored in a solid in the thermal motions of

its atoms, and, if it is a metal, of its electrons also. The equations
governing the motions of the atoms and electrons vary little with tem-
perature, but the extent of the thermal motions increases as the tem-
perature rises. The greater the thermal motions, the greater will be the
microscopic disorder in the system, and the greater the entropy, the
change in entropy being brought about by the heat which flows into the
body as the temperature is raised. Thus, common heat capacities are
associated with the gradual increase in disorder which accompanies a
rise in temperature.

Now the heat capacities may be written in terms of entropy derivatives.
For example,

CV=—-—-= —_

dQv aS)
dT (aT v

We may use this relationship to calculate how the entropy of a solid
varies with temperature.

The heat capacity of an insulating solid follows the Debye law, accord-
ing to which, at low temperatures, Cy T3, and at high temperatures,
Cy is constant (in agreement with Dulong and Petit’s law). Thus, in the
low temperature limit, S increases as T2, and, at high temperatures, S
varies as In T. In the case of a metal, the electronic contribution to the
heat capacity is proportional to temperature so that the electronic
contribution to the entropy is also proportional to T.

5.6.2. Heat capacity anomalies

We would normally expect the thermal motions of the atoms
of a material to increase smoothly as the temperature rises. In some
substances it is found that superimposed on the smoothly varying back-
ground heat capacity is an extra contribution which occurs at a particular
temperature in the form of a relatively narrow peak. Such behaviour is
known as a heat capacity anomaly. The rapid rise in entropy associated
with the heat capacity anomaly indicates that some microscopic change
in order is occurring, and the magnitude of the entropy rise can be used
as a guide to what the microscopic changes might be. At temperatures
below the anomaly some aspect of the system must be ordered and above
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the anomaly disordered. Such a change is therefore known as an order-
disorder transition.

A high temperature example of a heat capacity anomaly is to be found
in B-brass, the 50/50 copper-zinc alloy. At about 460 °C there is a large
peak in the heat capacity (Fig. 5.4), indicating a local change of order.
Subtracting the background one obtains the anomalous contribution to
the heat capacity, c'. Integration of ¢’ yields the increase in energy and
integration of ¢'/T yields the increase in entropy associated with the
change of order. For 1 mol the entropy change is close to Nak In2=
5.8 JK™! suggesting a twofold change in order per pair of copper and
zinc atoms. The explanation, which has been confirmed for similar alloys
by X-ray studies, is that in the low temperature form the copper and
zinc atoms are arranged in a regular array whereas in the high tem-
perature form they are randomly distributed on the lattice’ sites. The
crystal structure of B-brass is body-centred cubic so that the ordered
array corresponds to, say, copper atoms at the corners of the cubes and
zinc atoms at the centres. The probability, in the disordered structure,
of finding a particular kind of atom at a particular lattice site is clearly

Fig. 5.4. The specific heat capacity of B-brass (Moser, 1936).
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* The X-ray measurements cannot be done on B-brass. The difference between
the relative atomic masses of copper and zinc is so small that their scattering
power for X-rays is very similar and it is not possible to distinguish the two
kinds of atom.
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3 since there are equal numbers of copper and zinc atoms; whence we
have for the change of entropy:

AS =k In 8diserdered _ 41 9Na— R In 2.
gordered

Another example of an order-disorder transition is to be found in the
low temperature behaviour of paramagnetic salts. Here, the heat capacity
anomaly, which is usually within a few kelvins of absolute zero, results
from a change in magnetic order. Paramagnetism is always associated
with the presence of microscopic magnetic dipoles which may be aligned
by an external field to produce a net total magnetization. Even in the
absence of an applied field, however, the different orientations possible
for the dipoles have slightly different energies as a result of their interac-
tions with one another and with the crystal lattice in which they are
situated. At low temperatures, they will all occupy the lowest available
levels and the material will be magnetically ordered. In many cases, the
ordered state corresponds to the parallel alignment of ferromagnetism
with its large net magnetization, but this is not the only form of ordering
which occurs (see Rosenberg, 1975; ch. 12). As the temperature is
raised, the dipoles become excited into the higher levels, and at high
temperatures, they become randomly distributed among the orienta-
tions. Thus, over the range of temperatures where the ordering sets in
there is an extra contribution to the heat capacity deriving from the
changing magnetic order. The anomaly in chromium potassium alum is
shown in Fig. 5.5. Here there are four possible orientations for the
dipoles,’ so that the probability of finding a particular dipole in a specified
orientation is 4. The change in entropy per element in proceeding from
the ordered to the disordered state is therefore k In 4, and the entropy
change for one mole, k In 4™+=R In 4 =1.39 R. Measurements to the
lowest temperatures indicate that the entropy change associated with
the ordering is indeed of this order (de Klerk et al., 1949).

It should be noted that in the above examples the magnitudes of the
changes in entropy are similar, but the transitions occur at very different
temperatures. The entropy change, of course, is simply dependent on
the change of order and plays no part in determining the transition
temperature. The latter is determined by energy considerations, being
that temperature at which thermal energy becomes comparable with
the energy associated with the ordering process. This gives for the

5 The magnetic moment is associated with the Cr>* ion, which at low
temperatures behaves as if it were in a *S state with J =S =3 and g =2 (see
de Klerk, 1956).
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transition temperature, T ~e/k, where € is the energy required to
remove one element from the ordered state. (That is, to exchange a
copper atom with a zinc atom in the ordered brass or to disalign a dipole
in the ordered paramagnetic salt.) The corresponding energies in the
examples above are about 6x107>'J=~40meV and 1x107*J=~
7 y.eV.6

Fig. 5.5. The low temperature heat capacity of chromium potassium
alum (Bleaney, 1950; and de Klerk ez al.,, 1949).
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Fig. 5.6. Entropy near a first order change of phase.
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S It is often convenient to express energies of atomic-sized systems in
electronvolts. It is useful to remember that k =1.38x1072* J=86.3 ueV.
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5.6.3. Latent heats

In the examples we have discussed above, we have associated
common heat capacities with the gradual change of entropy associated
with gradual change of order as temperature changes. Latent heats
correspond to a sudden change in order associated with a first order
phase change’ such as the melting of a solid or vaporization of a liquid
(Fig. 5.6).

We may make a very crude estimate of the entropy change associated
with vaporization. If we think of the molecules in the liquid as moving
about freely, in a gas-like manner, but as being restricted to a much
smaller volume than when they are in the vapour phase, then the ratio
of the statistical probabilities of finding any one molecule in the large
volume available in the vapour rather than in the small volume available
in the liquid is simply equal to the ratio of the available volumes (cf.
the illustration at the beginning of section 5.6 where the volumes are
equal). Thus, the ratio of the statistical probabilities of the vapour and
liquid configurations for all N4 molecules of one mole is

8vapour - ( Vvapour) Na - ( Pliquid )NA

8liquid Viiquid

Pvapour

For many substances, the density ratio is about 10®. This gives the
entropy change associated with vaporization as

AS =k In10°~=R In10*~7R.
Relating this to the latent heat, we have
L/T,R =17,

where T, is the boiling point. This corresponds to Trouton’s rule, found
empirically, which states that for non-associated liquids,

L/T,R =10.

The restriction to non-associated liquids is necessary, because when
association takes place a new degree of order is introduced in the liquid
giving rise to a further contribution to the entropy change. The weakness
in the argument leading to the estimate of L is that it ignores the finite
volume of the molecules which causes a much greater restriction of
molecular motion in the liquid than corresponds simply to the reduction
in available volume per molecule. This leads to an underestimate of

L/T,R.

7 Change of phase will be discussed in detail in chapter 10.
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5.6.4. Change in order by deformation

In the three examples above, change in order was brought about
by changing the temperature of the system. Change in order is also
generally brought about when work is done on a system under conditions
where heat may be exchanged with the surroundings. (If heat could not
be exchanged, the entropy would be invariant under reversible changes,
so that the statistical order would also be invariant. Irreversible work,
of course, always brings about an increase in entropy and a decrease in
order.) An illuminating example is to be found by contrasting the effects
of mechanical deformation in different kinds of solid:

If a metal wire is stretched adiabatically, it cools. If rubber is stretched
adiabatically the temperature rises.

This is easily understood in terms of their microscopic properties:

The metal of the wire consists of many small crystallites in each of
which the atoms are arranged in a regular lattice. When the wire is
stretched, each crystallite is distorted and loses some of its symmetry.
(For example, the lattice might be distorted from cubic to tetragonal.)
The loss in symmetry is a loss of order and corresponds to an increase
in entropy. If the distortion were performed under isothermal conditions,
heat would be absorbed corresponding to the increase in entropy. When
performed (reversibly) under adiabatic conditions, the total entropy must
be constant. Then, in order to permit the entropy ingrease required by
the reduction of crystal symmetry, entropy (heat) has to be supplied
from some other aspect of the system itself. It comes from the thermal
motions of the material, so the temperature falls. The connection is
represented in terms of thermodynamic coefficients:

()= (5).Go).

The first term on the right is related to a principal heat capacity and is
always positive. The second term on the right is also positive, so the
temperature falls.

The molecular arrangement in rubber, on the other hand, is very
different from that of a crystal. Rubber consists of long organic molecules
which are normally tangled together in a random manner. When the
rubber is stretched these long molecules tend to align along the direction
of extension and the order increases. Therefore, in this case, when the
material is stretched isentropically the temperature rises.
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The Carathéodory formulation of the
second law

6.1.  Introductory remarks

In the last two chapters, we have stated and developed the
second law of thermodynamics along traditional lines. The statements
of the law asserted the impossibility of certain processes which are easily
visualized and readily believed. However, to arrive at the real substance
of the matter, we had to equip ourselves with the paraphernalia of
idealized heat engines and wade through lengthy arguments about
efficiencies and cyclic processes. Only then did we discover that we had
arrived, as if by good fortune, at a new function of state, the entropy,
on which depends all the subsequent development of the subject. In
fact, the essential function of the second law is to enable us to define
this quantity and to derive its properties. It seems desirable, therefore,
to adopt a formulation of the law which achieves this end with greater
economy. That put forward early this century by Carathéodory does
precisely that (see Carathéodory, 1909 and 1925).

One may well enquire why, if it has this advantage, Carathéodory’s
statement of the second law is not more widely used. There are two
reasons for this. In the first place, any formulation which makes it possible
to avoid the use of cycles and heat engines in the basic development
must necessarily be framed in somewhat more abstract terms than the
Kelvin or Clausius statements which refer to specific processes. This, it
is argued, makes it less easy to assimilate. There is some truth in this;
and that is why, in this book, we have first developed the subject along
traditional lines; but now, having gained some insight into entropy and
its properties, we may return and, with very little effort, replace the
devious treatment by a more direct.

The second, and perhaps more significant reason why the older forms
of the second law have not been discarded is that Carathéodory’s original
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development was set in very mathematical terms requiring of most
scientists such an effort that the physical simplicity of his idea became
obscured. Recently, there has been considerable discussion of his formu-
lation, and, due to the efforts of H. A. Buchdahl and others, it has been
stripped of the greater part of its mathematics. The exposition we give
here derives from that proposed by Buchdahl.!

Any who wish may omit this chapter, for we have already developed
what is necessary for the rest of the book. However, those who do so
will miss an opportunity of gaining greater insight into the meaning of
the second law, for the Carathéodory formulation brings out its essential
features in a way which the traditional treatment does not.

6.2. Empirical entropy
Carathéodory’s statement of the second law, often referred to
as Carathéodory’s principle, reads:

> In the neighbourhood of any arbitrary state J of a thermally isolated
system X, there are states ' which are inaccessible from J.

A state is said to be in the neighbourhood of J if its state variables differ
from those of J by however small an amount. The Carathéodory state-
ment, therefore, asserts that we may find states as close as we please
to J which are inaccessible in an adiathermal change. In the light of
what we already know about the second law, the states which are
inaccessible from J by adiathermal processes are those whose entropy
is less than that of J. We must now show that we may deduce the
existence and derive the properties of entropy from the Carathéodory
statement.
For convenience, we introduce the following notation:

For our thermally isolated system,

J #J means that J' is inaccessible from J,

J > J' means that J' is accessible from J but not the reverse,
J e J' means that J' is accessible from J and vice versa.

We shall describe the state of = by choosing for it a set of independent
variables. For these it is convenient to take the extensive variables
associated with all work-like processes to which the system is subject
(for example, volume, surface area, magnetization, etc.), and one other

! Buchdahl (1958 and 1966). In earlier papers he gives simplified versions of
the original Carathéodory treatment (see Buchdahl, 1949).
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convenient function of state.” The extensive variables are called the
configuration coordinates of the system since they define its configuration
(volume, surface area, etc.) but not, of course, its state for which one
further piece of information is necessary.

We first pause to show that it is impossible for two states to be mutually
inaccessible. We do this by the following argument which is illustrated
in Fig. 6.1:

Consider any two states J; and J, of a system X. Take as the independent
system parameters, the configuration coordinates x; and the internal
energy U. Suppose, first, that we start from J; and reversibly deform
the system until the x; take the values appropriate to the state J,, and
suppose that in doing this the internal energy becomes U’ corresponding
to a state J' which will, in general, be different from J,.2 Then we will
have either U’' < U,, or U' = U,, or U' > U,. If U' < U, we may, keeping
the x; fixed, increase U, by some irreversible process such as stirring, to
U,. (We know from experience that we can increase U by irreversible
work. We do not yet know that we cannot decrease it. That follows
from the second law.*) We have then brought = to J, by a particular
adiathermal path, so that J;>J,. If U'=U,, then J'=J,: We have
‘reached J, immediately by a path that is reversible and J; <> J,. If U’ > U.,
then we may start from J, and first increase U from U, to U’ (by stirring)
keeping the x; constant. X is then in the state J' and we may bring it to
J; by the same reversible path as before. In ihis case, J,>J;. We have
thus proved, using only the first law, that two states of a thermally
isolated system cannot be mutually inaccessible. The symbols # and «
are thus entirely equivalent. We now return to the main line of argument.

2 For a system with n degrees of freedom there are (n — 1) conjugate pairs of
variables like (p, V), (B, m), each associated with a process by which work
may be performed on the system. The remaining degree of freedom
corresponds, of course, to the pair (T, S) associated with processes involving
heat. However, in the present context, we have not yet shown that these
quantities exist and so are forced to choose the remaining variable from
elsewhere.

It is not necessary to this argument that J' be uniquely defined. At the
moment, we have no justification for expecting it to be, for to fix the state of
the system not only the x; but also U must be given. We are thus not
deforming X to a specified state but to a specified configuration (given x;) for
which U’ may not be uniquely determined. (It might depend on path.) In
fact, of course, it is uniquely determined, for the deformation is isentropic
and this constraint suffices to define the final state. However, this statement
follows from the second law through arguments we have not yet made.

* This observation has the status of a subsidiary axiom.

w
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Consider the two states J; and J, and allot to these states numbers
o, and o, which are arbitrary except for the restriction that
o1>0; if]14);
o1=0, if]iel;
o1<o, ifJi#J,.
These numbers have the characteristics of ‘thermodynamic weights’ for
the states J; and J,. As we might expect, we shall eventually extract
from them the quantity which will be the entropy.
Now consider another state J; to which we allot the number o3 which
is again arbitrary except that we require that
if J37‘Jl, o3>0,
if J3<"J1, g3=01,
ifJs¢), o3<oy,
etc., for J,.
This procedure is internally consistent. For example, the statement
‘if 01 >0, and o, > 03 then oy > 03’
implies ‘if J14J, and J,4J; then J,4J5’
which must necessarily be the case, for if, instead, oy < o3 were possible,

then X could make the transitions J; » J3 > J, (since J, # J; implies J, « J3)
thus effecting a transition from J; to J, which contradicts o1 > 0.

Fig. 6.1. Proof that two states of a thermally isolated system cannot
be mutually inaccessible.

Xi
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It is thus possible, in a self consistent manner, to allot all states of =
numbers, such that for any two states,
0g1>03,01=02,0rc1 <0
according as J1#4), Jie)y, orJ; #11,.

This set of numbers performs a function in relation to adiathermal
accessibility rather like that of empirical temperature in relation to
thermal equilibrium (section 2.2). Just as equality of temperature
implies thermal equilibrium, so equality of o implies mutual accessibility
under thermal isolation. Because of this similarity, we may call o
empirical entropy. The difference, however, is that here we attach a
special meaning to the ordering of the numbers.

It is worth pointing out that thus far we have implicitly used
Carathéodory’s statement of the second law in the restricted form that
inaccessible states do exist. We apply it fully in the argument that follows.

Now it is possible to allot the numbers for empirical entropy in such
a way as to be a single-valued continuous function of the system
parameters.” We may show that this is possible by demonstrating one
particular system for allotting them. Suppose we again describe the
system X by its configuration coordinates x; and the internal energy U.
Then we may arbitrarily choose a reference state Jo for which we put
o =0y. To define o for another state J,, we start from J, and deform
the system reversibly until the x; take the values appropriate to the state
Jo. In general, X will not then be in the state J, with internal energy Uy,
but in some other state J' with internal energy U’'. We first show that
J' is unique. That is, that the state after the deformation does not depend
on path.® The argument is illustrated in Fig. 6.2.

Suppose that by reversible deformation from J; to the configuration
corresponding to the given x; it were possible to arrive at two different
states, J' with internal energy U’ or J” with internal energy U". Suppose
that U"> U’. Then it would be possible to pass from J” to any state in
its neighbourhood by the following route:

(a) Pass reversibly from J” to J, and thence to J'.

(b) Change the configuration coordinates, the x; (which are the same
as for the state J"), to values corresponding to the configuration
of any state in the neighbourhood of J". Since this change may
be arbitrarily small, the internal energy after it, U", even though
greater than U’ may always be made less than U".

5 This is what we did for empirical temperature in defining a temperature
scale.
® This deals with the point we raised in footnote 3.
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(c) We may now increase U from U" to any desired value in the
region of U” by some irreversible process (such as stirring) thus
reaching any desired state in the region of J".

The possibility of doing this violates the second law and we therefore
conclude that U’ and J' are uniquely determined.

This being so, we are able to define a satisfactory scale of empirical
entropy by taking o at J; to be given by

0'1_—'0'0+(U'—U0) (6.1)
where (U'— Uo) may be measured by some suitable experiment. We
have already shown that this defines a single-valued scale and its con-
tinuity follows from the continuity of the energy function. Furthermore,
we see that it has the properties we require of empirical entropy in that:

(a) if U' = Uy then J, and J, are mutually accessible by the reversible
path,

(b) if U'> Uy, then J, is accessible from Jo but not the reverse, and

(c) if U' < U, then J, is accessible from J; but not the reverse.

We have thus established that there is a continuous single-valued
function of state with the properties of empirical entropy. From it we
may clearly generate others by putting o' = f(o’) where f is any monotoni-
cally increasing function of o.

The existence and uniqueness of reversible adiabatics (for systems of
any degree of complexity) follows immediately, since these are simply
the surfaces for which o = constant.

Fig. 6.2. Proof that the state after reversible deformation of a
thermally isolated system is independent of path.
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6.3.  Empirical entropy and heat

So far, we have confined ourselves to discussing thermally iso-
lated systems where we have been particularly concerned with the idea
of inaccessibility. We must now relate empirical entropy to processes in
systems which are not thermally isolated.

It is now convenient to choose as our independent system variables
the configuration coordinates x; and the temperature ® measured on
any empirical scale. Then we may adopt any suitable prescription, such
as that provided by equation (6.1), for defining a scale of empirical
entropy as a single-valued, continuous function of the system variables:

o =0g(x;, ) (6.2)

which may be differentiated to give do as a sum of terms linear in the
differentials of the system variables:

do =3¢ dx; +¢ dO. (6.3)
Now, for an infinitesimal reversible change the first law states

dQ,.v=dU - 31X, dx;,
which, since U is a function of the x; and ®, may be rearranged in a
form similar to that of (6.3), namely

dQ,., =3¢ dx; +¢' dO. (6.4)
For a reversible adiabatic change we have

dQ:.=0,
and, by the properties of empirical entropy,

do =0.
But in the absence of the adiabatic constraint all the terms on the right
of equations (6.3) and (6.4) are independent. Therefore, the only way

in which do = 0 can be satisfied whenever dQ,., =0 is for do and dQx.
to be in a simple relationship of the form

dQ:v=A do (6.5)

where A is a non-zero function of the variables of state.

Now ¢ is a function of state, and therefore do is necessarily integrable.
From (6.5) it follows that dQ,.,/A is also a perfect differential. We have
thus shown that there is always an integrating factor for dQye.., although,
so far, all we know about it is that it is some function of state.

6.4. Thermodynamic temperature and entropy
We now show that Ado may be put in the form T dS, where T
is a‘universal function of temperature only.
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To do this we consider two systems X' and X" which are in thermal
contact and at equilibrium. As independent variables for each of these
we now take (because it is convenient to do so) the temperature on
some empirical scale, ®, the empirical entropy o, and (n —2) of the
other variables x;, where n is the number of degrees of freedom of the
system. Thus the state of 3’ is defined by (x;, o', ®) and of 3" by (x/,
", ®). We may also consider the two systems taken together as making
up a single composite system X. To specify the state of = we require all
the independent variables of both subsystems, namely (x;, x{, o', o”,
0). Because of thermal equilibrium, @ is, of course, the same for 3', 3",
and 2.

If, now, we add heat reversibly to the composite system, we have, by
the first law

dQrev =dQ;., +dQrey (6.6)
which, by (6.5), gives

Ado=A"de’'+A"da”
or

’ n

A A
="do'+~do". .
do y dq' R do 6.7)

Now we have shown that empirical entropy is a function of state so
that do is a perfect differential. Then equation (6.7) shows that o may
be expressed as a function of o’ and o” only. Therefore we must also have:

A. ’ A n .
N and n are functions of ¢’ and ¢” only. (6.8)

But, a priori, we have expected the As to contain all the appropriate
state variables; namely,

A =A(xi, o', 0)
A'=A"(x{,a", @)
A=Axi,x{, o, a" 0).
Then, applying (6.8), if
A(xi, o', 0)
Axix{,o',a",0)
then, certainly, A cannot contain the x/. It could, of course still contain
the x; in such a way that they cancelled out the ratio A'/A. However,

if we apply (6.8) to the ratio A"/A we see that A cannot contain the x|
either. Thus

A=A(d',a", O). (6.9)

depends only on ¢’ and o,
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Returning to (6.8) in the light of (6.9) it follows that
A=A, 0)
and
A"=A"(a", ©).
For (6.8) to be true now, we only require that the ® dependence of the

numerators and denominators of the ratios be the same so that it cancels
out. Thus, in fact, each of the As must factorize into the form

A(o, ®)=T(0)f(o) (6.10)
where T(@) is a universal function of the empirical temperature. (It is

the same for all systems at the same temperature.) Equation (6.5) now
becomes

dQrev=T(0)f(0) do.
But we may put

dS =f(o) do
where S will also be a function of state (but for an arbitrary constant).
This gives dQ,, in the form we require

> dQ.,=T dS (6.11)
where T is thermodynamic temperature and S entropy. Substituting back
in (6.6),

dS=ds'+ds"=d(s'+S")
which shows that entropy changes are additive. Integrating,

S=5+S"
where we have chosen to put the integration constant equal to zero,
emphasizing that in the context of the second law only entropy changes
have physical significance (see Chapter 5). Entropy is thus an extensive
variable and thermodynamic temperature its conjugate intensive
variable.

6.5. Irreversible changes

We may now arrange for § always to increase in irreversible
changes of a thermally isolated system by adopting an appropriate sign
convention. We first show, by considering a particular irreversible
change, that A is necessarily positive. Consider an infinitesimal irrevers-
ible change in a thermally isolated system which we bring about by doing
irreversible work in such a way that the configuration coordinates at the
end are the same as they were at the beginning. We know that this can
increase the internal energy*: dU >0, and since the change is irrevers-
ible; do>0. But we may also take the system from the initial to the
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final state reversibly if we remove the adiabatic constraint. This requires
no work (since the configuration coordinates do not change) but only
addition of heat dQ.,. But dQ,.,=dU >0. Hence, applying dQ,., >0
and do >0 to (6.5) we see that A is necessarily positive. From (6.10)
we therefore see that we may choose either that both 7" and f are positive
or that they are both negative. We choose the positive sign. Then by
the relation dS = f(o') do we see that do > 0 gives dS > 0. But the essence
of an irreversible change is that the original state becomes inaccessible
and do >0. Therefore, for any change in a thermally isolated system
we must have

ds=0 (6.12)

where the equality applies only to reversible changes.

For a system which exchanges heat with its surroundings, we simply
consider the system and the surroundings as a composite system. Then
by (6.12),

dSiota =dS +dSo=0 (6.13)

where dS refers to the system and dS, to the surroundings. If any
irreversibility occurs in the system only, we may put

dQ =-TodS,
where dQ is the heat supplied 7o the system and we have the result
> dQ=T,dSs (6.14)

where T, is the temperature of the source of heat and dS is the change
in entropy of the system. This is the fundamental result of section 5.2.

For a reversible change, which requires a system to be in thermal
equilibrium with a source of heat when heat is exchanged, T'=1Tj in
(6.14), the equality holds, and the first law becomes

> dU =T dS +2X; dx.. (6.15)

This completes the derivation of the fundamental consequences of
the second law; but before we see how the subsequent development
continues, it is instructive to pause and examine where the element of
choice has entered into the treatment and how the choice is reflected
in the properties of entropy and temperature.

The Carathéodory statement asserts the presence of states which are
inaccessible to a thermally isolated system. From this we deduce the
existence of a function of state which is constant in reversible changes
but changes in one direction or the other in an irreversible change. We
chose to define it as being unable to decrease. Later we introduced the
non-zero function of state, A, and showed, by referring to an irreversible
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process which we know to occur, that it is necessarily positive. We then
chose to have S increase in irreversible changes which required f(o)
and hence T to be positive. A further property of thermodynamic
temperature now follows. To see what this is we refer to the simple
process involving irreversibility which we have already discussed in the
context of the first law in defining the terms hotter and colder (section
3.4).

If we connect two bodies at different temperatures by a thermal path,
heat will flow from the hotter to the colder body. When a small amount
of heat dQ (a positive quantity) flows from one to the other, the
associated change in the total entropy is

dS = dS, +dS, =dQ (%—%) (6.16)
where T} is the temperature of the hotter body and T, that of the colder.
But we have chosen that d§ >0, so

T,<T:. (6.17)

Therefore it is a consequence of our choices that a hotter body has a
larger value of T than a colder one.

The one to one correspondence between hotness and temperature
now follows immediately from (6.16) since if bodies at one temperature
could be either hotter or colder than those at another, it would be
possible to choose a pair for which heat would flow from the lower
temperature (smaller T) to the higher (larger T') causing a spontaneous
decrease of entropy in violation of the principle of increase of entropy.

6.6.  Subsequent development

In the previous sections, we derived all the fundamental results
of the last two chapters without recourse to engines and cyclic processes.
If we now turn to such practical matters as the interconversion of heat
and work we may quickly derive the appropriate results for heat engines
and refrigerators.

To analyse the conversion of heat into work we distinguish the sources
of heat and work from the device which supplies the mechanism to effect
the conversion. We must suppose that in the whole process the device
is unchanged, and this is why we introduced the idea of cyclic processes
in chapter 4. Consider then the effect of an infinitesimal change in which
a heat engine absorbs heat dQ from a reservoir at temperature T,. Then
the work done by the heat engine in the change is, by the first law,

dW=4Q-dU
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or, by (6.14),

dW =TodS -dU. (6.18)
The work is therefore a maximum when the equality holds which is the
case for a reversible change. This requires thermal equilibrium between
the engine and the source of heat: T = T,. Then (6.18) becomes

dW=TdS-dU. (6.19)

After a complete cycle, the engine returns to its initial state. Integrating
around the cycle

§du=o (6.20)

because U is a function of state. Hence, from (6.19), the total work
done in one cycle is

W=§ T dS. (6.21)

But we also have
§ ds=0 (6.22)

since S is a function of state. It is clear that (6.22) may only be satisfied
if heat is both absorbed and rejected in different parts of the cycle. It
follows immediately that it is impossible to devise a process which will
convert heat entirely into work. (The Kelvin statement of the second law.)

The simplest way in which (6.22) may be satisfied is for the engine
to exchange heat at two reservoirs only. The corresponding reversible
cycle is simply the Carnot cycle for which (6.22) and (6.21) give

% h (6.23)
Q: T,
and
W =0, (1‘—5) (6.24)
Ty
where T, and T, are the temperatures of the reservoirs. These are the
results of section 4.6.
For a refrigerator or heat pump we wish to minimize the work required
to extract a given amount of heat from the cold reservoir. The work
done on the system in an infinitesimal change is

dWw=dU -dQ
=dU - To dS. (6.25)
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This is minimized when the equality holds and the change is reversible.
We then again have (6.23) for the heat exchanged at the two reservoirs,
which gives

Q_ T,

wo Tio T2 (6.26)
and

02 T2

W T1 T, (6.27)

which are the results of section 4.8.
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Thermodynamic potentials

7.1.  The potential functions
We have already, in the context of the first law, defined two

functions of state with the dimensions of energy: the internal energy
and the enthalpy. Clearly, we may invent others by adding to the internal
energy or the enthalpy any other function of state with the dimensions
of energy. Few of these would have any particular physical significance,
but some of them do have, and play an important part in thermody-
namics. Because of their role in determining the equilibrium states of
systems under various constraints (section 7.4), they are known as the
thermodynamic potential functions.

For a system with two degrees of freedom, there are four thermody-
namic potentials. Referring again to a system subject to work by hydro-
static pressure only, they are’

> internal energy, U

> enthalpy, H=U+pV (7.1)
> Helmbholtz function, F=U-TS )
> Gibbs function, G=U-TS+pV.

The analogous functions where the work is not done by hydrostatic
pressure are obtained by replacing —p and V by the appropriate pair
of variables (y, A; B, m; etc., see Table 3.1).

The significance of the potential functions becomes a little more
apparent from their differential forms which follow by differentiating

! These are the names and symbols usually used by physicists. Other common
variants are: Internal energy is sometimes given the symbol E. Enthalpy is
sometimes called the heat content (see section 3.7). The Helmholtz function
is sometimes called the (Helmholtz) free energy or the work function and is
sometimes given the symbol A. The Gibbs function is sometimes called the
free energy or the thermodynamic potential and given the symbol F'!
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the equations of (7.1) and using the result we have already derived for
dU (section 5.4):

> internal energy, dU= TdS-pdVv

> enthalpy, dH = TdS+Vdp (7.2)
> Helmholtz function, dF =-SdT-pdV )
> Gibbs function, dG =-SdT+ V dp.

Each has two terms on the right corresponding to the two degrees of
freedom of the system. These terms derive from the two pairs of funda-
mental variables which appear in the expression for dU ; namely, (7, S)
and (p, V).

Because the potentials are functions of state, their differentials are
exact. Then the equations of (7.2) show that each potential has a different
pair of the fundamental variables as its natural or proper independent
variables: U=U(S, V), H=H(S,p), F=F(T, V), and G =G(T, p).

If any one of the potentials is known explicitly in terms of its proper
variables then we have complete information about the system, for we
may calculate any of the parameters of state from the one function. As
an example, we will consider the Helmholtz function, F, which is par-
ticularly important in connection with statistical mechanics since the
expression for F in terms of statistical parameters is very simple and
forms a link between the microscopic analysis and the macroscopic
variables.

The proper variables for F are T and V. If F is given explicitly in
terms of these we see from the differential form, (7.2), that the other
two fundamental variables, S and p, follow immediately:

oF oF
s==(z), = r=-();

The expressions for U, H, and G may then be constructed directly from
their definitions:

F=U-TS,
_ —p_p(3F\ __12 i) (f)
U=F+IS=F T(ar)v‘ T (aT AT/

This expression for U in terms of F is known as the Gibbs—Helmholtz
equation. Similarly,

SO

oF oF
H-= U+pv—F—T(a—T) - V(W)T
and

crapvorv() - () (5
G=F+pV=F V(av)r' V(7). (7):



102 Equilibrium thermodynamics

It should be pointed out that, as with the other functions of state,
given suitable information it is always possible to calculate how a poten-
tial function changes when the system goes from one state to another.
For example, if we know G (T, po) but wish to calculate G(Ty, p;) we

may write
Py

G

G(To,p)-G(Topo = [ (37) dp.

Po
From the differential form of G we see that this becomes:

Py

G(To, p)-G(To,p0) = | V dp.
pPo
To evaluate this the only information required is V' as a function of p.
Some of the more important properties of the potential functions for
a system subject to work by hydrostatic pressure only, may be summar-
ized as follows.

Internal energy. For a thermally isolated system, dU =dW and the
decrease in the internal energy is equal to the work done by the system.
If the change of state takes place isentropically (reversibly as well as
under conditions of thermal isolation), then the work done by the system
is —AU =p dV. For an isovolumic change, dV =0 and dW =0 so that
the change in the internal energy is the heat absorbed: dU = dQ\. Hence,

oS U
Cv= T(ﬁ);(ﬁ) 5

Enthalpy. In an isentropic change (a reversible change in a thermally
isolated system) the change in the enthalpy is related to the change in
the pressure. In a reversible isobaric process, the change in enthalpy is
the heat entering the system: dH =dQ,. Hence

EA) oH
C”—T(a_T),,_(a—T),,'

We have also shown that the enthalpy is the total energy transported
internally (i.e., not including kinetic or potential forms) by a flowing
fluid (section 3.8).

Helmholtz function. In an isothermal change the decrease in the Helm-
holtz function is the maximum amount of mechanical work which may
be extracted from the system. (Hence the alternative name: Helmholtz
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free energy.) If the change were irreversible, the work done would be
smaller than p dV as discussed in section 5.4. Under isothermal condi-
tions, the work extracted ZAU depending on whether heat is absorbed
or rejected in the change. Thus F becomes a useful energy function for
isothermal processes. In an isovolumic change, the change in F is related
to the change in temperature.

Gibbs function. The importance of the Gibbs potential is that it
remains constant in reversible processes occurring under isothermal,
isobaric conditions. These are the conditions applying to many physical
and chemical changes. The constancy of the Gibbs function may then
be used to represent the system constraints. We shall later develop its
application to the determination of the equilibrium states of systems
containing several phases (chapter 10) and several components
(chapter 11).

As may be seen from their definitions, all the thermodynamic potential
functions are extensive quantities.

7.2.  The Legendre differential transformation
In systems with more than two degrees of freedom there are

correspondingly more thermodynamic potentials and their differentials
contain correspondingly more terms. As in the case of the two-parameter
system, one first constructs the expression for the differential of the
internal energy and from that derives the other potentials.

For asystem with n degrees of freedom, the expression for dU contains
T dS and (n —1) work-like terms, each of the form X; dx;. The system
therefore has 2n primary variables forming n conjugate pairs whose
products have the dimensions of energy (pairs like 7, S; p, V; E, p).
The potential functions for the system with two degrees of freedom,
which were discussed in the last section, correspond to all the possible
combinations of independent variables when one is taken from each
conjugate pair. Thus, for a system with n degrees of freedom, there will
be 2" potential functions corresponding to the twofold choice offered
by each pair. For example, a wire under tension and for which volume
changes are important, has three pairs of primary variables: 7, S; p, V;
f, L. The eight potential functions will correspond to the following sets
of independent variables.

Tp.f T.V.f Spf SV.f
T,p,L T,V,L S,p,L S, V,L.
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It is clearly a great advantage to have a systematic way of generating
these potentials as and when required. The simplest method is the
following.

Firstly, the expression for dU is written down. This consists of 7" dS
plus all the work terms and has as its independent variables the extensive
members of the conjugate pairs. To obtain a potential with a different
set of independent variables, one picks out the terms in which the wrong
member of the pair is the independent variable and adds to or subtracts
from dU the differential of the product of the conjugate pair so as to
remove the unwanted term and replace it by the required one. This
produces a new differential expression, still with n terms but, with a
different set of independent variables. Obviously, it is exact, because it
was obtained by adding together exact differentials, namely dU and
terms like d(pV’). It also has the dimensions of energy and is therefore
the differential of a new potential function. This procedure is known as
a Legendre differential transformation. We illustrate it by returning to
the example of the wire subject to work by tension and hydrostatic
pressure.

