Preface

Thermodynamics deals with the general principles and laws that govern the
behaviour of matter and with the relationships between material properties. The
origins of these laws and quantitative values for the properties are provided by
statistical mechanics, which analyses the interaction of molecules and provides
a detailed description of their behaviour. This book presents a unified account
of equilibrium thermodynamics and statistical mechanics using entropy and its
maximisation.

A physical explanation of entropy based upon the laws of probability is in-
troduced. The equivalence of entropy and probability that results represents a
return to the original viewpoint of Boltzmann, and it serves to demonstrate the
fundamental unity of thermodynamics and statistical mechanics, a point that
has become obscured over the years. The fact that entropy and probability are
objective consequences of the mechanics of molecular motion provides a physi-
cal basis and a coherent conceptual framework for the two disciplines. The free
energy and the other thermodynamic potentials of thermodynamics are shown
simply to be the total entropy of a subsystem and reservoir; their minimisation
at equilibrium is nothing but the maximum of the entropy mandated by the
second law of thermodynamics and is manifest in the peaked probability distri-
butions of statistical mechanics. A straightforward extension to nonequilibrium
states by the introduction of appropriate constraints allows the description of
fluctuations and the approach to equilibrium, and clarifies the physical basis of
the equilibrium state.

Although this book takes a different route to other texts, it shares with them
the common destination of explaining material properties in terms of molecular
motion. The final formulae and interrelationships are the same, although new
interpretations and derivations are offered in places. The reasons for taking a
detour on some of the less-travelled paths of thermodynamics and statistical
mechanics are to view the vista from a different perspective, and to seek a fresh
interpretation and a renewed appreciation of well-tried and familiar results. In
some cases this reveals a shorter path to known solutions, and in others the
journey leads to the frontiers of the disciplines.

The book is basic in the sense that it begins at the beginning and is entirely
self-contained. It is also comprehensive and contains an account of all of the
modern techniques that have proven useful in modern equilibrium, classical
statistical mechanics. The aim has been to make the subject matter broadly
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accessible to advanced students, whilst at the same time providing a reference
text for graduate scholars and research scientists active in the field. The later
chapters deal with more advanced applications, and while their details may be
followed step-by-step, it may require a certain experience and sophistication to
appreciate their point and utility. The emphasis throughout is on fundamental
principles and upon the relationship between various approaches. Despite this,
a deal of space is devoted to applications, approximations, and computational
algorithms; thermodynamics and statistical mechanics were in the final analysis
developed to describe the real world, and while their generality and universality
are intellectually satisfying, it is their practical application that is their ultimate
justification. For this reason a certain pragmatism that seeks to convince by
physical explanation rather than to convict by mathematical sophistry pervades
the text; after all, one person’s rigor is another’s mortis.

The first four chapters of the book comprise statistical thermodynamics.
This takes the existence of weighted states as axiomatic, and from certain phys-
ically motivated definitions, it deduces the familiar thermodynamic relation-
ships, free energies, and probability distributions. It is in this section that the
formalism that relates each of these to entropy is introduced. The remainder
of the book comprises statistical mechanics, which in the first place identifics
the states as molecular configurations, and shows the common case in which
these have equal weight, and then goes on to derive the material thermody-
namic properties in terms of the molecular ones. In successive chapters the
partition function, particle distribution functions, and system averages, as well
as a number of applications, approximation schemes, computational approaches,
and simulation methodologies, are discussed. Appended is a discussion of the
nature of probability.

The paths of thermodynamics and statistical mechanics arc well-travelled
and there is an extensive primary and secondary literature on various aspects
of the subject. Whilst very many of the results presented in this book may
be found elsewhere, the presentation and interpretation offered here represent
a sufficiently distinctive exposition to warrant publication. The debt to the
existing literature is only partially reflected in the list of references; these in
general were selected to suggest alternative presentations, or further, more de-
tailed, reading material, or as the original source of more specialised results.
The bibliography is not intended to be a historical survey of the field, and, as
mentioned above, an effort has been made to make the book self-contained.

At a more personal level, T acknowledge a deep debt to my teachers, col-
laborators, and students over the years. Their influence and stimulation are
impossible to quantify or detail in full. Three people, however, may be fondly
acknowledged: Pat Kelly, Elmo Lavis, and John Mitchell, who in childhood,
school, and PhD taught me well.



Chapter 1

Prologue

1.1 Entropy in Thermodynamics and Statistical
Mechanics

All systems move in the direction of increasing entropy. Thus Clausius intro-
duced the concept of entropy in the middle of the 19th century. In this — the
second law of thermodynamics the general utility and scope of entropy is ap-
parent, with the implication being that entropy maximisation is the ultimate
goal of the physical universe. Thermodynamics is based upon entropy and its
maximisation. The fact that the direction of motion of thermal systems is deter-
mined by the increase in entropy differentiates thermodynamics from classical
mechanics, where, as Newton showed in the 17th century, it is energy and its
minimisation that plays the primary role.

It was quickly clear that entropy in some sense measured the disorder of a
system, but 1t was not until the 1870’s that Boltzmann articulated its physical
basis as a measure of the number of possible molecular configurations of the
system. According to Boltzmann, systems move in the direction of increasing
entropy because such states have a greater number of configurations, and the
equilibrium state of highest entropy is the state with the greatest number of
molecular configurations. Although there had been earlier work on the kinetic
theory of gases, Boltzmann’s enunciation of the physical basis of entropy marks
the proper beginning of statistical mechanics.

Despite the fact that thermodynamics and statistical mechanics have en-
tropy as a common basis and core, they are today regarded as separate disci-
plines. Thermodynamics is concerned with the behavior of bulk matter, with
its measurable macroscopic properties and the relationships between them, and
with the empirical laws that bind the physical universe. These laws form a
set of fundamental principles that have been abstracted from long experience.
A relatively minor branch of thermodynamics deals with the epistemological
consequences of the few axioms. For the most part pragmatism pervades the
discipline, the phenomenological nature of the laws is recognised, and the main
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concern lies with the practical application of the results to specific systems.

Statistical mechanics is concerned with calculating the macroscopic proper-
ties of matter from the behaviour of the microscopic constituents. ‘Mechanics’
refers to the fact that the particles’ interactions are described by an energy func-
tion or Hamiltonian, and that their trajectories behave according to the usual
laws of motion, either clagsical or quantum. ‘Statistical’ denotes the fact that
a measurement yields the value of an observable quantity averaged over these
trajectories in time.

A typical macroscopic system has on the order of 1022 molecules. It is not
feasible to follow the motion of the individual particles, and in any case the
number of measurable thermodynamic parameters of the system is very much
less than the number of possible configurations of the particles. In theory and in
practice the microscopic states of the system are inaccessible. One instead seeks
the probability distribution of the microstates, and the consequent macroscopic
quantities follow as averages over these distributions. Despite its probabilistic
nature, statistical mechanics is able to make precise predicative statements be-
cause the number of microstates is so huge that the relative fluctuations about
the average are completely negligible.

Entropy has always remained central to thermodynamics, but nowadays it
has been relegated to a secondary role in statistical mechanics, where it gen-
erally emerges as just another thermodynamic property to be calculated from
the appropriate probability distribution. This is unfortunate because what has
become obscured over the years is the fundamental basis of these probability
distributions. In fact these distributions are properly derived by entropy max-
imisation; indeed from this basis can be derived all of equilibriuin statistical
mechanics. Likewise obscured in both disciplines is the nature of the various
thermodynamic potentials and free energies. Despite their frequent recurrence
throughout thermodynamics and statistical mechanics, it is not commonly ap-
preciated that they represent nothing more than the maximun entropy of the
system. The physical interpretation of entropy as the nmumber or weight of the
microscopic states of the system removes much of the mystery that traditionally
shrouds it in thermodynanics.

The theme of this book is entropy maximisation. One aim is to show the
unity of thermodynamics and statistical mechanics and to derive both from a
common basis. A second goal is to derive both disciplines precisely and in their
entirety, so that all of the various quantities that occur are defined and fully
interpreted. A benefit of using the present self-contained maximnum entropy ap-
proach consistently is the transparency of the results, which makes for relatively
straightforward generalisations and extensions of the conventional results.

To begin, a simple example that clarifies the nature of entropy and the ra-
tionale for entropy maximisation will be explored. The basic notions of states,
weights, and probability are then formally introduced and defined, and the fun-
damental equation for entropy that is the foundation of thermodynamics and
statistical mechanics is given. The particular reservoir and constraint method-
ology used in the following thermodynamic chapters is presented in a general
context and illustrated with reference to the initial example.
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Figure 1.1: The 61/214! = 15 configurations of 2 eggs in a 6 egg carton.

1.2 An Example: Scrambled Eggs

The direction toward equilibrium is that of increasing entropy, and systems
remain at equilibrium once they attain it. Withstanding even royal command,
the ultimate state initiated by Humpty Dumpty’s fall was irreversible, as the
anonymous author clearly noted. Nowadays the fractured, final fate of the
unfortunate ovoid is recognised as a state of high entropy. Here the nature of
entropy and the connection between entropy and equilibrium is illustrated with
a simple example.

Suppose that n eggs are placed in a carton able to hold N eggs. The number
of distinct arrangements, Wi (n), is the number of ways of choosing n objects
from N in any order. This is Wy (n) = N¥C,, = N!/n!(N —n)! (cf. Fig. 1.1). This
arises because there are N possible cells in which the first egg can be placed,
which leaves IV — 1 for the second, ..., and finally N — n + 1 possible cells for
the last egg. That is, there are N!/(N — n)! ways of placing eggs in the carton
in order. However, these eggs are indistinguishable, and the n! permutations of
the eggs cannot be counted as distinct configurations. This gives the remaining
term in the denominator.

Suppose that the eggs are scrambled by choosing two cells at random and
swapping their contents.! Obviously if both are empty or both are occupied
nothing happens, but if only one is occupied a new configuration is generated. It
will prove convenient to deal with the logarithm of the number of configurations,
rather than the number of configurations itself. Accordingly one defines

SN(TL) :kBanN(n). (1.1)

This quantity is in fact the entropy (kg is Boltzmann’s constant), but for the
present one need only note that because the logarithm is a monotonic func-
tion of its argument, maximizing the number of configurations is the same as
maximizing the entropy.

'In general the transition rule determines the microstate weights and as such it is central
to equilibrium statistical mechanics.
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Now introduce a second carton of size M containing m eggs. The number of
configurations for this carton is Wys(m) = M!/ml(M — m)!, and its entropy is
Sar(m) = kg In Wy (m). The total number of distinet configurations if the two
cartons are kept separate is the product Wy ar(r, m) = Wy (n)Wys(m), since
for each of the Wy (m) configurations of the second system there are Wy (n)
configurations of the first. The total entropy is the sum of the two individual
entropies, Sy as(n,m) = kg In Wy ps(n,m) = Sy (n) + Sar(m). This shows the
advantage of working with entropy rather than the number of configurations.
Like the number of eggs, or the number of cells, it is an additive quantity, and
such quamntities in general are easier to deal with than products.

1.2.1 Equilibrium Allocation

What happens if interchange of eggs between the cartons is allowed via the
scrambling procedure described above? Intuitively one expects that the carton
with the greatest concentration of eggs will lose them to the less concentrated
carton. Eventually a steady state will be reached where the eggs are as likely
to be transferred in one direction as another. Here one expects the two cartons
to have an equal concentration of eggs, and this steady state is called the equi-
librium state. The reason that concentration is the determining quantity rather
than simply the number of eggs is because at equilibrium a large carton will
have proportionally more eggs than a small carton. In fact, each timme an egg
goes from one carton to the other an unoccupied cell goes in the opposite direc-
tion, which suggests that the steady state will treat occupied and unoccupied
cells in an equivalent fashion.

To be more precise one needs to calculate the probability of moving an egg
between the cartons. The probability of a cell chosen at random in the first
carton being occupied is just the ratio of the nuinber of eggs to the number
of cells, namely n/N, and similarly the chance of choosing a free cell is (N —
n)/N. For an interchange between cartons to occur the two cells must be in
different cartons. The probability of choosing any cell in the first carton is
N/(N + M), and the probability of choosing any cell in the second carton is
M/(N 4+ M). Hence the probability of the two chosen cells being in different
cartons is 2NM/(N + M)?, the factor of 2 arising because it doesn’t matter
which carton is chosen first. For an egg to leave the first carton, one must
choose different cartons and both an occupied cell in the first carton and an
unoccupied cell in the second. The chance of this is just the product of the
probabilities, [2NM/(N + M)?](n/N)[(M — m)/M)] = 2n(M —m)/(N + M)?.
Conversely, the probability of an egg going from the second carton to the first is
2m(N —~n)/(N+ M)?2. For the equilibrium or steady state situation the net flux
must be 0, so these two must balance. The equilibrium number of eggs in each
carton is denoted by 7 and M. Equating the fluxes, the equilibrium condition
is

n m n

m
= , Of — = —.
N-n M-m N M

(1.2)
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The concentration of eggs in each carton is indeed equal at equilibrium, as is
the ratio of occupied cells to free cells. (For simplicity, onc may assume that
the numbers have been chosen so that this equilibrium condition possesses an
integral solution.)

1.2.2 Maximum Entropy

The number of configurations, and hence the entropy, is a maximum at the
equilibrium allocation. This may be proven by showing that the number of
configurations decreases monotonically moving away from equilibrium. For the
case that there are too many eggs in the first carton, define [ = n — 7 > 0.
If the number of configurations corresponding to n is greater than the number
of configurations for n + 1, then the entropy is increasing moving toward equi-
librium. This may be proven by taking the ratio of the respective number of
configurations,

W (n)War(m)
(1.3)
WN(n+1)WM(m—1)
Wn@m+1l+1)Wy(m—-1-1)
@+ DN -l -1 (m—-1-1)I(M -—m+1+1)
o m+ DN —7m—1)! (m—D(M —m+1)!
- ont+l+1 M-m+l
- N-m—-1 m-1
n M-m
= N-n m
= 1. (1.4)

Hence Sy(m+ 1) + Sy(m —1) > Svm+1+1)+Sy(Mm—1-1), and an
analogous argument with [ changed to —I gives Sy(7m — 1) + Sy(m + 1) >
Sn(@m—1+1)+ Sy (m+1—1). That is, the entropy decreases moving away
from equilibrium, which is to say that it is a concave function of the allocation
of eggs that attains its maximum at the equilibrium allocation.

The total number of distinct configurations in the case that eggs are transfer-
able between the two cartons is Wyyar(n+m) = Y*MC, . since all cells are
now accessible to all eggs, and the entropy is Syym(n+m) = kgIn Wy (n+
m). The total number of configurations of the combined cartons must be greater
than any of those of the isolated cartons with a fixed allocation of the eggs be-
cause it includes all the configurations of the latter, plus all the configurations
with a different allocation of the eggs. That is, Wy p(n+m) > Wy (n)Was(m)
or in terms of the entropy, Sn+am(n+m) > Sy(n)+Su(m), for any n, m. (This
is a strict inequality unless N or M is 0, or unless there are no eggs, n+m = 0,
or no empty cells, n +m = N + M.) One concludes that the entropy of the
two cartons able to exchange eggs is greater than the entropy of the two iso-
lated cartons with the equilibrium allocation of eggs, which is greater than the
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Figure 1.2: The number of configurations as a function of the number of eggs in
the first carton, for a dozen eggs in total, n +m = 12, allocated to an ordinary
carton, N = 12, and a twin carton, A = 24, The insct shows the constrained to-
tal entropy, in units of kg, with the arrow indicating the equilibrium occupancy,
7 = 4, and the dotted line giving the unconstrained entropy, In[36!/12!124!] .

entropy of any other allocation of eggs to the isolated cartons,
Snism(n+m) > Sy@) + Sy (m) = Sv(n) + Sy (m), (1.5)

where @+ 7t = n +m, and n/N = m/M. This behaviour of the constrained
entropy is shown in Fig. 1.2.

1.2.3 Direction of Motion

It has been shown that the equilibriumn or steady state is the one with the
maximum entropy, and now it is shown that the system out of equilibrium is
most likely to move in the direction of increasing entropy. The probability that
the N carton with n eggs will gain an egg, p(n + 1jn), is required. (Obviously
the other carton will simultaneously lose an egg, m — m — 1.) This was given
above in equating the fluxes to find the equilibrium state,

_ 2m(N —n)
ol Un) = T (1.6)
Similarly,
pln — 1) = 2 =) (1.7)

(N +M)?2°
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The probability that the number of eggs in each carton is unchanged is obviously
p(nin) =1— p(n+1ln) — p(n — 1jn). Now if there are too few eggs in the first
carton compared to the equilibrium allocation, n < 7 and m > 7, then the
odds of increasing the number of eggs in this carton are

p(ntljn) _ m(N-n)
oln—1n) ~ (M -m)
N-m m
- n M-m
= 1 (1.8)

Hence it is more likely that the transition n — n+1 will be made than n — n—1
if n <@ and m > m. On the other side of equilibrium one similarly sees that the
transition tends in the opposite direction, so that in both cases the most likely
transition is toward the equilibrium allocation of eggs. Given the monotonic
decrease of entropy away from equilibrium, one concludes that the most likely
flux of eggs is in the direction of increasing entropy.

1.2.4 Physical Interpretation

How are these results to be interpreted? First one distinguishes between a mi-
crostate and a macrostate. A microstate is one of the configurations of the eggs,
(i.c., a specification of the occupied cells). A macrostate is a specification of the
number of eggs in each carton, but not the cells that they occupy. Hence there
are many microstates for each macrostate. Specifying a macrostate corresponds
to isolating the cartons and to disallowing the swapping of eggs between them.
This acts as a constraint on the configurations that the system can assume,
and hence the number of configurations for a specified macrostate is less than
the number of configurations if no macrostate is specified. In other words, the
entropy of a systemn constrained to be in a given macrostate is less than the
entropy of an unconstrained system.

The flux of eggs from the initial allocation was interpreted as the approach
to equilibrium. This did not occur because the total number of configurations or
the total entropy was increasing; once the cartons were allowed to exchange eggs
the number of possible configurations was fixed. Rather, the approach to equi-
librium was a macroscopic flux, and isolating the cartons at any instant would
have given a macrostate with a number of configurations larger than before.
Hence it is the entropy constrained by the current value of the quantity in flux
that increases approaching equilibrium, and that reaches its maximum value for
the equilibrium macrostate. Obviously one can only make such statements on
average, since there is nothing to prevent a temporary reversal in the flux direc-
tion due to the transitions between microstates as one approaches equilibrium.
Likewise one expects fluctuations about the equilibrium macrostate once it is
attained.

The preceding paragraph describes the increase in the constrained entropy
during the approach to equilibrium, but it does not explain why such an in-
crease occurs. As mentioned, once the cartons are allowed to exchange eggs the
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total number of possible configurations and the unconstrained entropy is fixed,
and these do not drive the approach to equilibrium. As far as the scrambling
of the eggs is concerned, given a microstate there is nothing to choose between
the transitions to any of the adjacent microstates, and each of these is as likely
as the reverse transition. At the level of microstates there is no flux and no
equilibration. The flux is occurring in the macrostates, and the key observation
is that the number of microstates differs between macrostates. Hence it is the
transition between macrostates that is asymmetric: if macrostates 1 and 3 are
on either side of macrostate 2, and the number of corresponding microstates in-
creases from 1 to 2 to 3, then a system in a microstate corresponding to 2 is more
likely to make a transition to a microstate corresponding to 3 than to one corre-
sponding to 1 simply because there are more of the former than the latter.? The
transition to a macrostate with more microstates is more probable than the re-
verse transition (if the macrostates are ordered in terms of increasing number of
microstates). Although nothing prevents the opposite transition at any instant,
in the long run it is the most probable transitions between macrostates that will
occur most frequently. It is the increase in configurations corresponding to the
macrostates that gives an irreversible character to a macroscopic flux, and the
consequent increase in the constrained entropy of the system. The equilibrium
macrostate is that with the highest number of microstates. While fluctuations
to nearby macrostates occur, usually the peak in the curve of the number of
configurations is so sharp that the effects of such fluctuations are negligible.

1.3 Basic Notions

In this section the fundamental ideas that provide a basis for thermodynamics
and statistical mechanics are set out. The concepts of states, probability, and
entropy are introduced in turn.

1.3.1 States

A system possesses a fundamental set of states called microstates that are dis-
tinct and indivisible. Distinct means that cach microstate bears a unique la-
bel, and indivisible means that no finer subdivision of the system is possible.
These discrete states are ultimately quantum in nature, but one may pass to
the classical continuuin limit, in which case the archetypal microstate could be
a position-momentum cell of fixed volume in phase space. Here the theory will
initially be developed in a general and abstract way for the discrete case, as a
precursor to the continuum results of classical statistical mechanics.

The macrostates of the system are disjoint, distinct sets of microstates. In
general they correspond to the value of some physical observable, such as the
energy or density of some part of the system, and they are labelled by this
observable. Disjoint means that different macrostates have no microstates in

2This assumes that each target microstate has approximately the same number of possible
source microstates (cf. the preceding footnote).
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common, and distinct means that no two macrostates have the same value of
the observable. In addition to macrostates, there may exist states that are sets
of microstates but which are not disjoint or are not distinct.

The microstate that the system is in varies over time due to either determin-
istic or stochastic transitions. In consequence, transitions also occur between
the macrostates of the system. The set of all states that may be reached by a
finite sequence of transitions defines the possible states of the system. Hence
in time the system will follow a trajectory that eventually passes through all
the possible states of the system. A transition rule for the microstates may be
reversible (i.e., symmetric between the forward and the reverse transitions), but
will yield statistically irreversible behaviour in the macrostates over finite times.

1.3.2 Probability

A system may be considered in isolation from its surroundings. Its state is
specified by the values of certain fixed quantities such as size, composition,
energy, and momentum. Each of the microstates of a system has a nonnegative
weight that may depend upon the state of the system. It is conventional to take
the microstates of an isolated system to have equal weight, as in the ergodic
hypothesis or the hypothesis of equal a priori probability of classical statistical
mechanics, but it will be shown here that the formalism of statistical mechanics
holds even for nonuniformly weighted microstates. Ultimately the weight of the
microstates is determined by the transitions between them. It is the task of
statistical mechanics to identify explicitly the transition rule and to construct
the weights, whereas the formalism of statistical thermodynamics only requires
that the microstates and their weight exist.

The probability that the system is in a particular microstate is proportional
to its weight. That is, if the weight of the microstate labelled 7 is w;, and the
total weight of the system is W = " w;, then the microstate probability is

Wy

pi= (1.9)
Obviously the probability is normalised, >, ¢; = 1. In the event that the mi-
crostates are equally weighted, then up to an immaterial scale factor one can
take the weight of the accessible microstates to be unity. (The inaccessible mi-
crostates may either be excluded from consideration, or else be given 0 weight.)
In this case W is just the total number of accessible microstates, and p; = 1/W.
That is to say, uniform weight is the same as equal probability, and the proba-
bility of any one microstate is one over the total number of microstates. In the
general case, the microstate weights and the total weight are dependent on the
state of the system.

The theory of probability is ultimately founded upon set theory, which is
the reason that macrostates were introduced as sets of microstates. The weight
of a macrostate « is the sum of the weights of the corresponding microstates,
Wa =D ica w;.2 Consequently, its probability is the sum of the probabilities of

3 Although mathematical symbolism provides a concise, precise way of communicating,
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the corresponding microstates, po = > .., 9i = wa/W. In the event that the
microstates are equally likely this is just p, = n4/W, where n, = ., is the
number of corresponding microstates. It i1s emphasised that « indexes distinct
macrostates.

As just mentioned, the macrostates represent sets of microstates, and the
rules for combining probabilities are derived from set theory. The nature of
probability is discussed in detail in Appendix A. Briefly, an arbitrary state
(set of microstates) may be denoted by a, and its probability by ¢(a). The
complement of a set a is @, and the probability of the system not being in a
particular state is p(a) = 1—p(a). The probability of the system being in either
a or b or both, which is their union a + b, is the sum of their probabilities less
that of the common state, p(a+b) = p(a) +p(b) —p(ab). The probability of the
system being in both a and b (their intersection) is p(ab) = p(alb)p(b), where
the conditional probability o(alb) is read as the probability of a given b.

Explicitly, given that a system is in the macrostate «, the probability that
it is in a particular microstate 1 € « is p(ila) = plia)/p(a). Because the
microstate ¢ is a set entirely contained in the set represented by the macrostate
a, their conjunction is icv = ¢, and the numnerator is just the probability of
finding the system in the state 4, p(ia) = p(¢) = w;/W. The probability of
the macrostate is proportional to the total weight of corresponding microstates,
p() = wo /W so that the conditional probability in this case is p(ila) = w; /we.
That is, the probability of a microstate given that the system is in a particular
macrostate is the microstate’s relative proportion of the macrostate’s weight. In
the event of equally likely microstates this reduces to p(ila) = 1/n,, which is
the expected result: thie probability that tlic systeni is in a particular one of the
equally likely microstates given that it is in a particular macrostate is just one
over the number of microstates composing the macrostate. (Note that a more
precise notation would append the condition ¢ € v to the right of a vertical bar
everywhere above.)

1.3.3 Entropy

The entropy of a system is defined to be the logarithun of the total weight,
S=kplnW. (1.10)

This equation may be regarded as the basis of thermodynamics and statistical
miechanics. If the microstates are equally likely, then this reduces to Boltz-
mann’s original definition: the entropy is the logarithin of the total number
of microstates. The prefactor is arbitrary and on acsthetic grounds would be
best set to unity. However for historical reasons it is given the value kg =

in general its meaning is not independent of the context. In this book a symbol is often
used simultancously as a variable and as a distinguishing mark. In this case i and o are
variables that also serve to distinguish the microstate weight w, from the macrostate weight
Wa. Whether f(a) and f(b) are the same function with arguments of different values or
different functions symbolically distinguished by the appearance of their arguments depends
upon the context.
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1.38 x 10723 J K~!, and is called Boltzmann’s constant. (It will be seen that
there is a close connection between entropy, energy, and temperature, which
accounts for the dimensions of entropy.)

By analogy, the entropy of a macrostate labelled « is defined as S, =
kplnw,. Again for equally likely microstates this is just the logarithm of the
number of encapsulated microstates. One can also define the entropy of a mi-
crostate as S; = kp Inw;, which may be set to 0 if the microstates are equally
likely.

The important, indeed essential, thing is the weights; it was shown above
that these determine the probability of the microstates and macrostates. All of
thermodynamics and statistical mechanics could be derived without ever intro-
ducing entropy, since by the above formulae the two are equivalent. However
entropy is more convenient than the number of states because by definition it
is a linear additive property: the total weight of two independent subsystems
is Wiotal = W1 Way, whereas the total entropy is Siotal = S1 + S2. Other linear
additive quantities include the energy, volume, and particle number. It will be
demonstrated in the following chapters that additivity is central to the formal
development of thermodynamics and statistical mechanics.

The relationship between entropy and disorder or unpredictability is revealed
by the interpretation of entropy as the number of equally likely microstates. If
the system is only ever found in a few states, then those states occur with high
probability: the system is said to be ordered or predictable, and it consequently
has low entropy. Conversely, if a system is equally likely found in any of a large
number of states, then it is quite disordered and unpredictable, and it has a
high entropy. The entropy of a system with only one state is defined to be 0,
and systems with more than one accessible state have an entropy that is strictly
positive.

The entropy of the system may be rewritten in terms of the probability
of the disjoint macrostates. (Note that the present treatment considers only
distinct macrostates, so that all the microstates corresponding to the value « of
the observable are collected together, which contrasts with many conventional
treatments in which different values of the index do not necessarily correspond to
different macrostates.) If macrostate @ has weight w,,, probability p, = ws /W,
and entropy S, = kplnw,, then the expression for the total entropy may be
rearranged as

Sl = ksglnW

- kBZwWaan

ksy “’Wa [lnwa +1In Iﬂ

> palSa — kslnpe). (1.11)

I

Il

This is the most general expression for the entropy of a system in terms of
the probabilities of disjoint macrostates. The first term in the brackets repre-
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sents the internal entropy of the macrostate, and the second term accounts for
the disorder due to the system having a number of macrostates available. The
internal entropy of the state a is S, = kplnw,, and it arises from the condi-
tional disorder or unpredictability associated with being in a macrostate, since
this is insufficient to delineate precisely the actual microstate of the system. If
the probability distribution is sharply peaked about one macrostate, then the
total entropy equals the internal entropy of this macrostate, since the second
term vanishes because In1 = 0. One can replace the sum over macrostates
by a sum over microstates, S[p] = Y. ¢ [Si — ks Inp;]. For equally likely mi-
crostates, S; = 0 and g; = 1/W, it is clear that this immediately reduces to
Boltzmann’s original result, S = kg In W. However, the derivation shows that
in all circumstances it reduces to Boltzmann’s result anyway. This point must
be emphasised: in the general case of nonuniform microstates and macrostates,
the entropy is a physical property of the system (it is the logarithm of the
total weight) and its value is not changed by writing it as a functional of the
macrostate probability, or by how the microstates are grouped into macrostates.
In the literature one often secs the expression

Sgs[g)] = *k’B Z [ In Doy - (1.12)

This equation was originally given by Gibbs, who called it the average of the
index of probability.? It was also derived by Shannon in his mathematical the-
ory of communication, in which context it is called the information entropy.®
Comparison with Eq. (1.11) shows that the internal entropy of the macrostate
is missing from this formula. Hence the Gibbs-Shannon entropy must be re-
garded as the ‘external’ part of the total entropy. It should be used with caution,
and depending upon the context, one may need to explicitly add the internal
contribution to obtain the full entropy of the system.

In the present approach to thermodynaimics and statistical mechanics, the
only expressions for the entropy of the system that will be used are Eq. (1.10)
and Eq. (1.11). The Gibbs -Shannon expression, Eq. (1.12), is often invoked in
the principle of maximum entropy,® where it is used to obtain the macrostate
probability (by maximisation of the entropy functional). In the present for-
mulation, the macrostate probability may be trivially expressed in terms of
the macrostate entropy, namely it is proportional to the exponential of the
macrostate entropy,

Wo _ 1 sk

T w T Z ’

1], W. Gibbs, Elementary Principles in Statistical Mechanics Developed with Special Ref-
erence to the Rational Foundation of Thermodynamics, Yale Univ. Press, New Haven, CT,
1902; Dover, New York, 1960.

5C. E. Shannon and W. Weaver, The Mathematical Theory of Communication, Univ. of
lllinois Press, Urbana, 1949.

6E. T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106 (1957), 620;
108 (1957), 171. R. D. Rosenkrantz (Ed.), E. T. Jaynes: Papers on Probability, Statistics,
and Statistical Physics, D. Reidel, Dordrecht, 1983.

(1.13)




1.3. BASIC NOTIONS 13

where the normalising factor is
Z = St =N =W (1.14)

This expression for the macrostate probability will be used throughout, although
it ought be clear that it is entirely equivalent to the original definition that
the probability is proportional to the number or weight of corresponding mi-
crostates.

The Continuum

It is often the case that the states are relatively close together so that it is
desirable to transform from the discrete to the continuum, as is necessary in
the case of classical statistical mechanics. It is only meaningful to perform such
a transformation when the state functions vary slowly between nearby states.
One could simply take the continuum limit of the discrete formulae given above,
transforming sums to integrals in the usual fashion, or one can derive the results
for the continuum directly, as is done here.

Represent the state of the system by x, a point in a multidimensional space,
and let w(x) be the nonnegative weight density measured with respect to the
volume element dx. The total weight of the system is

W = /dxw(x), (1.15)

and the total entropy is S = kg In W, as usual. The probability density is

p(x) = 5 (1.16)

with the interpretation that o(x)dx is the probability of the system being within
dx of x. Accordingly the average of a function of the state of the system is
(fy = [dxw(x)f(x).

One can define the entropy of the state of the system as

S(x) = kpIn[w(x)A(x)], (1.17)
in terms of which the probability density is
eS(x)/ks
p(x) = AW (1.18)

Here A(x) is an arbitrary volume element introduced solely for convenience. (It
makes the argument of the logarithm dimensionless and gives the probability
density the correct dimensions.) Obviously the probability density is indepen-
dent of the choice of A(x), since the one that appears explicitly cancels with the
one implicit in the definition of the state entropy. The volume element has no
physical consequences and is generally taken to be a constant; equally, it could
be ignored altogether.
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The system entropy may be written as an average of the state entropy,

S = k‘B InW
= /dx p(X)kgIn W
eS(x)/kn
= /dx p(x) [S(x) — kgln —
— [ xS - kaln (AR}, (1.19)

This is the continuum analogue of Eq. (1.11). Although the arbitrary volume
element appears explicitly here, it cancels with the corresponding term in S(x),
and the total entropy is independent of the choice of A(x).

The macrostates in the case of the continuum are generally represented by
hypersurfaces of the space. On the hypersurfaces particular observables that
depend upon the state of the system have constant values. Although concep-
tually similar to the discrete case, the treatment of continuum macrostates can
be more complicated in detail (sce Ch. 5).

The formulae given above for entropy and probability are surprisingly pow-
erful, despite their evident simplicity and that of their derivation. All of thermo-
dynamics and statistical mechanics is based upon these results and the notions
that underlie them.

1.4 Reservoirs

1.4.1 An Example: Egg Distribution

The example explored above, which may seem paltry, is in fact quite rich, and
here it is used to introduce the reservoir formalism invoked throughout this
book. In the examiple, the microstates, which are the distinct arrangements
of eggs in the carton cells, are all equally likely, and the macrostates, which
are the number of eggs i each carton, have a probability in proportion to the
corresponding number of microstates. Hence the probability of there being n
eggs in the N carton, given that the other carton can hold M eggs and that
there is a total of n + m eggs, is

N
pn|N,M,n+m) = Ne, Mo, Z Ne, Mo, . (1.20)
n=0

It was shown that the equilibrium allocation, @ = N(n+m)/(N + M), max-
imises the number of configurations, and this gives the peak of the distribution.
Taking the logarithm of the above probability distribution, and making Stir-
ling’s approximation for the factorials, an expansion to second order about 7@
gives a quadratic form that when reexponentiated approximates the distribution
by a Gaussian,

—N(M + N)

o(n|N,M,n+m)~ Z 'exp | —

v | (121
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where Z is the normalisation factor.

These two expressions are, respectively, the exact probability distribution
and a Gaussian approximation to it. A further approximation to the distribu-
tion may be made by considering the poultry farm limit, m — oo, M — oo,
m/M = const. That is, the second carton iIs an infinite reservoir of eggs. In
this limit Stirling’s approximation may be used for the factorials of the entropy
of the poultry farm, and a Taylor expansion may be made using the facts that
m > n and M —m > n, for all possible n. With m = m—n+m, and expanding
to linear order, the n-dependent part of the entropy of the poultry farm is

Sm(m)/k

1 M!
B nm!(Mfm)!
= const. —mlnm — (M —m)In(M —m)

= const. —(M—n)lnm—("—n)— (n—7m)In(M —-m)— (n—7)

= const. +nln (1.22)

This is linear in n, Sp(m)/ks = const. + an, with the coefficient being o =
—S4; (M) /kp, where the prime denotes the derivative with respect to m. The
poultry farm only enters the problem via this coefficient evaluated at equilib-
rium.

The terms neglected in the expansion are of order n/m and n/(M — m),
and higher, which obviously vanish in the reservoir limit. This is an important
point, which emphasises the utility of dealing with entropy. If instead of entropy
one used the number of configurations directly, then one would find that all
terms in the expansion were of the same order, and these would have to be
resummed. One would eventually obtain the same result as the single term
entropy expansion, but in a more complicated and much less transparent fashion.

The probability distribution for the number of eggs in the first carton is
proportional to the exponential of the total constrained (or macrostate) entropy,
S(n|N,M,n+m) = Sn(n) + Sm(m). In view of the reservoir expansion one
has

p(n|N,a) = Z(la) exp[Sn(n)/kp + an)

- Z(la) nx(NNi n)! (Nﬁ—ny (1.23)

since m/M =7/N.

The egg reservoir or poultry farm estimate is compared with the exact prob-
ability distribution and with the Gaussian approximation in Fig. 1.3. It can
be seen that the Gaussian approximation agrees very well with the exact result
in this case. In general it is most important to get correctly the behaviour of
the distribution near the peak, and experience shows that Gaussians derived as
above approximate the full distribution very well. The reservoir estimate is not
exact for this finite-sized system, but it is certainly a reasonable approximation.
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Figure 1.3: The occupancy probability, p(n|N, M, n—+m), of an ordinary carton
for a dozen eggs allocated between it and a twin carton, N = 12, M = 24
and n + m = 12. The symbols are the exact enumeration, the solid line is the
Gaussiail approximation with @ = 4, and the dotted line results if the exchange
occurs with a poultry farm with o = 1n[8/(24 — 8)].

When otie cousiders that one had no information about the size of the second
carton (or equivalently about the total munber of eggs), it is quite a revelation
to see how well it performs. The reservoir estimate must allow for all possible
M and m+n, which is why it is broader than the exact result for this particular
case (M = 24, m + n = 12). As the size of the second carton is increased (at
constant m/M = m/N), the exact probability distribution becomes broader and
approaches the reservoir estimate.

1.4.2 The Reservoir Formalism

An overview of the reservoir approach in thermodynamics and statistical me-
chanics may be summarised as follows. The more detailed analysis will be
given in later chapters. Consider two systemns in contact and able to exchange
an extensive quantity (such as energy or particles) that is in total conserved,
1 4+ Xo = Tiotal. The probability distribution of the parameter for the first
system is proportional to the total weight of corresponding microstates (total
number if these are equally likely). Equivalently, it is proportional to the expo-
nential of the constrained total entropy,

(21 |Total) = % exp[S(z1)/ks + S(z2)/ks]. (1.24)
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This expression is true even when the systems are of finite size. It does however
assume that the interactions between the systems are negligible to the extent
that the total entropy is the sum of their individual entropies, Siotar = S(2z1) +
S(z2). The denominator Z’ is just the normalising factor, which at this stage
is the unconstrained total entropy.

In the event that the second system is a reservoir, which means that x; < x2,
a Taylor expansion of its entropy may be made about xiota and truncated at
linear order,

as(mtotal)

5(152) = S(Jitotal) — X1 Ototal

(1.25)
The second term is of order x;, whereas the first neglected term goes like 2785 ~
O(z?/z2) (in general the entropy is extensive Sy/xa ~ O(1)). This is negligible
in the reservoir limit z; /22 — 0. The remaining neglected terms are analogously
of higher order.

The constant term, S(Ztota1), which is independent of the subsystem 1, may
be neglected (or, more precisely, cancelled with the identical factor in the de-
nominator). One may define field variables, like temperature and pressure, as
the derivatives of the entropy, A = kg 158 (Ztotal)/OTtotal. The subscripts may
now be dropped, because the reservoir only enters via A, which has the physical
interpretation as the rate of change of its entropy with x. Hence the probability
distribution for the subsystem is now

o(z]\) = Z(&) exp[S(x)/ks — Aa). (1.26)

The equilibrium value of the exchangeable parameter, Z, is, by definition,
the most likely macrostate, and this is given by the peak of the probability
distribution. One has the implicit equation

8S(x)/ ks
Ox

or in view of the definition of the field variable as the derivative of the entropy,
MZ) = A On the left-hand side is the field variable of the subsystem, and
on the right-hand side is the field variable of the reservoir, and this says that
equilibrium corresponds to equality of the two.

The normalisation factor for the probability distribution is called the parti-
tion function, and it is of course

Z(\) = Zes(z)/kBe_’\z. (1.28)

=, (1.27)

=T

The exponent is that part of the constrained total entropy that depends upon
the subsystem, Siotai(z|A) = S(x)/kg — Az. The unconstrained, subsystem-
dependent, total entropy is

Siotal(X) = Y 9(x|N)[Srota (@|A) — ks In p(z|\)]

= kglnZ(\), (1.29)
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and the average value of the exchangeable quantity is given by

(x) = Z plxN)z = —%. (1.30)

One should note that in the reservoir formalism three distinct entropies
appear: S(z) is the entropy of the isolated subsystem in the macrostate x,
Siotal (| A) is the total entropy of the subsystem and reservoir when the subsys-
tem is constrained to be in the macrostate z, and Siota1 () is the unconstrained
total entropy of the subsystem and reservoir. The latter two entropies do not
include the constant contribution to the reservoir entropy that is independent
of the presence of the subsystem.

One can of course generalise the formalism to include multiple extensive
parameters, some exchangeable and some fixed. One can extend it to finite-sized
reservoirs, where one must expand beyond linear order, and to systems in which
the region of interaction is comparable to the size of the subsystem, in which
case boundary terms enter. A linear additive conservative quantity is common,
but one can generalise the formalism, at least in principle, to the case that it is
not z itself that is conserved but some function of z, f(x;)dz; + f(z2)dze = 0.
In this case the reservoir field variable that enters the probability distribution
becomes A = [kp f(x)]~10S(z) /0.

Summary

e Thermodynamics deals empirically with the macroscopic behaviour of bulk
matter, whereas statistical mechanics sceks to predict quantitatively that
behaviour from the interactions of atoums.

e The cquilibrium macrostate is that with the most microstates, and this
is the state of greatest entropy. A macroscopic flux is most likely in the
direction of increasing entropy.

o All systems have a set of fundameital weighted wicrostates. Statistical
thermodynamics merely assumnies the existence of the microstates and their
weights, whereas statistical mechanics coustructs them from the transition
probabilities.

e The entropy of a state is the logarithin of the total weight of correspond-
ing microstates. It may be expressed as a functional of the macrostate
probabilities.

e The probability distribution of a parameter able to be exchanged with
a second system is proportional to the exponential of the total entropy
constrained by the value of the paramieter. For a reservoir the constrained
total entropy equals the subsystem entropy minus the parameter times
the derivative of the reservoir entropy.



Chapter 2

Isolated Systems and
Thermal Equilibrium

2.1 Definitions of Thermodynamic Quantities

The fundamental object treated by thermodynamics is the isolated system,
which is one that is closed and insulated from its surroundings so that it does
not interact with them. An isolated system may comprise two or more sub-
systems. Even though these subsystems interact with cach other, macroscopic
thermodynamics proceeds by treating them as quasi-isolated, which means that
at any instant each subsystem is in a well-defined state and that its properties
are the same as if it were in isolation in that state.!

The state of an isolated system is traditionally specified by the values of its
energy E, volume V, and number of particles N. (For an incompressible solid,
either V or N is redundant.) These variables have the important property that
they do not change with time (i.e., they are conserved), so that they serve as
the independent variables that specify the state of an isolated system. These
particular variables represent linear additive quantities. That is, the total energy
of an isolated system comprising a number of isolated subsystems is the sum
of the energies of the subsystems, and similarly for the volume and particle
number. Linear additivity is essential for the development of the formalism of
thermodynamics.

There are a number of other linear additive conserved quantities that could
be used in addition to specify the state. If the Hamiltonian that characterises the
intermolecular interactions of the system is translationally invariant, as occurs
when the system is free of any external force fields, then the linear momentum is
conserved. Similarly a rotationally invariant Hamiltonian implies that angular
momentum is conserved. These momenta are also of course linearly additive

1State here means macrostate. There is no need to be more precise at this stage because
the formalism of thermodynamics can be derived from a series of postulates that do not invoke
the microscopic interpretation.

19
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quantities. Since most systems are enclosed in containers fixed in space, the
momenta of the system itself are usually not conserved, and so these generally
are not used in the macrostate specification.

Thermodvnamics proceeds by asserting the existence of a function of the
state of the isolated system that contains all thermodynamic information about
the system. This is of course the entropy, S(E,V,N). In the previous chapter
the existence and properties of the entropy were demonstrated on the basis of
the deeper postulate, namely that an isolated system possesses a set of weighted
microstates, and that the entropy of a macrostate was the logarithm of the
weight of the corresponding microstates. One can derive the formalism of ther-
modynamics without such a microscopic basis for entropy, but obviously at the
cost of certain additional assumptions. The justification of the physical basis of
statistical thermodynamics must be deferred until the treatment of statistical
mechanics in a later chapter.

An isolated system has a well-defined temperature, T', pressure, p, and chem-
ical potential, u. Like all the free energies and thermodynamic potentials that
are defined in what follows, the entropy is a generator of these familiar thermo-
dynamic quantities via its partial derivatives. As a matter of logic the following
expressions are taken as the definitions of these quantities, and it will be neces-
sary to show that their behaviour reflects the behaviour of the familiar physical
quantities that bear thie sae name. One has thie lnverse teniperature

71 = 95 . (2.1)
OE )y n
the pressure,
0S8
=T = 2.2
g (aV>E,N | 2
aind the chemical potential,
0S8
| — —T _— . 2.
: <0N> oA 23)

This last quantity is probably the least familiar of the three because traditional
thermodynamics deals with systems with a fixed number of particles. Conse-
quently N is usually not shown explicitly as a variable, and the chemical poten-
tial is seldom required. However the treatment of systems with variable particle
munber is entirely analogous to those with variable energy or volume, and so
here the chemical potential is treated on an equal footing with temperature and
pressure.

It is important to keep in mind the distinction between the independent
variables E, V, and N, and the dependent quantities T(E,V,N), p(E,V,N),
and p(E,V, N), as given by the above equations. In traditional treatments this
distinction is not always clear, whereas in the present development it will prove
important to the correct interpretation of the formalisru. On occasion when it is
necessary to emphasise this distinction, dependent quantities will be overlined.



2.2. HEAT RESERVOIR 21

In view of the above definitions, the total differential of the entropy is

ds = 25 dE + 95 dVv + 95 dN
OE )y oV )pnN ON ) gy
1 P H
o _— e —_— . ‘4
TdE + TdV TdN (2.4)

This differential form gives the above partial derivatives at a glance.

2.2 Heat Reservoir

2.2.1 Temperature Equality

The second law of thermodynamics implies that equilibrium corresponds to
the maximum total entropy, and that a system prepared in a nonequilibrium
macrostate will move in the direction of increasing entropy. The statistical inter-
pretation, as exemplified in the first chapter, is that the equilibrium macrostate
is the most probable macrostate (i.e., the one with the largest weight), and
hence it is the state of maximum entropy. A system moves toward equilibrium
because there is a greater weight of states in that direction than in the opposite
direction. Here these facts are used to derive what is essentially the zeroth law
of thermodynamics, nnamely that two systems in thermal equilibrium have the
same temperature.

In what follows it will be important to distinguish between dependent and
independent variables. When the energy is independently specified it will be
denoted simply E, and when it is a dependent variable it will be denoted
E(N,V,T), or E(N,V,T), or simply E. The first quantity is a well-defined
property of an isolated system and E(N,V,T) is given implicitly by

dS(E,N,V) _ l (2.5)

OFE T

It will be shown below that the thermodynamic state is unique, and hence there
is a one-to-one relationship between the thermodynamic variables. In particular
this means that one may write E; = E(N,V,T1) <& T = T(E;,N,V). An
overline is used to denote the equilibrium state; E(N,V,T) is the equilibrium
energy of a subsystem with N particles in a volume V in contact with a thermal
reservoir of temperature 7T'.

Consider an isolated system comprising a subsystem 1 in thermal contact
with a heat reservoir 2 (Fig. 2.1). A reservoir in general is defined by two
characteristics: it is infinitely larger than the subsystem of interest, and the
region of mutual contact is infinitely smaller than the subsystem. The first
property means in this case that the amount of energy exchangeable with the
subsystem is negligible compared to the total energy of the reservoir. The second
property ensures that interactions between the subsystem and the reservoir,
while necessary to establish thermal equilibrium, are relatively negligible. That
is, the total entropy of the system is equal to the sum of the entropies of the
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Figure 2.1: A subsystem 1 in thermal contact with a heat reservoir 2.

subsystem and the reservoir, S = S1 + S2, and the correction due to the
interactions between the subsystemn and the reservoir inay be uneglected.

Energy partitions between the subsystem and the reservoir while the total
energy of the system is conserved, Egoa1 = E1 + FEo. Using the properties of the
reservoir, the total entropy for a given partitioning is

Stotal(F1|E, N1, V1. Ny. V2)
= Si(E1, Vi, N1) + S2(Eotar — E1, Vo, N2)

082(Eota1, Va. N:
= S1(E1.Vi.N1) + S2(Ewtar, Vo, No) — Ey 2( totaly 72 2)+~~~
()Etot‘;tl
E
= Sl(El.V,.Nl)—i—const.—?l. (2.6)
2

The second equality represents a Taylor expansion of the reservoir about Ep =
Einar- It is perinissible to truncate this at the linear term because B <
Eioial. That is, the first neglected termn goes like EZSpp ~ Ef/Eiotal, since
both energy and entropy are extensive variables. Higher terins have higher
powers of E;/FEia, and these likewise vanish i the reservoir limit. In the
third equality the definition of the temperature of the reservoir has been used,
namely the energy derivative of the entropy. The leading tern is an immaterial
coustant that will be ueglected throughout because it is independent of Ej.
Henceforth the tewmperature of the reservoir will be denoted by 7', and the
reservoir variables Vo and No upon which it depends will be suppressed, as will
the consequently redundant subscript 1 for the subsystem. Hence the left-hand
side will be written Siora1(E|N, V,T). The entropies on the right-hand side are
the entropies of the reservoir and of the subsystem, cach considered in isolation
and as a function of the independent variables that are their argunents. In
contrast the entropy on the left-hand side is the entropy of the total system
for a particular partitioning of the energy: it will often be referred to as the
constrained total entropy. In such cases the quantity in flux is shown to the left
of a vertical bar, and the fixed variables to the right. This notation is identical
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to that used for the probability distributions that are derived shortly. All of the
arguments of the constrained total entropy are independent.
The energy derivative of the constrained total entropy yields

aStotal(Ele VvT) _ 8S(E,V,N) _ l
OFE B OFE T’

(2.7)

where the first term on the right-hand side is the reciprocal temperature of the
subsystem, 1/T(E, N, V). The equilibrium energy E is the one that maximizes
the total entropy. This corresponds to the vanishing of its derivative, or

T(E,N,V)=T. (2.8)

One concludes that equilibrium corresponds to temperature equality between
the subsystem and the reservoir, which is essentially the zeroth law of ther-
modynamies. This is an implicit equation for the equilibrium energy of the

subsystem, E = E(N,V,T).

Generalised Reservoirs

One may pause here to consider the consequences of the reservoir being of finite
size, so that it is no longer permissible to truncate the Taylor expansion at
linear order. Assurning that the size of the region of interaction is still negligible
compared to the size of both systems, the total entropy is still Siora = S1 + S2,
and this is maximised when T1(E1, N1, Vi) = To(Ea — E1, N2, V2). In this
case the temperature of the second system is not constant but depends upon
how much energy is accorded it at equilibrium. Obviously of less convenience
than a reservoir of constant temperature, nevertheless equilibrium may still
be determined. All of the results obtained here for reservoirs may be pushed
through for finite-sized systems in analogous fashion.

The above analysis relied upon the conservation of energy between the sub-
system and the reservoir. Such a conservation law for a linear additive property
also applies to particle number and to volume, and shortly systems open with
respect to these will be analysed in an analogous fashion. Some variables of
interest are not conserved in this sense. In these cases one can mathematically
construct a generalised reservoir that may be analysed as here, even if its phys-
ical realisation is not feasible. This is discussed in more detail in dealing with
certain advanced topics in statistical mechanics in later chapters.

2.2.2 Thermodynamic Potential

The constrained total entropy (subsystem plus reservoir) determines the direc-
tion of energy flow and the equilibrium condition. An alternative to maximising
the entropy is to minimise an appropriate potential. To this end a constrained
thermodynamic potential is introduced, which may also be called a constrained
free energy. Like the constrained total entropy, this quantity characterises the
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behaviour of a subsystem that is out of equilibrium.? The relationship with the
equilibrium thermodynamic potential or free energy is discussed below.

In general the constrained thermodynamic potential is defined as the neg-
ative of the reservoir temperature times the constrained total entropy. In the
present case the constrained thermodynamic potential for a subsystem of energy
E in contact with a heat reservoir of temperature T is

F(EIN,V,T) = —TSioa(E|N,V,T)
E —TS(E,N,V). (2.9)

By definition this is a minimum at equilibrium, and the energy flux of the sub-
system is down its gradient. By virtue of its close relationship to the constrained
total entropy, the constrained thermodynamic potential inherits many features
of the latter, such as the appropriate concavity and bijectivity. In particular,
the constrained thermodynamic potential is a convex function of energy, (and
also of number and volume), which follows from the concavity of the entropy
(F" = =TS8" > 0). Tt is once more emphasised that the four arguments of the
constrained thermodynamic potential are independent.

The equilibrium thermodynamic potential or equilibrium free energy is defined
as the minimum value of the constrained thermodynamic potential, which in this
case obviously occurs at E = E(N,V,T),

F(N,V,T)=F(E|N,V,T)=E - TS(E,N,V). (2.10)

For the present case of constant tempcerature, this is called the Helmholtz free
energy, sometimes denoted by A(N,V,T). In this equation E is a dependent
variable, E(N,V,T), and consequently the Helmholtz free energy is a function
of just three independent variables. The entropy that appcears on the right of
the definition of the Helmholtz free energy is that of the isolated subsystem with
the equilibrium energy E. The overline ou the Heluholtz free energy emphasises
that it is an equilibrivin property.

The constrained thermodynamic potential clearly contains more informa-
tion than the equilibrium thermodyuamic potential, since it is a function of
four independent variables, whereas the equilibriun thermodynamic potential
is only a function of three. The coustrained thermodynamic poteutial describes
thie approach to energy equilibrium and energy fluctuations about the equilib-
rium state, whereas the equilibriumn thermodynamic potential only describes the
equilibrium state. The distinction made here between the two quantities is not
widespread in thermodynamics, and the present nomenclature is not necessarily
conventional. In most texts, the words ‘thermodynamic potential’ or ‘free en-
ergy’ in practice refer to equilibriuin quantities. In the present work the strictly

2The properties of the constrained thermodynamic potential introduced here derive from
its intimate connection with the constrained total entropy. The basis of other nonequilibrium
potentials, such as the rather similar generalised Mathieu function and the Landau potential
used in expansions that describe criticality and phase transitions, is less clear. For an account
of these other potentials see H. B. Callan, Thermodynamics, Wiley, New York, 1960; L. D.
Landau and E. M. Lifshitz, Statistical Physics, 3rd ed., Pergammon Press, London, 1980; and
C. Kittel and H. Kroemer, Thermal Physics, 2nd ed., W. H. Freeman, New York, 1980.
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equilibrium thermodynamic potential or free energy is never confused with the
nonequilibrium constrained thermodynamic potential or free energy, and the
separation between these conceptually different quantities will be consistently
maintained. Because the constrained thermodynamic potential describes the
excursions of the system to nonequilibrium states (see below), it may also be
called the fluctuation potential.

2.2.3 Legendre Transforms

The total entropy, Eq. (2.6), may be written Siota(E|T) = S(E) — E/T,
and it is extremised at E = E(T) (suppressing N and V). The function
Stotal(T) = Stota(E(T)|T) is the transformation of the entropy as a function
of energy, S(E), to the entropy as a function of temperature, Syota1 (7). This
can be regarded as a purely mathematical transformation that does not require
the existence of a reservoir. Such mathematical procedures are called Legen-
dre transforms. Given f(z) and y(z) = f'(z), and bijectivity betwcen z and
y, such Legendre transforms take the general form F(x|y) = f(x) — 2y, which
is extremised at x = Z(y). Hence F(z|y) is the analogue of the constrained
thermodynamic potential, and F(y) = F(Z(y)|y) is the analogue of the equilib-
rium thermodynamic potential. It will be seen that all of the nonequilibrium
and equilibrium thermodynamic potentials derived in the following chapter via
reservoir arguments can also be derived by Legendre transforms.

In mathematical content the present approach is equivalent to a Legendre
transform. Physically however, the present procedure has the advantage of be-
ing based on entropy maximisation, and consequently there is a transparent
interpretation available for the constrained and equilibrium thermodynamic po-
tentials and for the distinction between themn. This will prove especially valuable
in the derivation and treatment of statistical mechanics below.

The Legendre transform works by adding a strictly linear function of the
nonequilibrated variable. This is also the casc in the present method, due to
the truncated Taylor expansion of the reservoir. Since the second derivative of
such a linear function vanishes, the consequence is that the convexity of the con-
strained thermodynamic potential is preserved by such a transformation. That
is, the extremum of the constrained thermodynamic potential is guaranteed to
be a minimum. More generally such a conservation law and reservoir may not
physically exist for the variable of interest. Nevertheless one can imagine a gen-
eralised reservoir and still formulate the Legendre transform by addition of the
appropriate linear function, thus being assured of the convexity of the resultant
constrained thermodynamic potential.

2.2.4 Derivatives of the Free Energy

The utility of the constrained thermodynamic potential lies in its variational
nature at equilibrium, which makes differentiation particularly simple. The
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temperature derivative of the Helmholtz free energy is

OF(N,V,T)
or
_ (OF(E(N,V,T)|N,V,T)
- ()L
_ OF(E|N,V,T) OF(E|N,V,T) OE(N,V.T)
B or E-F OE s 0T
_ OF(E|N,V,T)
- or E=E
= —S(E,N,V). (2.11)

The important point of this derivation is the passage from the second to the
third equality, where the final term vanishes, OF (E|N,V,T)/0E|._% = 0, be-
cause of the optimal nature of the constrained thermodynamic potential at the
equilibrium state. This is a general feature that may be widely exploited. The
entropy in the final equality is that of the isolated subsystem with the equilib-
rium energy; it may be written S(N, V,T).

One sees that because the constrained thermodynamic potential is optimised
at equilibrium, differentiating the Helmholtz free energy is the same as differen-
tiating the constrained thermodynamic potential holding E fized. It is for this
reason that onc often sees the expression F' = E — TS, and 0F /0T = -5, it
being implicit that although the energy that appears herc is really E(N,V,T),
it may be held fixed during any differentiations. The entropy may similarly
be held fixed as far as temperature differentiations goes because it is really
S(N,V,T)= S(E(N,V,T),N,V), and E may be held fixed.

The other derivatives of the Helmholtz free energy follow directly from the
correspounding derivatives of the entropy for an isolated system, holding E fixed.
They give the pressure

(aF(N, V, T)> B <8F(E|N, V,T)>
ov T.N ov E,T.N
_ 7 <8S(E,N,V)>
ov EN

and the chemical potential

(af(gj,vv,T)L’v _ (aF(Eg]\\f[VT)>

ET
<8SENV>

= I (2.13)
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Figure 2.2: Two subsystems, identical except for energy, separated by a remov-
able insulating partition.

From the uniqueness of the equilibrium state (see below) the pressure that
appears here p(N, V,T') equals p(E(N,V,T), N, V). This demonstrates the in-
ternal consistency of thermodynamics: the volume derivative of the Helmholtz
free energy for a subsystem in contact with a heat reservoir gives a pressure that
is identical to that of an isolated system (with the equilibrium energy). Similar
comments apply to the chemical potential, T(N,V,T) = u(E(N,V,T),N,V)
and to the subsystem entropy S(N,V,T) = S(E(N,V,T),N.V). These threc
quantities, P, i, and S, are properties of the subsystem in thermal equilibrium,
as is emphasised by the fact that they are overlined.

In view of these results, the total differential of the Helmholtz free energy is
dF(N,V,T) = —S(N,V,T)dT —p(N,V,T)dV + (N, V,T)dN. (2.14)

This summarises the above results for the partial derivatives.
Finally, if one divides both sides of the definition of the Helmholtz free energy
by T, F/T = E/T —S(N,V,T), and differentiates with respect 7! one obtains

O(F(N,V,T)/T) -
("3 >N,v -5 (219)

since one can hold E (and hence S(E(N,V,T),N,V)) constant as discussed
above.

2.3 Properties of Thermodynamic Systems

2.3.1 Concavity of the Entropy

In the egg sample of Chapter 1, it was shown by direct calculation that the
constrained total entropy was a concave function that attained its maximum at
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the equilibrium macrostate. Using the notions of the extensivity of the entropy
and its maximisation at equilibrium, it is now demonstrated in general that the
entropy is a concave function of its arguments.

Congider two systems, identical except for energy, isolated from each other
by an insulating partition (Fig. 2.2). They have volume V; = V, = V|, number
of particles Ny = Ny = N, and energies E; and E,;. Their entropies are S1 =
S(E1,V,N) and S; = S(E2,V, N), and the total entropy with the partition in
place is Siotar = S1 + S2. This follows because the systems are isolated from
each other, and in such cases the entropy is a linear additive quantity. If the
insulating partition is removed, energy irreversibly flows from the more to the
less energetic system. The total entropy at the end of this process must be
greater than at the beginning,

Siotar(E1 + E2. 2V, 2N) > S(E1, V, N) + S(Es, V. N). (2.16)

This is simply a statement of the second law of thermodynamics, namely that
energy flows in the direction of entropy increase. The microscopic interpretation
is of course that relaxing the constraint imposed by the partition increases the
nunber of microstates available to the system. From symmetry equality is
expected if, and only if, E; = E,;. After equilibration the insulating partition
can be reinserted, and the energy of each subsystem is (E; + F2)/2, fluctuations
about this value being relatively negligible. This equilibrium division of the
energy between the two systems corresponds to the maximum entropy. Since
there is 1o further energy flow, the removal and insertion of the partition is now
a reversible process, and one must have

Siotal(E1 + E2,2V,2N) = 28 (ﬂ;—EQ Vv, N> . (2.17)
Cowbining these two equations one obtains

S(El—;%,V,N> >%[S(E1,V,N)+S(E2,V,N)]. (2.18)
The case E; = E, is here excluded, so that the left side is strictly greater

than the right. This says that any chord to the entropy curve lies below the
curve, which defines a concave function. By performing a Taylor expansion as
E; — E,, 1t may be seen that this is equivalent to

82S(E,V, N)>
v ol <0. (2.19)
(Z5m)...

The above explicitly shows that the entropy of a systemn is a strictly concave
funiction of energy. It is clear that analogous steps can be carried out individually
for volume and for particle number, so that in general the entropy is a concave
function of its arguments.

Simultaneous variations are hardly more complicated. Suppose that two
isolated systems are identical apart from their energies and voluines. Allowing
simultaneous exchange of both as above, one concludes that

Ei+E, Vi+V, 1
Stotal( : 2 27 ! 2 27N> > E[S(E17V1aN) +S(E27V2aN)]' (2'20)
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Expanding each term on the right hand side about the equilibrium energy and
volume, the zeroth and linear terms cancel and one is left with

SgpdE? 4+ 2SpydEdV + SyydV? <0, (2.21)

where the subscripts denote partial derivatives. This result, which holds for
arbitrary dE and dV, will be used several times below.

2.3.2 Uniqueness of the Thermodynamic State

It will often be convenient to interchange the dependent and the independent
variables. For example, instead of dealing with S(E, N, V) it may be desirable
to use E(S, N, V). In general an interchange such as

1 =z(y1) & y1 = y(z1) (2.22)

is valid if there is a one-to-one relationship between the conjugate variables. It
will now be shown that this follows from the fact that the entropy is a strictly
concave function of its arguments. Use will be made of the condition for a
continuous function to be invertible, namely that its derivative must be finite
and nonzero on the interior of its domain.

Energy-Entropy

Because the entropy is continuous and strictly concave, S” < 0, it can have
at most one turning point. Denote the point of this putative maximum by
E;, S'(E;) = 0. Entropy increases with energy for E < E; (T(E) > 0), and
decreases for E > E; (T'(E) < 0). Only systems with positive temperatures will
be treated here (because systems with negative temperatures are metastable).
In view of its concavity, the gradient of the entropy may possibly be infinite at
the terminal energy, but nowhere else. This is the ground state Eg, and the
infinite gradient corresponds to the absolute 0 of temperature. Hence on the
domain (Eg, E1) there is a one-to-one relationship between the entropy and the
energy, and one can equally well write S(E, N, V) as E(S,N,V).

Energy—Temperature

Now on the domain (Fg, Eq ), the concavity of the entropy corresponds to 9(1/T")
/OE < 0, or 8T /OE > 0. Furthermore, since the temperature is defined via the
energy derivative of the entropy, one has T(E), which means that the tempera-
ture must be a single-valued function of the energy, and 91/0F < co. Therefore,
there is a one-to-one relationship between energy and temperature, and hence
T, =T(E{,N,V)< E; = E(Ty,N,V). Similar arguments can be made for the
volume and for the number of particles, and for their conjugate variables the
pressure and the chemical potential, respectively. It will be assumed through-
out that there always exists a domain upon which it is possible to interchange
dependent and independent variables.
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2.3.3 Thermal Stability

The constrained thermodynamic potential was constructed to be a convex func-
tion of energy. It similarly follows from the concavity of the entropy that it is also
a convex function of the volume and of the particle number, F” = —T'S"” > 0.
Because of the variational principle, the constrained thermodynamic potential
is minimised by the equilibrium energy, at which point it equals the Helmholtz
free energy.