For the wire, the first law becomes

dU=TdS+fdL-pdV

which has as independent variables S, L, and V. Suppose we wish to
construct the potential with proper variables 7, L, and p. Then the first
and last terms need to be transformed. We may effect this by adding
—d(TS)+d(pV). This generates the differential of the new potential:

dG'(T, L, p)=dU -d(TS)+d(pV)
=-8SdT+fdL+V dp
from which we see that the new potential is
G'=U-TS+pV.

Although, in section 7.1, we stated the four thermodynamic potentials
for the system subject to work by hydrostatic pressure only, we could
have generated them from the expression for dU by applying Legendre
differential transformations to obtain all the possible combinations of
independent variables.

7.3. Maxwell relations

For systems with two degrees of freedom, there are four
extremely useful equations which relate partial differentials of the funda-
mental thermodynamic variables. They may be deduced from the
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differential forms of the thermodynamic potentials. Their usefulness lies
in the transformation of variables they make possible.

If we form partial differentials of U with respect to its proper variables
we obtain

d U
(33’);’" and (a_v)s_—p’

Differentiating again with respect to the opposite variables:
FU (g) an y U (ap)

aveS \aV/s A V as

’U & U

avasS GS oV’
so that

(%), (%)
av/s as/v
The same result may also be obtained immediately by using the

condition for dU to be an exact differential (equation (1.11)). The
differential form of U is

dU=TdS-pdV.
Applying the condition to the coefficients on the right-hand side, we
obtain immediately

v),--(9),

Following the same procedure with H, F, and G we obtain three more
equations of a similar form. The four equations are known as Maxwell
relations. They are (from U, G, H, and F respectively)

(), 8,
aTy\ _
), Gs).
(), &), |
_(3V
(ap ) v (as ) y
These may be recalled easily by remembering the following rules:

1. Cross multiplication of the variables always gives the form
(TS) = (pV) with the dimensions of energy.

But

(cf. equation (1.9))

>
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2. Opposite pairs of variables are constant.
3. The sign is positive if T appears with p (for positive).
If we chose to introduce differential coefficients of the potential
functions, we could derive many other equalities between differential
coefficients like

(5.~ Gs),

but unlike Maxwell relations, these are rarely useful and it is easier to
deduce them if they are needed.

Once again, although we have deduced Maxwell relations in the form
appropriate to a system subjected to work by hydrostatic pressure, similar
equations hold for any two-parameter system. S and T, of course, apply
to any system, but p and V' have to be replaced by their corresponding
variables:

-p, V->f,L;v,A; B, m;etc.

(see Table 3.1).

In systems with more than two independent variables, the number of
Maxwell relations becomes much greater. The system with n indepen-
dent variables has 2" potential functions (section 7.2), and each of these
yields n(n —1)/2 Maxwell relations. There are systematic methods for
deriving them (see Crawford, 1963); but for most purposes it is easier
to consider each problem individually, constructing when needed the
potential functions which yield the required differential coefficients. We
shall later consider two simple cases with n =3 (sections 8.6 and 8.7).

7.4. General conditions for thermodynamic equilibrium

Suppose that a system interacts with its surroundings. Then, if
heat enters, the entropy change of the system is related to the heat flow
by

dQ =T,dS (7.4)
where Ty is the temperature of the surroundings and the equality sign
necessarily holds when the change is reversible (see section 5.3). If the
surroundings exert a pressure po and are the only source of work, then

dW =—pedV. (7.5)
Substituting in the first law,

dU =TodS —podV
or

dA=dU +pedV-TxdS <0 (7.6)
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where
> A=U+poV —-T,S. 7.7

The quantity A is known as the availability of the system. It should be
noted that it contains 7, and p, which refer to the surroundings and
may be quite different from the temperature and pressure of the system.

Equation (7.6) expresses the fact that in any natural change the
availability of a system cannot increase. It follows that the general
condition for equilibrium of a system in given surroundings is that the
availability be a minimum. Then we must have

dA=dU +podV-TedS =0 (7.8)
for all possible infinitesimal displacements from equilibrium. We have
obtained this result directly from the law of increase of entropy as
expressed in equation (7.4), by considering interaction of a system with
its surroundings.

The quantity A is known as availability since it gives a measure of
the maximum amount of work which may be extracted from a system
in given surroundings. We may see this to be so by the following argument.
Suppose that we place the system in a cylinder fitted with a piston so
that we may subject it to a pressure p different from po; and suppose
that we isolate it thermally from the surroundings so that its temperature
T may also be different from T, (Fig. 7.1). Then, in a given change of
state we shall extract the greatest possible amount of work if the change
is performed reversibly (see section 5.4). For a small reversible change,

dU=TdS-pdV
and
dA=(T—-Ty)dS —(p—po)dV. (7.9)

Fig. 7.1. Demonstration of the significance of availability.

(- Po) A
Po
Z T,
Tp
%
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Now suppose that we change the entropy of the system by operating a
reversible heat engine between it and the surroundings. Then, since the
process is reversible, universal entropy remains constant, and the work
done by the engine is

dW.=—(dQ +dQy,) = —(T - T,) dS.

The first term therefore represents the maximum work which can be
obtained from the system in the entropy change. Similarly, (p —po) dV
is the net mechanical work done on the piston. As long as T # T, and
P #po We may continue to extract work in this way and to reduce the
value of A. Thus (A —Ain) is equal to the maximum amount of work
which may be extracted in the given surroundings.

Now, the general condition for equilibrium, namely that the availabil-
ity be a minimum, reduces to simpler forms in several important cases.
We again suppose the system to be isolated from its surroundings as in
Fig. 7.1, so that we may explore how A varies near equilibrium by
displacing the system reversibly from equilibrium and using equation
(7.9) to examine the consequences of the displacement. For A to be a
minimum, both terms in (7.9) must be zero in an infinitesimal displace-
ment because they represent independent degrees of freedom. We now
consider four special cases.

(a) Thermally isolated, isovolumic system
Since the system is thermally isolated, 7 will in general be different
from T, so that for the first term to be zero we must have d§ =0. (S
will, of course, be a maximum.) Since dV =0, the second term is
necessarily zero, and p is not directly defined.

Then (7.8) reduces to

dA=dU =0.
Therefore, the appropriate set of conditions on the system is

> ds =0, dv=0, dU=0.

(b) Thermally isolated, isobaric system
Again, for the first term to be zero we must have dS =0. Since the
volume may now change, for the second term to be zero we require
P =Po, or dp =0 in any infinitesimal reversible change.
Then (7.8) reduces to dA =dU +p dV =dH =0 since p is constant.
The appropriate set of conditions is

> ds =0, dp =0, dH =0.
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(c) Not thermally isolated, isovolumic system
The entropy may now change so that for the first term of (7.9) to be
zero we must have T =Ty, or dT =0 in any infinitesimal reversible
change.

Since dV =0, the second term is necessarily zero and p is not directly
defined.

Equation (7.8) reduces to dA =dU —T dS =dF =0 since T is con-
stant.

The appropriate set of conditions is

> dT =0, dv =0, dF =0.

(d) Not thermally isolated, isobaric system
Asin (c), we must have T =Ty and dT =0.

As in (b), since the volume may change, equilibrium requires p = p,
anddp =0.

Equation (7.8) now reduces to

dA=dU-TdS+pdvV=dG =0

since T and p are constant.

The appropriate set of conditions is

> dT =0, dp =0, dG =0.
The four sets of conditions for equilibrium are:
ds =0, dv =0, dU =0
ds =0, dp =0, dH=0
dT=0, dv=0, dF=0 (7.10)
dT=0, dp=0, dG =0.

It should be noted that each potential appears with its proper
variables. It must be stressed that these four sets of conditions are
entirely equivalent in the sense that they lead to identical physical results.
Which one to use is entirely a matter of convenience. If a system is kept
at constant temperature and pressure, the obvious choice is to
minimize the Gibbs function since its accompanying conditions are
automatically fulfilled. The equivalence of different approaches is
illustrated in section 10.2.

It is important to be clear about the significance of the results we have
derived. In arriving at the general condition for equilibrium, namely
that the availability be a minimum, we placed no restrictions on the
internal complexity of the system. We may generally expect dU to
contain, besides T, S, p, and V, other variables related to degrees of
freedom which are internal to the system. Corresponding terms do not
appear in (7.9) because the system as a whole changes its internal energy



110  Equilibrium thermodynamics

only by exchange of heat and work with its surroundings. Thus the
conditions for equilibrium must be thought of as placing restrictions on
variables which are, at the moment, implicit in the potentials. That is
why each set contains three conditions: If there were no internal degrees
of freedom, two conditions would suffice to define the state of the system.
The third condition provides the extra constraint which allows the values
of internal variables to be determined. Within each set, any two condi-
tions may, in principle, be externally imposed as external constraints
leaving the third for determination of internal variables. In practice,
only a few of the possible combinations are useful (see Table 7.1).

The nature of the extrema implied by equations (7.10) are easily
identified by reference to equation (7.6) and the original definitions of
the potentials. For example, consider the third condition. F is defined
by the equation

F=U-TS.
In general, a change in F is
dF=dU-SdT-TdS
whence, since T =T,
dA =dF +S dT +podV.

If T and V are given, then for A to be a minimum, F must be a minimum.
If F and T are given, then V must be a minimum.
If F and V are given, then T" must be a minimum.

In this way, we may compile a list of twelve conditions for equilibrium.
These are set out in Table 7.1. Again it must be emphasized that these

Table 7.1. Conditions for stable equilibrium

Variables specified Equilibrium condition

minimum
minimum
maximum
minimum
minimum
maximum
minimum
minimum
minimum
minimum
maximum
maximum

often used

rarely useful

VW NN NG @mQ

TRCTHMMQAQU L QNN
T TNT N < TS
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are all equivalent. They all rest on the law of increase of entropy; but
each represents the simplest way of applying the law under given condi-
tions. Each potential function is coupled with its proper variables, as
one might expect, and when its proper variables are the quantities held
constant the potential is always a minimum which makes it clear why
the potentials are so called by analogy with mechanical potential energy.
It is also worth pointing out that if the appropriate potential is a maximum
we have a situation of unstable equilibrium. We shall have an example
of this in section 10.10. These conditions provide the basis for the
treatment of phase change and underlie much of chemical thermody-
namics.
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Applications to simple systems

In this chapter, we shall primarily be concerned with the application of
thermodynamics to simple systems undergoing reversible changes. The
topics have been chosen to illustrate the general methods of thermo-
dynamics as well as for their intrinsic importance.

8.1.  Some properties of specific heat capacities

We have shown that for reversible changes it is possible to
express dQ in terms of state variables: dQ,.,= T/dS. This renders
dQ,., amenable to manipulation by the techniques applicable to
functions of state. In particular, thermodynamic coefficients involving
dQ,., may be expressed in terms of complete differentials which makes
transformation of variables a straightforward matter. We may illustrate
this by deriving some important general results for the principal
specific heat capacities of a system subject to work by hydrostatic
pressure only.

The principal heat capacities are those for change of temperature
where the constraints correspond to constancy of primary variables. For
a system subject to one kind of work only, there are two. In the case
of work by hydrostatic pressure they are ¢, and c,. These are related
through the definition of heat capacities (section 3.6) to the entropy as
follows:

(8.1)
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Certain differentials of the principal specific heat capacities may be
expressed in simple forms involving directly observable functions of

state:
P D/ 1 p

d as
) (),
ap T aT p

since T remains constant under the partial differential with respect
to p. Reversing the order of differentiation,

d as
—Tﬁ),(a‘p);

and using a Maxwell relation,

d v
- _Tﬁ),(aT),,

E)
--1(37);
aT?/,

(9, -),

A similar result follows in the same way for the differential of ¢, with
respect to v:

(‘Z%)T - +T(:27”2)o. 8.3)

In the case of the ideal gas (section 8.2) for which pV,,, = RT, both these
coefficients are zero.

It is also possible to obtain general forms for the difference of the
principal specific heat capacities. The most useful of these is that which
expresses the difference in terms of the expansivity and the
compressibility. This is obtained directly by expanding s as a function of T
and v or of T and p.

s=s(T,v),

as as
=|— 4+ — .
ds (&T),, ar (BU)T dv

Whence
as av
+=) (=) -
(av)r(aT),,

(7).~ 7).

Thus
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Substituting for the temperature derivatives of the entropy with
equations (8.1),

as v
o-e=1(5) (i7),
and applying a Maxwell relation,
() ()
¢p—Co T(aT 7). 8.4)

The expansivity and compressibility are defined as:
isobaric cubic expansivity,

1 /v
8- (7),
isothermal compressibility,
_ 1V
KT —V(E)T‘

Substituting in (8.4) and using

(37),=~G2). (%)
aT/, ov/r\aT/,
we obtain

> ¢p—¢o =0T B*/kr. (8.5)

If (8.4) is applied to 1 mol of a perfect gas, we obtain
> Cnp—Cmv=R. (8.6)

8.1.1. The isothermal-adiabatic transformation of moduli

The differential of an intensive variable with respect to its
associated extensive variable is called a stiffness coeflicient. The
reciprocal differential is a compliance coefficient. These are important
physical quantities and like all thermodynamic coefficients they are
partial differentials since their values depend on the conditions under
which they are measured. Two common constraints are that the system
is kept isothermal or thermally isolated. Thus we have already used the
isothermal compressibility and we may similarly define an adiabatic
compressibility,

BT
T viep /s

where we have assumed that the changes are thermodynamically
reversible and have replaced the condition of thermal isolation by
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constancy of entropy. A very simple relationship exists between the ratio
of the isothermal and adiabatic coefficients and the principal specific
heat capacities. We show this for the case of the compressibilities.

(reciprocity theorem)

=—————=————= (rearranging)

» T b, (8.7)

Similar results hold for coefficients formed from other pairs of variables.
For example,

permittivities,
. _(2). er_ce |
oE ) €s Cp
Young moduli,
=£(a_f). Er_a | 8.8)
A\IL ’ Es Cy
magnetic susceptibilities,
=(if‘_4) XT_cH
X“\eH ) Xs oM
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8.2.  The perfect gas
8.2.1. Definition of the perfect gas

The perfect or ideal gas is most conveniently defined as one
which obeys both Boyle’s law and Joule’s law. These state:

> Boyle’s law: If the temperature is maintained constant then the
product pV is constant.

> Joule’s law: The internal energy is a function of temperature only.

These laws are not obeyed strictly by any real gas. In the case of
Boyle’s law, accurate isothermal measurements of the product pV may
be fitted well by a power series in p:’

pV=A+Bp+Cp*+Dp*+....

(Such an expression is known as a virial expansion and the coefficients
as virial coefficients.) The coefficients are functions of temperature and
may be of either sign. Clearly, by going to the limit of small p, a real
gas may be made to obey Boyle’s law to any desired accuracy. Away
from this limit, Boyle’s law is best obeyed if the second virial coefficient
vanishes leaving only second and higher order corrections to pV. The
temperature at which this occurs is known as the Boyle temperature.

In the original experiments on which Joule’s law is based, gases
were made to perform a ‘free expansion’, that is, one in which no
external work is performed and no heat enters or leaves the system
(see section 9.1). To the accuracy of the experiments, no temperature
change occurred. The constraint of the experiment was

dU=dQ+daw =0,
and the result that

(0,369,

U
(a_f)v‘CV

which is a well-behaved finite quantity. Thus it follows from Joule’s
experiments that

104
(a‘v);"-

Now the system has only two degrees of freedom which are here

But

! See Onnes (1901). Values for the virial coefficients may be found in Flugge
(1963).
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represented by V' and T. The result therefore implies that the internal
energy depends only on temperature. This is Joule’s law.

Again, Joule’s law is only an approximation to the low pressure
behaviour of real gases. More accurate experiments (see e.g. Rossini
and Fransden, 1932) show that the behaviour of U is better approxi-
mated by adding a term linear in p:

U(p, T)=U(, T)+ap.

Thus (3U/dp)r is, in fact, roughly constant even in the low pressure
limit. The reason why Joule’s law is nevertheless a reasonable description
of the limiting behaviour of a real gas is that, by making the pressure
small, the part of the internal energy which varies with volume or pressure
may be made as small a proportion of the total as desired. The reasons
for departures from Boyle’s and Joule’s laws will be discussed in
section 8.3.

8.2.2. The equation of state of the perfect gas
From Boyle’s and Joule’s laws we may immediately derive the
equation of state for a perfect gas. From the first law,

Gv),=7(), -
avl)r "\av). 7P

= T(:—;) -p by a Maxwell relation
\4

0 by Joule’s law.

(211) P

oT)y T

and integrating,
Inp=InT+f(V),

Thus

where f(V') is an arbitrary function of V' which appears in place of an
integration constant since V is held constant in the differentiation.’
Rearranging this result

pF(V)=T. (8.9)

2 Integration of a partial differential equation always introduces arbitrary
functions of the variables held constant in the differentiation. As in this case,
the functions can often be determined by reference to other known
properties of the system.
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‘But we know from Boyle’s law that if the temperature is constant then
pV is constant so that F(V)o V. Since V is an extensive variable, the
equation of state of the perfect gas must therefore be of the form

> pV =nRT (8.10)

where n is the number of moles and R is the molar gas constant.? It
value is
R=832JK 'mol .

In the limit of low pressure, real gases approach the ideal behaviour
for reasons which we shall discuss in section 8.3. Thus, temperatures
determined by gas thermometry in the low pressure limit are thermo-
dynamic temperatures provided that the size of the unit is chosen
correctly (section 2.5). This is why the determination of thermodynamic
temperatures is usually based on gas thermometry.

8.2.3. The adiabatic equation of the perfect gas

The adiabatic equation of the perfect gas may be derived directly
from Boyle’s law using the general result for isothermal-adiabatic trans-
formation of moduli which was derived in section 8.1.1. We showed
that for reversible adiabatic changes

A4
(i)_rzizy, [8.7)]

),

op/s

Boyle’s law states that for constant temperature, pV is constant. Taking
logarithms and differentiating,

dp dV

_+___.=

p V

w

It should be noted that (8.9) resembles what used to be known as Charles’
law. This stated that if the volume of a gas is kept constant, the pressure is
proportional to the temperature. One might think that it would have been
acceptable to choose Charles’ law instead of Joule’s law in setting up our
definition of the perfect gas; but this would have been less satisfactory: one
would then have had to use the perfect gas in a Carnot cycle to demonstrate
that the temperature scale so defined was the same as that we had arrived at
in the discussion of the second law. Boyle’s and Joule’s laws involve
constancy of temperature and therefore do not involve us in particular scales.
The temperature which eventually emerges in the equation of state comes
out of the thermodynamics with which we treat Joule’s law and is therefore
necessarily thermodynamic temperature. The temperature implied in Charles’
law is the perfect gas absolute scale (section 2.4). We should thus still have
been left to demonstrate that the temperature appearing in the equation of
state was the same as thermodynamic temperature.
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(G_P) -_P
aV)r v

Substituting in the transformation,

ﬂ’_) —_ P
(avs Yv

If the heat capacities are constant, this may be integrated to give
Inp ++v In V =constant, or
> pV?” =constant. (8.11)

In terms of other pairs of primary variables, the adiabatic equation may
also be written

TV~ = constant
T"p" ™ = constant.

or,

8.2.4. The entropy of the perfect gas

The equation of state of the perfect gas may be used to express
its entropy in terms of any two of the fundamental variables p, V, T.
For example, expanding S in terms of p and T,

S=S(p, T)
as as
ds = (EE)T dp + (ﬁ)p dT
1% as
= '(a—r‘), dp+(a_T), 7

where we have transformed the first term with a Maxwell relation. So
far, this equation applies to any system subject to work by hydrostatic
pressure. We now use the equation of state. From (8.10),

3Vin
Pm) _R.
p(aT),

EA)
T(ﬁ),, =G

so that for one mole we have

R Cup
= — — + e .
dSm dp T d7

Integrating this complete differential expression, and taking Cy,, to be
independent of temperature, we obtain for the molar entropy

Sm(p, T)=So—RInp+CppInT. (8.12)

Also,
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We may express S in terms of p and T or of p and V either by direct
expansion of dS in terms of these variables, or by substituting in (8.12)
using the equation of state and the expression for the difference of the
principal heat capacities. The results are:

Sn(V, T)=S0+RInV+CpnvInT {8.13)
Sm(p, V)=8S0+CnvInp+CppIn V. (8.14)

Equations (8.12) and (8.13) appear to predict that § > —00 as 7> 0.
The explanation of this seemingly absurd result is simply that the perfect
gas laws cannot be obeyed by any real substance to absolute zero. In
chapter 12, we shall see that the third law requires that all heat capacities
vanish as T - 0. Microscopically, this is a consequence of the quantization
of energy, for, as kT becomes comparable with the spacing of the lowest
energy levels, equipartition of energy will break down and eventually
heat capacities will vanish exponentially.* This ensures that the entropy
remains finite and, by choice, positive. For further discussion, see
chapter 12.

8.3. Behaviour of real pure substances
The equation of state of the perfect gas may be deduced from
the postulates of the kinetic theory of gases. The essential microscopic
assumptions behind the perfect gas equation are that the gas molecules
occupy a negligible volume (i.e., they approximate to point masses), and
that there are no intermolecular forces. Real gases differ from the perfect
gas because neither of these assumptions is true, although in the limit
of low pressure, when the gas molecules are far apart, the forces between
them and the volume they occupy become negligible and the gas does
approach the ideal behaviour.
Various modifications to the perfect gas laws have been suggested as
providing a better description of real gases. The best known of these are’

Van der Waals’ equation:

(p+;/%)(v,.,—b)=RT

* This is true even for a Fermi gas. The linear heat capacity which holds for
electrons in a metal down to the lowest tempzratures which can be
reached is the result of the extremely close spacing of the energy levels. For a
small sample, their separation is about 10™'° eV, corresponding to a
temperature of about 1072 K.

5 For further discussion of these, see Jeans (1940).
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Dieterici’s equation:

’
p(Vea—b")=RT exp [_R;Vm]'

Both may be derived by kinetic arguments using different approxima-
tions. The constants b and b' take account of the finite size of the
molecules by decreasing the effective available volume. The constants
a and a' are associated with the attractive forces between the molecules.

Attractive forces between molecules of a real gas may be thought of
as constituting an ‘internal pressure’ against which ‘internal work’ is
done during expansion. This may be seen by considering the heat capacity
for change of volume,

dQr

dv’

which is the heat absorbed per unit increase in volume when the system
is kept at a constant temperature. Using the first law, this becomes

d
cy =p+(£) .
T

W) _
Cr' =

1%

In terms of kinetic theory, the kinetic energies of the molecules must
remain constant in such an expansion. The heat absorbed must therefore
be required for other forms of work. The first term is simply the external
work done, dW,=p dV, while the second must be internal to the
system, and can only be associated with the process of increasing the
separation of the molecules. That is, it corresponds to work done against
intermolecular forces. This term is absent only if Joule’s law is satisfied,
so that we see that the assumption that Joule’s law is true, is equivalent
to the microscopic assumption that intermolecular forces are negligible.

In detail, it is not possible entirely to separate the concepts of inter-
molecular forces and finite molecular size. However, if both these were
absent, there would be no condensed state of matter, and the perfect
gas laws would be true at all temperatures and pressures. The p-V-T
relation for a real pure substance is represented in Fig. 8.1. At high
temperatures, isotherms approximate towards the rectangular hyper-
bolae of Boyle’s law (for example, AE). As temperature is reduced they
become more distorted until, at the critical temperature, T., a horizontal
portion appears corresponding to the appearance of a distinguishable
liquid phase. The point C is known as the critical point. It corresponds
to the conditions

(%),-(52)
—) =(=5) =0
avlr: \avi .
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and for each substance is associated with unique values of the tem-
perature, pressure, and volume. These are known as the critical constants.
They are listed for several gases in Table 8.1.

Below the critical temperature, liquid and vapour® may coexist in the
region GCF of Fig. 8.1. Here, isotherms are horizontal (the system is
infinitely compressible) and passage along an isotherm in the direction

Table 8.1. The critical constants for some gases”

gas pc/atm V¢/107* m* mol ™ T./K
helium 2.25 61.55 5.2
hydrogen 12.8 69.68 33.2
nitrogen 33.49 90.03 125.97
argon 48.34 74.56 150.87
carbon dioxide 72.83 94.23 304.16

¢ From Moelwyn-Hughes, 1961.

Fig. 8.1. The p—V-T relation of a pure substance.

S It is convenient to use the term vapour to distinguish the region of the
gaseous phase which lies below the critical temperature. Thus, a vapour
always undergoes a change of phase on (isothermal) compression.
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of decreasing V' corresponds to liquefaction of the vapour. Thus, along
PO only vapour exists. At O the liquid phase appears, and along ON
further compression causes the vapour to liquefy until, at N, all the
substance has been converted to the liquid. Further compression gives
a rapid rise in pressure along NM corresponding to the greater modulus
of the liquid. Further decrease of volume eventually results in a transition
to the solid phase via the continuation of the region GHIJ in which solid
and liquid coexist.” At still lower temperatures, such as T}, the vapour
on compression passes into the solid phase and in the region KJGFL
solid and vapour coexist. Only at one temperature, the triple temperature
T.., may all three phases be present together.

Three-dimensional representations of p—V-T relationships such as is
illustrated in Fig. 8.1 are complicated and contain much more informa-
tion than is usually needed. It is often sufficient to project sections of
the p—V-T surface on to one of the principal planes. This is illustrated
in Fig. 8.2 for the two most useful projections. Since, for a given
temperature, liquefaction or solidification proceed at constant pressure,
the mixed phase regions project into lines on the p-T plane. On the

Fig. 8.2. The two most useful projections of the p—V-T surface.
Mixed phase regions are shown shaded.

7 In water, where the liquid expands on solidification the solid-liquid transition
slopes towards the p-axis in the direction of increasing p so that isothermal
compression of the liquid can never lead to solidification. Instead, there exist
temperatures for which compression leads from vapour to solid and then to
liquid (see section 10.3).
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p-V plane, the mixed phase states are distinguishable, giving a region
of horizontal isotherms.

Clearly, the p—V-T relationship for a pure substance, like that illus-
trated in Fig. 8.1, cannot be represented algebraically. The best one can
hope to do is to construct approximate equations, like the van der Waals
equation for the gas phase, which take some account of deviations from
simple behaviour near the mixed phase states. In chapter 10, we shall
return to a more detailed discussion of change of phase.

84. The elastic rod or filament

Usually, when a wire or rod is stretched the only significant
work term is that associated with the tension. In particular, work by
hydrostatic pressure is usually negligible. Under these conditions the
system has two degrees of freedom and the first law takes the form

dU=TdS+fdL. (8.15)

8.4.1. Heating at constant length

Clearly, a thin wire which is initially at zero tension cannot be
heated at constant length, for it would simply expand and buckle. If,
however, it is initially under tension and is attached to rigid supports it
may be heated at constant length and a change in tension will result.
Similarly, if a rigid rod is constrained between rigid supports a rise in
temperature will result in a change in compressional force. This is the
significance attached to the coefficient (9f/d7T).. This quantity may be
expressed in terms of well-known variables.

7). =~(r).(57)
) (&) (). 8.16
(aT L oL/ r\aT /s ( )
By their definitions, the isothermal Young modulus E7 is given by
G0, =
aL/r L

where A is the cross-sectional area of the wire or rod, and the linear
expansivity at constant tension, ay, is given by

_l(é)
M=L\er);

Then (8.16) becomes

(%)L = -AEra;. (8.17)
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For a small change in temperature, the change in tension is
Af = —AErafAT.
Note that this does not depend on the length of the rod.

8.4.2. The heat absorbed on isothermal extension
If the rod or filament is extended isothermally and reversibly,
the heat absorbed per unit extension is
dQr as of
et -0 1(8),--r()
T 7 dL oL/ ¢ aT/ .

where we have used the Maxwell relation which comes from the differen-
tial of the Helmholtz functions, F = U — TS. With (8.17), this becomes
CP =AETa,. (8.18)
A, Er, and T are, of course, necessarily positive, and most materials
expand on heating so that a is normally positive. Thus, heat is usually
absorbed on isothermal extension. An exception is rubber. We have
already discussed the microscopic explanation of this difference in
section 5.6.4.
If the system is deformed adiabatically, the resulting temperature
change is simply related to the quantity we have just derived. Provided
that the deformation is reversible we have

(), 8) e s

&L L aL T (as ) CL
T —_—
aT /.
where C; is the heat capacity at constant length.

8.5.  The reversible electric cell

Dry cells and the lead-acid accumulator are far from reversible
but there are many cells based on simple chemical reactions which are
very nearly reversible. Typical of these is the Daniel cell which is
illustrated in Fig. 8.3. The electrodes are of copper and zinc and each
is immersed in a saturated solution of its sulphate. The interdiffusion
of the two sulphate solutions is inhibited by the porous partition which
divides the cell. The copper electrode is found to be positive with respect
to the zinc so that discharging involves the passage of conventional
current from copper to zinc (i.e., electrons flow from the zinc to the
copper). In solution, both zinc and copper are doubly ionized, so that
discharge involves the passage of zinc into solution to form Zn>* ions
and the discharge of Cu®* ions at the copper electrode to form
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neutral copper which is deposited. On charging the reverse process takes
place. The chemical reaction is

Cu+2Zn**=Cu*" +Zn.

For such cells to be reversible, the process of charging or discharging
must be carried out sufficiently slowly for Joule heating to be negligible.s
Also, for the chemical reaction to be reversible, there must normally be
no gas evolved. In this case, volume changes will be negligible and the
cell will be subject to work by charging only. Generally, the e.m.f. will
be a function of the temperature and the charge Z: € = 4(T, Z); but if
the solutions are kept saturated, the e.m.f. becomes independent of the
extent of charging and is a function of temperature only.

For such cells, the first law becomes

dU=TdS+¥%dZ (8.20)

where Z is measured in the positive direction during charging. If we
express dS in terms of d7" and dZ this becomes
aS

dU = T(——)Z dT+[%’+ T(ﬁ)

3T 3Z ] dz. (8.21)

T

Fig. 8.3. The Daniel cell. The crystalline salts keep the solutions
saturated. The porous partition inhibits the interdiffusion of the two
solutions.

C V4
. 7z g

— CuSO, ——7nS04,  F=—
F—solution= }—solution

|

)\

8 The rate of Joule heating is i>’R where i is the current and R the resistance
of the cell. Hence for the passage of a given charge Z in time 7 the total
Joule heating is Z2R/r which may be made as small as one wishes by
performing the charging slowly and making 7 large. The electrical work done
on the cell, | € dZ, is unaffected by the rate at which the charging is
performed.

CuSOy crystals ZnSO, crystals
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The two entropy terms are heat capacities. The first, T(35/3T)z, is the
heat capacity at constant charge C% ; and the second is a heat of
charging:

s\ _4Qr_ o
T(GZ) az =Ct

It is the rate at which heat is absorbed during a reversible isothermal
increase in charge. This term may be transformed to a more useful form
by using a Maxwell relation. We may obtain this either by substitution
of the appropriate variables in the standard form (see equations (7.3)),
or by deriving it from the appropriate potential function. To derive it,
we must construct the differential of the potential function with Z and
T as proper variables. (These are the independent variables in the
coefficient we wish to ‘transform.) We obtain this from dU by the
Legendre transformation (section 7.2)

dF =dU -d(TS)=-S dT + € dZ.

Following the methods we used in section 7.3 to derive the fundamental
Maxwell relations, we now either differentiate in both orders with respect
to T and Z and equate, or simply apply the condition for dF to be
exact. Either gives immediately

as 9%
(2). =7, 8.2
Substituting in (8.21) we obtain
aS 14
dU = T(aT dT+[%’ T aT) ]dZ.

For the cell in which the solutions are kept saturated we remember that
Z is a function of T alone and this becomes

dU = T(aTS,) dT+[%’ T:—f:]dz (8.23)

Now most chemical reactions take place at constant pressure so that
it is convenient to measure energy changes in terms of the enthalpy,
H =U +pV, for which the proper variables are S, Z, and p. When
reaction occurs the total enthalpy change (the enthalpy of the products
less that of the reactants consumed) is called the heat of reaction. In a
reaction which does not involve electrical work, the enthalpy change is
entirely due to exchange of heat with the surroundings (hence the
misleading name heat content for H); but for the electric cell, it results
partly from exchange of heat and partly from electrical work.
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For our simple cells in which there is no volume change, we have, for
isobaric conditions, AH = AU. The total charge required to cause one
mole of one of the metals to pass into solution is

AZ,.=2zNje

where z is the valence of the metal ion, N the Avogadro constant and
e the elementary charge. The corresponding heat of reaction for an
isothermal charging is, from (8.23),

%
AH,, = zNAe(Z - TE). (8.24)

The importance of this equation is that it provides a method of measuring
the heat of reaction of a chemical reaction without resort to calorimetry.
One needs only to measure the e.m.f. of a cell and its temperature
derivative. Results for several cells are given in Table 8.2. A positive
value for AH indicates an endothermic reaction (heat absorbed), a
negative value an exothermic reaction (heat rejected).

The essential difference between the sort of reversible cell we have
discussed and the fuel cell, in which there is at present so much interest,
is that the latter is based on a continuous process. The initial chemicals
are fed continuously to the cell where they react and the products
discharged continuously from it. As in the simple cell, a concentration
gradient of the ions involved in the reaction has to be set up between
the electrodes. This is usually done by using porous electrodes and
feeding the fuels in through them to an intervening electrolyte which is
commonly a molten salt. In such a cell more potent chemical reactior: .
can often be used. A cell in which graphite is oxidized to CO,, for
instance, yields a heat of reaction of 390 kJ mol ™! (cf. Table 8.2). In
principle, a reversible fuel cell converts the whole of the free energy of
the chemical reaction into electric power. This is its great advantage
over a process in which heat is extracted from a chemical reaction (as in
a conventional power station) and then converted into electrical power
via a heat engine with its inevitable loss of efficiency.

8.6. Surface tension

As our first example of a system with more than two independent
variables we shall consider the case of a film in which volume effects
are not negligible. The first law becomes

dU=TdS—pdV +vydA (8.25)
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with proper variables S, V, and A. In terms of T, p, and A as independent
variables this becomes:

28 1%
-[7(7) -»(7) Jar
du [ aT ), 4 P\oT ), 4

(15,2 (5) e
+ [‘y + T(:Ti")r,,, - p(g )M] dA. (8.26)

The two dT terms are easily interpretable. The first is simply the heat
capacity at constant p and A. The second is related to the expansivity
at constant p and A and represents mechanical work done by the
hydrostatic pressure during thermal expansion. Similarly, the second dp
term is related to the compressibility at constant T and A and corres-
ponds to mechanical work done by the hydrostatic pressure due to
change of volume brought about by change of pressure. The interpreta-
tion of the remaining thermodynamic coefficients is less obvious, and it
is helpful to transform them by means of Maxwell relations. These are
most conveniently derived by constructing the differential of the
appropriate potential by applying a Legendre transformation to dU, and
then proceeding by one of the methods used in section 7.3 to derive the
fundamental Maxwell relations. We note that all the coefficients in (8.26)
have T, p, and A as independent variables so that the potential we
require, G', is defined by
dG'=dU —-d(TS)+d(pV)
=-§dT+V dp+ydA. (8.27)

‘Differentiating twice with respect to two variables in both orders and
equating, or simply applying the conditions that dG' is exact, we obtain
immediately three Maxwell relations:

()G
(Eafi")r, ='(56%) N (8.28)

).~ ()
A T,p ap AT

With these we may interpret the remaining differential coefficients in
(8.26). The first differential coefficient in the dp term becomes simply
(3V/aT), a which is related to the cubic expansivity; and the middle
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term in the dA group becomes the temperature coefficient of the surface
tension. Then, substituting with the isobaric, constant area, heat capacity:

as
CIR
AT/ Cra

the isobaric, constant area, cubic expansivity:

1/9V
?(a_T'),,_A_B"""

the isothermal, constant area, compressibility:

7(5)
_2 (¥ —Kkam
V\ep/ar AT

(8.26) becomes:
dU=(CA -pVB,.a)dT

+ (pVKA_T - TVBp,A) dp

R PPN

The significance of the last term, p(3V/3A)r,, dA, is of considerable
interest. At first sight one would not expect the volume of liquid to
depend on the surface area of the film. The coefficient (dV/3A)r,, can
only be different from zero if the average volume occupied by the
molecules near the surface of the film is different from that occupied in
the interior. If (3V/dA)r,, <0, then the density of molecules must be
greater nearer the surface for as the film is expanded the proportion of
matter close to the surface increases and the average density increases.
Increasing density near the surface is known as positive surface adsorp-
tion. In this case, it follows from the Maxwell relation that the surface
tension decreases with increasing pressure. The kind of surface adsorption
which occurs in a given liquid or solution depends on the nature of the
surface forces.

For films at constant temperature and pressure, and neglecting the
last term which is usually small, (8.29) becomes

dy
d =[ -T(—) ] . 8.
Ur, Y aT/ dA (8.30)

Then the internal energy of the film per unit area is

d
Urp=7— T(#) K 8.31)
P>
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ur is called the surface energy of the film. Normally, y depends very
little on p and not at all on A so that (8.31) may be rewritten

> ur=vy-— Td—T-. (8.32)
The first term on the right of (8.31) or (8.32) is simply the mechanical
work done in creating unit area of surface. The second term corresponds
to exchange of heat with the surroundings during the isothermal change
of area. Since y normally decreases with temperature (vanishing at the
critical temperature) heat is absorbed on stretching and the surface
energy of a film is always greater than the mechanical work put in to
create it. It should be noted that (8.32) is an analogue of the Gibbs-
Helmbholtz equation (see section 7.1) with y as the Helmholtz free energy
per unit area.

8.7. Piezoelectricity
We take one further example with three degrees of freedom:
the elastic behaviour of a material subjected to an electric field.

We have already seen in previous examples that changes in one
member of a conjugate pair of thermodynamic variables usually produce
changes in members of other pairs. Such interactions between different
aspects of a thermodynamic system are quite general and some are given
special names. For example, isothermal compression of an ideal gas
causes heat to be rejected (section 8.2.4). Such an interaction might be
called thermomechanical. In the present case of an elastic material subject
to tension and electric field, the appropriate primary variables are
T,S;f,L; E,p. Interactions between different pairs are named as
follows:

Name Pairs connected
thermoelastic 7, S f,L
pyroelectric T,S E,p
piezoelectric E,p f,L

These relationships are illustrated in Fig. 8.4.
For this system the first law becomes

dU=TdS+fdL+E dp. (8.33)

Since we are normally interested in changes at constant. temperature,
constant field, or constant tension, it is convenient to construct the
potential function with these three quantities as its proper variables,
G(T, E, f), which is sometimes called the piezoelectric Gibbs function.
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We have to change the proper variables in each of the terms of dU.
Following the Legendre method,

dG =dU - d(TS +fL + Ep)
=-SdT-Ldf-pdE. (8.34)
Applying the condition that this is an exact differential we obtain three
Maxwell equations:

thermoelastic:

as\ _(oL\ )

(&), ().,
pyroelectric:

as ap

(&), GP),e 1 @39
piezoelectric:

oL\ _ (dp

(56), = () e

The left-hand coefficients in the first two Maxwell relations are directly
related to the heat absorbed in isothermal changes of tension and field,
and are similar to the expressions which would be obtained by analysing
the simple two-parameter systems where the electrical or tension effects
are negligible. They may be simplified:
tr-r(§),, -, -
c¥r T(a 7)., = Tlo7) = LToe

where a; g is the linear expansivity at constant tension and constant field,

and
aS ap axe
e1(3), 1)~ vres(3)
Cri =T\3;g rr \aT),e ©E\Gr ‘E

Fig. 8.4. Relationships between the thermoelastic, pyroelectric, and
piezoelectric effects.

- - > E p
piezoelectric
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where y. is the electric susceptibility, which is normally independent of
field but may depend on temperature. The piezoelectric coefficient in
(8.35) is a measure of the extent to which changing the field alters the
length of the material. This is related to the sensitivity of the polarizability
to the applied force:

(58),, ) veE (7).
dE/1s \of /1 of /1

Unfortunately, all materials in which the piezoelectric effect is different
from zero have a low crystal symmetry, and are highly anisotropic, so
that detailed analysis becomes much more complex than that we have
given here (see Cady, 1946). Piezoelectric effects are of great technical
importance, however. For example, barium titanate, in which the effect
is large, is used in many kinds of electromechanical transducers, and the

mechanical vibration of thin quartz plates is used to stabilize the
frequency of oscillators.

8.8 The magnetocaloric effect
When the magneti;aiion of a material is changed isothermally,
heat is usually exchanged with the surroundings. If the change in mag-
netization is performed under adiabatic conditions, the temperature
changes. Such interdependence of the thermal and magnetic properties
is known as the magnetocaloric effect. At low temperatures, the effect
may become very large and is of considerable importance in providing
the basis of a method of obtaining temperatures below 1K known as
adiabatic demagnetization. In our analysis, we shall ignore work by
hydrostatic pressure which is normally negligible if the magnetic material
is a solid. The treatment may easily be modified by the inclusion of the
extra variables for a system with three effective degrees of freedom such
as a paramagnetic gas.
Neglecting other than magnetic work, and assuming the material to
be isotropic, the first law becomes’

dU=TdS+B dm.*° (8.36)

Other potential functions follow from this by Legendre transformation
and all the results derived for the simple fluid subjected to hydrostatic
pressure may be taken over for the magnetic system by the substitutions

° For some remarks about the somewhat vexed question of magnetic energy
see the Appendix.
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—p->B, V->m. Choosing B and T as our independent variables the
heat absorbed in a reversible isothermal change of magnetization is
dQr aS om
-, () |
T " dB aB)r " \oT/g (8.37)

where the last step involves the use of a Maxwell relation. In a reversible
adiabatic change of magnetization the change in temperature is

(%),~(5).G8)., & 67, 839

where Cg is the heat capacity at constant induction. If the suceptibility,
Xm=m/VH,,, is not too large, we may neglect demagnetizing effects’®
and put H,,.=B/uo, where B is the applied induction in the absence
of the material. Then, in terms of xm, equations (8.37) and (8.38) become

S TVB ax...)
—) = —— 8.39
T(aB)T Mo (aT B ( )
and
oT TVB axm)
=) =- == . 4
(aB)s /.LoCB(aT B (8 O)

It should be noted that both (8.39) and (8.40) contain the temperature
derivative of the susceptibility, so that materials in which the suscepti-
bility does not vary with temperature show no magnetothermal effects.
Such is the case with simple diamagnetism where the magnetic response
results from the perturbation by the applied field of the electronic
eigenstates in the atoms. This is essentially unaffected by temperature.
Paramagnetism on the other hand always results from the presence of
microscopic magnetic dipoles in the material which may be aligned by
application of a field. Thermal motions tend to disalign the. dipoles so
that the extent of alignment decreases with increasing temperature.
Thus (xm/8T)p is always negative and, according to (8.39), heat is
evolved in an isothermal magnetization. This is in agreement with what

10 1t is important to remember that here and in the subsequent discussion B is
the induction in the absence of the specimen. If the material is weakly
magnetic (ym < 1), internal and applied fields will be approximately equal,
but if it is strongly magnetic the internal field may be much smaller than the
applied. This difference is treated by introducing the idea of a demagnetizing
factor n, defined by

Hin! = Hext— nM

in which n ranges from 0 to 1 for different shaped bodies. The apparent
susceptibility becomes

Xapp = Xm/ (14 nxm).

See Bleaney and Bleaney (1976: Appendix B).
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we should expect from the connection between entropy and order, for
the magnetization of a paramagnet increases the magnetic ordering and
thus decreases the magnetic contribution to the entropy. In an isothermal
change, heat will therefore bé evolved. The dependence of the suscepti-
bility of a paramagnet on temperature increases rapidly as the tem-
perature is reduced towards the point where spontaneous magnetic
ordering sets in. It is therefore in this region that strong magnetothermal
effects are to be expected. However, they are only important at low
temperatures where heat capacities are generally small and relatively
large changes of temperature may be produced. Until the development
of the dilution refrigerator (see section 11.7), the magnetocaloric effect
provided the only useful method of obtaining temperatures below 0.3 K.
In this context it has been and still is of great importance as an experi-
mental tool.

8.8.1. Cooling by adiabatic demagnetization

Fig. 8.5 shows the variation of entropy with temperature and
magnetic field for a typical paramagnetic salt. In zero field the fall in
entropy at the Curie temperature T, corresponds to the onset of spon-
taneous ordering. At higher temperatures the entropy may always be
reduced by applying a magnetic field and so increasing magnetic order.
The process of cooling the salt is illustrated in the figure. The salt is first
magnetized by applying a field of induction B, at an initial temperature
T, which is usually obtained by evaporating liquid *He or liquid *He

Fig. 8.5. The entropy of a paramagnetic salt as a function of
temperature and magnetic induction.
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under reduced pressure.'’ The heat evolved during magnetization is
conducted away to the helium bath, and the entropy falls, the salt going
from state a to state b. The salt is then isolated thermally and demagnet-
ized. If the demagnetization is performed sufficiently slowly, the process
is reversible, the entropy will remain constant, and the temperature falls.
If the field is reduced to zero, the final state of the salt will be at ¢, with
temperature T,. Clearly, the lowest temperature to which the salt can
be cooled by demagnetization is effectively the Curie temperature.

The experimental arrangement for adiabatic demagnetization is illus-
trated in Fig. 8.6. The salt is suspended in a chamber which is immersed

Fig. 8.6. A typical arrangement for adiabatic demagnetization
experiments.
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1 By evaporating liquid “He under reduced pressure, a temperature of about
1K may be obtained fairly easily. With the lighter isotope *He, the
temperature may be reduced to about 0.3 K. There are two reasons for the
difference. First, *He, being lighter than “He has a greater zero point energy
and hence a higher vapour pressure. It is therefore easier to reduce the
temperature by pumping on it. Second, below 2.18 K, “He becomes
superfluid. In this state it spreads over all accessible walls and along the
pumping tubes to warmer regions where it evaporates, rapidly. This reduces
the efficiency of the pumping, and also, some of the vapour recondenses on
the liquid, transporting its latent heat in the process. Both these processes
oppose the reduction of the temperature. Liquid helium will be discussed in
more detail in sections 10.8.2 and 10.10.
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in the helium bath which produces the initial cooling. During the isother-
mal magnetization, thermal contact with the bath is provided by helium
‘exchange’ gas in the chamber. After magnetization the gas is removed,
effectively isolating the sample and the field is then reduced to zero.
The microscopic significance of adiabatic demagnetization is illus-
‘trated in Fig. 8.7. In zero field (a), the energy levels of the microscopic
dipoles are close together, their separation being determined by the
strength of the residual interactions between neighbouring dipoles and
between the dipoles and the lattice. These different levels correspond
to different orientations. If the separation is small in comparison with
kT at the initial temperature, the levels will be nearly equally popu-
lated.'? Application of a field (b) causes the levels to separate. Transitions
then take place between the levels in which the magnetic subsystem
loses energy to the surroundings (to the helium bath via the crystal
lattice and the exchange gas) and a new distribution among the levels
is established, characteristic of the same temperature, but with the levels
differently populated because of their changed energies. Under the
adiabatic change, transitions do not occur (this is the microscopic
significance of ‘adiabatic’) so that when the levels return to their original

Fig. 8.7. The microscopic significance of adiabatic demagnetization.
Energy is plotted vertically and occupation of the levels indicated by
the length of the heavy horizontal lines.
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12 The relative populations of the levels will vary as exp (—e/kT) where ¢ is the
energy of the level and k is the Boltzmann constant. See Rosser (1982); or
Kittel and Kroemer (1980).
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separations on removal of the field (c), the populations are characteristic
of a much lower temperature.

Spontaneous magnetic ordering occurs when thermal energies become
smaller than the energy differences between the various possible orienta-
tions of the dipoles in the absence of an applied field. These residual
energy differences result from the interactions of the dipoles with one
another and with the lattice. The stronger they are, the higher the Curie
temperature will be and the higher the temperature to which it is possible
to cool by demagnetization. This is one of the reasons why the paramag-
netic salts used for adiabatic demagnetization are usually chemically
complex. By ‘diluting’ the active magnetic ions so that they are further
apart, their interaction energy is reduced. This helps to lower the Curie
temperature; but it also means that the magnetic entropy of the salt is
smaller so that if heat has to be absorbed from elsewhere it becomes a
less powerful cooling agent. This is of importance in experiments where
the salt is used as a means of cooling some other experimental system.
In such a case, the entropy of the system must be added to that of the
salt in calculating the effect of the isentropic process.

When the salt is used as a cooling agent, the condition of reversibility
in the demagnetization process becomes much more stringent. Reversi-
bility requires thermal equilibrium at all times throughout the salt and
all that is in thermal contact with it. When the salt alone is being cooled,
the only relaxation time involved is that for the spin system (on which
the magnetic field acts directly) to reach equilibrium with the crystal
lattice in which it is situated. This time varies rapidly with temperature,
but for magnetically dilute salts is of the order of 1s at 1.5 K. When
another system has to be cooled, however, the limiting factor is usually
the thermal contact between the salt and the rest of the system. At very
low temperatures, boundaries between materials offer a high
thermal resistance'® and it may take many hours to achieve thermal
equilibrium.

Thermodynamics cannot, of course, predict the behaviour of a
particular substance unless sufficient information is given about its

'3 Heat is carried by phonons and, in conductors, by electrons. In pure
materials at very low temperatures, thermal resistance is dominated by
scattering at the surface of the sample and at crystallite boundaries.
Although the total conductivity may be low, the mean free paths of the
phonons and electrons contributing to it may be very large. (In high quality
crystalline alumina below 1K the mean free path of phonons may be
many centimetres.) The -extra scattering introduced at crystallite boundaries
or contacts between materials may therefore be relatively ‘enormous. For a
discussion of the mechanisms contributing to thermal resistance see
Rosenberg (1975).
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properties.* To use equation (8.38) to calculate magnetic cooling it is
enough to know its equation of state, M = M (B, T'), and its heat capacity
in zero field over the relevant temperature range. We may illustrate the
thermodynamics by taking a highly simplified model.

Sufficiently far above its Curie point, the susceptibility of a paramag-
netic material is essentially independent of magnetic field and obeys
Curie’s law, x, = a/T. This takes no account of the interactions which
bring about spontaneous ordering at the Curie temperature close to
which the susceptibility will rise sharply. A better approximation is the

Curie-Weiss law*®
a

Xm=TCT,
where T, is the Curie temperature. This is, in reality, still a poor
approximation close to the Curie point where x, becomes large but not
infinite and is no longer independent of B. However, for our model, we
will take the susceptjbility to obey the Curie-Weiss law. We first calculate
Cs(B, T).

9 2
(G8), () [7(@), )73
B/t \oB/r aT /s oB oT

3%S ) aS
=T =7(=) (2
aT 3B T(aT),,(aB)T

(8.41)

0 om
-7(:2),7) ~
aT/s\aT/ 5 (by a Maxwell relation)
’m
-1(7),
TVB azxm)
- 4
o (aT2 . (8.42)

where the final substitution again assumes demagnetizing effects to be
negligible. But, from (8.41),

&2)(,,,) 2a

= . 4
(aT2 s (T-T. (8.43)
Substituting (8.43) in (8.42) we obtain

(&) __2aTVB
3B /g po(T—To>

!4 The information may be given in many forms. One could, for example, start
with a knowledge of the microscopic structure and use the techniques of
statistical mechanics to derive the thermodynamic parameters. For a simple
illustration see Mandl (1971).

'* For the derivation of these formulae see Rosenberg (1975: §§ 11.9, 12.5).
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and integrating
B
2aTVB
Cg(B, T)=C, O,T+I—-——dB
5B, 1)=GCo0, T)+ | —o—s
(1]
aTVB’®
=Cg(0, TV +———=- 8.44
50, D)+ s (8.44)

The second term is associated with the change of magnetic order brought
about by the applied field. The first term contains all other contributions
to the heat capacity. These are
(a) the contributions of the lattice containing the magnetic ions and
of any material cooled by the salt. These are often very small
at low temperatures, and we shall neglect them.
(b) the contribution deriving from the spontaneous change in mag-
netic order which takes place in zero field near the Curie point.'®
This is not small but the contribution is peaked close to the
Curie temperature and athigher temperaturesisrelatively small.
Provided then that we do not come too close to the Curie point we may
neglect Cg(0, T') and take Cp as:

aTVB?
po(T =T

Substituting (8.42) and (8.45) in the expression for the magnetic cooling,
equation (8.40),

CT)_T—E
S

Cs(B,T)= (8.45)

aB B’
and integrating
TI,-T. B

. 8.46
T,-T. B, ( )

In this approximation, demagnetizing to zero field cools the salt to the
Curie temperature. In practice, the temperature does not drop as much
as this because the approximations we have made cease to be good near
the Curie point.

From the foregoing discussion it is clear that the temperature reached
in adiabatic demagnetization is the result of a compromise. The salt
must be sufficienuy dilute magnetically for the interactions between the
magnetic atoms to be small and the Curie temperature low. On the
other hand, if the salt is too dilute, the entropy change associated with

16 See the discussion of entropy and order in section 5.6.2.



142 Equilibrium thermodynamics

magnetization becomes small in comparison with the entropy of the rest
of the system, and this again restricts the cooling which can be obtained.

To achieve the lowest temperatures, extremely sophisticated experi-
mental techniques have to be used (Vilches and Wheatley, 1966). With
cerium magnesium nitrate, it is possible to reach a few millikelvins. For
lower temperatures, weaker magnetic systems are needed. Adiabatic
demagnetization of nuclear magnetic moments, previously cooled by an
ordinary paramagnetic salt or by dilution refrigeration (see section 11.7),
have produced spin temperatures of a few tens of nanokelvins. The
lowest lattice temperatures achieved are a few tens of microkelvins (see
Lounasmaa, 1979).

8.8.2. Measurement of temperatures below 1 K

Having achieved the very low temperatures possible by adiabatic
demagnetization there remains the problem of measuring them. Down
to 1K, direct gas thermometry is possible so that the problem there is
simply one of thermometer calibration. Below 1 K some different method
has to be used to determine thermodynamic temperature.

A simple method is to use the paramagnetic salt itself as a thermo-
meter, taking its susceptibility as the thermometric property. From this
one first defines an empirical temperature scale. It is most convenient
to do this in such a way that at high temperatures, above 1K, the
empirical and thermodynamic temperatures coincide. If the salt is used
to cool to well below 1 K, then, in the helium range, it will obey Curie’s
law accurately. Thus, we ensure that the scales coincide above 1K if
we define the empirical temperature via Curie’s law:

Xm=a/T*. (8.47)

T* is called magnetic temperature, and the constant a is determined by
measurements in the helium range. T and T* will then diverge at lower
temperatures and their relationship may be established by the following
procedure, which is illustrated in Fig. 8.8. It uses the fact that reversible
adiabatic changes are isentropic.
1. Magnetize the salt isothermally in a field of induction B; at T,
in the helium range.
2. Demagnetize adiabatically to zero field and observe the mag-
netic temperature T§ = a/x:.
3. Magnetize the salt isothermally in a field of induction B, slightly
greater than B, at T,.
4. Demagnetize adiabatically to zero field and observe the new
magnetic temperature T3 = a/x,.
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5. Heat the salt (with B = 0) from T to T¥ by adding a measured
amount of heat, q.
6. Measure the difference in entropy between the two magnetized
states, S(B 1y To) - S(Bz, To).
Since the demagnetizations are isentropic, the entropy change in 5 must
be equal to the entropy difference measured in 6. By making B; and
B close together, Tt and T5 will be close and we may find their mean
thermodynamic temperature T. Then the entropy condition gives
q=TiS(B1, To)~ S (B, To)} (8.48)
from which 7" may be found.
The susceptibility is usually obtained by measuring the inductance of
a coil surrounding the salt. The heat required to raise the temperature
from T5 to TT may be measured either by heating the salt with an
electrical heater, or by using its natural hysteresis to cause power absorp-
tion when an alternating field is applied. (The imaginary part of the
susceptibility corresponds to the losses in the salt, and may be measured
at the same time as the real part.) The latter method has the advantage
that the heating is applied uniformly through the salt so that temperature
differences are less likely to occur. The entropy difference, S(B;, To) —
S(By, To) may be measured directly by determining the heat of
magnetization, or calculated from (8.47) using the relation

as\ Xm
(aB)T B VB(aT)B'

A typical relationship between T and T* is shown in Fig. 8.9.

Fig. 8.8. Calibration of a susceptibility thermometer.
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8.9.  Thermal radiation
8.9.1. Basic properties of thermal radiation

All bodies emit electromagnetic radiation by virtue of their
temperature. The character of this radiation depends on how hot the
body is and on the nature of its surface. At room temperature, most of
the radiated energy is in the far infra-red, but at higher temperatures
the region of strongest emission shifts to shorter wavelengths. At 6000 K,
corresponding to the optical temperature of the sun, it lies in the visible
part of the spectrum.

Thermal radiation has the usual properties of electromagnetic waves.
It has the speed of light and can be reflected, refracted and suffers
diffraction appropriate to its wavelength. It carries energy, and, when
absorbed or reflected, exerts a pressure. These properties are a straight-
forward consequence of electromagnetic theory (see e.g. Bleaney and
Bleaney, 1976: ch. 8); but we shall avoid using electromagnetic theory
here. Instead, we shall think of the radiation as a gas of photons
and draw on some of the elementary results of the kinetic theory of
gases.'”

If isotropic radiation is trapped in a vessel with perfectly reflecting
walls, then the photons of which the radiation consists move in random
directions within the container and rebound elastically from its walls.

Fig. 8.9. The relationship between magnetic temperature and
thermodynamic temperature for chromium potassium alum
(Bleaney, 1950; and Klerk ef al., 1949).
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7 The results we shall use are derived in Adkins (1976).
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The situation is analogous to that of an ordinary gas contained in a
similar vessel. For this, the kinetic theory gives the number of molecules
striking unit area of the wall per second,

N =3iné
where n is the number of molecules per unit volume and ¢ their mean
speed. For our photon gas, all the photons move with the same speed,

namely the speed of light, so that the number of photons hitting unit
area of the wall per second is simply

N =inc
where c is the speed of light. If the average photon energy is 71, then
the power incident on unit area of the container wall is

> P =inme =4uc (isotropic radiation) (8.49)

where u is the energy density of the radiation. If a small hole of area
SA is cut in the wall of the container, the energy escaping per second is'®

8P = uc 6A (isotropic radiation). (8.50)

The pressure due to isotropic radiation may be derived in a similar
way. The pressure exerted by a gas is

p=3pc’>3pc’
where p is the mass density and ¢? becomes c? for our photon gas.
Using the Einstein mass-energy relation (see French, 1968), u =pc?,
giving
> p= Ju (isotropic radiation). (8.51)
The macroscopic mechanism by which this force is communicated to the
surface is explained in Fig. 8.10.

It should be noted that in both these results u is the total energy
density and includes radiation both approaching and receding from the
surface. If the radiation is absorbed or partially absorbed, (8.51) still
holds provided that any reflected radiation is also isotropic. This follows
immediately from momentum considerations, for any photon which is
absorbed exchanges half as much momentum normal to the surface as

'8 For this, or the equivalent kinetic result, to hold, the efflux of radiation or of
molecules has to be sufficiently restricted so that the conditions within the
container are always quasistatic. This will ensure that the fluxes remain
isotropic. In the case of the gas, it is sufficient if the linear dimension of the
hole is much smaller than a mean free path of the molecules. For radiation,
the requirement is equivalent to making the time required for the greater
part of the radiation to escape very much longer than the time taken for the
radiation to redistribute itself throughout the container. This amounts to
satisfying the inequality: (area of hole)® « (volume of container).
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it would if reflected; but then it does not contribute to u after impact.
u is thus reduced in proportion to the momentum exchange. In general,
cases where the radiation is not isotropic have to be considered
individually. The only important case is that of radiation incident nor-
mally. For this, the corresponding results are
P=u'c (normal incidence) (8.52)
where u' only includes radiation approaching the surface and
p=u (normal incidence) (8.53)
where u is the total energy density provided that any reflection is specular.
Because thermal radiation transports energy, all bodies continually
lose energy to and receive energy from their surroundings. If a body
emits more radiation than it absorbs then it suffers a net radiative loss
of energy, and if it reaches equilibrium, then the equilibrium is dynamic.
This is the theory of exchanges first put forward by Prévost after noting
that objects initially in thermal equilibrium with their surroundings
became cooler if a cold body was placed nearby.
Before proceeding to detailed discussion of the properties of radiation
it is convenient to define three quantities which we shall need to use.
We have already defined u as the total energy density due to radiation.

Fig. 8.10. The macroscopic mechanism by which radiation exerts a
pressure.

The electric and magnetic components of the electromagnetic field are perpendicular
to each other and to the direction of propagation. The electric fields induce currents j in
the material which interact with the magnetic field to give a force in the direction of
propagation.
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It will be necessary to discuss how this energy is distributed with
wavelength. We therefore define the

spectral energy density u,, such that u, dA is the energy density contained
in radiation in the wavelength range between A and A +dA.

We also define the

spectral absorptivity of a surface, a,, which is the fraction of the incident
radiation at wavelength A which is absorbed; and the

spectral emissive power of a surfag:e, e, such that e, dA is the power
emitted per unit area of the surface in radiation in the wavelength range
from A to A +dA."®

8.9.2. Equilibrium radiation

An equal temperature enclosure is one in which all parts of the
walls are at the same temperature. Some short time after we have set
up such an enclosure we expect that the radiation it contains will have
reached a state of equilibrium with the walls surrounding it. That is, if
we measure its spectral energy density at subsequent times we will always
obtain the same result.

We now consider two equal temperature enclosures A and B which
are initially at the same temperature but whose walls are dissimilar. We
join them by a narrow’® tube in which we insert a filter F which passes
a narrow band of wavelengths centred at A (Fig. 8.11). Now suppose
that the spectral energy density at A in A is greater than that in B:

ur>ub.
Then there will be a net flow of energy from A to B. This will cause
the temperature of B to rise and that of A to fall. But spontaneous
divergence of the temperatures of two bodies placed in thermal contact
(by whatever means) is forbidden by the second law. It involves a
universal decrease in entropy.”’ Thus, we must have

ud =ul. (8.54)

19 1t is helpful to note the convention whereby a Greek letter is used for a
dimensionless ratio, whereas a Roman letter is used for a quantity which has
dimensions. By analogy with absorptivity, we shall later define emissivity €,
as the ratio of the emissive power of a surface to that of a perfect emitter.

20 We must assume that the tube is narrow enough to restrict the energy flux
from one cavity to the other sufficiently for the changes occurring in each
cavity to be quasistatic. In each cavity, the radiation then remains in
equilibrium with the cavity at all times.

21 Alternatively, we could warm B slightly without reversing the flow of energy
thus contriving the situation where energy flows spontaneously from colder
to hotter, again violating the second law.
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This means that the nature of the radiation is independent of the nature
of the walls of the equal temperature enclosures. It must, by the same
token be isotropic. It can only depend on temperature.

We have thus shown that for radiation in equilibrium with the walls
of an equal temperature enclosure

> ur=f(A, T). (8.55)

By its universal nature, this radiation proves to be very important and
is variously known as equilibrium radiation, or full radiation, or for a
reason which will later become apparent, black body radiation. Its
importance lies in the fact that we are able to relate this radiation, which
occurs in an equilibrium situation, to the radiation emitted by bodies
which are not in equilibrium with their surroundings.

It is worth pointing out that if an equal temperature enclosure contains
bodies which are allowed to reach thermal equilibrium, then the same
arguments may again be applied to show that the radiation everywhere
is still isotropic and of a nature depending on temperature only. An
obvious consequence of this is that in such a situation it is impossible
to detect the presence of any objects by measurements of the radiation.
In all directions one would observe a uniform brightness. Conversely,
print on this page is only visible because radiation reaching it is very
far from being in equilibrium with it. There must be a source of high
temperature radiation which illuminates it and allows the print to be
distinguished by virtue of its different reflecting properties.

8.9.3. Kirchhoff’s law

If equilibrium radiation is independent of the nature of the walls
of an equal temperature enclosure, then the walls themselves must have
certain properties which preserve the nature of the radiation interacting
with them. In particular, if a surface absorbs a certain wavelength strongly
it must also emit it strongly. This is expressed more precisely in
Kirchhoff’s law.

Fig. 8.11. Proof that the spectral energy density of equilibrium
radiation is a function of temperature and wavelength only.
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Consider any body inside an equal temperature enclosure and in
equilibrium. The radiation is isotropic so that the energy falling on unit
area per second due to radiation with wavelengths between A and A +dA
is

Yeu, dA.

Of this, the surface absorbs a fraction a, and reflects the rest. But the
quality of the radiation is only preserved if the surface also emits as
much radiation as it absorbs. Hence we must have

ex dA = aycu, dA.

But, according to (8.55), u, is a function of A and T only. Hence
> & feun = g\, T) (8.56)
a)

where g is a universal function of wavelength and temperature only.
This result is Kirchhoff’s law:

> The ratio of the spectral emissive power to the spectral absorptivity
for all bodies is a universal function of wavelength and temperature
only.

It is now convenient to define a black body as one which absorbs all
the radiation incident on it. Thus, for a black body, a, =1. (If the
absorptivity is constant with wavelength but less than unity, the body is
grey while if a, varies with wavelength we say it is coloured.) For a black
body (8.56) becomes

ex = cun. (8.57)
Since c is a constant we see that radiation emitted by a black body has
a wavelength and temperature dependence which is identical to that of
equilibrium radiation. This is why equilibrium radiation is also called
black body radiation.

Being a perfect absorber, a black body is, by Kirchhoff’s law, also the
best possible emitter. This allows us to define the spectral emissivity €,
of a surface as the ratio of its emissive power to that of a black body.
If follows from Kirchhoff’s law that €, = a,.

There are many simple illustrations of Kirchhoff’s law. We may explain
why there is more likely to be a frost on a clear night than on a cloudy
one: Intersellar space behaves like a black body with a temperature of
a few kelvins. On a clear night, the earth’s surface radiates into space
but very little energy is incident from space. There is a large net radiative
loss and the surface temperature falls (especially if there is no wind to
promote warming by the air near the ground). Water, however, absorbs
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strongly in the infra-red, so that on a cloudy night, not only do the
clouds absorb the radiation emitted from the earth’s surface, but they
also radiate strongly towards it. The net radiative loss is greatly reduced
and the fall in surface temperature is much smaller.

A rather different illustration is provided by radio aerials. These are
often constructed so as to radiate strongly in certain directions. It follows
from Kirchhoff’s law that they must also absorb strongly radiation
incident from that direction. Thus polar diagrams®* for reception and
transmission must be identical.

Kirchhoff’s law is often vulgarized to ‘good absorbers are good
emitters’, but it must never be forgotton that the identity of the absorp-
tivity and the emissivity only holds when both refer to the same
wavelength and temperature. The variation with wavelength can be of
great importance. Glass, for example, is transparent in the visible but
is a strong absorber in the far infra-red. This is one of the reasons why
it is possible for the temperature in a glass-house to be considerably
higher than that outside. The short wave, high temperature radiation of
the sun passes through the glass and is absorbed by the contents which
become warm. However, being much cooler than the sun, the greater
part of their radiation is in the far infra-red to which the glass is opaque.
The glass therefore acts as an efficient radiation screen for radiation
emitted from within and so reduces heat losses. The ‘one-way’ effect of
a glass-house depends on the change of wavelength which is effected
when the incoming energy is absorbed and re-emitted.

8.9.4. The Stefan-Boltzmann laws

We have discussed the properties of materials in their interaction
with radiation. We now return to the application of thermodynamics to
the radiation itself. Since radiation exerts a pressure, we may trap it in
acylinder with perfectly reflecting walls and do work on it by compression
just as we would with a normal thermodynamic fluid.

To deduce the Stefan-Boltzmann laws we perform an isothermal
compression. This we do by introducing into the cylinder a minute speck
of black material which is kept at a constant temperature T by thermal
contact with an external reservoir (Fig. 8.12). If the compression is
sufficiently slow, the radiation may be considered as being in thermal
equilibrium with the speck at all times. It will therefore always be black
and characteristic of temperature 7.

22 The plot of radiated or received power against angle.
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The radiation has a total energy density
©
u= I ux da
[}
and exerts a pressure p = su. The total internal energy of the system is
U=uV. (8.58)
We know also that the quality of the radiation is a function of temperature
only, so that

au)
—] =0. .
( ). (8.59)
We apply the first law in the form
dU=TdS-pdV. (8.60)

Differentiating, we have
104 as
), -1(25) >
(av)T av). P
Substituting from (8.58) and using a Maxwell relation
ou ap)
+vli—) =T|=) -
“ V(aV)T T(aT v P

where the second term on the left is zero by (8.59). Substituting for p,
1/du u
«=73(57), 73

Fig. 8.12. Isothermal compression of black radiation.




152 Equilibrium thermodynamics

or

du
4u = Td_T

where we have replaced the partial differential with an exact one since
u is a function of T only. Integrating we obtain

> u=AT* (8.61)
where A is a constant. (We assume that u =0at 7=0.)

Now we have shown that the spectral emissive power of a black body
is related to the spectral energy density of equilibrium radiation by

ex = icux. [(8.57)]

Integrating over all wavelengths we obtain the total power radiated per
unit area by a black body

> ev=jcu =oT". (8.62)
Equations (8.61) and (8.62) are known as the Stefan—Boltzmann laws,

or simply as the Stefan laws, and o is the Stefan-Boltzmann constant
which has the value 56.9 nWm™>K™.

8.9.5. Wien’s laws

In the last section, we derived an expression for the total energy
density of black body radiation. We now turn our attention to the way
in which that energy is distributed with wavelength. Fig. 8.13 shows the

Fig. 8.13. The spectral energy density of equilibrium radiation as a
function of wavelength for different temperatures. The broken curve
shows the locus of the maxima.
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behaviour of u, which is found experimentally. Two characteristics
should be noted. As the temperature is raised, (a) the energy density
at any fixed wavelength always increases; and (b) the region of
highest energy -density moves to shorter wavelengths. The Stefan-
Boltzmann law tells us that the area under the curves must be propor-
tional to T*.

To derive Wien’s laws we perform an adiabatic compression of the
radiation. During the isothermal compression we used in the derivation
of the Stefan laws, the continued blackness of the radiation was assured
by the presence of the black speck. We must first show that radiation
remains black if compressed in the absence of any black body. We do
this by considering the following series of processes:

Place black radiation characteristic of temperature T} in a cylinder with
perfectly reflecting walls. Let the initial energy, entropy, and volume of
the radiation be Ul, Sl, and Vi

(a) Compress reversibly and adiabatically from V; to V, doing work
W.. The changes in entropy and internal energy are AS, =0 and
AU.=W,.

(b) Introduce a black speck. If the radiation after compression were
no longer black, an irreversible change to blackness would now
take place accompanied by an increase in entropy, AS}, > 0. Since
no work is done and no heat enters the system AU, =0.

(c) Keeping the speck in the cylinder, expand adiabatically and
reversibly back to V; doing work W.. In this process we have
AS.=0and AU.= W.. Let the internal energy and entropy now
be U, and S,.

Now at all times the pressure depends only on the total energy density
so that the pressure is the same function of volume during the expansion
as it was during the compression. Therefore, W.=—W,, and, since no
heat enters the system, U, = U; and u, = u;. But the radiation is black
both at the beginning and at the end of the series of processes; and,
according to Stefan’s law, the energy density of black radiation has one
degree of freedom only (temperature). Thus, the facts that in the initial
and final states

(a) the volume is the same,

(b) the radiation is black, and

(c) the energy density is the same,

imply that the initial and final states are identical. Then, S,=5; and
AS, = 0. Therefore, there could have been no irreversible change in (b)
and the radiation must have been black after the compression.
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Having proved this theorem, we are now able to dispense with our
black speck during adiabatic changes knowing that the radiation will
remain black. The importance of this is that with no body which can
absorb and emit radiation in the container, we may consider the
behaviour of individual rays or spectral components separately, knowing
that there is no means of redistributing energy between them.”?

We first find how the wavelength of a particular spectral component
is changed by compression of the radiation. The change of wavelength
occurs through the Doppler effect during reflection at the moving sur-
faces of the container. This is most simply calculated by confining the
radiation in a perfectly reflecting sphere of variable radius. At each
reflection at the moving surface any ray suffers a change in wavelength

dr =2 Adr cos 6
c dt
where dr/dt is the rate of increase of the radius, and @ is the angle
between the ray and the radius at the point of reflection (Fig. 8.14).
The ray suffers ¢/(2r cos 6) such reflections per second, so that

and integrating,
A/r =constant. (8.63)
The wavelength scales in proportion to the radius.”*

Fig. 8.14. Adiabatic compression of radiation in a perfectly
reflecting sphere.