It should be stressed that the equilibrium thermodynamic potential, which
in this casc is the Helmholtz free cnergy, does not obey a variational principle;
it is not a minimum with respect to any of its independent variables. It is the
constrained thermodynamic potential that is minimised at equilibrium.

A consequence of the convexity of the constrained thermodynamic poten-
tial is that matter is thermally stable. A temporary increase in energy in
a local region of the system (of fixed volume and particle number) increases
the nonequilibrium thermodynamic potential (considering the local region as
a quasi-isolated subsystem). The minimisation principle for the constrained
thermodynamic potential, which is equivalent to total entropy maximisation,
shows that this is unfavourable (i.e., improbable), and to counteract it energy
is likely to flow back out of the region, restoring it to equilibrinun. Conversely,
and for the same reason, energy flows back into a region following a temporary
decrease. It is the minimisation of the constrained thermmodynamic potential
that provides the thermal stability of matter by damping local fluctuations in
the encrgy. It ought to be clear that thermal stability does not come from any
variational principle of the equilibrium Helinholtz free energy itself, but rather
fromn the variational nature of the underlying constrained thermodynamic poten-
tial. Analogous optimisation principles will be derived in the following ¢hapter
for systems undergoing volume and particle nmnber fluctuations, and it will
similarly be shown that matter is mechanically stable.

2.3.4 Extensive and Intensive Variables
Extensive Variables

The independent variables that specified the state of the isolated system were all
linear additive quantities. This implies that they are exztensive variables, which
means that they scale with the size of the systemn (i.c., if the munber of identical
isolated systems is doubled, then the total value of each of these is also doubled).
The entropy itself is also extensive, as is clear in the microscopic interpretation
of it as the logarithm of the total weight (i.c., the total weight of two isolated
systems is the product of the individual weights, and hence the total entropy is
the sum of their individual entropies). Hence for a system comprising A identical
isolated subsystems, the total entropy is S(AE, AV, AN) = AS(E,V,N). By the
definitions, the inverse temperature of the total system is

S ota: —
Tt = (3 ool > = <—8>\S> =71 (2.23)
IEBotal Viotal, Veotal ONE V,N,A
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That is, the total temperature is the same as that of each of the independent
subsystems, and similarly for the pressure and chemical potential. Such vari-
ables that are independent of the size of the system are called field or intensive
variables.

Intensive Variables

For most of the present analysis the thermodynamic limit will be invoked. In this
limit the system size goes to infinity while the ratios of the extensive variables are
kept fixed. Consequently the intensive variables also maintain constant values.
New intensive variables may be defined, such as the energy density ¢ = E/V
and the number density p = N/V. In this thermodynamic limit the entropy
density is a function of just two variables, o(e,p) = S(E,N,V)/V as are the
field variables,

() (o)

and

OVole p)
(55 ..
- () () ()

(55, ),

= ofe,p) — £ pe (2.26)

Nl

That is, in the thermodynamic limit one has T (e, p), p(e, p), and u(e, p).

Helmholtz Free Energy Density

It has just been shown that although three variables appear necessary to specify
the state of the system, in the thermodynamic limit there is a nontrivial depen-
dence on just two intensive variables. A similar result holds for the Helmholtz
free energy. In terms of the nuinber density p = N/V and equilibrium energy
density €(p, T) = E(N,V,T)/V, the Helmholtz free energy density is

7(p,T) = F(NV,T)}V = e(p,T) — To(p,T), (2.27)

where the entropy density of the isolated subsystem at the equilibrium energy is
a(p, T) =7(€,p) = S(E(N,V,T),N,V)/V. Tt is straightforward to show that

a1 = D (2.28)
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H(p,T) = ?%%’)2, (2.29)
~p(p,T) = f(p,T) — pii(p, T), (2.30)

and

o(F (o, T)/T)

ApT) == 5a/m)

(2.31)

Thermodynamic Limit

The existence of the thermodynamic limit and the consequent properties just
listed involves certain subtleties. Whereas the concept of extensivity was intro-
duced via a system comprising independent, isolated subsystems, the thermo-
dynamic limit applies to a single system. The two are related by imagining that
this infinite system can be divided into quasi-isolated subsystems. That is, the
subsystems are large enough so that the region affected by the interactions with
the neighbouring subsystems is negligible compared to the size of the subsystem
itself. In practice this requirement appears to hold for all physical systems, and
taking the thermodynamic limit is both well defined and routine.

In the thermodynamic limit the boundaries of the systermn have negligible
influence on its thermodynamic properties, and their nature, shape, etc. can
be ignored. In practice most interest has focused on such bulk systems, and
the thermodynamic limit is almost always implicitly assumed. However on
occasion niicroscopic systems may be studied, and in these cases the effects of
boundaries and of finite size can be inmportant. Such systems exhibit additional
features beyond those of bulk systems, and the above reduction to the nontrivial
dependence on just two independent variables no longer holds. The shape of the
coutainer and other surface effects cannot be neglected in such small systems,
and additional quantitics such as the surface tension need to be defined.

Summary

e The state of an isolated system is specified by the three extensive variables:
erntergy, volume, and number. The entropy is a function of state that
is sumilarly extensive and that geunerates the thermodynaimic properties
of the system such as its temperature, pressure, and chemnical potential.
These conjugate field variables are intensive. In the thermodynamic limit,
the extensive variables may be replaced by their respective densities, and
the entropy density and the field variables reduce to functions of just two
independent variables, namely the energy and number densities.

e The entropy of an isolated systern is a strictly concave function of its argu-
ments. Consequently the mapping between dependent and independent
variables is one-to-one, which means that they may be interchanged as
appropriate. The choice of independent variables commonly reflects the
specific flux between a subsystem and a particular reservoir.
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e The constrained total entropy of a subsystem in contact with a reser-
voir 18 a maximum at equilibrium, and a subsystem in a nonequilibrium
macrostate (i.e., with the nonoptimal value of the parameter in flux) moves
in the direction of increasing constrained total entropy. In the case of a
constant temperature heat reservoir it is the energy that is in flux, and
the equilibrium energy corresponds to temperature equality between the
subsystem and the reservoir.

e The constrained thermodynamic potential is —7" times the constrained
total entropy. It characterises the approach to equilibrium, and is min-
imised at equilibrium. The equilibrium thermodynarnic potential is this
minimum value of the constrained thermodynamic potential. It is exclu-
sively an equilibrium quantity whose derivatives generate the equilibrium
thermodynamic properties of the subsystem in contact with the reservoir.
It does not obey any variational principle. In the case of a heat reservoir,
the equilibrium thermodynamic potential is called the Helmholtz free en-

ergy.



Chapter 3

Various Reservoirs

In the preceding chapter it was shown how a constant temperature system has
the physical realisation of a subsystem able to exchange energy with a heat
reservoir, and how temperature equality represented the equilibrium state of
maximum total entropy. As a corollary it follows that since a closed system may
be regarded as a heat reservoir for its parts, at equilibrium the temperature is
uniform throughout (at least on large enough length scales). Two essential fea-
tures of the analysis were that energy is a linear additive quantity and that it is
conserved. The thermodynamic behaviour of any subsystem that can exchange
with a reservoir a linear additive conserved quantity may be similarly analysed,
which is the content of this chapter.

Physical thermodynamic systems differ in their boundaries. Some systerns
may be completely insulated from their surroundings, whereas other boundaries
conduct heat and allow energy exchange between the system and the surrounds.
Still other systems may be open, so that both energy and particles can enter and
leave. Flexible walls allow the system’s volume change in response to external
stimuli. These are some examples of the common thermodynamic systems that
will be treated in this chapter with the reservoir formalism. Effectively this
consists in essence of interchanging an extensive conserved variable with its in-
tensive conjugate to give the equilibrium thermodynamic potential appropriate
for the particular boundaries.

3.1 Constant Linear and Angular Velocity

There are seven linear additive constants of the motion of a closed system: the
energy, the three components of linear momentum, and the three components
of angular momentum. Hence for an isolated system comprising two isolated
subsystems able to exchange all these quantities one must have for the energy
dE; + dEy = 0, for the linear momentum dP; + dP, = 0, and for the angular
momentum dJ; + dJ, = 0. If the second system is a reservoir, the interac-
tions between the two systems are negligible, Siota = S1 + S2, and the Taylor

35
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expansion of the second system’s entropy may be truncated at linear order,

SZ(E27 V27 N27£2712)

E P, -P Ji-J
= SZ(Etotal‘,V27N27Ptotalvitota1) - == =1 =

p— . 3.1
- T + MT, I, Ty ( )

In the appendix, Section B.2.1, it is shown that velocity and momentum are
conjugate variables, and that the momentum derivative of the entropy is the ve-
locity, Eqgs. (B.22) and (B.25). Neglecting the part independent of subsystem 1,
dropping the subscripts, and invoking the velocity of the reservoir, v = P, /Mo,
and its angular velocity, w = J,/ I, the total entropy is
Stotal(Eyﬂviu\[vuTva(ﬂ) - S(E7V7N£/i) - % + E = + i

T T
The total entropy is maximised when the derivatives with respect to energy,
momentum, and angular momentum vanish. One sees that the equilibrium
values are T = T, P/M = v, and J/I = w. That is, at equilibrium the
subsystem moves with the same velocity as the reservoir, and it rotates with
the same angular velocity. A corollary is that at equilibriumn the linear and
angular velocities must be uniform throughout a system, as may be seen by
considering the system to be composed of parts small compared to the total,
but large compared to their boundary regions. That is, the system can undergo
uniforin translation or rotation, but equilibrinin precludes internal macroscopic
motions.

One could go on to derive the constrained thermodynamic poteutial for this
composite system, and call its minimum value the equilibrium thermodynamic
potential. Little of significance results, since it is clear that the momentum
derivatives of this free energy simply yield the six velocities of the subsystem,
which are directly related to the momenta themselves. Since macroscopic mo-
mentum contributes only trivially (it ouly determines that the system translates
or rotates uniformly as a whole), one normally deals with systems with 0 linear
and angular momenta. Au exception is the case of a rotating fluid system, where
the centrifugal force effectively contributes to the local chemical potential.

In the case of an external field or one-body potential, the momenta of the
system are not conserved. Such a field would be provided by the walls containing
the systen1. Henceforth momenta will not be considered explicitly.

&

. (3.2)

3.2 Constant Chemical Potential

Now an isolated system comprising two subsystemns able to exchange not only
energy but also particles is considered (Fig. 3.1). Such a system is called an open
system, and the reservoir in this case fixes the temperature and the chemical
potential. The total energy Eiona1 = E1 + E2 and the total particle number
N = N; + Ny are fixed.

The second system is large compared to the first, but the region of their
interaction is relatively small, so that it can be considered a reservoir and
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Figure 3.1: A subsystem 1 able to exchange energy and particles with a reservoir
2.

Stotat = S1 + S2. The equilibrium energy and particle number partitioned
between the two systems are determined by the temperature and ¢hemical po-
tential, as will now be shown. Because the reservoir is so large, the Taylor
expansion of its entropy may be truncated at the linear order,

S2(E2, Vo, No) = So(Eotar, Vo, N) — — + l;Tle- (3.3)
2

Neglecting the part independent of subsystern 1, and dropping the subscripts,
the constrained total entropy is

E
Stowat(N, Elu, V,T) = S(E,V,N) = — + EN. (3.4)
This gives the total entropy for a subsystem in a nonequilibrium state of energy
E and particle number N, when in contact with a reservoir of teinperature 7’
and chemical potential p.
The derivatives of the constrained total entropy are

aSt()tal(N7E|u7 V,T) _M(Evvv N) 14

BN T T(EV,N) T >
and
aStotal(NrEI:uvvv T) — 1 — l (3 6)
9E T(E,V,N) T ’

The first term on the right-hand side is the derivative of the subsystem entropy,
which is the subsystem chemical potential and temperature, respectively. The
constrained total entropy is of course a maximum at equilibrium, which cor-
responds to the vanishing of these derivatives. This condition gives implicit
equations for the equilibrium energy E(u,V,T) and the equilibrium particle
number N(u,V,T), namely T(E,V,N) = T and u(E,V,N) = u. That is, at
equilibrium a subsystem that can exchange energy and particles with a reservoir
has the same temperature and chemical potential as the reservoir.
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The direction of particle flow in the nonequilibrium case depends upon the
change in constrained total entropy with particle number, dSiota) = [—u(E, V, N)
JT(E,V,N)+u/T|dN (at constant volume and energy). Since the total entropy
must increase, dSyuta; > 0, particles flow to the region of lower chemical poten-
tial (for a system at the same temperature as the reservoir). In other words, an
increase in the chemical potential of the reservoir will force more particles into
the system.

As for the isothermal system, one defines a constrained thermodynaimic po-
tential that is the negative of the total entropy times the temperature,

Hl

Q(E7N|MV7T) _TStotal(EvNLuaVv T)
E-TS(E,V,N) — uN

F(E|N,V.T) — uN. (3.7)

From the concavity of the subsystem entropy, the constrained thermodynamic
potential is obviously a convex fuuction of N and of E, and it is minimised by
their equilibrium values. Thus it represents the appropriate variational prin-
ciple for a nonequilibrium system able to exchange energy and particles with
a reservoir characterised by chemical potential 4 and temperature 7. As fore-
shadowed above, it has the appearance of a Legendre transform with respect to
N of the constrained thermodynamic potential of a closed systen: in thermal
contact with a reservoir.

In the case of rapid thermal equilibration. one could take w(Nlu,V,T) =
Q(E(N,V,T),N|u,V,T) = F(N,V,T) — uN. This has the appearance of a
Legendre transform of the equilibrium free energy of a constant temperature
closed system (the Helmholtz free energy), and represents a variational principle
for a system at the same temperature as the reservoir, but not in diffusive
equilibrium with it.

The constrained thelnodynamic potential is minimised by the equilibrium
values of the energy E(u,V,T) and the number N(u, V,T). In the first place
OQUE, N\, V.T) JOE=1-TOS(E,N,V)/OE = 0 when T(E,V,N) =T or at
the energy given by E = E(N,V,T), as found previously. Further,

OQUE, N, V. T) OS(E,N,V)
=-T——" —pu, .
N ON o (38)
which vanishes at p(E,V,N) = p, which again is an implicit equation for

N = N(E,V,u). These are the two equations that determine the equilibrium
quantities E(u, V,T) aud N(u, V.T).

From the concavity of the entropy it follows that the constrained thermody-
namic potential is a convex function of particle number, Q' = —T'S” > (0. The
equilibrium thermodynainic potential or free energy of an open system, which
is called the grand potential, equals the minimum value of the constrained ther-
modynamic potential,

Qu,V,T) = QE, Ny, V,T)

F(N,V,T) - uN. (3.9)
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Again because of the variational nature of the problem, differentiating the grand
potential is the same as differentiating the constrained thermodynamic potential
holding E and N fixed. Accordingly,

(%ﬁ)w _ W, (3.10)

(L(’;’VV’ T)>#,T = (LF(?/V’T))N’T = -7, (3.11)
and

(8@(/5,;/,T)>HV _ (%)ﬁv < (3.12)

Note that this last quantity is not the total entropy but rather S(u,V,T) =
S(E(u,V,T),N(u1,V,T),V), which is the entropy of the (isolated) subsystem
with the equilibrium energy and particle number. These results may be sum-
marised by the total differential

dQ = —Ndu — pdV — SdT. (3.13)

Finally, dividing both sides of the definition by 7', one readily sees that

(a(ﬁ/T)
o(1/T)

) =FE - uN. (3.14)
w,V

Multicomponent System

In many cases more than one species of particle is present, so that one has N,
particles of type « in the isolated system. The corresponding chemical potential

is
s
Yo =—T ( > .
ONa ) B VN, ..

The total differential of the entropy now includes a sum over species, and for m
different types of particles it is

(3.15)

1 1 &
AS(E,V,N) = ZdE + %dv — 7> HadNa, (3.16)
a=1

The equilibrium condition for an open system is obviously iz, = ,ua(E, V,N).
The constrained thermodynamic potential may be written as Q(E, N|u,V,T) =
E_TS(Evvvﬂ) _Eﬂ
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3.3 Constant Pressure

Now the effects of variable volume are analysed for a subsystem in contact
with a reservoir at constant pressure (an isobaric system). Consider an isolated
total system consisting of two isolated subsystems separated by a moveable,
diathermal partition (i.e., the partition is heat conducting). Thus the total
energy Eioia1 = E; + Eo and volume Vigia = Vi + Vo are fixed, but not their
partitioning between the two systems. The second system is an energy and
volume reservoir, and so a Taylor expansion is made for its entropy. This yields
for the subsystem-dependent part of the total entropy Siota) = S1 + So

St (B, VIN,p, T) = S(B,N,V) - = - 22 (3.17)
where p and T are the pressure and temperature of the reservoir. This is the
entropy of a subsystem out of equilibrium with respect to energy and volume.
Since the entropy must increase, the volume changes such that 0 < dSiota =
(p(E,V,N)/T(E,V,N) — p/T)dV. That is, if the system is in thermal but
not mechanical equilibrium, the volume of the system increases if its internal
pressure is larger than the external pressure of the reservoir.

The total entropy is maximised at equilibrium, which determines the energy
E(N,p,T) and the volume V(N, p,T) of the system. As previously one develops
a miinimisation procedure for equilibrium by defining a constrained thermody-
namic potential that is the negative of the temperature times the total entropy,

G(E,VIN,p,T) = E-TS(E,N,V)+pV
F(E|N,V,T) + pV. (3.18)

This is a convex function of the system volume and energy, and is the appropriate
nonequilibrium potential for a systemn with moveable diathermal walls in contact
with a reservoir of fixed temperature and pressure. In the case of thermal equi-
librium having been established, oue would take g(V|N,p,T) = F(N,V,T)+pV
as the appropriate constrained thermodynamic potential that controls volume
equilibration.

Minimising G(E,V|N,p,T) with respect to energy gives T(E,V,N) =T,
which gives the equilibrium energy for a given volume, E(N,V,T). Minimis-
ing with respect to volume gives p(E, V, N)/T(E,V,N) = p/T', which gives the
volume for a given energy of the system and temperature and pressure of the
reservoir, V(E|N,p,T). Simultancous solution of the two gives the full equi-
librium quantities, E(N,p,T) and V(N,p,T). The latter quantity also follows
directly from the minimisation of the thermally equilibrated constrained ther-
modynamic potential, dg(V|N,p,T)/0V =0, or

8F(N,V,T)
vV v

In view of the convexity of G, the Gibbs free energy is defined as the minimum
value of the constrained thermodynamic potential,

- (3.19)

G(N,p,T) = G(V,E|N,T,p)
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= F(N,V,T)+pV. (3.20)

(One also has G(N,p,T) = g(V|N,T,p).) Again because of the variational
nature of the problem, differentiating the Gibbs free energy is the same as
differentiating the constrained thermodynamic potential holding V = V and
E = E fixed. Accordingly,

=V, 3.21
( Op N, T ( )

which gives the equilibrium volume of the system,

9G(N,p,T) 3F(N,V,T)> _
e S Bl SR A el = .22
( ON >p T ( ON V., T . (3 )
and
OG(N,p,T) OF(N,V,T) > —
—_—— = _—— = — . .2
< or >N,p < or N,V 5 (3 3)

These may be summarised by the total differential,
dG =Vdp + ndN — SdT. (3.24)
Finally, dividing both sides of the definition by T', one readily sees that

(3(@/T)
a(1/T)

) —E+pV. (3.25)
N,p

3.4 Constant Enthalpy

The quantity on the right side of the last equation is called the enthalpy, H =
E + pV, and it turns out to be constant during volume changes of an isolated
system, as will be shown. From the first law, for pV work at constant pressure,
the change in heat of the system is dQ = dE + pdV = d(E + pV'), which is just
the change in enthalpy.

A system isolated by adiathermal (insulated, adiabatic) walls (Fig. 3.2) has
insulation that prevents heat flow across the boundaries of the system, d@; = 0.
One wall is moveable (a piston) and is acted upon by an external potential of
the form dE; = podVi. (One could imagine that the piston has area A; and
mass M, and if the acceleration due to gravity is g, then the constant external
pressure is po = Mg/A;.) The total energy Eiota) = E; + Eq is fixed, which
means that dE; = —dFE3. Hence changes in the volume and energy of the
subsystem at constant particle number are related by

dEq

d—V1 = —pq, or E; 4+ paV = const. (3.26)
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Figure 3.2: An insulated subsystem 1 with moveable piston.

The integrated form of this equation assumes that the external pressure is con-
stant. Hence in a reversible change, when the internal pressure balances the ex-
ternal pressure, p1(E1. V1, N1) = p2, the enthalpy of the subsystemn is constant,
dHy = dEy + p1dVy = 0. More generally, p; # po. and it is the enthalpy-like
quantity E; + p2V; that is constant, where the externally applied pressure is
used, not the internal pressure of the subsystem.

The total entropy is that of the subsystem alone, since in this case the
external potential is mechanical, not thermodynaunic, in nature. Writing the
external pressure as p, the total entropy is just Sy (E.VIN, p) = S1(E,V, N),
with E + pV = coust. Hence (at constant particle number),

dStotal = ﬁ @dv + %(ZV
JE dV ov
pEV.N)—p ., (3.27)
T(E.V,N)

The direction of entropy increase determines the approach to equilibrium, When
p > p(E,V,N), dStotai is positive when dV < 0 (i.c., the subsystem shrinks if
the external pressure is greater than the internal pressure of the subsystem).
Equilibrium corresponds to pressure equality.

In view of the constancy of the enthalpy, one regards H = E +pV as one of
the independent variables for this insulated, variable volume system, and one
defines the constrained therinodynamic potential

®(V|H,N,p;T)= -TS(E,V,N), E=H —pV. (3.28)

Minimising this is the same as maximising the entropy. In order to give this
the dimensions of energy an arbitrary temperature has been introduced. It is
not essential to do this; since T only enters as a trivial multiplicative factor its
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value has no physical consequences. By construction ® is a convex function of
volume minimised at the equilibrium volume V (H, N,p). Hence,

198(V|H,N,p;T) OS(E,V,N)8(H —pV) _ 9S(E.V,N)

T oV OE oV 122%
p—p(E,V,N)
= ——— "+ E=H-pV. 2
T(E,V,N) ’ H=p (3.29)

Again, this vanishes at equilibrium, when the internal pressure of the subsystem
equals the external pressure of the reservoir, p(E,V, N) = p, where E = H—pV.

One defines the thermodynamic potential of this system to be ®(H, N, p;T)
= ®(V|H,N,p;T). As usual, because of the variational nature of ®, differenti-
ation of ® can be carried out at fixed V. Hence one has

CANY LN
T \ON H,p,T T \oN H,[},T.V

Ly ()
T \O0H N.p.T T \OH Np TV

1 [0 1 a¢>> Vv
—_{Z= - — [ = = 3.32
T (013 >H,N,T T ( o) unTV T ( )

Obviously one also has the trivial result that 0®/91 = & /7. These results may
be summarised by the total differential,

(3.30)

s

(3.31)

S L

and

VT
dd = w%dH+ v

ul P
—d —dN + =dT. .
T P+ T + T (3.33)

3.4.1 The Approach to Equilibrium

It is worth analysing this isenthalpic system in a little more detail. In particular
it was asserted that the change in internal energy was equal and opposite to the
change in the external potential energy, dE; = —dEy = —podV;. However the
work done by the system on the piston is dW; = p;dVi, and because no heat
flows across the walls of the systemn, d@Q; = 0, this implies that dFE, = —pdV1.
In the case of general interest, p; # po, there is a glaring contradiction between
these two expressions.

In order to reconcile the two. one must recognise that the piston acquires
kinetic energy as the initially unbalanced forces cause it to accelerate, so that the
equation of energy conservation is in fact dE; +dFy +dK = 0. If the piston has
a large enough mass, then its motion is slow enough for a quasi-static approach
to equilibriuzn, which means that p; is well defined and uniform. However it
also means that the kinetic energy is nounnegligible, and that one has dK =
(p1 — p2)dV;. One expects that the piston will execute simple harmonic motion
about the point where the pressures arc in balance, but this point is not the
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equilibrium volume found above. Because of the finite amount of kinetic energy
of the piston, at a given point the internal energy of the system is lower than
when the kinetic energy was neglected, and consequently so is its temperature
and pressure. Nevertheless, given an equation of state one can in principle solve
the equations of motion of this system.

Because no dissipative mechanisms have been introduced to this stage, the
simple harmonic motion of the piston continues forever, and one can only speak
of the equilibrium state in a statistical sense as the average position of the
piston. In practice energy is lost due to friction and to the internal viscosity
of the system. Assuming that the latter dominates, then when the motion of
the piston has died out, dK = 0 and dE; = —dFEs, so that all of the previous
equilibrium analysis holds. Effectively the system has been heated by internal
motion even though it is enclosed in adiathermal walls.

Finally, it is worth inquiring of the effect of replacing the mechanical exter-
nal potential by a thermodynamic one. If the second subsystem is a pressure
reservoir, then p, remains a constant. If in addition the viscosity of the reser-
voir is negligible (e.g., it might comprise a low-viscosity gas), then all of the
preceding comments and analysis goes through, E; + p2V; = counst., and the
equilibrium energy, temperature, and volume are as found above. Contrariwise,
if the viscous dissipation of the reservoir is comparable to that of the subsystem,
one cannot say how the kinetic energy of the piston is divided between the two,
and because of the adiathermal walls, the arbitrary internal heating does not
equilibrate between theui. Although equilibrium still correspouds to pressure
equality, one does not kunow the final energy, temperature, or volume of the
subsystem. This indeterminacy of linked isenthalpic systems has been noted by
Callan.!

3.5 Constant Entropy

The reservoirs of energy, volume, and particles treated above yielded a con-
strained thermodynamic potential based upon the total entropy. For mathe-
matical completeness, the entropy of the subsystem is now treated as an inde-
pendently specified variable.

One considers a subsystem able to exchange energy and voluine with a reser-
voir, but in such a way that the entropy of the subsystem is constant. The
volume is regarded as the variable in flux, and the energy is regarded as a de-
pendent variable, E(S,V,N). As above thc subsystem-dependent part of the
constrained total entropy is

Siwen(VIS,p, 1) = 5 - ZELN 2V (334
T T
where T" and p are the temperature and pressure of the reservoir, respectively.
Accordingly the constrained thermodynamic potential is given by

H*(V|S,p,N;T) = E(S,V,N) +pV - TS. (3.35)
M., B. Callan, Thermodynamics, Appendix C, Wiley, New York, 1960.
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Only the first two terms depend upon the volume, and since the constrained
thermodynamic potential describes the volume states of the system, one may
just as well discard the final term and write the constrained thermodynamic
potential as

H(V|S,p,N) = E(S,V,N) +pV. (3.36)

Hence it is the enthalpy that describes volume fluctuations of an isentropic
subsystemn,

Since the volume derivative of the energy is the negative of the pressure, one
has

(g%) = —p(S,V,N) +p, (3.37)
S,p,N

which shows that the equilibrium volume, V (S, p, N), that extremises this po-
tential is the one that makes the internal pressure of the subsystem equal to the
external pressure of the reservoir. Since the constrained thermodynamic poten-
tlal is derived from the total entropy, one can be assured that it is a convex
function of volume, and that the extremum is a minimum,

92H O2E ap(S,V, N)
= _ - — _— 0. v
(aw)s,w (aW)s,N ( oV >5,N > (3.58)

An explicit proof of this is deferred until the next section.
The thermodynainic potential, in this case the equilibrium enthalpy, is the
minimum value of the constrained thermodynamic potential,

H(S,p,N)=E(S,V,N) +pV. (3.39)

Since differentiating the enthalpy is the same as differentiating the constrained
thermodynamic potential with V fixed, one has

aﬁ(&pﬂ)) =
o =V, 3.40
( Op N.S ( )
OH(S,p, N) OE(S,V.N) _
— _— = » 1
( oN >ps ( N )y P (3.41)
and
OH(S,p, N) OE(S,V,N) ) —
Y et St A =T, 42
( E >N,p ( 55 )uv (342)

These may be summarised by the total differential,
dH = Vdp + dN +TdS. (3.43)

In the case of the full thermodynamic potential, F*(S,p, N:;T), the results
remain the same, except that the final one is replaced by

OH"(S,p, N;T) o~
<—a§— -T_-T. (3.44)
N,pyT
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Note that there is no requirement for the temperature of the subsystem to equal
that of the reservoir. In addition one has the entropy itself

8H (S, p, N;T) B _
<T = —S, (3A40)
S,p,N
and the equilibrium enthalpy
O(H " (8,p, NsT)/T) _ m Lo
< 971 =—(E+pV). (3.46)
S,p,N

3.6 Thermodynamic Second Derivatives

So far the main concern has been with the first derivatives of the constrained
and equilibrium thermodynamic potentials, which yield the equilibrium value
of the thermodynamic quantities. The second derivatives also yield measurable
parameters, and it will be shown that these determine the statistical fluctuations
about equilibriuzn. As seen above, there is a variety of thermodynainic systems,
each characterised by their own set of dependent and independent variables.
Because of the uniqueness of the thermodynamic state, it matters little which
three variables one chooses as independent. This section will deal almost exclu-
sively with equilibrium. To simuplify the notation the equilibrium quantities will
not always be overlined, since what depends upon what should be clear from
the context. This section relies heavily upou the propertics of partial derivatives
outlined in Appendix C.

3.6.1 Concavity of the Thermodynamic Potentials

The generic treatment of the reservoirs above consisted in essence of interchang-
ing an extensive conserved variable with its intensive conjugate. The total
entropy was identified and uscd to form a constrained thermodynamic poten-
tial that was convex with respect to the noncquilibrium extensive variable. The
equilibrium thermodynamic potential or free energy equalled the minimuin value
of the constrained thermodynamic potential. It is now shown in general that
the equilibrium free energy is concave with respect to the conjugate intensive
variable.

Let X be the conserved extensive variable and let the conjugate intensive
(field) variable be

re— (g—f()S, (3.47)

z=T-=. (3.48)

or
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Here X could stand for E, N, or V, or it could be an additional parameter of
the system. The subsystem-dependent part of the total entropy of a subsystem
plus reservoir at x and T, for exchange of X, is

zX

Stotal(XkE) = S(X) - T (349)
As above, the total entropy is a concave function of the extensive variable,
azstotal(le)
— 0. .
( X2 ) < (3.50)

The equilibrium value of X is X (x) (or more fully X (x,T)), and this gives the
maximum total entropy, Siotal(Z) = Stotal (Y(z)|x) It is now proven that this
latter quantity is a convex function of the reservoir field /7.

One has

& Seorar(X (2)|2) d [8S(X) diX  z dX X(a)
d(z/T)? d(e/T) | 0X d(z/T) T d(z/T)
I SC) (3.51)

d(z/T)’

where the cancellation occurs because z{X(z)) = z and T(X(z)) =T. (On the
left-hand side of each of these equations appears a property of the subsystem,
and the quantity on the right-hand side is a property of the reservoir.) Now
the equilibrium value is X, and if X’ is any other value, then by definition
Stotal(XlLr) < Stotal(X|«T)7 or

X X

T 7 < S(X) - S(X). (3.52)
An expansion to second order about X' yields
v - X - X
S(X) = S(Xl)—|—(X—XI)Sx(XI)—|—(*—2—)Sxx(XI)
= (Y_ 2
= S(Xl)—l—(Xle):,—l— 5 Sxx(X/), (353)
so that
7~ X - X')?
[% — ?} (X - X' < (———2—)Sxx(X’)k (3.54)

Since the right-hand side is negative due to the concavity of the entropy, dividing
by (X — X’)? and taking the limit yields

d(z/T)

0 .
x <0 (3.55)
or equivalently
dX
< 0. (3.56)

d(z/T)
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One concludes that the total entropy maximum is a convex function of z/T,

L (3.57)

This convexity of the total entropy shows that the equilibrium thermodynamic
potential, F(z) = F(X(z)|z) = =T Swota1 (X (z)|2), 18 concave,

d*(F (x)/T)
—— =<0 3.58
ATy 5%
To identify X and 2 in a given case, one notes that
d(F(x)/T) _—
= X(x). .59

3.6.2 Heat Capacity

The heat capacity is the rate of change of heat with temperature, and from the
first law the heat change of the system is the change in energy of the system
less the work done on the system, d@@Q = dE — dW. Neither heat nor work is a
state function, and in the case of interest it matters whether the change is at
coustant volume (dW = 0) or at constant pressure (dW = —pdV). The heat
capacity at constant volume is

_(9Q\ _[(9E
= <0T>V,N - <6T>V,N‘ (560

The energy that appears here is the energy of a subsysten in equilibrium with
a heat reservoir of temperature 7', E(N,V.T), and it was given above as a
derivative of the Helinholtz free energy, so that one has

=1 (O*(F/T)
&= (a(l/T>2 >V,N‘ (3:61)

In terms of the general concavity result established in the preceding section,
this is the case of z = 1 (and X = E), and so one concludes that

Cy > 0. (3.62)

The heat capacity at constant pressure is

o = (3r),,++ ()
P T ), n ), n

_ -~ (8(G/T)
= T2<a(1/T>2>p.N’ (369

where the fact that the enthalpy E + pV can be written as a derivative of the
Gibbs free energy has been used. One again identifies z = 1 (and from the
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inverse temperature derivative of the Gibbs free energy one has X = H), so
that

Cp > 0. (3.64)

One can in fact show that C), > Cy, which may be interpreted as signifying that
extra heat is required to raise the temperature of a system at constant pressure
because one does additional work expanding the volume against the external
pressure.

3.6.3 Compressibility

The compressibility is the rate of change of volume with pressure, and this can
be done at constant temperature or constant entropy. The isothermal compress-
ibility is

-1 /0V
_ZLfov . 3.65
xr Vv <ap>TN ( )

The volume here is V (N, p,T'), which is the pressure derivative of the Gibbs free
energy, so that this may be rewritten

273 273
we(2T) Lo (EEm) a9
V \dp rn VT a(p/T) N
One identifies z = p/T (and X = V), and one concludes that the isothermal
compressibility is positive, xr > 0.
The treatment of constant entropy is slightly different. In this case the
adiabatic compressibility,

-1 aV)
XS = = _ 3 3-67
|4 ( Op ) s N (3.67)
can be written as the second derivative of the enthalpy
-1 (6°H
—— ) 3.68
=y ( op? >S’,N (3.68)

For the system with constant entropy and variable volume treated above, it
was claimed that the constrained thermodynamic potential, H(V|S,p, N), was
convex with respect to volume. This is now proved, since it is equivalent to the
positivity of the isentropic compressibility. One has

0*H
V2 ) s N

- (ap(%g, N)>SN

)

() (e ()

s ) s
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() ety ey
1 (7).,

= —T[p*Sge —2pSev + Svv]. (3.69)

The final quantity in brackets is negative (from Eq. (2.21), with dE = —pdV),
and so this shows that the constrained thermodynamic potential H(V|S,p, N)
is a convex function of volume, as promised. From the first equality it also shows
that xs > 0, as required. Note that on the left-hand side the pressure is p, the
independent variable of the constrained thermodynamic potential H(V|S, p, N),
whereas on the right-hand side it is p(S,V, N) or p(E,V, N), as appropriate.

3.6.4 Maxwell Relations

One can also give expressions for the mixed second derivatives. The Maxwell
relations result from interchanging the order of differentiation. For example,
from the temperature and volume derivatives of the Helmholtz free encrgy,

O*F(N,V,T)  O*F(N,V,T)

ovor —  erov (3.70)

one obtains
OE(N,v,T)> _ (9PN, V. T) (3.71)
oV N oT VN :

Here the equilibrium entropy of the subsystem is S(N,V,T) = S(E,V,N), where
E = E(N,V,T). Obviously one can generate a large number of such relations
in this fashion.

3.7 Equivalence of Systems

The temperature of an isolated or microcanonical system of cnergy E; may be
written 77 = T(Ey, N, V). Now consider a subsystem in coutact with a heat
reservoir of this temperature. The equilibrium energy of this canonical systemn
is E(N ,V,11). By definition, this equilibrium energy is the one that gives
temperature equality between the subsystem and the reservoir, T(E,N,V) =
Ty. Hence it is evident that E = E;. In words, the equilibrium energy of a
canonical system of a given temperature is equal to the energy required for a
microcanonical system to have the same tempcrature. The two systems are
equivalent in this sense, and the result manifests the underlying consistency of
thermodynamics.
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The consistency extends to the other thermodynamic properties, as is ob-
vious from their derivation as derivatives of the thermodynamic potential. For
example, if the microcanonical pressure is p; = p(E1, N, V), and the equilibrium
pressure of the canonical system is p(N,V,T7), then by definition,

_ OF(N,V, ) 8§(E,V,T1)>
P ( ov >N,T1 : ( ov E,N b (3 7 )

since E = E;. Hence if the energy and temperature of the two systems are
chosen consistently, then the other equilibrium properties are also equal for the
two systems. This is a general rule that holds for the first derivatives of all the
thermodynamic potentials.

The equivalence, however, does not extend to the second and higher deriva-
tives. It has already been asserted that the heat capacity at constant volume,
which is essentially the second inverse temperature derivative of the Helntholtz
free energy, is less than the heat capacity at constant pressure, which is the
second derivative of the Gibbs free energy. Similarly one has

a’E(p,T)> _(9EW.D)Y | (9E(®.T)\ (9B(V.T) (3.73)
orT v N oT v op T orT v '

where V = V(p,T) and the fixed N has been suppressed. Evidently the temper-
ature derivative of the equilibrium energy of an isobaric system does not equal

that of a canonical system. Hence in general it is only the equilibriuin properties
that represent first derivatives that arc equivalent between consistent systenis.

3.8 Extensivity

As discussed previously, an extensive variable scales with the size of the system.
Examples include the number of particles, the volume, the energy, and the
constrained and equilibrium thermodynamic potentials. Intensive variables do
not depend upon the size of the system, but only on other intensive variables
or the ratio of pairs of extensive variables. Examples include the temperature,
the pressure, and the chemical potential.

In the case of an isolated system, if the extensive variables are all scaled by
A, then the entropy itself must be scaled by A,

S(AE,AV,AN) = AS(E,V,N). (3.74)

This follows from the linear additivity of the entropy, namely that the total
entropy of two isolated subsystems is the sum of their individual entropies.
This shows that the entropy is a homogeneous function of first degree in its
arguments. Differentiating both sides with respect to A and setting A = 1, one
obtaing a particular case of the general theorem due to Euler,

as a8 a8

SEVN) = gpF+ayVtan?
1 P K
- —E4fy_EN 75
7E+ 7V - (3.75)
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This may be rewritten as F =TS — pV 4+ uN, with total derivative
dE =TdS — pdV + pdN + (SdT' — Vdp + Ndyu) . (3.76)

Comparing this with the expression given previously, dE = TdS — pdV + udN,
one concludes that the parenthetical term must vanish,

SdT" — Vdp+ Ndy = 0. (3.77)

This is known as the Gibbs—Duhem equation. It shows that the intensive vari-
ables cannot all be chosen independently, since the system variables can be used
to specify independent changes in at most two of them. Hence any equilibrium
intensive quantity can be written as a function of just two intensive parameters.
The generalisation to a multicomporent system is straightforward. It can be
used, for example, to show how changes in composition at fixed temperature
and pressure cause related changes in chemical potentials.

The cases when the equilibrium thermodynamic potentials depend only upon
one extensive variable are also of interest. For example, in order for the grand
potential Q(u, V,T') to scale with the system size it must be linearly proportional
to V. The fact that its volume derivative gives the negative of the pressure shows
that the latter is the proportionality constant, and one concludes that

Q(pu, vV, T) = -pV, (3.78)

where the equilibriumn pressure is p(p,T"). Similarly the Gibbs free energy

G(N,p,T) must be of the form

G(N,p,T) =uN, (3.79)

where the cquilibrium chemical potential is T(p, T).

An analogous treatment of the other thermodynamic potentials does not
yield a single thermodynamic quantity as a coeflicient. An cxample was given
above in the treatment of the Helmholtz free encrgy, where Eq. (2.27) shows
that

F(N~ Vv, T) = [E(pﬁ T) - TE(p, T)]V' (380)

where the cnergy density is € = E/V, the munber density is p = N/V, and
the entropy density is o = S/V. An alternative expression can be obtained by
differentiating the Helmholtz free cnergy density f(p,T) = F(N,V,T)/V with
respect to volume,

_ = N
p=fpT) =15l (1), (3.81)
and with respect to particle number,

1

m=1 e, (3.82)
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where the prime denotes differentiation with respect to the density. Combining
these two equations, one concludes that the Helmholtz free energy density may
also be written

(o, T) = pulp,T) —p(p, T). (3.83)

This is just an intensive form of a Legendre transformation between an isother-
mal and an open system.

It must be emphasised that the results in this section only apply to a macro-
scopic system. The first correction to these terms that scale with V is in general
OV?/3_ which is only negligible in the thermodynamic limit.

Summary

e Subsystems with different boundaries are treated by analysing the total
entropy of the subsystem plus reservoir with which it can exchange a
linear additive conserved quantity. The constrained thermodynamic po-
tential of such a subsystem is the negative of the temperature times the
subsystem-dependent part of the total entropy, which has the appearance

System Constrained potential Equilibrium potential
Parameters Differential
Isolated - Entropy, S
N, V, E TdS = dFE + pdV — pdN
Isothermal F=F-TS(E,V,N) Helmholtz, F
E|N,V,T dF = —SdT — 5dV + pdN
Open Q=FE-TS(E,V,N)—uN Grand,
N, E|lu, V,T dQ = —SdT —pdV — Ndp
Isobaric G=F-TS(E, V,N)+pV . Gibbs, G
E,V|N,p, T dG = —S8dT + Vdp + dN
Isenthalpic b =-TS(H—-pV,V,N) D
VIN,H,p; T Td®/T = —dH + Vdp + idN
+®TdT/T?
Isentropic H=FESV,N)+pV Enthalpy, H
VIN,S,p dH = Vdp 4+ idN + TdS

Table 3.1: Summary of the Common Thermodynamic Systems
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of a Legendre transform (cf. Table 3.1). The equilibrium thermodynamic
potential or free energy is the minimum value of the constrained thermo-
dynamic potential.

The free energy is concave with respect to the intensive reservoir variable.
From this follows the positivity of the heat capacity and the compress-
ibility, which are second derivatives of various thermodynamic potentials.
The Maxwell rclations follow from equating the cross-second derivatives.
The thermodynamic potential or free energy is not a minimum with re-
spect to any of its independent variables; it is in fact a concave function
of some variables.

Different thermodynamic systems arc consistent as far as the equivalence
of equilibrivin quantities given by the first derivative of the thermody-
namic potentials.

An extensive variable scales with the size of a macroscopic system. At
least one extensive variable must be specified independently, because the
three intensive variables, y1, p, and T', cannot all be chosen independently.



Chapter 4

Probability and the General
Formalism

The potentials for the various types of systems derived in the preceding two
chapters represent particular cases of a generic reservoir approach. Here the
general formalism is given, with the object of obtaining the probability distri-
bution that corresponds to each reservoir.

4.1 Probability Distributions

4.1.1 Isolated System

An isolated system with its weighted microstates plays a fundamental role in
thermodynamics and statistical mechanics.! The state of an isolated system is
the set of values of the variables {A;} that are the linear additive constants of
the motion. These include the energy, volume, numbecr of each species, com-
ponents of the linear and angular momenta, etc. The number of microstates
and their weight depend upon the state of a system, and hence so does the en-
tropy. The set of variables may be equivalently written A, so that the entropy
is S(Aj, Ag,...) = S(A). By virtue of the additivity property these variables
are all extensive, and one defines the conjugate intensive field variables as the
derivatives of the entropy,

_ 95(4)
a; =T BA,

(4.1)

Here the temperature of the system T is included in the definitions to match
them to the conventional field variables. Hence if Ay = F, then ay = 1, if
A =V, then ay = p, and if A3 = N, then ag = —pu. Strictly speaking, at

11f the microstates have equal weight, then the weight of a macrostate is just the number
of corresponding microstates. Contrariwise, it is the sum of the weights of the corresponding
microstates.

5%
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this stage the analysis is still restricted to discrete states, so that this should be
interpreted as a difference equation.

4.1.2 Exchange with a Reservoir

Consider an isolated system, labelled ¢, comprising two subsystems labelled s
and r, the latter eventually becoming the reservoir. The state of the total
system is specified by the set of values of the extensive variables denoted by
{A;+} (equivalently A,). The state of each subsystem is denoted by {A;s} and
{A;r} (equivalently A, and A,), and these label the macrostates of the total
system.

The subsystems are in contact such that some, but not all, of these variables
may be exchanged between them. The variations in these exchangeable variables
are taken to occur independently.? Where necessary, the parameters that are
exchangeable will be denoted A’, and those that are fixed will be denoted by A”,
so that A= (A’, A”). Since the exchangeable variables represent lincar additive
conserved quantitics, one has Al + A7 = A}, and dA], +dA, = 0. (Obviously
the A7, and the AY, arc individually constant, dA}, = dA). =0.)

The region of interaction between the two subsystems is taken to be very
much smaller than eithier subsystemn, so that each subsystem may be considered
effectively isolated. Consequently, the number of microstates of the total sys-
tem corresponding to the macrostate (A, A,) is the product of the number of
microstates in each subsystemn considered as isolated and in its respective state
A, or A . Consequently, the eutropy of the system in a given macrostate is the
sumn of the cutropies of the two subsystems,

Stotal (44, 4,) = S5(4,) + 5-(4,). (42)

That is, the contribution to the total entropy due to the interactions between
the two subsystems is negligible. It is cinphasised that on the left side is the
entropy of the total systein in a given macrostate, and ou the right side appears
the cntropies of the subsystems, each cousidered iu isolation and in a fixed
state. It is not necessary for the two subsystems to be identical i nature, so
that the respective entropies rmay be different functious of their arguments. This
possibility is signified by the subscripts on the cutropy; actually little of import
is gained by allowing for this general case, and thesc subscripts could just as
well be dropped.

The probability of finding the total system in a particular macrostate (i.e.,
with a particular partitioning of the parameters between the two subsystems) is
proportional to the exponential of the total entropy of that macrostate. (This
follows because the probability is proportional to the macrostate weight, and
the entropy is the logarithm of the weight.) Because of the conservation law
one need only specify the macrostate of subsystem s and the total value of the

2The formalism needs to be rodified for systems where the usual extensive variables are not
independent. These include the isenthalpic and the isentropic reservoirs treated in Sections 3.4
and 3.5.
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parameters, since this is the same as specifying the state of both subsystems,
and one may write the macrostate probability as

(A/ tA” ) lestotal (A,,A)/ ks

ELTRER

= L sea) ke S0 ks (4.3)
A
With care one may interpret this as the product of two independent probabil-
ities, taking account of the conservation laws that make the subsystems inter-
dependent, A! = A, — A.. That is, the states of the two subsystems define the
macrostate of the total system, and hence the weight of the given macrostate is
the product of the weights of the states of each subsystem considered in isola-
tion in its respective state. The left-hand side of this equation may be read as
the probability of the subsystem s being in the state A’ given the values of its
nonexchangeable parameters A” and the total values of the parameters A,.
This is the general expression, but now the particular case that subsystem
7 1s a reservoir is considered. This means that subsystem 7 is so much larger
than subsystem s that changes in the values of the parameters of the latter
have negligible effect on the properties of the former. In consequence one may
expand the entropy of the reservoir about the total value of the parameters and
truncate the expansion at the linear term,

, 085:(4;) , 085:(A)
Se(A, —A,) = S(A)—-Aly—F— Ay
(4 - 4,) () = M54, % 9AY,

a a

= const. — gs%_ - ;: — (4.4)
Here the a}, = T,0S(A1,, Asr, ...)/OA,, are the field variables of the reservoir
conjugate to the exchangeable parameters, and T, is its temperature. The rea-
son that it is permissible to truncate this at the linear term is that the entropy
is an extensive property, so that its first derivative is of order unity, its second
derivative is of order one over the size of the reservoir, etc. This is the reason
that it is the entropy that is expanded and truncated; a direct expansion of
the reservoir probability leads to powers of its logarithmic derivative that are
all of order unity. These resum to the logarithm of the entropy expansion, so
that the same final answer results, but the analysis is much less transparent.
The constant contribution in the reservoir entropy expansion, S,(4,), which is
independent of the subsystem, will be dropped because it has no physical con-
sequence. It is more convenient to specify the reservoir by its field variables a},.
than by the total fixed value of the conserved quantities. (This is permissible
since, as mentioned above, the entropy is a strictly concave function of its argu-
ments, and hence there is a one-to-one relationship between A;, and a;..) The
subscripts that distinguish the subsystem variables from those of the reservoir
may be dropped where there is no ambiguity; the reservoir only enters via its
temperature and other field variables conjugate to the parameter in flux, and it
is only the field variables of the subsystem that may be confused with reservoir
properties.
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With this expansion the constrained total entropy becomes
Stotar(A'la’, A", T) = S(A) — A" d'/T. (4.5)

This is of course just the subsystem-dependent part of the total entropy for the
macrostate labelled A’. Throughout, the entropy of the total system will mean
this subsystermn-dependent part only, and it consists of the internal subsystem
entropy and the variable part of the reservoir entropy. The probability of a
particular macrostate is just the exponential of this,

1 7 7
Alad A" T) = ———¢5B)/kn g=Aa [k T 4.6
p(— ‘_ 1= ) Z(QI7AII;T) ( )
where A = (A", A”), and A" - ¢’ =%, Ala] . Note that the constant part of the
reservoir entropy has been cancelled with a similar factor in the normalisation
denominator. This normalisation factor Z is called the partition function, and
its properties will be explored in detail in Section 4.3.

4.1.3 Equilibrium

The above gives the probability of a subsystem having a particular value of a
parameter that it can exchange with a reservoir. The niost probable macrostate
is called the equilibrium state, and it is denoted by an overline, A’. This is the
state in which the systein is most likely to be found. If the system is initially
far from equilibrium, by virtue of the transitious hetween microstates it will
soon be in ouec of the microstates correspouding to the macrostate with the
largest number. (Almost all of the microstates of a realistic system are in a
few macrostates clustered around the equilibriuun oue, so that the probability
of observing a fluctuation far from cquilibrium is exceedingly small.)

The most probable macrostate is given by the peak of the distribution. This
corresponds to the maxinmumm of the exponent, which is to say that the equi-
librium macrostate is the one with the maximum constrained total entropy
(equivalently, the one with the greatest weight of microstates). Equilibrium is
given by the vanishing of

aStotal(Al1Q;'7AII7T) _ OS(A) _ %
0A; S 0A, T
=TT (1)

where T (A) is the tenperature of the subsystern. The reservoir quantities have
here again been distinguished by the subscript 7 (equivalently, in the reservoir
limit o}, = a}, and T, = T;). That is, equilibriumn correspouds to equality
between the field variables divided by their respective temperatures, @, /Ts =

a;,. /T, which is an implicit equation for the Z;. That is, @, = al, (ZI) and
T, = TS(ZI)7 where the right-hand sides represent the appropriate derivative
of the isolated subsystem entropy evaluated at the equilibrium macrostate. In

the case of a heat reservoir (energy exchange occurs), the equilibrium amount
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of cnergy in the subsystem is the one that gives it the same temperature as
the reservoir, T’y = T.. In this case it is the field variables themselves that are
equalised at equilibrium, @}, = a/,..

It may be mentioned that the conclusion that equilibrium corresponds to
equality of the intensive field variables holds even if the second subsystem is not
a reservoir. In this case however the field variable of the reservoir is not constant,
but depends upon how much of the extensive variable has been partitioned
between the subsystemns.

A gsystem in a nonequilibrium macrostate will move toward the equilibrium
macrostate, which is to say that its entropy increases. This determines the
direction of flow of the exchangeable parameter since dSiorar = »_,;[(0S/0A]) —
(al,./T)] dAL, and for the total entropy to increase one must have Y _.[(a}, /T5) —
(a},./T.)] dA; > 0. Taking these one at a time (i.e., assuming that the rest, if any,
are already equilibrated), the exchangeable parameter flows into the subsystem,
(dA; > 0), if the value of the corresponding reservoir field variable divided by
temperature is less than that of the subsystem. For the case of a heat reservoir,
the energy of the subsystem increases if the inverse temperature of the reservoir
is less than the inverse temperature of the subsystem, which is known as the
third law of thermodynamics.

It ought be noted that in the present analysis the second law of thermo-
dynamics is not so much an axiom as a conclusion. Equilibrium is the most
probable macrostate, which is that with the greatest weight of corresponding
microstates. The constrained total entropy, which is the logarithm of this, is con-
sequently also maximal at equilibrium. This also shows clearly that the second
law is mot inviolate, since the analysis explicitly allows for entropy-decrcasing
spontaneous fluctuations away from the equilibrium macrostate. There is a
nonzero probability that the system will spontaneously move from the equilib-
rium macrostate to one with lower entropy, and so the assertion that entropy
never spontaneously decreases is, strictly speaking, false.

Concavity of the Entropy

For the equilibrium state of a subsystem able to exchange quantities with a
reservoir to be stable, the entropy must be a concave function of its arguments,
which is to say it must decrease in any direction away from equilibrium. A
Taylor expansion to second order about the equilibrium state expresses this
condition as

A"SA <0, (4.8)

where {é}ij = §%25/0A;0A; is the matrix of exchangeable quantities, and the
A; represents the departure from the equilibrium state. Since a system may be
considered a reservoir for any of its parts, the necessary and sufficient condition
for a given state of an isolated system to be stable is that this must be true
for arbitrary vectors A. Hence necessary conditions for stability of an isolated
system may be obtained by considering one exchangeable parameter at a time,
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which gives S;; A? < 0, or
Sii < 0, (4.9)

for any . By considering A to be an eigenvector of S, the necessary and suf-
ficient condition for a stable state is that all the eigenvalues of S are negative.
Considering the independent variables two at a time, this last condition implies
that the determinant of the 2 x 2 matrix S is positive (because it is the product
of the eigenvalues). Hence one has another necessary stability condition, namely

SiiSjj — Slzj > 0, (410)

for any 7 and j.

This proof of the concavity of the entropy and the consequent conditions on
its second derivatives holds only for those sets of parameters that can represent
equilibrium with a reservoir, A = (ZI, A"). Conversely, a system in a macrostate
in which the entropy is convex cannot be in stable equilibrium with a reservoir.
Since a system is a reservoir for any small part of itself, this requirement specifies
the stable states of matter.

Gaussian Probability

The concavity of the entropy means that the probability distribution has a well-
defined peak that allows the identification of the most probable macrostate, as
was implicitly assuined above in the analysis of cquilibrium. Hence one can
expand the exponent to sccond order about the equilibrium state to obtain a
quadratic form and a Gaussian distribution,

APV " 1 1 ’ — — ; —
o404 1)~ o exp 5 (4~ ) Sy (@) (4] - ) (411)
¥

where as above the subscripts on the subsystemn cutropy denote the second
partial derivatives. The concavity of the entropy cnsures that the exponent
must be negative and that the probability distribution is peaked about the
equilibrium state.

The average value (A) is approximately equal to the equilibrinm value Z;.

Writing the average as <Z; + (A — Z/i)>, one secs from the parity of the sum-

mand that the correction term < Al — Z;

> vanishes when the Gaussian expres-

sion above is used for the probability. The difference between the average value
and the equilibriwun value depends upon the third derivative of the entropy,
which is on the order of the reciprocal of the square of the system size. Hence
for macroscopic systems one may equate the equilibrium value to the average
value with negligible crror. It is only for finite-sized systems that there is a
meagsurable difference between the two. This point will be revisited below in
Section 4.3.4.
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4.2 Constrained and Equilibrium Potentials

4.2.1 Definitions

Instead of dealing with the total entropy one may introduce a constrained ther-
modynamic potential, which has the general form

F(Ald A" T) = —TSiwa(A'ld,A",T)
A’ — TS(A). (4.12)

The temperature T that appears here is always the reservoir temperature,
whether or not energy is an exchangeable parameter.®> With this definition
the probability of the subsystem having a particular allocation of macrostates
is
1

p(A'la", A" T) = meXP[—F(A'lQ'7AH§T)/kBTL (4.13)
which has the appearance of the well-known Boltzmann distribution, except that
it is the constrained thermodynamic potential, not the energy, that appears in
the exponent.

Since the total entropy is a maximum at equilibrium, by definition the
constrained thermodynamic potential, which is its negative, is a minimum.
Hence on average spontaneous transitions between macrostates occur down
the gradient in the constrained thermodynamic potential. By virtue of its
close relationship to the total entropy, the constrained thermodynamic poten-
tial inherits many features of the latter, such as the appropriate concavity
and bijectivity. In particular, the constrained thermodynamic potential is a
convex function of the A;, which follows from the concavity of the entropy,
D?F0A? = —T9?S(A)/0A? > 0. The variational nature of the constrained
thermodynamic potential is quite an advantage and it is exploited extensively
below.

The equilibrium thermodynamic potential or free energy of the system is
defined to be the minimum value of the constrained thermodynamic potential,

F(A|d, A"T),
= A -d-TSHA, A". (4.14)

F(a',A";T)

The equilibrium thermodynamic potential is overlined to make it clear that it is
an equilibrium property of the subsystem. The entropy that appears explicitly
here is that of the subsystem, constrained to have the equilibrium value of the
exchangeable parameters. It is neither the constrained total entropy nor the
unconstrained total entropy of the system.

3Recall that the field variable conjugate to the energy is unity, which is the reason that T
is shown explicitly as an extra argument in the constrained thermodynamic potential. In the
event that the energy is not an exchangeable parameter, the additional variable that is the
reservolr temperature effects the thermodynamic potential in only a trivial fashion.
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The distinction between the constrained thermodynamic potential and the
equilibrium or optimised thermodynamic potential is quite important. Unfortu-
nately this distinction does not appear in conventional thermodynamic or sta-
tistical mechanics texts, and the present nomenclature is not standard. Here the
nonequilibrium quantity will always be called the constrained thermodynamic
potential. It may also be called the fluctuation potential because it characterises
the fluctuations about equilibrium. The optimised thermodynamic potential is
what conventionally appears in text books and is exclusively an equilibrium
property. Although the same symbol is here used for both, they may be dis-
tinguigshed by the overline and by the number of arguments. A certain number
of parameters are necessary to fix the state of an isolated system (the number
of components in A), and the equilibriumn thermodynamic potential has exactly
this number of independent variables (a’, A”). The constrained thermodynamic
potential, however, has an augmented set of independent parameters (A'|a’, A”),
which exceeds the necessary number by the numnber of exchangeable parame-
ters. This confirms that the optimised thermodynamic potential or free energy
is purely an equilibriuin property, whereas the constrained thermodynamic po-
tential characterises the nonequilibrium state.

4.2.2 Derivatives

The utility of the constrained thermodynamic potential lics in its variational
nature, which makes differentiation particularly siniple. The derivative of the
equilibrium thermodynamic potential with respect to any of the ficld variables
a} except that conjugate to energy is

oF (', A";T)  [oFAla, A";T)
da; - da;
A_']',T,a_,¢,
_ OF(A'ld,A"T)
B Oa; A=A
OAj(a/,A";T) OF(A'ld', A";T)
+Zi: dd, DA T

_ OF(A'ld AT

B da T

= A, A #E. (4.15)

The terms in the sum of the second equality do not contribute because the
derivative of the constrained thermodynamic potential vanishes at equilibrium.
One may similarly differentiate the equilibrium thermodynamic potential with
respect to the reservoir temperature,

OF(a',A";T) OF(A'ld,A";T) —
- = _S(A). 4.1
o 5T o (4) (4.16)
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Again the Z; have been held fixed because of the variational nature of the con-
strained thermodynamic potential. Similarly, dividing the equilibrium thermo-
dynamic potential by the reservoir temperature and differentiating with respect
to the inverse temperature one obtains

o(F(a',A";T))T) O(F(A'ld’, A";T)/T) -

871 = OT—1 W =a-A. (417)

These results hold whether or not energy is an exchangeable parameter.
Differentiating with respect to one of the nonexchangeable extensive vari-

ables of the subsystem A/ is almost identical to differentiating with respect to

the a}. Because of the variational nature of the constrained thermodynamic

potential the Z; may again be regarded as fixed and one obtains

OF(a’,A";T)  OF(A'ld,A";T)
DAY B DAY W
_ 7 0S(A)
OAY |4 7
ay.
- s 4.18
T (4.18)

Recall that if energy is an exchangeable parameter, T = T.
These results give the total differential of the equilibrium thermodynamic
potential,

dF(d', A"\T) = —S(A)T + Y " Ajda; TS ‘%ﬁdA;'. (4.19)

Here the asterisk on the summation indicates that the energy term should be
excluded in the event that it is an exchangeable parameter.

One sees that because the constrained thermodynamic potential is optimised
at equilibrium, differentiating the equilibrium thermodynamic potential or free
energy is the same as differentiating the constrained thermodynamic potential
holding the K; fized. In conventional texts the free energy is usually expressed as
F=A"-d ~TS(A), either it being implicitly understood that the exchangeable
parameters that appear here are really ZI (a’,A";T) and that the constrained
free energy is stationary with respect to their variations or, more likely, it be-
ing assumed that the A} are independent variables. These conventional texts
typically differentiate the free energy with fixed Z; without any explicit jus-
tification. Although the same answer results in the end, it is only the present
distinction between the constrained and equilibrium thermodynamic potentials
that shows why it is so. Similarly, the present approach makes it clear why the
entropy that appears may similarly be held fixed as far as differentiations with
respect to the af go (another common and necessary procedure), because it is
not S(a’, A”) that appears, but rather S’(ZCA”)7 and the Zli may be held fixed.
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4.2.3 Concavity of the Equilibrium Free Energy

From the concavity of the entropy, §%S(A)/0A2 < 0, it follows that the con-
strained thermodynamic potential is a convex function, 82 F(A'|a’, A"; T) /0 A?
= —TH§S(A) /OA? > 0. The curvature of the equilibrium thermodynamic
potential is now derived.

First the second derivative with respect to inverse temperature is treated.
The a} and the A} are held fixed, and the equilibrium quantities are functions of
them and the temperature Z/i(_q' A”;T). For a slightly different temperature T,
the equilibrium values shift to A; = Z; (a/,A";T). Since the constrained ther-
modynamic potential is a minimum at the appropriate equilibrium values, one
must have F(ZI‘QI7AII; T) < F(A'|a’, A”;T), or writing this in full, rearranging,
and expanding to second order the entropy about A,

2.8 40 o 5@ - s
= @A LA A Saad)-E- A 420

Here has been used the fact that 0S/0A,[,4 _; = a;i(A)/T(A) = a;/T. By

the concavity of the entropy the quadratic term is negative, and so [Z/ -a —

A a'|[1/T = 1/T] < 0. Dividing by the square of the difference in inverse
temperatures, ad taking the limit 77— 7', this proves that

O*[F(d, A" T)/T]  8(A -d)
o01/T)2 = /T <0, (4.21)

where the first equality follows from Eq. (4.17). This derivative is at constant
a; and A7

One may similarly consider two nearby points, A = A, A T) and A =
ZI(Q'7 A”;T). From the variational nature of the constrained thermodynamic
potential one has F(AI{Q’,A”;T) > F(ZI{_@QA"; T), or

!

Ao -TSA, A" > A .d-TS@A A"

= A.a T|SA A+ @A -4 o5
0A
1 —r - 0%8 —r o~
+'—(_4 '—A_ ~1 _~1 A "A (422
5 ) 9 oA ( ) )
This may be rearranged to give
~ ! a’ —r o~ 28 —r o~
@-a)[4-8] < @2 @-a)
T T 2 HAHA
< 0. (4.23)
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Since the Zli and the A; are the first derivatives of the thermodynamic potential,

the difference between them may be written in terms of the second derivative.

The elements of the second derivative matrix are defined as

P[F(a’, A" T)/T] _ 0A(a/, A"sT)
9(a;/T)0(a}/T) O(ay/T)

The meaning of the partial derivative is that the a}, /T, k # 7 and k # 7, and all

the A} are held fixed. (If A} # F and A} # F, this means that T' is constant

and the af, themselves are held fixed.) With this the inequality may be written
as a quadratic form,

ad ad &
= _Z|.F. == . 4.2
FoF e - (29

Following the analysis for the concavity of the entropy given above, one con-
cludes that all the eigenvalues of F are negative. Hence it follows that

F;; <0, and Fy;Fj; — F} > 0. (4.26)

These inequalities for the second derivative of the equilibrium thermodynamic
potential determine the sign of physical quantities such as the heat capacity or
the compressibility.