B 1n quantum terms, this means that there is now no coupling between the
various modes of the container so that we may examine how each mode is
perturbed by change of volume as if no other modes were present.

24 In the language of quantum mechanics, each eigenstate suffers an adiabatic
change; no transitions occur. The wavelength of each mode scales so as
always to match the boundary conditions.
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Still referring to the radius as our independent variable, we now find
how the characteristic temperature of the radiation (as a whole) changes.
Since the compression is adiabatic and reversible, the first law becomes

dU=-pdV,
or

duv)=-3udv,
giving

PRLAEY. )

v u

Integrating

Vil= constant,
or

r*u = constant. (8.64)
But, by Stefan’s law,

u=AT* (8.65)
Combining (8.63), (8.64), and (8.65),
» AT = constant. (8.66)

It is very important to be clear about the significance of A and T in
(8.66). As the radiation is compressed it remains black but its characteris-
tic temperature changes. At the same time, the wavelength of any
particular ray changes so that the product AT remains constant. Thus
A refers to a particular spectral component of the radiation whereas T
only has significance for the radiation as a whole.

We now consider the effect of compression on the spectral components
between A and A +dA. The spectral density, the wavelength and the
width of this band, will be changed by the compression (Fig. 8.15). We
apply the first law again, but this time to these spectral components only:

d{U,dA)=-pdV

d(uy dAV)=—}u, dA dV

d(u, dA)V +u, dA dV =—3u, dA dV

dndr) _4dv__ dr

Ux da 3 Vv r

giving

ux dAr* = constant.
But, from (8.63), A «cr so that dA «<cr also. We therefore have

u Ars = constant.
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Using (8.64) and (8.65), this gives
u\T > = constant. (8.67)
We have thus shown that the group of spectral components we have
isolated obeys the equations

AT = constant]

T~ = constant [(8.66)] and [(8.67)]

Therefore, the whole distribution must obey the equation
ur=T*f(AT) (8.68)
where f(AT) is an undetermined function of the product AT.

From this equation we see that for any given temperature the
maximum of u, occurs where f is a maximum corresponding to a constant
value of the product AT. The constant may be found experimentally or
derived from quantum theory which gives an explicit expression for
ur(A, T) in terms of fundamental constants. The value found?® is

> AmaxT =2.9 mm K. (8.69)

This is Wien’s displacement law. Substitution of 7 =6000K for the
optical temperature of the sun gives a maximum at 500 nm in the visible.
For materials at room temperature the radiation is most intense at a
wavelength of about 10 um in the far infra-red.

Fig. 8.15. The effect of adiabatic compression on a band of spectral
components.

d i

25 1t should be noted that if we define a spectral energy density in terms of
frequency u, such that u, dv =u, dA, and seek the wavelength at which u, is
a maximum, A ., then Ao, T is again constant, but with a slightly different
value. The student should satisfy himself as to why this is so.
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We may write (8.68) in a slightly different form:
ur =AAT)’f(AT),
or
> uy=A"g(AT) (8.70)
where g(AT) is another undetermined function of the product AT. This
form of the functional relationship is known as Wien’s distribution law.
To go further than this is not possible with classical thermodynamics.

The explicit expression for u, (Planck’s law), as derived from quantum
theory (see Rosser, 1982; or Kittel and Kroemer, 1980) is

C1 1

U\ =75 AT 1
/\5 ecz/AT_l

where c; and ¢, are constants. This has the form required by Wien’s law.

All the results we have derived are in complete agreement with
experiment. The great success with which thermodynamics is able to
treat thermal radiation demonstrates how widely its laws are valid and,
historically, was one of its early triumphs.

8.10. Fluctuations
Classical thermodynamics is primarily concerned with describing
the behaviour of matter in terms of macroscopic variables. However,
we know that bulk properties are also, in principle, explicable in atomic
terms. Macroscopic properties must therefore reflect the microscopic
processes that combine together to give rise to them. Now we are familiar
with the idea that thermal motions are present at the atomic level in all
systems at any non-zero temperature. It follows that there must be
corresponding fluctuations in associated macroscopic properties.
Thermodynamic equilibrium is therefore not a static state. If constraints
allow, variables will fluctuate about their mean (equilibrium) values.
Fluctuations are an intrinsic part of thermodynamic equilibrium. In large
systems they are generally unimportant since they tend to average out
as the number of independent (microscopic) contributions increases, but
they can become relatively large in small systems or in situations where
great sensitivity is involved. Thermodynamic equilibrium fluctuations
set an ultimate limit to the sensitivity of any detection system.
We illustrate thermodynamic treatment of fluctuations by considering
a system in equilibrium with a large reservoir at temperature T, and
pressure po (Fig. 8.16). Then the volume V and the internal energy U
may vary. We shall measure the fluctuations in terms of AV and AT,
the instantaneous deviations of volume and ‘temperature’ from their
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mean (equilibrium) values. In section 5.6 we have already developed
the Boltzmann relation connecting entropy and statistical probability.
It applies to isolated systems. Here we treat the system plus the reservoir
as a composite system isolated from the rest of the universe and we use
the Boltzmann relation to obtain the probability distribution of fluctu-
ations through the associated changes in entropy. Using P for probability
here, we obtain

P= P() exp (Astot/k) (8.71)
where AS,. is the change in total entropy corresponding to given
deviations AV and AT from their mean values V, and T, and P, is the
constant of proportionality. Now

ASot=ASo+AS (8.72)

where the terms on the right refer to the reservoir and system respec-
tively. For an infinitesimal (reversible) change,

dU =-T,dSo—podV.

Since the reservoir is large, T, and p, will be essentially constant in any
finite change of the system so that this equation integrates to

AU Po
—ASo=—+7=AV.
T, To
The analogous equation in terms of T and § cannot be so integrated
since we are interested in changes large enough that the system para-
meters deviate significantly from their equilibrium (mean) values. Then

with (8.71) and (8.72) we obtain
AU +poAV —T, dS)
kT,

P =Py exp —(
or

P =Pyexp —(AGo/kT) (8.73)

Fig. 8.16. Fluctuations of a system in contact with a large reservoir
at temperature T, and pressure p,.

Av

To. Po U AT

reservoir system
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where G is the Gibbs function of the system evaluated at T, and po.
We note that the thermodynamic potential appearing in the Boltzmann
factor in (8.73) is the one whose proper variables are those which are
set (at equilibrium) by the reservoir. If different external constraints
were applied other potentials would appear in the expression for P in
exactly the same way as the different potential functions were found to
be involved in the discussion of general conditions for equilibrium
(section 7.4). The appearance of the appropriate potential in a Boltzmann
factor emphasizes the significance of the potential functions as real
potential energies.

In the discussion of general conditions for equilibrium, we only needed
to maximize universal entropy since we only required the equilibrium
configuration. Here, we need to know how the total entropy varies near
its maximum value because we are specifically interested in fluctuations
of parameters away from their mean (equilibrium) values. We therefore
expand AG, to second order in our two chosen independent parameters,
T and V.

s60=[(G7), ~7(5z) Jo7
|G, +-m(35),Jav
A(E), (37 Jor

A(2),(23) Jov

U 3’S
+ —
[aT av_ Togr av] AT AV

with all differentials evaluated at T and py. At equilibrium
dU =T,dS —psdV
so both first order terms are identically zero as must be the case for a

maximum of the entropy. We now examine the second order terms:
AT? term

(59), =) (1(2),) -7, (%)
ar?), ~aT/ \"\oT aT? aT/
so the AT? term becomes

1&v

2
2T0AT'
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AV term
U ] as 3’s ap
£2) 23,105, ) (), -
(avz)r av)r( av). P av2): \av);
so the AV? term becomes

1
-3(35) avi-iav?
T

v «V
where « is the isothermal compressibility.
AT AV term

=) (), = (%), Tarav ()

3T aV aT/y\aV/r \aV/r ~aTav \oT/y
The first and last terms in this last expression cancel by a Maxwell
relation. The cross-term in the expansion of AG, is therefore identically

zero. So that fluctuations of T and V are uncorrelated. It is a general
result, which may be demonstrated by considering other cases, that

fluctuations of independent variables are uncorrelated.

Substituting the non-zero terms back into the expression for P we
obtain :
P=Poexp —[((Cy/To) AT*+(1/x V) AV?)/2kTo). (8.74)
Both probability distributions are Gaussian with dispersions given by

(AT?)/T§ =k/Cv }

(AV®/V?=kkT/V.
The right-hand sides of these equations are inversely proportional to an
extensive variable so that we have the relative size of fluctuations in
both cases inversely proportional to the square root of the size of the

system as might be expected on statistical grounds.
It is instructive to write equations (8.75) in the following form
HCv/To) AT? =3k T,
1(1/kV)AV?= %kTo.}
The left-hand side of the first is the work that would' be required to
effect the change of temperature reversibly by interposing an ideal heat
engine between reservoir and system. The left-hand side of the second
is the work that would be required to effect the change of volume
reversibly by interposing a piston between reservoir and system. We
therefore see that the fluctuations obey the law of equipartition of energy
which states that the mean energy associated with each independent
quadratic contribution to the total energy of a system in thermal equili-
brium is 3k 7.

(8.75)
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The example analysed above serves to illustrate the way in
which equilibrium fluctuations are treated in the context of classical
thermodynamics. Analogous methods apply with different systems or
different constraints and can be extended to discuss fluctuations of
amount of substance where there is diffusion or, chemical reaction by
including the chemical potentials (section 11.3) in the appropriate
potential function. It should be noted that the analysis only provides
information about the probability distribution of fluctuations. The rate
at which they occur (their frequency spectrum) can only be discussed
with a knowledge of the dynamics of the processes involved.



9

Applications to some irreversible changes

Although the thermodynamic parameters of a system may only be
defined when the system is in thermodynamic equilibrium, it is often
possible to obtain useful results for systems which pass through non-
equilibrium states provided that the initial and final states are equilibrium
states and provided that sufficient information is given about the con-
straints applying to the irreversible changes. The Joule and Joule-Kelvin
expansions of a gas are examples of processes of this kind. In other
processes, irreversibilities are involved in such a way that reversible
thermodynamics cannot be applied rigorously. The thermoelectric effects
are an example of this class, and we include a discussion of them here
because it is instructive to examine in detail the difficulties involved.

9.1. The Joule expansion
A Joule expansion is one in which the system exchanges no heat
or work with its surroundings. That is, it takes place under the condition

Fig. 9.1. A Joule expansion.

(a) A gas is kept to one part of a vessel by a partition, the other part being
evacuated. (b) The partition is removed, and the gas expands irreversibly to fill the
whole vessel.

(a) (b)
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of complete isolation. Such is the case when a gas in a thermally isolated
vessel expands into a vacuum, as illustrated in Fig. 9.1, and for this
reason, a Joule expansion is also often called a ‘free’ expansion. To
apply thermodynamics we must express the constraints which character-
ize the change in terms of state functions, for this will allow us to relate
the initial and final states of the gas.' The appropriate condition follows
immediately from the first law. Since dQ =dW =0, we have

dU =0,
or

U = constant.

Thus, in a Joule expansion, the system is constrained to move on a line
of constant internal energy.

We may now use this constraint to find the consequences of a Joule
expansion. Suppose, for example, that we wish to calculate the tem-
perature change produced by a Joule expansion of a gas. We would
proceed as follows:

(%) v ‘(%’)T(%) v ©.1)

Although the changes are irreversible, we may always use the first law
in the form

dU=TdS-pdV
where we may integrate from the initial to the final state by any con-
venient reversible path. Thus

(;irj) v T(:_;) ,=Cv 9.2)

aU as
()5,
ovV/r ovV/r

- T(:—;’,) P 9.3)

Substituting (9.2) and (9.3) in (9.1),
aT 1 3 T? 3
> W alr@,Agr@), e
6 V U CV &T \% CV a T T \%
! For a simple fluid the equation of state defines a surface in p-V-T space. In
the absence of any constraint, the whole of the-surface is accessible to the
system, and two variables are required to specify its state. When a constraint

is applied, only one degree of freedom remains and the system can only
move on a line on the surface representing the equation of state.

and
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(8T/aV)y is known as the Joule coefficient. For a finite change in volume
the total temperature change is found by integrating (9.4):

AT =— .‘[,'(,}—V[T(:_;) V—p]dV. ©9.5)

These results are perfectly general. To evaluate the coefficient or
integral in any particular case, the heat capacity has to be known and
the equation of state (or equivalent information) has to be used to reduce
the other terms on the right. From the mathematical point of view it is
clear what is required. If we select T and V as the quantities of interest
(the variables on the left of (9.4)), we must express the right-hand side
in terms of the same variables so that we may (in principle) separate
the variables and perform the integration. As it stands, the right-hand
side contains all three variables, p, V, and T. The equation of state
enables us to eliminate the one we do not want.

It should be noted that substitution of the equation of state of the
perfect gas, equation (8.10), yields a Joule coefficient of zero. This must
necessarily be so, since we originally defined the perfect gas as one for
which U is a function of T only so that (9.1) vanishes immediately. For
real gases, however, except at extremely high pressures, a Joule
expansion always results in cooling. The physical reason for this may be
seen as follows. In (9.1) the second term on the right is an inverse heat
capacity and is necessarily positive. The first term on the right represents
the change in internal energy with volume when the temperature is kept
constant. According to kinetic theory, when temperature is kept constant,
all contributions to the energy from kinetic terms or from degrees of
freedom which are internal to the molecules remain unchanged. Thus,
when the volume is changed at constant temperature, the internal energy
can only alter by virtue of the change in distance between the molecules;
that is, by contributions derived from the potential energy of the
molecules due to their separation. This is illustrated in Fig. 9.2. At large
distances there are weak attractive forces and the potential energy
increases with separation. As the separation is decreased the forces
eventually become repulsive’ and the potential energy again increases.
The point of lowest potential energy, ro, is the equilibrium separation
at absolute zero, and corresponds to the density of the solid. Gases
always have an average intermolecular separation greater than this, and
the potential energy increases with volume, (dU/dV)r is positive. There-
fore gases always cool in a Joule expansion.
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The entropy change accompanying the Joule expansion follows
immediately from the first law and the condition of constant U:
dU=TdS-pdV =0
whence

AL

AS = j %dV. (9.6)

Vi

For the perfect gas this becomes

which agrees with the general expression (8.13) since, for the perfect
gas, there is no change in temperature. As dQ = 0, the increase in entropy
is entirely associated with the irreversibility of the expansion.

9.2. The Joule-Kelvin expansion

The Joule-Kelvin (or Joule-Thomson) expansion is a steady
flow process in which a gas is forced through a porous plug or a throttle
valve under conditions of thermal isolation from the surroundings. It is
represented schematically in Fig. 9.3. In passing through the plug the

Fig. 9.2. The potential energy of two molecules as a function of
their separation r.

d(n

Fig. 9.3. The Joule-Kelvin expansion.
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gas expands and the pressure drops from p; to p,. The pressures on
either side are kept constant, for example, by pistons moving in cylinders
at the appropriate rates. Since this is a steady flow process in which no
external work is done during the expansion, in which no heat is exchanged
with the surroundings and in which kinetic and potential energies may
normally be ignored, the constraint becomes simply that the specific
enthalpy, A, of the fluid is conserved (see section 3.8). The temperature
drop may then be calculated as follows:

T aT oh
(o)== Ge), ). 07
But
dh=Tds+vdp (9.8)
S0
oh as
(aT) T(aT),,_ e ®9)
and

(), T(5),
—T(aT) +o. 9.10)

Substituting (9.9) and (9.10) in (9.7) and changing from specific quan-
tities,

- e(G)slrG), g RE), e

w is known as the Joule—Kelvin coefficient. For a finite change in pressure,
the change in ternperature is

AT = j [(;f) ] 9.12)

The extensive quantmes on the right can, of course, refer to any amount
of the gas since this does not enter into the result, temperature and
pressure. being intensive variables.

The entropy change accompanying the expansion follows directly from
(9.8). Remembering that dh =0,

(2) --2
ap h T

P>
\%4
= 9.13
AS I po. ( )

p1
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For a perfect gas the Joule—Kelvin coefficient is zero and the change of
entropy
ASn=RInE
D2
which agrees with (8.12) since there is no change of temperature. Again,
this is entirely associated with the irreversibility of the expansion.

For real gases, a Joule-Kelvin expansion can result in heating or
cooling. The physical reason for this may be seen by examining the
terms in (9.7). The first term on the right is simply an inverse heat
capacity and is necessarily positive. The second term may be expanded
by substituting the definition of A:

h=u+pv
giving
oh au) d )
—) ={— — . 9.14
(ap)-p (&p T+ap T(pv) ( )

For the perfect gas both terms on the right of (9.14) would be zero. For
areal gas the behaviour of the first term corresponds to that of (3U/dV)r
in the Joule expansion. Namely, at gaseous densities the energy increases
with decreésing density, so that as the pressure drops through the porous
plug the first term contributes a cooling. The second term may be of
either sign, however. If the temperature and pressure are not too high,
there is a region where it is negative and also contributes a cooling,
Outside this region it is positive and can outweigh the effect of the first
term so that a Joule-Kelvin expansion results in heating rather than
cooling of the gas. These regimes are displayed by plotting the isenthalps
of a real gas in the p-T plane (Fig. 9.4). The locus of points for which
w =(8T/ap)» = 0, namely the curve which separates the region of heating
from that of cooling, is called the inversion curve. In terms of the
quantities of (9.11) this curve is determined by the condition

(&) -2 9.15)
aT/, T
Clearly, for a given starting temperature the greatest cooling occurs if
the pressure is chosen so that the initial state lies on the inversion curve.
The condition for the inversion curve, (9.15), can, of course, be
substituted into one of the approximate equations of state for a real gas
to obtain its theoretical curve. For example, Dieterici’s equation of state
in reduced units is:

(26 —1)=6 exp (2—%). (9.16)

(See problem 8.13)
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In reduced units, (9.15) becomes

5).-%

Applying this to (9.16) and rearranging we obtain for the inversion curve,

7 =(8—6) exp (%—g-).‘ 9.17)

This is compared with the experimental curve for nitrogen in Fig. 9.5.
As might be expected, the agreement is not particularly good.

9.3. Liquefaction of gases

The Joule-Kelvin effect is widely used as a means of cooling in
the liquefaction of gases. To obtain any cooling at all, the initial tem-
perature must be less than the maximum inversion temperature, given
by the intersection of the inversion curve with the 7-axis (Fig. 9.4).
Values of the maximum inversion temperatures for several gases are
given in Table 9.1. Provided, then, that the initial temperature is less

Table 9.1. Maximum inversion temperatures of several gases*

gas 4I‘Ie H2 N2 A C02
Ti,../K 43 204 607 794 1275

¢ From Zemansky and Dittman, 1981.

Fig. 9.4. Isenthalps for a real gas. The broken line is the inversion
curve.

T
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than this, some cooling will be produced on expansion; but it may not
be sufficient to produce any liquid. The cold, expanded gases are there-
fore used to cool incoming high-pressure gas so that the expansion takes
place from a lower temperature, and a lower temperature is produced.
The device used for this is known as a countercurrent heat exchanger
and is illustrated in Fig. 9.6. If the heat exchanger is efficient, the
emerging gas will be warmed nearly to the temperature of the incoming
gas. Continued operation will then cause the temperature at the throttle
valve gradually to fall until liquid begins to'condense out. The liquid
collects in the chamber while uncondensed gas is returned through the
heat exchanger to be recompressed and recirculated. (It should be
pointed out that, in the ideal limit, a countercurrent heat exchanger is
a thermodynamically reversible device.)

The efficiency y of such a simple liquefier is defined as the (mass)
fraction of the incoming gas which is liquefied. In the steady state, we
have a simple steady flow process in which no heat or work is exchanged
with the surroundings and in which kinetic and potential energy terms
are negligible. The general equation of motion, (3.31), then reduces to
the simple condition that the enthalpy within the liquefier remains
constant. The enthalpy of the high pressure gas entering must equal the

Fig. 9.5. The inversion curve of a Dieterici gas (a) compared with
the experimental curve for nitrogen (Roebuck and Osterberg, 1935)
().

(a)
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sum of the enthalpies of the emerging gas and the emerging liquid (Fig.
9.7). If

h; = specific enthalpy of the gas entering at T’; and p;

h¢ = specific enthalpy of the gas leaving at T; and p;

h. = specific enthalpy of the liquid emerging at 71 and p.

Fig. 9.6. A simple liquefier using a countercurrent heat exchanger.

high pressure low pressure
gas in gas out
I
—> —3

throttle valve —_|

—_—4—liquid

Fig. 9.7. Flow through a liquefier.

1 kg of gas (1 = y) kg of gas
—— liquefier > —
hn Thpl hl' Ti*pi

y kg of liquid
h Ty
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then
hi=yh.+(1-y)h;
or
_hi—hy
y —_hf—h]_- (9.18)

Let us assume that we have chosen T; and that the heat exchanger is
efficient so that T;=T;. The exhaust gas would normally emerge at
about atmospheric pressure so that p; and therefore h; are determined.
So is pp. which will only differ from p; through any pressure drop in the
heat exchanger (which would normally not be large). Now the liquid in
the chamber is in equilibrium with its vapour, so that its temperature is
determined by the pressure. Hence, T and therefore A, are fixed. Thus,
in the expression for the efficiency, only A; may be varied. For maximum
efficiency, #; must be a minimum. Since 7 is fixed, the condition is

),
api T;
(OT

éﬁ) __(3h) (3T _

(ap T— (aT)p ap )h B

where p is the Joule-Kelvin coefficient. The point T, p; must therefore
be on the inversion curve. For the liquefier, the condition for maximum
efficiency is the same as that for maximum cooling in a simple.Joule-
Kelvin expansion.

Since liquefaction using the Joule-Kelvin effect is only possible if the
initial temperature is below the maximum inversion temperature, many
gases have to be precooled. Usually, other liquid gases are used for
this. Hydrogen (T, =204 K), for example, is usually precooled with
nitrogen (n.b.p.=77.3 K). Helium (7;__=43K) is usually precooled
first with nitrogen and then with hydrogen (n.b.p. = 20.3 K) boiling under
reduced pressure at about 14 K.

As a means to gas liquefaction, the Joule-Kelvin effect has the great
advantage that there are no moving components in the low temperature
parts of the liquefier. As may be seen from the isenthalps of Fig. 9.4,
the cooling also becomes greater as the temperature is reduced.
However, when precooling is necessary, the liquefier becomes compli-
cated and expensive to run. For this reason, some liquefiers obtain the
initial cooling by causing the gas to do work in a quasi-reversible adiabatic

But
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expansion in an engine or turbine. In all gases this produces a cooling:

(%), Gs).v),~ e ). 019
aVs aSVBV-r CvaTv

(All the terms on the right are positive.) The physical reason for the
cooling is simply that during the expansion the gas molecules rebound
from a receding surfacé, the surface where the expansion occurs, so that
their speeds are reduced and the temperature falls. With a heat
exchanger, an expansion engine could be used to liquefy a gas directly;
but, as may be seen from (9.19), the cooling decreases as the temperature
falls so that the expansion engine is usually only used to obtain precool-
ing. The gas then passes to a Joule-Kelvin stage where a further
expansion brings about liquefaction. This combination is used in the
Collins helium liquefier which produces liquid helium directly from high
pressure gas at room temperature.

9.4.  Thermoelectricity

Thermoelectricity cannot be treated rigorously within the
framework of reversible thermodynamics. We nevertheless include a
discussion of it here since the difficulties involved occur in other systems
also, and an examination of them is instructive in demonstrating the
limitations of the theory we have developed.

9.4.1. Thermoelectric effects

When a temperature gradient is set up in an electrical conductor,
not only does heat flow, but an electric field is also created. A qualitative
picture of the origin of this field is provided by comparing electrons in
the conductor with molecules of a gas. If the temperature in some region
of a gas is raised, the increased kinetic energy of the molecules tends
to cause a local increase in pressure. However, since the gas is a fluid,
local pressure variations simply cause the gas to flow until the pressure
is uniform, the density p varying from point to point so that the product
pT «p is constant. In the case of the electron gas, however, the charge
on the electrons prevents such a redistribution. In the undisturbed state,
the charge density of the electrons exactly balances that of the positive
ion cores, and the material is electrically neutral; but if the electron
density is disturbed, a space charge results, and this produces an electric
field in such a direction as to restore uniformity. It is as if the modulus
for deformation of the electron gas were very large, the rigidity originat-
‘ing in the electrical forces between the electrons and the ion cores.
Consequently, when there is a temperature gradient in a conductor,



Applications to some irreversible changes 173

there is very little redistribution of charge, only enough to set up an
electric field to balance the kinetic forces. For small temperature
gradients, the strength of the field is proportional to the temperature
gradient:

> E=PVT

where P is called the thermoelectric power or simply the thermopower of
the material.”

In practice, the thermopower is not easy to measure directly because
temperature gradients will normally be present in the measuring equip-
ment also. However, the difference between the thermopowers of two
different conductors is easy to measure by constructing a circuit of wires
of the two materials whose junctions are at different temperatures (Fig.
9.8). The e.m.f. developed in such a circuit is

T, T, T,
$=IE-dr=IPVT-dr=IPBdT+ PAdT+IPBdT
To Ty T
T,
- j (Pa-Pg)dT. (9.20)

T
This e.m.f. is known as the Seebeck e.m.f. Its occurrence in such a circuit
is called the Seebeck effect. Since it is the difference of the thermopowers
of two materials which is usually measured, the difference, P — Pp, is
often contracted to Pap and called the thermopower of the couple.
From (9.20), it follows that if we keep the temperature of one junction
fixed and vary that of the other, then

dZ
> Cﬁ=PAB (9.21)

Fig. 9.8. A thermoelectric circuit of dissimilar conductors with
junctions at different temperatures.

2 The conventional symbol is S, but we use P here to avoid confusion with
entropy.
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where Pap is the thermopower of the couple at the varying
temperature 7.

The Seebeck effect provides the basis of thermometry with thermocou-
ples. The e.m.f. may usually be represented fairly well by the first few
terms of a power series in the temperature difference of the two junctions
(see section 2.7).

The Peltier effect is the conjugate of the Seebeck effect. Since the
charge carriers in a conductor have thermal energy (extra energy result-
ing from their finite temperature) flow of charge will generally be
accompanied by flow of heat: the charge carriers carry their thermal
energy with them. In the Peltier effect, both the magnitude and the sign
of the thermal flux depend on the details of the electronic structure of
the conductor. For small current densities, the effect is linear in the
current density, the constant of proportionality, II, being called the
Peltier coefficient.

To observe the Peltier effect we have to find some way of intercepting
the heat current without disturbing the flow of electricity. Again, this is
most easily done by making a junction between wires of dissimilar
materials and passing an electric current across the junction. Under
isothermal conditions the difference of the thermal currents in the two
conductors will appear as heat at the junction. The rate of release of
heat will be
> Q=IMa-Tlg)=ITAp (9.22)
where I is the current passed and Il,p is the Peltier coefficient for the
couple. It should be noted that the effect is reversible so that heat may
be evolved or absorbed at a junction depending on the direction of
current flow.

Since the Peltier heat appears at a junction, the Peltier coefficient is
often interpreted as a potential difference (at the junction) against which
work is done when charge is passed. This may sometimes be a convenient
fiction, but, of course, no such potential difference exists.

A third aspect of thermoelectricity is apparent as current flows along
a temperature gradient: heat is generated or absorbed in the conductor
in proportion to the product of the current density and the temperature
gradient. The rate of heating per unit length of conductor may therefore
be written

. dT
> Q=plg. (9.23)

This is known as Thomson heat and u is the Thomson coefficient. Again,
this is a reversible effect associated with the thermal energy transported
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by the moving charges. As the current.flow takes the charge carriers
through regions of different temperature, they have to absorb or reject
heat in order to maintain thermal equilibrium with their surroundings.
The Thomson coefficient is therefore simply the heat capacity per unit
charge of the current carriers. As with the other thermoelectric
coefficients, the sign and magnitude of . depend on the details of the
conductor’s electronic structure.

In metals the thermoelectric effects are generally small and their
usefulness has been restricted to thermometry; but in semiconductors
it is possible to control the electronic structure so as to obtain large
thermoelectric effects. This has made thermoelectric refrigeration practi-
cable (see Goldsmid, 1960) and various practical devices are on the
market in which it is used. The semi-metals, As, Sb, and Bi, are inter-
mediate to ordinary metals and specially prepared semiconductors. Table
9.2 gives thermoelectric coefficients of thermocouples typical of the
various classes. Thermopower is of importance in solid state physics in
that it yields information about the detailed electronic structure of a
material.®

9.4.2. The essential irreversibility in thermoelectricity

The reason why the thermoelectric effects cannot be treated
rigorously within the framework of equilibrium thermodynamics is that,
in addition to the reversible effects we have already considered, there
must also always be present two irreversible processes: Joule heating
due to electrical resistance of the conductors and thermal conduction.
We would only be justified in applying reversible thermodynamics if
reversible processes could be separated from irreversible by so arranging

Table 9.2. Thermoelectric coefficients for thermocouples at 20 °C

Pap/ was/
Couple Class uVK™! Mae/mV VK™
Cu-Ni* metals 22 6 -11
Bi-Sb* semi-metals 110 32 -33
p-n junction specially prepared 400 120 -6

in Bi,Te;® semiconductors

¢ Handbook of physics and chemistry, 1956.
* Goldsmid, Sheard, and Wright, 1958.

3 For a discussion of the microscopic aspects of thermoelectricity, see Ziman
(1960).
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athermoelectric circuit that entropy changes due to irreversible processes
could be made negligible. This cannot be done as we may show by the
following argument.

Consider an element of a wire of cross-section A and length dx through
which there flows an electric current I and along which there is a
temperature gradient d7/dx (Fig. 9.9). Let the electrical resistivity be
p and the thermal conductivity A. Since the element is in a steady state,
the entropy change associated with the processes within it must appear
in its surroundings.® This may be written in terms of the heat flow at
either end:

. _qx+dx) q(x)
$dx= T(x+dx) T(x)

where § is the rate of entropy generation per unit length of wire and g
is the rate of heat flow. This may be written

-__d_(i)
dx \T
_1dq q dT
“Tdx Tdx' (9.24)
But
dT
=—AA — .
q Adx’ (9.25)

Fig. 9.9. Entropy generation by an element of a wire along which
there are gradients of temperature and electrical potential.

A
L x x + dx

T q(x) ———»

* When we discussed increase of entropy associated with heat conduction in
section 5.5, it was the entropy change in the bodies which we calculated
although it was the process of conduction in the thermal resistance which
caused it. We implicitly took the thermal resistance to be in a steady state,
the increase in entropy associated with irreversible processes in it being
communicated, by flow of heat, to its surroundings. All we are doing here is
to generalize that argument to the case where the heat flow is not uniform.
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and applying the first law to the Joule and Thomson effects in the wire,

dg I dr

="t —. 9.26

oA Ty (9.26)
Substituting (9.25) and (9.26) in (9.24) we obtain

. I’p In dT) A\ dT)2

S_AT+T(dx +T2(dx ‘

Joule Thomson  conduction

It is clear from the form that it is not possible to make the first and last
terms both small without making the contribution from the reversible
Thomson heat small also. It is therefore impossible to separate the
reversible and irreversible effects in thermoelectricity. Thermoelectricity
is essentially an irreversible phenomenon and no treatment by reversible
thermodynamics can be rigorous.

Lord Kelvin, who was well aware of these difficulties, obtained the
thermoelectric equations by applying reversible thermodynamics to the
‘reversible parts’ of the thermoelectric effect while taking no account of
the irreversible (Kelvin, 1882). Others (see e.g. Tolman and Fine, 1948)
have tried to take the irreversibility into account within the context of
classical thermodynamics. All these approaches involve a division of the
thermoelectric effect into reversible and irreversible parts and it may be
shown that all contain implied assumptions which are strictly outside
classical thermodynamics. The more recently developed science of
irreversible thermodynamics invokes microscopic ideas to provide the
further information required for a rigorous treatment. (See Kreuzer,
1981.)

Thermoelectricity is typical of the irreversible processes which stimu-
lated development of irreversible thermodynamics. Its relevance to this
book is that our discussion has helped to demonstrate the limitations of
classical theory. For the sake of completeness, and since no other
treatment purporting to be based on reversible thermodynamics is more
sound, we now give a derivation of the thermoelectric equations follow-
ing that of Kelvin.

9.4.3. Kelvin’s treatment of thermoelectricity

Consider a thermoelectric circuit of two conductors A and B,
with junctions at T and T +dT in which the Seebeck e.m.f. is balanced
by a reversible cell of e.m.f. d&€ (Fig. 9.10). If we ignore the irreversible
processes, we have an equilibrium situation in which charge may be
passed reversibly around the circuit. For brevity we write Pag =P and
l'l AB— l'[
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Application of the first law.” Pass unit charge around the circuit. Then
conservation of energy demands that

d€ =TT +dT)-T(T)+(ua—up) dT
which can be arranged

d€ _ _dl ai

ar~ ' “dr *
where, for brevity, we have written u for ua—ug.

9.27)

Application of the second law. Since we exclude irreversible processes
from consideration, the heat exchanges that occur when charge passes
around the circuit must conserve (universal) entropy. There is no entropy
change in the battery but entropy is generated in the wire by the Thomson
heat and in the reservoirs by the Peltier heat at the junctions. Equating
the total entropy change to zero we have:

T+dT
(T +dT) H(T) j “
T+dT dT'=0.

- v —/——/

from Peltier heat from Thomson heat

at the junctions in the wires

Dividing by d7,
d /11
+—== .

dT (T) 0. (9.28)

Eliminating the Thomson coefficients from (9.27) and (9.28),
drn d /gm\ II
P—d—T—T(T,I—,( )—7 9.29)

Fig. 9.10. Kelvin’s derivation of the thermoelectric equations.

A
(7 (7 +d7)
— «—
B B
T dg T+dT

® The irreversible processes present no difficulties here since applying the first
law amounts to no more than a statement of conservation of energy. If
irreversible terms are included, they eventually drop out and the same result
is obtained.
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and substituting back in (9.28),

dP pu
T T (9.30)
(9.29) and (9.30) are the thermoelectric equations:
dg 11
> PearTr
O
dT 47> T

The treatment by irreversible thermodynamics also leads to these
equations. Their truth is well supported by experiment.
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Change of phase

10.1. Systems of more than one phase

When a system consists of more than one phase, each phase
may be considered as a separate system within the whole. The thermody-
namic parameters of the whole system may then be constructed out of
those of the component phases. If the interaction between the phases
were restricted to energy exchange (flow of heat and performance of
work), then application of thermodynamics to the whole system would
not lead to any essentially new results. However, if we allow new degrees
of freedom within the system, such as mass transport between phases
or chemical reaction between constituents, the conditions for thermody-
namic equilibrium (derived in section 7.4) do lead to new results which
are related to the restrictions which equilibrium places on the new
degrees of freedom. In this chapter, we shall restrict ourselves to con-
sidering systems whose chemical composition is uniform (for example,
systems of one component) but in which more than one phase is present.
For simplicity, we shall again develop the general results for a system
subjected to work by hydrostatic pressure only.

10.2. The condition for equilibrium between phases

Let us first consider a one-component system of two phases
maintained at constant pressure and temperature (Fig. 10.1). This might
be a liquid in contact with its vapour. If we ignore any possible surface
effects at the interface, both temperature and pressure will be uniform
throughout. Suppose that the masses present in each phase are m; and
m and that their specific Gibbs functions are g; and g,. Then

G =mig1+mzg (10.1)

where G is a function of p, T, m;, and m,. On the other hand, g; and
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g» are functions of p and T only. Since p and T are constant, the
condition for equilibrium reduces to

dG=g1 dm1+g2dm2=0. (102)

As we are considering a closed system in which mass is conserved this
is subject to the constraint

dm,+dm,=0. (10.3)
Hence,
> g1 =82 (10.4)
This argument may readily be generalized to cases where more than
two phases are present with the result that for equilibrium the specific
Gibbs functions are all equal.

Although this condition was derived for a system subject to constant
temperature and pressure, it holds, as we might in fact expect, whatever
the external constraints. For example, if we have constant volume and
temperature, the appropriate condition for equilibrium is dF =0. The
new constraint gives:

miv1+ m,v, = constant

or,

mi dvl+m2 dUz+01 dm1+vzdm2=0. (10.5)
The equilibrium condition gives

f] dm1+f2dm2+m1 df1+m2df2=0. (10.6)

Multiplying (10.5) by p and adding to (10.6)

(f1+pv1) dmy+(f2+pvs) dma+m,(df,+p do,)
+my(df.+p dvy)=0. (10.7)

But in an isothermal reversible change, df + p dv = 0 so that the last two

Fig. 10.1. A system of one-compenent and two phases.

|

N
my 82

ml,gl/

Tp
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terms in parentheses are identically zero. Since we still have conservation
of total mass, (10.3) still holds and we obtain

(fi+pv1)=(f2+pv2)
or,

81=82. (10.8)
A similar calculation yields the same result for any conditions of
constraint for the whole system.

10.3. The Clausius-Clapeyron equation

A simple substance normally has two degrees of freedom. If,
however, we require that two phases of the substance coexist in equili-
brium, then only one degree of freedom remains. The pressure and
temperature of a given mass of water may be chosen at will; but if water
is to be in equilibrium with its vapour, then the pressure, which is now
by definition the vapour pressure, becomes a unique function of the
temperature. If the pressure is increased above the vapour pressure,
then the vapour will condense. If it is reduced below, the liquid will
evaporate. Equation (10.4) leads immediately to an important result
connecting the pressure and temperature when two phases are in equi-
librium.

Consider the boundary between two phases of a substance (Fig. 10.2).
At any point on the boundary the specific Gibbs functions of the two
phases must be equal. In particular, this must be true at the neighbouring
points a and b:

g’ =g and g =g?. (10.9)

Fig. 10.2. Derivation of the Clausius—Clapeyron equation.

p
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In passing from a to b we may write,

381) (381)
== + = d —
dg: (ap dp 3 dT =v,dp —s,d7

and (10.10)

382) (382)
= — + = o .
dg. ( op dp 3T dT =v,dp —s,d7

From (10.9) and (10.10)
v1dp—s5:dT =v,dp —s,dT.

dp_AS_ L
> 4T AV TAV (10.11)

where L, AS, and AV are the latent heat (absorbed), the change in
entropy and the change in volume on passing from phase 1 to phase 2.
Equation (10.11) is the Clausius-Clapeyron equation. It gives the rate
at which the pressure must change with temperature for two phases to
remain in equilibrium: it gives the gradient of the phase boundary in
the p-T plane. It applies to all changes of phase in which there is a
discontinuity in entropy and volume at the transition. These are known
as first order phase changes for reasons which will be explained in section
10.7. This class includes all solid-liquid, liquid—vapour, and solid—vapour
transitions. :

The phase diagram for a simple substance is shown in Fig. 10.3(a).
The lines represent the unique relationships which must exist between
the pressure and temperature if two phases are to coexist. For all three
phases to coexist there can remain no freedom in the system and the
condition g; = g, = g3 leads to a unique temperature and pressure which
define the triple point.

Fig. 10.3. Phase diagrams. (a) is typical of most simple substances,
while () shows the behaviour of water which expands on freezing.

14 14

solid liquid liquid

solid

| vapour
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For most substances the gradient of the solid-liquid line is positive.
The Clausius—Clapeyron equation shows that this is associated with the
fact that most substances expand on melting and therefore have AV
positive (AS must, of course, always be positive because of the increase
in disorder associated with melting.)! Water is an exception in that it
expands on freezing so that the solid-liquid boundary has a negative
slope. Thus, in the case of water, it is possible by increasing the pressure
isothermally to pass from vapour to solid to liquid (e.g. at T} in Fig.
10.3(b)) whereas, for most substances, the solid is the high pressure
phase.

The Clausius—Clapeyron equation has been checked experimentally
over a wide range of conditions in experiments on the vapour pressure
of solids and liquids, 4nd in measurements of melting curves. All the
measurements have shown it to be obeyed to a high order of accuracy.
Its validity provides one of the most direct experimental tests of the
truth of the second law.

10.4. Integration of the Clausius-Clapeyron equation
It is sometimes useful to have an explicit functional form for
the relationship between vapour pressure and temperature. The
Clausius—Clapeyron equation itself is exact. By making approximations
which are reasonable under certain conditions it is possible to integrate
it to obtain an explicit approximate expression for the vapour pressure.
If the pressure is not too high and we are not too near to the critical
point, it is reasonable to assume that the vapour obeys the perfect gas
law and that the specific volume of the condensed phase is negligible in
comparison with that of the vapour. With these assumptions the
Clausius—Clapeyron equation becomes
dp_Lp
dT  RT’

where R is the gas constant and L the molar latent heat.

To proceed further we need to assume one functional form for the
latent heat. There are two degrees of approximation which it is useful
to make:

(a) The crudest approximation is to take L as constant. Over a
sufficiently small temperature interval this is not unreasonable. Equation
(10.12) then integrates to give

(10.12)

Rmp=—§+A (10.13)

! The transition in liquid He is an exception. See section 12.2.
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where A is a constant; or
p =poexp (—L/RT). (10.14)

It should be noted that this expression has the form of a simple Boltzmann
factor exp (—&/kT) representing the probability that a molecule is ther-
mally excited out of the liquid into the vapour over a potential barrier
€= L/ N, A.

() Instead of assuming that the latent heat is constant we may make
the better approximation that the heat capacities of the two phases are
constant. Now

L=T(S,-S.) (10.15)

where the suffixes v and c indicate the vapour and the condensed phases.
Differentiating along the phase boundary we have

i_i) +d_Pi)
dT a7/, dT ap/r

whence

(7)== 5,5 o
dT\17) T op/r \op/ldT
_ va— Cpc_ [a( V.- Vc)] Q
ST aT  1,dT"

Applying again the condition that V, » V_, using the perfect gas law and
substituting from (10.12),

d (5) _Gv=Cy. L

dT \T T T
dL =(C,v—GC,) dT. (10.16)
Integrating
L=Ly+L,T. (10.17)

Substituting back in (10.12) and integrating again,
R lnp=—l?0+Llln T+A' (10.18)

where A’ is a constant.

It should be noted that the assumption of constant heat capacities is
equivalent to introducing a linear term in the temperature dependence
of the latent heat, as evidenced by (10.17). For the liquid-vapour
boundary, L; would usually be negative as L »0 at the critical tem-
perature.
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10.5. Gibbs functions in first order transitions

It is instructive to examine how the Gibbs functions of two
phases behave in the neighbourhood of a transition. The specific Gibbs
function for a single phase must be a continuous function of pressure
and temperature. This may be represented as a surface in three-
dimensional g-p-T space. The surfaces for two different phases will in
general, intersect in a line along which the specific Gibbs functions are
equal. Along this line the two phases will be in equilibrium, while away
from it, the phase with the lower g value will be the stable one as is
required by the condition for equilibrium. (See Table 7.1.)

If we consider the case of a simple substance which may exist in solid,
liquid, and vapour states, there will be three g surfaces which intersect
in pairs to give three lines representing equilibrium between correspond-
ing pairs of phases. In general, there will be one point lying in all three
surfaces at which all three phases are in equilibrium. The phase diagram
of Fig. 10.4 is therefore a projection on the p-T plane of the lines of
intersection of the g surfaces for the solid, liquid, and vapour phases.
The dotted extensions through the triple point represent the continuation
of the boundary between two of the phases into the region where the
third becomes more stable than either of the original two. For example,
the point X lies on the intersection of the solid and vapour g surfaces
but does not represent a stable state because, for this value of p and T,
the liquid g surface lies below the other two.

Let us now examine sections through the g surfaces. Figure 10.5 shows
a section in a plane of constant T. Since, for a given p and 7, the stable
state is that with the lowest g, states such as Y are not stable, but may

Fig. 10.4. A phase diagram as the projection of the intersections of
the g surfaces of the component phases.

p

solid critical point

vapour
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often be realized as metastable states. For example, if no nuclei are
present to initiate condensation, a vapour may be compressed to a
pressure well above the vapour pressure of the liquid without condensa-
tion taking place. It is then said to be a supersaturated vapour. Similarly,
if a liquid is very pure it may be heated well above its boiling point
without boiling taking place to produce a superheated liquid. The relative
stability of these states is a result of surface effects which we shall discuss
more fully in section 10.11; but for the moment the important point is
that such states do exist, so that we are justified in extending the g
functions into regions which do not correspond to a stable configuration.

Since (3g/dp)r = v, the gradient of g as a function of p in a constant
T section must always be positive. In the case of the solid-liquid
transition, either may be the high pressure phase. It is that which has
the smaller specific volume. This follows directly by the simple topologi-
cal argument that since the gradients are positive, the phase with the
lower g value at pressures above the intersection must have the smaller
gradient. In contrast, for transitions from the vapour to the solid or
liquid, the vapour must always be the low pressure phase since at a
given temperature its density must always be less than those of the solid
or liquid.

A section in a plane of constant p is shown in Fig. 10.6. Because
(6g/oT), =—s, the gradients are always negative. Also, since heat
capacities at constant pressure are always positive, the curvatures must
also be negative. The topological argument now shows that the high
temperature phase is always that with the greater entropy.

Fig. 10.5. A section through the g surfaces in a plane of constant
temperature.
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10.6. Critical points

If the liquid-vapour phase change is followed in the direction
of increasing temperature, it is found that the latent heat and volume
change associated with the transition become smaller until they event-
ually vanish and it is no longer possible to identify a transition from one
phase to the other. The point at which this occurs is known as the critical
point (Fig. 10.4). Above the critical temperature, it is possible to pass
continuously from the liquid to the vapour. Remembering that at a
change of phase the latent heat per unit mass is

__ ig_)
TAs=-TA (aT ,,

and

ag
Av=A (—) ,
ap/r

the absence of latent heat or volume change above the critical tem-
perature shows that we no longer have intesecting g surfaces but that
the system passes continuously along a single smooth g surface. How,
then, do we change from the situation of having separate g surfaces for
the liquid and vapour phases below the critical temperature to having
a single g surface above it? We may gain insight into this by analysing
the behaviour of a van der Waals fluid.

The form of the isotherms of a van der Waals fluid near the critical
temperature is shown in Fig. 10.7. Consider the isotherm for T <T..
We know that the whole of the curve YEDCBAX is not traced out by
any real fluid, but that as the volume is decreased and the system passes

Fig. 10.6. A section through the g surfaces in a plane of constant
pressure.
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along the curve from Y we reach some point E where liquid begins to
condense out. As the volume is further decreased, more of the substance
passes into the liquid, the pressure remaining constant at the liquid
vapour pressure until no more vapour remains at A. The section ECA
spans the mixed phase region. The system then follows the van der
Waals isotherm along AX. In the mixed phase region we know that the
specific Gibbs functions of the liquid and vapour are equal, and also
that they are constant since the pressure and temperature do not change
along ECA. Then, in particular, the Gibbs function for the system at
E, where it is all vapour, and at A, where it is all liquid, must also be
equal. Hence,

8A=8E. (10.19)
Now, let us suppose that the whole of the van der Waals isotherm has
physical meaning. Then we may calculate how g varies along the isotherm
using

p

e T)=60 7+ [ (%) ap

=g(po, T)+ I vdp (10.20)

po

Fig. 10.7. Van der Waals isotherms near the critical temperature
(not to scale).
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where we may substitute for v from van der Waals’ equation. The
behaviour of g calculated in this way is illustrated in Fig. 10.8. The
states represented by BCD in Figs. 10.7 and 10.8 are mechanically
unstable, for this part of the van der Waals isotherm has a negative
modulus; but the regions AB and DE may in principle be traced out as
metastable states. Points B and D present the limits of metastability for
the van der Waals fluid.

Now, as the temperature is raised, the mixed phase region of the van
der Waals fluid becomes smaller and eventually disappears at the critical
temperature. As a consequence, the size of the closed loop in the Gibbs
function and the difference in the gradients at the intersection (A, E)
also become smaller and disappear at the critical point. Thus below the
critical temperature the Gibbs surface of the stable state has a crease
which becomes shallower as the critical point is approached, eventually
vanishing there to give a smooth surface above it. The form of the van
der Waals g surface is illustrated in Fig. 10.9.

It is worth noting that the vapour pressure of a van der Waals fluid
may be found from (10.19), (10.20) and van der Waals equation itself.
Since ga=gg, then ]f v dp =0. This means that the areas ABC and
CDE in Fig. 10.7 must be equal. They may be made so by adjusting
the pressure p’ at which the mixed phase region occurs; but this is, by
definition, the vapour pressure. Once the vapour pressure is found, the
volume change associated with the phase change, v —vg, and also, with
the help of the Clausius-Clapeyron equation, the latent heat of the

Fig. 10.8. The Gibbs function of a van der Waals fluid below the
critical temperature.
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transition may be calculated. It is not surprising that experiment shows
that the behaviour of these quantities in real fluids is rather different
from that of the van der Waals fluid (see Partington, 1949).

It is interesting to enquire whether there might be a critical point for
the solid-liquid transition. Theoretical arguments would lead us to
suppose that it is unlikely. If there were such a point, then by going to
higher temperatures and pressures it would be possible to pass con-
tinuously from the solid to the liquid. Now the true solid has long range
order: its atoms are arranged in a definite pattern which extends
throughout the solid and vests it with a particular crystal symmetry. A
liquid, on the other hand, does not possess long range order: the positions
of its atoms are correlated for only a few atomic spacings. It is therefore
difficult to see how a continuous transition from one state to the other
is possible. Unfortunately, this argument is hardly conclusive for a liquid
does have short range order, and one must admit the possibility of a
situation where the range of order could gradually be extended by
altering external conditions. This kind of progressive ordering certainly
occurs in some systems. For example, paramagnetic salts pass from a
magnetically disordered state to one of long range order without any
discontinuity. On the other hand, the salts already possess a symmetry

Fig. 10.9. The Gibbs function of a van der Waals fluid near the
critical point.
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in the magnetically disordered state by virtue of their crystalline form,
which makes the validity of the comparison dubious.

Experiment, however, suggests that there is no solid-liquid critical
point. According to the law of corresponding states, the phase diagrams
of all simple substances should be similar when plotted in reduced
coordinates. The highest effective pressures and temperatures are there-
fore obtained by working with substances with as low a critical pressure
and temperature as possible. The common isotope of helium, with
pc.=2.25 atm and T.= 5.2 K, is an obvious choice. In one set of experi-
ments (Holland ez al., 1951) the melting curve of “He has been followed
up to 7500 atm and 50 K without revealing a critical point. In another
(Dugdale and Simon, 1953), the entropy difference between the solid
and the liquid has been measured up to 3000 atm and 26 K and been
shown to increase with temperature, whereas in approaching a critical
point, it must vanish. Both these experiments suggest that it is extremely
unlikely that a solid-liquid critical point exists.

Table 10.1. First, second, and third order transitions

The table lists, for each order of transition, the differential coefficients of g
and the most closely related experimental quantities in which discontinuity
appears.

Discontinuity appears in:

Order Differentials of g Corresponding experimental
quantities
First s v s v
Second (Es—) (a_v)
aT/, aT/,
[ B K
G). &)
op/r op/r
a%s L)
i G, P
ird aT*/, T/,
@, G, )
oT. p T/, oT. P
o%s L)
op oT op T

()
p* r

&), G, &)
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10.7. Higher order change of phase

The kind of phase change we have analysed in the earlier part
of this chapter is characterized by discontinuous changes in entropy and
volume at the transition. These are related to discontinuous changes in
the first derivatives of the Gibbs function for the stable state of the
system with respect to its proper variables p and 7. Not all phase changes
are of this type. It is convenient to adopt a classification scheme first
introduced by Ehrenfest whereby the order of a transition is defined as
the order of the lowest differential of the Gibbs function which shows a
discontinuity at the transition. Table 10.1 lists the first, second, and third
differentials of g and the most closely related experimental quantities
in which the discontinuities appear. Fig. 10.10 illustrates schematically
the behaviour of the Gibbs function and its first and second derivatives
in first and second order transitions.

In section 10.3, we obtained the Clausius-Clapeyron equation for the
gradient of the phase boundary by using the equality of the specific
Gibbs functions for the phases in equilibrium. If we try to apply this
equation to transitions of order higher than first we obtain an indetermin-
ate result, for both numerator and denominator are zero. We may,
however, obtain analogous equations for second order transitions by
using the equality of the entropies or volumes at the transition. We
proceed as follows:

Fig. 10.10. The behaviour of the Gibbs function and its first two
derivatives in first and second order transitions.
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Expanding dv in terms of p and T (the two variables we are interested
in),
v v
d =(—) dT+(—) . .
v=\37 , P po (10.21)

Usingdv; = dv, for an infinitesimal change along the boundary, we obtain

dp (g%)p—(%)p=32_ﬁl

o A , 10.
TG, o
ap T ap T
Expanding ds instead of dv the result is
d 1 -
p_ 1 Cp27Cp1 (10.23)

dr T B2—-PB1

where B, k;, ¢, and v are the isobaric cubic expansivities, the isothermal
compressibilities, the specific heat capacities at constant pressure and
the specific volume. These equations:

> = =—=— (10.24)

are known as Ehrenfest’s equations. It is worth noting that, in effect, we
have used the usual procedure for expressions that are indeterminate
because numerator and denominator tend to zero; namely, we have
replaced the numerator and denominator by their first differentials, in
the first case with respect to p and in the second, 7.

10.8. Some examples of higher order phase changes

Unfortunately, very few systems showing higher order transi-
tions approach the idealized behaviour illustrated in Fig. 10.10. Usually
the gradient of the heat capacity becomes infinite on one or both sides
of the transition, and it is often difficult to decide to which of the idealized
classes a particular system best belongs. Some examples of transitions
of various orders are given in the following list.

First order. Solid-liquid, solid-vapour, and liquid—vapour phase changes
(sections 10.3-10.6).

The superconducting transition in a magnetic field (section 10.8.3).
Some allotropic transitions in solids (e.g., iron, section 10.8.1).

Second order. The superconducting transition in zero field (section
10.8.3).
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The superfluid transition in liquid helium (section 10.8.2).
The order-disorder transition in 8-brass (Fig. 5.4).

Third order. The Curie point of many ferromagnets (e.g., iron, section
10.8.1).

We shall now discuss some of these in more detail.

10.8.1. Phase changes in solid iron

Iron is interesting in that it shows both first and third order
transitions in the solid (Fig. 10.11). The third order transition is the
change from the magnetically ordered ferromagnetic state to the disor-
dered paramagnetic state, the total area under the heat capacity anomaly
being related to the entropy change associated with the magnetic order-
ing (see section 5.6). At higher temperatures, the two first order transi-
tions are associated with changes in crystalline structure. Below 906 °C
and above 1400°C the a phase is stable, while between these tem-
peratures the y phase is stable. The g surfaces for the a and y phases
therefore intersect at these temperatures while the third order transition
corresponds to a discontinuous change in the curvature of the g surface
at the Curie point.

Fig. 10.11. The specific heat capacity of iron (from results quoted in
Austin, 1932).
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10.8.2. The superfluid transition in liquid helium

Fig. 10.12 shows the phase diagram for the common isotope of
helium, “He. Unlike all other elements, “He and the lighter isotope *He
remain liquid to absolute zero. The reason for this is straightforward.
To become solid, the atoms must be confined to proper sites on a crystal
lattice. This will involve restricting their linear motion within some length
Ax, which will be of the order of the atomic spacing. But this restriction
may only be achieved by the atoms having momentum Ap of a magnitude
given approximately by the uncertainty principle (see Sproull and Phil-
lips, 1980): Ap Ax ~#. This momentum corresponds to a zero point
energy E = (Ap)?/2m. This will be larger for helium which is a small,
light atom, than for elements higher in the periodic table. Helium is also
an inert gas with a closed outer shell of electrons so that interatomic
forces are very weak and the energy available for restricting atoms to
their proper positions for the solid is correspondingly small. In the case
of helium, the zero point energy is greater than the energy available for
bringing about solidification, and unless the effect of the interatomic
forces is enhanced by applying a large pressure, the helium remains
liquid to absolute zero. In hydrogen, the interatomic forces are much
larger, while the heavier inert gases have a smaller zero point energy
by virtue of their greater mass. The uncertainty principle also explains
why the vapour pressure of the lighter isotope is higher than that of the
heavier. Their respective normal boiling points are: *He, 3.19K; *He,
421K.

Fig. 10.12. The phase diagram for the common isotope of helium,
“He (not to scale).
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*He has two liquid phases known as helium I and helium II (Fig.
10.12). The former, the high temperature phase, is in all respects a
normal liquid. Helium II, however, has an extremely high thermal
conductivity and, in some respects, behaves as if it has no viscosity, for
which reasons it has been called ‘superfluid’. The transition to the
superfluid state is well defined; but there is no change in density nor
can any latent heat be detected. The heat capacity, however, shows a
strong anomaly (Fig. 10.13). It rises rapidly below the transitions and
apparently falls discontinuously at it. Helium II has other extraordinary
properties (see Wilks, 1967). The ‘fountain effect’ will be discussed in
section 10.10.

When a heat capacity anomaly has a shape like that for the superfluid
transition in helium or that of the third order transition in iron, the
phase change is known, on account of the shape of the heat capacity
curve, as a A transition, and the temperature at which it occurs as the
A-point.

10.8.3. The superconducting phase change

We shall give a fairly detailed analysis of the superconducting
phase change both because of its intrinsic interest and also because it
provides the only example of an ideal second order transition.

Many metals, when cooled to a sufficiently low temperature, become
superconducting.” In the superconducting state they are characterized
by two properties:

(a) Zero electrical resistance,

Fig. 10.13. The specific heat capacity of liquid helium under its
vapour pressure (Kramers ef al., 1952; and Hill and Lounasmaa,

1957).
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2 For a detailed discussion of the phenomenon of superconductivity, see Rose-
Innes and Rhoderick (1978).
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(b) Perfect diamagnetism® (Complete exclusion of magnetic flux).
The superconducting state may be destroyed and the normal state
restored by
(a) Raising the temperature,
(b) Applying a magnetic field greater than some critical value,
or a combination of both (a) and (b).

Perfect diamagnetism is not implied by infinite electrical conductivity.
It is true that a changing magnetic field induces eddy currents in the
surface of a conductor and that these act to screen the field changes
from the interior; but, even in a perfect conductor, the surface currents
decay and the field changes eventually penetrate (see Pippard, 1962).
In contrast, with a superconductor, surface currents induced by a mag-
netic field persist indefinitely so long as the material remains supercon-
ducting, and, what is more remarkable, if the superconductivity is
destroyed by raising the field above the critical value and then restored
by reducing the field, the surface currents reappear and all the flux is
expelled from the interior. This is called the Meissner effect.

The perfect diamagnetism of a superconductor is illustrated in Fig.
10.14. As the external field is raised, induced surface currents screen
the field changes from the interior and the magnetic induction in the
material remains strictly ‘zero until the critical field is reached at P.
Superconductivity is then destroyed and flux enters until B;,, = B, at Q.

Fig. 10.14. Perfect diamagnetism of a superconductor.
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> We are describing here the basic properties of superconductors. In type II
superconductors these basic properties are modified so that a magnetic field
can penetrate and perfect conductivity persist. See Rose-Innes and
Rhoderick (1978).
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For Bex:> B, Bint = Bex: and the system moves along QR as it would
for a normal metal. If the field is reduced, the surface currents reappear
with the restoration of superconductivity at B.,, = B, the flux is expelled
and the system returns along QPO. Of the two basic characteristics of
superconductivity, perfect conduction and perfect diamagnetism, the
latter is, in fact, the more fundamental.

The sharpness of the transition to the superconducting state is strongly
affected by the presence in the superconductor of strains and impurities.
There is no doubt, however, that in the absence of such extraneous
effects the transition is extremely sharp and reversible. For example, it
has been shown by direct experiment that the transition in tin in zero
magnetic field (7. = 3.73 K) takes place reversibly over a temperature
interval smaller than 10™* K.

Strictly, we must consider the superconductor to be a system of three
degrees of freedom; p, V; T, S; B, m. In the therrnbdynamic analysis
below we shall retain all of these; but superconductivity is not strongly
affected by hydrostatic pressure and it is often possible to disregard the
first two variables. We shall simplify the mathematics by dropping the
vector notation, for the magnetic quantities.

Figure 10.15 shows the phase diagram for a superconductor in the
B-T plane. (Here, and in what follows, we use B for B.,,.) At all points
on the boundary between the superconducting and normal phases, the
transition is first order except at B = 0 and T = 0. (We shall see in chapter
12 that the third law implies the impossibility of first order transitions
at absolute zero.) The value of the magnetic field which, at a given

Fig. 10.15. The phase diagram of a superconductor.
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temperature, destroys superconductivity is known as the critical field
B.. In contrast, the critical temperature T, is normally taken as the
transition temperature’in zero field. We now apply the thermodynamics
which we have developed for change of phase.

It is convenient to choose 7, B, and p as independent variables. The
appropriate potential function is

g=u—Ts+pv—Bm (10.25)
where m is now the magnetic moment per unit mass, and u is defined
so that du =T ds —p dv + B dm (see section 3.5.4). Then,

dg=-sdT+vdp-m dB. (10.26)
At equilibrium, dG = 0 (since dT = dp = dB = 0), which gives the condi-
tion that on the phase boundary

8s =§&n (10.27)
where s and n refer to the superconducting and normal phases respec-
tively.

Before discussing properties on the phase boundary, it is worth digress-
ing for a moment to derive a simple expression for the difference of the

Gibbs functions of a superconductor in the normal and superconducting
states. From (10.26),

B

8(8)=5(0)- [ m aB.
0
For the superconductor, as long as it remains superconducting, we may
put
m =—Bv/uo
since this gives Bin = 0 and therefore corresponds to perfect diamagnet-
ism. Therefore

g:(B) =g.(0)+vB*/2u, (10.28)
for B < B, and at the transition, using (10.27),
gn(Bc) = 8(0)+vBZ/2po. (10.29)

But the normal metal has a negligible susceptibility so that to a very
good approximation

gn(B) = gn(0)
and hence
> £1(0)—g4(0)=vB2/2u,. (10.30)

Returning now to consider the phase boundary, we may derive from
(10.26) three analogues of the Clausius-Clapeyron equation taking the
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independent variables in pairs and applying the condition (10.27) as we
did for a two-parameter system (section 10.3). This gives:

a_P) _As_ o _

p, T (B constant) (aT v (5n—8s)/(Vn—0s) (10.31)
0Bo\ _ _As __ o _

B, T (p constant) (aT),,— Am wolsn—Ss)/vsB:.  (10.32)
8B\ _ Av _ _

B, p (T constant) ( ap) =i wo(vn —vs)/vsBe. (10.33)

Of these, the first is of identical form to the Clausius—-Clapeyron equation
for a system with two degrees of freedom and subject to work by
hydrostatic pressure. The values of sy, s, v, and vs which are appropriate
to these equations should, of course, be those at the transition; that is,
with B = B.. However, these quantities are virtually independent of
field, as may be seen by examining two of the Maxwell relations generated
from (10.26):

(EalsE) . (g_;) B (10.34)

(:_;) o (Z_:) aT (10.35)

In the absence of ferromagnetism (and ferromagnets do not become
superconducting), a normal metal is only very weakly magnetic, so that
m, is essentially zero so s, and v, are essentially field independent. In
the superconducting state we have mg;=—0.Bex/wo Which is almost
independent of temperature and pressure if the field is constant. Hence
ss and v, are also essentially field independent. It is therefore sufficient
to take for all these quantities, their values in zero field.

Rearranging (10.32) we see that the change in entropy at the transition
is

(10.36)

Sn—S8s=—

v.B. (ch) Vs (a(Bc)z) .

mo \oT =_5;; aT

This vanishes at T, where B.- 0 with a finite slope and at 7' =0 where

(8B./aT), =0 (Fig. 10.15), the latter behaviour being required by the

third law (chapter 12). Except in these limits, the transition is therefore

first order. Differentiating (10.36) we obtain the difference of the specific
heat capacities

_To, &

Cps —Cpn B 2”,0 aT2

From the typical temperature dependence of the critical field (Fig. 10.15)

(BY),. (10.37)
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we see that equations (10.36) and (10.37) yield entropy and specific
heat capacity differences of the form shown in Fig. 10.16. Experiment
shows that these equations are obeyed well by real superconductors (see
e.g. Corak and Satterthwaite, 1956; and Swenson, 1960).

At T =T, where the latent heat becomes zero the transition becomes
second order. Evaluating the limiting forms of (10.31) by taking the
differentials of the numerator and denominator with respect to 7 and
p we obtain respectively

aTc) Bn_Bs Kn—Ks
=yl ———m=—""— 10.38
(ap B=0 v Cn—Cs Pn—Ps ( )

which are, as we might expect, simply the Ehrenfest equations. Since
the superconducting transition in zero field is of the ideal second order
form (the heat capacity has a simple discontinuity), it would be of great
interest to verify these equations in this case. Unfortunately, this test
does not seem to have been made, partly because recent interest has
been more concerned with microscopic aspects of superconductivity and
partly because the changes in the expansivities and compressibilities are
so small as to make the experiments difficult to do with sufficient
precision. For tin, for example, it is found that

(aT°) = —5x10"°K atm™*
B=0

op
and
Ac,=9x102JK kg™
Fig. 10.16. Differences of entropy and heat capacity of normal and
superconducting phases.
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which imply a change in the expansivity of about Sx10™°K™" and a
fractional change in the compressibility of about 1075,

10.9. Interpretation of second order transitions

In a first order transition, the gradients of the Gibbs function
for the stable state of the system change discontinuously at the transition
as the system passes from the g surface of one phase to that of another
at their intersection. Now, in a second order transition, the system cannot
pass from one g surface to another as we may show by the following
argument.

Suppose that the system did pass from one g surface to another.

(a) The absence of latent heat or volume change would require the
gradients to be identical at the transition.
(b) The discontinuous change in the second order coefficients would
require one curvature to be greater than the other.
But then the surfaces would touch but not cross at the transition (Fig.
10.17). The same phase would always be the more stable and there
would be no transition.*

We are therefore forced to the conclusion that a single g surface is
involved in a second order transition and that some property of the
system causes the second derivatives to change discontinuously. This
conclusion is supported by the absence in second and higher order
transitions of metastable states. Superheating and supercooling have
never been found in transitions other than first order, so that only there

Fig. 10.17. A suggested but untenable behaviour for the Gibbs
function in a second order change of phase.
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* It is impossible for two continuous, smooth surfaces with different curvatures
to intersect tangentially and cross.
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is there any evidence of continuity of the Gibbs function for a particular
phase through the transition.

A simple system showing a second order transition was devised by
Gorter. It consists of a vessel containing a liquid and its vapour (Fig.
10.18). The walls of the vessel are slightly extensible so that its volume
depends on the pressure difference between the inside and the surround-
ings. Also, the amount of liquid is small enough to ensure that when all
the material is in the vapour state, the pressure is well below the critical
pressure. Suppose, now, that the temperature is gradually raised so that
the equilibrium state has an increasing amount of the substance in the
vapour phase. When the last of the liquid evaporates there will be no
discontinuity in internal pressure or entropy of the system so there will
be no volume change or latent heat. However, while liquid is still present,
there will be a contribution to the heat capacity of the whole system
from the latent heat required to vaporize the liquid. At the transition,
when the last of the liquid evaporates, this contribution will suddenly
vanish so that the thermal capacity of the system changes discontinuously.
Similarly, below the transition, the internal pressure is simply the vapour
pressure of the liquid and is independent of volume; while above the
transition it follows the gas law for the vapour which will have a different
temperature dependence and will also depend on volume. Therefore,
the expansion coefficient and modulus of the system also change discon-
tinuously. Thus Gorter’s simple model exhibits a second order phase
change. A thermodynamic analysis (Pippard, 1957: pp. 147-150) shows
it to obey the Ehrenfest equations.

Gorter’s model also serves to bring out an essential feature of higher
order transitions. In a first order phase change, there is a latent heat
because there is a discontinuous change in the order of the system. In

Fig. 10.18. The Gorter model of a second order phase change.
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the second order phase change, the transition occurs when an ordering
process starts to take place. In Gorter’s model, the more highly ordered
liquid phase starts to condense out as the temperature is reduced through
the transition. Theoretical treatments of liquid helium and of supercon-
ductivity have both invoked, with considerable success, two fluid models.’
A normal fluid only is present above the transition temperature, while
below it the normal fluid gradually condenses into a superfluid, the
condensation being complete by absolute zero. At intermediate tem-
peratures the systems behave as if they contain a mixture of the two.
The peculiar properties of superfluids result from their consisting of
particles (atoms in helium or pairs of electrons in superconductors) that
have condensed into a single quantum state so that they are completely
ordered and have zero entropy.

Explanations for why such different kinds of behaviour are present
in higher order transition are only to be found in microscopic theory.
They are connected with the different ways in which ordering processes
set in and, in particular, with the range (spatial extent) of order which
the condensation requires. In superconductors the range of order is very
long and this is why they show ideal second order behaviour. In other
cases (such as the ferromagnetic transition), it is perhaps more helpful
to think of the phase change as being a first order transition spread out
by the presence of thermal fluctuations: as the temperature is reduced,
small ordered regions first appear as transient local effects, these regions
gradually become larger until, when ordering is almost complete, we
have only small transient regions of disorder, and these eventually
disappear as the temperature is reduced still further.

10.10. The fountain effect with liquid helium
A very different illustration of the application of conditions for

thermodynamic equilibrium is provided by a startling thermomechanical
effect that may be obtained with helium II. A tube is arranged as shown
in Fig. 10.19. The wide end is packed tightly with emery powder and
immersed in helium below the lambda point. When the powder is warmed
by illumination from a tungsten filament lamp, a jet of helium shoots
upwards from the top of the tube. The behaviour is known as the fountain
effect.

Clearly, the fountain effect is not an equilibrium situation, but the
pressure difference that drives it can be derived using equilibrium ther-
modynamics.

% For helium, see Wilks (1967). For superconductivity, see Rose-Innes and
Rhoderick (1978).
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Consider two rigid containers each of constant volume V joined by
a tube containing a superleak, such as a tightly packed powder, so that
the superfluid component of helium II may pass freely between them
while the viscous normal fluid cannot (Fig. 10.20). (The superleak acts
as a semipermeable membrane.) Suppose the containers to be filled with
helium II. If they are isolated from the surroundings the constraints are
dS =0 and dW =0, and the condition for thermodynamic equilibrium
becomes minimization of the total internal energy U. This may be written

dU =Y d(mu;)=0
Fig. 10.19. The fountain effect with helium II.
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Fig. 10.20. Calculation of the thermomechanical effect in helium I

4 4

T3 S

TI’SI




Change of phase 207

where m; and u; are the mass and specific internal energy of the fluid
in container i and the summation is over the two containers. This may
be rewritten

» {u,. dmy+m; [(gsi) dsi+ (g%) . dv,]} =0 (10.39)

where u is expanded in terms of its proper variables s and v. Now only
the superfluid, which has zero entropy, can pass between the containers
so the entropy in each container remains constant in possible changes
about equilibrium:

dS; =m; ds;+s;dm; =0
which gives

ds; = —s; dm;/m;. (10.40)
Similarly the total volume of helium in each containér must be constant,
so that

dVi=m; dv;+v;dm; =0
and

dv; = —v; dm;/m,. (10.41)
Substituting (10.40) and (10.41) in (10.39) and using

()7 ()
as/, /g
we obtain

Y (ui—Ts; +pivi)dm; =0. (10.42)

The term in parentheses is just the specific Gibbs function g; of the fluid
in container i/ and, since total mass is conserved, dm; = —dm, and (10.42)
becomes

g1(p1, T1) = ga2(p2, T>).

We again, as we might have expected, have equality of the specific Gibbs
functions as the conditions for equilibrium, but the gs have to be
evaluated at the temperature and pressure appropriate to each container.
Equality of specific Gibbs functions is always the condition for equili-
brium against transfer of material from one part of a system to another
even if there are differences of temperature and pressure. Other
examples will be found in the next section and in the next chapter where
systems containing several components are-considered in more detail.

Now suppose that a small temperature difference AT is established
between the containers giving rise to an equilibrium pressure difference
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Ap. Then there must be no difference in the specific Gibbs functions of
the helium in the two containers:

7),57+(37)
=(28) aT+(2%8) ap=o.
dg (aT ) ap) 2P =0

Substituting with

) - s (2,
(an s and Py v=1/p,

where p is density, we have
> Ap =ps AT. (10.43)

This result has been checked experimentally and is found to be obeyed
well. (s(T") is obtained from the heat capacity ¢ by integration of ¢/7T.)