Fy= (4.24)

4.3 Partition Function

4.3.1 Total Entropy

The normalising factor for the probability distribution is called the partition
function. It is given by

2@, A5T) = Y oS W@ke oA kT, (4.27)
Af AL

and it plays a key role in statistical inechanics because it acts as a generating
function for the thermodynamic properties of the subsystem.

The partition function is closely related to the unconstrained total entropy
(at least that part that depends on the presence of the subsystern). By definition,
the total entropy is the average of the entropy of the macrostate less the average
of the logarithm of the macrostate probability. Since the probability distribution
is the exponential of the constrained total entropy normalised by the partition
function, direct substitution yields

Stoat (@, A T) = > p(Ald, A", T) [Sora (A, A", T)
AL AL,
— kg lnp(A'la’, A".T)]
= kplnZ(ad A", T). (4.28)
By virtue of this essential equivalence with the unconstrained total entropy,

the logarithm of the partition function is the generating function of statistical
mechanics.
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4.3.2 Averages

The average value of a function of state is the sum over the states of that
function times the state probability. Hence the average value of an exchangeable
parameter of the subsystem is

(A} = Z A;p(élmlvéuvT)
ALLA
O(A' - a'|T) Sk =Aa'[koT
- 2 (a;/T) Z(a, A" T)

AL AL
_ dlnZ(a',A";T)
BT e

In the event that A} # E, this is (A}) = —kgT0InZ(a’, A";T)/0al.

Similarly, since the field parameters of the subsystem g, depend upon the
entire set of extensive variables A, = (A}, A”), the a/, also vary with the flux
of the A} . Their average value is given by

(4.29)

(@h/T) = Y (/T p(Alal, A" T)
AL A
aS(A) eS(A)/ ks @_é/'ﬁi./kliT
N ey
OlnZz IA”;T
- kB_ﬂ_(.@_w_____)’ 430

OAY

(Here the labels on the field variables have been reintroduced to distinguish
those of the subsystemn from those of the reservoir.)

The average value of the field variables of the subsystem conjugate to those
of the exchangeable parameters is given by

(al /Ty = Y > (al,/Te) p(A'la,, A" T)
Alj#iL A
% dA, BS(A) S A kb o~ A g [T
A 0A;  Z(a ATT)

AL g0
ks S(A)/ks ~Aa JksT|™
 Z(a,A";T) Z[€ ‘ 0
A].,J;éz

n a, [% d_A;GS(é)/kBe—AI'Q;./kBT:I

a’
= 2, 4.31

T (4.31)

Here the sum over Af has been converted to an integral and an integration by
parts used, the integrated portion vanishing because the tail of the probability
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distribution is negligible. In this case the average value of the field parameters
of the subsystem conjugate to the exchangeable quantities equals precisely those
fixed by the reservoir.

4.3.3 Fluctuations

The logarithm of the partition function is the unconstrained total entropy of the
subsystem and reservoir, and as such its derivatives give the average value of
the exchangeable parameters and the field variables of the subsystem. Likewise
the second derivatives give the fluctuations in these quantities. One has

?InZ(a,A";T)
9(a}/T)?
L, A

d(ay/T)

a 1 7 7
= —k AlS(A) ke —A"a/knT
o(a]/T) Z(d, A", T) 2 e ‘

= (A7) —ap’
= (A4, (4.32)

ki

7 7
AlLAL,.

where the departure from the average is A(z) = z — (z). The meaning of the
partial derivatives is that the a};/T', j # i, are held fixed.

The final quantity is called the fluctuation (or deviation about the average),
and as the average of the square of a quantity it must be positive. The fluctu-
ation indicates the width of the probability distribution, being relatively small
for a sharply peaked distribution. Since the total entropy scales with the size
of the subsystem, and the denominator on the left-hand side is intensive, then
the fluctuation must be extensive. Accordingly, the relative root mean square
fluctuation, /(A(A)?2)/ (AL), is OV =12, since the exchangeable parameter is
extensive. This indicates that the relative error in the measurement of a ther-
modynamic quantity will be negligibly small for a macroscopic system.

One may similarly show that the cross-second derivative is

5, ?InZ(a,A";T)
® 9(al/T)d(a}/T)

= (AjA}) — (A]) (4))
= (A(ADA(A)). (4.33)

This gives the cross-correlation of the exchangeable quantities, and it can be
positive, negative, or 0. In general, such cross-fluctuations vanish when there is
no correlation between the quantities. One can, however, combine this with the
above result in such a way as to obtain a positive quantity,

2 9 _ 9 ’ nZ(a. A"
kB<<A;>a(a;/T> <Af.>a(af,/T)> Iz, A% T)

J J
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SEA) 34
A\ 4 )

The averages that appear in the denominators on the left-hand side are here
regarded as constants that are not differentiated.

If instead of holding the a}/T fixed one holds the a; fixed and differentiates
with respect to 1/T one obtains

(@ AT, (0l A)
() " "“B< 017T) >é
= (A(d-A"?). (4.35)

This gives the fluctuation of the exchangeable work terms in total.
The second derivative with respect to the fixed extensive variables of the
subsystem is similarly straightforward. One has

Pz, A"T) _ 0{af,/ksTs)
o(AY)? a OA!
= ((ali/kT:)2) — {af, /kpTs)” + <a_£%_’))/2@>
_ . 2 9*S(A)/ks
= (A(aj,/ksTy)?) + <W”_)2_> (4.36)

(Note that T, is the subsystem temperature, and af, is the field variable of
the subsystem.) Since the subsystem-dependent part of the constrained total
entropy, or In Z, is extensive, the left-hand side must be OV ™! as is the final
term on the right-hand side (the numerator goes like V| the denominator like
V?2). One concludes that the fluctuation must be of the same order. This is
one power of volume lower than the order of the averand (the guantity being
averaged), which is consistent with the observation above that (A(A})?*) = OV,
since the averand in this case is (A})? = OV?. The fluctuation of the field
variable is positive, whereas the second derivative of the subsystem entropy is
negative due to its concavity, which means that the sign of the quantity on the
left is not determined in this case. However, rewriting the result,

6% In Z(d/, AsT) | 9S(4)/ ke
o(AY)? o(AY)?
determines that the left-hand side is positive.
Similarly the cross-second derivative is

) = (Ala/haT. ), (437)

0?Inz(d,A";T) _ 0(a},/ksTs)
0A]OA] N oAy

<a’lilsa;',s (kBTS)2> - <a;Is/kBTS> <a;'ls/kBT8>

9*S(A)/ks
+< DATDAT | (4.38)
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which may be combined with the above to yield
9 9 ’
— InZ(a',A";T) — S(A)/k
<<(a§'s/kBTs>3A§' <a;’s/kBTs>8A;-’> [n (.@7_ » ) (—)/ B]>

2
_ ay/keTy __ajs/keTs (4.39)
N {al,/kpTs)  {al,/ksTs) ’ )
which shows that the left-hand side must be positive. Again the averages in the
denominators on the left-hand side are held fixed during the differentiations.
Also the derivatives of the partition function can be removed from the average.

Finally, differentiation with respect to both a field and an extensive variable
yields

L, PInZ(d, AT 94y | 9{al/Ty)
5 8(al/T)0A, T 8AT T 9(al/T)
= (Ajaf,/ksTs) — (A}) (a,/ksTy) . (4.40)

Accordingly, the quantity

2
0 0 VA
<<A;> a(ag/kBT) - (a_/jls/kBTs)aA;'> InZ(d', A ;1)

Alal  Alal \? o
B (kBT_kBTS> (4.41)

is positive. In this case both sides of the equation are of order V.

4.3.4 Partition Function and the Thermodynamic Poten-
tial

In the formalism the partition function plays an essential part. To be specific,
the derivatives of its logarithm generate the average values of the thermody-
namic quantities of the subsystem and their fluctuation. The reason that this is
such a central quantity lies in the fact that the logarithm of the partition function
is the unconstrained total entropy of the subsystem and reservoir, Eq. (4.28),

Seotar(@’, A" T) = kgln Z(a', A"; T). (4.42)

This last equality appears to contradict certain long-standing notions in
conventional statistical mechanics, where it is the thermodynamic potential or
free energy that is equated to the logarithm of the partition function. In fact
the two notions are consistent for macroscopic systems where fluctuations are
relatively negligible. One has

—kgTInZ(d',A";T)

= —kgTln Y SD/keoAia/koT
A A
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_ dA} s(a)/ks - A0 kT
= kgT In H A'e €

—kpTln | S@/ks =4 a'/ksT

<[ H
kgT

= 4 -d-TS(4)-—~1n

Q

Sii(4)(4]

LAY 2k

Det{S);(A) }H %kB (4.43)

Here a WKB approximation has been made (i.e., the exponent has been ex-
panded to second order and the Gaussian integral evaluated). The A; are
length scales that arise in the conversion of the sum to an integral (see the
next chapter) and {S;;} is the matrix of second derivatives of the subsystem
entropy (those of the exchangeable parameters only). The first two terms on the
right-hand side give precisely the equilibriuin thermodynamic potential or free
energy. The remaining term is a logarithmic correction that for macroscopic
systems may be neglected (it is only when fluctuations about equilibrium are
large compared to the mean that this term may become importaut). To leading
order the equilibrium thermodynarnic potential is indeed equal to the negative
of the temperature times the logarithin of the partition function,

F(a',A";T) = —kgTInZ(d', A" T). (4.44)

A consequence of this equality is that for macroscopic systems the derivatives
of the equilibrium thermodynarmic potential equal the derivatives of the partition
function. That is, equilibrium values are the same as average values. as has been
already demonstrated in Section 4.1.3. Similar statements apply to the second
derivatives, so that the positivity of the fluetuation determines the sign of the
corresponding derivatives of the equilibrium quantities.

4.4 Specific Reservoirs

The general formalism just derived may be applied to the different reservoirs
treated in the preceding two chapters. Whereas in those chapters only the equi-
librium results were obtained explicitly, here the emphasis is on the probability
distribution and average values.

4.4.1 Constant Temperature

For a heat reservoir, the exchangeable parameter is energy A} = E, and the
fixed parameters are the volume A} = V and the particle number A5 = N. The
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relevant field variable of the reservoir is af = 1. Hence the constrained total
entropy of the subsystem and the reservoir, Eq. (4.5), is

Stotal (E|N,V,T) = S(E,N,V) - E/T, (4.45)
which gives for the constrained thermodynamic potential, Eq. (4.12),
F(E|N,V,T)=E—-TS(E,N,V). (4.46)

According to Eq. (4.6), the probability of the subsystem actually having an
energy E given that it has N particles and volume V, and that the temperature
of the reservoir is T, is

1
E N T = .———.—.—/S(EwNvV)/kB /—E/k‘BT' 44
oEIN T =z v ¢ (4.47)

The partition function, Eq. (4.27), is of course
Z(N,V,T) = SENV) ko o= E/kaT (4.48)
E

and the unconstrained total entropy of the subsystem plus reservoir, Eq. (4.28),
is just Siotal(N,V,T) = kpln Z(N,V,T). The logarithmic derivatives of the
partition function give the average energy

OlnZ(N,V,T)
E)=—kgZtr D) 4.49
() = —ko s (149)
from Eq. (4.29), and from Eq. (4.30), the average pressure
8ln Z(N,V,T)

T = kg 2 T ) 4.50
(ps/Ts) = kB Y% (4.50)

and the average chemical potential

OlnZ(N,V,T)
Ty = kg TR ) 4.51
(—ps/Ts) = ks ON ; (4.51)

where the subscript s signifies a field variable of the subsystem.

The equilibrium thermodynamic potential for this constant temperature sys-
tem is the Helmholtz free energy, and from Eq. (4.21) its second inverse tem-
perature derivative is

O*[F(N,V,T)/T] OE(N,V,T)

o0/TE ey (1.52)
Cv = % > 0. (4.53)

This agrees with the result established in Ch. 3 that the heat capacity at con-
stant volume is positive. The same result emerges from Eq. (4.26), because in
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this case energy is the sole exchangeable parameter. The analogous result for
the partition function, Eq. (4.32), may be written

kg PIZ(N,V,T) 9(E) _ 1
T  9(1/)T)2  aT kT2

(A(E)?) > 0. (4.54)

In so far as equilibrium values equal average values for macroscopic systems,
this is in agreement with the bound for the heat capacity. More precisely,
since Oy = —(1/kgT?)0?8F/08? (where 3 = 1/kgT), and since (A(E)?) =
2?InZ(N,V,T)/83?%, and since in the thermodynamic limit SF(N,V,T) =
—In Z(N,V,T), the relationship between energy fluctuations and the heat ca-
pacity is given by

(A(E)®) = kgT?Cy. (4.55)

The isothermal compressibility will be shown to be positive in the pressure
reservoir case below. In the present temperature reservoir case one has

-1 _y NV T)
Xr av
O?F(N,V,T)
ov?2
P Z(N,V,T)
= —kpTV—"T 7
BV 52

— _kpTV [<A(p/kBTs)2> +<

il

s

Since xr > 0 this shows that

*S(E,N.V)/ky
ov?

> < —(A(p/knT)?). (4.57)
4.4.2 Constant Chemical Potential

For a subsystem of fixed volume A} = V able to exchange with a reservoir energy
A = E and particles A}, = N, the relevant field variables of the reservoir are
the temperature, and hence a} = 1, and the chemical potential, a}, = —u. Hence
the constrained total entropy of the subsystem and the reservoir, Eq. (4.5), is

Stotal(E|N,V,T) = S(E,N,V)— E/T + uN/T, (4.58)
which gives for the constrained thermodynamic potential,
Q(E,N|u, V,T)=E — uN —TS(E,N,V). (4.59)

The probability of the subsystem actually having an energy E and particle
number N, given that its volume is V', and that the temperature and chemical



4.4. SPECIFIC RESERVOIRS 73

potential of the reservoir are T and u, respectively, is the exponential of the
constrained total entropy,

e(E,N|u, V\T) = eSENV) ki o= E[ksT uN/knT (4.60)

Z(p, V,T)
The partition function normalises this
Z(,u, v, T) _ Z 6S(E,N,V)/kBevE/kBTeuN/kBT7 (4.61)
E,N

and the unconstrained total entropy of the subsystem plus reservoir is just
Siotai(pt, V; T) = kgln Z(1, V, T). The logarithmic derivatives of the partition
function give, from Eq. (4.29), the average energy

2= b (55 ) e

and the average particle number,

InZ T
(N = kT (M) ’ (4.63)
H N, T
and from Eq. (4.30), the average pressure
o0 Z(, V,T)
s Ts =k —Qa<, . 4.64
e/t = b (L) (1.64)

The equilibrium thermodynamic potential for this constant temperature sys-
tem is the grand potential, and from Eq. (4.21) its second inverse temperature
derivative is

82 [ﬁ(,u, V7 T)/T] _ a(E(:u7 V7 T) — MN(:“7 V7 T)
(S ), - 5(1/T) = (4.65)
OE(, V,T) _ poN(p,V,T) (4.66)

oT or

These derivatives are of course at constant volume and chemical potential. The
analogous result for average quantities follows from the derivative of the parti-
tion function, Eq. (4.35). It also follows from Eq. (4.26) that

(M) =0 (4.67)
or V)T

and that

(), o
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The same two conclusions, with the equilibrium value replaced by the aver-
age value, follows from the second derivative of the logarithm of the partition
function, Eq. (4.32).

The second volume derivative, which follows from Eq. (4.37), is

(a? In g% v, T)> - <<8QS(E(,3J‘\/I,2V)/kB )EN>

= (Aps/ksTs)). (4.69)

Now the extensivity arguments used in Section 3.8 apply as well to the partition
function, and for macroscopic systems one must have

Siotal(tt, V, T) = kpIn Z(p, V. T) = V {ps/kpTs) + OV?/3, (4.70)

where the average pressure divided by temperature is a function of the chemical
potential and temperature of the reservoir but not of the volume. The coeflicient
of the linear term is of course the volume derivative of the partition function
found above. This means that

*InZ(u,V,T) 0 (ps/kBTs) 4
kg | — =) =(—&t—) = /3 4.71
() () o e

)

which may be ncglected compared to terms of order V=1, This is of course
consistent with the above assertion that the average of the ratio of the subsystem
pressure and temperature, which are themselves intensive, only depends upon
intensive variables and is independent of the volume. Hence one concludes that
for macroscopic systeins,

<<025(E,N,V)> > _ <(a[p(E,N,V)/kBT(E,N,V)]) >
kpov?2 BN ov E.N

= —{(A(ps/kpTy)?) + OVY3, (4.72)

Both sides of this equation are clearly negative. Note that in Eq. (4.57), the av-
erages are (...) 1 p, Whereas here they are {...) ;. In general the reservoirs
of subsystems with different boundaries may be chosen to be consistent in the
values of average quantitics, but the fluctuations in these quantitices differ.

4.4.3 Constant Pressure

For a subsystem with a fixed number of particles A} = N and able to exchange
energy Aj = E and volume A}, = V with a reservoir, the relevant field variables
of the latter are the temperature, so that a7 = 1, and the pressure, a}, = p. Hence
the constrained total entropy of the subsystem and the reservoir, Eq. (4.5), is

Stotal (E, VIN,p, T) = S(E,N,V)— E/T — pV/T, (4.73)
which gives for the constrained thermodynamic potential

G(E,V|N,p,T) = E+pV — TS(E,N,V). (4.74)
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According to either Eq. (4.6) or Eq. (4.12), the probability of the subsystem
actually having an energy E and volume V', given that it has N particles and
that the temperature and pressure of the reservoir are T' and p, respectively, is

1 ,
E,V N, ,T - - ‘S'(E.N.V)/kB ‘—E/kB[’/—pV/kBT. 4.75
OB VIN.p.T) = o e ek (4.75)

The normalising partition function s
Z(N, , T) _ Z GS(E,N,V)/kBe—E/k’BTevpV/kBT’ (476)
EV

and the unconstrained total entropy of the subsystemn plus reservoir is just
Stotal (N, 9, T) = kglnZ,(N,p, T). From Eq. (4.29) one obtains the average
energy

dluZ(N p,T))
E)=—ks (— , (4.77
o o) e )
and the average volume,
InZ(N,p, T
(V) = —kBTM, (4.78)
Op
and from Eq. (4.30) one obtains the average chemical potential
OlmZ(N,p, T
(1) T} = ke 2EW 2. T) (4.79)

ON

The equilibrium thermodynarnic potential for this constant termperature sys-
tem is the Gibbs free cnergy, and its second inverse temperature derivative was
analysed earlier, Eq. (3.63). The same result also follows from the generic anal-
ysis, Eq. (4.21),

PIG(N,p, T)/T]\ _ O[EN,p,T) +pV(N,p,T)]
( o1/ TP lm‘ o(1/T) <0 (4.80)
OE(N,p,T) . —pdV (N, pVT). (481)

oT oT

These derivatives are of course at constant number and pressure. The analogous
result for average quantities follows from the derivative of the partition function,
Eq. (4.35). It also follows from Eq. (4.26) that

or Np/T
or
3E(N,p,T)> p <3F(N,p,T)> (
—_— + = — > 0, 4.83
( oT Nop T op N.T ( )



76 CHAPTER 4. PROBABILITY AND THE GENERAL FORMALISM

and that

(M) <0, (4.80)
Op N,T

which was found in the preceding chapter, Eq. (3.65). The same conclusions for
the average values follow from the analogous second derivatives of the logarithm
of the partition function, Eq. (4.32). In particular, the isothermal compressibil-
ity in the thermodynamic limit is

~18V(N,p,T)

v o

~18%G(N,p,T)

v op?

kgT 82In Z(N,p, T)
i op?

= % (A(V/ksTy)?), (4.85)

XT

which ts positive.
The second number derivative that follows from Eq. (4.37) is

PINDT)Y [ (PSENVIEy
ON? o T ON? EV

= (A /ksT,)P). (4.86)

Again the extensivity arguments used in Section 3.8 apply, and for macroscopic
systems one must lrave

Seotal (N, 0, T) = kg In Z(N,p,T) = N (11, /ksT,) + ON?/3. (4.87)

The coefficient of the linear term is of course the number derivative of the
partition function found above, and is independent of N. Hence to order N1,

82 an(Na D, T) _ d(,us/kBTs> -
(Potam) () o

the first neglected term being of order ON~%/3. Hence one concludes that for

macroscopic systems,

((F5),, ) - ((egres) )

= (A(us/kpT.)%) + ON™Y2, (4.89)

It is straightforward to show that the fluctuations in the enthalpy, H =
E + pV, are given by

_ 9?InZ(N,p,T)

(a2 = SRID,

(4.90)
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where 3 = 1/kgT. One can also define a type of heat capacity,

~ aF(N7p7 T) _[3 8266(N7P7T)
Co=|————— ==, 4.91
p ( or N.p T 052 ( )
and in the thermodynamic limit one has
2 T~
(am)?) = 56, (4.92)

which shows that é’p is positive. Note that the usual heat capacity at constant
pressure is related to the heat capacity defined above by

o = (9EWN.p,T) _ ZBOBGIN.p.T)  FGIN.p.T)
P oT N.p T 032 8T dp
= C,—apV(N,p,T), (4.93)

where the coefficient of thermal expansion is

B 1 OV (N, p,T)
“:V(N,p,ﬂ( o1 >N 94

4.4.4 Constant Enthalpy

The case of an insulated subsystem undergoing volume fluctuations was treated
in Section 3.4. In this case the enthalpy, H = E + pV, is constant. Here
E and V are the energy and volume of the subsystem, and p is the pres-
sure of the reservoir. (Here the reservoir is regarded as mechanical in na-
ture, with negligible viscous dissipation.) The work done by the reservoir is
isentropic, dS; = —dE; — padVy = 0, so that the volume-dependent part
of the constrained total entropy is just the entropy of the subsystem itself,
Stotal(VIH,N,p) = S(E,N,V), E = H — pV. Consequently the constrained
thermodynamic potential is just ®(V|H, N,p;T) = -T'S(E,N,V), E= H—pV,
and so Eq. (4.6) gives the probability of the subsystem having a volume V', given
that it has N particles and enthalpy H and that the pressure of the reservoir is
b,

p(VIH,N,p) = — SUENVI ke B = H V. (4.95)

(H,N,p)

Note that the arbitrary teinperature T does not enter this expression.
The partition function, Eq. (4.27), is of course

Z(H,N,p) =Y _ SENE p=p _py, (4.96)
14

and since the part of the total entropy that depends upon the presence of the
subsystem is the subsystem entropy itself, Eq. (4.28) gives the unconstrained
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entropy of the subsystem, S(H,N,p) = kgln Z(H,N,p). The general formu-
lae for the logarithmic derivatives of the partition function, Eqs. (4.29) and
(4.30), cannot be used in this case because they were derived for independent
extensive parameters. However direct differentiation yields the average inverse
temperature,

~ OlnZ(H,N,p)
1\ ’ ]
the average chemical potential,
OlnZ(H,N,p)
— =k vt b 4.
and the average volume,
dlnZ(H, N,
(=V/T,) = kB—(ap P (4.99)

The subscripts denote the field parameters of the subsystem, which of course
vary with its state.
Taking the second derivatives yields for number

9?InZ(H,N,p) 0?S(H - pV,N,V)/kn

for pressure

8%InZ(H, N,p) ) 9*S(H — pV,N,V)/kg
Rt Sk AL A A S k? T,,; . ’ k] .
ULID) — (Ao + At ). (1101
and for enthalpy,
82InZ(H, N, p) PS(H —pV,N,V)/kp
—am (A(1/EsT)%) + < RYiE > (4.102)

These are not particularly illuminating.
For there to be an equilibriumn state, the probability distribution must have
a peak, which means that

0?S(H - pV,V,N)
V2

<0, (4.103)

or

E,V,N E.V,N

9E  |gv v gy

Here of course p(E,V,N) is the pressure of an isolated system, as given by

the volume derivative of its entropy, and one also has p(E,V,N) = p, and
E=H-9pV.



4.4. SPECIFIC RESERVOIRS 79

4.4.5 Constant Entropy

In Section 3.5 a constant entropy subsystem with fluctuating volume was con-
sidered. In this case the energy was a dependent variable, and so again it is not
possible to use the generic analysis given in the first half of this chapter, which
was confined to independent fluctuating quantities. Nevertheless, the derivation
of the volume probability distribution and average values remains straightfor-
ward. The constrained thermodynamic potential is just H*(V[S,p,N;T) =
—T'Stota1(V|S, p, N; T), where the total entropy is given by Eq. (3.34),
Stotal(V|S7pv N7T) =5- w - I%
Here T and p are the temperature and pressure of the reservoir, and S is the
fixed entropy of the subsystem. The volume probability distribution is just the
exponential of the total entropy,

(4.105)

p(V|S,p,N,T) = %BS/kBevE(S'V’N)/kBTevpV/kBT
1
= m —E(S,V,N)/kBTe_pV/kBT‘ (4106)

The constant factor e/*8 has been dropped because it is independent of the
volume. The exponent ean also be written —H(V|S, p, N)/kgT, where in Sec-
tion 3.5 this enthalpy was just the volume-dependent part of the constrained
thermodynamic potential. Whereas the reservoir temperature did not enter in
dealing with the equilibrium state, it does reappear in dealing with the proba-
bility distribution.
The partition function is just
Z(8,p,N;T) = Z e—E(S,V,N)/kBTevpV/kBT’ (4.107)
%

and the unconstrained total entropy of the subsystem plus reservoir, Eq. (4.28),
is just Stotar(S,p, N3 T) = kglnZ(S,p, N;T). Direct differentiation yields the
average volume,

OlnZ(S,p, N;T)

V) = —kgT , 4.108
(V) B o9 (4.108)
the average chemical potential,
OlnZ(S,p,N;T)
s) = —kgT ’ , 4.109
{1s) B aN ( )
and the average temperature of the subsystem,
InZ(S,p,N;T
() = —kpr 2R ZER N T) (4.110)

oS
These may be compared with their equilibrium counterparts in Section 3.5. In
addition one has the average enthalpy
OnZ(S,p, N;T)
B o1 ’

(E+pV)=—Fk (4.111)
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which in conjunction with the average volume gives the average energy.

It is now shown that the enthalpy is a concave function of the pressure.
Denote the equilibrium volume by V = V(S, p, N), and the equilibrium volume
due to an almost identical pressure by V = V(S, 5, N). Due to the variational
nature of the constrained thermodynamic potential one has

H(V|S,p,N)
> H(V|S,p,N)
— - . 1 — -~ -
= pV—i—E(S,V,N)—i—(V—V)ﬁ—f—§(V—V)2EVV. (4.112)

The left-hand side is just E(S, Vv, N)+ pV, and so one has

1 dp(S,V,N)
2( ) ov

<

(V=V)(p—p) < 0. (4.113)
Dividing by (p — $)? and taking the limit p — p, one sees that the first term is
just OV /0p, and that it is partially cancelled by the second term, which is just
(OV /0p)2(8p/8V) /2, so that one concludes that the isentropic compressibility
1s positive,

—18V(S,p,N)

L= — > 0. 4.114
Xs = < o9 ( )

Here the uniqueness of the thermodynamic state has been used, Vi = V(S,py, N)
< p =p(S, W, N).

There is an analogous result for the logarithmn of the partition function. One
has

(ky? 10 Z(a‘gz;f’ NI gy (%—Vllm = (A(V)?) > 0. (4.115)

4.4.6 Equivalence of Systems

The different systems, each specified by its fixed variables and the ficld variables
of the reservoir, were shown in Section 3.7 to be consistent in their equilibrium
values. By this it is meant that if the set of extensive variables of each (fixed
values and equilibrium values) were thie same, the so are their field variables,
which are the first derivatives of the respective therniodynamic potentials. This
consistency did not extend to the second derivatives.

It was also shown, in Section 4.3.4, that for macroscopic systems, the loga-
rithm of the partition function equalled the thermodynamic potential for that
particular system. It follows that average values, which are the derivative of the
former, equal equilibrium values, with the consequence that different systems
are also consistent as far as average values go. Agalin this does not hold for the
second derivatives, so that fluctuations differ for different systems.
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This may be illustrated explicitly for the case of energy fluctuations in canon-
ical and grand canonical systems. For a system at constant temperature one
has

(Ar(E)?)

<(E - <E>T)2>T
_ (32Z(N, V,T)>
~ \a/ksT)? Jyy

_ _( 2By
= (au/kBT))N,V' (4.116)

Here the subscript T is used explicitly to indicate a canonical quantity. For a
system able to exchange both energy and particles one has

(Au(E)?)
= ((B-(B)))

(S )
1/kBT A%
< 1/kBT w/ TV

B ( 1/’fB >NV

)

o (oo
- ( 1/kBT >Nv (é?\;T
),

~ (3 (E)r

(Ar(EP) + (Z5 ) ALV (@.117)
Here the consistency of the systems, (E), = (E),, and (N} = N, a Maxwell
relation for the cross-second derivative, 82Z/8(1/T)3(u/T), aud also certain
rules for the manipulation of partial derivatives have been used. The result
says that the energy fluctuations of a grand canonical system equal those of a
canonical system, plus those that result from the fluctuations in number. This
is a typical example of the relationship between the fluctuations of the various
systems.

Summary

e It is the constrained total entropy whose exponential gives the probability
distribution for parameters exchangeable with a reservoir. The former
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in general is the entropy of the isolated subsystem less the sum of the
product of the parameters and their conjugate reservoir field variables.
The constrained thermodynamic potential is the negative of the reservoir
temperature times the constrained total entropy, and hence it appears like
a Boltzmann factor in determining the probability distribution.

The partition function normalises the probability distribution, and its log-
arithm gives the subsystem-dependent part of the unconstrained total en-
tropy. Its logarithmic derivative with respect to a reservoir field variable
gives the average of the conjugate exchangeable variable, and that with
respect to a fixed extensive variable gives the average of the conjugate
field variable. The second logarithinic derivatives give various fluctuations
about the averages, which show that the unconstrained total entropy is a
convex function of the reservoir field variables.

If the state of an isolated subsystem can represent a state of equilibrium
with a reservoir, then the entropy of the isolated subsystem in that state
must be a concave funetion of its arguments. Since a systemn can be
considered a reservoir for its parts, in general the stable states of matter
are characterised by a concave entropy.

The thermodynamic potential is the minimum value of the constrained
thermodynamic potential and is a property of the equilibrium state. Its
derivatives yield the equilibrium values of the exchangeable parameters
and the field variables. These derivatives may be evaluated using the
variational nature of the constrained thermodynamic potential.

The equilibriumn thermodynamie potential is a concave function of the
inverse reservoir temperature, and also of the reservoir field variables.

I the thermodynamnic limit (macroscopic systens), equilibrium values
equal average values, and the equilibriuiu thermodynamic potential equals
the logarithm of the partition function, which is equivalent to the uncon-
strained total entropy. Different systems are equivalent as far as their
first derivatives (average values and cquilibrium values), but differ in their
second derivatives (fluctuations).



Chapter 5

Classical Statistical
Mechanics

The thermodynamic analysis of the preceding chapters has been of an abstract
and general character. Such is the nature of statistical thermodynamics, which
is based on asserting the existence of weiglited microstates rather than on ex-
plicitly constructing them. This suffices to deduce the laws of thermodynamics,
and the interrelationships between the thermodynamic parameters. Likewise a
great deal of statistical mechanics can be carried out on rather idealised models,
particularly systems that exist in denumerable states. In these cases nothing
beyond what has been already derived is required. However in order to use
statistical mechanics on realistic systems, it remains to make an explicit and
quantitative connection with molecular properties, to put egg in the shell, as it
were.

The further development of the theory raises several fundamental issues.
One must identify the set of states that will serve as the microstates. In the
case of classical statistical mechanics, which is the main concern in what follows,
these will turn out to have a continuous distribution, and so one must develop
the formalisni for a continuum. The expression for tlie continuum entropy was
briefly discussed in Section 1.3.3, and a summary of the general laws for proba-
bility and entropy in the discrete and continuous cases is given in the Appendix,
Section A.3. Here a detailed derivation for the particular case of classical statis-
tical mechanics is given, and from the equations of motion an explicit expression
for the weight attached to the points in the continuum is obtained.

The chapter beging with an analysis of an isolated system that evolves with
Hamilton’s equations of motion, and which consequently has constant energy.
The probability distribution of such a system is generally taken to be constant,
the rationale being that states of equal energy are equally likely. Whilst such
a statement, once accepted, is straightforward to implement for discrete states,
some detailed analysis is required to justify and to interpret it for the continuum
that is classical statistical mechanics. Usually this is done on the basis of the
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ergodic hypothesis, but here a different approach is taken based upon a com-
parison of time, phase space, and hypersurface probability densities. The sense
in which the consequent phase space probability density is uniform is discussed
and shown to agree with the conventional result deduced from Liouville’s theo-
rem and the ergodic hypothesis. The chapter concludes with specific results for
the particular reservoirs analysed in the preceding chapters.

5.1 Constant Energy Hamiltonian System

5.1.1 Phase Space and Hamilton’s Equations

The basis of thermodynamics is that all systems possess a set of weighted mi-
crostates that are distinct and indivisible, and that entropy is the logarithm
of the sum of their weights. The first nontrivial task of classical statistical
mechanics is to identify the microstates.

Whereas the analysis up till now has invoked discrete states, classical me-
chanics deals with coutinuous variables. For an isolated system comprising N
particles, an obvious choice for the space governed by classical mechanics is
phase space, which is the space of canonical positions and mowmenta of all the
particles. In a three-dimensional universe, phase space has 6 N dimensions, with
a point in phase space being denoted by T, or by p¥q”, where q; is the position
of the particle labelled i, and p; is its wmomentum. It is clear that specifying
a point in phase space specifies the state of the system, since this reflects ex-
actly what all the particles are doing at any instant.! Iustead of the momenta
one could specify the particles’ velocities. The particles’ accelerations cannot be
specified independently since these are determined by their imutual forees, which
in turn are determined by their positions (and in some cases their velocities).
Hence whilst one requires the positions and the velocitics or the momenta to
be specified to pin dowu the state of the system, one does not need to specify
the accelerations or higher time derivatives, since these are already determined.
This means that a point in phase space caun be used to represent the state of
the system, and that phase space itsclf can be used as the conthmum analogue
of the set of microstates of the system. At this stage there is nothing to pre-
fer phase space over other possible representations (e.g., Lagrangian mechanics
specifies instead the velocities and the positions of the particles).

The word ‘canouical’ in the above is important because it signifies the fact
that the time developrient of the system is governed by Hamilton’s equations
of motion. That is, there exists a Hamiltonian, H(I'), which is the energy of
the system and whose derivatives give the time rate of change of the positions
and momenta of the particles,

OH(T) . OH(T)
Op;  Ane P dq;

1This level of description obviously ignores any internal coordinates of the particles, or
orientations in the case of nonspherical particles, or configurations of any particles external
to the system. It is straightforward to generalise the formalism for these cases.

qQ (5.1)
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Here the vector derivative means that each of these represents three equations,
one for each vector component.

An isolated system follows a trajectory through phase space that may be
denoted I'(¢|T), where the notation signifies that the trajectory was at I'g at
time ¢ = 0, I'(0[Ty) = I'g. This trajectory is fully determined by Hamilton’s
equations. Energy is conserved on such a trajectory, since

dH(T) 1-_‘_%
dt or
_ i[a_ma_ff
B =1 pi op; & Oq;
N
= > [P 4 —a-pil

1

S

(5.2)

Recall that it is an essential requirement of the formalism of thermodynamics
that the energy of an isolated system be conserved.

5.1.2 Averages and Probability Densities

Amongst other things statistical mechanics yields the average properties of the
system. Many such properties can be expressed as a molecular function of the
phase state of the system, f(I'). Examples include the pressure, where f is
essentially the intermolecular forces manifest in the so-called virial of Claussius,
the density, where f counts the number of molecules in a particular region, and
the kinetic energy. To obtain these averages one requires a probability density,
of which there arec several possibilities.

There are three different ways to obtain the average, and each has its own
probability density. The most well known is the temporal average, which is the
average of the phase space function along a trajectory in time,

), = Aﬁwmﬁ@mm»

lfwmwmy (5.3)

T Jo

I

Here 7 is an experimental time scale that is long compared to molecular time
scales, and in consequence the average is independent of the starting position of
the trajectory. The second line assumes that the temporal probability density
is uniform, g(¢) = 1/7. In other words, the weight of a state is linearly propor-
tional to the time the system spends in the state, and a time average is a simple
average.

Alternatively, the phase space average of f may also be defined. Taking
phase space itself as the set of possible microstates, the conditional probability
density for an isolated system that has energy within dE of E may be denoted
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p(T|E). This density gives the probability that the system will be found within
dI’ of T', and is defined in terms of the temporal average as

o(1|E) = 7 [ dta(r(irs) - Ta). (5.4)

With it the average of any function of the state of the system is

(i = / dT o(T[E) £(T). (5.5)

Direct substitution and interchange of the order of integration shows that phase
and time averages are equivalent, (f)p = (f),.

One can also define a surface average. In this case one invokes a coordinate
system for the surface, ¥(I'). Oue can write equally well I'(y, E), since the
hypersurface has dimension 6N — 1. The surface probability density may be
written

o) = 1 [ dedtttng) - ) (5.0

In terms of it the surface average is

(= § 1t )T ) 5.7)

and again one may coufinn the equivalence of surface and tiine averages, ( f),y =
(f),. Here the integral is over the energy hypersurface of thickness dE to which
the isolated system is constrained, and d=y is the element of area.

The element of volumne is related to the element of area by

dl' = dvydn = dydE/|[VH(T)), (5.8)

where dn is the differeutial length of the noral to the energy hypersurface.
The gradient of the energy hypersurface couverts this length, which is measured
in units of T', to the differential energy in energy units. From this equation
one sees that the distance between two energy hypersurfaces is not constant in
phase space.

The phase space probability density is given in terms of the surface proba-
bility density by

oTIE) = o) | ). pur) - Bl < ap
= KJ(E)(’Y)%. [H(T') — E| < dE
= o)) [VHD) S((T) - B), 59)

where v = «(I'). The Dirac § follows as the limit that dE — 0 in the pas-
sage to the final line. The distinction between the two probability densities is
that o(T'|E) is defined throughout phase space, whereas the surface probability
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density p{#) (y) is only defined on the enecrgy hypersurface. The former is used
when phase space itself is considered to be the set of all possible states of the
system.

With this expression one can readily verify that surface and the phase space
averages are equal,

/ dT o(TE) £(T)
dvdE

= / oy VDI SHUE) = Bot (1) ()

- fE dy oB() {(T(, E))
= {fly- (5.10)

This is of course necessary for the internal consistency of statistical mechanics.
The factor relating the two probability densities may be called the charac-
teristic function of the energy hypersurface,

xR, T) = [VH(T)6(H({T) - E)
= [Vgu(T)|d(g9u(T) - G). (5.11)

The final line, in which gy (T') = g(H(T")) and G = ¢(F), demonstrates that
the characteristic function is invariant with respect to the representation of the
hypersurface. On physical grounds this is an essential requirement, and all of
the following results, which are given in the ‘natural’ representation of the first
line, are unchanged by any other representation. The characteristic function
gives the area of the energy hypersurface,

f i
E

/dI‘ IVH(D)|§(H(T) — E), (5.12)

{F)r

A(E)

as may be verified by direct substitution. In view of this, the characteristic
function may also be called the area density of the hypersurface in phase space.

Multiple Constraints

Although the focus here is on an isolated system with only energy conserved, one
can envigage more general cases with multiple conserved quantities. In general,
m constraints in n dimensions give an (n — m)-dimensional hypersurface with
area
m
sn = /dz” pF™, ) [[8(F ™) — £). (5.13)
=1
Here the F;(z™) are the constrained functions of the hyperspace and the f; are
their constant values. For the area to be invariant to different representations
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of the hypersurface, the area density must be of the form of a sum of products
of all the F;. Further, dimensional considerations show that it must be the
derivatives of the F; that occur. Finally, the area density must be symmetric
with regard to each of the F; and each of the dimensions of the space. The
function that fulfils all of these requirements is

D(Fm, zn)Z

n—m+1n—m+2 n ~ OF OF. OF
Z Z Z Z (é) &r,ill &EZ Oy,

tr=1 dp=i1+l1 tn=tm—1+1l \P(2)

n 2

Z lv(n)Fm

i1 <1 <. <l

(5.14)

Here € = 1 gives the parity of the permutation P. The dyadic matrix whose
determinant appears in the second form has clements OF;/0xz;, where i €
{1,2,...,m}and j € {iy,i2, ..., 0m}

5.1.3 Phase Space Probability Density

The surface probability density follows directly from the uniforin teinporal prob-
ability density, p(t) = 1/7,

o (y) = p(t) (%
1
o (5.15)

Mathematically, this result holds if the experimental time scale 7 is short comn-
pared to the systein recurrence timme, so that the trajectory only passes within
d~y of v once (assuming smoothness of p(¥)(v) so that it may be continued to
the neighbourhood of the trajectory), and if 7 is long enough so that it covers
a representative selection of points on the hypersurface. (By definition, if the
experimental temporal average is representative, then so must be the points
visited by this finite trajectory.) The physical argument that underpins this
result follows from the temporal representation, Eq. (5.6). There the 6-function
in the integrand picks out the amount of time the system spends in the vicinity
of a particular phase point on the energy hypersurface. The amount of time is
T = dv/|%|. The probability deusity is in addition inversely proportional to
the area element d-y, and the combiuation of these two factors gives the above
result. Note that the velocity of the trajectory is not a constant of the motion.
Hence one may conclude from: this result that the surface probability density is
not uniform on the surface.

In practice it is difficult to give explicit expressions for the curvilinear coor-
dinates of the hypersurface, and it is much more convenient to remain in phase
space itself. Hence it is preferable to deal with the phase space probability den-
sity rather than this energy hypersurface probability density. The time that the
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system spends in an clementary cell dT" remains 7+, as given above (because
only the area element through which the trajectory passes is relevant), and the
phase space probability density is proportional to this and inversely proportional
to the volume element dI' = dydE/ [VH(T)|,

[VR(I)] 1
pTE) TR aE [H(T) — E| < dE
%5(7{@) - E). (5.16)

Note that |T'| = || because |7, — ;| = [T(v1, E) —T'(7,, E)| = [T’} — Ty|. This
result can also be obtained directly from Eq. (5.15) using the conversion rule
(5.9).

The interpretation of this result is straightforward. The denominator is
the speed of the trajectory, and represents the fact that the probability of a
region of phase space is proportional to the time that the system spends in that
region. The numerator is the area of the energy hypersurface at that point, and
represents the fact that the probability of a region of phase space is proportional
to the amount of the hypersurface to which the system is confined that lies in
the region.?

Hamiltonian System

From the above it follows that the phase space probability density is therefore

[VH(T)|
p(TE) |I"|Z’(E)5(H(F) E). (5.17)
The normalising partition function or total weight, Z'(E), is discussed in the
next section. Note that whilst this result relies upon the fact that H(T') is
a constant of the motion (i.e., that the system is confined to a hypersurface
of constant H), Hamilton’s equations have not been assumed in deriving this
result. So this is a general expression for a system that evolves with arbitrary
equations of motion and that has a single constant of the motion represented
by some arbitrary function H(T').
However for a Hamiltonian system, it is a remarkable coincidence that in
the space of canonical positions and momenta,

YoM OH OH OH

da: 9a;  Op: Ops

IVH(T)?

(]

i=1
N
= Zpi'f’i+<li'<li

- (1':|2. (5.18)

20ne could take these two points as the axiomatic basis for the more general probability
density for non-Hamiltonian systems and for systems with multiple constraints. Little work
has been done on this, and the fact that for equilibrium or steady state systems the probability
density must be constant in time places restrictions on the allowed equations of motion.
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Hence the gradient in the numerator cancels with the speed in the denominator,
giving a particularly simple expression for the probability density in phase space
(on the energy hypersurface),

S(H(T) — E)

T'E,N ===
BN = 25 N )

(5.19)
Here it has been signified that the energy, the number of particles, and the
volume of the isolated system are specified.

This result shows that phase space points with the same eunergy are equally
likely. This is the most precise way of interpreting the discrete notion that states
of equal energy are equally likely. One cannot say that the phase space proba-
bility density is uniform in phase space, since the Dirac § is highly nonuniform,
nor that the surface probability density is uniforin on the energy hypersurface,
since it is proportional to the inverse of the trajectory speed, which is not a
coustant of the motion. Keeping in mind the distinction between the two prob-
ability densities, one could perhaps say that the phase space probability density
is uniform on the energy hypersurface, which paraphrases the statement at the
beginning of this paragraph. This description of Eq. (5.19) appears to be consis-
tent with the hypothesis of equal a priori probabilities enunciated by Tolman:
“the distribution of members of the ensemble over different states agrecs with
what is known to be the actual state of the systemn of interest but is otherwise
uniform in the phase space.”?

Note how the canonical relationship between positions and momenta em-
bodied in Hamilton’s equations of motion was central to this result, and that
it is the ‘natural’ representation of the energy hypersurface that simplifies the
final formula. It is important to understand that this is a result specific for
Hamiltonian systems with ounly energy conscrved, and using the ‘natural’ repre-
scutation of the energy hypersurface. If any other representation of the energy
hypersurface is used, it is important to convert this expression correctly (or else
to start from the invariant representation, Eq. (5.17)), since ignoring the energy-
dependent factor that arises gives unphysical results for the energy derivatives
of the partition funetion.

With these results the average of a function of phase space for a Hamiltonian
system of energy E is

UM = g | IO - )
L

Z'(E,N,V) 4] (T, E)). (5.20)

5.1.4 Continuum Entropy of a Hamiltonian System

The partition function that normalises the phase space probability density is
meant to represent the total weight of the system, and its logarithm is the en-
tropy. Two subtleties need to be dealt with before implementing this explicitly.

3R. C. Tolman, The Principles of Statistical Mechanics, Oxford Univ, Press, Oxford, 1938.
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In the discrete case the microstates were distinct, and the total weight was
just the sum of the weights of the microstates. In the case of phase space,
because the particles are indistinguishable, the physical state of the system
labelled by T is also labelled by the point I corresponding to some permutation
of the indices of the particles. For example, the microstate represented by
particle 1 at (pq,q,) and particle 2 at (ps, qp) is exactly the same microstate as
that with particle 2 at (pq, ) and particle 1 at (py,qs). Since the particles are
indistinguishable one cannot count these two arrangements as distinct states.
Hence an integral over phase space overcounts the number of distinct states by a
factor equal to the number of permutations of identical particles. To rectify this
in the present case a factor of N! must be introduced into the denominator of the
phase space probability density, which has the effect of reducing Z'(E, N, V) by
the same factor. This is important for systems with variable numbers of particles
and for number derivatives of the entropy.

The second point is that it is desirable for the partition function to be di-
mensionless, and that the probability density genuinely have the dimensions of
phase space density. This is convenient for taking the logarithm of the partition
function, and also for transforming the probability density to different coordi-
nate systems. Noting that Plank’s constant has the dimensions of momentum
times length, A = 6.63 x 10724 J s, one can define a volume element for phase
space of A = h*N. One also needs to cancel the dimensions of the energy 6-
function in the natural representation by introducing another constant Ag with
the dimensions of energy.

In view of these two points, the phase space probability density may be taken
to be

Agdé(H(T) — E)

_ , 5.21
P(LIE V. N) = Nipn 205, N, v) (5.21)

With this the dimensionless partition function is

A
Z(E,N,V) = WEBN/dra(H(r)_E)
AE d'y
= —= —. 5.22
NN [ 4] (522

Note that it doesn’t matter whether the system volume V is included explicitly
as a limit on the spatial integrals or included in the Hamiltonian as a one-body
potential. It is interesting to note that whereas d-y itself is not a constant of the
motion, the integrand on the second equality is. (This follows from Liouville’s
theorem, since both dI" and dE are constants of the motion and the integrand
is their ratio.) The denominator of the second equality may be replaced by
[VH(T (v, E))| for this Hamiltonian system.

The constant Ap that appears here has the dimensions of energy. It may
be interpreted as the width of the energy shell. Accordingly the Dirac ¢ that
appears is really a coarse-grained ‘top-hat’ function that is only nonzero when
the Hamiltonian is within Ag of E, at which point it has value 1/Ag. The value
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of A has no physical consequence, and it is a convenience, not a necessity, to
introduce it.

The appearance of Planck’s constant is suggestive of the quasi-classical ar-
gument that to each quantum state there corresponds a cell in phase space of
volume h*Y. However such an interpretation is not essential, and any constant
with the above dimensions will do. The value of the constant has no physical
consequence, which means that one could even proceed with no constant at all.
The fact that the constant depends upon N will not even affect the exchange
of particles with a second system; since Ny + Ny = N, one has a total factor of
3N R33Nz — B3N which is independent of the partitioning of particles between
the two systems. In other words, Planck’s constant will become an additive
constant for the chemical potential, and only differences in chemical potential
are physically meaningful. This is a general result: for an exchangeable param-
eter A, oue can always multiply the partition function or probability density by
A 4 exp Ag A with no physical consequence.

The entropy of an isolated Hamiltonian system with energy E is

S(E,N,V)

ksln Z(E,N,V)

Ap
kel oo /dI‘é(H(I‘) - E)

Il

kg In Ap }{ dy
- NwN |VH(F(7.,E>>1

hpln —2 (5.23)

N'h‘N 7{ [%]

The more general expression for the probability deusity that uses an arbi-
trary representation of the energy hypersurface is

Ap  [Vgu(D)[6(gu(T) — G)'

T'\E,N,V - 5.24
o )T NI DZ(EN,V) 24
In this case the entropy may be written
Ag |Vgu (L)
S(E,N.V) = hksln oy /dI‘T.l—é(gH(I‘)—G)
AE (1’7

= kplh —+ 25
BRNN JL A (5:25)

Evidently the entropy of the isolated system is indeed independent of the rep-
resentation of the energy hypersurface.

The partition funection of an isolated system gives the total weight of the en-
ergy hypersurface, and the energy weight density may be written w(E, N, V) =
Z(E,N,V)/Ag. In terms of the weight density of phase space, w(T'), this is

W(E,N,V) = /drw(r)a(H(F) —E). (5.26)
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Comparing this with the expression for the partition function, one concludes
that phase space has uniform weight density,

1

() = S (5.27)

One can define the entropy of a point in phase space in terms of this weight
density,

S(T) = kg ln[w(T)AD)]. (5.28)
The consequent phase space probability density is
p(T) = SM/ke AT Z. (5.29)

Here has been introduced an arbitrary volume element A(T") that has no physical
consequence. The one that appears explicitly in the probability density cancels
with that implicit in the entropy. It is included here so that the logarithm
is taken of a dimensionless number and so that the probability density has
explicitly the correct dimensions. Also, it ensures that the entropy is invariant
with respect to transformations of phase space. For convenience, one could take
it to be constant, or even set it equal to N1h3V,

In view of the above, the phase space probability density conditional upon
the system having energy within dE of E may therefore alternatively be written

w(T)

TE,NV)= — )
p(TIE, N, V) W(E,N,V)

S(H(T) — E). (5.30)
This is the continuum analogue of the discrete expressions for conditional prob-
ability. Hence the entropy of a point in phase space given that the system has
energy within dE of E is

STIE,N,V) = kpln[w(D)AD)ARI(H(T) - E)]
A(T)
One need not be alarmed at the appearance of the Dirac § here, since in the
coarse-grained interpretation it equals 1/Ag for any point on the energy hy-
persurface, and hence the logarithm of the product of the final two terms is
0 whenever the system is on the hypersurface. Accordingly, the phase space
probability density for a system with energy E may be written,

oS(CIENV) ks

o(C|E N, V) = AD)Z(E, N, V)

(5.32)

With this result the entropy of the isolated system may be written

S(E,N,V)
= kglnZ(E,N,V)

= /dI‘ o(T|E,N,V)kgIn Z(E, N, V)



94 CHAPTER 5. CLASSICAL STATISTICAL MECHANICS

[ AT 1BV V) (S(XIE, N, V) — kI o1, V. V)AT))}
= —kB/dI‘ o(T|E,N,V)In [p(T|E,N,V)NIR*N] . (5.33)

The last equality follows because the d-function does not contribute to the phase
space entropy on the hypersurface, as discussed above (i.e., Agé(H(T') — E) is
equal to either 1 or 0, with consequence that the probability times the logarithm
of this product is always 0). Note that while the microstate volume affects the
microstate entropy, it affects neither the entropy of the energy macrostate nor
the probability density, as is evidenced by the final equality. In other words,
whether A(T") is known or unknown, it has no physical consequences.

The expression for the entropy represented by the last equality was given by
Gibbs, who called it the average of the index of probability.* The discrete version
was used by Shannon, who called it the information entropy.® It has the property
that of all normalised probability distributions of the form ¢(T')é(H(T') — E), it
is maximised by ¢g(I") = const. Whilst this is the correct probability distribu-
tion in the present case of a Hamiltonian system with only energy conserved,
it is not valid more generally. The penultimate equality must be regarded as
the general expression for the entropy as a functional of the probability density,
and the final equality as a particular representation that holds for a uniform
probability distribution. In practice there appears to be no reason to use these
entropy functionals to determine the probability density since they require ex-
plicit knowledge of S(T'|f), which already gives the probability density directly,
Eq. (5.32).

5.1.5 Ergodic Hypothesis and Liouville’s Theorem

The usual justification for the uniform probability density of an isolated system
is the ergodic hypothesis, originally enunciated by Boltzmann. This consists
of two separate assertions; (i) that for an isolated system all points in phase
space with a given energy lie on a single trajectory, and (11) that the probability
density in phase space is uniform along this trajectory.®

Boltzmann and Gibbs imagined an ensemnble of replica systerns, the ith mem-
ber of which was in the state T';. From this viewpoint, o(T") represents the frac-
tion of the members of the ensemble in the vieinity of I'. The ensemble evolves
in time according to the trajectories of the individual members. One may denote
the original probability density at ¢ = 0 by po(T'), and the probability density
at time ¢t by p(I',t). One has p(T'),t) = po(T'(—¢tT'1)) (see below), so that the

4J. W. Cibbs, Elementary Principles in Statistical Mechanics Developed with Special Ref-
erence to the Rational Foundation of Thermodynamics, Yale Univ. Press, New Haven, CT,
1902; Dover, New York, 1960.

5C. E. Shannon and W. Weaver, The Mathematical Theory of Communication, Univ. of
Illinois Press, Urbana, 1949.

SA. Miinster, Statistical Thermodynamics, Vol. 1, Springer-Verlag, Berlin, 1969, discusses
the role that phase space and the ergodic hypothesis has played in the axiomatic development
of statistical mechanics.
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ensemble picture can be applied to nonequilibrium systems. The time evolution
of the probability density (or ensemble) may be obtained following a trajectory,

dp(l"ht) o 8@(1"1715) : aga(l"l,t)
dt '( o ). TP\ ), (5.34)

where I'} = I'(¢|T'p). Note that it is not necessary to assume that the members
of the ensemble all have precisely the same energy.

The probability density in the neighbourhood of a fixed position in phase
space changes due to the flux across the boundary of members of the ensemble,
each following their individual trajectory. The time rate of change of the number
of members of the ensemble in the region {2 at time ¢ is

ONq(t) / Op(T,t)
R P dr22—v
ot 0 at

= A}[drﬁ.rp(nt)
Q

9 .
- _/era_r' [r p(l",t)}. (5.35)
For a small enough region this gives
Jpl,t) 0 :
et = = [Fo)]. (5.36)

This is the conservation law for members of the ensemble.
From Hamilton’s equations one may readily verify the adiabatic incompress-
ibility of phase space,

9
or
since in full this is

i [aqi . api} _ i{ PH__ PH ], 5,38

i=1 dq;  Ip; = dq;0p;  Opidai|

T =0, (5.37)

Using this and the above partial time derivative, Liouville’s theorem follows:

dp(T'(¢[To), t)

=0. 5.
o 0 (5.39)

This says that phase space density is conserved along a trajectory.

A corollary of Liouville’s theorem is that the volume of a region of phase
space is conserved during its time evolution. This follows because trajectories
cannot cross, and so the number of members of the ensemble inside a region
must stay within that region during the evolution of its boundaries. Hence the
volume of the region must be constant in order for the density to remain fixed.
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If the region that was € at time ¢ = 0 evolves to ' at ¢ = ¢/, then the fact that
the volume is conserved is expressed by

/Q ar = / dr. (5.40)

However Hamilton’s equations represent a transformation of phase space to
itgelf, I = I'(#|T"), and so one also has

dr = | ar'g(r,1r). (5.41)
fe= ],

Comparing these two, since the volume is arbitrary, one concludes that the
Jacobean of the time evolution of phase space is unity, J(T',T") = 1. This last
result can of course be shown directly from Harnilton’s equations, and hence
reversing the argument provides and alternative proof of the conservation of
phase space volumes during their evolution.

The conservation of the phase space volume elemnent dI' means that the
quantity dydn = dydE/|VH(T')| is also a constant of the motion. However,
since energy is counserved, one concludes that the area of a region of the en-
ergy hypersurface is not a constant of the motion, but rather it is the quantity
dvy/I[VH(T)| that is invariant. It will be recalled that it was this quantity that
appeared in the expression for the entropy, Eq. (5.23).

Using the above result for the Jacobean, the probability density at time ¢
may be written in terms of the original probability distribution,

o(Tt) — [ dTopn(To) (8 = T(¢IT0)

= /(11"1 g)o(l"(ﬂ‘[l"l))(%l"—rl)
= po(L(=#T)), (5.42)

sitce I’y = T'(#|Ty) means that T'y = T'(—#T';). This describes how the current
probability density evolves from the initial distribution.
Liouville’s theorem holds for bothr equilibrium and nonequilibrivun systems.
In the case of equilibrium one has the stronger result that the probability density
at any point must be stationary,
9p(L, t)
T 0. (5.43)
From Liouville’s theorem, Boltzmann deduced that the probability density
in phase space must be uniform along a trajectory. He considered two regions
of phase space, the sccond of which evolves from the first after time ¢ (see
Fig. 5.1). The two regions have of course the same volume, but different shapes.
Next he considered these two regions as fixed in phase space, and noted the
times at which a trajectory in phase space entered and left the first region (¢4
and tg), and similarly for the second region (¢ and ¢p). Since the boundary
of the second region represents the evolution of the boundary of the first region
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Figure 5.1: A single trajectory passing through the original and the evolved
regions of phase space.

after time ¢, one must have to — t4 = ¢, and tp — tg = ¢, from which it
follows that the trajectory spent an equal amount of time in the two regions,
tg —ta = tp — to. (That is, the ‘width’ of the evolved region measured at
a trajectory must be proportional to the velocity of the trajectory.) Since the
probability of a region of phase space is proportional to the time that a trajectory
spends in it, Boltzmann deduced that evolved volumes of phase space lying on
a single trajectory are equally likely.

The same conclusion may be reached directly from Liouville’s theorem. As
shown above, probability density is conserved on a trajectory, as are volumes of
phase space. Hence the probability of an evolved region of phase space is the
same as that of the original region, which is precisely what Boltzmann concluded
from his equal time argument.

For a system in equilibrium, the partial temnporal derivative of the probability
density vanishes, Eq. (5.43), which is to say that the probability density in
phase space is unchanging at any fixed point on a trajectory. However, as just
argued, the probability density also moves along with the trajectory. These two
statements can only be reconciled if the probability density is uniform along the
trajectory. Hence one concludes that

o(T(tTg)) = p(Ty), for all t. (5.44)

Now the first part of the ergodic hypothesis is required, namely that a sin-
gle trajectory covers all of the energy hypersurface. Hence one may draw the
stronger conclusion that the phase space probability density is uniform on the
entire energy hypersurface,

p(T) = p(T'y), for all I such that H(T") = H(Ty). (5.45)
It is clear that the probability distribution given above,

S(H(T') ~ E)

p(LIE, N, V) = NWNZ(E,N,V)’

(5.46)
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is a manifestation of this conclusion. This shows the precise sense in which
the probability density of an isolated system is uniform, namely that phase
space points with the same energy are equally likely, or that the phase space
probability density is uniform on the energy hypersurface.

5.2 Various Reservoirs

5.2.1 Constant Temperature

An isolated system composed of two subsystems able to exchange energy is now
treated. The respective volumes are implicit in the Hamiltonian and distinguish
the particles confined to each subsystem. The Hamiltonian can be written
as the sum of the two Hamiltonians of the systems considered in isolation,
H = Hi+Hs. Provided that the region of interaction is small comnpared to each
subsystem, the remaining contribution Hi2 is negligible. The weight or number
of microstates attached to subsystem 1 having particular values of energy is the
weight of the trajectory of the total system that corresponds to this macrostate,

Z(E{|E, V1, N1, Vo, Np)
AL [ dp qul/de'quN2

§(Er—Hy1)6(E—H)

h3N N No!
AZ [ dpM dgM dp™2 dq™?
= 13N N S(Er — Hy) / TN, 0(E — Ey —Hs)
= Z(El»va‘/l)Z(E_ElvN27‘/2)' (547)

Here N = N, + Ny, and because the particles are confined to two distinct
regions, one must correct the integration by N)!Na! rather than by N! in order
to count distinct microstates. The final product form relies upon the additivity
and independence of the variables for each subsystem. The probability density of
the partitioning is of course proportional to this weight. As in the discrete case,
the weight of microstates of the total systemn correspouding to a macrostate is
the product of the weights of the subsystems considered as isolated in the given
respective state.
For the first subsystem the entropy is

S(El,Nl,‘/l):kBlﬂZ(El,Nl,‘/l), (548)
where
Ap
Z(B.NV) = 55y [ dpVda¥ 5(3(pY.a") - B). (5.49)

Similarly, the entropy of the second subsystem is S(E — E{, N2, V2) = kgln
Z(E — Eq, Ny, V3), and assuming that it is a reservoir, it may be expanded to
linear order,

E
S(E — Ey, Ny, V3) = const. — ?1 (5.50)
2
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As usual the reservoir temperature T3 is the energy derivative of its entropy.
Since the constrained total weight is the product of the weights of the subsystem
and the reservoir in the energy macrostate, the constrained total entropy is the
sum of the two entropies.

The energy probability density for the subsystem is proportional to the con-
strained total weight, or, equivalently, to the exponential of the constrained
total entropy,

_ Ap S(E,N,V)/ks ,—E/ksT

o(E|N,V,T) = 2NV T ( )k o= E/keT (5.51)
As usual the subscripts are now dropped because the reservoir only enters via its
temperature T'. The final factor is the so-called Boltzmann factor, which says
that for an isothermal system the probability of a state is proportional to the
exponential of the negative of its energy divided by temperature. This exponent
is just the state-dependent reservoir entropy and one must include in addition
a factor for the subsystem (or internal) entropy of the state (see below). The
density is of course normalised by the dimensionless partition function, which is

Z(N,‘/,T) = AL/dEeS(E’N’V)/kBe_E/kBT
E
1 —
= g [ 4B [ apaas(p" ) - B)
1
= W/de qu e—H(PN,qN)/IcBT7 (552)

where the final line follows upon interchanging the order of integration. This is
the most usual form of the partition function that one encounters in statistical
mechanics and the notation Z is rather widespread. Note that Z(E, N, V) and
Z(N,V,T) are two completely different functions; here and throughout the form
of the arguments is used to indicate the type of the function.

It is most useful to have the phase space probability density rather than the
energy probability density. Denoting a point in the phase space of the subsystem
by T = p~q®, one has

o(T|N,V,T)

{

/ dE: (T|E1, N, V)p(E:|N, V,T)

AE AE(s(H(F)—-Eﬂ GS(EI,N,V)/kBe—EI/kBT
/ "NI3NZ(E{, N, V) ApZ(N,V,T)

_ 1 —H(T) ks T
~ NWNZ(N,V,T)" ‘ (5:53)

The first equality is a standard application of the laws of probability;? the
first quantity in the integrand is the probability that the isolated subsystem is
at the given point in its phase space given that it has energy E; (this term is

7One has p(ale p(ablc) = p(albc)p(blc p(alb)p(blc), the final equality
o L& b ® b &
holding if and only 1f bne= b
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independent of the reservoir temperature). The cancellation of the weight or
partition function in the denominator follows because its logarithm is defined
to be the entropy that appears in the exponent in the numerator. Finally, the
Dirac § is used to undo the integration. This phase space probability density has
the desired diniensions and is correctly normalised. The derivation of this result
provides the justification for the widely used Boltzmann factor, which sets the
probability proportional to the exponential of the negative of the energy divided
by kgT. Compared to the isothermal distribution of the energy macrostates,
no subsystem entropy appears here because points in phase space have equal
weight density, Eq. (5.27).
The total entropy of the subsystem and reservoir may be written

S(N,V,T) kgln Z(N,V,T)

= kB/ drN dpY (e, pV|N,V,T)In Z(N, V, T)
14

= kB/ drNdegJ(rN,pN|N,V,T)
14

e BHN (Y ,p™)
X |In —————— — Inp(e™, pY|N, V, T)

N3N
-1
= o (M YpM) — b [ e apY pY . VT
JV
xIn [NR*N o™ pV|N.V,T)]. (5.54)

Here the first term may be recognised as the average reservoir entropy (at least
the subsystem-dependent part). Conversely, the second term may be described
as the entropy of the subsystem.