Equation 10.43 gives the pressure difference that maintains equili-
brium by just preventing flow of superfluid helium between the contain-
ers when there is a temperature difference. This pressure difference has
some similarities to osmotic pressure, discussed in section 11.5.3, where
a solvent tends to flow from a less concentrated to a more concentrated
solution to reduce the concentration difference. Here, superfluid tends
to flow from colder to hotter to ‘dilute’ the normal fluid component which
is more concentrated at the higher temperature. The effect is large; for
example, at 1.5 K a temperature difference of 1 mK produces a pressure
difference equivalent to a 20 mm head of liquid helium. The fountain
effect results when the containers are open so that no pressure difference
can be established to prevent the flow of superfluid. It should be
remarked that flow of superfluid from cold to hot does not violate the
second law since superfluid has no entropy so that there is no accompany-
ing heat flow.

10.11. Surface effects

So far, in our discussion of equilibrium between phases, we have
not considered surface effects. As an example of a situation in which they
are important, we shall examine equilibrium between a liquid and its
vapour when there is an interfacial surface tension.

Consider a spherical drop of radius r immersed in its vapour at
temperature T),. Let the pressure of the vapour be held constant at p,.
Then the condition for equilibrium of the system is that its total Gibbs
function G be a minimum. We construct G as follows:

U=mpiu,+mvyuy+Us (10.44)
where the suffixes refer to liquid, vapour, and surface.
ToS = To(mysL+m.s,+S), (10.45)
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poV =po(m oL +mv,), (10.46)
G = my(ur+povr — Tos ) + my(u,+povy — Tosy) + Us— T,Ss.
(10.47)

Then, changing the proportions in liquid and vapour,
dG =dmy(ur+povL— TosL) +dm(u,+pov,— Tos,) +v dA.
(10.48)
We have assumed the liquid to be incompressible, for else the first

bracket would also change as a result of the change in pressure due to
surface tension. But

= % dmL.
r
Hence
dG = dmL(uL + UL(po + 2‘)’/") - T()SL) + dmv(uv +pOUv - Tosv).
(10.49)

However, 2y/r is the pre'ssure difference across the surface due to surface
tension, so that

pL=po+2v/r.
Then the first bracket in equation (10.49) is simply the specific Gibbs
function of the liquid evaluated at the pressure within the drop. Thus

dG = gL(PL, TO) dmL+ gv(pO, TO) dmv- (10.50)

Conservation of mass requires dm +dm. = 0, so the condition for equili-
brium becomes

> gu(pL, T)=gu(pw, T). (10.51)

That is, for equilibrium we again have the condition that the specific
Gibbs functions should be equal; but g, is evaluated at the pressure
within the drop which is now different from the pressure of the vapour.

We may use (10.51) to find the effect of surface tension on vapour
pressure. If we change the radius of the drop, maintenance of equilibrium
requires

agL) (38v)
= dp.={—=) dp,
(apL T Pr apJ/ r P

2
UL (dpv—r_;ydr) =0y de,

ie.,

2
(v,—vy) dp, = —r—;’ oL dr. (10.52)
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We now make the approximations that v, » vy which will normally be
the case, and that the liquid is incompressible. Then (10.52) becomes

2
vydp, = —;% vpdr.

Substituting from the perfect gas law for the vapour

29M
> p=poexp(, Y ) (10.53)

prR T
where po is the vapour pressure over a plane liquid surface (r = o0) and
pv is the density of the liquid. If the change in vapour pressure is small,
the exponential may be expanded to give

Ap _ 2yM

2o TLRT (10.54)

Generally, the effect of surface tension on vapour pressure only
becomes important when the liquid surface has a small radius of cur-
vature. For water, for example, at room temperature, Ap/po=1/(r/nm),
so that a 100 nm radius drop has its vapour pressure increased by only
1 per cent. However, the modification of the vapour pressure becomes
a crucial factor in processes involving the nucleation of one phase within
another. This is because the equilibrium between a drop and its vapour
is generally unstable as we may see from the form of the Gibbs function.
Rearranging (10.48), with r as independent variable, we have

dG = 8myr dr—[g.(po, To)— gL(Po, To)l4nr’p. dr. (10.55)

If, at some value of the radius, a drop would be in equilibrium with the
vapour, then Ag = g.(po, To) — gL(Po, To) must be a positive constant, for
else it is impossible to obtain dG =0 at any value of radius. Then,
integrating (10.55), we find that G must be of the form

G(r)=G(0)+4myr’ —3mpLAgr’, (10.56)
which is illustrated in Fig. 10.21. The equilibrium condition we have
derived, (10.51), therefore corresponds to a maximum in the free energy,

which implies that the equilibrium is unstable. Drops smaller than the
equilibrium radius would evaporate and those larger would grow. Raising



Change of phase 211

the pressure moves the maximum to smaller radii, but the initial region
of positive slope still remains. On this basis, liquid would never condense
from a supersaturated vapour. This analysis does not, of course, take
into account the presence of fluctuations in the vapour. It is possible to
analyse the statistics of the motion of the gas molecules so as to work
out the probability that a sufficient number of molecules would collide
simultaneously to form a droplet larger than the critical size. Such a
droplet, once formed, would then grow. However, even at quite high
supersaturations the probability of such an event is extremely small. For
example, a small volume of water vapour at room temperature raised
to 2.7 times the saturated vapour pressure would condense spon-
taneously in about 10%° years (see Frenkel, 1946). This is why clean,
pure, supercooled vapours are comparatively stable.

In reality, condensation of a supercooled vapour is almost always
controlled by the presence of nuclei on which condensation can take
place. In the Wilson cloud chamber, ions act as nuclei, and droplets
formed on them mark out the paths of ionizing particles. In the atmos-
phere, formation of cloud takes place at a supersaturation of only a few
per cent. Again, this is due to the presence in the air of condensation
nuclei which range from small chemical complexes to inert particles
several micrometres in size.

Similar considerations apply to the formation of the vapour phase in
a superheated liquid. If a small bubble is present in a liquid the pressure
within the bubble will be much greater than that of the surrounding

Fig. 10.21. The Gibbs function of a vapour containing a small drop
of its liquid as a function of the drop radius.

G(n—-G(0)
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liquid. For a bubble of vapour to be in equilibrium with its liquid, the
latter must therefore be at a temperature such that its vapour pressure
is much greater than would be required for equilibrium over a plane
surface. Once again the equilibrium is unstable and boiling is usually
promoted by the presence of nuclei. ‘Bumping’ of a boiling liquid -
explosive growth of bubbles which often occurs when pure liquids are
boiled in smooth vessels —is caused by there not being enough nuclei
to promote adequate bubble formation. This results in the liquid becom-
ing superheated so that bubbles, once formed, grow violently.

Variation of vapoeur pressure with radius is also responsible for one
of the processes by which large droplets are formed in a cloud once
condensation has occurred: the large droplets keep the partial pressure
of the water vapour in the air down so that the smaller droplets, with
a higher vapour pressure, evaporate, the net effect being to transfer
water from smaller to larger droplets.



11

Systems of several components

To give a proper account of systems of several components would lead
us further into the field of chemical thermodynamics than is relevant to
this book. However, it is important to understand how the principles
that we have developed may be generalized so as to make their treatment
possible. In this chapter, therefore, we give a brief account of the
application of thermodynamics to systems of more than one component,
and we illustrate the basic ideas and theory with a few simple applications.
For the greater part we shall restrict the discussion to situations in which
there is no chemical reaction; but to illustrate the principles involved,
we shall also include a short section on reactions in ideal gas mixtures.
Those who would like a more detailed treatment of multi-component
systems should pursue their interests in other texts (e.g. Berry et al,,
1980).

11.1. Mixtures of ideal gases

According to elementary kinetic theory, ideal behaviour is
shown by a gas whose molecules have negligible size and exert negligible
forces one on another (see section 8.3). It follows that in a mixture of
ideal unreacting gases, molecules of the different species will move
independently and the properties of the mixture will be a simple combi-
nation of those which each gas would have if present alone. For example,
the total pressure will be the sum of the pressures which each gas would
exert individually:

RT
p=72im (11-1)
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where V is the total volume and n; is the number of moles of the ith
gas present. The quantity

RT
=N — 11.2
pi=ni— (11.2)
is known as the partial pressure of the ith gas. Clearly,
> p=Xpi (11.3)

which is known as Dalton’s law, a result which was first obtained
empirically. For real gases, it holds to the same approximation as their
behaviour approaches the ideal.

It also follows from the independence of the motions of the molecules
of the different gases that the entropies and the thermodynamic poten-
tials must also be additive. However, these conclusions may be demon-
strated by an argument which avoids the use of microscopic ideas.

Consider a cylindrical vessel of volume 2 V fitted with three partitions,
A, B, and C (Fig. 11.1(a)). Partition C is fixed across the centre. A and
B are tight fitting but moveable and are attached together so as to enclose
a volume V. Suppose we have a mixture of two ideal gases, 1 and 2.
Then we choose A to be impermeable, B to be permeable to 2 but not
to 1 and C to be permeable to 1 and not to 2. The device now allows
us to mix or separate the two gases reversibly. We start with the mixture
in the lower half of the vessel, the upper half being evacuated and the
coupled partitions, A and B, in their lowest position (Fig. 11.1(b)). Gas
2 passes freely through B; so, assuming the truth of Dalton’s law," its
pressure on either side of B will be the same and it will exert no force
on it. Similarly, gas 1 passes freely through C but is contained between

Fig. 11.1. Reversible mixing of two gases.
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1 This is where the assumption that the gases are perfect and unreacting is
introduced. We invoke Dalton’s law as an empirical fact. See problem 11.1.
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A and B and so exerts equal and opposite forces on them. There is
therefore no net force on the coupled partitions. Now, if A and B are
raised, gas 2 remains in the lower half of the cylinder while gas 1 is
swept through C into the upper half (Fig. 11.1(c)). This is clearly a
reversible process. Since the volume of the whole system is constant,
the only work that could be done on it would be of the form X dx,
where X and x are the net force on and displacement of the moveable
partitions. This would give dU =T dS + X dx, whence we have a Max-
well relation,

(o) G);

But X =0 always, so that

X
(ﬁ), =0

in particular, and therefore the entropy must remain constant if the
gases are separated isothermally. Further, since

(G)s= 25
ax)s Ci\ox/r

it follows that the temperature would not change even if the process
were performed adiabatically. Thus, in either case, we have AS = AT =0.
Also, since no work is done, the total internal energy is unchanged, and
the other potentials also. The argument is readily generalized to more
than two gases. Therefore, we have the general result that the pressure,
entropy, and thermodynamic potentials of a mixture of perfect, unreacting
gases are all sums of the corresponding quantities which each gas would
have if present alone.

It follows that the natural variables to choose for describing a particular
component in a mixture of gases are T, S;, V, and its partial pressure
pi, for then its contribution to any particular thermodynamic property
of the whole system takes the form which would apply in the absence
of the other components. For example, the total entropy of a mixture
of perfect gases is

S =Zst(pi; T) (11.4)

where the S; are identical with the expressions which hold for pure,
perfect gases, namely

Smi =Smoi—R'Inp;+CmpInT. (11.5)
However, it is often useful in treating mixtures of gases to refer the
entropy or Gibbs function of a particular component to the fotal pressure
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rather than to the partial pressure. This may be done by using the molar
concentrations of the components, c;, defined by
ni
Ci=go— 11.6
13 z n,' ( )
where the n; are the numbers of moles of each component present in
the mixture. Then

h_n ., 11.7)

which gives the molar entropy of one component in terms of the total
pressure and its molar concentration as

Smi(T,p,¢i) =Smoi +CmpInT—RInp—R Inc; (11.8)
or

Smi(T, p, ¢i)=Smoi(T, p)—R Inc; (11.9)
where

Smoi(T, P) =Smoi +Cmp In T—R In p.

This form has the advantage that we have separated the expréssion for
the entropy into two terms, one of which is invariant in systems subject
to constant temperature and fotal pressure, and the other of which
depends only on concentration. This makes it much easier to discuss the
effects of changing the composition of a mixture.

A similar separation may. be made for the Gibbs potential. For a
perfect gas,

(=) v, -RT
T

ap
Integrating,
Gu(T,p)=Gmo(T)+RT Inp (11.10)

where G, is a function of T only. Then, for the components of a mixture
of perfect gases, we have the various useful forms for the molar Gibbs
function:

Gni(T, pi) = Gmoi(T)+RT In p; (11.11)
Gni(T,p, ¢;)=Gmoi(T)+RT Inp+RT In¢; (11.12)
Gui(T, p, ¢i))= Gmoi(T, p) +RT Inc.. (11.13)

11.2. Increase of entropy in diffusion
Consider a vessel divided by a partition into two regions of
volume V; and V), which contain two different gases, 1 and 2, both at
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temperature T and pressure p (Fig. 11.2). If the partition is removed
there will be mechanical and thermal equilibrium between the two gases,
but interdiffusion will take place so that after some time the vessel will
contain a uniform mixture. This is an irreversible process and we would
expect it to be accompanied by an increase in entropy.’ Now, for perfect
gases, the process of interdiffusion is equivalent to making each gas
perform a Joule expansion to a volume (V; + V), and then mixing them
reversibly with semipermeable membranes in such a way that the volume
accessible to each remains constant in the mixing process. In neither
step is there any change of temperature, so that, using equation (8.13)
for the entropy of the perfect gas, and using the fact that the entropy
of the mixture is the sum of the entropies that the component gases
would have if present alone, we have for the total entropy change

a5 =48, +48;= R m1n (222) 4y n (L2 22)
1

V,
(11.14)

where n; and n, are the numbers of moles of the gases present. As we
should expect, AS is always positive.

Equation (11.14) leads to an interesting and apparently paradoxical
result. It is no surprise that the diffusion of different gases leads to an
incre..e in entropy, for this is clearly an irreversible process; but suppose
that we initially fill the two volumes with the same gas. Equation (11.14)
implies that there would still be an increase in entropy since the argu-
ments leading to it would appear valid whatever gases are initially in
the two parts of the container. However, we know that, in this case,
removing the partition sets in motion no irreversible process, as the

Fig. 11.2. Irreversible mixing of two gases.

Tp, V, T,p, ¥V,

2 The difference between this mixing process and the one we considered in
section 11.1 is that here the initial and final volumes occupied by each gas
are different. The gases could, of course, be recompressed reversibly into
their original volumes with semipermeable membranes but this would require
work.
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composition is uniform throughout the vessel all the time, and therefore
there cannot be any consequent change in entropy. This apparent contra-
diction is known as Gibbs’ paradox. It is resolved when we realize that
in constructing equation (11.14) we have assumed that the molecules
of the two gases initially separated by the partition are distinguishable.
For, in calculating the final entropy, we have used results we derived
earlier for mixtures of different gases where we were able, by using
semipermeable membranes, to separate the mixture into its pure con-
stituents. If the molecules are identical, such a separation cannot be
made, and the arguments on which (11.14) is based break down. In
principle, if we allow the gases to become more and more alike, we
could always distinguish to which of the two a particular molecule
belonged (although the process of doing so might become more and
more difficult) and it would always be possible to make a device to
separate them, as long as they remained different. But particles either
are identical or they are not. There is no continuity from difference to
identity; and there is no reason to expect a continuity of thermodynamic
properties either. The sharp distinction between identical and non-
identical (however similar) particles is, of course, fundamental in quan-
tum theory and in statistical mechanics; but in the purely classical context
in which it first arose, Gibbs’ paradox presented a serious problem.

11.3. Chemical potential

We shall now consider a general system of P phases and C
components. We shall indicate phases by superscripts and components
by subscripts.

The state of a single phase in thermodynamic equilibrium is deter-
mined by its temperature, pressure, and composition. Whereas the
potentials of a pure substance are determined by three parameters, say
the temperature, pressure, and total mass, we now have to specify the
masses of each component separately. We may therefore write the Gibbs
potential of the ¢th phase

G¢=G¢(T;p’ mi, m2a"'mC)’ (11'15)
for which the differential form is

G 3G c (G
dG“’=(—t) dT+(—t) dp+ (—b) d
aT Py op /1,m, P ,El om;/T,p i
c
=—-8§*dT+Vv®dp+ ¥ gf dm. (11.16)
i=1

The quantities g¢ are known as the chemical potentials or partial poten -
tials of the constituents in the ¢th phase. It is apparent from the form



Systems of several components 219

of (11.16) that they are intensive variables. Furthermore, they must be
functions of state since they can only depend on the temperature,
pressure, and composition of the phase.

Suppose, now, that we increase the total mass of a phase while keeping
its temperature, pressure, and composition constant. Then we may write,

dG* =Y g? dm? =3 gfm? da (11.17)

where da =dm;/m; is the fraction by which the mass of each constituent
is increased. Since the gf depend only on temperature, pressure and
composition, they must remain constant in this change so that (11.17)
may be integrated to give

Zg.m. (11.18)

Equation (11.18) shows that the chemical potentials are analogous to
the specific Gibbs function of a pure substance. In a phase containing
a single component, they are, of course, identical, but in mixtures they
depend always on concentration, and generally on the nature and propor-
tions of the other components. Only in the limit that the components
occupy the volume independently, as with mixtures of perfect gases,
does the chemical potential of a component depend on temperature,
total pressure, and the concentration of that component only. For this
case, there are various useful forms of the partial potentials which follow
directly from (11.11)-(11.13);

RT
&(T, pl)=g0i(T)+ﬁ]npi (11.19)
RT RT
g(T,p,ci)= go,(T)+ ]np +M Inc; (11.20)
RT
g(T,p,ci)=gu(T,p)+—Inc; (11.21)

M;
where M; is the molar mass. We have here dropped the phase superscript.
For tidiness we shall usually drop the phase and component labels when
the sense of an equation is obvious without them.

Itshould be noted that although we have defined the chemical potential
through the Gibbs function, it is similarly related to the internal energy,
enthalpy, and Helmholtz function. For example, by definition,

F(T, V,m)=G(T,p, m)—pV
and,
dF=dG-pdv -V dp
=-p dv-§ dT+z 8i dm,-.
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Therefore
oF )
o =g 11.22
(amg TV & ( )
We therefore have the set of results:
4 F
- =) () - & -(Z) . (11.23)
om;/rp, \omi/sv \omi/s, \om;/ry

We may also derive Maxwell relations involving the chemical poten-
tials in the same way as we did for simple one component systems
(section 7.3). Since G is a function of state, dG is an exact differential.
Then, using the necessary and sufficient condition for G to be exact
(section 1.9.3), we obtain:’

(a) Relations between the chemical potentials and system variables

ogi_ S __
> T TS (11.24)
and
> &_V_ (11.25)
dp om;

where s; and v; are the partial specific entropy and the partial specific
volume of the ith constituent: the quantities analogous to specific entropy
and specific volume for a pure substance.

(b) Symmetry relations between the chemical potentials

9% _ ﬁ. (11.26)
am,- am,-

We have used the m; as the extensive component parameter to bring
out the connection between the chemical potentials and the specific
Gibbs function of a pure substance. Often, it is more convenient to work
in molar quantities and to use instead the number of moles of the
components, n;, rather than the masses. The differential form of G then
becomes

C
dG(T,p,n)=—-SdT+V dp+ 3 w: dn. (11.27)
i=1

3 The independent variables in G are T, p, my, m,, ..., mc. For neatness, we
do not list the constants in the partial differentials. It is implied that all
the independent variables other than that appearing in the differential are
held constant.
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The w; are known as the molar partial potentials. Clearly,
wi =Mg; (11.28)

where M; is the molar mass of the ith component. Results corresponding
to those above follow in exactly the same way for molar potentials:

G*=Y utn? (11.29)
> = ("_Ci) - (ﬂj) - (i{) - (f) (11.30)
oni/rp, \on;/sv \oni/s, \on;/ryv
> % =—S., the partial molar entropy, (11.31)
| ‘;—’: =V,:, the partial molar volume, (11.32)
O _ Oy (11.33)
on; on;

and for perfect gas mixtures,
wi(T,p,n;)=poi(T)+RT Inp+RT In¢; (11.34)
wi(T, p,ni)) = poi(T, p)+RT Inc,. (11.35)

11.4. Conditions for equilibrium

The condition for thermodynamic equilibrium of any system at
constant temperature and pressure is that its Gibbs function be a
minimum. Generally, it is not practicable to try to write down a general
expression for the total Gibbs potential and then to minimize it to find
the equilibrium configuration; but instead one.applies dG =0 to all
possible infinitesimal displacements of the system away from equilibrium.
For each possible displacement, this places a condition on the system
variables from which useful results follow. This is the approach we
adopted in chapter 10 in discussing change of phase in one-component
systems. The only difference which the introduction of several com-
ponents makes is that the Gibbs function now contains a greater number
of variables, and a correspondingly greater number of displacements is
possible. Exactly what displacements are possible in any particular case
depends on the detailed nature of the system and on any constraints
which may be effective. For example, a semipermeable membrane
between two phases may permit the transfer from one phase to the other
of one component while preventing that of others. Similarly, if no
chemical reactions may take place, the total mass of each component
must be conserved, whereas if there is chemical reaction, the masses of
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the reacting components may be varied in accordance with the reaction
involved.

Let us first of all assume that we have a multicomponent, multiphase
system in which all P phases are in direct contact, and in which there
are no surface effects or chemical reactions. Then the only displacements
accessible to the system are those involving the transfer of mass from
one phase to another. Suppose, for example, that we transfer dn; moles
of the ith constituent from phase 1 to phase 2. Since G is a minimum
against any displacement, it must be to this displacement in particular.
Therefore

dG =—pi dn;+u? dn,=0
or

wi=ul.
The argument may be applied to any two phases to give the set of
equations

u}=u,~2=...=ugp. (11.36)
The argument may also be repeated for each component so that there
are C sets of equations like (11.36):

> wi=ui=...=ul foralli (11.37)
In terms of the chemical potentials, the corresponding result is
gi=gl=...=¢gf foralli. (11.38)

The condition for equilibrium between phases of a single component
system which we derived in chapter 10 is seen to be contained in these
results as the special case when there is only one component present
and the chemical potential becomes identical to the specific Gibbs
function.

Now consider a possible chemical reaction in phase ¢. Suppose that
this has the form

ayJitax )o@ asls+add, (11.39)

where the Js are the reacting constituents and the as are the numbers
of molecules of each taking part in the reaction. For convenience, we
will rewrite this with all reactants on the same side of the equality. Then,
changing the symbols to achieve a uniform notation, we have

V1.’1+V2.’2+1/3.’3+V4J4=0 (11.40)
where it is implied that the vs for the species consumed when the reaction
proceeds in the forward direction are negative (v; = —a, etc.).

Now, for equilibrium we must have dG =0 for an infinitesimal dis-
placement of the reaction. Suppose that we displace it in the forward"
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direction so that —»; da moles of J; and —», da moles of J, are consumed
and +v; da moles of J5 and +»4 da moles of J4 produced. That is, the
numbers of moles of all reactants increase' by »; da. Then

dG=dG* = (ufvi+ulv,+usvs+udvs) da =0, (11.41)
which gives, dropping the phase superscript,
w1+ wava+uava+uavs =0 (11.42)
which is known as the equation of reaction equilibrium. It clearly general-
izes for reactions involving any number of reactants to
> Y uwi=0. (11.43)
From these results, we may derive a simple expression for the number
of degrees of freedom which a system has in terms of the number of
components present, the number of chemical reactions which may occur
and the number of phases we require to coexist. (We shall not consider

other possible restrictions.) Ab initio, the system has 2 + CP degrees of
freedom:

1 1 1
T',p’mlamZ,"" Cc
2 2 2
mimsz...,Mmc

P P P
m,msz...,mc.

The C sets of equations (11.37) contain C(P —1) conditions, and each
chemical reaction introduces a further condition of the form (11.43).
Suppose that there are R chemical reactions. Then the number of degrees
of freedom which remain to the system are
Noa=2+CP-C(P-1)-R=2+C-R. (11.44)
However, we are not usually concerned with the amount of each phase
present but only with their composition and number. We are normally
only concerned with those degrees of freedom which are intensive.
Clearly, the extent of each phase must correspond to one degree of
freedom so that from the total number we have calculated we must
remove a further P to obtain the number of intensive degrees of freedom:

> Nime=2+C—-P-R. (11.45)
This result is known as the phase rule.* We see that this is in accord

* Here we have taken the number of components as the total number of
distinguishable chemical constituents. Sometimes, the number of components
is taken as the smallest number of constituents which is necessary to determine
the composition of all phases. This is essentially C —R. The number of
independent reactions does not then appear explicitly in the phase rule which
takes the form &, =2+C'—P.
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with our earlier discussion of single component systems. With one phase,
we have two degrees of freedom (e.g., p and T); if two phases coexist,
there is one (whence the Clausius—-Clapeyron equation); if three phases
are to coexist, there is no freedom (the triple point); and if a substance
exists in more than three phases under no condition may more than
three phases coexist at equilibrium (e.g., “He, Fig. 10.12).

11.5. Ideal solutions

In order to discuss the behaviour of solutions, we need to express
the partial potentials of the components in a form in which the concentra-
tions appear explicitly. We first derive expressions which hold for dilute
solutions.

It is an experimental fact and also physically obvious from consider-
ation of exchange of molecules between solution and vapour, that for
a sufficiently dilute solution, the partial pressure of the solute in the
vapour phase must be proportional to its concentration in the solution.
This is known as Henry’s law. Then the partial potential of the solute
in the vapour phase must obey

(g&) =(2@) (%) _RT (11.46)
oci/Tp \OPi/Tp\oCi/Tp Ci

where we have used the perfect gas law for the solute vapour, and ¢; is
the concentration of the solute in the solution. Integrating,

i = poi(T, p)+RT Inc,. (11.47)

But, for equilibrium, the partial potentials for each component in the
liquid and vapour phases must be equal, so that that of the solute in the
solution is also given by (11.47). This argument applies to all solute
species, so that for dilute solutions we have

wi=woi(T,p)+RT Inc; forall solutes. (11.48)

We may also show that for dilute solutions the molar partial potential
of the solvent takes the same form. We start with the pure solvent and
add each solute in turn. Consider first adding the jth solute. Then with
(11.6), (11.48) becomes

;= woj+RT Innj—RT In (n; +n,) (11.49)

where the subscript s indicates the solvent. To obtain u, we use the
symmetry relation (11.33) in the form:

Ous _ O,
on; dng
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Then, from(11.49),
O _ RT _ous
on, nj+n, om;

Integrating with respect to n;,
+ng
o) = (0) = ~RT In (“2%)

=RT In(1-c¢;). (11.50)
Repeating the integration for successive solvents, we obtain
M’s(njv R, . . ')_M'S(O, O’ .. ') =RT Z In (1 —Ci)

=RTIn []:I a —c,-)]

=~RT In (l—gc,-)

where the approximation depends on the solution being dilute so that
all ¢; « 1. Changing the notation,

ke=hotRTIn (1-36) = pont RT Inc, (11.51)

where wos is the molar partial potential of the pure solvent. Thus, for
dilute solutions,

> wi=poi(T,p)+RT Inc; forall components (11.52)

although normally it is only for the solvent that . is the molar partial
potential of the pure species. With this one difference, the equations of
(11.52) are seen to be identical to those for the molar partial potentials:
of perfect gas mixtures (equations (11.35)). This is not surprising, for
the physical approximations involved are similar: Henry’s law is only
true when the solute atoms are far enough apart for their mutual
interactions to be negligible. When this is the case we would expect
them to behave like a perfect gas, but one whose properties are modified
by the presence of the solvent.

For certain solutions (11.52) hold well for all concentrations. These
are known as ideal solutions. In this case, it is apparent by taking the
limit as ¢; > 1, that the wo; are the molar partial potentials of the pure
species for all components. Generally, solutions whose behaviour
approaches the ideal contain chemically similar components. For
example, ethylene bromide and propylene bromide are miscible in all
proportions to give solutions which are very nearly ideal. We shall discuss
important consequences of non-ideality in sections 11.7 and 11.8.
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11.5.1. The vapour pressure of an ideal solution

Consider an ideal solution in contact with its vapour which we
shall assume to behave as a mixture of perfect gases. Then using (11.52)
and (11.35), we may put the condition that there is equilibrium between
the liquid and vapour phases in the form

ws(T,p)+RT Inck =pu¥(T, p?)+RT In I% (11.53)
i

for all components, where p, p?, and p; are the total pressure, the vapour
pressure of the pure constituent and its partial pressure in the vapour,
and the superscripts L and v refer to the liquid and vapour phases. (In
effect, we have used p? as a reference pressure for the vapour.) If we
let ¢;> 1, then p »p? and (11.53) becomes

woi(T, p?) = woi(T, p7). (11.54)
Eliminating y.(\)’i between (11.53) and (11.54) and rearranging,

wE(T,p) =T p?) = RT In - . (11.55)

But 8u./dp = Vi and the density of the liquid is normally much greater
than that of the vapour, so that, whether p is very different from p{ or
not, the left-hand side of (11.55) is certainly much smaller than RT. We
may therefore equate the logarithm to zero, which gives

> pi=cip? forall components. (11.56)

This set of equations is known as Raoulit’s law. This differs from Henry’s
law in that it applies to all components at all concentrations. The propor-
tionality stated in Henry’s law applies only for solutes at low concentra-
tion, and, of course, it is only for ideal solutions that the constant of
proportionality is equal to the natural vapour pressure of the solute.
From (11.56) it follows that the total vapour pressure of a perfect
solution is simply an average of the natural vapour pressures of the
components weighted according to their concentrations in the solution:

p=Ycp!. (11.57)

11.5.2. Solubility in ideal solutions

It is sufficient to demonstrate the physical principles if we con-
sider a simple pure solute i in contact with its solution. Then the condition
for the solution to be saturated is

w$(T,p)=ui (T, p) (11.58)

where s and L indicate the pure solute and solution (L = liquid) respec-
tively. For ideal solutions, 1| is independent of the nature of the other
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components, so that the solubility of a particular solute will be the same
function of temperature and pressure for all solvents in which its forms
ideal solutions. Now, if we change the temperatures, keeping the solution
saturated,

du?=dul. (11.59)
If the pressure is constant in the change,

dut = (a;‘—TL)p dT + ("BLCL)M de. (11.60)
Substituting from (11.31) and (11.52),

dui =—Smi dT+RT—d£ﬁ (11.61)

where Sk is the partial molar entropy of the solute in the liquid. Also,
at constant pressure,

du? =-S5 dT (11.62)

where S5, is the partial molar entropy of the pure solute. From (11.61)
and (11.62)

dci _ s dT
c,—(s S"") T Ler

where L = TS5 — S&;) is the molar heat of solution. (The heat absorbed
when one mole passes into solution.) If the solute is a solid, then for
moderate temperature intervals the variation in L is relatively small,
and (11.63) may be integrated to give an approximate explicit form for
Ci.

> ci=c{ exp (-L/RT). (11.64)

(11.63)

11.5.3. Osmotic pressure

For ideal solutions, the addition of a solute to a solvent reduces
the chemical potential of the solvent. If, then, a pure solvent is separated
from a solution by a wall permeable to the solvent, equilibrium will not
exist, but the solvent will pass through into the solution. This flow may
be stopped by applying an excess hydrostatic pressure to the solution
so as to raise the chemical potential of the solvent in it to equal that of
the pure species. The excess pressure which must be applied is known
as the osmotic pressure and the equilibrium so obtained as osmotic
equilibrium.

In osmotic equilibrium, the osmotic pressure IT must satisfy
ua(T,p +11, ¢) = ua(T, p, 0) (11.65)
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where u, is the molar partial potential of the solvent and the c; are the
concentrations of the solutes. For ideal solutions this becomes

RT Inc¢,= l-‘Os(T'a p)-MOS(T'a p +H)
p+II
= [ VT e
14
where pos and Vs are the molar partial potential and the molar volume
of the pure solvent. If the liquid is incompressible, this becomes
MVps=—RT Inc, (11.66)
which, if the solution is dilute, reduces further to
> NMVms=RTZc; (11.67)

where the summation is over the solutes.

Formally, this equation is similar to that for the total pressure of a
mixture of perfect gases. Osmotic pressures, however, may be very large
since solutions of moderate concentration will correspond to gases at
densities approaching that of the liquid state.

11.6. Ideal gas reactions
Consider a simple ideal gas reaction of the form

SvJ;=0. (11.68)
For this, the equation of reaction equilibrium, (11.43), is

Zvipi =0. (11.69)
For a mixture of ideal gases, the u; are, according to equation (11.34),

pi = poi(T)+RT Inp; (11.70)

where the wo; are the molar partial potentials at temperature T and at
reference pressure p; = 1. Substituting in (11.43), the equation of reaction
equilibrium, we obtain

21/,'#0,' +RT In Hp:" =0

or
> Mp: =K,(T) (11.71)
where
1
> In K, (T) =—ﬁ Svinoi (11.72)

Equation (11.71) is known as the law of mass action and K, as the
equilibrium constant. (The suffix is included to indicate that it is defined
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through the partial pressures of the reacting gases rather than through
their concentrations or partial volumes which give alternative forms.)

These results are of fundamental importance in physical chemistry.
The law of mass action itself determines how the equilibrium concentra-
tions of reacting gases are related for a given temperature, while through
the behaviour of the equilibrium constant it is possible to derive ther-
modynamic information about the reactants. For example, K, is simply
related to the heat of reaction Q*, defined as the heat absorbed when
the reaction proceeds in the forward direction by v»; moles of each
constituent. (For example, in the simple reaction aiJ;+a>J>asJ;+
a4J4, Q* is the heat absorbed when a; moles of J; react with a, moles
of J, to produce a; moles of J; and a4 moles of J,.) We derive the
relation between K, and Q* as follows:

From (11.72) and using (11.31), (11.19), and (11.5),

d
RT? 37 " Ko = Zvikoi + TSmoi)

=Zvi{(oi +RT In p;) + T(Smoi — R In p;)}
=32vi(i + TSmi)
=3y, Hm;
where the Hy,; are the molar enthalpies of the reactants.” We may rewrite
this more simply as

RT2%1n K,=AH,, (11.73)

This is a famous equation of chemical thermodynamics known as the
van’t Hoff isobar.

Now, if we imagine that the reaction occurs in a box equipped with
a set of semipermeable membranes through which the reactants are
supplied and the products emerge, all at their appropriate partial press-
ures (Fig. 11.3), then the reaction proceeds as a simple flow process and
the energy entering as heat from the surroundings is the difference of
the enthalpies of the gases leaving and entering the box. Thus

Q*= ZVeri =AHn
and we have

d
> RTzd—T—ln K,=AH,=Q* (11.74)

5 Alternatively, we may remember that the enthalpy of a perfect gas is
independent of pressure and put uo; + TSm0i = Hmoi = Hpmi.
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which is the relation between the equilibrium constant and the heat of
reaction,

The law of mass action has a straightforward microscopic interpreta-
tion. The simplest microscopic assumption that we can make is that
reaction can only occur when the molecules required for it are close
together. For example, in the reaction

arJ1+ar),asls+adds

for a; molecules of J; to combine with a, molecules of J, to give the
products on the right we may suppose that we require a ‘collision’
involving a; molecules of J; and a, molecules of J,. Now, the probability
that one molecule of J; will be in a particular region at a particular time
will be proportional to the density of J; molecules which, is in turn,
proportional to the partial pressure of J;. Thus, the probability that a,
molecules of J; coincide is proportional to p1', and the probability of a
collision event of the kind necessary for reaction from left to right is
proportional to pi'p32 The rate of reaction from left to right will
therefore be

C(T)pi'p2*
where the constant of proportionality takes account of the microscopic

properties of the reactants and of the kinetics of the collision. Similarly,
the rate of reaction to the left will be

C'(T)p3pe*
and at equilibrium these will be equal, giving
a, _a,
p ;JP:‘ =K (T)
3° V4

which is the law of mass action.

Fig. 11.3. A gas reaction as a simple flow process.
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11.7. Solubility gaps in binary mixtures

So far in this chapter we have restricted discussion to ideal
solutions and ideal gas mixtures where each component in a mixture
behaves independently of the others which are present. We now look
briefly at non-ideal mixtures and examine the physics involved in separ-
ation of a mixture into two or more phases of different composition.

An example of a simple system showing phase separation is provided
by mixtures of methyl alcohol and carbon disulphide. At room tem-
perature, the maximum solubility of methanol in carbon disulphide is
2.5 per cent by weight and of carbon disulphide in methanol, 50 per
cent by weight. Mixtures with between 2.5 and 50 per cent of methanol
separate into two phases, one containing 2.5 per cent and the other 50
per cent. The phase diagram for mixtures of methanol and carbon
disulphide therefore has a region of heterogeneous equilibrium in which
more than one phase is present.