In the first chapter an analogous expression for the entropy was given as
the average of the internal entropy of the microstates less the average of the
logarithin of the probability. In the present case the position-momentum mi-
crostates of the isolated subsystem are all equally likely, and hence they have
no internal entropy as such. However, when the subsystem is in contact with
the heat reservoir there is an cntropy associated with each microstate due to
the loss of energy from the reservoir. This is the first term, which plays the role
of the internal entropy of the microstate.

As also mentioned in the first chapter, this first term is often neglected and
the entropy is said to be simnply the average of the logarithm of the microstate or
macrostate probability, (cf. Eq. (1.12)). In the context of the principle of maxi-
mum entropy, which seeks to obtain the equilibrium probability distribution by
maximising the second contribution only (see Section A.6), the reservoir contri-
bution, the first term, is belatedly added by carrying out the maximisation with
a Lagrange multiplier representing a constraint on the average energy. This
is precisely the first term above, and so one sees that the artificial constraint
introduced into the maximum entropy formalism effectively adds the reservoir
contribution that is inadvertently neglected.

The thermodynamic properties of the constant temperature system carry
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over directly from the general analysis carried out for the discrete case. The
constrained thermodynamic potential is the temperature times the constrained
total entropy, Eq. (4.12),

F(E|N,V,T) = E - TS(E, N, V), (5.55)

which of course describes the probability of fluctuations about equilibrium. The
equilibrium thermodynamic potential, which in this case is called the Helmholtz
free energy, is the minimum value of the constrained thermodynamic potential,

Eq. (4.14),
F(N,V,T) = F(EIN,V,T) =E - TS(E,N,V), (5.56)

where the equilibrium energy E(N ,V,T) is the most likely energy of the sub-
system. The Helmholtz free energy is as often denoted by A(N,V,T") as by
F(N,V,T). The partial derivatives of the Helmholtz free energy give the equi-
librium thermodynamic properties of the subsystem. According to Eq. (4.19),
the total differential of the Helmholtz free energy is

dF(N,V,T) = ~S(E, N, V)dT — pdV + TdN, (5.57)

which gives its partial derivatives at a glance.

The formal analysis showed that the unconstrained total entropy, Eq. (4.28),
is Siotal(N, V. T) = kgIn Z(N,V,T). Likewise, the average energy is the inverse
temperature derivative of this, Eq. (4.29), and the average pressure and the aver-
age chemical potential of the subsystem are its volume and number derivatives,
Eq. (4.30).

As discussed in Section 4.3.4, statistical mechanics usually equates the free
energy, not the entropy, to the logarithm of the partition function. As was
shown there for macroscopic systems the two are equivalent. Explicitly, in the
present constant temperature case,

—kgTIn Z(N,V,T)

- —kBTln/dE L Bk T SNV /s
Apg

Q

—kgTIn [e—f/kBTeS(EMV)/kB /Z_EBSEE(E,N,V)(E—E)Z/%B
E

k‘BT In —27Tk'B

2 A%Spg(E,N,V)
The right-hand side is the Helmholtz free energy with a logarithmic correction
that for macroscopic systems may be neglected (it is only when fluctuations
about equilibrium are large compared to the mean that this term may become
important). To leading order the free energy is indeed equal to the negative of
the temperature times the logarithm of the partition function,

F(N,V,T) = ~kgTInZ(N,V,T). (5.59)

= E-TS(E,N,V)+ (5.58)

Since the derivatives of the two are likewise equal, one may conclude that for
macroscopic systems the equilibrium energy, pressure, and chemical potential
are equal to the average energy, pressure, and chemical potential, respectively.
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5.2.2 Constant Chemical Potential

Open systems do not have a fixed number of particles, and they may be analysed
by considering an isolated system comprising two subsystems at rest and with
fixed volumes, but allowing energy and particle exchange. At any instant there
is a well-defined number of particles in each subsystem such that N1 + No = N.
As usual, the probability of a particular macrostate factorises into the product
of weights for the quasi-isolated subsystems,

Z(El,Nl,Vl)Z(E—El,N“Nl,‘/Q)

Ei,N{|E,N,V1,V) = 5.60
o(E1, N1 1, V2) Z(E.N.Vi.V3) (5.60)
where the total weight of the trajectory is
Z(E,N, V1,V2)
dp™ dg™ [ dp™z dq™
S(E - 61
= Z /v i, T OE T, 561

with N1 + No = N. It is clear that this counts each distinct configuration of
the system with equal weight.

Taking the second subsystem to be a reservoir and expanding its entropy to
second order one has

S(E—E,N - N,.V3) = kglnZ(E - E;,N — Ni,\%)
Ey  uN
= —_ —— r‘ 2
const. T + T (5.62)

where the reservoir chemical potential g ¢quals minus the temperature times
the number difference of its entropy. The probability that subsystem 1 has a
particular energy and particle number becormes

CS(EJV.V)/A');C—[E—/lN]/k’]xT

E Nlu,V,T)= 5.63
o(E, N|p, V,T) ApZ(V.T) (5.63)
Here the partition function is
Z(,LL,‘/,T) — Z / dE .S(ENV /k[g 7[E ;IN]/kBT
_ Z /dE (- ;LN]/kBT/(ip dq” S(E—H)
N h3N N!
N=0
< uN/k N 3. N
_ e!N/EBT  r dpN dq e_H(qN‘pN)/kBT (5.64)
h3N N! ’ ’
N=0

The probability density is of course uniform on a hypersurface of constant energy
and number,

GMN/kBTe_H(qupN)/kBT

NN Z (V. T)

pa@™, pY, Np, V,T) = (5.65)
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The total entropy of the subsystem and reservoir may be written

SV, T) (5.66)
= kplnZ(u, V,T)

o0
= kBZ/drNdep(rN,me,V,T)an(,u,V,T)
N=0V

o0
= kBZ/drNde@(rN,leu,V,T)
N=0"V

eBuN o—BH N (rV p™)
x |ln

NR3N _lnp(vapNLuv‘/vT)

o0
(uN = Hn (N, p™)) — ks D /VdrN dp™ (e, p"|p, V, T)
N=0

Nl

x In [N1E*N o(eN, pV |, V, T)] . (5.67)

Here the first term may be recognised as the average of the subsystem-dependent
part of the reservoir entropy. It represents the internal entropy of the microstates
once the subsystem is in contact with the reservoir. Conversely, the second term
may be described as the entropy of the subsystem. More precisely, it is in fact
the difference between the total unconstrained entropy of the full system and
the average entropy of the reservoir.

The constrained thermodynamic potential is

Q(E,N|p,V,T)=E—~TS(E,N,V) - uN, (5.68)

and its minimum value is the equilibrium thermodynamic potential, which is
called the grand potential,

Qu,V,T) = Q(E,N|u,V.T) = E~TS(E,N,V) — uN. (5.69)

Here the equilibrium energy E(u, V,T) and the equilibrium number N (u, V,T)
of the subsystem are the most likely values. The former is the inverse tempera-
ture derivative of the grand potential divided by temperature, and the latter is
its chemical potential derivative. Its temperature derivative gives the equilib-
rium entropy, and its volume derivative the equilibrium pressure, as summarised
in the total derivative, Eq. (4.19),

dQ(u, V,T) = —Ndu — pdV — S(E, N, V)dT. (5.70)

The average number and the average pressure of the subsystem are the chemical
potential and the volume derivative of the total unconstrained entropy, respec-
tively, which to leading order equals the grand potential.

5.2.3 Constant Pressure

Now an isolated system will be treated, such that its two subsystems can ex-
change energy and volume (e.g., they may be separated by a moveable, diather-
mal piston). This can only be done by augmenting phase space and including
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the changes in volume via a modified Hamiltonian, since it is only on a hyper-
surface in canonical phase space that the probability density is uniform. Any
other method of treating volume changes cannot be guaranteed to have a uni-
form a priori distribution of volume. With Py being the canonical momentum
corresponding to the volume V', the phase space probability may be written

Ag
Z(E, N)Nh3N+1

o(TN . V,Py|E,N) = §(E —H). (5.71)
Hence phase space now consists of not only the positions and momenta of the
particles, but also a coordinate representing the volume and another represent-
ing its conjugate momentum. The Hamiltonian contains, in addition to the
usual term representing the confining effects of the volume, another term rep-
resenting the kinetic energy of the volume. For simplicity the momentumn can
be taken to be Py = My V, which gives the usual quadratic form for the ki-
netic energy Ky = PZ/2My . The above probability is obviously uniform on a
trajectory in this augmented phase space, and hence all of the general analysis
applies.

Now explicitly treating the two subsystems of the isolated total system, their
volumes are Vi and V,, with V1+V, = V, their energies are E; and E,, with B+
E, = F,| and their fixed particle numbers are N; and N,. The subsystems are
able to exchange energy and volume. The probability of a particular partitioning
is

p(El,Vl,Pv|E,V, Nl,NQ)
Ap/h3N+L /de1 dg™ / dp™2 dg™?

5(E, — H,)5(E — H)

Z(E,NV) ) Ny N1
Z(E{, Ny, V1,)

= — " ' VL 7(F— — Kv, N. — . 72
hAEZ(E,N,V) (E El Vs Q»V ‘/1) (57 )

(The confining effects of the volume on the particles of the subsystem are in-
cluded in H;.) One now takes the second subsystem to be a reservoir and
expands its entropy to linear order as usual. One is left with the volume mo-
mentum, which by virtue of the quadratic-form for the kinetic energy appears as
a Gaussian multiplicative factor, exp[—PZ/2My kgT]. Consequently one may
integrate out the volume momentum, since this gives a constant independent of
the first subsystem. Therefore the probability of the subsystem having energy
between E and E + dFE and volume between V and V 4+ dV is
eS(E,NV)/kis o—[E+pV|/knT

AEA\/Z(N,]),T) ’

where the reservoir pressure p equals the temperature times the volume deriva-
tive of its entropy. Here the partition function is

p(E,VIN,p,T) = (5.73)

1
Z(N7p7T) = m/dEdVeS(E’N’V)/kBe_[E+pV]/kBT

A\71 —[E4pV]/ksT dp? dq”
= ha—N/dEdVe [E+pV]/ /Té(E—H)
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-1 N N
= Ay /dve—PV/kBT @B—H(pN»q)/kBT‘ (5.74)

h3N N!
In terms of phase space, the probability density is
—pV/kpT o~H(a™ p™)/ksT

Ay N'ENZ(N, p, T)

€
ola”, pY,VIN,p,T) =

(5.75)

This is the probability of a particular molecular configuration and volume of
the subsystem, given the number of particles in the subsystem, and the pressure
and temperature of the reservoir. Once again the value of the constant Ay is
immaterial.

From the general analysis, the constrained thermodynamic potential is

G(E,V|IN,p,T)=E+pV -TS(E,N,V), (5.76)

and the equilibrium thermodynamic potential, which in this case is called the
Gibbs free energy, is the minimum value of this,

G(N,p,T) =G(E,V|N,p,T) = E +pV — TS(E,N, V). (5.77)

Here the equilibrium energy E(N,p,T) and the equilibrium volume V(N, p,T)
of the subsystem are the most likely values. The equilibrium chemical potential
of the subsystem is the number derivative of the Gibbs free energy. Hence from
the general expression, Eq. (4.19), the total differential of the Gibbs free encrgy
is

dG(N,p,T) = Vdp + idN ~ S(E, N, V)dT, (5.78)

which gives its partial derivatives at a glance. The average properties of the
subsystem are given by the appropriate derivative of the total unconstrained
entropy, which is the logarithm of the partition function. Since to leading order
the latter is essentially the Gibbs free energy, one again concludes that for
macroscopic systemns the equilibrium values equal the average values.

5.2.4 Constant Enthalpy

In the preceding example, the volume of the subsystem varied at constant reser-
voir pressure, while energy was allowed to exchange between the two. Now an
insulated subsystem with variable volume is treated; the energy of the subsystem
can change by the performance of mechanical work in changing its volume, but
energy exchange cannot occur at the microscopic level. In this system energy
and volume are no longer independent variables, and so the general formalism,
which was predicated on the independence of the A;, must be slightly modified.
The problem is treated in two stages. First subsystem 1 alone is considered,
with the volumne variations taking place in the presence of an external potential
U(V). In all cases up to now a Taylor expansion of some reservoir has been
made to linear order, and in view of this the external potential is taken to be
U(V) = pV, where p at this stage is just a constant. The total energy of the
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subsystem is the sum of the usual internal part, Epy = H(p™,q"), and this
external part, H = Fy,; + pV, and during the motion of the subsystem this is
constant, dH = 0, or dFEi; = —pdV. This then is the mechanical view of the
problem.

Now the external potential is replaced by a second subsystem. The total
system is isolated, so that the conservation laws hold: dFE; + dEy = 0, and
dVi + dVy = 0. Here E; has been replaced by F), and V by V;. Multiplying
the second equation by the constant p, and adding them together gives dF; +
pdVy + dEs + pdVy = 0, or dH; + dH; = 0. Thus the quantity H is a linear
additive constant of the motion (provided of course that p is indeed a constant).
In the mechanical view, dF; = —pdVj, so that for each individual subsystem
the quantity H must be constant, dH; = dH; = (. Now the second subsystem
is taken to be a reservoir and p may be identified with its pressure, which is
permissible because this is indeed constant for any conceivable volume changes
of subsystem 1. (One simply sets the state of the reservoir so that py = p.)
Since by the definition of the field variables as entropy derivatives, T5dS; =
dFy + podVy = 0, one concludes that a reservoir performms mechanical work at
constant entropy, which is not unreasonable. The fact that the energy changes
of the reservoir occur independently of its entropy shows that the reservoir
temperature cannot enter into the problem, which is consistent with common
experience of the properties of insulation. The quantity H = E + pV is called
the enthalpy.

In view of these considerations, the probability density in phase space is

(TN . Vi|H1. Ny, Hy, No, V. p)
AZ /NN A
- 7 E]\/ML’I'2 NZ-VV‘ SOUHL = pVa = H1)8(Ha — Vs = Ha), (5:79)
which is wniform on a trajectory, as specified by the individually constant en-
thalpies. The momentum contributions, including that, of the volume, have been
ignored here, since these drop out for a reservoir at rest, as above. Integrating
over the phase space coordinates of the particles of the reservoir, the proba-
bility of the subsystemn having a particular volume and its particles being at a
particular point in phase space is
(TN Vi|H,, Ny, Hy, Ny, V. )
3N A
= Z(I,‘?IE:]/VJYII,‘};Z Nz,‘{/,p) Z(Ez, NQ, ‘/2) (5(H1 V p1V1 — Hl) (580)
The weight Z(E,, N3, V2) is that of the reservoir, considered as an isolated
system with energy Fo = Ho — pVa and volume Vo = V — Vi Its logarithm
yields the reservoir entropy for this particular state, and a Taylor expansion
yields

] PV
S(E — Ey,N2,V — V1) = const. + p_V1 _ P2 L
Ty Ty

Here By = Hi—pViand E = Hi+Ho—pV,s0 that E— E; = Hy—p(V —V;) =
E5. The reservoir entropy is evidently constant with respect to the subsystem

(5.81)
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volume if the parameter p is the reservoir pressure, p = pa. Accordingly the
reservoir entropy as such does not affect the probability distribution. Dropping
the subscripts (since everything now refers to the subsystem except for the
reservoir pressure p), one has for the density in phase space

ApS(H(TN) - E)

Y. VIH, N.p) = E=H-pV. .
p(I'*.VIH,N,p) NN Ay Z(H, N.p)’ pV. (5.82)

Integrating over phase space, the probability of the subsystem having a partic-
ular volume is

SUENV) [k

HNp=————" E=H-pV 5.
©(VIH, N,p) AvZ(TN.p) V. (5.83)

The partition function in these distributions is

1
Z(H,N,p) = A—V/dVeS(EvNyV)/kB
B /A—v —san Aed(H = pV = H(PY,q™)) . (5.84)

The subsystem-dependent part of the total entropy is the entropy of the
subsystem itself, and hence the constrained thermodynamic potential is the
negative of this,

®(V|H,N,p,T) = ~TS(E,N,V), E=H —pV. (5.85)

Note that because energy is not an exchangeable parameter, an arbitrary tem-
perature T has been introduced to give the constrained thermodynamic poten-
tial the dimensions of energy: it will be seen that it actually has no physical
effect. The minimum of the constrained thermodynamic potential, which gives
the peak of the volume probability density, is given by the 0 of

(aS(E, N,V) _ 9S(E,N,V)0(H —pV) N OS(E,N,V)
ov HNp OFE ov ov
- E N

T(E,N,V) T(E,N,V)

The equilibrium volume V(H, N, p) is the one such that the internal pressure
of the system equals the applied pressure, p(H, N,p) = p(E, N,V) = p. Note
that it is only in equilibrium that the parameter p that appears in the definition
of the enthalpy of the subsystem is the subsystern pressure; in general it is the
pressure of the reservoir.

The equilibrium thermodynamic potential is the minimum value of the con-
strained thermodynamic potential,

®(H,N,p;T) = ®V|H,N,p,T)
= -TS(E,N,V), E=H-pV. (5.87)
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The extra parameter T in this equilibrium quantity will be seen to have no
physical effect. In view of the variational nature of the constrained thermody-
namic potential, differentiating the thermodynamic potential with respect to
enthalpy, number, or external pressure is the same as differentiating the con-
strained thermodynamic potential holding the volume fixed at its equilibrium
value. Hence

OP(H,N,p;T)  (0®(V|H,N,p;T)
oOH N oH V,N,p,T
_ _p(9S(ENT) o(H —pV)>
B OFE NV o Vop
-T
_ -1 5.88
= (5.88)
OB(H,N,p;T) (a@(VIH,N,p;T)
ON - ON V,Hp,T
_ 7 dS(E,N,V)
a ON EV
i
_ Br 5.89
= (5.89)
and
8B(H,N,p;T) <a¢(V|H,N,p;T)>
op Op V,HN.T
((‘)S(E, N, V)) o(H —pV)>
= VT - -~
OFE NV op V.HN
VT
- v (5.90)
T

In the above E = H — pV and E = H — pV. Of course the derivative with
respect to the temperature parameter T is trivial and equals the negative of the
entropy. Hence the total differential of the thermodynarmic potential is
d®(H,N,p;T) = —S(E,N,V)dT — L n + BTN + VTpo, (5.91)
T T T
which gives its partial derivatives at a glance.

The average properties of the subsystem are given by the appropriate deriva-
tive of the total unconstrained entropy, which is the logarithm of the partition
function. The enthalpy derivative yields (1/T"), the number derivative yields
(—u/T), and the pressure derivative yields (—V/T'), where T is the temperature
of the subsystem. Since to leading order the negative of the logarithm of the
partition function is the free energy, one again concludes that for macroscopic
systems the equilibrium values equal the average values.
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Summary

e Canonical phase space, which may be taken as the set of microstates of
classical statistical mechanics, hias uniform weight density throughout. For
an isolated Hamiltonian system, the surface probability density is inversely
proportional to the local speed of the trajectory, whereas the phase space
probability density is constant on the energy hypersurface.

e The entropy of a point or hypersurface in phase space is the logarithm of
its weight density, and the corresponding probability density is the expo-
nential of this entropy. I both one may introduce an arbitrary volume
element of appropriate dimensions that has no physical consequence.

e The probability that a subsystem in contact with a heat reservoir is at a
particular point in phase space is given by the Boltzmann factor, which
is the exponential of the negative of the Hamiltonian of the point divided
by kgT. For more general reservoirs and macrostates, the exponent is
the constrained total entropy, which includes the subsystem’s effect on
the entropy of the reservoir and the entropy of the macrostate of the
subsystem.



Chapter 6

Ideal Systems

In principle the thermodynamic properties of any system specified by known
molecular poteutials can be calculated from either the derivatives of the en-
tropy or from system averages using the probability density, as given in the
preceding chapter. In practice the explicit evaluation of these is highly nontriv-
ial because of the huge number of dimensions involved in the integrations. To
make the theory transparent with concrete examples, one needs to choose sim-
plified Hamiltonians such that the multidimensional integrals factorise. Such is
the case with noninteracting systems, which are the subject of this chapter.

Although this book is almost exclusively concerned with classical statistical
mechanics, this chapter begins with quantum systems. In these the microstates
are discrete, and so the integrals reduce to sumis, as in the generic derivation of
statistical mechanics pursued in all previous chapters but the last.

6.1 Ideal Quantum Systems

6.1.1 Fermions

Fermions, such as electrons, have the property that at most one can occupy each
quantum state.® If the available states of the system are labelled by j =1, 2, ...,
then the occupancy of the jth state is n; = 0 or 1. Let n = {n;} represent the
microstate of the system (i.e., the occupancy of all the states). The contribution
to the total energy of the jth state is taken to be nje; (ie., €; is a constant
that is independent of the occupancy of the other states). Accordingly, the total
energy and the total number of fermions is

E(n) =) nje;, and N(n) = > n;. (6.1)
j J

J

IQuantum occupancy in relation to statistical mechanics is discussed by R. K. Pathria,
Statistical Mechanics, Pergammon, Oxford, 1972.
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Assuming that all microstates with a given energy have equal weight, the
probability of a particular state occupancy for an isolated system is
§(N(n) - N)6(E(n) - E)

Z(N,E) ’

p(n|E, N) = (6.2)

The entropy is of course S(E,N) = kplnZ(E, N), and the temperature and
chemical potential follow by differentiation.

For an open system in contact with a reservoir of temperature 7" and chemical
potential u, the results in Ch. 4 give the energy, mumber distribution as

S(EN) ks ,—~BE ,BuN
E(p.T)

Here and throughout § = 1/kgT. From this it follows that the occupancy

probability is

pnlp.T) = ZKJ(HIE»N)KJ(E,NIIL,T)
EN
¢—BE(n) ,BuN(n)

E(u, T)

1
| l Be,n, Bun
— g JE J
(. T
(/L ) j

= [Twstuln1). (6.4)

p(E, Nlp,T) = (6.3)

Because the contributiorn to the total eniergy from each state only depends upon
the occupancy of that state, the systent occuparncy probability factorises into
the product of single-state occuparicy probabilities. This is a gross simplifica-
tion of real fermionic systenis, but it nevertheless serves to illustrate certain
characteristics of their behaviour.

The occupancy probability for the jth state is given by

e—/# ;n eﬂ;tn

pj(nlp,T) = —=F—— (6.5)
! =j (/Lv T)

with the single-state fermionic partition function being

EJ(,LLT) = Z ()_H‘Jneﬁll” =1+ eﬁ(l"*ﬁ_l)_ (66)

n=0,1
Thie mean occuparncy of the state j is
1
(n); = > np;(nlp,T) = = frp(B(e; — n))- (6.7)

Rt (eBlei=m) 4 1)

The Fermi- Dirac distribution that appears here is frp(z) = 1/(e* +1). Exam-
ples of the mean occupancy are shown in Fig. 6.1.
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Figure 6.1: The mean state occupancy of an ideal fermiion system with g4 = 5
for T'= 0 (bold curve) and for T = 0.5k5".

At T = 0, all states with energy less than 1 are occupied, and all states with
greater energy are empty,

_ 1, ¢ <p
<n>j - { 0, ¢ >p. (6.8)

This is the ground state since the total energy is the lowest possible consistent
with the exclusion principle. The energy of the highest occupied state at abso-
lute 0 is the Fermi energy, €p = u. At small, nonzero temperatures, kpT < ep,
fermions move from states just below the Fermi level to just above it (note that
the Fermi-Dirac distribution satisfies frp(xz) = 1 — fep(—x) ). This has several
consequences. As the reservoir temperature is increased from 0, the average
number of fermions (N) remains constant if the reservoir chemical poteutial
is fixed, since particles are simply transferred from beneath the Fermi level to
above it. In other words, the chemical potential of a closed ferniionic system
in contact with a heat reservoir is approximately independent of the reservoir
temperature at low temperatures, 7' < er/kp. Further the heat capacity of a
fermionic system is small since only those fermions in states close to the Fermi
surface contribute to the change in energy with temperature.

The Fermi-Dirac distribution was derived usiug the grand canonical formal-
ism, which is appropriate for a system in contact with a particle and energy
reservoir. However, the result also applies to the states of an isolated system,
since all of the states ¢ # j act as a reservoir for the state j. It is empha-
sised that the results are only valid for noninteracting fermions, which is a gross
approximation to real systems, but which in some circumstances is valid.
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6.1.2 Bosons

Bosous differ from fermions in that there is no restriction on the occupancy of
the states, n; = 0,1,2... . However, like fermions, noninteracting bosons have
¢; independent of the state occupancies, and the microstate distribution also
factorises,

o(nlu, T H@ (nylu. T, (6.9)

with the occupancy probability for the jth state given by

e—,@(_,ne,@,un

o3 (nln, T) = S (6.10)
! =j (/L, T)
For the case of bosons, however, the single-state bosonic partition function is
= 1
_ —Be,n Bun _
=Y eTPunefun = Ty (6.11)
n=

Note that in order for the sum to converge, gt — €; st be negative. The mean

occupancy of the state 7 is
oo

(n); =Y np;(n|p,T) = 5ty = [es(Ble — ). (6.12)

n=0

(The result for the partition function may be derived from ), o™ = 1/(1 — x),

and the mean occupancy follows by logarithiic differentiation.) Here the Bose—

FEinstein distribution is fpe(x) = 1/(e® — 1). This says that low-cnergy states

are favoured over high-criergy oues.

The above derivation for an open systemn invoked an infinite sum over single-
state occupancics that ouly converged when po < ¢;. If the states are ordered
such that g < €, < eq..., with € being the ground state encrgy, then the
reservoir chentical potential must be less than the ground state cnergy for any
physically realistic open bosonic subsysteut. (Otherwise the munber of bosons
in the subsystem would be comparable to the muber inn the reservoir, which
contradicts the notion of a reservoir.) If one focuses on an isolated systemn
of energy E and munber of bosouns N, then since it acts as a reservoir for
cach of its states, one must have p(F,N) < ¢. Further, in the low-energy
limit, £ — Ne¢g, it is clear that all the bosons must go to the ground state,
(n)o = N, and (n). = 0, j > 0. The Bosc Einstein distribution shows that
this can only occur if T(F, N) — 0 in this limit (because the exponent in the
denominator is strictly positive), and heuce one must have that y(E,N) —
eo —kpTIn[l + N = ¢g — kgT/N . The same result clearly holds for a closed
systemn in thermal equilibrivun with a cold reservoir.

At T = 0 all bosons are in the ground state, (n), = N, and y must approach
the ground state energy (from below). As the temiperature is raised, the chemical
potential does not begin to substantially decrease until the thermal energy, kg7,
is large enough for bosons to go from the ground to the first excited state. This
is the Bose FEinstein condensation temperature.
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High-Temperature Limit

It is now shown that the chemical potential for both bosons and fermions must
decrease with increasing temperature, and that at high temperatures they be-
come identical and classical. Since the entropy is a concave function of en-
ergy, temperature, which is its second derivative, is a strictly increasing func-
tion of energy. Hence the high-temperature limit is also the high-energy limit.
As the energy of both fermionic and bosonic isolated systems is increased at
constant number, then the high-energy states become occupied at the expense
of low-energy states. In order for the occupancy of the low-energy states to
vanish, n; — 0, the denominator of the Fermi-Dirac distribution and of the
Bose-Finstein distribution must become large, whichh means that the exponen-
tial term dominates, (¢; — u(&, N))/ksT(E, N) — co. This can only occur if
u(E,N) — —oo (and faster than linearly in temperature). These results also
apply to a closed system in equilibrium with a high-temperature reservoir. One
concludes that in the high-temperature limit the distinction between bosons and
fermions becomes meaningless. For both types of particles, the mean occupancy
becomes

(n), = B, (6.13)

which is less than unity. This is called an uncondensed gas, and is the sufficient
and necessary condition for the application of classical statistical mechanics.

6.1.3 Density of Vibrational States

It is frequently convenient to convert the sum over states for the partition func-
tion into an integral, in which case one nceds the density of states. A common
example is the density of vibrational states, which occurs in the following ele-
mentary treatments of black-body radiation and of the heat capacity solids. A
wave confined to a cubic volume V = L? and vanishing on the boundaries has
the form

Y(xz,y,2) = Asin kpzsin kyysin k. z, (6.14)
provided that the components of the wave vector satisfy

ko =naw/L, n,=1,2,...

)

(6.15)

)

for a = z,y, or z. One sees that the wave vector is discretised, and that the
volume of k-space per wave vector is (7/L)®. The density of modes is the volume
of the spherical shell between k and k + dk divided by the volume per wave,

f(k) dk drk? dk/8(m/L)*

= Vk?dk/2r?, (6.16)

where the factor of 8 arises because only states in the first octant are allowed.
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One can readily find the density of frequency states and the density of mo-
mentum states. The circular frequency is w = kv, where v is the phase velocity.
For a nondispersive mediumn, v is independent of w. Hence dk = dw/v and

f(w) dw = Vw? dw/2r%0®. (6.17)

The momentum is p = hk, where i is Planck’s constant divided by 27, and
hence

f(p) dp = Vp?* dp/2rx>h°. (6.18)

6.1.4 Photons

Historically, one of the first applications of quantum theory was to the problem
of the spectral distribution of electromagnetic radiation (black-body radiation).
More precisely, it was the attermpt to describe quantitatively the radiation emit-
ted by a hot object that lead to the quantiim theory. Planck proposed that the
energy of radiation of frequency w was quantised, €,(w) = nfw, where the 0-
point energy is omitted. (This quantisation also applies to the sinple harmonic
oscillator treated below.) Here n represents the munber of photons of frequency
w, which is a nonconscerved quantity. Asswuming that there is no internal en-
tropy associated with n, which is to say that the change in entropy due to a
change in photon mumber comnes solely from the change in energy of the reser-
voir, then radiation in cquilibriumm with a thermal reservoir of temperature T
obeys a Boltzmann distribution,

pnlw, T) = Z(w,T) le Phon
(i—,Hh,wn
I (6.19)
The average energy of frequency w is
hw
Yo = Z nhwp(n|w,T) = T (6.20)

At high temperatures, kgT > hw, this gives (€},  — kpT. Converscly the
amount of cuergy in modes beyond the thermnal energy is exponentially small
(ie., when kT < hw, (€}, 7 — hwe OM).,

This result contrasts with that for the classical oscillator. For the latter, the
energy is a continuous function of the (square of the) amplitude and frequency.
No matter how high the resonance frequency, the classical oscillator can acquire
a small amount of energy by vibrating with infinitesimal amplitude. Conse-
quently the average energy per mode is constant and equal to kg7, which is the
high-temperature limit of the quantum oscillator. The problem arises at low
temperatures, kT < fiw, because a quantum of energy is required to excite
the quantum oscillator. When the thermal energy is less than this, the energy
of the oscillator is 0, whereas it remains kg7 in the classical picture.
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Now the energy per unit frequency, the spectral distribution, is the average
energy times the density of states. Integrated over all frequencies it gives the
total energy, and for a box of volumme V the energy per unit volumne is

E/v = Vl/ooo(@wjf(w)dw

o0 hw 2Vw?
vl
= —_— V— d
/0 Phw — 1 272¢3 ¥

= (x2/15R%c3)(ksT)?, (6.21)

where ¢ is the velocity of light, and the factor of 2 in the density of states arises
because there are two polarisations. This shows that the energy per unit volume
emitted by a hot body increases with the fourth power of the temperature and
that it is independent of the nature of the body.

The history of black-body radiation is of some interest because of its connec-
tion with the development of the quantum theory. Stefan measured the total
energy density and showed in 1879 that it was proportional to T?. Shortly
thereafter, in 1884, Boltzmann derived this law using purely thermodynamic
arguments. In 1896 Wien showed on the basis of rather general cousiderations
that the spectral density must be of the form w®g(w/T). He also showed that
the experimental spectral density decreased exponentially with frequency at low
temperatures. Classical statistical mechanics could by this time be applied to
the problem, and in 1900 Rayleigh and Jeans showed that if the allowed modes
were treated as independent classical harmonic oscillators, then they would each
contribute kg7 to the spectral density. This was in agreecment with experiment
at high temperatures and low frequencies, but the classical treatinent predicted
this constant spectral density for all temperatures, in contradiction to the mea-
surements, Worse, because the spectral density was the same for all modes,
its integral, the total energy density, diverged, and this became known as the
ultra-violet catastrophe. Planck, also in 1900, simply postulated his spectral
distribution as a way of interpolating between the high-frequency Wien’s law
and the low-frequency Rayleigh—Jeans result. He showed that his interpolation
yielded an integrable spectral distribution, and also gave the Stefan-Boltzmann
law for the energy density. He went on to discuss the physical origin of his
spectral distribution, and pointed out that it would arise if the energy distribu-
tion of an oscillator of frequency w was not continuously variable but discretised
in lumps of hw, F, = nhw, n = 0,1, .... The effect was to introduce an ef-
fective cutoff, since when fiw 2 kT the oscillator was confined to the ground
state Fg = 0 and did not contribute the classical kg7’ to the average energy.
More precisely, in the quantum picture the average energy of a mode decreases
exponentially with frequency, whereas in the classical treatment the average en-
ergy is independent of frequency. It was not until Einstein in 1905 postulated
the quantisation of radiation to explain the photo-electric effect that Planck’s
discussion of the origin of his distribution could be understood in terms of the
number of photons per mode.
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6.1.5 Heat Capacity of Solids

The heat capacity is the energy required to change the temperature, and for
a solid this mainly goes into lattice vibrations.? Einstein made the approxima-
tion that each atorn could be regarded as an harmonic oscillator completely
independent of the rest, and all with the same angular frequency w. Regarding
oscillations along each of the axes as independent, there are 3N such oscillators
for a three-dimensional solid composed of N atoms. Each oscillator is quan-
tised, n = 0,1, ..., with the energy of each state being €, = (n+ 1/2)hw, where
Plank’s constant divided by 27 is h = h/27 = 1.06 x 10734,

Isolated System

Consider an isolated system comprising 3N oscillators of frequency w with total
energy ' = (M +3N/2)hw (i.e., M available quanta). The microstates are spec-
ified by the values of n = {ni}?ivl. Given that each microstate corresponding
to this energy is equally likely, their probability distribution is

§(M = S0 ny)

p(n|N, M) = Z(N, M)

(6.22)

The total weight is the munber of ways of arranging M indistinguishable quanta

among 3N distinguishable oscillators, which is just

(M +3N-1)!

Z(NM) = ————. 6.23

(N, M) MI(3N — 1)! ( )

(This is the number of ways of inserting 3N — 1 partitions between M objects.)
Hence the entropy is

(M 43N - 1)!
N, MY/kg = In~——wr-——-"=
SN, M)/ "TANEBN - 1)
M 3N
~ —A _ _— 24
]\[111}\,[+3N 3N111]\[—|—3N (6.24)
The temperature follows from the munnerical difference,
1 kgp kg M+3N -1
—_— = 2 [§(NM)-S(N,M ~-1)]=—In——— (625
TN e D M) = S, A R V. (625)
For M > N > 1 (high-cnergy limit), this is
1 ki 3N
_ k3 (6.26)

T(N,M) hw M’
or 3NkgT = Mhw — E — co. For N >> M >> 1 (low-energy limit), one obtains
1 ks, 3N

= 1

1 —F

T(N, M)  hw M’

’Einstein's and Debye’s treatments of the heat capacity are discussed and compared to
experiment by F. Mandl, Statistical Physics, Wiley, London, 1971.

(6.27)
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orT=—0.
The heat capacity is
OFE (hw)? 3N + M)M

V= STNAD ~ keT? 3N (6.28)

assuming the thermodynamic limit. At high temperatures this is Cy — 3Nkg,
M > N, and at low temperatures is Cy — Mkg/In*(N/M), M < N.

Einstein Approach

For a system of oscillators in equilibrium with a thermal reservoir of temperature
T, the energy probability distribution is

&S(MN) [k o —B(M+N/2)hw

p(MIN,T) = TN ,

(6.29)

where the entropy of the isolated system was given above. Hence the microstate
probability is

1l

[ e

©(n|N,T) p(n, M|N, T)

p(n|M, N)p(M|N,T)

Z
I\

§(M — 2?51 n;) eS(M\N)/kp ,—B(M+N/2)hw
Z(N, M) Z(N,T)

Il
ol

o—BRwN/2 3N

Z(N,T) I]e

i=1

—Bhwn;

= [[eniw,T). (6.30)

i=1
One sees that it factorises into the product of single-oscillator energy distribu-
tions,

nlw,T) = Z(w, T) " le Phwlntl/2), 6.31
2

Here the single-oscillator canonical partition function is

Z(w,T) = > exp[-fhw(n +1/2)]

n=0
e—,@ﬁw/Z
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Differentiation with respect to 3 yields the average energy per atom per axis.
The average total energy is

E(w, T) = 3N (e)w,T
_ _3Naan(w,T)
op
hw hw
= 3N [7 + T J , (6.33)
and the heat capacity is
OF(w,T)
C e S
v T
(ﬁhw)zeﬂhw
= 3Nkp——-"——. 34
B (ePhe —1)2 (6.34)

This is essentially the heat capacity at constant volume, since taking w fixed
is equivalent to modelling the solid as incompressible. Einstein’s expression for
the heat capacity contains one parameter, w, which is fitted for each solid. For
T > hw/kg, Cy ~ 3Nkg, which is in agreement with experiment. However at
low temperatures this expression vanishes too quickly.

Debye Approach

The most drastic approximation that Einstein made was to treat the atoms as
independent. Debye realised that a crystal of N atows has 3N nornial modes of
vibration, aud that each of these is independent with a frequency w,,. Hence the
total partition function is just the product of the individual oscillator partition
functions, Z(T) = H3N Z(wy, T), or in termns of the total entropy,

a=1

3N
S(T) = kpln Z(wa, T). (6.35)

a=1

In the thermodynamic limit, the Helmholtz free energy is F(T) = =TS(T).
One proceeds by converting the siun over modes, which is extremely difficult to
evaluate, to an integral over frequency. The deusity of states follows fromn the
fact that at low frequencies the vibrations are just the elastic waves of the solid,
and one has

(W) dw = 3Vw? dw/2r%5°. (6.36)

Here the average velocity derives from the one longitudinal and two transverse
modes, 3073 = vy, 3 +21);3. Debye assumed that this density of frequencies held
for all frequencies up to a cutoff frequency wp, whose value was determined from
the total number of modes

(%]

3N = f(w) dw. (6.37)
0
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This gives wd = 672N5°/V. The total entropy becomes
D y

wp e—,@wﬁ/Z )
Differentiation yields the average energy
9 9Nh [“P wdw

E).==-Nh 6.

Bz =g wD+w1‘°’3 ./o efhw — 1’ (6.39)
and the heat capacity is

3 (™ 2t dx
Cy =3Nkp— —_—, 6.40
vtz | G )

where z = hw/kgT. For T » hwp/ks (z — 0), Cy ~ 3Nkg, which is the
classical result. At low temperatures (zp — 00), one can replace the upper limit
of the integral by oo, which is then independent of temperature and equal to
474/15. Consequently, Cy ~ T2, T — 0, which is in agreement with experiment.
Thus Debye’s theory improves upon that of Einstein. Like the latter it has one
parameter that can be fitted to heat capacity data for each material. However,
it can also be estimated independently from measurements of the speed of sound
in the solid, and the two values turn out to be in relatively good agreement.

6.2 Spin—Lattice Models

Spin—lattice models represent a rather popular application of statistical mechan-
ics of particular interest to those with a more mathematical bent.® The broad
alm is to obtain exact analytic expressions for specific partition functions. The
models that can be so solved represent an abstraction and simplification of re-
ality and the main use of the solutions is to illustrate explicitly the general
implications of statistical mechanics. The emphasis has been on inventing sol-
uble models and on mathematical techniques rather than on any quantitative
treatment of actual physical systems.

The spin—lattice models have their origin in the quantisation of molecular
spin by a magnetic field. Accordingly oie has a well-defined lattice occupied
by spin variables that take on discrete values. It is the coupling between neigh-
bouring spins on the lattice that makes the evaluation of the partition function
nontrivial. Typically the Hamiltonian of the system is of the form

n
H(oN) = Eo —Be"tuzgi —J,uZZcrin—l—.... (6.41)
i=1 n.n
Here o; € [£1,42,.. ] is the ith spin variable, B®*' is the external magnetic

field, p is the spin magnetic moment, and J is the coupling between nearest

3R. J. Baxter, Ezactly Solved Models in Statistical Mechanics, Academic Press, London,
1982.
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neighbours on the lattice. The nonmagnetic energy, Eg, which is independent
of the spin configuration, is included for completeness. The undisplayed terms
can include interactions between next-nearest neighbours and other more distant
pairs, and triplet and higher-order spin interactions.

6.2.1 Noninteracting Paramagnetic Spins

Consider an ideal spin—lattice model in which the spins do not interact with ecach
other, J = 0. In this case the nature of the crystal lattice and its dimensionality
is irrelevant. The simplest model is the so-called Ising model, in which the spin
variable takes on just two values, 0 = +1. The remaining energy is that due
to the applied magnetic ficld, and for each spin this is E%** = —u B's, which
favours ‘up’ spins (i.e., those aligned with the field). The number of up spins
is denoted by N, and the number of down spins by N_. The total number of
spins is N = N, + N_, and the magnetisation is defined as M = u(N, — N_).

In this ideal model there is no volume dependence, and the nonmagnetic
energy is not dependent upon the spins. Accordingly the configurational entropy
of the isolated system depends upon just two variables, which can be taken to
be either the number of up and down spins or the total number of spins and the
magnetisation. The entropy of the isolated system includes the spin-independent
part and a purely configurational part,

SY(M|Ey) = So(FEy) + kg In (6.42)

NI
NN_D

where Ny = (N£M/u)/2. One has of course 0S™(M|Ey)/0F, = T~!. Accord-
ing to Eq. (B.20), the derivative of the entropy with respect to magnetisation
gives the ‘internal’ magnetic field,

DS M|Ey) _ ks Np- M _ —Bid
oM o 2u Npu+M T

(6.43)

The internal field, which is not to be confused with the local field, is equal to
the external magnetic ficld that would produce this particular maguetisation as
the equilibriuin one.

This may be seen directly if the subsystem is placed in such an external
magnetic field Bt in which case the external energy is E*t = —B*M | and
the total energy is E*°' = Ey + E' Since the magnetisation is constrained,
the only effect of the external magnetic field is to determine the amount of
noninagnetic energy in the total energy. Hence the constramned total entropy of
the subsystem is just

SY(M|E, B = S M|E,). (6.44)
Consequently

asid (M|Et0t, Bext)
oM o
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_ [0S9(M|Ey) <8Eg N DS (M| Ey)
B OFy w \OM ) . oM o

Bext Bid
_ _ A4
— - (6.45)
where the internal field was given in Eq. (6.43). This vanishes at equilibrium
—=ext

and so this is an explicit equation for the equilibrium external field, B
B'Y(M). Alternatively, one may regard this as an implicit equation for the
equilibrium magnetisation, B'4(M) = B***, with explicit solution

e20B [knT _

M = uN = uN tanh[uB** /kgT). (6.46)

One sees that in the high-temperature or low-field limit, uB®** /kgT — 0, the
magnetisation vanishes as M ~ [u2B**N/kgT][l + O(uB**/kgT)?]. Con-
versely, in the low-temperature, high-field limit, uB®** /kgT — 0o, the magneti-
sation saturates at M — yN as all the spins are aligned with the field.

One can rewrite this result to give the equilibrium ratio of spins,

N

=t = exp[2u B /kgT). (6.47)
That is, for this ideal spin—lattice model, the odds of a spin being parallel to
the external field equals the Boltzmann factor of the energy difference between
the two possible orientations.

Isothermal System

The temperature that appears in the above equations is that of the isolated
system, T'(Fy). If the spin-lattice forms a subsystem of a thermal reservoir with
which it can exchange energy, then the total entropy for a given configuration
of spins and a given nonmagnetic energy is
id N ext Ey | MB=
S (CT 7E’()|B 5 ) So(Fo) T + T 5
where M = ). 0;. The first two terms do not depend upon the spin configu-
ration, so that the condition for thermal equilibrium is simply 85,/0F = 1/T.
For such an equilibrated system, the probability of a particular spin configura-
tion is the exponential of this spin-constrained total entropy, which is propor-
tional to the Boltzmann factor of the external magnetic energy,

(6.48)

N
. 1 -
@' (VB T) = Z4(Bext, T) I Ie BT Re (6.49)

The normalising factor is

Zid(BeXt, T) _ Z Z H eazuB“‘t/kBT

ON= ﬂ:l’L 1
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_ (eﬂB‘*“/kBT T e—#B“*‘/kBT>N
= 2N cosh™ [u B /kpT). (6.50)

This says that in 0 field, when cach spin is equally likely to point up as down,
there are 2V configurations of the system.

The probability of the macrostate M is proportional to the constrained total
entropy, p'(M|Bet, T) = Zi4(B<t T)~! exp S'4(M|B=*, T) /kg, or

)id(M|BeXt T) _ N! eMBOx /ksT (6 51)
¢ )T NN Zd(Best T) ‘

One may readily confirm using the explicit result for the partition function that
this is normalised to unity.

The average magnetic energy is the temperature derivative of the total un-
constrained entropy, which 1s the logarithm of the partition furction,

—91n 24 (Bt T)
op
Hence (E°*%) = —M Bt = E®. That is, the average energy and the equilib-

riu energy are equal.
The magnetic heat capacity is

(B = = —(NpB®*) tanh[u B /kpT). (6.52)

O—F—ext
oT

This vanishes at high temperatures and low fields, because the amount of mag-
netic energy is low and hence so is its change with temperature. It also vanishes
at low temperatures and high fields, because here the spins are nearly all aligned
and changing the termperature only weakly cffects their order. The maximum
heat capacity is 0.44Nkp, which occurs when pB®" = 1.2kgT.

Related to the heat capacity in this model are the magnetisation fluctuations.
It is straightforward to show that at M = M (B),

= Nkg(uB™* /kgT)? (1 — tanh®[u B /kpT]) . (6.53)

(’)ZS’id(M E())/ka -1 2 —1
’ = cosh?[uB™ [k T] = — (M%), 6.54

AM2 N | 12 [/ / B ] < > ( )
For a uniforin systemn, the magnetisation fluctuations are the analogue of the
magnetisation magnetisation correlation function. This is a general result: the
second entropy derivatives of the isolated system give the inverse of the dipole-
dipole correlation tensor,

6.2.2 Ferromagnetic Spins in Mean Field Approximation

As mentioned above, it is the coupling between neighbouring spins that makes
the analysis of the spin—lattice models difficult. The mean field approximation
will be treated more generally in Section 6.5 below. Here it suffices to give a
simple illustration of the procedure.
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Suppose that in addition to the interaction with the external field there are
also nearest-neighbour interactions, J # 0, but no other interactions. Ferro-
magnetic systems are characterised by a positive value of .J, since in this case
neighbouring spins tend to be aligned even in the absence of an external field.
For a g-coordinated lattice in any dimension with magnetisation M, each spin is
‘on average’ surrounded by ¢(N £ M/u)/2N neighbouring up and down spins.
Hence each spin interacts with a total surrounding magnetisation of ¢M /N . This
expression ignores the correlation between the neighbouring spins; it would be
correct if the spin orientations were distributed randomly on the lattice.

The original mean molecular field approach developed by Weiss took each
atom to be coupled to every other one, ¢ = N. The present approach, due to
Bragg and Williamns, models the finite range of molecular interactions by only
including the interactions with the nearest neighbours.? In reality of course
dipole—-dipole interactions extend beyond nearest neighbours, but they do decay
with distance, and so the present approach is arguably applicable when short-
range, nonmagnetic interactions dominate. The coordination number of the
lattice is the number of nearest neighbours of each atom. It depends upon the
geometry and it increases with the dimensionality. A simple square lattice has
q = 4 and a simple cubic lattice has ¢ = 6. One could also include next-nearest
neighbour and other couplings in the method.

In this mean field approximation the second term in the Hamiltonian given
above is approximated by the mean field energy,

2 2
Erf — —Juw Zgiﬂ = ﬂ (6.55)
ulN 2N

The factor of one-half appears because the interaction between each pair of spins
is counted twice in this expression. The external energy is F**' = —B®**M | It
will prove useful to differentiate the entropy both at constant internal energy
and at constant nonmagnetic energy. Hence the spin-independent FEjy is also
included so that the Hamiltonian or total energy becomes

Etot — EO + Emf + Eext _ Eint + Eext. (656)

For the isolated system with constrained magnetisation, the only effect of
the external field and the coupling is on the subdivision of the total energy. The
constrained entropy is equal to that of an ideal system with energy Fy in the
absence of both the external field and the coupling,

S(MIE™, J, BY) = S(M|E™, J) = (M| Ey). (6.57)
Hence differentiation yields

aS(M!EtOt, J’ Bext)
oM ot

4Mean field theory and other results for spin-lattices are discussed by C. J. Thompson,
Classical Equilibrium Statistical Mechanics, Oxford Univ. Press, Oxford, 1988.
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 [OS(MIE™, ) BYon | (OS(IE™, 1)
a aElnt M aM Etot aM Eint

_ Bx B (6.58)
= T .
At the equilibrium magnetisation, the internal magnetic field of the coupled

system equals the externally applied field, B(M) = B, Explicitly one has

B _ [9SY(M]|Ey) OF, N S M|Ey)
T dFy ar \OM ) pine oM o
_ ¢JM B¢
= NT T (6.59)

where the internal field of the uncoupled systemn was given above, Eq. (6.43).
Hgncg at equilibrium this and the preceding equation may be rearranged as
B4(M) = B*** + ¢JM/N. The right-hand side is called the local field,

Bl°¢ = B L qJM/N; (6.60)

it represents the actual magnetic field seen by each atom. Accordingly, the
equilibrium magnetisation gives an internal magnetic field in an ideal uncoupled
system that equals the local field in the fully coupled system,

Isothermal System
For an isothermal subsystem the constrained total entropy is

Nl MB™  qJM?
+ + = (6.61)

S(M. E“HJ BV T = So(Eo) + kg 1 :
(M, B 1) = So(Eo) + ks In o + = ONT

Differentiation at constant nonmagnetic energy yields

08 _ ks pN-M cht+qJM
OM  2u  uN+M T NT '

(6.62)

One sees that this is formally identical to the result given for the uncoupled
system with the external field replaced by the local field, Amongst other things
the replacement of B¢** by B°¢ shows that

M = uN tanh[puB"°¢(M)/kpT], (6.63)

which determines the equilibrium magnetisation,

One can define the dimensionless magnetisation, x = M/uN, and the di-
mensionless coupling parameter, a = qJu?/kpT. For B** = 0 the expression
for the equilibrium magnetisation becomes T = tanh o, which has a nonzero
solution only for & > 1, The constrained total entropy in 0 field may be written
in these dimensionless units as

1 1 1
S(z|a)/Nks =C0nst.—§ln[1—z2] S Pk + —ax?,

6.64
2n1—$ 2 ( )



6.2. SPIN-LATTICE MODELS 127

0.03 ———  E—
0.02 -
0.01 A

0

-0.01 ~

S/Nk

-0.02
-0.03 4

-0.04

‘0.05 T i T
-1 -0.5 0 0.5 1

M/uUN

Figure 6.2: The constrained total entropy in 0 external field as a function of
magnetisation for, from top to bottom, a = 1.2, 1.1, 1, and 0.9.

This is plotted in Fig. 6.2. The location of the two maxima that appear for
o > 1 give the value of the magnetisation of the system in the absence of an
applied magnetic field. That is, the system is ferromagnetic, The minimum
in the entropy at x = 0 for a > 1 indicates that the state of 0 magnetisation
is unstable, Conversely, for a < 1 the single maximum in the constrained en-
tropy indicates that M = 0 in the absence of an applied field. The temperature
corresponding to a = 1 is called the critical temperature, T. = qJu?/kg. Spon-
taneous magnetisation only occurs below this temperature, which may also be
called the Curie temperature as it marks the transition from paramagnetic to
ferromagnetic behaviour.
One can define a response function that is the rate of change of the internal
field with magnetisation,
_1 0B
G = N EXi
T(?ZS’(M[E““, J)
oM?
ksT/u?

= ITMIANE (/N2 —qlJ. (6.65)

For a system in equilibrium, B = FeXt(M ), and G is called the magnetic sus-
ceptibility. The fact that it is the second derivative of the entropy shows that
it also gives the fluctuations in magnetisation (cf. Eq. (6.54) above). In the ab-
sence of an external magnetic field and above the critical temperature, M = 0.
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Figure 6.3: The spontancous magnetisation (solid curve) and the heat capacity
(dotted curve) in mean field approximation at subcritical temperatures.

Hence approaching the critical temperature from above, T — ¢.Ju?/kg, one
sees that G~ — 0. In other words. the magnetic susceptibility and the mag-

netisation fluctuations become infinite at the critical temperature. In contrast,
—loc

with the local field at equilibrinm satisfying B'Y = B (M), the response of the
magnetisation to the local field is given by
. aBid
o= Nou
0?SH(M|Ey)
OM?
) 2
_ _meT/p (6.66)
1—(M/uN)?
This is always nonzero, which shows that cven at the critical temperature the
quantity yx is well behaved. The two response functions differ by the spin inter-
action, ! = G~ + ¢J. This is also true in the wmore general case when the
interactions are long-ranged.

The spontaneous magnetisation is nonzero below the critical temperature,
My = pN tanh[T, My /uNT]. This is plotted in Fig. 6.3, where it can be seen
that the magnectisation saturates to uN as the temupcerature goes to 0, and that
it vanishes as the temperature approaches the critical temperature from below.
Straightforward expansions show that

M, N{ V31— T/Ty), T — T (6.67)

ulN 1—2exp[-2T./T]), T —0.

= —NT

— —2
In 0 magnetic field the magnetic energy is £ = —NkgT. M~ /212 N? below
the critical temperature, and it is 0 above the critical temperature. Hence the
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A

Figure 6.4;: A linear crystal in which the atoms can move only in the transverse
direction. The confinement of the atoms to the lattice poiits and their inter-
actions with their nearest neighbours are represented by harmonic potentials of
strength k and A, respectively.

magnetic heat capacity vanishes above the critical temperature, and below the
critical temperature it is given by

j 2—21_—2
_8FANkax( z°)

C=-— = R S
oT BlAa(l—EZ)’

(6.68)

where a = T./T and z = M/uN. Approaching the critical temperature from
below, o ~ 1 + €2, T ~ £ey/3, the heat capacity goes like C ~ 3Nkg/2 + O(€2).
This says that the critical temperature is marked by a discontinuity in the heat
capacity, as is shown in Fig. 6.3.

6.3 One-Dimensional Harmonic Crystal

The simplest classical system with potential energy (as opposed to the purely
kinetic ideal gas treated below) is perhaps the harmonic oscillator. Here is
analysed a system of coupled oscillators, which may be considered as a model of
a one-dimensional crystal (see Fig. 6.4) The system can be decoupled by normal
mode analysis, and in this sense it may be considered ideal. The interesting
feature of the analysis is the fact that the energy hypersurface may be mapped
to a hypersphere in mode space, and it is confirmed that the general expression
for the phase space probability density obtained in the preceding chapter is
indeed uniform on the surface of this hypersphere, as symmetry arguments
indicate it ought be.

6.3.1 Normal Modes

Let p; be the momenturn of atom i and let ¢; = r; — ;0 be its displacement
from its lattice position. The Hamiltonian for the N-atom, one-dimensional
harmonic crystal is

1 & ko
H(p,q) = %ZP?+§Z%2+
i=1 =1

2= A
3 Z(Qz —qiy1)? + 5(%2 + q%), (6.69)
=1
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where p and q are the N-dimensional vectors of the momenta and the displace-
ments that specify a configuration of the crystal. The first term on the right
is the kinetic energy (m is the mass of the atoms), the second term is the po-
tential energy due to displacement from the lattice sites, the third term is the
interaction energy between neighbouring atoms, and the final term represents
the interaction of the terminal atoms with the confining walls. In order to sim-
plify the analysis the strength of this last interaction has been taken to be the
same as that between neighbouring atoms. Since p; = mg;, differentiating the
Hamiltonian yields for the acceleration

mg; = —kq; — Mqi — giy1) — M@ —¢-1), 2<i<N -1 (6.70)

This result may be extended to the terminal atoms by defining go = gny1 = 0.
Alternatively, the result may be written in matrix form

T = Ka, (6.71)

where K is a tridiagonal matrix with the nonzero off-diagonal eleinents equal
to unity, and with diagonal elements equal to K = —(k + 2\)/\.

The eigenvalues of K turn out to be the zeros of the Tchebyshev polynomials
of the second kind,

nm
=K+2cos——, 1<n<N .
L + CObN+1, <n<N, (6.72)

with corresponding eigenvector u,. The ith compoiuent of this eigenvector is
proportional to the same polynomial of order i—1 evaluated at 8, = nr/(N+1),

u 2 n " 1 <i<N, 1<n<N (6.73)
in = sin , 1<i<N, 1<n<N. .
" VNT1 N+1
The eigenvectors are orthonormal
N
Up - Uy = Z UinUim = Opm, (674)

i=1

and the matrix formed from them is symmetric and orthogonal, and hence it is
idempotent with determinant unity.

The eigenvectors represent the normal modes of the crystal, and any config-
uration may be expanded in terms of them,

N N
a(t) = > Qu(t)u,, plt)=m Y Qn(t)u,. (6.75)

Substituting into Eq. (6.71) and equating coefficients yields

m

S\"Qn(t) = N?LQn(t)v (6.76)
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with solution

2
Qn(t) = A / m—w% [ar, cosw,t + by, sinwyt]. (6.77)

Here the amplitudes of the normal modes are a,, € (—o0, 00) and b,, € (—o0, 00),
and their frequencies are

Wy, = /= A /. (6.78)

Note that the eigenvalues are negative, u, < 0, and that the mode frequencies
are positive, w, > 0. Note also that although one must allow the amplitudes to
take on all possible values, in practice larger values occur with negligible or 0
probability, according to the energy.

6.3.2 Energy Hypersurface

The energy is a constant of the motion, and direct substitution into the Hamil-
tonian yields after some manipulation

N
E=>la2+b2]. (6.79)
n=1
This equation represents the surface of a 2N-dimensional hypersphere of radius
v E. Because of the particularly simple form of the energy hypersurface in mode
space, x = (a,b), one knows that the probability density in this space must be
invariant with respect to rotations. That is, it is a function of the radius but
not of the angular position.
The Hamiltonian and hence the energy hypersurface is a complicated func-
tion in phase space, but according to the results established in Ch. 5 the prob-
ability distribution of the isolated crystal is given by

§(H(p,q) — E)Ag
WNZ(E,N)
Here the constants h and Ag are of no consequence. No N! term appears here

because the oscillators are fixed to the lattice sites and are hence distinguishable.
The probability distribution in mode space is

d(a, p)
d(a,b)

The Jacobean of the transformation is

9a.p)| _ V2/mw? cptlin A/ 2/ W sptuin

d(a,b)| —V2m 8 Uin V2m cpin

2/mw2 e, i 0
N 0 V2mug, /e,

N

p(p,qlE,N) =

(6.80)

p(a,b|E,N) =

p(p,q|E,N). (6.81)

2
“ (6.82)
Wn
n=1
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Here s,, = sinwyt and ¢,, = cosw,t , and the fact that the u,, form an orthonor-
mal basis has been used. Hence one has

1 Ag2N
p(a,b|E,N) = A hNFI ” 5<E > a2 +bi]> : (6.83)

n

As anticipated, the probability density in mode space is a function of the radius
of the hypersphere but not of the position on its surface.

Because the energy hypersurface is a hypersphere in mode space, it is simple
to evaluate the partition function. One obtains

A 2N o0
Z(E,N) = ﬁ/ daNde5<E—Z[ai+bg}>

n

Ag2N
= —8 E
RN TL, wn 2\/F 2 (VE)
A 2N NEN—I
= £ : (6.84)
RN T, wa (N = 1)
The determinant of the tridiagonal matrix satisfies the recursion relation
Ky =KKpn_; — Kn_a, and hence it is just the Tclicbyshev polynomial of the

sccond kind, [K| = Un(K/2). Accordingly, the product of the mode frequencies

is
N N 2\
H Wn = H \/ ?/l’u

n=1 n=1
N/2
— f(|1/2
m =
= y”UN(—K/Q)l/2, (6.85)

where v = /A/m. In the thermodynamic limit, N — oo, this inay be rewritten
more explicitly as

2/N Y
N _ 2\ +k (27 — 1) 2\
o] -2 e 200 (2
n=

The product on the right-hand side is obviously rapidly converging for K <« —2;

(6.86)

the case K = —2 is treated below. The entropy of the isolated crystal is
S(E,N)/kg = WmZ(E,N)
- N N nug—k )2 (6.87
- YN g MUN(=EK/2), 87)

where Stirling’s approximation has been used. Differentiating with respect to
energy gives the temperature, 1/T = Nkg/F, which is the same as that of the
ideal gas (see below). Accordingly the heat capacity for this one-dimensional
harmonic crystal is Nkp, which agrees with thie high-temperature limit of the
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quantum oscillator solid treated by Einstein and by Debye. Differentiating with
respect to number gives the chemical potential,

E 8S(E,N)/kg
N AN

2rE E Un(—(K —1)/2)
N T 2N Un(-K/2)

(6.88)

= —ln

This particular example models an incompressible crystal, and so the entropy
does not depend upon volume, In a model in which the spring constants de-
pended upon the volume, the pressure would follow from the volume derivative
of the entropy, as usual.

Uncoupled Pendula

It is interesting to compare this result to that of independent atoms, A = 0. In

this case each atom obeys the equation of motion még; = —kq;, with solution
2 .
gi(t) = p— [a; coswt + b; sinwt], (6.89)

where the resonance frequency is w = \/k/m. As above the Hamiltonian may
be written
1 k
H = D — . — .
(a,p) 5P P+3d-d
= a-at+b-b. (6.90)

The phase space probability is p(q, p|E, N) = AgS(E — H(q,p))/hY Z(E, N),
where the partition function is

I

A oo

Z(E,N) h—ﬁ/ dqdpé(E — H(q,p))
Ag 10(q:,p:) N/oo 2 32
—h A ) E— >+ b3
W tacig| ) e - Xl )
A2V 1
= h—Nw—NmSZN(\/E)

AEQNT('NEN71

= T (6.91)

This is clearly the limiting form of the coupled pendula result, since as A — 0,
tn — —k/A, and w, — w.

This is the leading term in an expansion for weakly coupled pendula. With
Ak — 0, one has K — —k/\ and

N N N
A+ k 2 nmw
nzlwn o ( m > {1 K cos N+1

n=1
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N N
k 2\ nmw
~ _ 1—— 3
<m> { k ZC%N—Fl
n=1
N

N 4AN? Z nmw mm N
- cos cos .
k2 N+1 N+1

m>n=1

— (%)N [1 —~ (N;—Zmz + O(N)f*/k‘*)} . (6.92)

The leading correction term to the entropy is O(In NA/k). This result is valid
only when the uncoupling limit is taken before the thermodynamic limit.
Fully Coupled Pendula

The opposite extreme is for fully coupled pendula, A — oo, K — —2. Since
Un(1) = N + 1, one has for the partition function in this case

Ap2N N pN-1

Z(E,N) = . 6.93
( ) hRVUNN + 1(N —1)! (6.93)
In the thermodynamic limit the entropy is
2r
S(E,N)=Nkgl Nkg. 6.94
(B, N) g In hvN + Nko (6.94)

For both the uncoupled and fully coupled systems, the temperature-energy
relationship remains that of the ideal gas. Colloquially, one says that there is a
half kg1 of energy for each quadratic terui in the Hamiltonian.

6.3.3 Thermal Equilibrium

I11 the event that the crystal is in coutact with a heat reservoir, the phase space
probability is the usual

¢—PH(q,p)
NT) = ————, 6.95
p(a,pIN,T) WNZIN.T) (6.95)
where 3 = 1/kgT. The partition function is
1 e o)
,~BH{ap)
h—N/ dqdp(, {ap

— 00

_ hiN (ggg:g; i /Z dadb exp {—ﬁzi:[af + b7]

_ hLN ﬁ Ll} (nksT)N

=1 LT

Z(N,T)

(2mkpT)N
- hNuNUN?—K/Q)l/Q ‘ (6:96)
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6.4 Classical Ideal Gas

In general the Hamiltonian of a system consisting of classical molecules may be
written as the sum of kinetic and potential energies,

N
HPY,q") =U(q") +pr/2mr (6.97)

Here m is the molecular mass, and it has been assumed that the molecules are
spherically symmetric so that there are only translational contributions to the
kinetic energy. In an ideal gas there are no interactions between the molecules,
so that

U(q™) = 0. (6.98)

(The confining effects of the system walls are incorporated by limiting the con-
figurational integrals to the volume V.)

6.4.1 Isolated System
The entropy of an isolated system is S(E, N,V) = kgln Z(E, N, V), with the

partition function being
Ag
NIR3N

ApVN N 1 &
= v [ 0P Swep
=1

ApVY (2m)3N/2 il
_ EN—'h;]ﬁF_ dz?’Né(\/E v ). (699)
' - i=1

Z9YE,N,V) = /de dq" §(E — H(p",dq))

The integral is just the surface arca of a 3N-dimensional hypersphere of radius
VE, and since

27Tn/2’f’n_1

Su(r) = /dx"&(r— VX X) = T (6.100)
one has
_ N(ormE /h2)3N/2
ZYE,N,V) = AEVN!? (3N% ?E) . (6.101)

Using Stirling’s asymptote, InT'(n) ~ nlnn —n, in the thermodynamic limit the
entropy is

5N 5N

—InN+ — 6.102

5 N+ —,  (6102)
where terms of order In E and In N have been neglected. Unless otherwise
stated, all the following results will be restricted to the thermodynamic limit.

SH(E,N,V)/ks = Nln {V(47rmE/3h2)3/2} -
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The temperature of the ideal gas is

1 9SY(E,N,V) 3Nks

— 6.10
Tid or 2F ( 3)

which is more commonly written E'4 = 3NkgT/2. (For a finite-sized system
this is 4 = (3N — 2)kpT/2.) Likewise the pressure is

pd 95 (E,N, V) Nks

, 6.104
Tid av v ’ ( 0 )
which also holds for finite-sized systems, and the chemical potential is
id id
-4 O0S(E,N,V) o3 /9 5kp
= s = kgln [V(47rmE/3h )3/ } - 22N (6.105)

In terms of the de Broglie thermal wavelength,

2rh?
N T (6.106)

where f 1s Planck’s constant divided by 27, this may be written in the more
familiar form pld = kgTIn[NA3/V].
The second derivatives are

9?SY(E,N,V) -3Nkp

A

52 =—0pz (6.107)
H2SHY(E N,V —Nkg
((91/2 ) T (6.108)
and
2 Qid FE. N —_5k
FEUENV) _ —5k (6.109)

ON? 2N

These are all negative, which confirms the concavity of the entropy.

6.4.2 TIsothermal System

A subsystem able to exchange encrgy with a reservoir of temperature T' has
constrained thermodynamic potential F(E|N,V,T) = F — TS(E,N,V) and
energy probability distribution

—BE ,S(E,N.V)/ks

ApZ(N,V,T) °

e

o(E|N,V,T) = =

(6.110)

where here and throughout 3 = 1/kgT. For the present case of an ideal gas,
the entropy of the subsystem S'(E, N, V) was derived in the preceding section.
The phase space probability distribution is

¢ 8w

I ) ' 6.111
o (Y, qVIN, V. T) NIWNZ4(N, V,T)’ o
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where the partition function represents the total weight of distinct microstates,

) 1
ZYUNVT) = /V dg” / dp! ¢ 2 /2m

VN o ) 3N
= [/ dp e Pp /2m}
h:SNN! o

VNA—BN
= — (6.112)

This result holds for finite systems as well as in the thermodynamic limit. In
general the integration over the momenta is the product of 3N independent
Gaussian integrals (or at worst the exponent is a general quadratic form), and
these may be trivially evaluated as above. This is true whether or not the
interaction potential is 0. When the latter does vanish, as for the present ideal
gas, the configuration integral gives N products of volume; in the more general
case when the interaction potential is nonzero, the configuration integral is
highly nontrivial. The unconstrained total entropy is of course S(N,V,T) =
kelnZ(N,V,T).

The appropriate first derivatives of the partition function yield the average
energy, pressure, and chemical potential. One may also explicitly confirm the
temperature form of the general result established in Ch. 4, namely that the
average temperature equals the reservoir temperature. One has

AG! © _8S(E,N,V)
1/T). __—E dp 22 2 V) S(EN,V)/ks ,—E/ksT
(1/Ts)iq Z9(N,V,T) '/0 OF € ¢
_ ks Ap' oS(ENV)/kp o E/ksT|™
Z9(N,V,T)

o

dE SEN V) ks o~ E/knT
+ kT Jo e e

1
T (6.113)
where an integration by parts has been used, the integrated portion explicitly
vanishing at both limits. This result holds for finite-sized systems as well as in
the thermodynamic limit.

The equilibrium energy satisfies T(E, N, V) = T, which from the preceding
section yields

EY = 3NkpT)2. (6.114)

Inserting this into the expression for the constrained thermodynamic potential,
one obtains the Helmholtz free energy for the ideal gas,

FUN,V,T) = kgT {N1n [NA3/V] = N}. (6.115)

Differentiating with respect to number and volume yields expressions for the
equilibrium chemical potential and pressure equal to those obtained by differen-
tiating the partition function (since in the thermodynamic limit the Helmholtz
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free energy is essentially the logarithm of the partition function, F(N,V,T) =
—kgTIn Z(N,V,T), as the results in this section explicitly confirm).
The heat capacity at constant volume is

6.116
oT 2 ( )
which is independent of temperature. The equilibrium energy may be written
as a derivative of the Helmholtz free energy, I = 93F /98, and so the isother-
mal heat capacity may equivalently be written Cy = —(3/T)0?3F/83°. The
fluctuation in energy is given by

I Z¥(N,V,T) 3N

(AE), = (B~ (), = = D) = SRR (o)

Hence the root mean square energy fluctuation is of order one over the square
root of the system size, which is negligible i1 the thermodynamic limit. From
the equality of the Helinholtz free energy aud the logarithin of the partition
function, the fluctuations in energy are related to the heat capacity by

(A(E)?),, = —0°BF/0p3° = T*Cy [ks. (6.118)
The inverse of the isothermal compressibility is

i op _ NksT
id j— 1 —

(6.119)

where p'd = 2E/3V = NipT/V. This shows that the compressibility of an
ideal gas decreases with increasing temperature and density. On the other hand
the fluctuations in pressure vanish,

PInZ¥(N,V,T) O*SYN, V. T)/kp
(Alp/kpTo)*)y = oV - < ov? >ld
—-N -N

Inn this case, the pressure fluctuations are not proportional solely to the sec-
ond derivative of the partition function; hence the isothermal compressibility is
proportional to the latter but not to the former,

The fluctuations in the chemical potential also vanish (at least to order unity
in the thermodynamic limit),

O*nZY(N,V,T) 2SN, V,T)/ks
<A(u/kBTs)2>id = ON2 _< IN? >1d

—1 -5 3
- = 6.121
N +1 <2N>id 2N (6.121)




6.4. CLASSICAL IDEAL GAS 139

6.4.3 Open System

A subsystem able to exchange energy and particles with a reservoir of tem-
perature T" and chemical potential p has constrained thermodynamic potential
QUE,N\u,V,T) = E—-TS(F,N,V) — uN and energy and number probability
distribution

e—BE oBuN oS(E,N.V) /ks

E,N|u,V,T) = 6.122
p(E,N|u, V. T) ApZ(u,V,T) (6.122)
The phase space probability distribution for the ideal gas is
BuN ,—B ) pi/2m
id (N €
N|u, vV, T 6.12
p (p 7q b |,LL, ) N'h?’NZld(,LL VT) ( 3)
In these equations the partition function is
°° BuN
id _ € N =B pi/2m
29V, T) = thBN / dg™ /dp >
e,B/LNvNA—BN
-
N=0
= exp [e’@“VA_?’] . (6.124)

This result holds for finite systems as well as in the thermodynamic limit. The
partition function for grand systems is often denoted by Z(u, V,T). The uncon-
strained total entropy is of course S(u, V,T) = kg In Z(u, V,T). The appropriate
first derivatives of the partition function yield the average energy, pressure, and
number.

The equilibrium energy and number satisfy temperature and chemical po-
tential equality, T(E,N,V) = T and u(E,N,V) = ,u From the results for

the isolated ideal gas these yield the average energy, £ = 3NkgT/2, and the
average number of particles

4 Z AT, (6.125)
The activity,
z=A"3ePH, (6.126)

occurs in this equation and elsewhere. One sees from this that for the ideal gas
the density equals the activity. In view of these results the grand potential for
the ideal gas is
wv,r) = FUN V) -uN"
= —N“kgT. (6.127)
Differentiating with respect to volume yields the equilibrium pressure, 7'¢ =

NkgT/V, and one sees that 2 = —pV, which is the result derived from exten-
sivity arguments.
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The fluctuations in number are

H5%1n Zid —id
AN2.2<——> =N", 6.128
< ( ) >Id a(/B,LL)Z V‘T ( )
and those in energy are
92 In Zid 15N
A(E)2 L= <——> = — (6.129)
< >1d 032 VT 432
One also has the result that
5% n ZHd
A(E —uN)?) . = (——)
< >1d 052 Vi
~id g 9 15

Energy Fluctuation

While average and equilibriuin values are the same for equivalent systems in
contact with different reservoirs, the values of the fluctuations vary, A trivial
example is the number fluctuations, which are evidently 0 in a closed system
but which equally obviously do not vauish in the present open system. A less
trivial example is provided by the energy fluctuations, which in this open system
are clearly greater than those in the equivalent isotherinal system. The present
result for the ideal gas is a manifestation of the general rule,

, O(E 2
(AB)m = (BB + (BN, (ZGREE) (6

This result was derived in Section 4.4.6. It says that the energy fluctuation in
a1 open system equals that in the equivalent isothermal systemn plus a term pro-
portional to the fluctuation in particle munber, The proportionality constant is
the square of the rate of change of the equilibrium energy with particle number.
Equivalent here means N = N(u, V,T), which is the same as p = (N, V,T).

6.4.4 Isobaric System

A subsystemn able to exchange energy and volume with a reservoir of temperature
T and pressure p has constrained thermodynamic potential G(E,V|N,p,T) =
E —TS(E,N,V) + pV. Given thermal equilibrium this becomes G(V|N,p,T)
= F(N,V,T)+ pV, and the volume probability distribution for the ideal gas is

efﬁpVVNA—iiN

id
VIN.p, T) = ——r———. 6.132
P (VIN,p,T) Ay 79N p.T) (6.132)
The phase space probability distribution is
; e—BpV =B pi/2m
o (", a", VIN,p.T) (6.133)

T NWNA,Z9(N, p, T)
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In these equations the partition function is

S e~ BV
id N.o.T — / /d /d ,BZpl/Zm
Z(N,p,T) WV e/, dd pe

e} . —BpV VNA 3N
= / v 2
o Ay N!
= AF'AT3N(gp)~NL (6.134)
This result holds for finite systems as well as in the thermodynamic limit.

The equilibriun energy and volume satisfy T(E, N,V) =T and p(E, N, V)
= p. From the results for the isolated ideal gas these yield

V' = N/sp, (6.135)
and Eid = 3NkgT/2. Conscquently the Gibbs free energy for the ideal gas is

GYN,p,T) = FYUNV,T)+pV"*
NkgT In[3pA®]. (6.136)

The argument of the logarithm is just NA3 /Vld and since the chemical poten-
tial of the ideal gas was shown above to be ¢ = kT ln[NA?’/V] (as may be
confirmed by differentiating the above), one sees that G = @iN , as derived
in general from extensivity arguments.

The volume fluctuation is

2ln Z9(N. p, T O N+1
7In Z%(N.p, )> _ A PN T, (6.137)
N, T

(AW = ( (Bp)? “Bp

the final equality holding in the thermodynamic limit. The energy fluctuation
is

2ln Z9(N,p, T N
& InZ°(N.p, )> _3 (6.138)
V.Bp

<A(E)2>id - ( 032 252

This is the same as the energy fluctuation of an isothermal system. Using the
same arguments as in Section 4.4.6, one has in general that

o (E 2
(AEP) = (AEY y yr AV o (%)M ,(6.139)

which reduces to the above since an ideal gas has OFE(N,V,T)4/9V = 0. One
also has the result that in the thermodynamic limit

9%1In Z(N, p, T)> _ BN
N,

(A +pV)P)y g = ( - - o (6.140)
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This may be compared to the heat capacity at constant pressure,

(3(E(N,p, T) +pV(N,p, T))>
N.p

Cp

oT
0?BG(N,P,T)
= —kppt 207/
B ( R )N,p
- W (6141

6.4.5 Isenthalpic System

An insulated subsystem able to exchange volume with a reservoir of pressure
p has constant enthalpy H = E + pV. The reservoir entropy is constant, and
consequently the constrained thermodynamic potential is just ®(V|N, H,p; T) =
—TS(E,N,V), where E = H —pV, and the volume probability distribution for
the ideal gas is

" S UEN,V) /kp
“(VIN,H,p) = ——F——, E=H—-pV
o (VIN, H,p) Ay Z'(N, H, p) P

ApVNQrm(H — pV)/h2)3N/2
= . . (6.142)
NIT(3N/2)(H — pV)Ay Z9(N, H, p)

The partition function is

Ap(2mm/h2)3N/2 pHip 3N/2—
N!F(3]\?/2))Av A AV VI = py)
ApNQ2rmH/p?)3N2HN
AypNHIT(5N/2 +1)

Z9(N, H,p)

(6.143)

Note that because the energy of the subsystem must be nonnegative, the max-
imum volume of the subsystem at constant enthalpy is H/p. In the thermody-
namic limit this reduces to

(2rmH/R2)3N2 N
pNT'(5N/2)

ZYN,H,p) = (6.144)

The equilibrium volume satisfies p(E, N, V) = p, where E = H — pV. This
corresponds to the peak of the probability distribution, and logarithmic differ-
entiation yields

—i NH 2H
VYN, H,p) = /P _

_ _ =24 6.145
5N/2—1  5p’ (6.145)

the last equality holding in the thermodynamic limit. With this the equilibrium
energy is Eld(N , H,p) = 3H/5. Consequently the thermodynamic potential for
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the isenthalpic ideal gas is
(N, H,p;T)
= —TSYE" NV

20 [(4xmHN\*?| 5 5
~NkpT {1 ikl —2laN+2Y. 6.146
’ {n{fw(%?) 2" 72 (6.146)

Because energy and volume are coupled, the averages and fluctuations of the
isenthalpic system are nonstandard. For example, the general expression for the
pressure derivative of the thermodynamic potential yields

—id
o (N, H,p;T T —i
I} ( y 41, D5 ) = — ‘/<‘l(]\771_17p)7 (6147)
op TN, H,p)
whereas the pressure derivative of the logarithm of the partition function is
dZ'Y(N, H.p) 3NkgT v
—kgT =
Op 2 H—pV
3NkgT (V)
= —< .148
2 (B), (014

the final equality holding when fluctuations are negligible. This is so in the
thermodynamic limit, in which case the two derivatives may be recognised as
equivalent, with average values equaling equilibrium values.

An example of a fluctuation is given by the second derivative with respect
to enthalpy. It is straightforward to show that

8 Z(N, H,p) _ 9N?

RYIE = (BET)),- (6.149)
Similarly
&’ Z9(N,H,p) 9N?
81()2 ) _ 1 (A(V/E)?),, . (6.150)

In the thermodynamic limit, both sides of the first equation are of order N1,
and both sides of the second equation are of order N.
Interestingly enough, integrating the partition function with respect to en-
thalpy gives the average energy,
1 2
Z94(N, H,p) 3N
which gives (E>d =3NH/(5N + 2). Integrating twice gives

HI
/ dH’/ dH" Z'Y(N, H" p)

/ dH' Z'Y(N, H' |p) = (E)y, (6.151)

Z‘d(N H,p)
H
= ;/ dH' (H — H)ZY(N, H' p)
Z9(N, H, p) B
2 2
= — E?), 152
3N3N+2< N> (6.152)
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which gives (E?), = H?3N(3N +2)/((5N +2)(5N +4)) . It follows that the
fluctuation in energy for an isenthalpic ideal gas is in the thermodynamic limit

(A(E)?),, = H*12/125N. (6.153)

Using the fact that the fluctuations in enthalpy vanish, (A(H)?),, = 0, which is
the same as <A(E + pV)2>id = 0, one can show that the isenthalpic fluctuations

in volume are in general given by <A(V)2>id = <A(E)2>id /p?.

6.4.6 Isentropic System

The enthalpy H(V|S,p, N) = E(S,V, N)+pV is the constrained thermodynamic
potential for an isentropic system. Rearranging the expressions given above for
an isolated ideal gas, one has

EY(S.V,N NID(3N/2)eS/ks 7%/ BN=2)
( -V ) - AEVN(QTFWI,/}),Z)B’N/Q
= (3hz/47rm)€75/3NS/B’V*2/3325/31\”“37 (6.154)

the last equality holding in the thermodynamic limnit.

The volume probability distribution is given by o(V|[S.p, N;T) = e #H
/Ay Z(S,p, N). In this case it does not appear possible to evaluate exactly the
partition function integral, but one wnay make a WKB approximation for it (be-
low). Writing the energy as E'Y = oV =2/3 (in the thermodynamic limit), which
defines the constant o, the equilibrium volume occurs at the minimum of the
constrained thermodynamic potential, om OV = —(2/3)(yvld(5’, p, N)72/3 +
p = 0. This is the same as OE'(S. V, N)/0V = —p, and it gives explicitly
N(,’—](jZS'/SNk,];

—id
) P —
(5.7, N) (2mmp/h2)3/5

(6.155)

Since Eid(S’,p. N) = E¥(S,V(S.p,N), N), and since T(S,p, N) = dE(S,p, N)

/05, one sees that this is the same as led(S, p,N) = Nk:BTId(S, p, N), which is

the standard equilibritun result for the ideal gas. With this the thermodynamic

potential is

5N~ 1p2/5¢25/6Nks
2(2wm /h?)3/5

TS p, N) = 2pV (S p, N) =

- (6.156)

The second derivative of the enthalpy is Fi\(,lv = 0?H(V

d S, p, N)/(‘)VZ[V:VM =
(10/9)a V' (S, p, N)~8/3. Hence the partition function may be approximated as

Zid(S-,p7 N7T) = A;/l / dVe_ﬂH(wS""N)
G

Q

v €

= AP Jon/gH,. (6.157)

-1 —gHE" /oo AV e~ BHY v (V=V"(5,p,N))?
— 00
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One sees explicitly that in the thermodynamic limit the logarithm of the parti-
tion function equals the thermodynamic potential (times —1/kgT'). The average
volume is the negative of the logarithmic derivative of the partition function with
respect to Bp, and the fluctuations are the second derivative.

The isentropic compressibility is

—id
o 1 oV (SipN) _ 3 (6.158)
Vs N) O o7

In view of the results established above, one sees that the ideal gas obeys the
general law
Cv _xs

_Xs 6.159
C, " xr (6.159)

6.5 Mean Field Theory

The ideal systems analysed in this chapter have the property that the multidi-
mensional partition function integral or sum could be factorised as the product
of single-particle partition functions. Unfortunately in the real world such an
attribute is as rare as it is desirable. Nevertheless it is possible to cast many
systems in a factorised form that yields to a complete but approximate analysis.
Such is the mean field approximation described in this section. First an ideal
gas in an external field is treated.

6.5.1 Ideal Gas with an External One-Body Potential

The classical ideal gas treated in the preceding section has a Hamiltonian that
consisted purely of the kinetic energy, K = Y, p?/2m. Now to this is added a
one-body potential ¥***(r), which could represent, for example, an electric or
gravitational potential acting on the atoms of the gas. In this case the potential
energy is
N
Ul@V) =™ (a). (6.160)
i=1
Like the kinetic energy, this is the sum of single-particle terms, and so one
expects that the partition integral will still factorise. In order for this to occur
one needs to deal with a system in thermal equilibrium with a reservoir because

this allows the energy of each individual atom to vary independently of the
others, which is not the case for an isolated system of fixed total energy.

Factorisation of the Partition Function

From the Boltzmann distribution that was obtained in Ch. 2 for a constant
temperature system, one obtains for the phase space probability distribution
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for the present ideal gas

1 N N
TIN.V.T) = ,—BK(P"),—BU(a")
p(LIN, V. T) NN Z(N,V,T)" ¢

N
1 .
_ — 092 /2m— 6% (@)
N3N Z(N,V,T) I1- ¢

N
= [lo@.alv.7). (6.161)

=1

=1

Here the one-particle probability is

1 o Jam By
@(p,qIV,T):We Bp™/2m =™ ) (6.162)

with the single-atom partition function being

1 P oxi
ZI(V_’T) = 3 dp(;—ﬁpZ/Zm/ dq(j—Bib (q)
h . 1%
= A73/ dge ¥ @, (6.163)
JV

Direct comparison with the partition function of the full systein confirms the
factorisation,

1
Z(N7 V,T) = W/dequ()—ﬂK(pN)(}—ﬂU(qN)
S
- 1 ﬂ 1 / dp; o =PV /2m / dg; e~ (@)
Nt2Lhs ) Sy
1N
= N [[zw.). (6.164)
Ti=1

Here one can sece explicitly how the trivial prefactor of NI arises from restricting
the multidimensional integral to distinct configurations. Accordingly, it appears
as an additive constant in the total entropy,

S(N.V,T) = NS,(V,T) — kg In N1. (6.165)

where the entropy of cach of the identical atowms is S} (V. T) = kpln Z,(V,T).

The Density Profile

The external potential causes a density inhomogeneity; atoms are more likely to
be found in regions of low potential than in regions of high potential. Probability
distributions will be discussed in detail in the next chapter, but here it suffices
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to derive the one-particle distribution. The probability of finding a particular
atomn, say the first, at r is

o(r|N,V,T) = /de da™¥(T|N,V,T)§(r — q1)
_ Byt gy Or —di)
— d ﬁp?/Zm/ d By {a1)
/ ple v q) € h?’Zl(‘/,T)
N 1 )
« — [ dp;ePFi/2m / dq; e_ﬁprt(Qi):l
g {h?’Zl(V,T) / ’ v
Cnadiiil 6.166
Az (V,T) (6.166)

Alternatively, @(r|N,V,T) = (§(r — q1)). This is normalised to unity, since the
atom must be somewhere in the volume. Notice that the external potential
influences the probability distribution for an otherwise noninteracting atom in
thermal equilibrium via a Boltzmann factor.

Closely related to the one-particle probability is the singlet density, which is
defined as

N
p(r) = <Z 5(r — qz)> = Np(r|N,V,T). (6.167)

The singlet density p(r) is the average number of atoms per volume element at r.
Colloquially the singlet density is said to give the probability of finding any atom
at the given position, but this is not strictly correct since the singlet density is
normalised to N, not to 1. For a uniform system (no external potential), this
is just p = N/V, which is called the density. This is also the spatial average of
the singlet density of a nonuniform system.

The singlet density is used to obtain one-particle averages. For example, the
average energy due to the external potential is

vy = (B

i=1

N
<Z/Vdrwe"t(r) 5(r — qi)>
/ dr p(r) = (r). (6.168)
\'4

I

The Constrained Density Potential

The entropy of an isolated system consisting of an ideal gas of kinetic energy K
was given above in Eq. (6.102),

SU(K, N, V) = Nln [(V/N)(4mmK /30 N)*/?] + 5N /2. (6.169)
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In terms of the kinetic energy density x = K/V and the number density p =
N/V . one may define the entropy density

) 1. 4 3/2
0" (x,p) = ;S (K, N,V) = pln (”m) 3%5—“ (6.170)

3h2p P 2

For the same ideal gas one has the Helmholtz free energy F'4(N,V,T) =
K —TS9(K,N,V) and the corresponding density f'4(p,T) = & — To'(%, p).
The corresponding constrained thermodynamic potential density is of course
fid(/<‘3|p7 T) =K= TUid(va)'

Now one imagines a system consisting of many isolated ideal subsystems, the
1th one of which has N; atoms, volume V;, and kinetic energy K;. The number
of atoms in each subsystem is large enough for Stirling’s approximation to be
applied. The total entropy is the sum of the subsystems’ entropies,

SUK N, V)= SUK, N, Vi) =D Vio"d ki, pi). (6.171)

i

One may now imagine that the isolated subsystems are contiguous cells that
pave a volume V = ). V;. Hemnce the ensemble of cells represents an isolated
ideal system of total kinetic energy K = 3. K, and total number of atoms
N = 3, N;, but with the spatial distribution of each constrained. Assuming
that the variatiou of these quantities between neighbouring cells is small, one
may pass to the continunm limit so that the coustraiued total entropy is

Sk, p|V) = / dr o (k(r), p(r)). (6.172)
%

Note that no extra configurations become available when one remnoves the barri-
ers between cells and allows atows to interchange between them (provided that
the kinetic energy deunsity aud number deusity remain constraiued). Because
the atoms are indistinguishable, the distinet configurations are the same in both
cases, and the total entropy is just the sum of thie entropies of the isolated cells.

Now adding an external potential ¢)°**(r), the total euergy of the system may
be written as E = K + E<'. The constraiued density profile, p(r), is arbitrary;
the equilibrium density will enierge by optimisation. The corresponding external
energy is

Ee’“:/vdrp(r) Pt (r). (6.173)

In terms of cells, this expression is valid provided that the external potential
varies negligibly over each cell. This obviously sets an upper limit on the size of
the cell, which may appear to conflict with the requirement that the cell be large
enough for Stirling’s approximation to be valid. However, both may be satisfied
simultaneously provided that the potential is constant or slowly varying in at
least one dimension.
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Still constraining the profiles, the total system may now be brought into
contact with a heat reservoir of temperature T" such that energy exchange may
occur. The constrained total entropy is now

Stp.AlvT) = [ droste) ple) S
B /vdr [Uid(“(r)’p(r)) B % - %P(r) Y (r)| . (6.174)

The constrained thermodynamic potential is

F(p.slV.T) = ~TS(p,s[V,T)
/V dr [x(r) = To™(s(r), p(r)) + plr) 6= (x)]

= [ @ w1 o] 61T
For thermal equilibrium of the kinetic energy this becomes
NV = [ de [0, 1)+ oty o)

= kBT/Vdr p(r) [-1+1InA3p(r) + gyt (r)] . (6.176)

The Helmholtz free energy density for the ideal gas that appears in the integrand
derives from Eq. (6.115). Note that N has now been shown explicitly to the
right of the vertical bar to indicate that only density profiles normalised to the
total number of atoms are allowed.

The equilibrium density profile minimises the constrained thermodynamic
potential. However, this minimisation must be carried out subject to the con-
straint that the total number of atoms is fixed, [ dr p(r) = N. Using a Lagrange
multiplier and the techniques of functional differentiation® one has

6 [F(pIN,V,T) +¢ [, drp(r)]

= kgTInA%p(r) + ¥='(x) + ¢, (6.177)

ép(r)
which vanishes at the equilibrium profile,
pr) = A=3e=Ce=Bv™ D), (6.178)

The constant ¢ is determined by the fact that the volume integral equals N.
Since the singlet density found above is similarly normalised, and since it is
likewise proportional to the Boltzmann factor of the external potential, one
concludes that ¢=¢ = N/Z;(V,T), and that this equilibrium density profile is
equal to that average density.

The thermodynamic potential for this thermally equilibrated system in an
external potential is F(p|N,V,T). Hence direct substitution yields

F(N,V,T) = =NkgT[¢ +1] = = NksT(1 — In[N/Z,(V,T)]). (6.179)

SSpecifically, 5f(g(y))/dg(z) = [0f(g(y))/dg(¥)|6(x ~ y). Hence if Flg] = [dy f(g(y)),
then §Fg]/8g(x) = [ dyéf(g(y))/dg(x) = 8f(g(=))/g(x).
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6.5.2 Mean Field Approximation

What limits the applicability of the ideal gas results to realistic systems is that
it neglects the interactions between atoms. The simplest such interaction is the
pair potential u(r,s). Accordingly the Hamiltonian consists of the kinetic en-
ergy, and the one- and two-body potentials, H(p?™,q") = K(p™)+UD (q™) +
U@ (q"), where

N
UD(@") =" ulas ). (6.180)
i<y
Unfortunately this interaction precludes the factorisation of the multidimens-
ional partition function integral because each atom can no longer be treated as
independent of the others.

One may introduce an approxiration based upon the division of the system
into cells, as used above to develop the density functional for a system in an
external potential. In that case the external potential was taken to vary neg-
ligibly over the cells, so that the contribution to the energy from the ith cell
was simply N;y(r;). Similarly one may take the contribution to the pair energy
fromm atoms in two cells to be simply the product of the number of atoms in
the cells and the pair potential evaluated between the mid-points of the cells.
Passing to the continnum lanit this becomes

E® = /dr/dsp Ju(r,s)

5 [ dmole) (), (6181)

where the mean field potential is

i (p) = s p(s)u(r,s). .
P (r) ./Vd/()h) (6.182)

The factor of one-half ensures that the interaction between each pair of cells is
counted once only. This approximation fails to correctly account for the inter-
actions between atoms in the same cell, and it can also err for the interactions
between atoms in neighbouring cells. It breaks down because the pair potential
is usually rapidly varying at small separations, and also because the presence
of an atom in one cell affects the probability of an atom being in a nearby cell,
(i.e., it would be better to use the pair density p?)(r,s) rather than the product
of singlet densities p(r)p(s); the two are only equal when correlations are neg-
ligible). The mean field approximation is most appropriate for systems with a
long-ranged, slowly varying pair potential, because in this case the pair energy
is dominated by cells that are far-separated. The approximation is valid in this
region because the pair potential is slowly varying here, and the correlations
between distant cells are negligible.

The mean field approximation converts the pair potential to a density-
dependent one-body potential so that it is formally identical to the external
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potential. Hence it contributes to the entropy in exactly the same fashion as
the external potential. Using the results of the preceding section, the thermally
equilibrated density constrained thermodynarmic potential becornes

F(p|N,V,T)
= [ ar [T+ pte) 5 0) + pte) 07|
14

g

= kBT/Vdrp(r) {41 +1InA3p(r) + Byt (r) + 52/1”‘{(1')} . (6.183)

Adding a Lagrange multiplier and differentiating one obtains

§ [F+¢ [y, drp(r)]
op(r)

Due to the quadratic dependence of the pair energy on the density, the factor
of a half is cancelled by the differentiation. The equilibrium profile follows as

= kpTIn A%p(r) + ¢ (r) + ™ (r) + C. (6.184)

B(r) = A3 =Ce BPE) = poeBY), (6.185)

Here (r) = ¢ (r) + ™ (r) is the total one-body potential, and pg = A=3e~¢
is the value of the density in any region where the total one-body potential
vanishes. From the normalisation one has pg = N/ fv dr e=P¥() | Insertion of
the equilibrium profile into the constrained thermodynarnic potential yields the
equilibrium thermodynarmic potential in this mean field approximation. After
some manipulation this is

mf(

F(N,V,T) = NkgT[InA3py — 1] — %/ drp(r)y (r). (6.186)

14

Many-Body Interactions

It is worth mentioning that three-body and higher-order interactions also exist.
These can be important but they are usually neglected because they are com-
putationally intractable. However, they are relatively easy to incorporate into
the mean field approximation. For example, the triplet energy is approximated
by

E® = % Vdr/vds/vdtp(r)p(s)p(t)u(?’)(r,s,t)
= 3 ] denou ), (6.187)
where

¥ (r) :%/Vds./v dt p(s)p(t)u(r,s, t). (6.188)
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Analogous results hold for the higher many-body potentials. This gives for
the equilibrium profile 5(r) = pee P¥(")| where the total potential is ¢(r) =
PO () + 2 (r) + v®)(r) + .... The Helmholtz free energy is

F(N,V,T) = NkgT[lnA3p, — 1] - 1/ drﬁ(r)E@)(r)
2 \'4
- ; /V drﬁ(r)a(g)(r) — .. (6189)
Summary

e Ideal systems have simplified energy functions that allow the multidimens-
ional integral (or sum) of the partition function to factorise into the prod-
uct of single-particle partition functions.

e The classical ideal gas has energy E = 3NkgT'/2, pressurc p = NkgT),
and chermical potential g = kgT In[NA3/V].

e The classical ideal heat capacity, kg/2 per harmonic degree of freedom,
is correct at high temperatures but is too large at low temperatures. In
general the classical approach is valid at high enough temperatures, but
quantum statistics must be used when the thermal energy is small com-
pared to the energy quantum.

e An external potential induces a density inhomogeneity that in the ideal
gas is given simply by the Boltzmann factor. This may be derived by op-
timising the density-coustrained thermodynamic potential, which is based
upon the existence of a local entropy density. Pair and many-body in-
teractions may be reduced to effective one-body interactions by the mean
field approximation.



Chapter 7

Interacting Particles

7.1 Intermolecular Potentials

The preceding chapter dealt with ideal systems in which the partition func-
tion integral factorised. Such systems included the ideal gas of noninteracting
molecules. In reality molecules do interact with each other, and it is these in-
teractions that necessitate the development of special techniques for evaluating
the partition function.

One may identify several types of intermolecular potentials including the
Coulomb interaction due to a net charge on the molecules, dipole and multipole
interactions due to permanent nonspherical charge distributions on net neutral
molecules, short-range core repulsions, which ultimately arise from the Pauli
exclusion principle that prevents overlap of electron clouds, and long-range dis-
persion attractions due to induced dipoles arising from correlated electronic
fluctuations.! Of these only the Coulomb potential is strictly a potential; the
others are effective potentials or constrained thermodynamic potentials that
arise from removing various degrees of freedom from the problem. Similarly
only the Coulomb potential is strictly pairwise additive; for the effective poten-
tials it is an approxiniation to neglect the many-body contributions.

7.1.1 Coulomb

The potential between two atoms in vaccuo with point charges ¢, and g5 is

9192
u(ryg) = ——, 7.1
( 12) 47‘(’60?”12 ( )
where the distance between the atoms is 19 = |[r; — ro|, and €; = 8.854 x 1072
is the permittivity of free space (SI units). The Coulomb potential is positive
for similarly charged ions, which leads to a repulsive force between them. The

1G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham, Intermolecular Forces:
Their Origin and Determination, Clarendon Press, Oxford, 1981.
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potential decays exceedingly slowly; it is in fact nonintegrable, which means
that all physical systems must be overall electro-neutral.

The Coulomb potential in vacuo is exact, but it is frequently employed for
the interaction between charges in media. In this case the charges are said to
be dielectrically screened due to the polar or polarisable nature of the medium,
and the interaction is

q192

u(riz) = Fr— (7.2)
where ¢ is the relative permittivity (dielectric constant) of the medium. It is
emphasised that this expression is a continuumn approximation, which avoids the
explicit inclusion of the molecules of the medium, and which is exact for large
separations between the charges. This is an effective potential that arises from
integrating out all of the configurations of the medium. It is really a free energy
for the macrostate with the charge atoms constrained at a particular separation,
as may be seen by the temperature dependence of the dielectric constant.

The dielectric constaut of water is about 80, which means that the charge
on ions is effectively reduced by a factor of 9 in water compared to in vacuurn
or air. Common salt, NaCl, is a crystalline solid held together by the strong
interaction of alternating positive and negative ions, but it dissolves in water
because the interaction is reduced by such a large amount. This is why water is
generally a better solvent than oil, which has a dielectric constant of about 5.

Dipole and Multipole Interactions

Many molecules do not bear a net charge, but do have a charge separation. For
example, one end of the molecule may be positive, and the other end negative.
This particular example is a dipolar molecule, and the interaction between two
such molecules is just the sum of the Coulomb interactions between the four
charges. In the point dipole limit one cousiders that the maguitude of the charge
goes to infinity while the separation goes to 0 in suchi a way that the product
remains constant and equal to the dipole moment of the molecule. This is a
valid representation of a real dipole at distances not too close to the molecule,
(i.e., when the intermolecular separation is greater than the distarices between
the intramolccular charges).

The interaction potential between two pernaneut point dipoles may be ob-
tained from the dipole field tensor

T =-VVvr ' =r~°[I - 3¢ (7.3)
In terms of this the electric field at r = r# due to a dipole at the origin is
E=-T -p=r>3p )i ul (7.4)

Here p signifies the strength of the dipole and its direction. Finally, the inter-
action potential between two dipoles is

u(12) = —py - Ey = szg [y - g = 3(py - F12)(pg - B12)]. (7.5)
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Note that the dipole dipole potential depends upon the separation and upon
the mutual orientation of the dipoles and the intermolecular vector.

One can carry out an analogous procedure for more general charge distri-
butions, and the molecule may be described in ternis of a multipole expansion.
For example, the linecar real dipole described above has a point dipole, a point
quadrupole, and higher-order point multipoles. The interaction between multi-
poles decays increasingly rapidly with the order of the multipole. Charge charge
interactions go like r—!, charge~dipole interactions go like 72, etc. In general
one therefore truncates the expansion at low order. For example, a reasonable
description of the water molecule would rieed to include at least the dipole and
quadrupole moments.

Unlike the interaction between two spherically symmetric charges, which de-
pends only upon their separation, the interaction between dipolar and between
multipolar molecules depends upon their separation and on their mutual ori-
entation. This angular dependence makes the analysis of molecular systems a
great deal more complicated than that of atoniic systems. Hence here the main
focus will be on atoms or spherically symmetric molecules, and the orientation
dependence of the interactions will in general be neglected. The so-called simnple
fluids are characterised by such interactions.

7.1.2 Hard Sphere

Real molecules have a finite size and do not overlap. There is thus a strong,
short-ranged repulsion between them, which has its origin in the Pauli exclusion
of the electrons in the outer orbitals. It is a difficult quantum mechanical
task to calculate the real interaction between molecules ab initio. The simplest
approximation to the core repulsion is the hard-sphere potential

w={5 7t

where d is the hard-sphere diameter, which is typically on the order of several
tenths of nanometres.

The hard-sphere fluid is the simplest, nontrivial fluid that retains some ele-
ments of reality, and is perhaps the most studied from the theoretical perspec-
tive. It does not exhibit a liquid-gas transition, because there are no attractive
forces, but does show a freezing transition. Approximate solutions, analytic and
numeric, exist for its equation of state and structural properties. Hard-sphere
systems have also been used extensively as a reference system perturbed by
more realistic intermolecular potentials.

7.1.3 Lennard—-Jones

It was stated above that dipolar molecules interact due to their displaced per-
manent charge distributions, but even molecules such as the noble gases, which
are electro-neutral and spherically symmetric in isolation, show a long-range
Coulomb interaction. This is because fluctuations in the electron distribution
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Figure 7.1: The Lennard Jones poteutial for, from top to bottomui, € = 0.5, 1,
and 2 kgT.

about each molecule give a teniporary multipole moment, and these fluctuating
moments beconie correlated. This is the dispersion or van der Waals attraction,
and it decays with the sixth power of distance. (The interaction between dipoles
deeays as a cubie, and the correlation between dipoles also decays as a cubic;
in general, correlations lead to an attraction.) The strength of the interaction
may be shown to depend upon the polarizability of the atoms.

The dispersion attraction applies at large separations; at small separations
it must go over to the core repulsions discussed above, whose precise functional
form is complicated. A convenient representation of the interaction potential
between a pair of atoms, which shows the dispersion attraction and a core
repulsion, is the Lennard Jones 6 12 potential (see Fig. 7.1),

o=@ -] o

This potential has a well of depth € located at r = 21/65. The core may be taken
to be at r S ¢. This intermolecular potential has a long history and is a conve-
nient analytic representation that greatly simplifies the interaction between real
molecules while retaining irmmportant features of reality. A Lennard- Jones fluid
shows a liquid-gas transition, and judicious choice of the two parameters allows
a relatively accurate description of the thermodynamic properties of many real
molecules over both the fluid and solid regions of the phase diagram.
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7.1.4 Axilrod—Teller

The potentials listed above are all pair potentials: they give the energy of inter-
action of two atoms or molecules. Apart from the Coulomb potential in vacuo
they are all also effective potentials ultimately derived by removing various de-
grees of freedom from the system. Such effective potentials also act between
triplets and higher clusters of atoms. In other words, with the exception of the
bare Coulomb potential, the potential energy of a cluster of atoms cannot be
strictly decomposed into the sum of pair interactions.

An example of this is the dispersion interaction just treated. As mentioned,
it arises from the correlated fluctuations of the electron clouds of the two atorns,
and its strength is proportional to the product of their polarisabilities. In reality
many-body effects act to diminish the strength of such pair-wise correlations.
The dispersion interaction between three atoms is generally less than the sum
of the three pair-wise interactions because the third atom may not be simulta-
neously correlated with the other two. The three-body excess contribution to
the dispersion interaction is known as the Axilrod-Teller triple-dipole potential,

1/1 + 3(f12 - £13)(Po1 - o3 ) (a1 - F32)

3.3 .3
12723731

u(ry, ro,r3) = (7.8)
This potential is positive for most configurations of the three atoms except
for nearly linear ones. Comparing the strength of the three-body term to the
Lennard-Jones pair potential, for an atom such as argon one has v/(3e0?) =
0.04. Hence three-body contributions to the properties of real systems can be
expected to be on the order of several per cent.

7.1.5 External Potentials

As mentioned in the preceding chapter, in addition to the interactions of the
atoms of the system amongst themselves, there can also be interactions that arise
from external sources. Examples include the gravitational potential, electric
fields due to external charges, and interactions with the walls of the container.
These are usually represented as a one-body potential (i.e., they act on each
atom independent of the presence of the other atoms). The chemical potential
can be thought of as a constant one-body potential, although in practice it
is usually treated separately for a grand canonical subsystem. As one might
conclude from the existence of three-body potentials, there can also be two-body
external potentials. For example, the interaction between two charges is affected
by their proximity to a dielectric wall, the so-called dielectric image interaction.
Such an interaction may be regarded as a two-body external potential.
External potentials in general create a density inhomogeneity so that the
fluid or solid is nonuniform. Conversely, in the absence of such external poten-
tials the system is homogeneous or uniform. Most attention has been placed
on uniform systems, and these include fluid systems and disordered solids. A
crystalline solid is strictly speaking an inhomogeneous system that requires an
external field (possibly infinitesimal) to fix its position in space. Fluids con-
fined to finite pores or systems near walls or inclusions are also inhomogeneous.
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Although uniform systems are ubiquitous and important, in the formal develop-
ment of statistical mechanics it is often convenient to retain a one-body external
potential. In applications and computations one often deals with homogeneous
systems by subsequently setting the external potential to 0. Conversely, three-
body terms makes the system almost computationally intractable, and since
they add little to the formalism they and higher many-body terms are frequently
dropped from the beginning.

In the general case the potential energy of a system of N spherically sym-
metric atoms may be written

N N N
UN(I'N) :Zul(ri)—kZug(rij)—i- Z UB(Tijy'rjkﬂrki)““--‘ (79)
i=1 i<j <<k

The Hamiltonian is of course the sum of this and the kinetic energy. The
restrictions on the sums ensure that the energy of each distinet cluster of atoms
is counted only once.

7.2 Partition Function and Derivatives

As the preceding chapters have shown, the partition function plays a central
role in statistical mechanics becanse its logarithm gives the total unconstrained
entropy of the subsystemn and reservoir, and its derivatives generate the average
properties of the subsystem. In the case of the ideal gas the kinetic energy is
the only contribution to the Hamiltonian, which means that the configurational
contribution gives a factor of volume for each particle. Further, because each
particle’s kinetic energy depends only on its own momnientum, the momentum
integrals also factor. For a system in which the molecules interact, the latter
property is preserved, and so ore can write the partition function as the product
of the ideal gas contribution and an excess.

7.2.1 Configuration Integral

For a gystem in contact with a thermal reservoir the canonical partition function
is

Z(N,V,T) = l";'N /‘de/VdrN exp[—BHNn (Y, p™)]
h/—3N
= S [ oK) [ ¥ esl-gUn ()
A73N N N
- /V dr™ exp[— U (xV)]

ZY(N,V,T) V’N/ dr exp[—BUn (M) (7.10)
14
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Here and throughout the inverse temperature is 3 = 1/kgT’, and the thermal de

Broglie wavelength is A = \/2ﬂh2/kaT. The nontrivial part of the partition
function is called the configuration integral 2

Q(N,V,T) = / dr exp[—BUx(rM)). (7.11)
1%
The phase space probability distribution for this system in contact with a
thermal reservoir is called the canonical distribution. The probability of N
particles being at positions ri,re,...,ry with momenta p;,po,...,pPn I8

1 N N
N _ N _ —BHnN (™,
p(r™, p" [N, V,T) = NN A (N V) BHN(rT.pT), (7.12)

The volume element of phase space for this probability density is deNdp?.
One may integrate out the momentum contributions to obtain the configuration
probability distribution

1
p(rN|N7V7T) = CQ(—NV—T)G_’BUN(FN)‘ (713)

Here the relevant volume element is dr?.

Constant Chemical Potential

For a subsystem able to exchange both energy and particles with a reservoir of
temperature T' and chemical potential u, the classical grand canonical distribu-
tion is

eBuN o—BHN (rV pN)

N N
Ny, V\T) = .
p(r P |,LL, Y ) N!h?’NE(,LL, MT)

(7.14)

Integrating over momenta gives the configuration probability

N N vy = e ) 15
@(r ] |,LL, ] )_ N!A?,NE('LL"/’T)v (7‘ )

and integrating over configurations gives the number distribution

PN Z(N,V,T)

o(Np, V,T) = = V.T)

(7.16)

The ideal contributions are number-dependent, which is of course why they are
not removed here. The grand partition function is

E(p, V,T) = Z e’ NZ(N,V,T) = Z WQ(N,V,T)- (7.17)
N=0 N=0

2Note that some authors use the reverse convention, denoting the partition function by Q,
and the configuration integral by Z.
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Constant Pressure

For a subsystem able to exchange both energy and volume with a reservoir of
temperature T' and pressure p, the classical grand canonical distribution is

e8PV o=BHN (r" pY)

oY, pY VIN,p, T) = Ay NN T (7.18)
The configuration probability is
e BPV o~ BUN(xN)
p(rV, VIN,p,T) = Ay NN X(N 5 T) (7.19)
Integrating over configurations gives the volume distribution
p(VIN,p,T) = L ZN VT (7.20)

AV‘XV(]Vv b, T)

The ideal contributions independent of volume could be removed from this ex-
pression. It is worth mentioning that the reservoir pressure in the exponent of
the first factor favours small volumes, whereas the internal pressure manifest in
the partition function of the subsystem, the second factor, favours large volumes:
the net effect is that the probability distribution is peaked about the equilibrium
volume, and decays rapidly on either side of it. The partition function for this
isothermal isobaric systein is

1
X(N,]),T) = / (V _HI}VZ(N VT)
3] Vv
AN o gy
— S —,H';}V N v -3 N ) 21
N/, Av /Vdr exp[—pUN ()] (7.21)

7.2.2 Average Energy

It was shown in Section 4.3 that the derivatives of the logarithm of the partition
function gave the average propertics of the subsystem. For example, the average
energy of an isothermal system is the inverse temperature derivative,
-0 Z(N,V.T)
op
1 N N
_ d ()—/JHN(r P )H I‘N. N
NUSNZ(N, V. T) / p / ~(rT.pT)

/dp / p(r N,pN|N V. T)Hn (N,pN)

(7.22)

The Hamiltonian is the sum of kinetic and potential energies. In view of the
separation between the momentum and the configuration terms, the average
kinetic energy may be obtained solely from the ideal partition function,

—0InZ'Y(N,V,T) 3NkgT

(Kn) = o3 T2

(7.23)
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This is often called the ideal energy. Conversely, the excess energy, which is the
average potential energy, comes from the logarithmic derivative of the configu-
ration integral,

—-0lnQ(N,V,T)

op
N WNlV—T)/Vd‘"N exp[—BUN (r™)] Un (x™). (7.24)

(Un) =

The second logarithrnic derivatives of the partition function give the fluctu-
ation or average deviation in various quantities, as shown in Section 4.3. For
the energy of the isothermal system one has

621nZ(N,V,T) _ —8(HN>
032
_ NIp3N
- agzl/NzT /d N/dr
—,BHN(F HN( P )
= <H?v> — (Hn)?
= <5(HN)2> . (7.25)

It was shown in Section 4.4 that in so far as the Helmholtz free energy is equal
to the logarithm of the partition function, which it is in the thermodynamic
limit with consequence that the equilibrium energy is equal to the average en-
ergy, then the heat capacity at constant volume is related to the fluctuation in
energy, which are the respective derivatives. The physical origin of this equiv-
alence is that both measure the ease with which the energy of the subsystem
may be changed. Since the logarithm of the partition function is an extensive
quantity (i.e., it scales with the size of the system), the root mean square en-
ergy fluctuation scales with the square root of the size of the system. That is,
the magnitude of the energy fluctuations increases as the system size increases.
However, the relative magnitude of the energy fluctuations, which is the root
mean square value divided by the average energy, goes like one over the square
root of the system size, which is to say that the relative fluctuations vanish in
the thermodynamic limit. This result may be restated: the energy probability
distribution becomes relatively sharply peaked as the system size is increased.

Other averages were expressed as derivatives of the partition function in
Section 4.4. Explicit expressions for these can be obtained in a fashion similar
to the above results for the energy.

7.2.3 Virial Pressure

The average pressure is the volume derivative of the logarithm of the partition
function
OlnZ(N,V,T)

<Bsps> = oV
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dlnQ(N,V,T)
ov ’
where the second line follows because the momentum contributions do not de-
pend on volume. When fluctuations are negligible, the subsystem temperature
is equal to that of the reservoir, Ty = T', and 3, may be treated as a constant
and taken outside of the average, (Bsps) = (8s) (Ps) = 5 (ps)-

This expression may be formally written as an average of the so-called virial
of Clausius using a simple scaling argument. For a cubic container, V = L?, one
can write for the position of the ith atom r; = (Lz;, Ly;, Lz,;), where z; € [0,1],
etc. Hence the configuration integral may be written as

(7.26)

1
Q(N,V,T) = L3N / dzV dyN dzN exp[-pUR (xN; L)) (7.27)
0
Note that the potential energy that appears here is solely that due to the inter-
molecular contributions. The external contributions, which provide the external
forces that balance the internal pressure being obtained here, implicitly appear
as the limit on the configuration integral. (See the generalised equipartition
theorem below.)
The derivative of the potential energy is

int N'L N int Uint annt
OUN'(xT: L) = Z Z U —l—yz‘a e A
oL P d(Lx;) O(Ly;) d(Lz;)
N .
= L‘IZri-ViU}\rflt(rN)
=1
= [ty (7.28)

where V, the virial of Clausius, is esseutially thie sum of the force acting on each
particle due to the other particles. Accordingly the wirial equation is

1 8Q(N,V.T)
Q(N,V,T) 3L°0L
1

1 )
_ NLSN—I/ 13N 3—,8U1‘\’,"(xN;L)
—3L2Q(N,V,T) {3 \ dx®" ¢

<Bsps> =

1 7T
) ; int oyt

_ 33N 133N o= BUN =N Y9YN
g /o e oL

mt
= E + M (7_29)
14 3V
The first term is the pressure of an ideal gas, and the second is the average of
the intermolecular forces. For a dilute real gas, the important force between the
molecules is the attractive tail, and the pressure is less than that of an ideal gas
at the same density. As higher densities, the core repulsion due to the molec-
ular size becomes more important, and the internal contribution is positive,
increasing the pressure above that of the corresponding ideal gas. Accordingly
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for solids and liquids, the pressure usually lies above that of an ideal gas at
the same density. Moreover, it also increases at a rate with density faster than
that of the corresponding ideal gas, which is to say that their compressibility is
lower; one often speaks of an incompressible liquid or solid.

Eular’s Theorem

If the potential is a homogeneous function of order m, UP(Lxy, Lxy, ..., Lxy)
= L™UR (x1,Xo,...,xn), then LOUR(xV; L) /0L = mU (xV; L), which is
a particular case of Eular s theorem. In this case the virial pressure may be
expressed in terms of the average potential energy,

N Bm <U1nt>
v 3V )

While the total potential energy itself may not be homogeneous, it may comprise
several contributions that are each individually homogeneous, and the virial
pressure may be expressed as the sum of the average of cach energy term times
its degree. Fular’s theorem provides a convenient method for evaluating the
pressure that avoids taking the average of the derivative of the potential.

(Bsps) = (7.30)

Pair Potential

For the case of a uniform fluid in which the particles are spherical and in-
teract only via a pair potential u(r), the potential energy is Uipt(xV; L) =
Zfij u(Lx;;). In this case the virial becomes

aUmt ( : L)
oL

N
Ou(Lx;j)
= _LZ "

i<j

vint

Ou(Layj)
= T ZL‘I'LJ SLx Tij
i<

N
= - Zriju’(n-j), (7.31)
i<j
where the prime denotes differentiation with respect to argument. There are

N(N —1)/2 terms in this expression, and each contributes an identical amount
to the average of the virial.

Triplet Potential

The three-body interaction between three atoms in a uniform fluid depends only
upon the triangle that they form, and hence the triplet potential may be written
in terms of two sides of the triangle and the included angle, u(r12, r13,60213). The
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triplet part of the internal potential is UJ(\?) (xV; L) = Zijijdc w(Lxij, Lz, Ok )
and its contribution to the virial is

N
ve g Z aU(LiEijgfikﬁjik)

i<j<k

_ Z { Ou(rij, rik, Ojir) +7‘_kau(7’ig’77’¢k,9ﬁk)

I<J<k Ori; ¢ Orx
a w712 79 7.
S Z %u_ma:_m_ (7.32)
i<j<k "

The last line follows from symmetry, u(r,s,6) = u(s,r,8). There are N(IN —
1)(N — 2)/3! terms in this expression. Note that it would be equally legitimate
to describe the triangle formed by the three atoms by its three sides and to
write w(rij, ik, Tki) = (i, Tik, 05:%). However, because the two sides rather
than the side and the angle are being held constant, Qu(ry;. ik, 05ik)/0ri; #
Ou(rij, 7jk, 1ki)/Ori4. In this convention one has

Ou(ri. 1 kT
(3) - Pyk- Tk
Ve = 3 § 7,J————0TU . (7.33)

i<y<k

7.2.4 Surface Tension

Consider a planar inhomogeneity, such as a liquid vapour interface lying in the
ay plane. In this case the coordinates may be scaled separately in each direction:
a, = Lgdy, y; = Lygs, and z, = L;2;. For situplicity consider a pair-wise additive
potential, which has as derivative

8UN(§<N,L) o Zaﬂ 7,, ()T,J
OL, B or;, OL,
= Zu n, - (7.34)
i<j I
sincery; = Lix?J + L2974+ 1227 . In this case the derivative of the Helmholtz free

energy, Whl(‘h in the thermodynamic limit equals the logarithm of the partition
function, is

OF(N,V,T) —kgT 0 1 ldAN —BUN YL
9L, Q(N,V,T) oL, LNLNLY J, ¢ -

—kgTN
= Bi <Zu Tij) Tor, > (7.35)
ij
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Just as the pressure is the volume derivative of the Helmholtz free energy, so is
surface tension conjugate to area, and one has

dFF = —pdV +~vdA — SdAT + udN
= [-pL.L, +~LyldL, — SdT + pdN. (7.36)
Accordingly the above becomes
BpLyLyL, — ByL,L, = N — <Z B (ri;) =2 > (7.37)
1<J

An analogous result holds for 9F/8L,. For 0F/JL,, since there is no interface
in the 2z direction, the surface tension does not contribute and one has

BpLeLyL, = N — <Z Bu'(r:5) ”_ > (7.38)

1<7

(For a uniform system, the surface tension term vanishes in all three deriva-
tives, and taking one-third their sum gives the virial equation derived above.)
Subtracting the z expression from the x expression gives

22
oy = <zﬂw - >
Tig

1<J
32%
= 2L I Zﬁu (rij) - , (7.39)
i<j T

where the final equality follows from the first by changing x to y and taking
half the sum. The average that appears here may be written as an integral over
space weighted by the inhomogeneous pair density. This result is known as the
Kirkwood--Buff expression for the surface tension.

7.2.5 Equipartition Theorem

It will be recalled that the energy of an ideal gas, Eq. (7.23), is given by
(E'YY = (K) = 3NkgT/2. The Gaussian integrals of the kinetic energy con-
tribute kg7'/2 for each component of momentum. More generally, for systems
with intermolecular interactions there is a contribution of kgT'/2 to the average
energy for each quadratic degree of freedom in the Hamiltonian. This is called
the equipartition theorem.

There is a generalised equipartition theorem that gives the temperature as a
phase space average of a quantity related to the virial.® Recall from Ch. 5 that
the partition function for an isolated system of energy E is given by Eq. (5.22),

2(B) = N'AhBN / T §(H(T) - E), (7.40)

3A. Miinster, Statistical Thermodynamics, Vol. 1, §1.9, Springer—Verlag, Berlin, 1969. K.
Huang, Statistical Mechanics, §7.4, Wiley, New York, 1963.
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where the number and volume dependence is suppressed for brevity. The par-
titlon function in essence gives the weight or volume of phase space within dF
of the energy hypersurface. There is a related function that gives the weight or
volunie of phase space contained by the hypersurface,

Q(E) = ﬁ /dI‘ O(E — H(T)), (7.41)

where the integrand is the Heaviside step function. The two are related by

B0 (E)
9E

Since the entropy, which is the logarithm of the partition function, is extensive,
the partition function itself must grow exponentially with energy. This exceed-
ingly rapid rate of increase means that almost all of the volume contained by
the hypersurface is actually within close proximity to the hypersurface and one
has

Z(E) = Ag (7.42)

S(E) = kglnZ(E)
= kgl Q(E)+OhE. (7.43)

In the thermodynamic limit the last termn is negligible.

This result allows the evaluation of the desired average. Let x; be a com-
ponent of position or momentum of a particular molecule, and shnilarly for z;,
and consider the virial-like function z;0H(I')/0x;. The average of this is given

by

Ap 9 OH(T)
= —2F 9 [qre(r - 2 )
NUBNZ(E) OF / AEO(E = 1)z =5 -

Ag

5
= _— ('-' —
NUANZ(E) OF / ArO(E - 1)

x [a% (e, (H(T) — ) — 8,, {H(T) - E}

= %0—% ‘/dl—‘ O(E — H(D)) {H(T) - E}
- gt [ 4T 0r) - ) pur) - £)
- O(£ = H(T))]
_ QE)
)
_, [omem)”
= | ]

= §,ksT +OE™L. (7.44)
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The third equality arises from manipulation of the partial derivative (F is in-
dependent of x;, and 0z;/0x; = 6;;). The fourth equality follows from the fact
that H — E vanishes at the boundaries of the integration over z;. The first
integrand of the fifth equality vanishes on the energy hypersurface, and the in-
tegral over the second term is just the volume contained by the hypersurface.
The final equality manifests the fact that the inverse temperature is the loga-
rithmic energy derivative of the entropy, and that the contained volume and the
hypersurface volume are equal in the thermodynamic limit. This result shows
in particular that

<pm aH(F)> _ <rm aH(F)> = ks T. (7.45)

apia aria

This is the generalised equipartition theorem. (The Hamiltonian may be re-
placed by the kinetic energy in the first equality, and by the potential energy
in the second equality.) Notice that if r;, is a quadratic term in the potential
energy, then the averand is just twice the energy of this term. This confirms
that the contribution of each harmonic term in the Hamiltonian to the average
energy is kp1'/2.

The configurational term above is obviously related to the virial of Clausius,
Eq. (7.28). Summing over components and molecules gives

total
<Zrm o i )> = — (V') = 3NkgpT. (7.46)

This may be reconciled with the virial equation, by noting that the potential
energy that appears here includes the external contribution from the walls,
whereas only the internal part of the potential energy appears in Eq. (7.29).
Combining the two results one has (with 35, = 1/kgT)

_ NkgT 1 , ..
() = ——+37 V™)

— L int _ yytotal

A

1 U (¢
- 37 <Z e G = >
= <Z Tia eXt> . (7.47)

This expresses the pressure in terms of the external forces acting on the system.*

7.2.6 Average Temperature

The preceding generalised equipartition theorem allows the temperature to be
obtained as a phase space average. An alternative expression for the inverse

4M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, §2.4, Oxford Univ.
Press, Oxford, 1987.
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temperature may be obtained directly from the energy derivative of the entropy
of the isolated system.? Recall that the temperature is defined as

_ OS(E,N,V)

71— ) 7.48

35 (7.48)

and that the entropy is
1
S(E,N,V)=kpln ——— NTIAN /dI‘é(HN(I‘) - F). (7.49)
Now consider the transformation of phase space,

I"=T+n(T)AFE, (7.50)

where AF is an infinitesimal. The energy of the points transformed from the
original energy hypersurface is

Accordingly the choice

n(T)
n(T) - VHy(T)

represents, for arbitrary n(T'), a new energy hypersurface parallel to the original,

a(T) = (7.52)

Hn(TY) = Hy(T) + AE. (7.53)

In view of this the entropy of the new energy hypersurface is

S(E+AFE/N,V) = kpln —— N'l STEN / dV§(HN(T) — E — AE)
1 or’
= kpln ——== N1V / 1F'ar S(HN(T) — E).  (7.54)
It is straightforward to show that®
or’ -

Accordingly, the inverse temperature may be written
ksAFE
1
- — 1 ~ -1
AL In{l1+AEV-a(T'))
= (V-n(I')). (7.56)

5H. H. Rugh, Dynamical approach to temperature, Phys. Rev. Lett. 78 (1997), 772.
6In terms of the eigenvalues A; of the matrix A, |£+é| = Hz(l +X) =1+ Zz Ai +
ZK] My .. =14+Tr A+ [(Tr A)2 - Tr(AD)]/2+.. ..

8 =
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This result is Rugh’s expression.
One may similarly show that the second derivative is

I oy, Oy
oT; or, |

O’S(E,N,V)/kg . N
SE? B _ —<Tr [VAa(T)] > = — <

(7.57)
Gg=1
This quantity gives the heat capacity. It also confirms that Sgr < 0 (because
Tr(4%) = 32,42 > 0).

These results hold for any n(T), provided only that n(T') - VHx(T) # 0.
One possible choice is n(I") = VHy(T'), in which case

VHn(T)

a() = VHN(T) - VHN(T)

(7.58)

An alternative is n(I") = r;,, in which case

1 <aZHN(r)/arfa > (759)

ksT — \ (OHN(T)/Oria)?

7.2.7 Chemical Potential

The chemical potential is, in essence, the change in entropy upon adding a
particle to a system. For an isothermal system it was shown in Section 4.4 that

(~fpts) = I Z(N,V,T) =In Z(N =1, V. T). (7.60)

Exponentiating this and factorising the partition function into ideal and config-
urational parts one has

ATV QN V,T)
N VQN—1,V,T)
= B BT (7.61)

exp (—Ostis)

The first term is the ideal chemical potential, and the second term is the excess,
which is the nontrivial part. In order to write the excess as an average, one
needs to define the part of the potential energy that depends upon the Nth
particle,

AU(en; V™1 = Un(e™) = Uy (e 71). (7.62)
With this one has

fv dry fv drN_le_’BUN—l(erl)e_ﬁAU(rN;erl)

V [, deV-le=BUN-1(e¥ 1)

1 N—1
_ —BAU{rn;r )
v /v dry <e >N—1 ’ (7.63)

In this expression the Nth particle is a ghost or virtual particle; it does not
affect the other particles in the system as the configuration average is taken. In

o ex
e~ Bu
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effect, it tests the value of the potential throughout the subsystem and measures
how easy it would be to insert a particle into the subsystem. This is known as
Widom'’s test particle expression.”

Alternatively, this may be turned upside down and written

fv drNe—,BUN(rN)e,BAU(rN;rN_l)
I deNe—BUN (V)

_ <eﬁAU<rN:r”“>>N. (7.64)

ax
ePr —

In this expression the Nth particle is an actual particle of the subsystem and
affects the configurations of it. The averand measures the potential at the
position of an actual particle, and tells how easy it would be to delete a particle
from the subsystem.