A homogeneous mixture, held at constant temperature and pressure,
will separate into two phases of different composition if the total Gibbs
potential of the two-phase configuration is less than that of the
homogeneous mixture. To discuss the conditions under which this occurs
we need to know how the Gibbs function of a mixture might typically
depend on composition.

We consider a binary mixture of components A and B at atomic
(molecular) concentration (1—x) and x respectively. Let the molar
Gibbs potentials of the pure components be wa and wp. If we bring
together the components in their appropriate proportions but do not mix
them, the molar Gibbs potential will be

po=(1—x)ua+xus.

This varies linearly as the composition is changed from pure A to
pure B.

It is now necessary to examine how u will change as the components
are mixed. Now

G=U-TS+pV,
S0

Ap =AU —-TAS +pAV,
where U, S and V refer to one mole. In condensed states, energy changes
associated with hydrostatic work are normally negligible so we take no
account of any change in volumes on mixing. (The discussion could be

framed in terms of the Helmholtz potential F.) There is always an entropy
of mixing, however, since a mixed state is necessarily more disordered
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than an unmixed. We take the entropy of mixing to behave in the same
way as when two ideal gases are mixed. Equation (11.14) becomes

—AS/R=xInx+(1—-x)In(1-x). (11.75)
This result can also be deduced by statistical arguments and is valid
provided that there is no ordering in the mixture. This is a symmetrical
function of composition, rising from zero at x =0 and x = 1 to a maximum
of In 2 at x =0.5. This term contributes a negative contribution —TAS
to u which is independent of the nature of the components. In contrast,
AU does depend on the constituents.

Energy changes associated with mixing depend on the energy of
interaction between dissimilar atoms (molecules) Vg as compared with
the energies of interaction between similar atoms (molecules) Vaa and
Vee. If each atom (molecule) has z near neighbours, the initial molar
energy is

U= %ZNA[(I —x)Vaa+xVgs].

The factor of % avoids double counting of ‘bonds’, since each bond is
associated with two particles.

In the (random) mixture, any given particle has a probability (1 —x)
that a neighbour will be A and a probability x that it will be B. Then
the final energy is

Uf‘—- %ZNA[(I —‘X)ZVAA +‘x2VBB+2x(1 —X)VAB].

The factor of two appears because double counting of bonds does not
arise with dissimilar particles. Then we obtain for the energy of mixing

AU =3zNax(1-x)2Vap— Vaa— Vag). (11.76)

We note that this is zero for all x if Vg is the mean of Va4 and Vgp,
otherwise it is parabolic. Whereas the entropy of mixing always favours
formation of an homogeneous mixture, AU may be of either sign. A
positive energy of mixing means that mixing is energetically unfavour-
able. A zero AU is equivalent to the mixture being ideal in the same
sense as is meant when speaking of an ideal gas or an ideal solution.
The contributions to u are illustrated in Fig. 11.4. It should be noted
that
a(AS) {+oo asx->0
ax  l-ccasx>1.
On the other hand, the gradient of AU is everywhere finite. Therefore,
however energetically unfavourable mixing may be, some solution of

constituents will always occur at any 7 >0 since the entropy term must
always dominate close enough to x =0 and x = 1.
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Mixtures obeying equation (11.75) for the entropy of mixing are
known as regular solutions. It is obvious that positive energy of mixing
will inhibit randomness in the mixture. Nevertheless, within a single
phase, (11.75) is often a good approximation.

The form of the dependence of the Gibbs potential on composition
depends on the relative sizes of the contributions to Au. The energy of
mixing is essentially independent of temperature but the entropy contri-
bution is proportional to temperature and, as would be expected, of a
sign that increasingly favours the mixed state as temperature is increased.
Forms of w are illustrated in Fig. 11.5.

We now examine the condition for a mixture to separate. Consider a
potential function of the form illustrated in Fig. 11.6. We shall see
whether it is favourable for a mixture of composition x' to separate into
phases of composition x; and x,. First we find the proportions of the x,
and x, phases that are necessary to give a system of composition x’. Let
the concentrations of the phases be c¢; and c,. Then conservation of
particles requires

A: (1-xY=ci(1-x1)+c2(1-x2)

B: x'=cix1+cxs

Fig. 11.4. Contributions to the molar potential of a binary mixture.
(a) Molar potential of unmixed components. (5) Energy of mixing
AU. (c) Entropy of mixing AS. (d) Typical total molar potential.
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Fig. 11.5. The molar potential of a binary mixture with positive
energy of mixing as a function of composition for various
temperatures. The broken curve is po+ AU, the molar potential
without the contribution from entropy of mixing. The parameter is
proportional to temperature so that the lowest curve corresponds to
the highest temperature.

Fig. 11.6. Separation of a binary mixture into two phases of
different composition.
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giving
ci(x'—x1)=calx2—x"). (11.77)

This result is sometimes called the lever rule. The corresponding potential
of the two-phase configuration is
p®=p1+ (2= )’ —x1)/ (x2—x1).

We see that the potential of the two-phase configuration lies on the
straight line joining w; and w, at its intersection with the original
composition x'. If 1 ® < 1’ the two-phase configuration will be preferred.
Now the lowest energy configuration corresponds to the lowest straight
line joining points on the curve of x against composition and this is
clearly the common tangent giving phases of composition x, and xg. All
mixtures with composition between x, and xg will separate into these
phases and the absence of stable homogeneous solutions in this range
of composition is known as a solubility gap. We see that the condition
for the presence of a solubility gap is simply that there should be a
region of negative curvature in u (x).

Returning to Fig. 11.5 we see that a solubility gap will close up with
increasing temperature as the negative entropy term becomes more
important. If x, and xg are plotted as functions of temperature, one
obtains the continuous curve of Fig. 11.7 which is the phase diagram
for the system. Mixtures whose composition at a given temperature lies
within the curve separate horizontally into phases whose compositions
correspond to the limits of the solubility gap at that temperature (e.g. T").

Fig. 11.7. The phase diagram of a binary mixture with a solubility
gap.
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Phase separation in a liquid mixture provides the basis of a means of
obtaining very low temperatures known as dilution refrigeration.® Both
helium isotopes remain liquid to absolute zero (section 10.8.2). Above
0.87 K the liquids are mixable in any proportion but below that tem-
perature a solubility gap opens up. At low temperatures, the two phases
are nearly pure *He and an approximately 6 per cent solution of *He
in “He. In the dilute phase the *He atoms move like atoms of an ideal
gas in the space provided by the *He, which is superfluid at these
temperatures. Passage of >He atoms from the concentrated to the dilute
phase is therefore similar to evaporation from a liquid to its vapour and
‘latent heat’ is absorbed. This heat absorption provides the means of
cooling in the refrigerator. Arranged to operate in a continuous cycle,
temperatures of a few millikelvins may be maintained.

11.8. Equilibrium between liquid and solid mixtures

We carry discussion of phase equilibrium in systems of more
than one component one stage further by a brief account of equilibrium
between liquid and solid phases in binary systems. This will give the
reader sufficient insight to enable him to interpret phase diagrams of
alloy systems.’

An essential feature of solidification from a liquid mixture is that the
solid will generally have a composition different from that of the liquid.
As a result, as solidification proceeds, the compositions of both the liquid
and the solid which is being formed from it will change. The liquid will,
of course, be homogeneous throughout because the constituents are
mobile, but the solid will be inhomogeneous as a result of the changing
composition of the material being laid down. For a mixture, the process
of solidification generally extends over a range of temperature instead
of taking place at a unique temperature as is the case with a pure
substance.

Such behaviour is illustrated in Fig. 11.8. In (a) Gibbs potentials are
sketched for the liquid and solid as functions of composition for a binary
mixture showing no solubility gap in either phase. At any composition,
the entropy of the liquid is greater than that of the solid so that decreasing
the temperature causes the curve for the liquid state to move up relative
to that of the solid. The diagram is constructed for a mixture in which
the melting point of B is greater than that of A so that up;—ups>
waL—mas and the curves first cross at the B end as temperature is

% For a more detailed account of dilution refrigerators, see Rose-Innes (1973).
7 For a more detailed account of phase diagrams and their underlying
thermodynamics see Cottrell (1975).,
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reduced. Fig. 11.8(a) is drawn for a temperature in the middle of the
range for solidification and the common tangent construction gives
equilibrium between liquid and solid phases of compositions x; and xs.
If x. and xs are plotted as functions of temperature, a phase diagram
like that of Fig. 11.8(b) is obtained. The curves are called the liquidus

Fig. 11.8. Equilibrium between liquid and solid phases of a binary
mixture in which neither phase has a solubility gap. (a) Gibbs
potentials of solid and liquid at temperature T’ between the
melting points of the pure constituents. (5) The corresponding
phase diagram. T,,o and T, are the melting points of the pure
constituents.
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and solidus respectively. Liquid is stable at all temperatures and composi-
tions above the liquidus and solid is stable at all temperatures .and
compositions below the solidus.

Now consider cooling of a mixture of initial composition x;,. from an
initial temperature T, above the liquidus (Fig. 11.9). When the tem-
perature reaches T solid will begin to be formed at composition x;s.
This is richer in B than the liquid so that the liquid becomes depleted
of B and, as solidification proceeds, both x. and xs decrease in the
direction indicated by the arrows. Only at x =0 and 1, when only one
component is present, do the liquid and the solid with which it is in
equilibrium have the same composition.

Real phase diagrams may be extremely complicated. There may be
solubility gaps in both liquid and solid phases and the solid Gibbs
potential may have many minima corresponding to different crystal
structures and formation of compounds at particular compositions.
Fig. 11.10 illustrates typical behaviour when the pure constituents have
different crystal structures, labelled @ and B. The potentials for the solid
crystalline forms fall initially as the second component is added as a
result of the entropy of mixing with its initial infinite gradient. The
subsequent rise results from the crystal structure becoming increasingly
unfavourable energetically as more of the second component is added.
The liquid is represented by a curve with a single broad minimum as

Fig. 11.9. Changing composition during solidification of a binary
mixture.

T

TmA




Systems of several components 239

might result from dominance of entropy of mixing. Again, at any compo-
sition, the liquid will be more disordered than the solid so decreasing
temperature causes the liquid potential to rise relative to the solid
potentials. (The forms of the potentials are also temperature-dependent,
of course, so they will change shape as the temperature is changed but
we are assuming that the entropy difference between solid and liquid is
the dominant effect.) The figure shows various stages in cooling the melt.
At high temperatures (a) the liquid potential is.the lowest at all composi-
tions. As the temperature is lowered, the liquid curve first crosses the
solid at the composition of the pure constituent of higher melting point
(here B) and .a region of heterogeneous equilibrium opens up consisting
of liquid in equilibrium with nearly pure B (b). At a lower temperature,
the potentials cross at x =0 and a second region of heterogeneous

Fig. 11.10. (a)- (e) are Gibbs potential curves that lead to a
eutectic phase diagram (f). x., is the eutectic composition and T,
the eutectic temperature.
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equilibrium forms near pure A (c). As the temperature falls further the
liquid potential continues to rise and the range of concentrations over
which liquid is a stable phase narrows until it vanishes when the two
tangents coincide (d). This condition defines a unique minimum tem-
perature at which liquid can exist. It is called the eutectic temperature
and the corresponding composition is the eutectic composition. Below
the eutectic temperature (e) the system has a single solubility gap
between two solid phases. The phase diagram for such a system is
illustrated in (f) where the regions are labelled according to the phases
to which they correspond.

Solidification of a eutectic mixture results in an inhomogeneous solid,
typically containing layers a few micrometres thick of the two solid
phases into which the melt separates.
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The third law

12.1. The third law

The third law is concerned with the limiting behaviour of systems
as the temperature approaches absolute zero. The statement of the law
in the form due to Simon reads:

> The contribution to the entropy of a system by each aspect which
is in internal thermodynamic equilibrium tends to zero as the
temperature tends to zero.

By aspect of a system is meant a part of the system or a process in it
which interacts only weakly with the rest of the system and therefore
makes an essentially independent contribution to the properties of the
whole. Thus, in our discussion of paramagnetic salts (sections 5.6.2 and
8.8.1) we were able to speak of separate contributions to the entropy
from the thermal motions of the lattice and from the disorder of the
magnetic subsystem. According to the third law, both these contributions
will go to zero as the temperature goes to zero provided that both
subsystems are in thermodynamic equilibrium. It should be noted that
the third law does not exclude states for which the equilibrium is
metastable. As we shall see later, its application to metastable systems
provides some of the best experimental evidence for its truth.

Experiments can only determine differences in entropy, and in its
earlier forms the third law stated only that the entropy due to each
aspect of all systems took the same value at absolute zero. The choice
of zero for this universal constant brings the third law into agreement
with the Boltzmann relation (equation (5.19)):

S=king

for in quantum mechanics there is an unproved theorem which states
that the ground state of any system is non-degenerate, so that in the
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ground state there is complete order, g =1 and § = 0. The status of this
theorem of quantum mechanics is similar to that of the third law in
thermodynamics. However, we must remember that in deriving the
Boltzmann relation itself (section 5.6), we chose to make the constant
of integration zero. The essential point of the third law is that the
constant is the same for all systems, and it must be stressed that it is
strictly only a matter of convenience to set it equal to zero.

Various attempts have been made to derive the third law from the
second; but, in fact, this cannot be done. Its status is that of an indepen-
dent fundamental postulate (see Pippard, 1957: pp. 48-51).

In the following sections we shall discuss some of the consequences
and applications of the third law, restricting ourselves for the greater
part to the use of classical ideas but invoking also simple microscopic
and quantal concepts when relevant. A full appreciation of the
significance of the third law requires also a discussion in the context of
quantum statistical mechanics which should be sought elsewhere (e.g.
Wilks, 1961; or Rosser, 1982).

12.2. Elementary physical consequences of the third law

A most important consequence of the third law is that all heat
capacities must tend to zero as the temperature approaches zero. This
may be seen by writing the heat capacity in the form

aS aS
=1(2) = i 12.1
G T(aT), (a In T)x (12.1)

AsT->0,InT->—o00 and S - 0, so that the derivative also tends to zero.
We may reach the same conclusion by considering the total change of
entropy on cooling from T to absolute zero:

o

C
AS—IFdT'

T

The integral is only finite if C > 0 as T' > 0. Thus, all heat capacities tend
to zero as the temperature approaches absolute zero. This result emphasizes
the connection between the third law and quantum theory, for classical
heat capacities do not vary with temperature (equipartition of energy).
It is therefore impossible to construct a classical interpretation of the
third law. In fact, as we have previously pointed out (section 8.2.4)
quantum considerations show that all heat capacities must eventually
vanish exponentially.

Through Maxwell relations, derivatives of entropy are related to
derivatives of other system parameters. With the third law these lead
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to conditions on the limiting behaviour of other common thermodynamic
quantities.

For example, for a system subject to work by hydrostatic pressure,
we have

&), =~Gz),=-ve

where B, is the isobaric cubic expansivity. By the third law

lim (a_S) =0
T-0 ap T
so that
By ~>0. (12.2)
Corresponding results follow for other properties. Where surface

energies are important,
( ) ) __do

0A)r  dT
so that by the third law, surface tension becomes constant:
do
=50 12.3
ar”? (12.3)

This is found to be so for both liquid “He and liquid *He, the only liquids
which exist at absolute zero.
Again, for a paramagnetic substance,

(35) -(im) -YB(Xa)
3B)r \oT/g o \dT /g
so that by the third law

(%%QB»O. (12.4)

This is an interesting result because we see that the third law requires
Curie’s law (ym = a/T') to break down at some temperature. Now Curie’s
law always results from alignment of dipoles when the degree of align-
ment depends on the ratio of magnetic energy to thermal energy.
Non-degeneracy of the ground state of all systems means that, as tem-
perature is reduced, some other energy must always eventually dominate
over thermal energy. In this limit, susceptibility will become independent
of temperature.

The Clausius—Clapeyron equation (10.11) gives the gradient of the
boundary between two phases of a pure substance:

dp AS

dT AV’
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According to the third law, AS >0 as T -0, so that in this limit the
phase boundary must become parallel to the T-axis. The only substance
on which careful experiments have been made is “He, for which solid
and liquid may coexist at absolute zero. These have shown that the
gradient of the melting curve does approach zero at the lowest tem-
peratures (see Fig. 10.12). At first sight, it is surprising that the entropy
of a liquid can ever vanish, for one normally thinks of a liquid as being
necessarily less ordered than a solid. The explanation is that the entropy
of the system does not only depend on the positions of the atoms but
also on their momenta, and for precisely the same reason as helium may
remain liquid to absolute zero (section 10.8.2), the state of zero entropy
of the liquid corresponds to a configuration in which the ordering is
dominant in momentum rather than position. Again, this is a consequence
of quantum effects. A similar argument must apply to *He which can
also exist as a liquid at absolute zero. The zero entropy configuration
must again be one in which there is ordering in the momenta of the
particles, and at about 3 mK *He also becomes superfluid, but by a
mechanism similar to that which operates with electrons in metals to
produce superconductivity (Mermin and Lee, 1976). However, *He is
also interesting for other reasons. Below about 0.3 K the slope of the
melting curve becomes negative (Fig. 12.1), the solid becoming the high
temperature phase. According to the Clausius-Clapeyron equation this
means that either AV or AS becomes negative. Since the change is not
associated with any singularity, it is unlikely to be AV and, in fact,

Fig. 12.1. Part of the melting curve of 3He (Baum ef al., 1959).
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measurements show that this is nearly constant. It therefore follows that
below 0.3 K the entropy of the solid is greater than that of the liquid!
The reason for this is that the *He nucleus, consisting of two protons
and one neutron, has a net spin (and associated magnetic moment). Now
the entropy must, of course, include a contribution related to the degree
of order in the spin system. Magnetic measurements show that as the
liquid is compressed towards solidification, it obeys Curie’s law to pro-
gressively lower temperatures, implying that magnetic ordering sets in
more readily at liquid densities that it does at solid. This is presumably
because the uncertainty in atomic position in the liquid allows a stronger
interaction between the nuclear moments. Thus for a certain range of
temperatures the liquid is more ordered than the solid and the gradient
of the melting curve becomes negative. Eventually, of course, it must
again become zero in accordance with the third law.

A relation analogous to the Clausius-Clapeyron equation describes
the variation of the critical field of a superconductor:

dB._ _As
T [(10.32)]

so that the third law requires the critical field to become constant as the
temperature approaches absolute zero.

All these elementary consequences of the third law are well supported
by experiments.

12.3.  Unattainability of absolute zero
It follows from the third law that it is impossible to cool a system
to absolute zero. The result may be stated formally as follows:

> It is impossible to reduce the temperature of any system or part of
a system to the absolute zero in a finite number of operations.

This is known as the unattainability statement of the third law and is
sometimes used as an alternative to the Simon statement, but it is not
exactly equivalent to it as we shall now show.

Consider a system in which we are attempting to produce cooling by
varying a parameter X. (If we are concerned with cooling by adiabatic
demagnetization, X might be the applied field.) Suppose that by varying
X from X to X, we cause the system to cool from T; to T,. Then,
using the second law but not the third, we may write the entropies of

the initial and final states
T]
S
S(TI,X1)=S(0,X1)+I (—) dT
J 0T/ x=x,
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and
T2
EA)
(T, X2)=S(0, X2)+j (——) dT.
T/ x-x,
0

Since heat capacities are always positive’ we will achieve the greater
cooling if we make the final entropy as small as possible. This requires
the process to be adiabatic (heat could only leak in if we are trying to
cool below the temperature of the surroundings) and reversible. In that
case,

T, T,
aS aS
S0, X1)+ j (ﬁ)x% dT = S(0, X5) + j (a—T)x,x2dT
o o

(12.5)
Assuming the truth of the Simon statement of the third law,
S(O’ Xl) = S(Oa XZ) (=0)a

and, for T, to be zero,
Tl

as
J' (ﬁ)x=x, dT =0.

o
But, at all T >0, the integrand is positivel so that there is no non-zero
solution for 7. Thus the unattainability of absolute zero follows from
the Simon statement of the third law. The connection is illustrated in
Fig. 12.2.

If we try to reverse the argument to prove the Simon statement by
applying the unattainability statement to (12.5) we only succeed in
establishing that

S0, X1)=5(0, X>).
This is clearly in agreement with the Simon statement but is less than
it, since it does not prove that the entropies of all systems or parts of

systems are equal at absolute zero. Nor, of course, does it place the
entropy equal to zero. As we have already stressed, this latter part of

! This is obvious from the quantum point of view since, however great the
energy separation between the ground state and the next lowest state of the
system, increasing the temperature necessarily raises the average energy even
though by a very small amount. From the thermodynamic point of view it is
sufficient to note that (38/dT)x <0 is impossible for reasons of thermal
stability. (8S/0T)x = 0 is also inadmissible since if the system can exchange
no heat the whole concept of temperature breaks down. Thus, for any real
system (38/8T)x >0 at T >0.
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the Simon statement is only a matter of convenience and is not an
important part of its substance; but the universal aspect of the Simon
statement is important. Its verification lies in the success with which it
is applied to chemical systems (see section 12.6).

124  Allotropic transformations

Many solids may exist in more than one stable crystalline form.
This often happens when the energies of the different structures lie close
together so that, as the external conditions are varied, one or another
may become the most stable. Such changes of structure are known as
allotropic transformations, and we have already referred to those in iron
as examples of first order change of phase (section 10.8.1). In many
cases, on cooling through the transition temperature, transformation
takes place rapidly and very little supercooling of the higher temperature
phase can be achieved. When this is the case, thermal energies must be
comparable to any potential barrier separating the two configurations
so that rearrangement proceeds rapidly. In some cases, however, trans-
formation is slow, and by cooling rapidly through the transformation
temperature, the high temperature phase may be retained indefinitely
as a well-defined metastable state. At absolute zero, the third law will
apply both to the low temperature phase and also to the metastable
allotrope. (It matters only that the configuration corresponds to a
minimum in the energy, for at absolute zero this results in a well-defined
stable state since there can be no thermal excitation over the potential

Fig. 12.2. Hypothetical entropy diagrams.

The system represented in (a) violates the third law and may be cooled to absolute
zero in a finite number of operations. The third law is satisfied by (b) and absolute zero
cannot be reached in a finite number of steps.

X2 X,

(a) (b)
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barrier which must separate it from any lower minimum.?) The entropy
of the high temperature phase at the transition temperature may then
be calculated by two paths: (1) by integration of C/T for the metastable
allotrope (which is the high temperature phase) from absolute zero to
the transition temperature; and (2) by integration of C/T for the low
temperature phase from absolute zero to the transition temperature
and addition of the entropy change in the transition, L/T. If the third
law is true then the same value should be found in both calculations.
The third law has been tested in this way by measurements on several
solids showing suitable allotropic transformations. These include tin
(Lange, 1924), cyclohexanol (Kelley, 1929), and sulphur (Eastman and
McGavock, 1937), but perhaps the most interesting are the measure-
ments on phosphine (Stephenson and Giauque, 1937), which has four
allotropic forms. The transitions in phosphine are indicated in Fig. 12.3.
At 88.10 K there is a transition from the é to the a form. The transition
is rapid and the § phase can only be supercooled by a few tenths of a
kelvin. At 49.43 K, the o form is in equilibrium with the 8. Here, the
transition is slow, taking many hours at 40 K, so that the « form may
easily be retained on cooling rapidly. The 8 phase persists to absolute
zero; but, on cooling the a, it undergoes another transition at 30.29 K
to the y phase. The entropy of the a phase at T, may be calculated
by two paths~
TB«
. e 4 va Ca
1: I T dT+ + J. T dT
Tya

0

Fig. 12.3. Allotropic transitions in phosphine.
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Of course, if a minimum is too narrow or its potential barrier too low, it
cannot give rise to a stable (bound) state of the system because of the
fundamental confinement limitation indicated by the uncertainty principle
and because of the possibility of quantum-mechanical tunnelling through the
barrier.
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The results of Stephenson and Giauque’s measurements are summarized
in Table 12.1. The agreement is very good.

12.5. Glasses

When the temperature of a supercooled liquid is lowered, it
eventually either passes over spontaneously into the solid state or
becomes glass-like. The transition to the glass is not discontinuous but
takes place over a small range of temperature as a result of a rapidly
increasing viscosity. The viscosity becomes so high that flow rates become
negligible and the substance behaves in many ways like a solid. However,
there is no discontinuous change in order and the structure of a glass is
much closer to that of a liquid than that of a true solid. Now, whereas
the supercooled liquid is a well-defined metastable state, the glass is
often not in a state of equilibrium at all as has been demonstrated by
measurements on glycerol.

The normal freezing point of glycerol is 291 K, but if cooled carefully
it remains in the liquid state. At about 180 K the supercooled liquid
passes into the glass. The measured heat capacities are shown in
Fig. 12.4. Now, the difference in entropy of the solid and liquid at 291 K
is given by the latent heat, and by integrating the difference of the heat
capacities of the solid and liquid/glass states downwards from that
temperature, the difference in the entropies at lower temperatures is
found. When this is done (Fig. 12.5), it is found that there is a large
entropy difference between the solid and glass at absolute zero in
apparent contradiction of the third law.

Table 12.1. Entropy of a-phosphine at 49.43 K

Route 1 Route 2
Contribution AS/JK 'mol™! Contribution AS/IK ! mol™!
0-15K e 2.070 0-15K e 1.415
15-30.29K m 9.150 15-4943K m 16.920
yoa m 2.710 B-a m 15.730
30.29-4943K m 20.095
Total: 34.03 Total: 34.07

e =extrapolated; m = measured.
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The explanation of this is that the cold glass is not in thermodynamic
equilibrium for the following reason. In the liquid state there is no
long-range order in the molecular arrangement, but there is short-range
order, which varies in extent and nature with temperature. As the
temperature is changed in the liquid, adjustment to the equilibrium
state is able to proceed rapidly; but in the glass, because of the very
high viscosity, this is not the case. The time for relaxation of the structure
becomes so long, that, especially at lower temperatures, equilibrium may
never be reached. In this case, a heat capacity measured at a particular
temperature will not correspond to an equilibrium state of the system,
and also, in the absence of equilibrium, the third law cannot apply.

The truth of this explanation has been supported by heat capacity
measurements on the glass close to the transition where the relaxation
‘times are not excessively long (Oblad and Newton, 1937). By waiting
for periods up to one week for equilibrium to be established, the true
heat capacity curve has been followed down to about 165K (dotted
curve of Fig. 12.4). This corresponds to an entropy difference between
the solid and the glass which continues to fall (dotted curve of Fig. 12.5),
and suggests that if the equilibrium configuration could be followed to
lower temperatures then the entropy difference would indeed become
zero at absolute zero (broken extrapolation of Fig. 12.5).

It is worth pointing out that, although a glass is not in an equilibrium
state (the potential is not a minimum), certain consequences of the third

Fig. 12.4. The specific heat capacity of glycerol (from measurements
of Gibson and Giauque, 1923; and of Simon and Lange, 1926).

If? liquid
T I
£ supercooled liquid |
2 201 v
& measured slowly ...-*"]
1.0 glass crystalline solid
0 L | !
0 100 200 300

T/K



The third law 251

law still apply. For example, thermal expansion is associated with thermal
excitation of the molecules about their frozen-in positions. This aspect
of the system remains in equilibrium to absolute zero and the third law
therefore applies to show that the expansivity goes to zero.

12.6. The equilibrium constant

According to the result of section 11.6, the temperature deriva-
tive of the equilibrium constant for a perfect gas reaction is related to
the heat of reaction by the equation

24 Kk —o*=
RT? =K, =Q* = AH,. (12.6)
Now
d d
EQ*=EAHm=2ViCmp.~. (12.7)

If, therefore, the heat of reaction is determined at one temperature a
knowledge of the heat capacities of the reactants is sufficient to enable
one to calculate it at other temperatures by integration of (12.7). This,
in turn, allows (12.6) to be integrated to give the equilibrium constant
at various temperatures provided it is known at one temperature. Thus,
without the third law and with purely thermal measurements, the tem-
perature variation of K, may be found, but not its absolute value. The
third law was originally put forward by Nernst to provide a basis for

Fig. 12.5. The entropy difference between supercooled and
crystalline glycerol (solid curve after Simon, 1931).
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calculation of the absolute value of the reaction constant using only
calorimetric data. His statement was:

> If a chemical change takes place between pure crystalline solids at
the absolute zero, there is no change of entropy.

This clearly contains much less than the Simon statement.
With the aid of the third law, the equilibrium constant may be calcu-
lated as follows:

According to (11.72) the equilibrium constant is related to the molar
partial potentials at the standard pressure by the equation

RT In Kp = —EV,'M,og. (12.8)

Now
EViIJ»o;' = 2vi(Hmoi — TsmOi) =2v;(Hmi — TSmOi)

since the enthalpy of a perfect gas is independent of pressure. Or
Svipoi = Q*— TZviSmoi. (12.9)
Now the first term on the right of (12.9) is the heat of reaction and

may be determined directly by a calorimetric experiment. The entropies

at the standard pressure appearing in the second term are given by
T

S0=S(p0, T)=5(po, 0)+ [ dS
o

where the integral may be evaluated on purely thermal data, namely
from (a) the heat capacities of the gases and their condensed phases
down to absolute zero, and (b) the latent heats of transitions between
phases. According to the Nernst statement,

2vi8i(po, 0)=0
while according to the Simon statement, all the S;(po, 0) are identically
zero, so that only the integrals remain in the summation of (12.9). Of
course, the heat capacities cannot be measured to absolute zero but it
is sufficient to measure them to a temperature low enough to allow a
safe extrapolation. Substitution in (12.8) then yields K.

The third law might appear partly to have outlived its original purpose
in that the development of statistical mechanics has made it possible, in
principle, to calculate the absolute entropy of a system when its nature
is understood in sufficient microscopic detail. In practice, most systems
are too complex to allow this to be done. In any case, the third law
remains useful in indicating the limiting behaviour of various quantities
at low temperatures, and it provides a valuable check both for experi-
ments and for theories.



APPENDIX

Magnetic energy

There are two forms of the first law which may be found in treatments
of magnetic effects, and there has been considerable confusion as to
which of them is ‘correct’. It is the purpose of this appendix to explain
the difference between them.

In section 3.5.4, we showed that the work done on a magnetic material
in the process of changing its magnetization is

dW=B -dm (A.1)
which gives the first law in the form

dU=TdS+B -dm. (A.2)
The alternative form for the work done in magnetizing a body is

dW'=-m -dB (A.3)
giving for the first law

dU'=TdS—-m - dB. (A.4)

Does U or U’ represent the true energy of the system?

Let us first show how dW’ is derived. We shall again suppose that
the magnetic field with which we magnetize the body is produced by a
solenoid, but this time, we shall keep the current through the solenoid
constant and calculate the mechanical work done as we magnetize the
body by moving it into the field.

The field induces a dipole moment in the material, m, and when this
is in a region of non-uniform field, there is a net force

F=(m V)B.

The work done in a small displacement ds is
dW'=—F -ds=-m -dB

which is (A.3) and gives the first law as (A.4).
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Both these sets of equations are correct. The difference is that in the
second case some of the mechanical work involved in moving the material
into the field is done on the source of the field. We may calculate what
this amounts to by finding the e.m.f. induced in the solenoid by the
moving body. Using the same notation as in section 3.5.4, the mutual
inductance of the solenoid and an elementary current loop in the material
is

le =b-a
and the flux threading the solenoid due to i» flowing in this loop is
d(b=i2a -b=m' - b.
That due to the whole body is
O=3(m'-b).
As the body is moved into the solenoid, both m’ and b will change. The
induced e.m.f. is therefore

. d ,
$—¢—a?Z(m b)

and the work done by the battery in a small change
dW =i, dt=d(Z(m’'- B)).

If the field is uniform over the body, this becomes
dW=d(m - B)

where m is the total magnetic moment of the specimen.
Thus, the net work done on the magnetic material is
dW=d(m -B)—m -dB=B -dm
which is identical to (A.1).

Thus, there is no inconsistency between the two sets of equations.
They refer to different systems. (A.1) and (A.2) apply to the magnetic
material only, while (A.3) and (A.4) include the source of the field as
part of the system. Both are correct, and, obviously, they will lead to
identical physical results.

It should be noted that the effect of including the source of field is to
make B the extensive and m the intensive variable, and to exchange
the internal energy with the enthalpy and the Helmholtz function with
the Gibbs function. For example, defining the internal energy through
(A.2), the enthalpy becomes

HS,B)=U—-m-B
and
dH=TdS—-m -dB=dU'.
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while defining it from (A.4), the enthalpy becomes
H'S,m)=U'+m B

and
dH'=T dS+B -dm =dU.

Generally, in classical thermodynamics, it is more convenient to
exclude the source of field from the system and to use equations (A.1)
and (A.2); but equations (A.3) and (A.4) are the natural ones to use
when the microscopic nature of the system is being considered as is done
in statistical mechanics. The natural way to construct the energy of the
system in this case is to write

U'= Uo—E(m . B)
where U, is the internal energy in other than magnetic forms. If the
field is uniform over the body, this becomes

U' = Uo—
and in a small change in the state of the system the change in U’ is
dU'=dUy—B -dm —m - dB. (A.5)

We now examine the significance of the term B - dm in (A.S). For the
magnetization to change, the microscopic dipoles must change their
orientations. That is, they must undergo transitions between their energy
levels. The energy changes involved in this will normally be communi-
cated to the lattice in which the dipoles are situated by the emission or
absorption of phonons. Thus, when transitions occur, an amount of
energy B - dm passes from the magnetic part of the system into the
non-magnetic. We may therefore write, in general,

dUp=TdS+B -dm
(assuming other forms of work to be negligible), giving

dU'=TdS—m - dB.
These are just (A.2) and (A.4), and we see that the latter turns out to
be the natural energy function in this case.



Useful data

Fundamental constants
speed of light

elementary charge
gravitational constant
Planck constant

Boltzmann constant
electron mass

proton mass

unified atomic mass constant
Avogadro constant

molar gas constant
permeability of vacuum
permittivity of vacuum
Stefan-Boltzmann constant

Other useful data
electronvolt
acceleration of free fall

molar volume of ideal gas at s.t.p.

density of mercury at 15°C
standard atmosphere
millimetre of mercury

specific heat capacity of water at 15 °C

density of air at s.t.p.

c=3.00x10°ms™!
e=1.60x10""C
G=6.67x10"""Nm? kg™
h=6.63x10">*Js
2w =h=1.05x10"*7Js
k=138x10"2JK!
m.=9.11x10" kg
m,=1.67x10"" kg
m,=1.66x10""" kg
Na=6.02x10*mol™!
R=8.31JK ' mol™!
po=47x10"Hm™
€=8.85x10""Fm™!
0=5.67x10°*Wm2K™

1eV=1.60x10""J
g=9.81ms™
=2.24%x102m?
=13.6x10°kgm™
1atm=1.01x10°Pa
1 mmHg =133 Pa
=4.19x10°JK ' kg™
=1.29kgm™>



Problems

The first part of the problem numbers refers to the chapter with which
the problem is most closely associated

1.1 w is a function of three variables x, y, and z. Prove that

@ (). /G.

o ()66,

which are the reciprocal and reciprocity theorems for functions of three
variables.

1.2 A and B are both functions of the variables x and y, and A/B =C.
Show that
(a(ln B)) B (a(ln A))
_ dy /« ay x

(:_;)C B (a(ln A)) B (a(ln B)) '

ax ax

2.1 Can isotherms for different temperatures intersect?

2.2 A constant volume gas thermometer contains a gas whose equation
of state is

(p+5) (Vm-b)=RT,

and another, of identical construction, contains a different gas which
obeys the ideal gas law, pV,, = RT. The thermometers are calibrated at
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the ice and steam points. Show that they will give identical values for a
temperature.

[Assume that the thermometers are constructed so that all the gas is at
the temperature being measured.]

2.3 A constant volume gas thermometer of volume 1x 107> m® contains
0.05 mol of a gas. It is assumed that the gas obeys the perfect gas law,
PVm=RT; but, in fact, its behaviour is better described by the equation

(p+a/Va)(Vm—b)=RT

where a=8x10*Nm*mol™ and 5=3x10"°m’>mol™". The ther-
mometer is calibrated at the triple point of water. By how much will
temperature measurements be in error at 100 °C?

3.1 A system consists of a battery of constant e.m.f. &, in series with a
capacitor of capacitance C, which is initially uncharged. Find the work
required to pass a charge Q through the system.