7.3 Particle Densities and Distributions

The positions of the atoms of a crystalline solid are obviously not randomly dis-
tributed; they are described by a spatial density. Although a fluid is disordered,
there is, on average. local structure about cach molecule, and this is charac-
terised by the particle distribution functions. Each is the probability of finding
a specified configuration of a fow moleeules in the fluid, irrespective of the po-
sitions of the rest, for example. the probability of finding a molecule a certain
distance from a wall, or the probability of two molecules having a particular
separation. Moreover, 1nost averages can be written as integrals over the par-
ticle distribution functions. and there is a mumber of teclmiques for calenlating
the latter, as will be scen.,

7.3.1 Particle Densities of a Closed Subsystem

In Section 6.5 the one-particle distribution was introduced. It gave the proba-
bility of finding a particular molecule, say the first. at a particular position, say
r, and it was given by p(rIN.V.T) = (6(r — 1)), or

p(xIN.V.T) = /(1pN(1rNg)(F|N,V.T)5(rfrl)

= /(1rNg)(rN|N.V,T)5(rfr1)
Jv

1 ;N
- W/ are PN (r — 1) (7.65)
V. v

This is normalised to unity, [, drp(r|N,V,T) = 1, since the atom must be
somewhere in the volume.

"B, Widom, Some topics in the theory of fluids, J. Chem. Phys. 39 (1963), 2808.
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The average number of atoms per unit volume at r is

N
pW(x) = <Z 8(r — ri)> . (7.66)

For identical atoms each term in the sumn is identical, and so it is clear that
pM(r) = Np(r|N,V,T). This is called the singlet or one-particle density and
one can write it as

N N
WOpy= —° | Qe ¢ BUNED) 5 — 767
Pt Q(N,V,T)/v te x (767
or, since the Dirac delta makes ry = r,
N N
(1) = 1 [ gVl BUN(ET) 6
PN) = BN T, T)/ e (7.68)

For a uniform fluid (i.e., in the absence of any external potential), the singlet
density is constant, p(U(r) = N /V. This follows from the above expression by
choosing rp as the origin for the various integrations.® This is called the density
and is usually denoted p.

The two-particle density is essentially the average number of particles si-
multaneously at two positions, per unit volume squared. It is related to the
probability of simultaneously finding a particle at r and a different one at s,
and it is defined as

N N
pP(r,s) = <ZZ(5(rfri)5(sfrj)> , (7.69)

i=1 j7#i
and this is
N(N -1) N
2 _ Y T ) qeN 2 - BUN () .
P (rN,rN_1) Q(N,V.,T)/V r € ‘ (7.70)

The two-particle density is proportional to the pair probability function, which

is p(r,s|N,V,T) = (6(r —r1)d8(s — r2)), and this gives the probability of si-

multaneously finding particle 1 at r and particle 2 at s. The proportionality

constant is the normalisation constant for the pair density, namely N(N — 1).
The n-particle density of an isothermal subsystem is

NI
(N —n)IQ(N,V,T)

(n

PP (e =

/ dr,yq...dey e BUN () (7.71)
1%

This is proportional to the probability of simultaneously finding n particles
within drq, ..., dr, of £y, ..., r,, irrespective of the positions of the remaining

8A system must display the same symmetries as its Hamiltonian, Since by definition a
uniform fluid is translationally invariant, so must be the potential energy. Accordingly, the
transformation R; = r, —ry must leave the potential energy unchanged, UN(RN) =Upn (rN),
Obviously the presence of an external one-body potential breaks this symmetry and creates
an inhomogeneous fluid.
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N — n particles. That is, pg\?)(r") = (NU/(N —n))p(r"|N,V,T), since the
density is normalised such that

/V dr™ p(P (x7) = (NL_'W (7.72)

The subscript IV has here been appended to make it clear that this is the result
for a closed subsystem with N particles. It could similarly be appended to the
singlet and pair densities given explicitly above.

7.3.2 Particle Densities of an Open Subsystem

The n-particle density of an open or grand canomical subsystem is simply the
weighted sum over N. It is given by

M (gn) = L(; — 5)8(ry — S, —
P (S ) - (N — TL)' (1'1 Sl) (r2 SZ) Lo (rn Sn)
’ ©
B i A— BNP/J;LN
Z(p, V., T) N:n (N—n)
X /drN e~ PAUNEY )5(r) — S1)...0(r, —8,), (7.73)
or
n Y 1 oo A73N (3/3NN N
p( )(r ) = Z2(p. V. T) Z (N —n)! /dr"+1 Ldry e PUN "
TN N=n A
1 A—ZSN(:,/J;LN " "
= VT > QN V. T)p (7). (7.74)
EmV.T) = !
The normalisation is evidently
1 o~ A 3NN N!
de™ (n)(,.n — N.V.T
/ £ o) (x) E(u,v,T)N; OV
N!
= <7(N — n/)! >u s (7.70)

as expected. In the casc of the singlet density this is

/drp(l)(r) =(N),, (7.76)

and for the pair density it is

/drdsp<2> (r;s) = (N?), — (N),. (7.77)
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7.3.3 Ideal Gas and Asymptotic Limits

For a uniform ideal gas, which has 0 external potential, the configuration integral
is Q(N,V.T) = V" and the multiparticle density for a closed system is

() Nl NN-1 N-n+l

P a(r") = N-mvr vV v v (7.78)

If n <« N, this is just p”, where the singlet density is p = N/V. In the presence
of an external potential this is multiplied by the product of the Boltzmann
factors of the potential at the respective particle positions. Explicitly, the singlet
density is
N
1
ng,)id(r) =V (7.79)
and the pair density is
o) _ NN-—-1 o 1
PNa(T,8) = v v = F (I-N"). (7.80)
Notice the factor of N —1 that occurs rather than N; this difference is negligible
in the thermodynamic limit.
An ideal gas in an open system has

1 2 AT3NBuN N!
pg?i)d(r”) - = Z o N-n
2, V,T) &= NI (N —n)lV
_ A—Bne,@un
= o (7.81)

where the average density for the ideal gas is p = <N)u JV = A=3ePH. Notice
that unlike the closed system, the open system multiparticle density is the strict
product of singlet densities, even if the thermodynamic limit is not invoked.

Asymptotes

An ideal gas consists of noninteracting molecules. In this case the multiparticle
densities are just the product of lower-order densities, strictly so for an open
system. However, even real molecules, which interact at close separations, have
negligible influence on each other when they are sufficiently far apart. In this
asymptotic regime they are said to be uncorrelated, and the multiparticle density
also factorises. For example, if the first m particles are far-separated from the
remainder, so that r;; — co for all # < m and 57 > m, then

meJr") (r1, . Tman) ~ pflm)(rl, . ,rm)pgl) (Crnatse-sPrman), (7.82)
agsuming N > m + n. This effectively says that for uncorrelated particles the
joint probability is the product of independent probabilities. This is the leading
asymptote; the primary correction to this is proportional to the potential energy
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of interaction between the two groups of particles, as will be discussed in a later
chapter.

The opposite asymptotic limit is that of small separations. Real molecules
have a finite size that prevents them overlapping (see the hardsphere potential
or the 772 repulsion of the Lennard Jones potential discussed at the begin-
ning of this chapter). Accordingly the particle densities must vanish for any
configuration of overlapping particles,

P (™) -0, riy; — 0, for any i € [1,n], j € [1,n]. (7.83)

Compressibility

As can be seen from the above results for the ideal gas the difference between
the particle densities in an open and in a closed subsystem is negligible in the
thermodynamic limit, where N~! <« 1. The important exception is the integral
of the n-particle density itself, because then the correction is multiplied by the
volume of the system; the canonical result will differ from the grand canonical
result by terms of order V/N, which is not necessarily small compared to unity.

The integral of the pair density pﬁz)(r,s) may be obtained by subtracting its

asymptote pf})(r)pf})(s), which makes the integral convergent. Also, in view

of the normalisation Eq. (7.77), one may add the self-density, pf})(r)5(r —s),

which gives

/V drds [p (x,5) = o0 (x)pf(3) + P (1)o(x ~ 9)]

2
= <N2>“ —(N),. (7.84)
This is just the fluctuation in particle mumber, which as seen in Section 4.3.3
is the second chemical potential derivative of the grand partition function, and
which is related to the compressibility of the subsystem. The fluctuation in
particle mimber is strictly 0 in a closed system, so one sces that the integral of
the multiparticle densities do indeed differ between open and closed systems.

7.3.4 Particle Distribution Functions

The n-particle distribution functions arc defined in terms of the corresponding
densities by dividing by the singlet densitics

g™ ") = p™(x")/ Hf)(l)(ri)- (7.85)

The product of singlet densities represents the independent distribution of molec-
ules, as is the case for the ideal gas. Hence the n-particle distribution function
measures the correlations between particles, and the departure from unity arises
from their mutual interaction. As just discussed, (™ (r™) = 0 if any r;; < d (d
is the molecular diameter and molecules don’t overlap), and ¢(™ (r") — 1, if
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all r;; — oo (because the intcraction potential decays to 0 at large separations,
and particles no longer feel each other and are hence uncorrelated).

Perhaps the most important particle distribution function is the pair one,
since this is directly related to the structure factor, which is measurable by X-ray
or neutron scattering. Also, when the configurational part of the Hamiltonian is
pairwise additive, almost all thermodynamic propertics can be written as inte-
grals over the pair distribution function. For a uniform simple fluid (spherically
symmetric molecules far from walls or external fields), the correlation between
the particles depends only upon their separation In this case the two-particle
distribution function is called the radial distribution function g(r).

Excess Energy

For a uniform subsystem of spherical molecules with a pairwise additive poten-
tial, Uy (r?) = Zi\g] u(r;;), and the excess internal energy is

N
£ = <Z U(Tij)>

i<j
N(N -1
- %(u("ﬂN,N—l))
NN -1) N o BUNEN)
- 2Q(N, VT)/d‘" € u(rn,N-1)
N
= ﬁ/ drydry_1 U(TN,Nfl)/V(h'N_ze_rBUN(FN)
- ! dry d 2)
= 5 v rN(rN—lu('f'N7N_1)pN (TN,Nfl)
2
v
= 2 [ dru(r)g(r). (7.86)
2 Vv

Note that the distinction between grand canonical and canonical subsystems
is here unimportant because the decay of the pair potential makes the tail
of the pair density, where the two differ, unimportant. The integrand is the
energy of a pair of molecules at a separation r, weighted by the average number
of molecules per unit volume simultaneously at that separation, p%g(r). One
particle is integrated over all of space with the other particle at the origin, and
then the latter is also integrated over space, giving the volume factor. The
factor of a half accounts for the double counting. The volume element is of
course dr = 4mrr2dr,

Virial Pressure

The average of the virial of Clausius for a uniform system with pairwise additive
potential is, using Eq. (7.31),

N
1 _ int rN —1
M = garv S Dy
s Vs \'4 i#j



176 CHAPTER 7. INTERACTING PARTICLES

NIV [ sty
= 262(]\]"/’71)/‘/(211' e N 12U (712)

-1
= 7/ drq dr, p(z) (r12)r1ou’(r12)
\%

= %/Vdrp(z)(r)ru’(r)

= —27rp2V/ dr g(r)r3a/(r). (7.87)
o
Accordingly the virial equation, Eq. (7.29), gives the average pressure as
2wBp% [ )
(Bsps) = p — g’p / dr ' (r)g(r)r?, (7.88)
0

where the prime denotes differentiation with respect to argument. Again this
result is the same, with relative error N7}, for a closed and for an open subsys-
tem.

If there is in addition a three-body poteutial, then using Eq. (7.32) it con-
tributes to the average of the virial an amount,

N
-2 _ gt W N c‘)u(m',mk 9"k)
V(3)> = 7/ dr o PUN(r ) Z lrij—J( 2
< QINV.T) [y S ary;
_ —2N(N — 1)(N - 2) / deN o~ BUN'(EY) 23“(”'12#13,9213)
BQINV.T) vy ‘ 1z
-9 ) ria. 0
= 3—' / (h‘l dI'2 (11‘3 [)(3)(7’12.7’13.9213)7‘12W
v 712
_ 2.3 O O . T
= M/ (17'r2/ dssz/ df s 6
3 0 Jo Jo
x ¢ (r, s,0) r% (7.89)

This may be added to the ideal and the pair contributions.

Low-Density Limit

In the limit of vanishing density (e.g., when there are only two molecules in the
system), the probability of them being at a particular separation is given by
the Boltzmann distribution. Hence for a pairwise additive potential, the radial
distribution function is g(r) = exp —pu(r), p — 0. This limiting form for the
radial distribution function can be used to obtain the low-density expansion
of the internal energy and the virial pressure. As more particles are added to
the system, there is an indirect contribution to the cnergy of a pair at a given
separation, and this modifies the above limit. Notice that at large separations,
the low-density limit gives the asymptotic expansion g(r) ~ 1—gu(r), r — oo,
this asymptote also applies at higher densities, except that the potential will
then be multiplied by a density-dependent constant.
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7.3.5 Contact Theorem
Planar Geometry

A system confined between two walls may be represented by an external one-
body potential of the form V(z; L), where L is the distance between the walls.
In this case the configuration integrals have no explicit volume dependence; the
z integrals are infinite in both directions as it is the potential that confines the
particles. In terms of the volume of the system, V = AL, the derivative of the
thermodynamic potential gives the pressure. Writing this as an L derivative
gives the normal component,

(o0 1 8Z(N, A, L,T)
Pzz Z(N AL, T)  AdL
kT NN g N oMy O T avis
= d —BH(rVpT) 2 BY (z:;1)
N!AZ/ rrdpe oL Ee

_ 1 « O[=BV (21; L)]
- N!AZ/AdRI/,OOdZIN aL

N
X /drN‘1 deefﬁH*(rN,pN) H e~ BV (z::L)

=1

- _5/ dz1 ) oW (2), (7.90)

where H* is that part of the energy excluding the external potential, and p(¥(2)
is the singlet density. Due to the confining effects of the wall, p(U(z) — 0,
|2| — oco. (More precisely, p™V(2) = 0, |2| 2 L/2.) This is a formally exact
expression for the pressure of system in the presence of a one-body confining
potential. It has been derived for a canonical system but it should be clear that
the same expression holds for an open system.

A rather common case is when the external potential represents a hard
wall, V(2;L) = VB¥(2; L), or a hard wall plus a soft potential, V(z;L) =
V% (2 L) + V*°f(2; L). The L-dependent part of the hard-wall potential is

o0, z>L

ViY(z L) = { 0. a<1I. (7.91)

There may or may not be a similar hard wall at z = 0. The singlet den-
sity vanishes beyond the hard wall and is discontinuous at the hard wall since
it contains a factor of e V(%L Accordingly the (partial) cavity function
pgl)(z) = eﬁvhw(Z;L)p(l)(z) is continuous across the wall. Since the exponential
of the negative of the hard-wall potential is the Heaviside unit step function, and
since the derivative of the step function is the Dirac § function, the hard-wall
contribution to the above may be written

o° VY (2 L hw hw .
</8p1;§]> _ _[ ds [ 3 alfz ) BV (zL)} [e,av (z,L)p(l)(z):I
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oo —BVE¥ (2:1)
- [ et e

oo oL
= [zt 0
= (L)
pM(L). (7.92)

That is, the normal component of the pressure of the inhomogeneous system
equals the contact density at the hard wall. The full expression is

L soft 2
e = pl27) = [0 B ) (7.93)

— 00

This result holds as well for a sermi-infinite system as for a slit -pore of finite
width. In the former case, since the pressure must be constant thronghout the
system (since a systern acts as a volume reservoir for itself), far from the wall
p.. may be identified with the bulk pressure. Otherwise, it 1s still constant
throughout the pore but it is dependent on the separation of the walls.

Spherical Geometry

For the case of a spherical inhomogeneity of radins R, with external potential,
V(r; R), the derivative of the thermodynamic potential is similarly

OF(N,V,T;R) —ksT  OZ(N,V,T;R)
IR = Z(N,V,T:R) OR
= A4r ,/(; dr 72 %@pm(r) (7.94)

Strictly speaking, the left-hand side would be better expressed as the derivative
of the total uncoustrained entropy; in the thermodynamic limit this is —3 times
the Helmholtz frec encrgy. Again, if there is a hard cavity presemt, V(r; R) =
VI (r: R) + V5ot (r: R). this reduces to

OF(N,V,T:R)
OR
o ) OVSOft(T; R)

= kpT4n R\ (RY) + 47T/R drr 3R

pD (). (7.95)
Integrating this with respect to radius gives the solvation free energy of the
spherical solute. One expects that F ~ 47R%p/3 + 4nR%y, R — oo, where
p is the pressure, and v is the surface tension of the planar interface. Hence
this expression can be used to obtain the curvature dependence of the surface
tension,
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Summary

e Intermolecular potentials include Coulomb, hard-sphere, Lennard-Jones,
and a variety of other spherical pair potentials. In addition there exist
orientation-dependent potentials, three- and many-body potentials, and
external potentials.

e The partition function and its nontrivial part, the configuration integral,
appear as normalising factors in the microstate and macrostate probabili-
ties. Their logarithmic derivatives yield average values such as energy and
pressure.

e The particle densities and the related distribution functions give the local
structure of the molecules in a system. They may be used to obtain
averages such as energy and pressure by spatial integration.

e The pressure of a system is given by kg7 times the contact density at a
hard wall.



Chapter 8

Diagrammatic and
Functional Expansions

8.1 Virial Expansion

8.1.1 Mayer f-function

It is easy to treat noninteracting particles because the 3/N-dimensional configu-
ration integral factorises into independent integrals. At low densities, particles
are on average so far apart that their interactions are negligible, and the ideal
gas provides the correct limiting picture. For interacting particles, systematic
treatments begin with an expansion in powers of density. This will yield, for
example, the first correction to the ideal gas equation of state due to intermolec-
ular interactions.

The simplest and most common system dealt with is one in which the po-
tential energy consists solely of pair terms. That is, there is no density inho-
mogeneity due to a one-body external potential, and there are no three-body
and higher interactions. Whilst it is relatively straightforward to include many
body terms in the formalism, the complications that this introduces tends to
obscure the concepts being described. In addition there are practical difficulties
in implementing the full formalism, and this provides additional motivation for
focussing on pair-wise additive interactions.

What is sought is an expansion for the thermodynamic potential and thence
the pressure, which means that the configuration integral must first be dealt
with. For a pair-wise additive potential, the integrand of the configuration
integral may be written

N N
exp—BUN(x") = exp—3 > u(ri;) = [ exp - Bulry)- (8.1)
i<j i<

In general the pair potential u(r) goes to infinity at small separations, which
prevents molecular overlap, and goes to 0 at large separations, where molecules

181



182 CHAPTER 8. DIAGRAMMATIC AND FUNCTIONAL EXPANSIONS
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Figure 8.1: The Lennard Jones potential divided by kgT (full curve), its expo-
nential (dotted curve), and the corresponding Mayer f-function (dashed curve),
for ¢ = kgT.

no longer interact. Therefore its expounential goes to 0 at small separations
and to unity at large scparations. Since a dilute gas is characterised by large
separations between the molecules, it is convenicnt to define a function that goes
to 0 at large separations, thereby providing a basis for a well-behaved expansion.
Subtracting the large scparation asymptote, one defines the Mayer f-function,

flr) =e P 1. (8.2)

This has the convenient property that f(r) — 0, » — oc, which facilitates the
evaluation of the various integrals.

In Fig. 8.1 the behaviour of the various pair functions are shown. It may
be seen that f(r) is well behaved at small separations, f(r) =~ -1, 7 £ o, and
that it decays to 0 at large scparations at the same rate as the pair potential,
flr) ~ =pu(r), r — oo. The figure corresponds to a temperature T = €/kp.
At temperatures higher than this the influence of the attractive tail of the
Lennard—Jones potential is diminished, but the repulsive core is little changed
(because the potential is so rapidly increasing in this region). Conversely, at low
temperatures the attraction between the molccules, where f(r) > 0, becomes
relatively more important.

With this definition, the exponential of the pair potential becomes e(r) =
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f(r) + 1, and the integrand of the configuration integral becomes

N
exp —BUN(x™) = [][1 + f(ri)): (8.3)
i<
The product may be written out in full and the terms collected in groups of
increasing powers of f. For example, for N = 3 (writing fi; = f(r45)),

(1+ fr2)(1 4 fi3)(1 + fas)
= 1+ fis+ fis + fos + fiafis + fiafoz + fiafez + fizfisfes.  (8.4)

The number and variety of terms in the sum increases rapidly with N (for N = 4
there are 64 terms), and techniques for dealing with them will be given below.

8.1.2 Low-Density Expansion

In view of the general expansion, the configuration integral may be written

Q(N,V,T) = /VdrN exp —BUpn(rY)
N
= [ ¥ TJ0+ f)

_ /drN L+ ) flrig)+...| . (8.5)
\'4

i<j

For the moment only these two explicit terms will be treated. The contribution
of the zeroth term to the configuration integral is

Qo = /Vdr1 codry1 =V, (8.6)

This is the ideal gas contribution, and would have been obtained if f(r) = 0,
which is equivalent to u(r) = 0, or to T — oco. It also arises as N/V — 0.

There are no terms involving only a single atom (i.e., with only one index),
but there are N(N —1)/2 terms involving only a pair of atoms (two indices). All
of these terms give the same contribution because the indices are just dummy
variables of integration. Hence

QQ = W/Vdrl dI‘N f(’f’lz)
N(N -1) 9
- fVN /Vdrdrg fir)
= %VNV/Vdrf(T). (8.7)

The first factor is just p?/2, the factor VV is just Qg, and the factor V comes
from the integral over drs.
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These two terms contribute to an expansion of the configuration integral,
Q(N,V,T) = Qo(1+Q2/Qo+...). From the relationship of the Helmholtz free
energy with the logarithm of the partition function,

F(N,V,T) = —kgTIn Z(N,V,T) = —kgTIn [ 29V Q] (8.8)

and using the facts that Z'4(N, V,T) = V¥ /NIA3N and that In[1+2] = 2402,
one has

F(N,V,T) = —kgTln[VN/NIAN] —kgTIn[l+Q2/Qo +.. ]

_ pVksT

= NkgT(In[pA%] - 1) 5 /v dr f(r)+..., (8.9)

where the first term is the ideal contribution, Fi¢. Note that all the terms scale
with the size of the system. This is an expansion for the Helmholtz free energy
in powers of density. The first neglected term is of order p®V since it involves
three molecules at a time. This result was obtained by retaining the leading two
powers of f;;, and hence it may also be loosely considered a high-temperature
expansion, since f — 0 as T — co (at least for the attractive tail).

The expansion for the pressure follows by differentiation with respect to vol-
ume (at constant N; the integral, if convergent, is independent of the volume),

[)Zk'BT

p = pkpT — / dr f(r)+.... (8.10)
Here one sees the first correction to the ideal gas equation of state due to
intermolecular interactions. For interactions that are predominately attractive,
f(r) > 0, one sces that the pressure is less than that of an ideal gas at the same
density. The converse holds for repulsive interactions.

This result may be rederived from the virial equation, Eq. (7.88), by using
the low-density limit for the radial distribution function, g(r) = ¢=7%()! One
obtains

2 oo )
p = pksT — 2mp / dr r3———du(7)e’““(">
3 0 d'f’
2P kgT [ df(r
= kT + W_B/ a3 3(7)
3 0 dr
= pkgT — 27T/)2k:}3T/ drr? f(r), (8.11)
0
where f'(r) = —gu/(r)e=7*) has been used, as well as an integration by parts.

LThis result follows since two molecules separated by r can be considered a macrostate
whose energy u(r) removes entropy u(r)/T from the rest of the system. At low densities this
is the main effect, and the Boltzmann factor is the exponential of this separation-dependent
reservoir entropy. At higher densities the entropy of the remaining molecules becomes in-
creasingly dependent upon the separation of these two, which directly determines the avail-
able configurations, and this effect becomes significant compared to the indirect effect on the
entropy via the potential energy.
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The expansion of the equation of state in powers of density is called the
virial expansion

Bp="Y_ Buo", (8.12)
n=1

and the B,, are the virial coefficients. The first term, B; = 1, corresponds to the
ideal gas expression. The first correction to the ideal gas law at low densities is
the second virial coefficient, which from the above is

By = %1 /drf(r). (8.13)

Its significance lies in the fact that it provides a direct relationship between
the pressure and the intermolecular potential, at least at low densities. Hence
ab initio quantum potentials for pairs of molecules can be inserted into the
above, and the predicted coefficient can be compared to the measured one.
Alternatively, parameters in the model potentials discussed in the preceding
chapter can be optimised to provide the best fit to the measured coefficient over
a range of temperatures. In both cases the subsequent pair potential should be
applicable over the whole density regime, provided only that the assumption of
pair-wise additivity holds.

8.2 Cluster Diagrams

The evaluation of the higher-order virial coefficients is greatly facilitated by
the use of cluster diagrams.? These are a pictorial representation of multi-
dimensional integrals, together with a few rules for their manipulation. A di-
agram consists of lines and circles, and a simple diagram has at most one line
connecting any pair of circles. Although different meanings can be attached to
these quantities, to begin with a circle represents a particle and a line represents
the Mayer f-function. A filled circle corresponds to an integration. Hence

o—e =/drz f(ri2) (8.14)

represents the integral associated with the second virial coefficient. Filled circles
are called field points and open circles are called root points. If both circles were
filled, one would have

oo :/dn dI‘2 f(’f’lz). (815)
1 2

2@. Stell, Cluster expansions for classical systems in equilibrium, in The Equilibrium The-
ory of Classical Fluids (H. Frisch and J. L. Lebowitz, Eds.), p. 1I-171, Benjamin, New York,
1964. H. C. Anderson, Cluster methods in equilibrium statistical mechanics of fluids, in Sta-
tistical Mechanics. Part A: Equilibrium Techniques (B. J. Berne, Ed.), p. 1, Plenum, New
York, 1977. J.-P. Hansen and 1. R. McDonald, Theory of Simple Ligquids, 2nd ed., Academic
Press, London, 1986.
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The two integrals associated with Q3 are

3
%—g Z/drzdl"?,f(ﬁz)f(ﬁ?,), (8.16)

and
3
& :/dr2 drz f(r12) f(r13) f(res). (8.17)

These diagrams are labelled, but it is more convenient to work with unlabelled
diagrams. This is perhaps best illustrated using for example the configuration
integral with N = 3 given above. In terms of labelled and unlabelled diagrams
this may be written as

3
/ dry dry drs [J11+ f(rip)]

1<J

/dn drodrs [1+ fi2 + fis + fas
+fi2f1s + fasfis + fiafos + fiafisfos]

e3 ®3 3 3
Y R = 0+:\o
1 2 1 2 1 2 12
3 3 3 3
+I.+I\.+:§+h.
1 2 1 2 1 2 1 2
3 @3 3!‘\3. 3 @3 31 83
= = + = +—I.+—I>,
[ BN [ ]
3 € "0 9 T ee T3 ee
- 3![’ +‘\. +I +t } (8.18)
[ BN [ ]

The passage from the second to the third equality follows because the variables
of integration are dummy variables. There are only four distinct integrals, and
the prefactor accounts for the number of integrals of each type. This is the total
number of ways of rearranging the labels of the diagrams divided by the number
of rearrangements that leave the diagram invariant. The numerator is N, the
number of permutations of the field points of the diagram.

The denominator is the symmetry number S, which is the number of permu-
tations of the labels of an arbitrarily labelled diagram that leaves the topological
structure (le., the actual labelled bonds) unchanged. If there is one set of m
equivalent field points (two field points are equivalent if interchanging their la-
bels does not change the labelled bonds of the diagram), the symmetry number
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is § = m!. If there are distinct sets, the ith one of which has m; equivalent
field points, then S = [], m;!. Equivalence sets that are themselves equivalent
(i.e., simultaneously interchanging all their members leaves the structure un-
changed) also contribute to S. If there arc n; equivalent sets of type ¢, then
S = [[;ni!(m;1)™. And so on, until all the permutations of the labels that
preserve the topological structure of the diagram are counted, With reference
to the above example, in the penultimate equality, the points 1, 2, and 3 are
equivalent in the first and fourth diagrams, and hence S = 3!, and the points 2
and 3 are equivalent in the second and third diagrams, and hence S = 2!. The
final equality defines an unlabelled diagram as 1/5 times the same diagram with
arbitrary labels attached to the field points. This result is true in general: the
integral of the sum of all possible products of Mayer f-functions over N particles
is N!times the sum of all distinct unlabelled diagrams with N field points. The
N1/S that multiplies each corresponding arbitrarily labelled diagram accounts
for the fact that each labelled arrangement of bonds occurs once and once only
in the original expansion of the integrand.

As another example, the 64 terms for the configuration integral for N = 4
may be written

seeloelsellen e
+E+X+>_<I+X+?I.

The symmetry numbers of the diagrams of the first row are 41, 2x 2!, 21, 21 (21)2,
31, and 2!, respectively. The same symmetry numbers belong to the respective
diagrams of the second row, which are derived from those of the first row by
interchanging bonds and nonbonds.

Here is a sum rule that provides the total number of diagrams with a certain
number of bonds, and hence can be used to check the symmetry numbers, There
are N(N —1)/2 different f;; in diagrams with N field points. Hence the total
number of diagrams with N field points and m bonds is YWV-1/2C . If each
distinct unlabelled diagram with N field points and m bonds is indexed by i,
and S; is its symmetry number, then the sum rule is

(8.19)

il e (N(N —1)/2)!
: EZ(N(N )/ )Cm:m!(N(N—l)/Q—m)!' (8.20)

For the case of N = 4, the right-hand side of this equals 1, 6, 15, and 20, for
m = 0, 1, 2, and 3, respectively. These agree with the left-hand side using the
symmetry numbers given above.

Some nomenclature and rules are now required. The multiplication of two
diagrams, often called their star-product, consists of placing them side by side
and considering them a single, possibly disconnected, diagram. Any root points
with the same label are combined together, which has the effect of connecting
the diagrams at the common root point. A disconnected diagram contains at
least one pair of circles not joined by a path; a path is a sequence of adjacent
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circles; two circles are adjacent if they are directly connected by a bond. As an
example, here are two products, the second of which results in an disconnected
diagram:

gl*?—g:%—g) and ;*I:;I (8.21)

Star-irreducible diagrams cannot be decomposed into the product of two
other diagrams. (The diagram consisting of a single root point is not regarded
ag star-irreducible.) All connected unlabelled diagrams consisting of field points
only are star-irreducible., The star-product of such diagrams are disconnected.
The exponential of a set of star-irreducible diagrams is one plus the sum of all
possible star-products of the members of the set. For example,

exp[g]=1+g+g_. +M +.n (8.22)

Compare this to the usual e* = 1+x +22/21 4. .., and note how the symmetry
numbers take care of the factorials.

If removal of a circle (together with any bonds that touch it) causes a con-
nected diagram to become disconnected, then that circle is said to be a connect-
ing circle. If one of the pieces that became disconnected contains no root points,
then the connecting circle is sald to be an articulation circle. A diagram free of
articulation circles is sald to be irreducible. One can also speak of connecting
pairs and articulation pairs of circles. If all paths connecting two root points
pass through a circle, then that particular connecting circle is called a nodal
point. These are readily illustrated:

a p
1 .
1 1 2 1 2

The first diagrain containg an articulation point (a), the second a nodal point
(n), and the third an articulation pair of points (1p).

In the above the field points have unit weight. However, one can attach a
one-particle function to cach field point, as is the case when an external potential
causes a density inhomogeneity. This makes almost no change to the formalism,
For example, in an open system with singlet potential 1" (r) it is the generalised
activity, z(r) = A™3eP# exp —BuM(r), that appears. A typical diagram is then

e = [ draste) o), (8.23)

and the diagram is described as having an f-bond, a 1-root point labelled 1,
and a z-field point labelled 2.
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8.3 Functional Differentiation

8.3.1 Basic Rules

The partition function depends upon the pair potential; it is said to be a func-
tional of the pair potential. A functional is the continuum generalisation of a
function of many variables. The total derivative of a function is the sum of its
partial derivatives times the variation in each variable. The total derivative of a
functional is the integral of its functional derivative times the variation at each
point,

OF = /dflJ 52‘(2) du(z). (8.24)

For example, if
Flu] = /dmf(u(x)), (8.25)

where f(u) is an ordinary function, then

8F

Flu + su] — Flu]
_ / dz [f (u(z) + 6u(x)) — f(u(2))

- /dz £ (u(z))du(z), (8.26)

and the functional derivative is defined as

§F _ df(u)
@) flu(z)) = =g~ ey (8.27)

If
Glu] = /dm dy u(z)u(y)w(z,y) (8.28)

where the kernel is assumed symmetric, w(x,y) = w(y, z), and independent of
u(z), then

6G
5u() = Q/dy u(y)w(z,y). (8.29)

For the case of a functional of a function of several variables, for example,

Hv] = /dxdy Ffv(x,¥)), (8.30)

the functional derivative is, as one would expect,

H _ df(v)
Fofy) 4 Y=g,

(8.31)

v=v(x,y)
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In this example the functional derivative ‘undoes’ two integrals.
It is often necessary to take the functional derivative of a function rather
than a functional. Since one can write

u(z) = /dy u(y)d(z ~ y), (8.32)

one has the useful result that
du(x)
du(y)

= §(z—y), (8.33)

where it is the Dirac § that appears on the right-hand side.

A function can also be a functional, f(z, [g]), which is to say that the value
of f at z depends upon values of the function ¢(z) over the whole interval,
(e.g., f(=z[g]) = [dyk(z,y)g(y)). In these cases the functional derivative is a
two-point function,

f (=, lg])
=== = h(z,y,[g]). 8.34
Sy = e lo) (8:34)
The functional chain rule or change of variable formula is

5_f:/ , OF 3f(z[9])
59(y) 5f(2) dgly)

If one can invert the relationship and write the function ¢ as a functional of f,
g(z,[f]), then the two functional derivatives are inverses of each other. This
may be seen by taking Flg] = g(z) in the above, in which case the left-hand
side 1s just a Dirac § and one has

[, 85 lal) da(. 1)
(o) = [ a2 BT (8:36)

(8.35)

8.3.2 Uniform Limit

In the event that the function of interest is a constant, u(x) = u, then the or-
dinary derivative is related to the functional derivative by the length of the
relevant interval. This is because changing the value of the constant u is
equivalent to changing the value of the function u(z) over the whole inter-
val. Specifically, the function used in the first example given above becomes
F(u) = [, dz f(u(z)) = Lf(u), and one has

dF (u) gr oy OF(u) 0F(u)
du Ly(u) _Léu(z) _/dl Su(x)

(8.37)

u{z)=u

In practice the most common system is a uniform one. However, in the devel-
opment of the formalism it is often most convenient to obtain the results for
an inhomogeneous system. The uniform limit of the latter may be taken by
invoking a factor of volume as shown here.
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For the case of the functional of the function of two variables given above,
H[v], when the fluid is homogeneous the atomic pair functions become isotropic,
v(ry,re) = v(ri2). In this case one has

H]v] :/ dry drg f(v(ri2)) = V/ dr f(v(r)), (8.38)
v v
so that the functional derivative becomes
oH , . oH
5oy = V! N =Y 5 o (8.39)

Again one sees that a factor of volume appears in the isotropic case.

8.3.3 Derivatives of Diagrams

There are two rules for the functional derivative of diagrams. If G[z, f] is a
diagram of f-bonds and z-field points, then the functional derivative of G with
respect to z(ry) is the sum of all distinct diagrams obtained from G by replacing
a z-field point by an unweighted root point labelled 1. The functional derivative
with respect to f(ri,rs) is half the sum of all distinct diagrams obtained from
G by erasing an f-bond and turning the field points that it intersected into root
points labelled 1 and 2.
For example, let

Glz,f] = IZI

1
= 57 [ dridradrzdrs 2z 22374 f12f13.f1af23 54, (8.40)

where z; = z(r;) and f;; = f(r;,r;). By considering the total variation G with
8z, one sees that one obtains four terms from the product rule. Writing these
as labelled diagrams the functional derivative may be seen to be

me = i e e
- LA
1321 + ml. (8.41)

Hence one can see that the functional derivative with respect to the function
attached to the field points is just the sum of the distinct unlabelled diagrams
with a field point changed to a labelled 1-root point.

The total variation with respect to f is

1
60G = 1 /dn dry drydry 21202324

x [6f12 fizfiafosfs4 + four other terms ]. (8.42)
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Hence one has

5G
0 f(r1,r2)

1{4 3 4 2 2 3 1 2 4 2
%I O N (R e vt
4|1 2 1 301 4 3 4 3 1
1 4 3 4 3 4 3
SRR CRZIEER I il
4 1 2 1 2 1 2
= + + (8.43)
21%2 1m2 1%2‘ '

Note that for a homogeneous fluid, the first two diagrams in the bracket are
numerically equal, but that they must still be counted as distinct due to the
labelling on the root points., One sees indeed that the functional derivative
with respect to the bond function is just half the sum of the distinct unlabelled
diagrams obtained from the original by changing two of the adjacent field points
to labelled root points and erasing their connecting bond,

8.4 Particle Densities

Iu Section 7.3, various particle densities were expressed as averages., Here the
results are given in terms of the functional derivative of the partition function.
For an open system with an external potential u{!)(r), the spatially varying
activity is z(r) = A=3ef# exp —Bull) (r). Defining the ‘excess’ part of the poten-
tial energy as Uy (r'V) = Uy (rV) — va:l 1M (r;), the grand partition function,
Eq. (7.17), may be written

[s] N

—_ 1 _ * rN

=(u,V,T) = E N /drNH[z(ri)} e~ AUNET) (8.44)
N=0 - =1

I terms of these, the n-particle density for an open system was given in Sec-
tion 7.3 as

[s] N
1 1 « (N
n)ran § N N o= BUNET)
oY) = E(u, V,T) (N—'n/)!‘/dr II[Z(I‘Z)](’ :

i=1

x d(r; — SS‘ O, —s) (8.45)

This expression for the n-particle density as an average in an open system will
now be compared to the derivatives of the grand partition function in order to
express the densities in terms of these derivatives.

The activity functional derivative of the grand partition function is

5= < N N « (N
= _ v N Nedone™| (84
e = LW [ e ary ] troe TN CED)

The factor of N in the numerator arises from the product rule and fact that
the dummy variables of integration are all equivalent. Comparing this with the
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above average for n = 1, one concludes that the singlet particle density is given
by

z(r) 8=
p(l)(r) = (E,) 52(1,)‘ (8‘47)
Similarly, the second functional derivative is
(52'— dI‘3 dI‘N * o N
3] e~ BUNCET) . (8.48
52( Z / i—3 [Z(rl)] ¢ ri =r,s ' ( )
and it is evident that the pair density is given by
2;—
@) _ z(r)z(s) 8°Z 4
p(rs) = 62(r)oz(s) (8.49)
The general result is
() (e _ z(s1) ... 2(sy) =) 8 50
") = §z(s1)...02(sy)’ (8.:50)

In the singlet case, one can write the right-hand side as a logarithmic deriva-
tive,

6ln=

pM(s) = o AP2(s)’ (8.51)

(The constant thermal wavelength is included to make the argument of the log-
arithm dimensionless.) Since the numerator is the unconstrained total entropy,
and since the denominator is essentially the one-particle potential, this shows
that the singlet density and the singlet potential are conjugate variables. In the
homogeneous limit, according to Eq. (8.37) this becomes

1 0lnZ kT OIn=
VolnA3z V. du
which is of course one of the fundamental results of the open system, namely
that the equilibrium number of particles is given by the negative of the chemical
potential derivative of the grand potential, Eq. (3.10).

For the higher-order densities the logarithmic derivative gives additional
terms. For the pair case, it is straightforward to show that

5 In=
5InA3z(r)5In A3z(s)

p= (8.52)

- ”&ia{éz eyl H _ﬁUW)é(“*S)}
= Bes) - SO 4 D@, 9 (853)

The product of singlet densities that appears here would be the pair density if
particles at r and s did not influence each other. Hence the difference between
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the first and second terms represents the degree to which these two positions
are correlated. The final term is essentially a correction for the self-interaction
that is counted in the product of singlet densities. It does not appear in the
form

5%In=

) 5y~ P09~ @) (8.54)

The pair contribution to the potential energy may also be treated explicitly
by writing U% (cV) = Un (eV) = SN w® (r;) — >ic; u® (ri,r;). Defining the
exponential fiinction e(r;,r;) = exp —Bu® (r;,r;), the grand potential becomes

N
2, V,T) = Z N¥/drNH 2(ri) [ le (r;,1;)] e PUNEY), (8.55)

i<

The functional derivative of this is

= drs...dry N
= 3- N ) 4 o UL (M)
- z(r; e(r;,r
53([‘1’['2) Z / E[ ( )}E [ ( ])]6
N )
2(3(r1,r2)p (r1,r2). (8.56)

The differentiation gives N(N — 1)/2 identical terms, and the prime on the
second product indicates that the ij = 12 termn is excluded. Writing this as the
logarithmic derivative one has an alternative expression for the pair density,

oln=

(@) = —2kpT —r—.
P (r),r2) B2 5u®@)(ry,15)

(8.57)
Since In = is the unconstrained total entropy, this result may be interpreted as
saying that the pair potential and the pair density are conjugate functions. In

view of Eq. (8.39), in the homogeneous and isotropic limit the pair functions
only depend upon particle separation and this result reduces to

—2kgT 46InZ=

@) .
14 5u(2)(r12)

ri2) = (8.58)

8.5 Expansions of the Density and Pressure

8.5.1 Grand Partition Function

The grand partition function for a fluid with one- and two-body potentials is

BT

N=0

N N
()] [T + f(xses)ldry . dew. (8.59)

=1 i<



8.5. EXPANSIONS OF THE DENSITY AND PRESSURE 195

Expanding the product of f-bonds, the first term has no bonds and is just

S NN > N
Zm/dr Hzl = ﬁ(.)
N=0 i=1 N=0

= exple)

-1+ +®*4° +' '+.... (8.60)

The second term has a single f-bond, and since there are N(N — 1)/2 distinct
pairs it is

PO T | D IR e
I+I .+I .+.m (8.61)

The third term has two f-bonds joined at a common point. There are N(N —
1)(N — 2)/2 distinct ways of doing this, and one obtains

Z/ f12f23HzL

) I_. i J(V=3)
I_. I_. I_. (8.62)

The fourth term has two unconnected f-bonds,
oo dI‘N N
Z/mflzf&;nzi
N=4 =1
I I Z )N —4)
II+I I +I I’+..‘. (8.63)
o o

This pattern continues and one obtains for the diagrammatic expansion of the
grand partition function

y(V=2)

= = {one plus the sum of all distinct simple diagrams
with one or more z-field points and f-bonds}

1+.+:+I+:’+I.+I_.+k.+.m (8.64)
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Recall that a simple diagram is one with at most one bond between any pair
of points. Notice how the symmetry number in the denominator of the labelled
diagrams was incorporated into the unlabelled diagrams.

Now the fact that disconnected diagrams appear in this sum indicates that
it is the exponential of connected diagrams. Hence the logarithm of the grand
partition function, which is the unconstrained total entropy and which is related
to the grand potential, is

InE = {the sum of all simple connected diagrams
with one or more z-field points and f-bonds}

.+I+I_.+h.+I_I+IZ:+.... (8.65)

For a homogeneous system the pressure is p = —Q/V = kgTV~!InZ, and this
provides the expansion of the pressure in powers of the activity.

Three-Body Potential

The inclusion of many-body potentials is a formality. In the event that the
potential energy cousists of one-, two-, and three-body terins, in addition to
the pair Mayer f-function, one defines a triplet function f(?’)(rl, ro,r3) =—1+
expu® (ry,ro,r3). It then follows in a straightforward mauner that

InZ = {the sum of all simiple connected diagrams with one (8.66)

or more z-field points, and f*)- and f®-bonds.}
‘Simuple’ means that there is at most oue bond of a given type between a pair
or triple of circles; it does not exclude simultaneous connection by bonds of

different types. It is evident that this ean be extended to all possible many-
body interactions.

8.5.2 Density
The relation between activity and deusity follows from the above functional
derivative expression for the singlet deusity, Eq. (8.47),3

o) = )

= {the sum of all simple connected diagrams with a z-
root point labelled r, and 0 or more z-ficld points.
and f-bonds}

= +g+! +I +§ +II+iI““(8‘67)
O
These diagrams may be divided iuto two sets: those in which the root point
is an articulation circle and those in which it isn't. (Recall that an articulation

31n this section the label r attached to the root point in the diagrams has not been shown
explicitly.



8.5. EXPANSIONS OF THE DENSITY AND PRESSURE 197

circle is the sole connection between a set of field points and the rest of the dia-
gram.) Taking out the factor of z(r) common to all the articulation root points,
the exponential of the subset in which the 1-root point is not an articulation
circle (called the star-irreducible diagrams) yields the diagrams of the entire set.
Therefore the logarithm of the left-hand side divided by the common factor is
just the star-irreducible diagrams,

n—— = {the sum of all simple connected diagrams with a 1-
#(r) root point labelled r that is not an articulation point,
and one or more z-field points, and f-bonds}

g+ I + T> + i I + I:‘: + :4 .. (8.68)
Now a subset of these diagrams has no articulation points at all; the remainder,
in which some field points are articulation points, is just the former with the field
points decorated with all the simple connected diagrams with one root point.
(Decorate means to attach by the root point at that field point.) However,
these decorations are just the diagrams of the singlet density, Eq. (8.67), and
the procedure of removing the articulation field points corresponds to replacing
the 2-field points by p-field points. One has
r R N N N N
n plr) = {the sum of all simple irreducible diagrams with a

#(r) 1-root point labelled r, one or more p-field points,
and f-bonds}

FS MRS o800 048 ST
Here irreducible means free of articulation circles. This is an example of the
very powerful procedure of topological reduction, whereby an infinite class of
diagrams is reduced to a smaller number (albeit still infinite) of diagrams with
simpler structure, by replacing the function attached to each circle or line.

This expression enables the activity of a homogeneous fluid to be given as
an expansion in powers of density. From it the virial expansion of the equation
of state, which is the expansion of the pressure in powers of density, can be
derived. For a homogeneous fluid, the last expansion may be written

A%z =InA% — > 80", (8.70)

n=1

where the 8, are the irreducible Mayer cluster integrals, as defined in Eq. (8.69),
but with unit weight for all circles (3, i1s the sum of all such diagrams with n
field points). Now since PV/kgT = InZE, and since the homogeneous limit
of Eq (847) is p = (2/V)0InZ/0z, it follows that (0P/Jz) = pkgT/z, or
(0P/0p) = (pksT/z)(0z/0p). Hence

gp — /pdp,p,dlnA?’z
0 Y
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o0
n
p {1 - Z n—HﬁnPn

n=1

_ O_%g_g _g{ererm}—m‘ (8.71)

In these diagrams, the field points and the root points have weight p. This is
the virial expansion, with the virial coeflicients being B,y = —8,n/(n + 1).
It can be seen that the first correction to the ideal gas equation of state, Bs,
agrees with that given above, Eq. (8.13).

Many-Body Potentials

Asin the case of the activity expansion of the partition function, it is straightfor-
ward to include many-body potentials in the formalism. The idea of a connect-
ing circle is essentially unchanged: when a circle is erased, it and all the bonds
impinging upon it are removed from the diagram. Accordingly, the expression
for the density in terms of irreducible diagramus, Eq. (8.69), is unchanged, with
f-bonds interpreted to mean any of the pair and many-body Mayer f-functions.
For example, for a homogeneous, isotropic fluid with a triplet potential, the first
irreducible Mayer cluster integral is unchanged anud the second is explicitly

Pr = %/drz drs f(r2)f(rzs)f (rs) {1 + ¥ (T12,T23,T13)} ‘ (8.72)

8.5.3 Various Density Expansions

The virial expansion gives the grand partition function as

>0
ME=V> By, (8.73)
n=1
where By = 1, and for n > 1, B,y = —3,(T)n/(n + 1). (The irreducible
Mayer cluster integrals are independent of volume if the integral of the Mayer
f-function is convergeut.) Since the grand partition function depends upon
the chemical potential, or equivalently the activity, Z(z, V,T), oue concludes
that the density that appears on the right-hand side is the equilibrium one,
p = p(z,T). Explicit expressions for the density as a functional of the activity
were given in Egs. (8.67) and (8.68) above.
Equation (8.69) gives the activity as a function of density. It may be rewrit-
ten as

2(r) = p(r) exp —cV(r; [p]), (8.74)

where the one-particle direct correlation function is simply the right-hand side
of Eq. (8.69),

cD(r;p]) = > Balr)p™ (8.75)
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For a homogeneous fluid, these represent the density expansion of the chemical
potential,

InA%2 = Bu=1InA% - > B.p" (8.76)

Clearly the activity that appears here is the equilibrium one, z = Z(p,T). In
view of this density representation, one can regard the density as the indepen-
dent variable in the virial expansion and write the grand partition function as
Ep(p, Vw T) = E‘(E(p7 T)v ‘/7 T)

The grand potential is the logarithm of the grand partition function, and for
a homogeneous system this is Q(p, V,T) = —kgT InZ(u, V,T). The Helmholtz
free energy is F(N,V,T) = Q(z, V,T) +uN. Accordingly, the above results can
be used to obtain the density expansion of the Helmholtz free energy,

BF(N,V,T)/V = pln[A3p] Zn—l—l ntt (8.77)

As another example, the isothermal compressibility was given in Eq. (3.65)
as the pressure derivative of the equilibrium volume. It may be inverted and
rewritten in terms of the density derivative of the pressure, which lends itself to
the virial expansion,

op
-1 __ 1 n—2
= —p = kgT E B,p R 8.78

The excess cnergy can be expanded in powers of density by writing

olnZ=
X . _
( op >z,

e dInE p
- ( 55 ) ( 9 >ﬁ,v(aﬁ>z‘ (8.79)

(This is the excess energy because the temperature-dependent contribution from
the kinetic energy that appears as the thermal wavelength in the activity is held
constant.) Using the virial expansion one obtains

>0

Oln= n oo
= =—VY —B,p"", 8.80
(%57) =Vt (850
and
In= >
(a - > =V -V ng.p, (8.81)
9 Jav =1

where 3, = 868,/00. Differentiating the density expansion of Inz, Eq. (8.70),
one can show that

ap _ Z?ﬂﬁnﬁ”l
(5). - = 32
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By, 20944 Bs 21223
By 27415 Bs 1.5555
By 26362 B, 1.1647

Table 8.1: Hard-Sphere Virial Coeflicients (Units of d)

It therefore follows that

E™/V = Z ~ + A (8.83)

This density expansion for the energy may be combined with the expan-
sion for the Helmholtz free energy above to give the density expansion for the
subsystem entropy density. Since F = E — TS, one obtains

— B
On— PPn jnt1,

3 Bn
S/ksV = p—1In[A®p +Z —

n=1

(8.84)

The temperature that appears on the right-hand side is the equilibrium one,
T(E,N,V). Alternatively, one may regard the energy that appears as an argu-
ment of the entropy as the equilibrium one, S(E(N,V,T), N,V)).

8.5.4 Hard-Sphere Fluid

The virial coefficients for a fluid interacting with a hard-sphere potential have
been obtained analytically up to Bs, and numerically for higher orders.* For a
hard-sphere diameter of d, so that «(®(r) = co, 7 < d, the Mayer f-function
is f(r) = =1, r < d, and f(r) = 0, r > d. Because the potential is either
infinite or 0, the Mayer f-function is independent of temperature, and all of the
thermodynainic properties of the hard-sphere system have a trivial temperature
dependence. The second virial coefficient is

-1
By = b=+ / dr f 7Td3 (8.85)
The third virial coefficient is
) -1
By= g = /drdr’f(r)f(r')fﬂr —r)), (8.86)

which can be evaluated to yield Bs = 572d%/18. Table 8.1 lists values for the
first seven virial coefficients.

In the case of the hard-sphere fluid it is conventional to work with a dimen-
sionless form of the density called the packing fraction, n = npd®/6. Carnahan
and Starling® observed that when the virial expansion was written in terms of

4J. -P. Hansen and 1. R. McDonald, Theory of Simple Liquids, 2nd ed., Academic Press,
London, 1986.

5N. F. Carnahan and K. E. Starling, Equation of state for noninteracting rigid spheres, J.
Chem. Phys. 51 (1969), 635.
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14 -
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10

p/pkgT

pd’

Figure 8.2: The pressure of a hard-sphere fluid relative to that of an ideal gas.
The bold curve is the Carnahan-Starling equation of state, and the remaining
curves use successively more terms in the virial expansion, truncating it at By
(bottom) and at By (top).

the packing fraction, the first several coefficients were integers or close to inte-
gers. A quadratic function of the index was fitted to these three and shown to
predict the remaining three known coefficients reasonably accurately. Carnahan
and Starling summed the resultant series to obtain an analytic approximation
for the hard-sphere equation of state,

P 1449’ -7
pksT (1—n)3

(8.87)

It turns out that this approximation is almost exact over the whole fluid regime,
and it has therefore proved extremely convenient in the study of hard-sphere
fluids and of more general fluids that use the hard-sphere fluid as a reference.
Figure 8.2 compares the virial expansion truncated at successively higher
orders with the Carnahan—Starling equation of state, which for present purposes
can be regarded as exact. In general the pressure for the hard-sphere fluid
increases at a rate faster than that for an ideal gas. (The ideal equation of state
would be a horizontal line in the figure.) This is particularly marked approaching
the fluid-solid transition (pd® ~ 0.95), as it becomes increasingly difficult to
pack the spheres into the available volume. Because the hard-sphere potential
is infinite when nonzero, the effective critical temperature of the system is 0,
which is to say that the hard-sphere fluid is always supercritical and it displays
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no liquid—vapour transition. It can be seen that at low densities all the virial
approximations agree. As the density is increased, one needs to retain more
terms in the virial expansion to secure agreement with the exact results.

As an analytic expression, the Carnahan-Starling equation of state can be
integrated or differentiated as required. For example, the pressure is the volume
derivative of the Helmholtz free energy. In terms of excess quantities it is

_OFX(N,V,T) _ p*9F(N,V,T)

ex _ — . 8.88
ov N op (8.88)
This can be integrated with respect to density to give
14 d / ex !
F*(N,V,T) = NkpT / Ao 5p7(7)
o P P
P in’ 1 2 _ 53
~  NkgT / dn’ [+_f+¥ 1
o 7 (1—=mn)
1(4 — 31)
= NkpT——. 8.89
P2 (8.89)

This is the Carnalian Starling approximation for the excess Helmholtz free en-
ergy of the hard-sphere fluid. One can differentiate this with respect to nuniber
(at constant volume) to obtain the excess chemical potential. Alternatively,
since at equilibrimin —pV = Q = F — uN, one has

_F(N,V.T)+p™V _ 1+5n—6n>+21°
B NkpT B (1—mn)3

Tt is these closed formn analytic expressions that make the Carnahan-Starling

approximation particularly conveunient. More accurate but less convenient fits
to the hard-sphere equation of state also exist.®

Bu* (8.90)

8.5.5 Lennard-Jones Fluid

For the case of a Lenuard Jotes poteutial, 1w (r) = 4e[(a/r)'2 — (o/r)5], it
is conventional to defitte dimensioiiless temnperature, detsity, and pressure by
T* = kgT/e. p* = po>. and p* = po? /e, respectively. Iu this case the Mayer
f-function is temperature-dependent. and the therniodyuainic properties of the
Leunard-Jones fluid are nontrivial functions of temperature. Unlike the hard-
sphere fluid, because of the nonlittear nature of tlie poteutial oile cannot evaluate
even the second virial coefficient analytically. However, as a one-dimensional
integral it is relatively straightforward to evaluate munerically, and the results
have been fitted to an equation of the form”

B} = 217" 4 ag + a3(TH)Y? 4 2y /T + 25/(T7)?, (8.91)

where B = Byo 5. The coefficients are listed in Table 8.2.

6J. J. Erpenbeck and W. W, Wood, Molecular dynamics calculations of the hard-sphere
equation of state, J. Stat. Phys. 35 (1984), 321.

7J. J. Nicolas, K. E. Gubbins, W. B. Streett, and D. J. Tildesley, Equation of state for the
Lennard-Jones fluid, Mol. Phys. 37 (1979), 1429.
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z; -0.044481 =z, 3.8397
zo  T2738 x5 -2.0058
zy  -14.343

Table 8.2: Coeflicients for the Fit of the Lennard—Jones Second Virial Coefficient

0.5

0 5 10 15 20
1/pc’

Figure 8.3: The equation of state of a Lennard-Jones fluid for, from bottom to
top, T* = 1.2, 1.35, and 1.5. The horizontal line ties the coexisting vapour and
liquid densities. The inset tests the two-term virial expansion (dotted) at low
densities. The critical temperature, density, and pressure are T} = 1.35, p} =
0.35, and p} = 0.142, respectively.

The equation of state of the Lennard-Jones fluid has also been obtained and
fitted to a polynomial in density and temperature by the aforementioned Nicolas
et al. The result is shown in Fig. 8.3 for a subcritical, critical, and supercritical
isotherm. For low temperatures the pressure is a nonmonotonic function of
density. In fact, regions where 9p/0p < 0 are unstable. This corresponds to
the two-phase region of liquid--gas coexistence; the coexisting densities and the
vapour pressure obtained by the Maxwell construction are shown (see below).
The negative pressures on the liquid branch with positive compressibility are
metastable states. Above the critical temperature the pressure is a monotonic
increasing function of density. At a given reduced density the pressure of the
Lennard-Jones fluid is much less than that of the hard-sphere fluid (cf. Fig. 8.2).
This is in part because of the attractive r—9 tail of the Lennard-Jones potential,
and in part because the effective core diameter of the Lennard—-Jones potential
(defined as when the potential becomes greater than = kgT) is less than o,
so that the reduced density is effectively smaller than po3. In the inset to the
figure it can be seen that the two-term virial expansion, p* = p* 4+ B3 p*2, works
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well at low densities but that it fails badly as the density gets larger.

Liquid and vapour phases coexisting in equilibrium must necessarily have
equal pressure, p; = p, and equal chemical potentials, u) = p, since they can
exchange number and volume with each other. The Mazwell equal area construc-
tion finds the coexisting densities by demanding that the (signed) area between
the isotherm and the tie-line vanishes when plotted in terms of the volume per
molecule, v. In terms of the density p = 1/v, denoting the coexistence pressure
by pg and using the virial expansion for the pressure, this is

0 = [ Litr) - pol

02

v

oo Pl
p" Po
= 1 — A il
= o
o0 Pl
= l:l + lnp - Z ﬁnpn
n=1 pv
= Inz(p) —Inz(py). (8.92)

The penultimate equality follows by writing p(p) in place of pg, which is valid at
the respective limits, and then using the virial expausion. The final line, which
follows from Eq. (8.70), shows that the Maxwell construction corresponds to
equality of the chemical potentials of the two phases.

Summary

e The Mayer f-function goes to 0 at large separations, aud it transforms the
Boltzmann factor in1 the iutegrand of the partition fuiction into a form
suitable for expausion.

e Cluster diagrams are a convenient and graphic representation of the multi-
dimensional integrals that appear in statistical mechanics, and they pro-
vide a picturesque method for deriving many results (see Table 8.3).

e Functional differeutiation is another powerful procediire particularly suited
for statistical mechanics. The various particle deusities may be expressed
as activity derivatives of the grand partition function.

e The activity expansion of the grand partition function may be expressed
more compactly in terms of the density, and this provides explicit results
for the coefficients that appear in the virial expansion of the pressure.

e The first three virial coeflicients of the hard-sphere fluid are known ex-
actly, and higher-order coefficients have been obtained numerically. The
Carnahan-Starling equation of state is a convenient analytic approxima-
tion that is accurate over the whole fluid regime.
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e The Lennard—Jones fluid displays a critical point and liquid-gas coexis-
tence. Its virial coefficients are temperature-dependernt and are not known

analytically.

Adjacent

Articulation circle
Bond

Cluster diagram
Connected diagram

Connecting circle
Connecting pair

Field point
Irreducible diagram

Labelled diagram

Nodal circle

Path

Removal

Root point

Simple diagram
Star-irreducible
Star-product
Symmetry number

Unlabelled diagram

Directly counected by a bond

A connecting circle whose removal creates at least
one fragment composed only of field points

A line connecting two circles representing a pair func-
tion; higher-order bonds exist

A pictorial representation of a multidimensional in-
tegral

A diagram with at least one path of bonds between
any pair of circles

A circle whose removal causes the diagram to become
disconnected

A pair of circles whose simultaneous removal discon-
nects the diagram

An integrated coordinate denoted by a filled circle

A connected diagram with no articulation circles

An integral with all circles labelled with their coor-
dinates

A connecting circle whose removal severs all paths
between two root points

A linear arrangement of sequentially bonded circles

The erasure of a circle and its impinging bonds, or
the erasure of a bond and rooting its terminal circles
A nonintegrated coordinate denoted by an open, la-
belled circle

A diagram with at most one bond connecting any
pair of circles

A diagram that is not the star-product of two other
diagrams

Two diagrams placed in parallel and sharing their
common labelled root points, if any

The number of permutations of field point labels that
leave the diagram with the same labelled bonds

A representation of all the labelled diagrams with a
particular structure that appear in the product ex-
pansion over the field points

Table 8.3: Diagrammatic Nomenclature



Chapter 9

Pair Functions

9.1 Density Expansions of the Pair Function

The pair probability function was defined in Section 7.3 as!

p(r,s) = (§(r) —r)d(ry —s)). (9.1)

This gives the probability of finding the particle labelled 1 at r and the particle
labelled 2 at s. The pair density in a closed system is simply proportional to
this,

p(r,s) = N(N — 1)p(r,s). (9.2)

This is colloquially sald to give the probability of finding any two particles
simultaneously at the given positions. Strictly speaking this is an average and
not a probability; integrating the pair density over r and s gives N(N — 1), not
unity. One can say that the pair density is large when there is high probability
of finding two particles simultaneously at the two positions, and that it is 0
when the two particles can’t be there simultaneously.

When the positions are well separated (i.e., much beyond the range of the pair
and many-body potentials), the pair probability function becomes the product
of singlet functions. This is because whether particle 1 is at r can have no
influence on particle 2 being at s. The particles at these positions are said to
be uncorrelated and one has p(r,s) ~ p(r)p(s), {r — s} — oco. Since p(r) =
Ngp(r), one sees that asymptotically the pair density equals the product of
singlet densities,

p(r,s) ~ p(r)p(s), [r —s| — co. (9.3)

11n this chapter, where ambiguity is removed by the number of arguments, the superscript
denoting the order of the density and distribution functions is dropped.

207
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9.1.1 Diagrammatic Definitions

The pair density can be expressed as

p(r,s) = (N(N—=1)é(ry —r)é(rz —s)),
_z(r)z(s)  6°E
B E  5z2(r)dz(s) (9:4)

For a homogeneous system, z(r) = z and p(r) = p, and for an isotropic sys-
tem f(ry,r2) = f(ri2) and p(ry,r2) = p'?(r12). The pair density can be nor-
malised by the product of singlet densities to give the pair distribution function,
Eq. (7.85),

plrira) (9.5)
p(ri)p(rs)

As mentioned above, at large separations the density at r; is not influenced
by the density at ro, and the two positions are said to be uncorrelated. The
joint density is just the product of the pair density, aud hence the normalisation
ensures that the pair distribution function goes to unity, g(ry,ro) — 1, 112 — 0.
For the case of an isotropic fluid, this is called the radial distribution function
and it is denoted simply ¢g(r12). In view of this asymptotic behaviour it is
convenient to define the total correlation function,

h(ry,re) = g(ry,re) — 1. (9.6)

This measures thie degree of correlation of thie two positions. Where the particles
exert no influence on each othier, they are said to be uucorrelated, and h = 0.
Tlis obviously occurs at large separatious int all systems, and at all separations
in the ideal gas. Real particles becomie increasingly correlated with each other as
their separation decreases. As they approach each other, r15 — 0, then g(r)2) —
0 and h(r2) — —1, because there is 0 probability of molecular overlap. Positive
values of the total correlation function correspond to an enhanced density at
that separation (due, for example, to a well in the intermolecular potential or
to favourable geometric packing of the molecules). Conversely, when the joint
deunsity is reduced, the total correlation function is negative.

Equation (8.57) gave the pair deusity as a logarithunic derivative of the grand
partition function, aud it may be written as

dln=
6f(ry,r2)’
where the fact that § f = de has beeun used. Using the diagrammatic definition,

Eq. (8.65), and recalling that differentiation by a pair function is half the sum
of distinct diagrains obtained by erasing a bond, this gives

g(rhr?) =

p(ri,ro) = 2e(ry, ra) (9.7)

p(ri,rz) = {the sum of all simple connected diagrams with z-
field points and f-bonds, and two z-root points la-
belled 1 and 2 connected by an e-bond}

. QQ 2 QQ 2 QQ
BETRRT +1©—0+1&+1O—I+““ 58)
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The broken line here signifies an e-bond. The root points and the field points
are articulation poirts in many of these diagrams, and, as above, topological
reduction can be used to remove them. This replaces the activity by the singlet
density,

p(ri,ra) = {thesum of all simple irreducible diagrams with p(1)-
field points and f-bonds, and two p(*)-root points
labelled 1 and 2 connected by an e-bond}

20 2 2 2 2

. 1©+1&+1§:I+1§I+1§:I+.... (9.9)
The pair distribution function g has the same definition as this, except that it
has 1-root points. If one replaces the e-bond by f+1, one doubles the number of
diagrams: each of the above diagrams gives rise to a palr of diagramns, one with
an f-bond between the root points, and the other with no direct connection
between the root points. All of the diagrams except for one are connected
diagrams. The disconnected diagram consists only of the two root points, In
the representation of g this has value unity, so that the total correlation function,
h =g —1, is Just the set of connected diagrams,

h(ri,rs) = {thesum of all simple irreducible diagrams with p(1)-
field points and f-bonds, and two 1-root points la-
belled 1 and 2}

_ fi{&{&#ﬁjﬁ@fing--»-(9»10)

Note that irreducible necessarily implies connected.

9.1.2 Density Expansion

For the homogeneous, isotropic system, one can expand the total correlation
function in powers of density as h(r) = > " h,(r)p". The zeroth-order term
is

ho(r) = f(r) = =1 + exp —Gu'? (r). (9.11)

This result is the same as the low-density expression used for the radial distri-
bution function in the preceding chapter, g(r) ~ exp —gu(?(r), p — 0. From
the behaviour of the pair potential for physically realistic systems 4 (r) — 0,
r — oo, and u®(r) — oo, r — 0, it is clear that ho(r) ~ —Bu@(r), r — oo,
and that ho(r) — =1, r — 0.

The term linear in density is the sum of the second and third diagrams above,
and this gives

hl(’f’lg) = G(le)/‘/drg f(T‘lg)f(’f’gz). (912)

Due to the exponential prefactor, which varnishes at small separations, one has
hi(r) — 0, 7 — 0. In fact, for every diagram of h(r) with no bond between
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the root points, there is an identical diagram with an f(r) bond. These can
always be added together to give an e(r) bond, and so one concludes that
all the density-dependent terms go to 0 at small separations. The convolution
integral complicates the analysis of the large-separation asymptotic behaviour of
ha(r). Briefly however, for a power law pair potential whose integral converges,
u®(r) ~ Ar~", 7 — oo, where n is greater than the dimension of the relevant
space, one has

hy(r) ~ —Qﬁu(z)(r)/ dr’ f(r'), r — oc. (9.13)
v

This is a general result: h(r) ~ Olu!?(r)], r — co, where the notation (read
order of) means lim,. o, h(r)/u®(r) = const. For potentials that decay quicker
than power law (e.g., the hard-sphere potential) the total correlation function
decays exponentially to 0. For potentials that decay so slowly that their integral
is not convergent (e.g., the Coulomb potential), the individual terms in the
density expansion diverge. In these cases a resumnmation must be carried out.

9.1.3 Mixtures

To date only a one-component system has been dealt with. The extension to
a mixture is straightforward. The cowpoients may be indexed by a Greek
subscript, so that u,(r) is the one-body potential acting on species «, and
Ua(r,s) is the pair potential between particles of type « and . For a m-
component mixture interacting with onc- and two-body potentials the grand
partition function is

NI g
2, vV, T) = Z Z H [A({N Na‘] ‘/VdrN‘ oo deVm

N, =0 N,,=0a=1
> H (,/—/htn(rm) H/ (,_/3“'<v"/(rt(vvr_/'y)7 (9_14)
(294 i, 5y

where r;, is the position of the ith particle of type o, and where the prime on
the produet indicates that each pair interaction occurs once only so that there
are no self-interaction terms.

The singlet density is

Pa (I‘) = <N&(5(r1!¥ - I‘)>“

_ Zalr) 6=
T E za(r) (9:15)

where the activity is z4(r) = AL® exp —fua(r). The pair density can be ex-
pressed as

pan(,8) = (Na(Ny — Gan){r10 — 1)6(r1, — 8)),
_ 2a(r)z,(s) 522
B = §2a(r)82,(s) (9.16)
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In the event that o« = ~, the coordinate ri, should be replaced by ra,, be-
cause this is a distinct particle density. The pair function is clearly symmetric,
Par (X;8) = pya(s,T).

The diagrammatic definitions are unchanged, except of course for the facts
that the type of the root points must be specified, that z-points means z,-
points, and that f-bonds means f,,-bonds. Also, a field point corresponds to
integration over space and to summation over the species index.

9.2 Ornstein—Zernike Equation

9.2.1 Direct Correlation Function

In the preceding chapter it was shown that the derivative of the logarithm of
the grand partition function with respect to the logarithm of the activity gave

5%In=

= — . 9.17
51nA3z(r)5ln A?’Z(S) p(rvs) p(r)p(s) +p(r)5(r7s) ( )
One can define ps(r,s) as the right-hand side of this, and in view of the fact
that the singlet density is a similar first derivative, pgl) = p, one has
op(r
ps(r,s) = Wg)() (9.18)

Successive differentiation yields a hierarchy of such densities. Thus In= is a
generating functional for the many-particle densities. At the pair level, p( )5

obviously related to the total correlation function,

ps(x,s) = p(x)5(r,s) + p(r)p(s)h(r, ). (9.19)

In the preceding chapter the one-particle direct correlation function, c(r),
was defined in terms of the Mayer irreducible cluster integrals, Eq. (8.75). One
can define a generating functional for ¢(),

BF*[p] = {the sum of all simple irreducible diagrams with p-
field points and one or more f-bonds}

O I I I e o0

(9.21)

It is clear that
(r) = SBF*
= S
The functional F&* acts as a generator for the hierarchy of direct correlation

functions. The second member of the hierarchy is the pair direct correlation
function,

e(r,s) = (9.22)
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In terms of diagrams this is just the irreducible pair diagrams without a nodal
point (because a nodal point would have been an articulation point before dif-
ferentiation). One has

c(ry,re) = {thesum of all simple irreducible diagrams with two
1-root points labelled ry and ry, p-field points, f-
bonds, and no nodal points}

PAITANH @ SRei N O 2 ARl

Tt is evident that the diagrams of ¢ form a subset of the diagrams of 12,
A related generating functional is Flp] = F4[p] — F°*[p], where

BFp] = /ds p(s) [—1+1InA%p(s)] . (9.24)
Its first derivative is
6BF[p]

= nA%p(r) — e(r

= lnA>2(r, [p]). (9.25)
Accordingly the secoud derivative is
dlnA’z(r, [p])  d(r,s)

57(s) =6 c(r,s) = cs(r,s). (9.26)

9.2.2 Functional Inverse

This last equation shows that (:((;2) is the functional inverse of p( ). Hence the

two satisfy

/ dt ps(r, 6)es (t.) = 3(r. ). (9.27)

Writing these i1 full and rearranging gives the Ornstein Zernike equation,

h(r.s) = c(r.s) + /dt h(r,t) p(t) o(t, s). (9.28)

This equation is formally exact, and it plays a central role in approaches to the
pair distribution furction.

As mientioned above, the pair direct correlation function is the subset of
diagrains of the pair total correlation function that have no nodal points. The
remaining diagrams of A2 can be split into classes that contain one, two, ...
nodal points connected in series. A little thought shows that the function that
connects each pair of uodal points is the direet corrclation function, since it is
composed of all diagrams free of nodal points. One has

Oo=0O = O0-0Otoe—0O+to-e—e0+--
1 2 1 2 1 2 1 2
= 00t O—e=0: (9.29)
1 2 1 2
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where the heavy line represents an h-bond and the single line a c-bond, the
empty circles have unit weight, and the filled circles are weighted with the
singlet density. This is just the Ornstein—Zernike equation, and one sees that it
represents an expansion of the total correlation function in terms of the number
of nodal points.

Since the convolution integral in the Ornstein—Zernike equation has the effect
of summing series of increasing powers of c-bonds, the order of the arguments
does not matter. One has

/ dt h(r,t) plt) clt, s) = / dt o(r, ) p(t) h(t, s). (9.30)

The Ornstein—Zernike equation was postulated early last century by two
eponymous scientists concerned with the scattering of light by fluids at their
critical point.2 The two pair functions continue to bear the names ‘total’ and
‘direct’, which were historically ascribed to them in part because of the physical
basis originally used to justify the equation. The total correlation between two
molecules is the sum of the direct correlation between them plus the indirect
correlation mediated by a third. The latter is the direct correlation between one
and three times the total correlation between three and two, integrated over all
of space. Alternatively, the total correlation between two molecules is the sum
of direct correlations between by zero, one, two, ... intermediate molecules.
Modern-day usage of the Ornstein—Zernike equation far exceeds anything orig-
inally envisaged.

For a homogeneous fluid the Ornstein—Zernike equation is

h(ri2) = c(ri2) + p/drg c(riz)h(rs:). (9.31)

The convolution integral that appears here is most naturally treated by means
of Fourier transforms. Using the fact that [ dre™™ = (27)35(k) , and defining

the Fourier transform to be f(k) = [dre ™7 f(r), it follows that

hk) = é(k) + pe(k)h(k)
&(k)
1 — pé(k)
= é&(k) + pé(k)® +p2ek)®> + ... (9.32)

The last expansion shows once more that the total correlation function is a
series of terms of successively higher powers of the direct correlation function.
The convolution integrals of real space have become products in Fourier space.
This reduction or factorisation of the Ornstein—Zernike equation occurs using
the Fourier transform in arbitrary dimension for an homogeneous system. In
the case of a planar inhomogeneity, such that p(r) = p(z) and h(r;,rp) =
h(z1, 22, R12), a Hankel transform of order 0 factorises the equation, and in the
case of a spherical inhomogeneity, p(r) = p(r) and h(ry,re) = h(ri, r2,612), a
Legendre transform accomplishes the same thing.

2L. S. Ornstein and F. Zernike, Accidental deviations of density and opalescence at the
critical point of a single substance, Proc. Akad. Sci. Amsterdam 17 (1914), 793.
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Mixtures

For a multicomponent system the Ornstein—Zernike equation becomes
hovy (T, 8) = Can(r,s) + Z / dt hoa(r, t) pa(t) caq(t, s). (9.33)
A

Because the field points now correspond to integration over space and sum-
mation over species, one sees that the nodal point embodied in the Ornstein—
Zernike integral also has a summation over the components of the mixture.
The form of the equation is suggestive of matrix multiplication. One can
define the total correlation function matrix h(r,s), with components hqa~(r,s),
and similarly for the direct correlation function matrix, c(r,s). With the diago-
nal density matrix, p(r), which has components Pa(r)8ay, the Ornstein—Zernike

equation for a mixture may be written

h(r,s) = ¢(r,s) + /dt h(r,t) p(t) c(t,s). (9.34)
For a homogeneous system this is simply written in Fourier space as
h(k) = &(k) + h(k)pi(k), (9.35)

which has solution

(k) = (k) (L pith)) . (9.36)

An alternative and slightly neater formulation emerges by defining the ma-
trix H(r,s) with components po (r)'/2h,(r.s)py(s)'/? and similarly for C(r, s).
In this case for a homogencous system the Ornstein Zernike equation in Fourier
space has solution

()

It should be noted that these are symmetric matrices, since hioy (1) = hya(r),

[z

1
o>

llb

Gy (L- ) o (9.37)

and cay(r) = cya(r). Also, the two watrices H( ) and C( ;) commute since the
former is a sum of products of the latter.

9.3 Closure Relations

9.3.1 Potential of Mean Force

The Ornstein—Zernike cquation represents a relation between two (unknown)
pair correlation functions, and a second equation is required to close the set.?
One can proceed in a formally exact fashion by noting that many of the diagrams

3@G. Stell, Cluster expansions for classical systems in equilibrium, in The Equilibrium The-
ory of Classical Fluids (H. Frisch and J. L. Lebowitz, Eds.), p. II-171, Benjamin, New York,
1964.
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that compose h(ry,r2) are the star-product of simpler diagrams connected in
parallel at the root points. That is, when both root points are removed, these
diagrams become disconnected; the root points form an articulation pair. Hence
the total correlation function can be decomposed into successively higher-order
star-products of diagrams free of such an articulation pair of root points. One
defines

v(ry,ra) = {the sum of all irreducible diagrams composed of two
nonadjacent 1-root points labelled r; and ry, and one
or more p‘U-field points and f-bonds, such that the
root, points do not form an articulation pair}

%\%+@+%+%+%+m. (9.38)

Exponentiating these connects them in parallel, and genecrates almost all of the
diagrams of h(®). What is missing are those diagrams with an f-bond between
the root points, and so one needs to multiply the exponential by 1 + f(ry,r3).
Doing this gives rise to the diagram with two disconnected field points, so that
one recognises that one has generated ¢ rather than A(®. That is,

g(r1,r2) = [1 + f(r1,rs)] expo(ry, ra). (9.39)

In view of the fact that the prefactor is just the exponential of the pair potential,
one can define the potential of mean force,

w(ry,re) = u(ry,ry) — kpTo(ry, ra), (9.40)
in terms of which the pair distribution function is simply

g(ry1,r2) = exp —Pw(ry,ra). (9.41)

The potential of mean force for a multicomponent mixture is essentially the
same as that for a single-component system. This is because the star-product
connects diagrams at the root points that have the same label (i.e., the same
position and the same species). Accordingly the radial distribution function for
a mixture is just

Gary(r1,T2) = exp —fwa(r1, ). (9.42)

As in the derivation of the Ornstein-Zernike equation, one splits the di-
agrams composing v(?) into two classes; those with nodal points sum to the
series function, s(ri,ry), and the remainder form the bridge function, d(r(,rz).
One has

g(ry,r9) = e PUrT2) expls(ry, ra) + d(ry, r3)]. (9.43)

Now since the pair diagrams without nodes form the pair direct correlation func-
tion, subtracting it from the total correlation function must yield the diagrams
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with nodes,

s(ri,r2) = h(r;,re) —c(r;,r2)

I}\O m m m m Yo (9.44)

These are called the series diagrams because, in view of the Ornstein—Zernike
equation, they represent the sum of convolution products of the direct correla-
tion function, which is to say that they are connected in series.

The bridge function is defined as

[

d(r1,r2) = {thesum of all irreducible diagrams composed of two
nonadjacent 1-root points labelled r; and r3, and two
or more p'V-field points and f-bonds, such that the
root points do not form an articulation pair and that
there are no nodal points}

% +5ﬁé +5ﬁé +5ﬁé +%>.+.... (9.45)

These diagrams are evidently more compact and more highly connected than
the series diagrams.

In view of the above, one has two specified functions (p and u®), two
equations (the Ornstein Zernike Eq. (9.28) and the potential of mean force
Eq. (9.43)), and three unknown functions (the total, s, and direct, ¢, correlation
functions, and the bridge function, d). In order to solve numerically this system
of equations one needs a closure equation.

9.3.2 Approximate Closures

There is no simple expression for the bridge function. It is in fact quite difficult
to evaluate, and the hypernetted chain (HNC) approximation neglects it entirely,

diNC (e ry) = 0. (9.46)

It is emphasised that this neglect of the bridge function is the only approxima-
tion that has been introduced into the system of formally exact equations. For
an homogenceous fluid, the hypernctted chain closure may be written as

h(ry = —1 + exp[—fBu(r) + h(r) — (r)]. (9.47)

This and the Ornstein Zernike equation gives two equations for the two un-
known pair correlation functions. One usually sets up an iterative procedure
that solves them alternately in real and Fourier space, utilising the fast Fourier
transform. The HNC closure usually provides relatively accurate numerical re-
sults. It also can be used to give various analytic results, as will be seen below.

The spirit of the Ornstein—Zernike approach differs from a simple density
expansion. The hypernetted chain closure includes diagrams of all orders in
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density. It also neglects an infinite class of diagrams (the bridge diagrams) but it
does not introduce any additional approximations. The first neglected diagram
is of order p?, and so this closure gives the exact results in the low-density limit.
Conversely, because it includes diagrams of all orders it is also applicable to
dense fluids and to solids. In general, one finds that the scheme becomes less
accurate in highly coupled (low-temperature, high-density) systems.

The reason that the bridge function is difficult to evaluate is that the bonds
between the field points make them highly connected and prevent the reduction
of the multidimensional integrals. One of the oldest closures, the Percus—Yevick
approzimation, can be derived by replacing some of these f-bonds by -1. The
rationale for this is that the high connectivity of the bridge diagrams means that
the integrals are dominated by regions where the field points are close together,
and in the core region, r 5 d, f(r) = —1. The first bridge diagram becomes

2

% = _% = _71 [P/dr:s flriz)f(rs2)| - (9.48)

The right-hand side is the square of the first series diagram. By judicious
choice of the replacement bonds (i.e., those bonds that make the root points an
articulation pair and create a nodal point in the fragments), all of the bridge
diagrams can be written as star-products of series diagrams with an appropriate
prefactor. One ends up with

" (r) = _715(7«)2 + és(r)?’ T

= In[1+ s(r)] — s(r). (9.49)

With this approximation, and the Ornstein-Zernike relation, s(r) = h(r) —c(r),
the Percus—Yevick closure is

g(r) = lg(r) — c(r)]e P, (9.50)

For the case of the hard-sphere fluid, this corresponds to setting the radial
distribution function to 0 within the hard core, which is exact, and to setting
the direct correlation function to 0 beyond it. The Percus—Yevick closure can
be solved analytically for the hard-sphere fluid, and turns out to be slightly
more accurate than the HNC at higher densities. For fluids with long-ranged
potentials, the HNC is preferable.

A closely related closure is the mean spherical approrimation. This closure,
which reduces to the Percus—Yevick for hard spheres, sets g(r) = 0,r < d, and
c(r) = —pBulr),r > d, which is exact at large r as will be seen. Analytic solutions
exist for a variety of hard-sphere plus electrostatic multipolar fluids,* and it
provides a relatively accurate description of the primitive model electrolyte.®

4M.S. Wertheim, Exact solution of the mean spherical model for fluids of hard spheres with
permanent electric dipole moments, J. Chem. Phys. 55 (1971), 4291.

5L. Blum, Mean spherical model for a mixture of charged spheres and hard dipoles, Chem.
Phys. Lett. 26 (1974), 200. J. S. Hgye and G. Stell, New self-consistent approximations for
ionic and polar fluids, J. Chem. Phys. 67 (1977), 524.
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9.3.3 First Bridge Diagram

The hypernetted chain approximation may be systematically improved by in-
cluding successive bridge diagrams. The first bridge diagram is

42(ri2) = 39 [ drsdva f(raa) Fra)f(ran)f(ra)f(rae). (9.51)

This first bridge diagram alone significantly improves the hypernetted chain
closure for more highly coupled systems, and including it extends the regime
of applicability of the approximation. The numerical evaluation of this bridge
diagram is facilitated by expansion in Legendre polynomials

e o] 2 2 o0 o<
A2 (r) = 2#2( ) / d/ drrs
oy 2n+1 Jo 0

x f(rs) f(ra) f (ry,vs) FO (1, ma) F0 (s, ma), (9.52)

where the molecule 2 has been placed at the origin, ro = 0, and the Legendre
coeflicients are

1
F®(rs) = 2”; 1 / dz P (z)f < 72 452 — 27'8:1:) , (9.53)
J-1

where P,(z) is the Legendre polynomial of order n. The evaluation of multi-
dimensional integrals by expansion in Legendre polynomials is a powerful tech-
nique.® It is convenient to evaluate the Legendre coefficients by a discrete, or-
thogonal technique,” which corresponds to a Gaussian quadrature; typically
only 10 20 terms are nceded in the expansion. Expressions for the Legendre
expansion of the bridge diagrams with three field points have been given.®

This first f-bond bridge diagram is evaluated at the beginning, and it is
then fixed during the iteration of the hypernetted chain closure. Alternatively
onc may replace the f-bonds by h-bonds, which corresponds to resumming an
infinite class of bridge diagrams. In this case the resumimed bridge diagram must
be reevaluated during the iteration procedure, typically every 50 100 iterations
of the total correlation function. The number of radial grid points used in the
Legendre procedure is gencerally less than that used in the Fourier transform
(becausce it is numerically intensive, and because the bridge diagram is more
short-ranged and smoother than the total correlation function itself). However,
in the case of a hard core, the f-bonds have a discontinuity at contact, and one
is well advised to subract this discontinuity in real space and to add back its
analytic transform in Legendre space, thereby reducing the need for a fine grid
and a high number of Legendre coeflicients.

6A. D. J. Haymet, S. A. Rice, and W. G. Madden, An accurate integral equation for the
pair and triplet distribution functions of a simple liquid, J. Chem. Phys. 74 (1981), 3033.

7P. Attard, Spherically inhomogeneous fluids. 1. Percus—Yevick hard spheres: Osmotic
coefficients and triplet correlations, J. Chem. Phys. 91 (1989), 3072.

8P. Attard and G. N. Patey, Hypernetted chain closure with bridge diagrams. Asymmetric
hard-sphere mixtures, J. Chem. Phys. 92 (1990), 4970.
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9.3.4 Functional Taylor Expansion

These closure approximations can also be derived by truncating various func-
tional Taylor series expansions at the first term. The key idea is to consider
an inhomogeneous fluid in which the external one-body potential equals the
pair potential due to a fixed particle. In this case the singlet density is just
proportional to the radial distribution function of the homogeneous fluid. One
considers the reference state of no fixed particle, and assumes that changes in
the singlet density and in the external potential due to introducing the particle
are small.

One starts with a homogeneous fluid of density p with isotropic pair functions
due to a pair potential u(®)(r3), and one considers the effect of a perturbing
external potential Au(l)(r). In order to approximate the pair functions, a re-
lationship between the perturbed singlet density and the pair function of the
reference system is required. As just mentioned, if the perturbing potential is
taken to represent a particle of the system, fixed at r; say, then

Aut(rp) = u® (r1). (9.54)

In this case the final singlet density, p + Ap{!)(rs), represents, in essence, the
probability of finding a particle at ry in the presence of the particle fixed at
ry, and as such it must be proportional to the pair probability function of the
reference fluid, p + ApM(ry) = pg® (r12), or

ApW(ry) = ph® (r13). (9.55)

Mean Spherical Approximation

The formal expression for the change in density due to the change in external
potential is

sp(r
Ap(ry) = /dl‘:s SL(T)((%AU(U(P:&)

spM(r
_ﬁ/drg 5Tn A3 (r2) )Au(l)(r:s)

—ﬁ/dr3p5 (I‘Q,I‘g)Au(l)(I‘g)
= —BpW(r)AuM (ry)
—[j/drg PV (r2)pM (r3) R (rg, r3)AuV (r3).  (9.56)

I

This is called the Yvon equation, and it shows that the pair function p( ) gives

the linear response of the density to an external field. The density and total cor-
relation function in the integrand are evaluated in the reference system, as befits
the functional Taylor expansion; they are p and h{?)(ry3), respectively. When
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the perturbing singlet potential is the reference pair potential due to a parti-
cle at ry, the left-hand side is just density times the reference total correlation
function. Inscrting all of these and dividing by density one has

h(ri2) = —pu(ri2) — ﬁp/dl‘:’, u(ri3)h(rsz). (9.57)

Comparing this with the Ornstein—Zernike equation, one sees that this is equiv-
alent to the closure for the pair direct correlation function,

A (ry = —pu®(r). (9.58)

This is the mean spherical approzimation given above.

What is approximate in this derivation is the truncation of the Taylor expan-
sion for the change in density at the linear term. If the perturbing potential were
vanishingly small, the final result would be exact. However, in general the pair
potential of interest is not particularly small, and hence the whole procedure is
approximate. In particular, in the corc region where » — 0, the pair potential
goes to infinity. Accordingly, in practice one invokes the mean spherical closure
for the direct correlation function beyond the core, and one utilises the fact that
the total correlation is exactly —1 inside the core. That is,

h®(r) = -1, r<d,

@ (r) = =pu@ (), r>d, (9.59)

where d is the core diameter. It is this version of the closure that is generally
known as the mean spherical approximation.

Percus-Yevick Approximation

The density is not the ounly function that one can expand, and it is not only
the external potential that one need expand with respect to. Consider instead
the perturbation in the density divided by the activity, due to a change in the
density itself,

(1) ro)/z(rs
Ao [ any Tt

' (1 &)
p U (rz) dIn[pt(ra)/2(rs)] \ (4
= Ir- ApD
/ W) op(ry) prEs)
(1) (1)
pt(rs) ¢t (rs) |
— d ApD(p.
/ ' z(rz) dpH(ry) P
= / dr; K(Mc@)(r? r3)ApH (r3) (9.60)
. Z(I‘g) 9 b
Again the density, activity, and pair direct correlation function in the integrand

are those of the reference fluid, p, z, and C(Z)(’I"ZS), respectively. The change in
density in the integrand is ph(®(ry3), and the left-hand side is

ApM(ry)

pg (ri2) P
A—3eBue—Bu®(r2)  A—3ebu’




9.3. CLOSURE RELATIONS 221

Hence one has
g P (ri2) = e_ﬁ“’m(”’“)+e_ﬁ”(2)(”2)p/dfs A (ra3)h ) (r13)
—But 1
_ ) [g(z)(ﬁz) —0(2)(7“12)}. (9.61)

This is the Percus—Yevick approximation derived above by diagrammatic means.
In combination with the Orstein Zernike cquation, it provides a second equation
for the two unknown pair functions.

In the case of the hard-sphere potential, the Percus—Yevick closure is the
same as the mean spherical approximation. Inside the core the right-hand side
vanishes due to the exponential prefactor and one has the exact result that
g (r) = 0, r < d. Beyond the core the potential vanishes and the closure gives
9P (r) = g@ (r) — @ (r), with solution ¢ (r) = —pu@(r) =0, r > d.

Hypernetted Chain

If instead of expanding p/z one expands In p/z with respect to the density, one
obtains the hypernetted chain closure approximation given above. Following
closely the derivation of the Percus--Yevick approximation one has

AlnlpM (r)/2(rs)] = /dr3 6111[P(1)(r2)/Z(r2)]Apu)(rg)

6p(1)(r3)
= /dr3 @ (rq, r3)ApM (r3). (9.62)
The left-hand side is
(2)
P9 (r12) P _ 2 2
In A—3eBro—Bu® (riz) —In A3Pn 571/( )(7“12) + 1119( )(7“12)7 (9.63)
so that one has
hl g(z) (7'12) = *,B’UJ(Z) (7'12) + p/ dI‘3 C(Z) (T‘zg)h(z) (7'31). (964)

The Ornstein—Zernike convolution integral is just the series function, so that
this may be written

g(z)(rm) = exp [—ﬁu(Q)(NZ) + h(Q)(nz) — 0(2)(1"12)} ) (9.65)

Clearly this corresponds to neglecting the bridge function in the potential of
mean force, which is just the hypernetted chain approximation derived by dia-
grammatic means ahove.

If one were to linearise the exponential in the hypernetted chain approxi-
mation with respect to the series function, one would obtain the Percus—Yevick
approximation. Hence an alternative interpretation of the latter is that it ne-
glects the bridge diagrams and all the diagrams with an articulation pair of
points.
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9.4 Born—Green—Yvon Hierarchy

An alternative to the Ornstein Zernike equation for calculating the pair distri-
bution function is based upon the so-called Born—Green—Yvon hierarchy. This
is a general approach that relates the gradient of the many-particle density to
integrals of the gradient of the potential and higher-order densities. An ap-
proximate closure is required to relate these higher-order densities to the one of
interest, which is usually the pair density.

Suppose that the potential energy consists of singlet, pair, triplet, and
higher-order terms,

N N
Ny = Zu(l) + Zu (r,,ry) Z u(3)(r1,r rg)+....(9.66)
i=1 i<g i<j<k
Its derivative with respect to ry is
ViUNEY) = viu(r) +Zv1u (r1,r;)
+ Z Vial® ey, 15,00 + (9.67)

1<j<k

The first member of the hicrarchy is obtained by multiplying both sides
of this by Z(N,V,T) !Ne™PUN and integrating over dra...dry. Using the
definition of the many-particle density, Eq. (7.71), the left-hand side is

N : N
T r— iry . .. ~AUN(ET) N
Z(N,V,T) ./V(I‘Z dry ¢ ViUn(r )
. —NkgT —BUN (N
- TNV v, / dry...dry e
= ——k:BTvlp (I‘l). (9.68)

The right-hand side is

N N
e Iry . ..dry e PUNET)
Z(N,VT) / arg ryc

N
x | Viutt ZVHL (ri,r;) + Z Viu® (e, Ty, + .
l<j<k

= pIE)VieM () + / drg p®)(r1,12) V1u® (x4, 15)
JV
1 .
+ 5 / dI‘Q dI‘3 p(3) (1‘17 ro, rg)Vlu(s) (1‘1, Irg, 1‘2) + ... (969)
v

The middle term follows because the N — 1 terms involving r; are equivalent,
and the third term follows because there are (N — 1)(IN — 2)/2 equivalent terms.
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Equating these the first member of the hierarchy is
VipW(r;)
= —pW(r)ViBuV(ry) —/ drz p@ (11, 12) V1 fu® (1, 12)
v

1
—3 / dry drs p(3)(r1,r2, rg)Vl[jqz,(3)(r1, ry,r3) —.... (9.70)
v

This says that the gradient of the singlet density at a particular position is equal
to the average force acting on a particle at that position.

The second member of the hierarchy follows by multiplying the gradient of
the potential with an appropriate factor and integrating over drs...dry. The
left-hand side is

NN -1) —BUN (V) N
Z(N7‘/,’T)/‘/dr3...dr1\/(i V1UN(I‘ )

_ —N(N - 1)kBT —BUNGN)

= Z(N,V,T) Vl/vdr.3~-~drN€

= —kpTVip®(r),rs). (9.71)

The right-hand side is

N(N -1
_(—)_/ drg...drNe_’BUN(rN)
1%

Z(N,V,T)
x [Vlu(l)(rl) Vi@ () 12) + (N — 2)V,u® (1), 13)
1
+(N — 2)V1U(3) (ry,ry,T3) + §(N - 2)(N - 3)V1u(3) (r1,r3,T4) + .. }

= 9(2)(1‘171'2) I:VIU(I)(I'I) + V1U(2)(1‘1,1‘2)}
+/ drs p® (r), s, 13) [VIU(Z) (r1,r3) + Viu® (1‘171‘271‘3)}
v

1
+ 5/ drs dry p(‘l)(rl,rz7 r3,r4)V1u(3)(r1,r3,r4) + ... (9.72)
v

Equating these, ones sees that the gradient at r; of the pair probability for
particles at r; and ro, is the average force at r; due to a particle at ry, taking
into account the other particles in the fluid. Higher members in the hierarchy
may be generated in this fashion.

This second member of the hierarchy forms the basis of an approximation
for the radial distribution function. For a homogeneous fluid, p(l)(r) = p, with
isotropic pair potential, u(® (r{,rs) = u{?(r12), the pair density is p® (rq,r2) =
p%9? (r13). With the only potential being the pair one, u(® = 0, n # 2, the
second member of the hierarchy is

~kgTV1gP(r12) = ¢P(ri2)Viu®(r12)
+ p/ dI‘g g(3)(r12,r23,r31)V1u(2) (7'13). (973)
JV



224 CHAPTER 9. PAIR FUNCTIONS

Dropping the superscripts and using a prime to signify the derivative, this may
be written as

g'(r2) = —g(ri2)pu'(r2)
—27rp/ dG/ drs r5g(r12, 723, 731) 8% (r13) cos 6, (9.74)
0 0

where 733 = r3y + riy — 112713 cos 6.

This equation relates the pair and triplet distribution functions, both of
which are unknown. A second relationship is required. One seeks to express the
triplet function as a superposition of pair functions, and in view of the symmetry
the most general expression is

glriz,713,723) = T(r12)T(r13)T(r23), (9.75)
with I' to be determined. Now the probability of finding three particles at
certain positions, in the limit that the third particle is removed from the rest,
must equal that of finding the remaining two particles times that of finding the
third,

p(r12, 113, 723) ~ p(ri2)p(rs), r3 — oo. (9.76)
That is, the third particle is uninfluenced by the other two, and vice versa, and
they are therefore uncorrelated; the joint probability is just the product of the
independent probabilities. Since the density is proportional to the probability
and the distribution is proportional to the density, this is the same as

g(r12.113,123) ~ g(r12), 135 — 00. (9.77)
If the two remaining particles are further separated, then since g(riz) ~ 1,
719 — 00, one has

g(ri2, 713, 123) ~ 1, rig — 00, 193 — 00, 131 — 00. (9.78)
With v = lim, o I'(r), the asymptote of the superposition approximation yields

gria.ri,r23)  ~ T(ri2)y®, ry — o0

~ 73, Ty — 00, (9.79)
Hence one concludes that v = 1 and that I'(r) = g(r). The only pair function
whose product gives the triplet distribution function and which satisfies the
correct asymptotic limit is the radial distribution function,

9D (12, 115, 723) = 9(r12)g(r12)g(r23). (9.80)

This is known as the Kirkwood superposition approximation.
Using the Kirkwood superposition approximation, the Born Green—Yvon
cquation becomes

1 o
g'(r) = —g(r)Bu/(r) — 2mpg(r) [1 dx /o ds 5% g(s)g(t)Bu/(s), (9.81)

where t2 = r? + s? — rsz. This is an integro-differential equation for the radial
distribution function.
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Figure 9.1: The radial distribution function for a hard-sphere fluid, as given
by the hypernetted chain approximation. From bottom to top at contact the
densities are pd® = 0.2, 0.5, and 0.8, respectively. The inset shows the cffect
of including the bridge diagrams of second and third order in density (dotted
curves).

9.5 Thermodynamic Properties

9.5.1 Radial Distribution Function
Hard Spheres

Figure 9.1 shows the radial distribution function of the hard-sphere fluid at sev-
cral densities. These were obtained by solving the Ornstein-Zernike equation
with the hypernetted chain closure. The fact that g(r) = 0, r < d, manifests
the impossibility of overlap of the molecular cores. At large separations the
radial distribution function goes to unity, due to the decreasing correlation be-
tween the molecules. The low-density fluid becomes uncorrelated more quickly
than the high-density one. The peak in g(r) at contact indicates that there is a
high probability of finding touching molecules. The occurrence of such config-
urations grows markedly with density. The oscillations evident at the highest
densities have a period slightly greater than the molecular diameter and indi-
cate regularities in the molecular packing. The second peak corresponds to a
high probability of finding a second neighbour from the central molecule, and
the trough at about 1.5 diameters is due to the exclusion of molecules from this
region (a molecule can only fit here if there is not one already in contact with
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the central molecule, which is unlikely).

The inset of Fig. 9.1 compares the bare hypernetted chain approximation
with the closure that includes the bridge function. The latter was approximated
as the sum of all bridge diagrams of second and third order in density.® It can
be seen that the bridge function is most important at higher densities and close
to contact, where its effect is to decrease the hypernetted chain contact value.

There is evidently a discontinuity in the radial distribution function at con-
tact, which reflects the discontinuity in the hard-sphere potential. From the
derivation of the pair density and the total correlation function, it is evident
that there is an e-bond between the root points. The e-bond behaves as a unit
step function,

_gubs(y 1, r>d
e P <>:{0 .o g (9.82)

and it is this that causes the core discontinuity in g(r) (because the discontinu-
ities in the remaining f-bonds between field points are all integrated out). In
view of this one defines the cawvity function,

y(r) = " Myg(r), (9.83)

which cancels the discontinuous e-bond in g(r) and hence is a continuous func-
tion.

The virial expression for the pressure, Eq. (7.88), involves the derivative of
the pair potential, the derivative of which is problematic for the hard-sphere po-
tential. By changing to the cavity function one can convert this to the derivative
of the exponential of the potential,

dubs(r) duhs(r) s .
» — Bl (r) , ut (1)
ry = ——e 2 g(r
o 9r) T g(r)
de— P ()
= —kgT———y(r
B )

= —kgTé(r — d)y(r). (9.84)

The last line follows because the derivative of the unit step function is the Dirac
6 function. With this result the pressure of the hard-sphere system is
2rp? [
Bp = p+ —3/ / dr3y(r)é(r — d)
Jo
2w p?d3y(d)
3
2mp?d3g(d*
- o+ mpedg( )_ (9.85)
3
The penultimate equality hold because the cavity function is continuous across
the core, and the final equality follows because for the hard-sphere system the

9P. Attard and G. N. Patey, Hypernetted chain closure with bridge diagrams. Asymmetric
hard-sphere mixtures, J. Chem. Phys. 92 (1990), 4970.
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Figure 9.2: The radial distribution function for a Lennard-Jones fluid, as given
by the hypernetted chain approximation. The bold curves are for a temperature
of T* = 1.2, and the ordinary curves are for T* = 1.9. The oscillatory curves
are for a density of p* = 0.8, and the smooth curves are for p* =0.1.

cavity function coincides with the radial distribution function beyond the core.
This result says that the pressure of the hard-sphere system is determined by
the contact density.

To lowest order in density, g(d™) = 1, and this gives

Bp

27 pd®
PPy P
P

3 ’

p— 0. (9.86)

The leading correction to the ideal gas law exhibited here is just the hard-sphere
second virial coefficient, Eq. (8.85), namely By = 27d3/3.

Lennard—Jones

Figure 9.2 shows the radial distribution function of a Lennard-Jones fluid in
hypernetted chain approximation. There is a peak at contact, more pronounced
at high densities, but less sharp than in the hard-sphere system. This indicates
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Figure 9.3: The average excess energy per Lennard  Jones molecnle as a function
of density for, from bottom to top, temperatures of T* = 1.15, 1.35, and 2.74.
The symbols are simulation results. the solid curve is the hypernetted chain
approximation, and the dotted curve is the Percus Yevick approximation.

the Lennard Jones system than in the hard-sphere system indicates the effect
of the attractive nature of the Lennard Jones potential, the adhesion of which
cnliances the probability of molecular contact.

9.5.2 Average Energy

The average excess encrgy for a homogenous system, Eq. (7.86), may be written
(but with vV (r) = 0)

2 .
£ = ﬂ/ dru(r)g(r)
2 Jv
/ dr; dry p(Q)(rl,rg) 1/,(2)(1'1, rz)
2 2 9 2 2
(1R R e
1 1 1 1 1

where the crossed-line represents u(riz)exp —Gu(ry2). It may be shown that
explicit evaluation of the first few terms of the virial expansion of the energy,
Eq. (8.83), agree with this expansion.

N = N =
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Figure 9.3 shows the average energy for a Lennard-Jones fluid. The simula-
tion data may be regarded as exact.!® At low densities the energy per molecule
becomes morce negative with increasing density due to the increasing numbers of
molecules that experience the Lennard--Jones tail. The curves are not monotonic
however; at higher densities molecules are forced into the repulsive soft-core re-
gion and this causes the energy to increase. At a given density the magnitude of
the energy decreases with increasing temperature, 7% = kgT /¢, as the potential
between the molecules becomes relatively less important. Indeed, to a reason-
able approximation the energy per molecule is inversely proportional to T%.
Two of the closure approximations are tested against the simulation results in
the figure. At low densities they agree with each other and with the simulation
data. At high densities the Percus—Yevick performs better than the hypernetted
chain approximation; the latter increasingly underestimates the magnitude of
the energy in this region. On the subcritical isothermal both the simulations
and the hypernetted chain yielded homogeneous solutions in what should be
the two-phase region. It was not possible to obtain a uniform solution of the
Percus—Yevick equation here, as signified by the break in the curve. The com-
pressibility in the hypernetted chain approximation diverged, just at one would
expect at the spinodal line, and was negative beyond this, which indicates an
unstable fluid; in these two aspects it is physically realistic. The Percus—Yevick
compressibility also diverged just prior to the region in which solutions were
unobtainable.

9.5.3 Compressibility

The isothermal compressibility is related to the density fluctuations of a system,
and these in turn are given by the integral of the pair density. The homogeneous

limit of the definition of pf;z), Eq. (9.17), gives

8?InE 3 InZE

d
(8612 /vdrl "2 S A%2(r1)0 In AP2(r2) | o)y

= / dry dry [p*h(r12) + pd(r12)]
v

= pV+p2V/ dr h(r)
1%

(N?) — (N)2. (9.88)

This was given above as Eq. (7.84); the final step follows from the normalisation
of the pair density, Eq. (7.77). Equating the left-hand side to the final right-
hand side also follows from direct differentiation of the homogeneous partition
function; the left-hand side equals 0 (N) /98u. Note that the density that
appears above is the equilibrium one, p(u, T').

103. J. Nicolas, K. E. Gubbins, W. B. Streett, and D. J. Tildesley, Equation of state for the
Lennard—Jones fluid, Mol. Phys. 37 (1979), 1429.
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The isothermal compressibility, Eq. (3.65), is

. ~1 <aV>
T = = |5
V \/)rn
- (2
op/
()3
Op)r \Op ) r
O(N
B (9N (9.89)
Vp2 \ 9B8u T
The second equality follows because at equilibrium an intensive variable is a
function of only two other intensive variables, so that (0p/0V), r = 0, and it
doesn’t matter whether N or V is held fixed. The final line utilises the Gibbs—
Duhem relation, Eq. (3.77), (Op/du)r = p, which also follows, of course, from

direct differentiation of the grand potential. Combining these two results one
obtains

1+p/vdrh(r) = W

- (7).

= pksTx7. (9.90)

Hence the integral of the total corrclation function gives the isothermal com-
pressibility of the system.

The integral ou the left is just the Fourier transform of the total correlation
function evaluated at & = 0. i(,(()). Using the Ornstein Zernike equation in
Fourier space the isothermal compressibility may therefore be written

pksTxr =1+ ph(0) = (9.91)

1 —pe(0)
For vanishing density, the right-hand sides go to unity, which gives the ideal
gas result, xi¢ = 1/pkpT. Converscly at the critical point and the spinodal line
the compressibility becomes infinite, which corresponds to a divergence of the
integral of the total correlation function. The mechanism by which this occurs
is that the range of h(r) diverges, which is to say that it decays increasingly
slowly as the critical point or spinodal line is approached. In contrast in these
regions ¢(0) — p~!, which is to say that its integral is finite. So the direct
correlation function is well-behaved near-criticality, which is to say that it is
of shorter range than the total correlation function, h(r)/c(r) — oo, r — oo.
This is not true in general; at arbitrary points on the phase diagram both pair
correlation functions have precisely the same range, h(r)/c(r) — const., r — o0.

The divergence of xr and h(O) near criticality corresponds to increasing
fluctuations in the local density in the system, and these give rise to the phe-
nomenon of critical opalescence. As the size of the density inhomogeneities
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become comparable to the wavelength of light, a near-critical systemn scatters
light strongly and it appears turbid. It was this phenomenon that motivated
Ornstein and Zernike to introduce the direct correlation function in the form of
the equation that bears their name.

Mixtures

For a mixture one may write the compressibility as

Xfl — __1 @
r RCIE
_ i( op )
VOV )y
- v (o), (o)
V;(@V—l TN Opa Tyom e

8[};@) <8kBTlnE>
San(fe) (G
g ; 9pa T\prsa Va[j'uW Tzt

= Y Paln (0)pykeT
oy
= kBT Y _ [Pabay — Papytar(0)]. (9.92)
oy

The homogeneous limit of

d1nz, (S)Ai
dpa(r)

has been used to obtain the penultimate line.

=, (r,8) = pa(r) " 0aqy(r — 8) — cay(r,s) (9.93)

Defining the vector r with components {r}, = p};/z, one can write this in a

relatively compact form,

X7 ksTr" E ~ Q(O)} r

ksTr" [g + Q(O)} T (9.94)

The final form could be written as a sum over the components of the cofactor
matrix of the total correlation function. The fact that this quadratic form must
yield a positive compressibility places certain restrictions upon the matrices of
the correlation functions that appear (see below). The relationship between the
fluctuations in composition, the derivatives of the chemical potential, and the
integral of the total correlation function is often called Kirkwood—Buff theory.!!

11]. G. Kirkwood and F. P. Buff, The statistical mechanical theory of solutions. I, J. Chem.
Phys. 19 (1951), 774.
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9.5.4 Chemical Potential

According to Eq. (7.61), the average excess chemical potential is the number
difference of the logarithm of the configuration integral,

<_[33N§x> = an(N) Vva) —In VQ(N -1V T) (995)

One can interpolate between the two systems by introducing a coupling param-
eter A for the Nth particle. One is now dealing with a two-component mixture,
with IV —1 particles of the first type (the solvent) and one particle of the second
type (the solute). For a homogeneous, isotropic system with pair potential u(r)
between particles of the first type, the interaction potential for the partially cou-
pled solute particle may be written u(r; ), with u(r;0) = 0 and u(r; 1) = u(r).
The simplest coupling is the linear one, u(r; A) = Au(r), but it is not necessary
to restrict the analysis that follows to this case.

In view of these definitions the excess chemical potential may formally be
rewritten as

1
0
(—Bspdy = /d)\ﬁan,\(N,V,T)

0

0 drN Nt N1
= /ld)\ ! / H —/fu1,J)
Jo QNN V,T) Y

l<J

—Bu(r.niA a[ HU’( iNj )‘)]
X H € )—-—0)\

_ Ou(r A)
= [34 dA / dr pg(r —an (9.96)

In the final result the quantity pg(r; \) represents the density of solvent at r when
the partially coupled solute particle is at the origin. It is important for what
follows to understand that in the diagrammatic representation of g(r; A), only
the bonds to the solute root particle depend upon the coupling constant; all the
remaining particles and bonds between them are fully coupled and independent
of A.

The radial distribution function may be written in terms of the potential of
mean force, g(r; \) = ¢7AuiN (A Dand rearrangement gives

1 —Bu(rX)
oy = o [ ar [ aneren 2
v 0 OA

ol fonon2)

- p/vdr [h(r)v(r)/old)\h(r; A)avg“;”]. (9.97)
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The second equality follows from an integration by parts, and the third equality
follows since g(r;1) = g(r) and g¢(r;0) = 1, and similarly v(r;1) = v(r) and
v(r;0) = 0.

Now the quantity v(r), which in essence is the excess potential of mean force,
is the sum of the serics diagrams and the bridge diagrams. The series diagrams
can be expressed as the convolution product of an A-bond and a c-bond; the
h-bond can be taken to be connected to the solute and hence dependent upon A,
whilst the direct correlation function depends solely upon the solvent particles
and is independent of the coupling constant.

One can use topological reduction to eliminate articulation pairs from the
diagrammatic definition of the bridge function. This corresponds to replacing
the f-bonds by h-bonds, since h is the sum of all the connected pair diagrams.
The more compact set of diagrams that results is

d(r1,r3) = {the sum of all irreducible diagrams composed of two ~ (9.98)
nonadjacent 1-root points labelled r; and rs, and
two or more p(M-field points and h-bonds, such that
there are no nodal points nor any articulation pairs
of points}.
With this resummation it is possible to classify the bridge diagrams according
to how many h-bonds impinge upon one of the root points. One can write

v(r;A) = iv(”)(r; A), (9.99)

where the series diagram is just v((r; A\) = s(r;A), and the bridge diagrams
start at 7 = 2. The function v(® (r; A) contains the convolution of n partially
coupled h-bonds with an (n + 1)-body function independent of A. This latter
function is the generalisation of the singlet and pair direct correlation function.!?
It is important to note that this function is symmetric in its arguments (because
it belongs to a functional derivative hierarchy). Accordingly one has

(™ (A
p [ dra o S )

0 drs...dr
= p/vdrzh(rlz;)\)ap"/v—%Z—C(rz,rg...drnﬁ)
X h(riz; A) .. h(r1 ny2; A)
R 6/dr2...drn+2
v

cfrg,ry...dr,42)

n+1 E2) n!
x h(rig; A) ... h(r1nq2; A)
n 0
= — N0 (r19; ). 9.100
pn T 1 OX v dl‘zh(’r'lz, )\)U (7'12, ) ( )

12This function is composed of the irreducible diagrams with n+1 root points, p-field points
and no articulation points, no nodal points, and, for n > 1, h-bonds, and no articulation pairs
of points. It cannot contain a node because such would form half of an articulation pair with
one of the root points of the bridge diagram, and these have just been eliminated. A little
thought shows that the singlet and pair direct correlation functions satisfy these criteria.
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The factor of n/(n + 1) arises because the original form gave rise to n identical
terms involving the derivative of the partially coupled total correlation function,
whereas the final form gives rise to n + 1 such terms.

With this the coupling constant integral can be performed term by term,

with the final result!®
< ﬁS.usx>
> n "
p/vdr { —v(r) — h(r)n; — 11% )(r)}

™

(9.101)

)

where v(r) = v(r;1) is in esscuce the excess potential of mean force.

<

Approximations

This is a formally cxact expression for the chemical potential. The sum on
the right-hand side can be evaluated for the various closure approximations
to give approximate expressions for the chemical potential. In the case of the
hypernetted chain approximation, the bridge function is neglected, v(”)(r) =0,
2> 2. In this case v(r) = s(r) = h(r) — c(r) and one hasg!'*

. p
(b ane = [ e 2e0) = W) {A0) = )] (9.102)
Jv
In the casc of the Percus Yevick approximation, the potential of mean force
function is vFY (r) = In[1 + s(r)], which corresponds to

(_l)nJrI

vpy(r) =

Hence

(=Bsps

s(r)". (9.103)

PY

")
(r) —In — h(r 3 —(_1)”“9 )"
/Vdr"i/ [l + s(r)] I,()Zl — (()}
dr

n=

= o [ a0 =l s+ 20 gl ] = o001

AT B — ol
/V dr W _(:(7.)1 [T+ h(r) — (r)]. (9.104)

131, L. Lee, Correlation functions of classical fluids. ITI. The method of partition function
variation applied to the chemical potential: Cases of PY and HNC2, J. Chem. Phys. 60 (1974),
1197. P. Attard, The chemical potential in terms of n-particle direct correlation functions, J.
Chem. Phys. 94 (1991), 2379.

14T Morita, Theory of classical fluids: Hypernetted chain approximation. 111, Progr. Theor.
Phys. 23 (1960), 829.
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The mean spherical approximation in its most elementary form corresponds
to ¢(r) = —Bu(r), and h(r) is the sum of Ornstein—Zernike chains of c-bonds
in series. (By elementary here is meant the model with O core diameter.) Only
the first ¢-bond depends upon the coupling constant, so that one may write
symbolically,

hy=cx*[l+ctexctcxexe+...] (9.105)

Accordingly in this approximation one has

(~Bui)sa = —ﬁ/ dr/ ar 25N
»[3/ dr _u(r) /O dA a“(m )h(m)]
8 [ ar [ur + [ ang Biutrsne: ]

i 1
= —[j/vdr u(r)-{—iu(r)h(mjl . (9.106)

The factor of one-half arises because the two ¢, bonds connected to the solute
(one is the u(r; A) that appears explicitly, and the other is the cy* that occurs
in all the h(r; A) diagrams) are identical due to the integral over r.

9.6 Asymptotic Analysis

9.6.1 Exact Results

The asymptotic behaviour of the pair correlation function is important because
it can be obtained explicitly and analytically, at least formally, and it there-
fore provides a useful check on the approximations and numerical procedures
used to obtain the full functions. In this section it is assumed that the sys-
tem is homogeneous and isotropic, and that the pair potential has asymptotic
behaviour

u(r) ~ O™, r — o0, > d, (9.107)

where d is the dimensionality of the space. This ensures that the Mayer f-
function, which goes like f(r) ~ —gu(r), r — 00, is integrable. In three dimen-
sions it precludes the Coulomb and dipole potentials from further consideration.

The Mayer cluster diagrams, and the Ornstein-Zernike equation, contain
convolution integrals, and so it is important to understand the asymptotic be-
haviour of these. The integral [ drs f(r3)f(rz3) is dominated by the two regions
around the root points in the limit 712 — 0o0. In these regions there is one short
bond and one stretched bond, so that the integrand has value proportional to
r15 . In contrast, when the ﬁeld point is halfway between the two root points,
both bonds are stretched, and the value of the integrand is proportional to
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(r12/2)72". In the limit r13 — oo the latter is much smaller than the former.
Accordingly one has

/v drs f(ris) f(ras) = L dr f(r) () + / drs f(rs)f (ras)

~To

Q

/N drs f(T13)f(7“12)+/; drs f(ri2) f(res)

Q

f(rlz)/vdl‘sf(ﬁzi)+f(7“12)/vdl‘3f(7“23)

= 2f(r12)f(0), r12 — oc. (9.108)
The second line follows from a Taylor expansion of the appropriate function; the
first neglected term is proportional to f'(r;2). One may extend the integrations
to the entire volume in the penultimate line if the function is integrable.
This result may be derived directly in Fourier space. The Fourier transform
of a power law potential of the above form has a |k|7~¢ singularity at the origin.
Hence the small-£ expansion goes like

Flk) ~ folk|" % 4 FO) + fok® + ..., k—0. (9.109)
Since the convolution becomes a product in Fourier space one has
F)? ~ 2F0) fol k7™ f216121724 4 fo £ lI77942 4 L k — 0. (9.110)

Because n — d > 0, the first exhibited term is the strongest singularity (i.e.,
the one with the lowest power of k), and it dominates the large-separation
asymptotic behaviour. The inverse Fourier transform yields the result given
above.

The convolution integral just discussed is a nodal one. For diagrams with-
out nodes, at large separations the integral is still dominated by regions where
the field points are clustered around the root points, and the asymptote is pro-
portional to the number of stretched bonds that result. For example, the first
bridge diagram goes like

% /v drsdry f(r13) f(ras) f(r1a) f(raa) f(r34)

~  f(ri2)? /v drydry f(r13) f(r1a) f(r34), r12 — 00. (9.111)

Obviously lim, e f(r)2/f(r) = 0, and hence this and the higher-order bridge
diagrams and other multiply connected diagrams can be neglected in the asymp-
totic limit compared to the singly connected diagrams.

In view of these general considerations, the asymptotic behaviour of the
various pair correlation functions may now be extracted. The direct correlation
function lacks any nodes, and consists of a single diagram that is f(r;2), and
multiply connected diagrams. Since the latter decay at least as fast as f(r12)?,
one has

c(r) ~ f(r)+O(f(r)?)
~  —Bu(r) + Ou(r)?), r — 0. (9.112)
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What is remarkable about this exact result is that the asymptote is directly
given by the pair potential, and apart from the temperature it is independent
of the thermodynamic properties of the system.

The easiest way to obtain the asymptotic behaviour of the total correlation
function is via the Ornstein—Zernike equation. Provided that attention is re-
stricted to regions where the total correlation function decays as an integrable
power law, one has

h(r) ~ or)+ ph(0)e(r) + p2(0)h(r)

1+ piz(O)c(r)
1 — pé(0)
~  —(ksTpxr)*Bu(r) + O(u(r)?), r — oco. (9.113)

Here the expression for the compressibility, Eq. (9.91), has been used. This
shows that the total and the direct correlation function decay at the same rate,
lim, o0 A(r) /c(r) = const. However, unlike the direct correlation function, the
asymptote of the total correlation function depends upon the thermodynamic
properties of the system, notably its compressibility.

The physical interpretation of this asymptote is straightforward. At large
separations each of the particles has an adsorption excess of particles, 1+ pfz(O) =
ksTpxr. Hence the total interaction energy between the two particles is effec-
tively the sum of the potentials between the two adsorbed clouds. The asymp-
tote is equivalent to the radial distribution function of an almost-ideal gas of
such clouds. That the isothermal compressibility should determine the magni-
tude of the adsorption excess is reasonable because it is a measure of the ease
with which the density of the system may be changed; incompressible systems
have a small excess. If the potential at long-range is attractive, then h(r) > 0,
which is to say that there is a positive correlation between the particles. In
other words, the compressibility may magnify the asymptotic interaction of the
particles, but it does not change its nature.

Second-Order Effects

The correction to the primary asymptote for the direct correlation function is!®
1 2\’
c(r) + Pu(r) ~ 5 (ﬁpza—[frj) h(r)?, r — oo. (9.114)

The derivative that appears here may be related to the volume integral of the
triplet direct correlation function.

15, Stell, Fluids with long-range forces: Toward a simple analytic theory, in Statistical
Mechanics. Part A: Equilibrium Techniques (B. J. Berne, Ed.), p. 47, Plenum, New York,
1977. P. Attard, Integral equations and closure relations for the bridge function and for the
triplet correlation function, J. Chem. Phys. 93 (1990), 7301.
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9.6.2 Near Criticality

In some cases the preceding analysis does not apply as such, although the general
features still hold. The exceptions are when the solvent pair potentials decay
faster than any power law (e.g., hard sphere) or they decay so slowly as to be
nonintegrable (e.g., Coulomb), or else in the vicinity of the critical point or line
of spinodal decomposition. The latter is characterised by the divergence of the
compressibility of the system, which, in view of Eq. (9.90), occurs when the total
correlation function becomes so long-ranged as to be nonintegrable. One can
see that the preceding asymptotic analysis breaks down in this case because the
amplitudes of the asymptotes depend upon the fz(O), which is infinite. In these
cases one can no longer assert that the asymptotic expansion is dominated by the
nodal diagrams; their very divergence indicates that all orders of connectivity
contribute, and a resummation must be carried out.

In contrast, when the compressibility diverges, the direct correlation function
remains integrable, ¢(0) — p~!. Hence it is believed that even at the critical
point the state-independent asymptote found above, ¢(r) ~ —Gu(r), still holds.
The direct correlation function is in this sense better behaved than the total
correlation function, and it is part of the reason why Ornstein and Zernike
introduced it in their studies of criticality.

The simplest way to analyse the asymptotic behaviour of the pair correlation
functions near the critical point and in the vicinity of the spinodal line is to
assume the classical Ornstein—Zernike form for the correlation function,

h(r) ~ A , T — 00, (9.115)

This form is not exact (the factor of r in the denominator should be replaced
by r?72+7 with d = 3 and 1 = 0.06),!¢ but it is satisfactory for the present
purposes. The decay length diverges as one approaches the critical point, €71 —
00, p — pe, T — TF. For the compressibility to be positive, one must have
A > 0. The Fourier transform of the Yukawa form is

N 4w A

Since the Ornstein Zernike equation gives é(k) = h(k)/[1 + ph(k)], one has
. 47 A 9 .9
é(k) ~ R k—0, x° =& +4mpA. (9.117)
Since x > £, this shows that near the critical point the direct correlation function
is more short-ranged than the total correlation function.

For future reference it is worth noting that the asymptotic decay of h is
determined by the 0 of 1 — pé(k). In this case this is 0 = (k% + x? — pdmwA)/(k? +
X?) = (k? + &) /(K + X?).

16(G. Stell, Extension of the Ornstein—Zernike theory of the critical region, Phys. Rev. Lett.
20 (1968), 533; Part II, Phys. Rev. B 1 (1970}, 2265.
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9.6.3 Mixtures

The direct correlation function of a mixture has asymptote that is the negative of
the pair potential, cay(r) ~ —Bua(r). In view of the Ornstein Zernike equation
for mixtures, the asymptotic behaviour of the total correlation function is

H(r) ~ C(r)+H(0)C(r) + H(r)C(0)
= [1+AO]om) [1+H©0)]. (9.118)

Note that the elements of the total correlation function matrix are given by
{H}oy = p}j/ 2 p}/ 2hom and similarly for the direct correlation function matrix.

Here a representation of the Ornstein—Zernike equation has been used, namely,

[£ — Q(O)} T [i +£(O)J In component form this is

PapPyhary(T)

~ =63 [padar + Pahar (0092 [un(r) [ 18, + Py (053] (9.119)
AX

Because all of the uy, (r) contribute to each hq(r), in the asymptotic regime
the most long-ranged of the pair potentials dominates, and all of the total
correlation functions decay at the same rate.

In view of the expressions for the singlet and pair densities given earlier for
a mixture, one has

52 In=

dInA3 z,(r)d In A3z, (s)

_ dp(s)

d1n A3z, (r)
— Palt)ar (5,8) + (1) (8)has (1, 5). (9.120)
In the homogeneous limit, with In A327 = iy, One has

9*InE / 2 In=
s = drds
OB ta OBy v dIn A3 z4(r)dIn A3z, (s)

ZoorZy

= Aras [pudan 6.5) + pups o (I = 5]

= Vpa(;a'y + Vpap'yha'y (O)
(NN — (Na () (9.121)

The final line may be derived by direct differentiation of the partition function.
Similarly, 0InZ/081a = Vpa. It therefore follows that the coefficients in the
asymptote may be written

apa 6P,\

Pabax + pakar(0)ps] = s = B (9.122)
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Hence the asymptote may be written compactly as

3Pa apx
9.123
Z TR (9.123)

har(
ol pap'y

In the event that the pair potential is dyadic, ua(r) = aaayu(r), then the
asymptote assumes the particularly simple form,

ha'y(r) ~ aad'yu(r)v r— 00, (9.124)

where the effective ‘charges’ are

; Opa
L= _ 9.125
; GETTN. ( )

There is reason to believe that in the real world all pair potentials are dyadic
in the asymptotic regime. The triplet potential is believed to be agymptotically
triadic, and so on for the higher-order many-body potentials.

Near Criticality

Near the critical point and along the line of spinodal decomposition, the com-
pressibility diverges. As in the single-component case, this occurs because the
ha~(r) become so long-ranged as to be nonintegrable. The zeroth Fourier com-
ponents, ha,(0), were given above as Eq. (9.121). In terms of the matrix of
second derivatives of the grand potential, this may be written

_712 =p|L+H©)]p, (9.126)

where the density matrix is diagonal with components {p}a, = /)(1/ 260[7. Now
the grand potential matrix is concave, as shown by Eq. (4.26), and hence the
matrix product on the right is convex with all the cigenvalues being positive.
This means that the diagonal elements are positive,

Do 2 hrn (0) = — [(N2) — (N)?] > 0. (9.127)

14
Denoting the fluctuation in number by A,, = (NoNy) — (N,) (N,), one also
has

Aoy — A . (9.128)

@y

In addition the determinant is positive,

>0, (9.129)

L+ a0 =1-Co)”

since

pl > 0. From this convexity, the isothermal compressibility of the multi-
component mixture is positive, as follows from the quadratic form, Eq. (9.94).

The critical point or line of spinodal decomposition corresponds to the di-
vergence of the the compressibility, and to the nonintegrability of the total
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correlation functions. Accordingly, approaching criticality the determinant of
the central matrix must also diverge, and hence that of its inverse must vanish,

I—C(0)] — 0t (9.130)
1-co)

In the vicinity of criticality, the fAzM(O) are finite but large. At some k& = i€ off
the real axis they diverge, with £ — 0 approaching criticality. (Note that since
the pair correlation functions are even functions of r, they are real functions
of k throughout the complex plane.) Let z,(k) be one of the orthonormal

eigenvectors of the symmetric matrix C/(k) with corresponding eigenvalue \; (k).
I view of the convexity established above, one must have A;(k) > 1. If the first
eigenvalue is the smallest, then it must approach unity from above at k = €. If
it has the functional form

A

M)y~ ————, k> i 131
1() A-{—k2+§27k Z§7 (9 3)
with A > 0 to ensure that A;(0) > 1, then the determinant goes like
~ i k.Z +§2
\i - g(k)| - j[[l[l M) = g X const = 0°, (9.132)

The matrix g(k) is diagonal in the eigenvector basis, as is g(k), since it is the
sum of products of the former. Denoting the elements of the latter in this basis
by naa(k), one sees that the first element has a simple pole at k = i€,

_ (k) A
O

(k) k — i€. (9.133)

All the other elements are regular. Accordingly one has

(k)Y ~ —=zz" +..., k— i, (9.134)

[~

where z = z,(if), and the regular terms have not been shown here. Hence
asymptotically the total correlation function goes like
Ae¢"
[
Y dpr
The dyadic nature of the asymptote near criticality is similar to that found in
the rest of the phase diagram.

T — 00. (9.135)

ha~(r) ~ Z4

9.6.4 Approximations

Since the total correlation function is small at large separations, so must be
the exponent that appears in the hypernetted chain closure approximation,
Eqg. (9.65). Expanding to second order one obtains

h(r) ~ h(r) — c(r) — Bu(r) + % [h(r) — c(r) — Bu(r)]®, r — o0.  (9.136)
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The linear order result yields ¢(r) ~ —Gu(r), which is exact. The second-order
result gives

e(r) + Bulr) ~ éh(r)z, T — 00. (9.137)

That this is incorrect results from neglecting the bridge function, which is
asymptotically of order u(r)?.