3.2 A spring obeys Hooke’s law: f =c(L — L), where f is the tensional
force, L the length, L, the length at zero tension, and c is a constant.
Show that the work done in stretching the spring from L; to L, is
W=%c(L,—L\)(L2—2Lo+L,).

3.3 Show that the pressure difference across a cylindrical liquid surface
of radius r is y/r.

3.4 The equation of state of an ideal elastic substance is
L Lj
(2
f Lo L2
where b is a constant and L, the length at zero tension, is a function

of temperature T only. Calculate the work required to compress the
substance reversibly and isothermally from L =Ly to L = iLo.

3.5 An imperfect gas obeys the equation
(p+a/Va)(Vm—b)=RT

where a =8x10* N m*mol™ and b =3 x107° m® mol™". Calculate the
work required to compress 0.3 mol of this gas isothermally from a volume
of 5x107°>m® to 2x 107° m* at 300 K.

3.6 Iron ammonium alum is a paramagnetic salt which obeys Curie’s
law reasonably well to below 1 K. Given that y =0.19/(T/K), calculate
the work done in magnetizing 1 X 10™° m? of the salt in a field of induction
1Tat4.2K.
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3.7 In a certain calorimetric experiment designed to determine the
specific heat capacity of copper, 0.1 kg of the metal at 100 °C is added
to 2x107*m® of water at 15°C which are contained in a thermally
insulated vessel of negligible thermal capacity. After the mixture has
reached equilibrium, the temperature is found to be 18.8 °C. If the heat
capacities of copper and water are essentially constant over the range
of temperatures concerned, what is the specific heat capacity of copper?

Does this experiment measure ¢, or cy? Would there be much
difference between these quantities for copper under the conditions of
the experiment?

3.8 Below 100K the specific heat capacity of diamond varies as the
cube of thermodynamic temperature: ¢, =aT>. A small diamond, of
mass 100 mg, is cooled to 77 K by immersion in liquid nitrogen. It is
then dropped into a bath of liquid helium at 4.2 K, which is the boiling
point of helium at atmospheric pressure. In cooling the diamond to
4.2 K, some of the helium is boiled off. The gas is collected and found
to occupy a volume of 2.48 X 10> m® when measured at 0 °C and 1 atm
pressure. What is the value of a in the formula for the specific heat
capacity of diamond?

[The latent heat of vaporization of helium at 4.2 K is 21 kJ kg™ .]

3.9 Water flows through the tube shown below at the rate of 1X
107°> m®s™?, at which rate the flow is streamlined. What are the differen-
ces in the heights of the columns of water in the manometers 1,2, and 3?

1 2 3

CANNANRARANNNNY

T

A = 100 mm? A = 50 mm?

4.1 Prove that if the Kelvin statement of the second law is untrue, then
the Clausius statement must also be untrue.

4.2 Prove Carnot’s theorem using the Kelvin statement of the second
law.
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4.3 It has been suggested that a perpetual motion machine could be
constructed in the following way. A long vertical tube contains water.
At the bottom, the water escapes through a turbine which drives an
electrical generator, and the electrical power is used to electrolyse the
water to gaseous hydrogen and oxygen. By increasing the height of the
column of water, the energy delivered to the turbine by the water may
be increased indefinitely so that, by making the column sufficiently tall,
more than enough power may be obtained to electrolyse all the water
passing through. Excess power is used to obtain useful work in the
surroundings. The whole system is enclosed in another vertical tube,
closed at the top, and the gases diffuse up this to the top of the water
column where they are recombined by a catalyst and replenish the supply
of water as quickly as it is used. The device therefore runs indefinitely
and provides a perpetual source of power. Where is the fallacy?

4.4 A heat engine operates between a tank containing 1x10°>m® of
water and a river at a constant temperature of 10 °C. If the temperature
of the tank is initially 100 °C, what is the maximum amount of work
that the heat engine can perform?

4.5 What is the maximum amount of work that may be obtained by
operating a heat engine between two beakers of water which are
initially at 0 °C and 100 °C and which both contain 1 x 10~ m> of water?

4.6 An air-conditioning unit consumes 4 kW from the electricity mains
and extracts 3 kW of heat from the room it is cooling. Estimate how its
efficiency compares to that of an ideal refrigerator.

4.7 Electricity is used to provide domestic hot water at 100 °C. The
water is supplied at 10 °C, and may be heated either with an immersion
heater or with an ideal heat pump which extracts heat from the surround-
ings at 10 °C. Compare the power consumptions when (a) the immersion
heater is used, (b) the heat pump supplies heat to the hot water tank
so as to keep it at 100 °C, (c) the heat pump heats ‘packets’ of water
from 10°to 100 °C and then adds them to the hot water tank as required.

4.8 A building at a temperature T is heated by means of a heat pump
which uses a river at T as a source of heat. The heat pump, which may
be assumed to have an ideal performance, consumes a constant power
W, and the building loses heat to its surroundings at a rate a (7T — T)),
where a is a constant. Show that the equilibrium temperature of the
building, T, is given by

7% 4aT0)1/2}
e=To+—{1+(1+—— .
To=Toty {14(1+ 7
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4.9 The specific heat capacity of copper at low temperatures is given by
C,/kIK ' kg ' =30.5(T/6)*
where @ = 348 K is the Debye temperature of copper.
How much energy is required to heat 100 g of copper from 4K to
20K?
What is the minimum energy required to cool the copper back to 4 K
with a refrigerator operating from room temperature?

5.1 Can an isentrope cut an isotherm more than once in a system with
two degrees of freedom?

Can you generalize your conclusion so as to be able to say what may
happen in a system with more than two degrees of freedom?

5.2 50kJ of electrical energy are dissipated in 1x 10~ m® of water. If
the water was initially at 15 °C, and if that is also the lowest temperature
available, what proportion of the energy is reconvertible into work?

5.3 Prove the result of equation (5.15).

5.4 1x 107> m? of water is warmed from 20 to 100 °C (a) by placing it
in contact with a large reservoir at 100 °C, (b) by placing it first in contact
with a large reservoir at 50 °C until it reaches that temperature, and
then in contact with the reservoir at 100°C, and (c) by operating a
reversible heat engine between it and the reservoir at 100 °C. In each
case, what are the entropy changes of (i) the water, (ii) the reservoirs,
and (iii) the universe?

5.5 Calculate the change in entropy of 1 kg of water when it is heated
from 15 to 100 °C and completely vaporized.

Does the change in entropy imply any irreversibility in the process?
[The latent heat of vaporization of water at a pressure of 1atm is
2.3x10°Jkg™ "]

5.6 Calculate the changes in the entropy of the universe as a result of
the following processes:

(@) A copper block of mass 400 g and thermal capacity 150 JK™! at
100 °C is placed in a lake at 10 °C.

(b) The same block at 10 °C is dropped from a height of 100 m into the
lake.

(c) Two similar blocks at 100 °C and 10 °C are joined together.

(d) An initially uncharged capacitor of capacitance 1 uF is connected
to a battery of e.m.f. 100 V at 0 °C.

(e) The same capacitor, after being charged to 100V is discharged
through a resistor at 0 °C.
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(f) One mole of a gas at 0 °C is expanded reversibly and isothermally
to twice its initial volume.
(g) One mole of a gas at 0°C is expanded reversibly and adiabatically
to twice its initial volume.

5.7 A mass m of ice at tempefature T, is added to an equal mass of
water at T, and the mixture is allowed to reach equilibrium. Prove that
the change in entropy of the universe is

T, L T3

m[cfJ In i+?i+cr’ In (TiTz)]
where ¢} and ¢, are the heat capacities of ice and water respectively
(assumed constant), L is the latent heat of fusion of ice at 273 K, T; is the

melting point of ice and T is defined by

2c)Ts=Ti(cy —ch)+Tacy +Ticp—L.

What is the significance of T in this result?

5.8 A bath is equipped with two taps, one of which supplies hot water
at a temperature of 330 K, and the other cold water at 290 K, which is
also the temperature of the surrounding room. The taps are turned on
and allowed to deliver 0.1 m> of water each. The result, after a certain
amount of cooling has occurred, is a bath full of warm water at 305 K.
Calculate the amount by which the entropy of the universe increases in
the process.

[Ignore the thermal capacity of the bath itself.]

5.9 In a certain experiment 5 g of liquid helium at 0.5 K are to be cooled
further by bringing them into contact with 100 g of a paramagnetic salt
which is initially at a lower temperature 7. The specific heat capacity
of the liquid may be written ¢, = aT>, where a =20 J kg™* K™, and that
of the salt may be written c,=bT "2, where b = 0.1 J kg™ K. If the final
equilibrium temperature is 0.4 K, calculate the initial temperature of
the salt and the net increase in entropy during the process.

[Assume the mixture to be mechanically and thermally isolated from
the rest of the universe.]

5.10 Three identical bodies of constant heat capacity C, are initially
at temperatures of 300, 300, and 100 K. If no work or heat is available
from other sources, then, by operating heat engines between the bodies,
(a) what is the maximum amount of work which may be obtained, and
(b) what is the highest temperature to which any one of the bodies may
be raised?
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5.11 Two streams of incompressible fluids have initial temperatures T;,
mass flow rates m; and constant specific heat capacities c;. Show that the
maximum power that could be obtained by operating a heat engine
between the streams is

ay Tl + asz - (a 1+ az) TTI/(a'+a2)T’;2/(al+a2)
where

a; =mi;.
5.12 A heat engine using an ideal gas in a Joule cycle may be used to
extract energy from streams of fluid at different initial temperatures. A
Joule cycle consists of two adiabatics and two isobars, heat being
exchanged reversibly during the isobaric processes by contact with a
series of reservoirs. Here, the series of reservoirs is replaced by the
streams of fluid whose temperatures change as heat is exchanged. Show
that the maximum available energy as derived in the previous question
can only be obtained with an ideal gas operating in a Joule cycle if
a1=ay=a in which case, the power available is a (T'1'> — T3/*)%.

5.13 The Kapitza helium liquefier uses the following cycle in its first
stage. Helium is compressed to 30 atm at 300 K, and passes through a
heat exchanger where it is cooled at constant pressure to 10 K. It then
expands approximately isothermally in a small expansion engine (doing
mechanical work), and is passed back through the heat exchanger at
1 atm, where it warms up to 300 K and returns to the compressor. The
helium does not behave like a perfect gas, but its heat capacity at constant
pressure is approximately independent of pressure. Show that if the
compressor, engine and heat exchanger are all as -efficient as possible,
the cycle is reversible. Hence find the ratio of the heat absorbed at 10 K
to the total work done on the helium.

7.1 A piece of rubber is subject to work by hydrostatic pressure and
by a tensional force.

(a) Construct the expression for dU.

(b) Generate the potentials which have as proper variables (S, V, f),

(S,p, f), and (T, p, f).
(¢) Derive the Maxwell relations

(:_‘T?) Ls —(aa_g) viL
()., =7,

(o). = G,
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7.2 A gas with the equation of state p(Vi,—b)=RT flows along a
thermally insulated tube in which there is a constriction. On passing the
constriction, the pressure drops from p; to p,. If the heat capacity of
the gas at constant pressure is constant and the speed of flow away from
the constriction is small, find the change in temperature.

7.3 A cylinder contains 0.1 kg of water at 15 °C. A piston increases the
pressure on the water isothermally from 1 atm to 100 atm. Find (a) the
work done on the water by the piston, () the heat removed from the
water, (c) the change in the internal energy of the water.

What would be the change in temperature of the water if the increase
in pressure were made adiabatically?
[For water at 15°C, the cubic expansivity is 1.5X 107*K™ and the
compressibility, 4.9x 107> Pa™'.]

7.4 The free energy of a Debye solid may be written in the form
F(T, V)=Uo(V)+Tf(®/T),

where Uy(V) is the internal energy at absolute zero for the solid with
volume V, and O is the Debye temperature, a function of the volume
only. Obtain an expression for the pressure, and show that the cubic
expansivity B, is related to the isothermal compressibility xr by the
formula

d(ln ®)

_k1vG _
d(In V)’

| %4

By where y=
7.5 A system consists of a film of a paramagnetic liquid thermally
isolated from its surroundings and held at constant tension in a constant
magnetic field. Find the potential function that must be minimum at
equilibrium.

8.1 When a thermally isolated atmosphere in a gravitational field is
stirred, a vertical temperature gradient is set up. Show that the gradient
is given by

dT _ (y-1)Mg

dh ¥R
where g is the acceleration of free fall, M is the molar mass and R the
molar gas constant. Estimate the magnitude of this gradient near the
earth’s surface.

8.2 A vertical cylinder is closed at the bottom. Gas is enclosed in the
cylinder by a close-fitting but frictionless piston above which there is an
evacuated space. The piston is displaced slightly from its equilibrium
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position and released. Show that the period of the resulting oscillations
is 27r(h/vg)"/?, where h is the height of the piston above the closed end
when it is in equilibrium.

[The mass of the gas may be assumed to be negligible in comparison
with that of the piston.]

8.3 A perfect gas flows adiabatically through a horizontal tube of varying
cross-sectional area. If viscous effects are negligible and the flow is
streamlined, show that the velocity of flow, 7, and the temperature T
of the gas vary along the tube according to the relationship

2y RT '
924 =Y 22 constant
y-1M
where R is the molar gas constant, M the molar mass and y the ratio
of the principal heat capacities which are assumed constant.

8.4 A compressor takes in air at a pressure of 1atm and delivers
compressed air at 10 atm. It uses 250 W of power and its mechanical
efficiency is 65 per cent. If the compression is truly adiabatic, at what
rate will it deliver compressed air, and at what temperature?

[Take v for air as 1.4 and assume that the ambient temperature is 300 K.]

8.5 In a certain compressor a perfect gas at room temperature T, and
atmospheric pressure p, is compressed adiabatically, and is then passed
through water-cooled tubes until it eventually emerges at pressure p;
and temperature T,. Find an expression for the work required for this
process, compared with that which would be needed for a reversible
isothermal compression leading to the same result and show that the
ratio is not less than unity. Examine also the changes of entropy occurring
in the two processes.

[Note thatif a >1and x >0, thena*>1+x Ina.]

8.6 If the coldest available reservoir is a lake at 10 °C, what is the
maximum amount of useful work which may be obtained from 1 x 10> m*
of a perfect gas which is initially at 100 °C and 10 atm pressure and for
which y =1.5?

8.7 The principal specific heat capacities of a certain perfect gas are
¢, =1.0 and ¢y =0.7kJ K™ kg™". In a reversible heat engine the gas is
(a) heated at constant volume until the pressure is 6/5 of its initial
value, (b) heated at constant pressure until its volume is 5/4 of its initial
value, (c) cooled at constant volume until the pressure returns to its
initial value, (d) cooled at constant pressure until the volume returns to
its initial value. Find the greatest possible efficiency of this engine and
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the ratio of the maximum and minimum temperatures of the gas. How
does the efficiency of the engine compare with that of a Carnot engine
working between the same extremes of temperature?

8.8 A perfect gas, for which y = 1.5, is used as the working substance
in a Carnot engine operating between reservoirs at 300 °C and 50 °C.
The isothermal process at the hotter reservoir consists of an expansion
from a pressure of 10 atm and a volume of 1x 10> m? to a pressure of
4 atm and a volume of 2.5 X 107> m®. (a) Between what limits of pressure
and volume does it operate at the cold reservoir? (b) Calculate the heat
taken from the source and the heat rejected to the sink in each cycle
and show that the efficiency is indeed (1—T>/T;). (c)If the area of the
piston with which the volume changes are effected is 0.02 m’ and a force
of 100N is needed to overcome friction between it and the cylinder,
calculate the loss in efficiency due to friction.

8.9 In afour-stroke internal combustion engine, the fuel and air mixture
is drawn into the cylinder at a temperature 7; and compressed adiabati-
cally to its burning temperature 7. It then burns and expands at such
a rate that the temperature is steady during the working stroke. At the
end of the working stroke, the exhaust valve opens and the burnt gas
is swept out. Assuming that throughout the cycle the mixture behaves
like a constant mass of perfect gas, show that the efficiency cannot be
greater than that of the corresponding three-sided reversible cycle, and
prove that the latter is given by

_1-TT,

"= Ty

8.10 A gas obeys the equation p(V,,—b) = RT, and has Cy, independent
of temperature. Show that (a) the internal energy is a function of
temperature only, (b) the ratio ¥y = C,/Cy is independent of temperature
and pressure, (c) the equation of an adiabatic change has the form

p(Vm—b)” = constant.

8.11 Show that for a gas obeying van der Waals’ equation:
(p+a/ V2) (Vm—b)=RT, T(Vm—b)R/C"'V is constant in a reversible
adiabatic expansion provided that Cy,v is independent of temperature.

8.12 Show that the critical constants of the Dieterici and van der Waals
gases (see section 8.3) are

Dieterici

—_a_ -2 = =—a—-
Pe=gpz€ »  Ve=2b  Te=ipp



Problems 267

Van der Waals
a 8a
Pe=57p7 Ve=3b,  Te=37rp

8.13 According to the law of corresponding states, the behaviour of all
substances should be the same if the pressure, volume, and temperature
are measured in reduced units, w =p/p., ¢ = V/V.and 8 = T/ T, where
D, Vo, and T, are the critical constants. Show that the reduced forms
of the Dieterici and van der Waals equations are

Dieterici
T(2p—1)=0exp (2—2/6¢)
Van der Waals
(m+3/¢>) (36 —1)=88.
8.14 The heat capacity of hydrogen at constant volume between 100
and 150 K is adequately described by the equation
Cuv/R=1+7x1073(T/K)

where R is the molar gas constant and T the temperature. If some
hydrogen is to be cooled from 150 to 100 K by a reversible adiabatic
expansion, by what factor must its volume be increased?

8.15 A metal wire of cross-sectional area of 0.85 mm?® under a tension
of 20N and at a temperature of 20 °C is stretched between two rigid
supports 1.2 m apart. If the temperature is reduced by 8 K, what is the
final tension assuming that the linear expansivity and the Young modulus
are 1.5x 10> K" and 2 x 10"" Pa respectively?

8.16 An elastic filament is such that when stretched by a force f at a
temperature T, the extension x is given by the equation

ux =at+f
where u =puo(l1+Bt) and t=T—-T,, Ty, a, B, and o being positive
constants. When the filament is maintained at constant length and heated,
its heat capacity is found to be proportional to temperature, C, = AT.
Show that:
(a) A is independent of x.
(b) If the entropy is So when ¢ =0 and x =0, then

S =So+ax—3uoBx’+At
(c) If the filament is heated under no tension, the thermal capacity is

2 2
Cpuo= (A +":‘3' ) T,
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(d) For small extensions under adiabatic conditions, the filament cools
and the appropriate spring constant is

woa’

u’A’

(e) When the adiabatic extension is increased so that x >a/(Buo), the
filament starts to get warmer.

u+

8.17 A wire is under tension. Show that, if the wire suffers an adiabatic
fractional increase in length of Ax, then the increase in temperature is
given to first order by

T
AT = -—{a -

CL of
where C is the heat capacity per unit volume of the wire at constant
length, o the stress (the tensional force per unit cross-sectional area),
E the Young modulus (assumed independent of o) and a, the linear
expansivity at zero tension.

d(in E)}
ar A%

8.18 An atomizer produces minute water droplets of diameter 100 nm.
A cloud of droplets at 35 °C coalesces to form a single drop of water
of mass 1 g. Estimate the temperature of the drop if no heat is lost in
the process, given that the surface tension of water decreases approxi-
mately linearly with temperature and is 7SmNm™' at 5°C and
70 mN m ™" at 35 °C.

8.19 A sample of iron ammonium alum, a paramagnetic salt, is to be
cooled from 4.0 K to 0.5 K by adiabatic demagnetization. What magnetic
field is necessary, given that in this temperature range

Cu/R =1.4x10"4T/K)*-7.0x 10*(T/K) >
and

x =0.19/(T/K)?

[The molar volume of iron ammonium alum = 2.82x 10™* m>.]

8.20 In a set of experiments on potassium chrome alum, the following
data were obtain
a(S/R )]
* *

T C3/R [—a ™ |,

0.064 0.38 12.0

0.054 0.159 7.3

0.044 0.023 2.7

0.034 0.024 6.1
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where T* is the magnetic temperature, C§ =dQp/dT* is the heat
capacity on the magnetic temperature scale measured by adding known
amounts of heat to the salt, and 3(S/R)/dT* is found from measurements
at known temperatures in the helium range. Calculate the corresponding
thermodynamic temperatures.

8.21 A very small spherical meteor is at a distance from the sun of
50 sun diameters. Estimate its temperature, given that the surface tem-
perature of the sun is 6000 K.

8.22 A solar furnace uses a perfectly reflecting concave mirror of aper-
ture 0.2 m and focal length 2 m. At the position of the image of the sun
is a perfectly absorbing sphere 2 mm in diameter made of a metal with
a specific heat capacity of 400 J K™ kg™" and density 8 mg mm>. Find
(a) the initial rate of rise in temperature of the sphere, (b) the final
temperature attainable.

[Angle subtended at the earth by the sun=9x 107> rad. Temperature
of the sun= 6000 K.]

8.23 The temperature of a long metal rod of diameter 2 mm is maint-
ained at 1000 °C. It is surrounded by two coaxial cylindrical radiation
shields of diameter 4 mm and 6 mm, and of negligible thickness. If the
entire space is evacuated and all radiating surfaces are black, calculate
the temperature of the outer shield when equilibrium has been
established assuming that the energy incident from the surroundings
is negligible.

8.24 Heatis generated electrically in a long wire at the rate of 10 Wm™".

The wire, which is 2 mm in diameter, can only lose heat by radiation to
a thin walled coaxial tube, 30 mm in diameter. This, in turn, is covered
with a layer of a bad conductor 70 mm thick, the outside of which is
maintained at a temperature of 20 °C by cooling water. If the thermal
conductivity of the bad conductor is 5.0 x 107> W m™' K™, what will be
the temperature of the wire when conditions are steady?

[The surfaces of the wire and tube may be regarded as black.]

8.25 A large storage vessel for liquid oxygen may be considered as a
perfectly evacuated spherical Dewar vessel of inner radius 1 m, and
outer radius 1.2 m. Treating the walls of the vessel as perfectly black,
calculate the rate of loss of oxygen due to radiation.

How would the rate of loss be changed if a spherical copper radiation
shield were interposed midway between the inner and outer walls?
[Reflectivity of copper=0.98 and may be taken as independent
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of wavelength and temperature. Temperature of the surroundings=
300 K. Normal boiling point of liquid oxygen=90 K. Latent heat of
oxygen=2.4x10°Jkg ']

8.26 Two circular discs of the same radius are held parallel and close
together. They are maintained at temperatures 7; and 7, and their
surfaces have emissivities a; and a,. Show that the net flow of energy
between the discs by radiation is equivalent to having black surfaces
with an effective radiation constant given by

Oe/ 0 = a1az/(a1+az—aa3)
where o is the Stefan-Boltzmann constant.

8.27 A paramagnetic ideal gas obeys Curie’s law: y, = a/T, where xm
is the susceptibility and a is a constant. A volume V, of the gas is placed
in a magnetic field of flux density B,, which is then reduced adiabatically
to zero. How must the volume be changed as a function of field if the
temperature of the gas is to remain constant?

8.28 Show that the entropy density of equilibrium radiation is 3AT>
where A is the constant appearing in equation (8.61).

n identical containers of volume V and of negligible heat capacities
are initially filled with radiation characteristic of temperatures
T, T, ..., T, Show that if no work or heat is available from other
sources, then by operating reversible heat engines between the containers
(a) the maximum work which may be extracted is

w=Av[i§"1 T -n‘”?'(él T?)m}

(b) the highest temperature T to which the radiation in any one of the
containers may be raised is given by
n 4 n 3
[z T?—T3] =(n—1)[z T:.‘—T‘] .
i=1 i=1
8.29 Measurement of radiation reaching us from interstellar space
suggests that the universe is filled with radiation resembling black body
radiation of temperature 2.9 K. This cosmic black body background is
believed to be a remnant of an early stage in the evolution of the universe.
When the universe was small and hot, matter and radiation evolved with
a common temperature. This continued as the universe expanded and
cooled until the temperature fell to about 3000 K when matter and
radiation became essentially decoupled. Since then the radiation is
considered to have undergone a reversible adiabatic expansion. By what
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factor has the volume of the universe increased since radiation and
matter became decoupled? How has the radiation done work during the
expansion?

9.1 A perfect gas has constant principal heat capacities and is initially
at a pressure p; and a temperature T;. Find its final temperature when
itundergoes an expansion to a pressure p,, (a) without change of entropy,
(b) without change of internal energy, (c) without change of enthalpy.
How would such expansions be achieved?

9.2 One mole of a gas whose equation of state is p(Vy,—b) = RT under-
goes a free expansion from a volume 25 to a volume 4b. Calculate the
change in entropy and the change in temperature.

9.3 One mole of hydrogen occupies a volume of 0.1 m® and is at 300 K.
One .mole of argon also occupies a volume of 0.1 m’ but is at 400 K.
While isolated from their surroundings, each undergoes a free expansion,
the hydrogen to five times and the argon to eight times its initial volume.
The two masses are then placed in thermal contact with each other and
reach thermal equilibrium. What is the total change in entropy?

[For hydrogen, cv = 10 kJ K™' kg™". Argon has a relatlve atomic mass of
40 and ¢y =0.31 kJK ' kg™'.]

9.4 Two vessels, A and B, have equal volumes and negligible thermal
capacities. They are thermally insulated from one another and from the
surroundings, but are connected by a narrow capillary fitted with a tap.
Initially, A contains a perfect gas at a pressure po and temperature T,
and B is evacuated. The tap is opened, and gas flows from A to B until
the pressures becomes equal. What is the final pressure, and what are
the final temperatures of A and B?

9.5 The equation of state for helium gas may be written in the form
pVm=RT(1+B/Vy,) where B is a function of temperature only and
has the following values:

T/K 10 200 30 40 50 60 70
B/10°m*mol™’ -233 —-4.0 +24 +56 +7.6 +89 +9.8

Determine (a) the Boyle temperature, (b) the inversion temperature,
(c) the temperature drop when helium initially at 20K and 10 atm
pressure expands into a very large empty vessel under conditions of
thermal isolation.

[For helium, Cmy =3R.]
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9.6 Find the maximum inversion temperature of the gas whose equation
of state is

(p+

x

7) (Va=y)=RT,

where x and y are constants.

9.7 Calculate the ratio of the maximum inversion temperature to the
critical temperature for (a) a Dieterici gas, and (b) a van der Waals gas.
[See section 8.3, and problem 8.12.]

9.8 A particular gas has Cp,, =3R and an equation of state
p(Vm—b)=RT
where b is a constant equal to 20 cm® mol™'. By how much will the

temperature change in a Joule-Kelvin expansion from a pressure of
100 atm to 1 atm?

9.9 Show that when a Dieterici gas (section 8.3) suffers a Joule-Kelvin
expansion in which the pressure drop is small, then there is no change
of temperature when

9.10 Compressed helium gas enters the final stage of a helium liquefier
at 14 K. A fraction « is liquefied and the rest is rejected as gas at 14 K
and at atmospheric pressure. Use the following data to determine the
input pressure which allows a to take its maximum value, and determine
what that value is.

Pressure/atm: 0 10 20 30 40
Enthalpy of gas at 14 K/kJ kg™ : 87.0 78.2 72.8 71.6 723

Enthalpy of liquid helium at atmospheric pressure = 1.0 kJ kg™ ".

9.11 In the Simon expansion method for liquefying helium a thermally
isolated vessel is filled with gas under pressure at 10 K, and the gas is
then allowed to leak slowly away. Owing to the low density of liquid
helium, it is possible to choose the initial conditions in such a way that
the vessel ends up full of liquid boiling at 4.2 K at a pressure of 1 atm.
Assuming that until it liquefies the helium can be treated as a perfect
gas with Cp, =3R and that its latent heat is 84 J mol ™’ find the initial
pressure required.

[Hint: Consider only that fraction of the helium which is left behind at
the end, and show that its entropy in the initial and final states must be
the same.]
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9.12 In a helium liquefier, just before the final expansion valve, the
pressure of the gas is 25 atm and the temperature is 6.5 K. After the
expansion, the pressure is 1 atm and the temperature is 4.2 K. Select
the relevant information from the following data to deduce what fraction
is liquefied.

Sgas (25 atm, 6.5 K) — jiquia (1 atm, 4.2 K)=2.9kJ kg™’

Ugas (25 atm, 6.5 K) — ujiquia (1 atm, 4.2 K)= 18 kT kg™

Pgas (25 atm, 6.5 K) — Ajiquia (1 atm, 4.2 K) =19 kJ kg™ .
At a pressure of 1 atm, the latent heat is 21 kJ kg~' and the specific heat
capacity of the gas at constant pressure is 6.7 kJ K™'kg™" throughout
the relevant temperature range.

9.13 Apply the first law to the thermoelectric effects to obtain equation
(9.27) taking the ‘irreversible’ heat terms into account.

9.14 A thermocouple is made of two metals whose Thompson
coefficients are both proportional to thermodynamic temperature. Show
that if one junction is kept at 0 °C and the other is at Celsius temperature
t, the thermoelectric voltage is given by € = at + bt>, where a and b are
constants.

Values of the constants for two thermocouples are:

Couple a/uVK™?'  b/uVK™?
copper-lead 2.8 0.006
constantan-lead -38.1 0.045

Calculate the Peltier coefficient for a copper—constantan junction and
the difference between the Thompson coefficients of copper and constan-
tan at 100 °C. At what temperature does & for a copper-constantan
couple takes its maximum value?

10.1 When lead is melted at atmospheric pressure the melting point is
327.0°C, the density decreases from 1.101 to 1.065x10*kgm™, and
the latent heat is 24.5 kJ kg™". What is the melting point at a pressure
of 100 atm?

10.2 Between 700 and 739 K, the vapour pressure p of (solid) mag-

nesium at temperature 7 is given approximately by

1.7x10*
(T/K)

Deduce the average heat of sublimation for this temperature interval.

In (p/mmHg) = — +19.6.

10.3 In the transition from ferromagnetic to paramagnetic nickel at the
Curie point, 631 K, the heat capacity at constant pressure changes by
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6.7 J K™ mol™" and the volume expansivity by 5.5 x 107 K™, The molar
volume of nickel is 6.6 x 107° m>. Calculate the effect of pressure on
the Curie point assuming the transition to be second order.

10.4 Examine the following experimental data for water in the light of
equations (10.12) and (10.16).

temperature/°C 0 5 10 15 20
vapour pressure/mmHg 4,581 6.536 9.198 12.77 17.51
temperature/°C 25 30 35 40

vapour pressure/mmHg 23.73 31.79 42.14 55.29

For water vapour, ¢, = 1.9kJ K™! kg'l.

10.5 If ¢, and ¢, are the specific heat capacities of a liquid and of its
saturated vapour respectively, and / is the specific latent heat of vaporiz-
ation, show that

What is the physical significance of the fact that c, for saturated steam
is negative?
10.6 Show that when the saturated vapour of an incompressible liquid
is expanded adiabatically, some liquid condenses out if
d /L

Cp+ Tﬁ(?) <0

where C, is the heat capacity of the liquid (which is assumed constant)
and L the latent heat of vaporization.

10.7 Show that, for a system consisting of two phases in equilibrium,

() - _1(95)2
aV/s  Cy \dT
where dp/dT is the slope of the phase equilibrium curve.

10.8 Itis known that a certain substance consists of a mixture of liquid
and vapour below a curve on the p—V diagram. Elsewhere it is a single
phase. Near the critical point (p., V., T.), the curve is given to a good
approximation by the relation

pe—p=a(Ve—V)>.
A theory of the substance predicts that the vapour pressure of the liquid
near the critical point is given by

p=Aexp[-B(T.-T)*"].
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Calculate the latent heat near the critical point according to this theory.
Is the result reasonable?

10.9 The transition curve between normal and superconducting tin is
given approximately by

B./mT=30.4[1—-(T/3.73 K)*].

The density of tin is 7.29 X 10° kg m~>. What is the difference between
the specific heat capacities of normal and superconducting tin at 2 K?

10.10 The high temperature behaviour of iron may be idealized as
follows:

Below 900 °C and above 1400 °C, a-iron is the stable modification and
between these temperatures y-iron is stable. The specific heat capacities
of the phases may be taken as constant: 0.775 kJ K kg™’ for a-iron
and 0.690kJK 'kg™' for y-iron. What is the latent heat at each
transition?

10.11 A long tube is closed at one end and, at the other, is connected
to a supply of oxygen at a pressure of 100 atm. A short length of the
tube is subjected to a magnetic field of 1 T. What is the pressure of the
gas in the centre of this region?

[Oxygen is a paramagnetic gas with ym =2.0x 10" % ats.t.p.]

11.1 Two non-ideal gases may be mixed reversibly with semipermeable
membranes (Fig. 11.1). When the coupled membranes are moved slowly
a small distance éx, the whole system being kept at a constant tem-
perature, an amount of heat 8Q is rejected to the surroundings. Show
that there will generally be a net force on the coupled membranes and
calculate how it varies with temperature.

11.2 A mixture of two ideal gases is compressed slowly and adiabatically.
Discuss whether changes of pressure and temperature can be described
adequately by an appropriate effective value of y.

A mixture of 0.1 mol of helium (y =3) and 0.2 mol of nitrogen (y =%
is initially at 300 K and occupies 4 x 107> m>. Calculate the final pressure
and temperature when it is compressed slowly and adiabatically by 1
per cent.

11.3 A liquid is in equilibrium with a gas phase consisting of a mixture
of its vapour and of an insoluble gas whose partial pressure is p'.
Assuming that the components in the gaseous phase behave like ideal
gases, show that the vapour pressure of the liquid, p, is changed by the
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presence of the insoluble gas, the change, if it is not too large, being
given by

% _ VmL ]

po RT'
where po is the vapour pressure in the absence of the gas, and Vi is
the molar volume of the liquid.

11.4 An inverted U-tube of cross-sectional area 100 mm” has 100 mg
of sodium chloride at the bottom of one arm and 5x107%m® of water
in the other, the remaining space being filled with water vapour. It is
kept at a constant temperature of 20 °C and the water vapour condenses
on the salt side to form a salt solution. What is the difference in the
levels of the liquids in the arms when the system reaches equilibrium?
[Relative molecular mass of sodium chloride = 58.4. Vapour pressure
of water at 20 °C=17.5 mmHg.]

11.5 Sea-water contains about 30 kg m > of sodium chloride. Estimate
the minimum work required to obtain 1 m® of pure water from the sea.
[Relative molecular mass of common salt=58.4.]

11.6 Show that for a perfect gas reaction taking place at constant volume
and temperature, the numbers of moles of the constituents which are
present at equilibrium are connected by a relationship of the form

niny?...ne=K,(T, V)

where K, (T, V) is a function of temperature and volume only given by
1
InK,(T,V)= —ﬁz VitL oi

where the wq; are the Gibbs potentials for one mole of the constituents
in a volume V at temperature 7.
Show also that
AU
RT?
where AU is the heat of reaction at constant volume, and that

9 _ Ap
sy InKr=pr

where Ap is the change in pressure when »; moles react at constant
volume.

d
ﬁ (ll'l Kn)V =

12.1 Show that the e.m.f. of a reversible electric cell becomes constant
as T-0.
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12.2 Onthe basis of the following information, which is partly hypothesis
and partly somewhat simplified experimental data, calculate the melting
pressure of *He at 0 K.

(a) Between 0 and 10 uK, the heat capacity of the solid is very high, but
between 10 uK and 1 K, it is much less than that of the liquid.

(b) Below 1 K the heat capacity of the liquid is proportional to T.

(c) The expansivity of both phases may be assumed to be zero.

(d) At0.4 K, the melting pressure py, is 30 atm and dp,/d7T = 0. At0.7 K,
DPm is 33 atm.

12.3 For a superconductor, the specific heat capacity in the supercon-
ducting and normal states may be written

3
cs=cCe1+aT

and
cn=7vyT + aT?,
where a and vy are constants. Show that
1
Cel
—dt=1
I yT

0

where t = T/T. is the reduced temperature.

12.4 According to Debye’s theory, the heat capacity of a crystalline
solid may be expressed in the form

Cv =£(T/0)
where O is independent of temperature but depends on volume according

to the law ®oc V™7, y being a constant. Show that the cubic expansivity
B and the isothermal compressibility « satisfy the relation

B =vCwk/V.
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