Similarly expanding the Percus-Yevick closure, Eq. (9.61), yields
1
lr) ~ —fu(r) ~ 3Bu(r) - Fulr)h()

~ —pBu(r)— %ﬁzu(r)z + (ksTpxT)2F%u(r)?, r — oo. (9.138)

Again the approximation is correct to leading order but fails at the second-order
term. The mean spherical approximation is of course ¢(r) ~ —Bu(r), there being
no higher-order terms.

Summary

e The pair distribution function gives the joint probability of finding two
particles at particular positions in the system, and as such gives structural
and thermodynamic information about the system. The structure factor,
which is measured in scattering experiments, is essentially the Fourier
transform of the pair distribution function.

e For a system interacting with ouly a pair potential, the pair distribution
function gives the average energy, pressure, and, in certain approxima-
tions, the chemical potential. More generally, its integral gives the number
fluctuations of the system and its compressibility.

e The Orustein Zernike equation is an exact relation between the direct
and total correlation functions that corresponds to connecting diagrams
in series.

e The pair distribution function is the exponential of the potential of mean
force, which corresponds to connecting diagrams in parallel.

e The closure that completes the set of equations for the pair functions gen-
erally correspond to neglecting (hypernetted chain) or to approximating
(Percus Yevick) the bridge function. Approaches based on the iterative
numerical solution of these equations are more powerful than straight den-
sity expansions, and they are relatively accurate even for dense systems.

e The pair total and direct correlation functions decay to 0 at the same rate
as the pair potential (provided it is an integrable power law potential). The
direct correlation function shows a universal behaviour asymptotically,
whereas the magnitude of the decay of the total correlation function scales
with the square of the compressibility of the system.



Chapter 10

Functional and
Perturbation Theory

In the previous chapter several techniques for dealing with systems of interacting
particles were presented: a density expansion, the Born -Green—Yvon equation,
and the Ornstein—Zernike equation. The advantage of the latter is that it is
applicable to dense systems and solutions can be obtained by straightforward
iterative techniques. The main disadvantage is that in practice factorisation
of the Ornstein—Zernike equation is essential, and this restricts its application
to uniform systems or to the simplest inhomogeneous system. In addition, for
certain systems (e.g., highly coupled systems, or systems in the vicinity of a
phase transition), the iterative procedure may not converge and the results
can become unacceptably sensitive to the approximations made. Alternative
methods for treating both homogeneous and inhomogeneous systems have been
developed. These are based on constrained entropy maximisation (equivalently,
constrained thermodynamic potential minimisation). Such density functional
theories form the content of this chapter.

10.1 Uniform System

10.1.1 Constrained Thermodynamic Potential

In the third chapter it was shown that for an open subsystem that could ex-
change energy and particles with a reservoir, the constrained total entropy when
the subsystem had N particles and energy E was
- - E uN

S(B,N|p,V,T) = S(E,N,V) — = + “7 (10.1)
This neglects a constant independent of the presence of the subsystem. The
left-hand side is the constrained total entropy, the first term on the right is the
entropy of the subsystem in the particular macrostate, and the remainder is

243
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the subsystem-dependent part of the reservoir entropy in the macrostate. The
quantities with a tilde refer to the subsystem; the tilde is used to emphasise
that these are constrained or nonequilibrium quantities. The constrained ther-
modynamic potential is the negative of the temperature times the constrained
total entropy,

QE,N|p,V.T) = —TS(E,N|p,V,T)
= E—puN +S(E N,V). (10.2)
The constrained thermodynamic potential is a nonequilibrium quantity and the

probability of a macrostate occurring due to random fluctuations about equi-
librium is the exponential of the total entropy,

—QE.N|u.V,T) kT

2w, V,T)

€

o(E,N|p,V,T) = (10.3)
The logarithm of the partition function is the total unconstrained entropy,
S, (p, V,T) = ksInE(y, V,T). The grand potential, which is the equilibrium
thermodynamic potential for the open system, is the minimum value of the
constrained thermodynamic potential, Q(u, V,T) = Q(E, N|g, V,T). Here the
equilibrium values satisfy

OSENV) 1 0SENV) -

= — (10.4)

v L ON  |gx
This says that at equilibrium the temperatures are equal and the chemical po-
tentials are equal between the subsystem and the reservoir, T(_E, N, V) =T,
and u(E,N,V) = p. An overline is used to denote the equilibrium state.

The logarithm of the grand partition function gives the unconstrained total
entropy. The partition function is the weighted sum over the macrostates, and
if fluctuations are negligible, as they are in the thermodynamic limit, this sum
is dominated by its largest term, which is the equilibrium macrostate. Hence
one has

kpmE(p, V,T) = kplny oSENWVI)/ ks
BN
kB InGS(E,N!/L,V,T)/kB

—Qu, V,T)/T. (10.5)

~
~

This is the conventional result, that the thermodynamic potential is in essence
the logarithm of the partition function. It is emphasised that this conventional
equality only holds in the thermodynarmic limit, whercas equating the logarithm
of the partition function to the total unconstrained entropy holds in general.

10.1.2 Meta-reservoir

One can introduce an imaginary reservoir that has temperature T and chemical
potential /i that would be in equilibrium with the constrained subsystem, F =
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E(@,V, T)7 and N = N(i1, V, T) In terms of this meta-reservoir, one can rewrite
the expression for the constrained total entropy, Eq. (10.1), as

S(E,N|u,V,T) = |S(E,N,V)- =+

E{%-_;_}Hv{%_%} (10.6)

The term in brackets represents the constrained total entropy of the equilibrium
macrostate of the subsystem and meta-reservoir; it is S(E, N|g, V,T). The
two terms in braces represent the difference hetween the entropy of the actual
reservoir and that of the meta-reservoir, when the subsystem is in the macrostate

E, N. Hence the constrained total entropy may be written

AN
T

M

S(E,N|p,V,T) = S(E,N|iV,T)+ AS:es(E, N). (10.7)

The invocation of the meta-reservoir represents a departure from the attitude
that has underpinned the book to date. So far a physical approach has been
taken, as exemplified by the reservoir formalism wherein both the constrained
and the unconstrained thermodynamic potentials were shown to represent the
actual exchange of measurables with a reservoir. The meta-reservoir is an arti-
ficial construction that has no physical basis. It is a mathematical convenience
that allows certain formal thermodynamic relationships for constrained quanti-
tics to be derived, but it has no physical realisation beyond this. The reason for
introducing the meta-reservoir is that because the constrained state is in equi-
librium with it, the various equilibrium results that have been established are
applicable, whereas they cannot be directly used for the nonequilibrium system
itself.

Notwithstanding the metaphysical nature of the meta-reservoir, this partic-
ular result may be stated more generally: the constrained total entropy of a
subsystem and actual reservoir may be written as the constrained total entropy
of the subsystem in equilibrium with the meta-reservoir, plus the difference
between the constrained entropy of the actual reservoir and that of the meta-
Teservoir.

10.2 Singlet Functionals

10.2.1 Density Functional

In the case that the reservoir imposes an external potential u(r) that causes
a density inhomogeneity p(r), one divides the energy of the subsystem into an
internal and an external part. If the subsystem is in the macrostate p(r) (i.e.,
it is constrained to have the density profile p(r)), then the particle number and
the external energy are given by

N = /drﬁ(r), Bt = /drﬁ(r)u(r). (10.8)
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The internal energy of the subsystem is still denoted by E, and the energy of the
reservoir is Fg — E — Eob, Writing the local chemical potentlal of the reservoir
as u(r) = p—u(r), the constrained total entropy of the subsystem and reservoir
is

S(E, plu, V. T)
— SV~ Bk [araeu
= S(E,p, 7+ [ drar)ulr)
~ SEAV) -2+ 2 [t
{11 fu) )
- —_— — = d - T =
Foghe o {fP -5
= S(E,plp,V,T) - E LA Gy /dr~(r)1 Ar) (10.9)
- 7p N’? 1 T T B p n 2(1_) . N
The definition of the activity, z(r) = A= exp Bu(r), gives the final equality. It

should be clear that the above are fuuct10nals, not functions, of the density and
of the local chemical potential; for typographical clarity the latter arguments
are not here enclosed in brackets. In the case that the subsystem is thermally
equilibrated, T =T, one has

S(p|z, V,T)=S(p|z,V,T) + kn /dr[)(r) In —;—E%, (10.10)
where the activity rather than the chemical potential is now used. Since in gen-
eral the constrained thermodynamic potential is the negative of the temperature
times the constrained entropy, multiplying by —T one may write this as

_ . " Z(r)

Qlplz] = Q2] + keT /dr p(r)In ) (10.11)
The grand potential of the meta-system appears as the first term on the right-
hand side because the given macrostate is the equilibrium state for the subsys-
tem in contact with the meta-reservoir; its constrained thermodynamic potential
is at its minimum value, =T'S(p|2, V,T) = Q([z], V. T).

This funectional of the density is minimised by the equilibrium density profile,
p(r) = p(r,[7]). At equilibrium Z(r) = 2(r), and the integrand vanishes, which
shows that the minimum value of the functional equals €2[z], the grand potential
of the subsystem plus reservoir.

This functional is an implicit functional of the density. The activity of the
meta-reservoir that appears is the one that gives p(r) as the equilibrium density
profile, and hence it is a functional of the constrained density, z(r) = Z(r, [9]).
An explicit formula for the activity as a functional of the density was given
as Eq. (8.69), z(r) = p(r) exp—c(r;[p]). The grand potential 2 is an explicit
functional of the activity, and it is therefore an implicit function of the density.
Hence one can define Q,[p] = Q[z[p]], which has derivative

—08Q0[p] S~6[jQ[z]6z(s)
Spr) I 52(s) op(r)
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B @ d2(s)
- fu 2(s) p()

= /ds [0(r,s) — p(s)e(r,s)], (10.12)

where Eq. (9.26) has been used. The function ,[p] is well defined, at least
implicitly. (One could write it simply as Q[p], provided that one kept in mind
that this is a different function of its argument to 2[z] due to the convention
that a function is distinguished by the symbol used for its argument.)

In view of the fact that this derivative gives an integral of the pair direct
correlation function, and the fact that the function F**[p] introduced in the
previous chapter is a generating function for the direct correlation functions,
one is motivated to consider the explicit functional of density

ol =k T/dS)s [-um pls) };fexp. 10.13
p[ ] B /( ) Z(S,[p]) [ ] ( )
It will be recalled from Eq. (9.20) that

BF*[p] = {the sum of all simple irreducible diagrams with p-

field points and one or more f-bonds}

- I+ h.+ I:I+ ISI+ m+ m+...(10.14)

and from Eq. (9.21) that

OBF=Pl _ gy — g PE)
o) (ry=1 ) (10.15)
To show that Q;, = (1, one takes its derivative,
6[352;[p] _ I n@ B @62(5) _ n@
ey~ g el 5,)@)} ")
0B,
TR (10.16)

Hence the two expressions are equal up to an arbitrary constant independent
of density. In the limit of vanishing density, where z(r) = p(r), it is clear by
explicit evaluation that —BQ,[p] = —ﬁQ;[p] = @. This then is the explicit
cxpression for the grand potential in terms of the density.!

In view of this result, the density constrained thermodynamic potential is
explicitly

Qplz] = Qp[ﬁ]+kBT/drﬁ(r)ln%
= dr p(r) |— nﬁ—(r—) - F*p
- kBT/i A )[ - Z(r)] Fh, (10.17)

LG. Stell, Cluster expansions for classical systems in equilibrium, in The Equilibrium The-
ory of Classical Fluids (H. Frisch and J. L. Lebowitz, Eds.), p. II-171, Benjamin, New York,
1964. P. Attard, The explicit density functional and its connection with entropy maximisation,
J. Stat. Phys. 100 (2000}, 445.
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where 2(r) = Z(r, [p]). The minimum value of this functional occurs at p(r) =
p(r, [2]), and is equal to the grand potential, Q[p|z] = Q,[p] = Q[2].

Probability of Density Fluctuations

In view of the present interpretation of statistical mechanics, a physical meaning
can be given to density functional theory. The density functional ©[s|z] is noth-
ing but the constrained thermodynamic potential, which is (the negative of the
temperature times) the entropy of the subsystem when it has a particular den-
sity profile, plus the entropy of the reservoir in the corresponding macrostate.
Minimisation of the density functional corresponds to maximisation of the con-
strained total entropy, which is the procedure for establishing the equilibrium
macrostate. Furthermore, the density functional given explicitly here is unique:
whereas there are many functionals that are mathematically minimised at equi-
librium, it is the present one that determines the density fluctuations of the
ensemble. Because of the relationship with the constrained total entropy, the
probability of such fluctuations is given by

plplz] = =— e~ PSRl (10.18)
(2]

The left-hand side may be visualised by subdividing space into cells r; of size

A;, so that for a given density p(r) the cell occupancy is 7, = A;5(r;), and the

entire density function is represented by the set of occupancies n. The left-hand

side then represents the joint probability for the cells to be so occupied.

Cross—Entropy

There is an alternative way of viewing the density functional. One invokes the
so-called cross-entropy of the configuration probabilities of the reservoir and the
meta-reservoir. The configuration probability of the actual system is given by

e BUNEN) N

gJ(rN,N|/t7 V, T) = m Hz(ri)7 (10.19)
TV T =

where U} is the potential energy without the singlet contribution. The normal-
isation factor is the grand partition function,

—_ s ) dI‘N _ N N
2V, T) = E / BN AUNET) H z(r;), (10.20)
N=0 ) i=1

and the grand potential is, in the thermodynamic limit, Q(u, V,T) = —kgT InE.
Analogous quantities, denoted by a tilde, are defined for the meta-system.
The cross-entropy is defined to be

. IR . pr)
S[p, 9/ ks = NXZ:O i /drN A(r¥)In ol (10.21)
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In view of the fact that the configuration probabilities are normalised to unity,
this may be written

M) i)

S[p, 0)/ ks = Z/ {gg ;ln @Er — @(rN +1}. (10.22)

o) p(rN)

The integrand is nonnegative (since zlnx > z — 1), and one concludes that
S[@, p] > 0. Obviously the cross-entropy vanishes if and only if & =

In view of the nonnegativity of the cross-entropy, one can add it to the
grand potential of the subsystem plus actual reservoir to give a functional that
is minimised at equilibriumn, and that has minimum value equal to the actual
grand potential. This functional is

pplz] = B+ Sg, )/ ke

o0 ~ rN
= pQz] + Z %/drN H(rV)In pErN;

= +Z/N'p ) In

- . Z(r)
= pQ[z dr p(r)In —=. 10.23
sl + [ jrym I3 (10.23)
This is just the density functional given above. Hence the cross-entropy of the
reservoir and meta-reservoir plays a réle rather similar to that of the constrained

entropy of the general formalism.

(113 [1]
—z =
N Nz

10.2.2 HNC Approximation

The utility of density functional theory lies in the availability of robust and
tractable approximations for the nontrivial part of the functional, F°*. Here it
will be shown how it can be used to obtain the hypernetted chain approximation.

One does a coupling integral from an initial density, py(r), to the final
density, p1(r), along a linear path, px(r) = po(r) + AAp(r), where Ap(r) =
p1(r) — po(r). One assumes that the initial density is the equilibrium one,
po(r) = p(r; 20), but that the final density does not correspond to the final
activity, pi(r) # p(r;z;). One further assumes that the chemical potential is
fixed and that only the external potential depends upon the coupling constant,
pa(r) = p —ux(r).

The change in F** is

Il

F ]~ 7 (oo / a2l

SF[p (9,0)\( |
dA
/0 / Spa(r)  OA

= kBT/O d)\/vdrc(r;p,\)Ap(r). (10.24)
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Similarly,

A
/a y P
cr;pa) —c(rypo) = /d/\%

/ d)\’/dscr i pa ) Ap(s). (10.25)

Using the fact that

/01 dr /OA dN f(X) = /01 AX (1= A)F(N), (10.26)

the change in the thermodynamic functional is

BF ] — BF[po]
1 A
= /Od)\/vdrAp(r) {c(r;p0)+.4 dA /VdsAp(s)c(r,s;p,\,):l
— [ dr dptwyetri o)
1%
+./0 d)\(l~)\)/vdrdsAp(r)Ap(s)c(r.s;p,\). (10.27)

From Eq. (10.17), and using the fact that ¢(r; pg) = In[A*py(r)]—Bp+Bug(r),
the change in the density functional is

BQp1]z1] — B polzo] .
= /v dr p;(r) {~1 +In Zi é:” — ./v dr pg(r) [—1 +In ZSE:H

- / dr Ap(r)e(r; po)
Jv

- / d)\(l~)\)/ drds Ap(r)Ap(s)e(r,s; pa)
Jo 1%

= r rnpl(r)A r) — po(r 0 (r) {Bu (r) — Bug(r
= [ ar @1 2 o1 5) = ()} £ ) (s 1)~ B

- /(:d)\(l - )\)/Vdrds Ap(r)Ap(s)e(r,s; py). (10.28)

This is an exact expression for density functional that can be minimised with
respect to p; to yield the equilibrium demnsity profile that corresponds to u;.
The terms corresponding to the initial state are constant with respect to ps.

Now take the pair direct correlation function to be constant along the inte-
gration path and equal to its initial value,

c(r,s; pa) = c(r,s; pg). (10.29)
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This is of course an approximation that allows the coupling integral to be
performed. For the initial state a uniform system in equilibrium is chosen,
uo(r) = 0, and po(r) = p(r; p) = po. With this the density functional becomes

B |21]
= 0.+ [ ax @m0 < ) = o)+ pute)ps 0

~ 3 ] ards ) = 0} {pa(5) = o} s o) (10.30)

The functional derivative is

808 p1|21] —1In p1(r)

ép1(r) Po

8 = [ ds {pu(s) = podelesipo), (1031)

which vanishes at the equilibrium density p,(r; u1, ¢). Rearranging this gives

i) = poe T enp | [ s (31(s) - o clrsign) (10.32)

For the case that the reference fluid is isotropic and has pair-wise additive
potential (2 (r|3), the pair direct correlation function depends only upon the
separation between the particles, ¢(r3, ra; po) = co(rs2). Further, if one takes the
external potential to represent a particle fixed at ry, so that uy(ry) = u(z)(rlz),
then the density profile about the fixed particle is simply related to the radial
distribution function of the uniform reference system,

pi(rz) = POQO(le) = poho(r12) + po- (10.33)

In this case the equation for the equilibrium density profile may be written

3@
pogo(riz) = poe P P2 exp [Po/ drs ho(m:s)co(?“sz)} . (10.34)
v

One recognises the second exponent as the Ornstein—Zernike series function,
and hence this is just the hypernetted chain closure approximation, Eq. (9.65).
At equilibrium, the change in grand potential in this approximation is

By |z1] — B, V, T)
= p/v dr, [{1 + h(ri2)} <[3u(2)(r12) +1In {1+ h(mz)}) - h(mz)}

2
—% /V dry drs A(ria)c(ras)h(rs). (10.35)

For clarity the subscript 0 has been dropped since all densities and functions
on the right-hand side refer to the uniform reference system. The difference
between the final and the initial system is the particle fixed at r;. Hence the
difference in the grand potentials represents the excess chemical potential of the
reference system. (The ideal contributions are not included because the particle
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is fixed.) The excess chemical potential in hypernetted chain approximation was
given above as Eq. (9.102). Rearranging it gives

<—ﬁs#§x>HNC

- ¢ /V drz (2¢(r12) — h(ris) {h(r12) — c(r12)}]
_ ‘p/ dry [{h(r12) — c(ri2)} {1 + A(riz)} — h(r1s)]
Vv
2 /V drs [{A(r1) — c(ri2)} h(ri)]
—p /v drs Kﬁu(z)(mz) +In{l + h(mz)}) {1+ h(ri2)} - h(rlz)}

I

2
+ % / dI‘2 dI‘3 h(’r‘lz)c(’rzg)h(’f'gl). (1036)
1%

The hypernetted chain closure has been used to obtain the first term, and the
series function has been replaced by the Ornstein Zernike convolution integral to
obtain the second. This is the same as that given by the difference in the grand
potentials, which confirms indeed that the hypernetted chain approximation is
equivalent to taking the pair direct correlation function to be given by its bulk
value and independent of the partially coupled particle in the density functional.

10.2.3 Approximation Schemes

The hypernetted chain approximation derived above is one example of a den-
sity functional approximation. It consisted of writing the excess part of the
Helmholtz free energy functional as an integral involving the inhomogeneous
pair direct correlation function evaluated at an intermediate density, and then
approximating the latter as that of a reference system, usually taken as a uni-
form bulk system.

In order to go beyound the hypernetted chain, one may go to the next order
in the coupling constant expansion, which involves the triplet direct correlation
function. One approximates the latter by that of the uniform reference system.
This level of approximation is equivalent to retaining a certain infinite class of
bridge diagrams, namely those that can be written as

da(r,s) = % /dudt o(r,u, t)p(u)p(t)h(u,s)h(t,s). (10.37)

The actual bridge function is the series of d,, where d, is the convolution of
") with n pair total correlation functions. Hence going to higher orders in
the coupling constant expansion is equivalent to retaining successive classes of
bridge diagrams in the hypernetted chain closure. This then is a systematic way
of improving the density functional approximation.

Other approximate approaches have been used, based upon some explicit
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formula for F[p].2 There is a degree of arbitrariness in the choice of the latter
and the accuracy of the final density profile depends to a large extent on the
appropriateness of the chosen functional for the problem at hand.

The simplest approach is to invoke the Helmholtz free energy density of a
uniform bulk system with density equal to the local density,

7ol = = [ dr fuclolo)). (10.38)

There are at least three limitations of this approximation. First, in the case
that one is describing two-phase coexistence, the local density may belong to
the unstable part of the phase diagram, and hence the free energy density may
be undefined or unphysical. Second, the free energy density may not be known
for the particular system of interest. And third, this local density approxima-
tion corresponds to taking the pair direct correlation function to be a Dirac 6,
which is a poor approximation to real systems. This may be seen by taking the
functional derivative,

) = 2 (ot (1039
and
D(r
r,5) = S~ pm)oes), (10.40)

where the primes denote differentiation with respect to density.

In order to go beyond this local density approximation, one can add to it
terms involving the density gradient. Due to the isotropy of the bulk uniform
system, one has

Flol = fo(p(x)) + f2(p(x)) (Vp(r)* + ... (10.41)

The second coefficient here is cssentially the second morment of the bulk pair
direct correlation function. The utility of such gradient expansions are restricted
to systems that are only weakly nonuniform.

A higher-order approach, essentially a resummation of the gradient expan-
sion, is to add a nonlocal term quadratic in the density,

T e dse(r,s; p*) [p(r) — p(s)]? . (10.42)

]_-ex[p] = _/drfex(p(r))
To leading order in density the second density derivative of this yields a pair
dircct correlation function. The latter is often taken to be that of a bulk uniform
system at density p*, which can be chosen as some suitable average of the
densities at the two positions (e.g., p* = [p(r) + p(s)]/2).

2]. -P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd ed., Academic Press,
London, 1986. R. Evans, The nature of the liquid-vapour interface and other topics in the
statistical mechanics of nonuniform classical fluids, Adv. Phys. 28 (1979), 143.
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Perturbative approximations have also been pursued, using the hard-sphere
system as a reference. One treats the attractive long-range tail of the pair
potential, »(r), in a mean field fashion, and one supposes that the structure is
mainly determined by the repulsive core, for which one can use a hard-sphere
density functional,

Flpl = Flpl - 5 [ ardsole - shp(e)o(s). (10.43)

For the hard-sphere functional of the inhomogeneous density one often invokes
the excess free energy density of a uniform hard-sphere system at some local
weighted density p*(r). That is,

falp*(r))

PG (10.44)

Fio) = [ arp 242D
with
o) = [ dsp(s)ulr - ), (10.45)

with normalised weight function, [ dsw(r—s) = 1. In the local density version,
w(r —s) = §(r — s), the second density functional derivative gives for the pair
direct correlation function

c(r,s) = =Bf(p"(x))(r —s) — Bo(lr — s|), (10.46)

which has the correct asymptote, but is again a poor approximation at short
range. Averaging the density instead over the neighbourhood of a hard-sphere
diameter yields better behaviour at short range. One has a certain flexibility in
the choice of the hard-sphere diameter, and in the weighting function. Although
specific recipes may work well for particular systems, the approach is somewhat
ad hoc and it is not clear how systematic improvements can be made.

10.2.4 Activity Functional
Uniform System

In the early chapters it was shown that an open subsystem in thermal equilib-
rium had constrained thermodynamic potential

Q(N|w,V,T) = F(N,V,T) — uN, (10.47)

where the Helinholtz free energy appears. The minimum value of this was the
grand potential,

Qp,V,T) = Q(N|p, V,T) = F(N,V,T) — uN, (10.48)

where the equilibrium number is N = N(u,V,T).
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Now a variational principle for the chemical potential will be developed.
This is more a mathematical convenience than a physical representation of a
real system. Consider the function

F(aIN,V,T) = Q@ V,T) + aN. (10.49)
Its derivative is
OF (N, V,T _—
—Ml—a—}’—) =—-N(,V,T)+ N, (10.50)
m

which obviously vanishes when p = 7(N,V,T). Taking the second derivative
yields
62]:(11|N7 V? T) _6]_\7(/17 Vv T)
- = = <0
op? Op ’
as follows from Eq. (4.68). This shows that the stationary point is a maximum,
which is in contrast to the previous constrained thermodynamic potentials where
a minimum characterises equilibrium. Nevertheless F(fi|N,V,T') represents a
variational principle for the chemical potential, and its maximum value is the
Helmholtz free energy

(10.51)

F(N,V,T) = F@N, V,T) = QE, V,T) + N. (10.52)

Inhomogeneous System

For an inhomogencous system, one can generalise this to a functional of the
activity,

F(zlp,V,T) =Q(z,V,T) + kBT/ds p(s) In A33(s). (10.53)

The functional derivative of this is
OpF(zlp, V., T)

SInA3%(r) —p(x) + plr), (10.54)

which, since p(r) = p(r,[2]), vanishes when Z(r) = Z(r, [p]). Hence F(2|p,V,T)
provides a variational principle that yields the activity that corresponds to a
given density profile. Its maximum value is

FpV,T) = F(p,V,T)
= Q(p,V.T)+ kBT/ds p(s) In A®Z(s; [p]). (10.55)

Since the logarithm of the activity gives the local chemical potential, u(s) =
1 —u(s), one sees that this is similar to the Helmholtz free energy, F = Q+uN.
In the Helmholtz free energy the chemical potential is effectively removed from
Q. The fact that both it and the external potential are effectively removed from
the grand potential in this expression is the reason that F is often called the
intrinsic Helmholtz free energy.
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This density functional is the same as the functional denoted by the same
symbol given previously, Egs. (9.20) and (9.24). This follows by direct substi-
tution into the explicit representation of €1,, £q.(10.13),

Flp,V,T) kBT/ ds p(s) [1 +1n o) ] — F*{p]

z(s; [p])
+ kBT/ds p(s)In A32(s; [p])

= [dsp)l-1+ mA%()] - 7

= Fp] = Fpl. (10.56)
It will be recalled that this thermodynamic potential was the gencrating func-
tional for the direct correlation functions, cs.
Cross—Entropy

In terms of the cross-entropy, consider the functional maximised at equilibrium
with maximum value equal to the actual intrinsic Helmholtz free energy,

BF'[Z]p]
= BF(p.V,T) - Slp.¢)]

= BF(pV.T) - Nii:o % | / dr™ oV In %i
= BF(p,V.T) - é/ d]i,l,v p(r™) hél}__vllzg;
— BF(p,V,T) + BV, T) — 5z, V, T) - / dr p(r) In % (10.57)
Using the fact that
Q= V,T) = F(B,V.T) — kT / dr p(r) In A®2(r), (10.58)
and that p(r) = (r. [2]), this is
BF'[Z|p] = BQUE, V. T) + /dr p(r) In A*2(r), (10.59)

which is just the activity functional given above.

10.3 Pair Functionals

10.3.1 Total Correlation Function

In this section a variational principle for the pair correlation function is devel-
oped. One again considers an open subsystem in contact with a reservoir that
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creates a local chemical potential p(r) = p—u(r). As for the density functional,
with the singlet density constrained to be p(r), the corresponding number of
particles is N and external energy is E®t One supposes that the particles of
the actual subsystem interact with pair potential u(r,s), and that the subsys-
tem is in the macrostate with pair density p(r,s). Then the pair part of the
subsystem energy 1s

~ 1
E® = §/dr ds p(r,s)u(r,s). (10.60)

The internal nonpair energy of the subsystem is denoted by E, and the energy
of the reservoir is therefore Ey — E — E¢** — E(2) The constrained total entropy
of the subsystem and reservoir is
S(E, 5, 5P|, uV P v, T)
E

1 -
= S(EpW. 5. V) — =+ = [ drp(r)u(r)

~ 5T drds p(r,s)u(r,s)

- E 1 o
= S(E,pV, 5%, V) - 7+ ;/drp(r)u(r)

_ % /dr ds A(r, s)a(r, s)

- %/drdsp(r,s) {%u(r,s) - —%ﬂ(r,s)}
=SB, 5O a0, 6@, v, T) - E{% _ %}
+k3/drﬁ( )In%+k§/drd5p(r s)In g—:; (10.61)

The definitions of the activity z(r) = A7 exp Bu(r) and the exponential pair
function e(r,s) = exp —Bu(r,s) give the final equality. 3
In the case that the subsystem is thermally equilibrated, T = T, one has

SN,z e,V.T) = S(ﬁ‘“,ﬁ(”lé,é,V,T)+kB/dr,3(r)1nZ_%
- rds p(r,s e(r;s)
+ /d ds p(r,s) In Zr.s)’ (10.62)

where the activity rather than the chemical potential is now used. Since in gen-

eral the constrained thermodynamic potential is the negative of the temperature
times the constrained entropy, multiplying by —7 one may write this as

Z(r

9[5(1)75(2”276} = Q[z¢+ kBT/drﬁ(r) ln——E—;

z(r
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+——/drdspr s)In (ZE?:;

The grand potential of the meta-system appears as the first term on the right-
hand side because the given macrostate is the equilibrium state for the subsys-
tem in contact with the meta-reservoir; its constrained thermodynamic potential
is at its minimum value, —~T'S(p(1), p 2)|Z eV, Ty =Q(%,e,V,T).

This functional of the density is minimised by the equilibrium densities,
p(r) = p(r;[2],[e]), and p(r,s) = p(r,s;[2],[e]). At equilibrium 2(r) = z(r),
and é(r,s) = e(r, s) and the integrands vanish, which shows that the minimum
value of the functional equals Q[z, e, the actual grand potential of the open
subsystem.

The pair density is related to the pair total correlation function by p(r,s) =
p(r)p(s)[1 + h(r,s)]. Henceforth the analysis is particularised to the case of
fixed density, p(r) = p(r), and the above functional is written Q[hle, z]. This
means that the activity of the meta-system is now a dependent functional,
i(r) = 2(r; [e], [p]).

The grand potential is an implicit functional of the total correlation function.
The function é(r,s), which is the exponential function of the meta-system, is
the one that gives B(r,s) as the equilibrium total correlation function of the
meta-system, and hence it is a functional of the constrained total correlation
function, é(r,s) = &(r,s; [A]).

One now requires the derivative of the total correlation functional Q[hle, z].
For this one uses the fact that

589z, é)
Sh(r,s)
B 50 6lné(u,t) 56Q  Slni(t)
o /dUdtélné(u,t) h(r,s) +/dt5lnz( t) oh(r,s)
~1 f . Slné(u,t 91l
- 5 / dudt p(u,t)———;;l;:ls)) - / dt (t) 5125,(3)) (10.64)

Here Eq. (8.57), which gives the pair density as the pair potential derivative of
the grand potential, has been used. Accordingly, for fixed deusity, p(r) = p(r),

these two terms terms cancel with the derivatives of some of the remaining terms
in Q[hle, 2], and one is left with

oQhe, 2] _ 1) . Y é(r,s)
R L CL e

(10.63)

(10.65)

Explicit Functional

The total correlation functional Q[~ e, z] may be written as an explicit functional
of the the total correlation function. One requires the closure relationship and
two generating functions for the classes of diagrams that appear therein. The
closure was given in the preceding chapter as Eq. (9.43), and it may be written

h(r,s) = —1 4 e(r, s)eh(rs)—c(rs)+d(rs) (10.66)
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where d® is the bridge function.

Now one needs to define two sets of diagrams that will yield the series func-
tion h — ¢, and the bridge function d, when differentiated with respect to the
total correlation function. A ring is a linear chain closed on itself, and one
defines the ring diagrams as

R[h] = {the sum of all simple connected diagrams with
(~p)-field points and h(P-bonds, such that each
field point is intersected by exactly two bonds}

- IS.+I:I+I:'.>.+I::I+.... (10.67)

Note that the sign of successive ring diagrams alternates, since the circles rep-
resent (—p(!))-field points. Differentiation yields the series function,
OR[h) 1

Shir.s) = §p(r)p(s)[—h*h—i—h*h*h—h*h*h*h+...](r,s)

= 5 p(0)p(s) [h(r,5) — e(r,3)]. (10.68)

The asterisks here denote a density-weighted convolution integral. This result
follows by using successive substitution in the Ornstein—Zernike equation written
in the form

¢ = h—hxc
= h—hxh+hxhx*xc
= h—hxht+hsxhsxh—hxhxhxh+.... (10.69)

The second function is defined as

Blh] = {the sum of all simple connected diagrams with four or
more p(M-field points and no articulation points, and
with A(®-bonds and no articulation pairs of points}

mjLﬁjL@Jr@ o (10.70)

Differentiation yields the bridge function,

6Blp,h] 1
Sh(r,s) 2

p(r)p(s)d(r,s). (10.71)

Using these definitions, the explicit functional of the total correlation func-
tion is

B hle, 2]
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+ é /dr ds p(r)p(s) {[1 + h(r,s)] In[1 + h(r,s)] — B(r,s)}

1 ~
- §/dr ds p(r)p(s)[1 + h(r,s)]Ine(r,s). (10.72)
Using the closure equation, differentiation yields
668Q[hle, 2] 1 é(r,s)
OO  oir)p(s) In , 10.73
Sh(r,s) QP( )(s) e(r,s) ( )

which shows that up to a constant independent of h this explicit functional is
the same as the implicit one, Eq. (10.63).3

The value of the constant may be determined by taking the high-temperature
limit, f — 0. Tt is straightforward in both cases to show that

BQ[hle, 2]

— /drp —1+In pgr;] _ %/ drdsp(r)p(s) Ine(r.s). (10.74)

and one concludes that the two functionals are in fact identical. One also con-
cludes that the minimum value of both functionals is Q[hle, z] = Qle, 2].

It is obvions that the pair potential determines the pair correlation function.
The fact that an explicit functional was given above indicates that the obverse
holds: the pair correlation function determines the pair potential. In other
words, there is a unique pair potential for each pair density, which means that
well may one write e(r.s; [h]).

Fluctuations in the Pair Correlation Function

Because of the relationship of the pair correlation functional with the con-
strained total entropy. the probability of fluctuations in the pair correlation
function is given by

- 1 N
olhlz.¢] = =———e P2, 10.75
olflz.c] = 2o (10.75)
Conceptually, the probability of the pair density is a straightforward extension
of the probability of the singlet density.

Cross—Entropy

As in the singlet case. one can use the cross-cntropy to derive the variational
functional. The normalised configuration probability is

e ﬁUN(r ) N

p(eN N, V. T) = NNE(L VT Hz r, H(i(l‘,;,l‘j), (10.76)
=1 1<y
3This result was obtained by G. Stell, Cluster expansions for classical systems in equilib-
rium, in The Equilibrium Theory of Classical Fluids (H. Frisch and J. L. Lebowitz, Eds.),
p. 11-171, Benjamin, New York, 1964. The present derivation follows that of P. Attard, The
explicit density functional and its connection with entropy maximisation, J. Stat. Phys. 100
(2000), 445.
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where Uf, is the potential energy without the singlet and pair contributions.
Analogous quantities, denoted by a tilde, are defined for the meta-system.

In view of the nonnegativity of the cross-entropy, S[@, ], defined exactly
as above, one can add it to the grand potential of the subsystem plus actual
reservoir to give a functional that is minimised at equilibrium and that has
minimum value equal to the actual grand potential. This functional is

ﬁQ[~(1) ,3(2)[2 e]

Bz, €] + S, ]/kB

o NrN
+Z /dr o(r )lnpg N;

N:O P
= z Z(r (3 (r;,ry)
= AL, by
Z N' p ) In = H z(r (r;,r;)
N=0 —i=1 z<] g
L . z2r) 1 é(r,s)
Bz, €] +/drp(r) In (1) +3 /dr dsp(r,s)! o(r.5)’ (10.77)

which is just the implicit pair density functional given above.

10.3.2 HNC Approximation

The ring diagrams are readily evaluated, at least in the uniform density case,
p(r) = p, h(r,s) = h(Jr — s|). One has R[h] = >, s R,, with

Rn

(_2{;)” /dr1...drn h(riz)h(ras) .. A(ra—1,n)h(rn,1)

(~§;”V/dr12 h(ri2)hn_1(r21)
(=p)"V 2 v
(2] /dkh(k)h,n,l(k)

é—;—(’;t—; /dk h(k)™, (10.78)

where the circumflex denotes the Fourier transform and Parsevaal’s theorem
and the convolution theorem have been used. It follows that

RIA]

2(2—V7r>3 / i {Inf1 + ph(k)] - ph(k) + p?h(k)?/2 |

2(2_‘/7;)3 /dk {1+ ph(k)] - pie)}

- VTPZ /dr {c(r)h(r) - %)2} (10.79)

where the Ornstein-Zernike equation has been used, &(k) = h(k)/[1 + ph(k)].
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The hypernetted chain approximation consists of the neglect of the bridge
diagrams B[h] = 0. This gives

BOMNClhle, 2] /V

= pIn[A%p] — p— pBu+ R[A/V -

o[,

/dr [T+ A(r)] ne(r)

+ % /dr {[1 + R(r) 1+ A(r)] — B(r)} . (10.80)

This HNC functional to be minimised is the same as that given by Olivares and
McQuarrie.* Using the HNC closure, h(r) = —1+e(r) exp[h(r) — c(r)], this may
be rewritten as

BOHNCIhle, 2]/ V

= pIn[A’p] — p—pPu+R[A/V + % /dr 1+ ()] CE:;

®

P’ ; ;

+5 / dr {h(r)z — h(r)&(r) - E(r)} , (10.81)

from which it is apparent that its minimum value, which is the grand potential,
is

QHNC 2 4 ()2
b v = pln[A3p] — p — pPu+ % / dr {% - (:(7-)}
1 .
T /dk {ln[l + ph{k)] — /)P(k)} . (10.82)

Since the grand potential is related to the Helmholtz free energy by Q = F—uN,
one may recognise in this the HNC result for the excess Helmholtz free energy®

»? ;
BERNCIV = 5 [ dr {h) /2 - ()

1617r3 /dk {In[l + ph(k)] — pf:(k:)} . (10.83)

The HNC expression for the excess chemical potential was given above, and also
in the preceding chapter, Eq. (9.102).

Inhomogeneous System

It is straightforward to obtain the HNC result for a nonuniform system. One
recognises that one has an infinite dimensional vector space with the density
providing the weighting for the inner product,

(f,9) = /dr p(r) f(r)g(r). (10.84)

4W. Olivares and D. A. McQuarrie, A variational approach to the theory of ionic solutions,
J. Chem. Phys. 65 (1976), 3604.

5T. Morita, Theory of classical fluids: Hypernetted chain approximation. 111, Progr. Theor.
Phys. 23 (1960), 829.
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The total correlation function is an operator,
Hf = /ds p(s)h(r,s) f(s). (10.85)

Since this is symmetric, (H f, g) = (f, Hg), a basis of orthonormal eigenfunctions
exist, and one has H fx = Ak fx. The convolution products that appear in the
ring diagrams are simply the trace of powers of H,

TrH" =) AL, (10.86)
k
and it follows that the ring diagrams sum to
1
R[h] = 3 Z {In1 + M) — Ak + AR/2} . (10.87)
k

The remainder of the HNC expression for the thermodynamic potential may be
evaluated directly.

10.3.3 Pair Potential Functional
The variational functional of the singlet and pair potential is
FO(zelpM, pB v,T) = Q3,6 V,T)+ kBT/drp(r) In A3%(r)

+ kaT drdsp(r,s)Iné(r,s). (10.88)
The functional derivatives of this are
SBF P (z,élpM), p*), V| T)
dInA35(r)

= —p(x) + plx) (10.89)

and
SBF P (z,e
dIné(r,s)

0 52 yr 1 1
e VT o) + goles), (10.90)

which vanish when Z(r) = Z(r; p™, p@) and é(r,s) = &(r,s; p™, p@). Hence
F2 (2,€pW, P2V, T) provides a variational principle that yields the activity
and pair potential that corresponds to a given density profile. Its maximum
value is
FO(pW) 2 v, 1)
= FO@epm,p®,v,T)

= QP VT ¢ kaT [ e ple) 0 A (e oV, )

kT
+ BT drds p(r,s) Ing(r,s; ptV, p)
= FOEW, hV.T)

kT
4y B drds p(r,s)In2(r,s; p), p@). (10.91)
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Here F(1) is the intrinsic Helmholtz free energy, which has the singlet potential
removed; it was analysed several times above, F(1) = Fid — F** The quantity
F@ removes in addition the pair potential; it may be called the intrinsic pair
Helmholtz free energy.

Cross—Entropy

In terms of the cross entropy, consider the functional maximised at equilibrium,
and that has maximum value equal to the intrinsic pair Helmholtz free energy,

BF31z,élpM), p™]
= BFP (M, V,T) ~ S[p, ¢

o 1 I‘N
= BF(pW,p? v, T) - < dr¥ o(r¥)In @~( N)
= N! p(r)
BFD (o1, ) v, T) i/ LA EHZ(rl)ﬁe(r“rj)
= p - g el ) in- Z ~
N=0 N! = ol Z(I‘i) by e(ri,rj)

= BFD(pW pD V. T)+ Q32 6,V,T) - Qz,¢,V,T)
- /drp(r) S l/drdsp(r,s)lng(r’—s). (10.92)

z(r) 2 é(r,s)

Using the definition of F(?) given in the penultimate equation,

F2) (p(l),p(Z), V,\T) = Qz,e,V,T)+ kBT/dr p(r) In A?2(r)
ksT
+ % drds p(r,s) Ine(r, s), (10.93)

where p(r) = p(r; 2,€) and p(r,s) = p(r,s; 2, ¢), this is

BF31z,epD, pP) = BQ(3,8,V. +/drp r)In A%3(r)
1
+ i/drds p(r,s) Iné(r, s). (10.94)

In view of the singlet and pair potential functional given above, one concludes
that Fj = F(2).

10.4 Perturbation Theory

Frequently one is interested in the perturbative effects of a weak but long-ranged
potential. This can be an external potential applied to the system, or it may
arise from the division of the pair potential into a short-range repulsive part
(the reference system) and a long-range attractive tail. The mean field theory of
Section 6.5 was applicable to just such a system. An alternative is perturbation
theory, which has also been developed to handle these types of problems.
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10.4.1 External Perturbation

Let the potential energy of the reference system consist of one- and two-body
potentials,

N
Zwext I'l) +Zu(ri,rj), (1095)
1<J
and suppose that a small change is made to the external potential,
) = Ut () + Ag(r). (10.96)

Making a functional Taylor expansion, the change in the singlet density is

P@—Mﬂ;/dmﬁg)JWmU Bug(5)]
- / as p0(x,s) [BU(s) — Bug(s)] (10.97)

where Eq. (9.17) for the pair density, p()(r,s) = p(r)é(r,s)+p(r)p(s)h(r,s), has
been used. This says that p(®) is the linear response function linking the change
in singlet density to the change in singlet potential. Note that this change
in density occurs at constant chemical potential, and hence this expression is
appropriate for an open system.

The mean potential at r is the sum of the external potential and the average
pair potential at that position,

™ (r) = ¢ (r) + /ds p(s)u(r,s). (10.98)

A similar definition holds for the mean potential of the reference system, with
the subscript 0 appended everywhere. Just as p®) gives the density response to
the external potential, so may one define a function 7 that gives the response
to the mean potential,

p@—m®=/®m@MW”“U Bymean(s)). (10.99)

The response function 7 will turn out to be short-ranged and well behaved, in
essence because the long-range tail of the pair potential causes changes in the
far density by the external potential to affect the local density, whereas such far
field effects are already incorporated into the mean potential and so it is only
local changes in the latter that are important.

In the event that the reference system is homogeneous and isotropic, so that
the pair functions only depend upon separation, these equations may be written
in Fourier space

Apk) = =85 (k) A k), (10.100)

Ag™een (k) = A (k) + a(k)Ap(k), (10.101)
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and
Ap(k) = —Bro(k)Ag™e (k). (10.102)
These may be solved to give the relationship between the two response functions,

7o(k)

59 (k) = ) 10.10
o (k) 1+ pa(k)To(k) (10.103)
Comparing this to the Ornstein—Zernike equation,
—1
(8 A(5
Py (k) = [08 )(k')} ; (10.104)

where ¢(®)(r) = §(r)/p — c(r), one concludes that the mean potential response
function is related to the direct correlation function by

#o(k) "t = &P (k) - palk) = p ~ [fo(k) + Ba(k)]. (10.105)

In so far as ¢(r) ~ —pu(r), r — 00, one concludes from this that 7(r) is a
short-ranged function, as asserted above.

Its worth mentioning that even if the reference system is not homogeneous
and isotropic, one can show that

/)(()5)(r, s) = 1p(r,s) — / dtdv T()(r,t)u(t,v)p((f)(v,s). (10.106)

10.4.2 Truncated Potential

Suppose now that the pair potential is split into a truncated short-range part
and a long-range tail,

u(r) = utt (1) + M (r). (10.107)

The intention now is to use as the reference system the system interacting only
with the truncated potential. The contribution from the tail will be treated as
a mean potential and will be added to the external potential. A molecule at r
in the truncated system with this augmented external potential feels the same
mean potential as a molecule in the full system with the bare external potential.
Hence the density profiles in the two systans are the same, pf (r) = po(r), and
similarly p*(r) = p(r). Accordingly, the requisite augmented external potential
is

Pt (r) = ot (r) + / ds u'*!(r,s)p(s), (10.108)
and similarly for ¢§!(r). Hence the change in this potential is

Ay'#l(r) = Ay™t(r) + /ds u*(r,8)Ap(s). (10.109)
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The density response function of the truncated system is p . A Taylor ex-
pansion for the change in density profile of the truncated system due to changing
the augmented external potential therefore yields

[j/dsp (r,s) Ayl (s). (10.110)

For a homogeneous, isotropic system, these may be solved in Fourier space
to yield

Ap(k) —Bp (k) [Aypt (k) + pa (k) Ap(k)]

= —6pir’ (k) Ayt (k). (10.111)
L gat (k)a (k)

Comparing this with the result obtained in the previous section, one can relate
the pair density in the full and in the truncated systems,

Pk
1+ Baseil (k) oty (k)

For the case that the external field represents an atom fixed at the origin, the
left-hand side is essentially the total correlation function of the system interact-
ing with the full potential, and the numerator of the right-hand side is that of
the system with truncated potential. This result for dealing with the pertur-
bative effects on the pair correlation functions of long-range tails was given by
Lado, who derived it from the hypernetted chain closure approximation.®

For the general system the result is

Py (k) = (10.112)

) (x,8) = piY (x,5) — 8 / dtdv pfy) (r, t)ut(t,v)p{ (v,s).  (10.113)

This may be confirmed by successive substitution.

The mean potential is the same in the full system and in the truncated
system with augmented external potential. For the full system it was given in
the preceding section; for the truncated system it is

Aymen(e) = Agtl(r) + [ dsu(r,5)80(6) (10.114)

In the preceding section the density response function for the mean potential
was defined as 7. Combining that definition with this representation of the
mean potential, in Fourier space one obtains

D) = Bk Aum (k)
= —po(k) [Ap™ (k) + Ba* (k) Ap(k)]
BT0(k) et 1), (10.115)

1+ put(k)7o(k)
SF. Lado, Perturbation correction to the radial distribution function, Phys. Rev. A 135
(1964), 1013.
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Hence one concludes that

NOYR #o(k)
pie’ (k) = T A (k)0 () (10.116)

or
(8
N by (k)

TO( )— ;tr ~(8) )

1= gatr(k)py, (k)
This is to say that the quantity 7 depends only upon the properties of the
truncated system; it is entirely insensitive to the tail of the pair potential.
In view of the relationship between 7 and the nontrivial part of the direct
correlation function given above, it follows that the latter is also independent

of the long-range tail of the pair potential and that it can be obtained from a
truncated system.

(10.117)

10.4.3 Perturbation Grand Potential

The truncated potential is often taken to be the short-range, repulsive part of
the potential, for example, a hard-sphere potential. The grand potential of such
a reference system may be known, and one is interested in the change in it due
to turning on the tail of the potential. If the tail is characterised by a coupling
constant, u*@l(r; ), with A = 0 corresponding to the reference system, and
A = 1 corresponding to the full system, then in the thermodynamic limit when
the thermodynamic potential is equal to the logarithm of the partition function,
the grand potential for the partially coupled system is given by

ad BN trp N tal, N,
Q(\) = —kgTln ) NN /drN emAUTET) = BUTTETN  (10.118)
N=0 e

The reason that the grand potential is sought rather than the Helmholtz free
energy is that the expressions for the change in density found above were at
constant chemical potential (i.e., an open system). Differentiating this yields
the average of the tail potential,

% — <Utail()\)>)\, (10.119)

where the dot signifies differentiation with respect to A. Hence the change in
grand potential due to the partially coupled tail is

A
o) - QF = / dX (Ut
o [Cax (0t
A
= %/ d)\’/drdsp(z)(r,s;)\’)um“(r,s;)\’)
0
1 A ! ! 7y - tail !
= 3 dX [ drds p(r; M) p(s; X)) (x,s; )
0

by .
+1 dX [ drds p®(r,s; Mot (r,s; X)), (10.120
2 /s p
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(The self-interaction, which is the Dirac ¢ introduced in the final line, should
strictly be subtracted. However, it does not contribute here because the tail of
the potential is 0 when the molecules occupy the same position.) In view of this
one sees that the grand potential is the sum of a mean term and a correlation
term, Q(A) — QFF = QL (X) + 2 ().

Mean Contribution

In order to evaluate the mean grand potential, an expression for the density of
the partially coupled system, p(r; A), is required. In the previous section the
density was the same in the full and in the truncated system because in the
latter the external potential included the mean tail of the pair potential. Now
hold the external potential fixed and find the change in the singlet density as
the coupling of the tail is changed. Let pi,(r) be the density in the truncated
system for the external potential ¢»***(r). The mean potential due to the tail
and the external potential in the partially coupled system is

P \) = = (r) + /ds ut* (r,5; M) p(s; ). (10.121)
Now if in the truncated system the external potential ***(r) were replaced by

' (r; A), then the density would change from pi.(r) to p(r; A). Hence using
the density response function of the truncated reference system one has

pEA) —pulr) = —B / ds pfy)(r,s) [4'(r; 3) = (1))
= —[3/dsdtpﬁ?(r,s)utaﬂ(s,t;A)p(t;/\). (10.122)
For an isotropic system, in Fourier space this is
UGN = pull) = B, (k)i (ks \)h(k; M)
= Purlk) : (10.123)

1 8L (k)ata (k; )

For a given density of the truncated system this enables the change in density
to be obtained as the tail coupling is turned on.
The mean part of the grand potential due to the partial tail is

Qtall ( )

mean

By
= 5/ d)\’/drdsp(r;)\’)utaﬂ(r,s;)\’)p(s;)\’)
0

_ 1 A N2 TR 0 Atail Sy
= m/dk/o d)\p(k,)\)(k)\)a)\/ (ks X)

A ~ ~
d)\/ ptr(k)p ( k) 0 ~ta11(k_ )\/)
[1+ 802 (k)@

dk
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A
! P (k) per (—K) —1
= dk
2(2m)? / B (k) 1 8oL (Rt (k: V) |
1 ﬁtr( )Atail(k" )‘)ﬁtr(_k)
= dk . 10.124
2(%)3/ L+ Bty (k)@ (k; A) -

Correlation Contribution

Using the result established in the preceding section that related the full pair
density to the pair density of the truncated system, Eq. (10.112), the correlation
contribution to the grand potential is

Qtall ()\)

corr

1 A 3 ui
= S / dk / dx ﬁ”(k;A’)Fa“”(k; )

L (8)
— /dk/ dA / Pir (k) alf\tall(k )\/)
202 T 0p) (k)@= (s X') OX

- g [ a1+ D i k) (10125)

This result is in essential details similar to that obtained by Lado.” Note the
close relationship with the ring diagrams used in obtaining the hypernetted chain
grand potential above (cf. Eq. (10.67)). This indicates that the present approach
is equivalent to including all orders of the many-body correlation function of
the reference system, approximating them by superpositious of pair correlation
functions. In contrast, conventional perturbation theoties represeut truncation
of the expansion at the pair term.3

Helmholtz Free Energy

At equilibrium, the Helmholtz free energy is related to the the grand potential
by F(N) = Q(u) + 4N. Hence the change in Helmholtz free energy due to
turning on the tail of the pair potential is

F\) = F" = Q(\) — Q" + py, / dr [p(r; A) — pe(1)], (10.126)

where the integrand was given above in Eq. (10.122). Since the chemical poten-
tial is constant it may be cvaluated in the truncated system.

7F. Lado, Perturbation correction for the free energy and structure of simple fluids, Phys.
Rev. A 8 (1973), 2548.

8J. A. Barker and D. Henderson, Perturbation theory and equation of state for fluids. II. A
successful theory of liquids, J. Chem. Phys. 47 (1967), 4714. J. D. Weeks, D. Chandler, and
H. C. Andersen, Role of repulsive forces in determining the equilibrium structure of simple
liquids, J. Chem. Phys. 54 (1971), 5237. J.-P. Hansen and 1. R. McDonald, Theory of Simple
Liguids, 2nd ed., Academic Press, London, 1986.
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10.4.4 Interaction Grand Potential

A particularly interesting and useful application of perturbation theory is to
the interaction between two systems, for example, the interaction between two
separated bodies, or between two fluids separated by a membrane. The systems
do not have to be spatially separated; the theory applies as well to two weakly
interacting species of a given system. In this case the tail potential can be
considered to be the pair potential between the two systems, and the truncated
part corresponds to the two bodies isolated from each other. One introduces
a coupling parameter A, which could correspond to the separation between the
bodies. The potential energy may be written U(X) = Uy + Uy + U™ (X), where
the first two terms on the right-hand side refer to the two isolated bodies. One
is interested in that part of the thermodynamic potential due to the coupling
between the bodies. The interaction grand potential is the difference in grand
potential between the coupled and the decoupled system. In the case that one
is dealing with separated systems, the interaction grand potential goes to 0 at
large separations.

The analysis is essentially identical to that given above for the tail of the
potential, with the result that the interaction grand potential is

Q) = /OAdA’ (Tm) |

By
/ d)\’/dr/dsp?2 (r,s; X))o (r,s; \)
0 1 J2
)\ .
/ dN /dr/dspl(r;)\')pz(s; XY™ (x, s; \)
0 1 J2

A
+/ ax /dr/dspg‘?(r,s; )it (r, s X), (10.127)
0 1 2

where the subscript 12 indicates that this is the cross pair density. (The Dirac
& does not contribute here because the species linked in the cross term are
distinct.) In view of this one sees that the interaction grand potential is the

sum of a mean term and a correlation term, QP*(\) = QI (X) + Qint (X).

Mean Contribution

The mean term may vanish, as, for example, occurs with interacting charge
systems due to electro-neutrality. More generally, however, the singlet density
is nonzero, and the interaction potential contributes to the external potential.
As in the preceding section the singlet density may be written

pr(r;A) = )= [ asp§s) [0 (si0) — wi¥(s:0)]
_ [j/ds/dtp“” r,s)u™ (s, t; A)pa(t; A). (10.128)
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Here p(()&)( s) = P(n) (r,s;0) is the same-body pair density for the isolated or un-

coupled body. An analogous equation holds for pz(r; A). However, for simplicity
only the symmetric case, p; = p1 and pé ) — pgﬁ) will henceforth be considered.
Using a dot to denote an integrated coordinate the density equation may be

written symbolically as

pL(r; A) = pi(r50) — BpSY (r, Ju™ (-, N)pr (5 V), (10.129)

with solution

1(;0
L+ Bpg " (- )u™ (-, 5 A)
The last equation acquires meaning as a series expansion where the products
correspond to iterated convolution integrals.

Using this result, the mean contribution to the interaction grand potential
is

th ()\)

mean

DN
= / dX p1 (- X)i mt( S A5 A)
Jo

= /)\ dN P (:0) ’[Li“t(',-;)\’) /Jl('§0.)
0 1+ 8p8 (-, yuint (-, X 14+ 8o (- yuimt (- 5 )
) /Ad)\’ (507 8. L
0 BT N Bl (i ()
~1 pi(50)? ’

5 .
Bos () 1k Bpg) (- Jut (5 X
. intg, . .
- "1(’0)%) G, ’f\)pl(’()). (10.131)
14+ Bpy (5 yumt (-, 5 N)

This is the contribution to the interaction grand potential ignoring the correla-
tions between the two surfaces (although these are included in the calculation
of p1(5 A).

In the event that one can apply the Fourier transform, this result can be
written in closed form. For the case of two interacting planar bodies, assuming
homogeneity, p1(r) = p;, and isotropy, p(()‘s)(r,s) = p(()‘s)(]r — s}), the density
equation may be written

- [jpl()\)/ds /dtpé‘s)(s)ui“tﬂs— t]; \)

= p(0) = Bpr (WA (0)a™(0; A)

_ p1(0) 10.132
1+ 5 (0)aim(0; ) 10-132)

p1(N)

f
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Hence the mean interaction grand potential per unit area is

Qriean(X)/4

Y R
[ ax [ar i)
4}

A 2
_ ! /)1(0) 0 Am
B /odA @) (0)izint (0 \ Zgn " (05X
1+ 808 (@i (0: )

) A
—p1(0) 1
(5 NGRS
Bo5 (0) 1+ 5pg” (0)am(0; 1) |
0)a"(0; M) p1 (0
L+ Bpg * (0)ai"*(0; )
This could also have been written down directly from the general result.
The net pressure between the walls is the negative derivative of the interac-
tion grand potential per unit area. Assuming that X\ represents the separation,
the mean contribution is

net — —1 aﬂggan( )
pmean()‘) - A 6A
_ —p1(0)? du"™(0; A)
- 2
[+ s am o n)]
Ofint (0 )\)

— 2 )

AU (r: \)
_ 2
= pl()\) /d Tan (10.134)

This is just the mean force per unit area between the walls, as one would expect.

Correlation Contribution
The cross pair density pg) was defined above in connection with the correlation
contribution to the average of the derivative of the interaction potential, as were

the same-system pair densities, pgél) and p(z(;) . Again attention is restricted to
the symmetric case, so that the latter two are equal. In the uncoupled system

only the same pair density is nonzero, and it may be denoted by p((f). Using
Eq. (10.113) above, one has two equations for the pair densities,

P (s 0)
= p(()‘s)(r7 s) — [j/dt dv p((f) (r, t)u'(t, v; )\)pg) (v,s; ) (10.135)
and

P9 (r,s;:A) = —[j/dtdvpo (r, £)ul (t, v Al (v, 55 A). (10.136)
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These represent two linked integral equations for the coupled pair correlation
functions that only require as input the pair correlation function of the decou-
pled systemn. Again denoting an integration by a dot, these may be written
symbolically as

& 1 in 8
PP (s ) = ol (r,8) = 8o (v, Ju™ (-5 Vol (1) (10.137)
and
P2 (1, 0) = =Bpf) (x, Ju™ (-5 NP (5 ), (10.138)

with solution

't
P (e85 0) = d(x, ) p(.0) 5(-,s) (10.139)

and
_,BPO ( ’ ) mt( - )\)/)(()5)(';)6(‘ S) (10140)
1— [ﬁp() (.’_)uint(.’.;)\)]

Accordingly, the coupling constant integration may be performed to give the
correlation part of the interaction grand potential as

PO (e, 0) = 8, )

" A
Qm(n) = / AN ) XY ()
J{

in ! 5 b3
_ _ﬁp ( ’ ) t( ' A )/)(() )(» ) i int Y
- dA Pl 0)\/”‘ ("7 )
4] 1 — [/7’/)() ( ) ,mt( ,;)\/):I
kT

- In<1 - [/3,)0 () ,;,\/)]2) : (10.141)

The logarithm is defined by its series expansion. Again one can recognise these
integrals as essentially the ring diagrams defined in Eq. (10.67), and one can
see that one has effectively performed a superposition approximation for the
many-body, same-surface correlation functions.

A closed form for this result may be obtained when one can invoke the
Fourier transform. For two interacting planar surfaces, the two-dimensional
Fourier transform of the equations for the same and cross pair densities yield

PV (s ) = 557 (k) — 3t ()i (ke ) S5 (s ) (10.142)
and
PR (ks A) = =B (k)™ (ks ALY (ks A), (10.143)

assuming homogeneity and isotropy. Hence the cross pair density is

(8) ~in
5O (ks ) = —Bpy (k)*a™ (k; A) (10.144)
L= 32587 (k)2 aim (s )
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Using Parsevaal’s theorem, the interaction grand potential per unit area be-
comes

T a
int _ / A8y Y aintyg s
Qcorr()‘)/A - 271’ 2 / dA /dkp12 (kv A )a)\/u (k7 A )

= @ /dk/ AN (1= 627 ()%™ (k; X)?]
=808 (k)™ (ks 12

26)«
= M _ 024(8) f1\2400t 7, 1\ 2
= 2oy /dk In [1 B°pg (k) u™ (k; A) } (10.145)

As mentioned above, the net pressure between these two interacting walls is an
important quantity. If A is the separation, the correlation contribution is the
negative derivative of the correlation part of the interaction grand potential per
unit area,

—1 ant ( )
net — corr
pcorr()‘) - A ENN
~1 ) Dumt(k; \)
_ (%) !
- (271_)2/ P12 (k )\) I\
int,.
- /drp< >(r;A)W. (10.146)

The integrand is the density-weighted normal component of the force between
two molecules, as one would expect on physical grounds. This final result
holds in general and could have been written down by directly differentiating
Eq. (10.127); this would give the total net force between the bodies rather than
the pressure.

Summary

s A nonequilibrium subsystem may be considered to be in equilibrium with a
meta-reservoir, and the standard equilibrium results may be applied to the
meta-system. The total entropy of the constrained state is the equilibrium
entropy of the subsystem and meta-reservoir, plus the difference between
the entropies of the actual reservoir and the meta-reservoir.

¢ The meta-reservoir gives rise to a density functional minimised by the
equilibrium density profile. Its minimum value is the grand potential,
which may be expressed explicitly in terms of the intrinsic Helmholtz free
energy density functional. The density functional may also be expressed
implicitly in terms of the cross-entropy.

s Various approximation schemes for the intrinsic Helmholtz free energy
density functional, including using the pair direct correlation function of
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the bulk, which is equivalent to the hypernetted chain approximation, and
of local and various weighted densities, as well as perturbative approaches,
have been developed.

A functional maximised by the equilibrium activity corresponding to the
specified density may also be obtained, explicitly from the meta-reservoir
or implicitly from the cross-entropy. Its maximum value is the intrinsic
Helmholtz free energy.

Variational principles for the pair total correlation function and for the
pair potential may also be derived. Retaining only the ring diagrams in the
former is equivalent to the hypernetted chain approximation, and hence an
expression for the thermodynamic potential follows in that approximation.

Perturbation theory is based upon the lincar density response to a weak
field. The latter can be the external field, the mean field of the tail of
the pair potential, or the interaction with another body. The coupling
integral can be performed to give the change in the density and in the
grand potential due to the tail or interaction. The response function for
the mean ficld (cquivalently the short-range part of the direet correlation
function) is independent of the long-range tail.



Chapter 11

Inhomogeneous Systems

Nonuniform systems arise due to the presence of external fields, such as those
due to gravity, or to an applied electric potential. Such density inhomogeneities
also occur in the vicinity of the walls of the container of the system, at the
surfaces of cavities or inclusions, or around and between solute particles. The
density functional theory described in the preceding chapter represents a vari-
ational approach to inhomogeneous systems based upon constrained entropy
maximisation. This chapter explores alternative approaches based upon the
Ornstein—Zernike equation and the approximate closures derived in Ch. 9. There
are basically two ways of proceeding: one can regard the inhomogeneity as due
to a solute particle and solve the Ornstein- Zernike equation for a uniform mix-
ture, or one can invoke the inhomogeneous Ornstein-Zernike equation. The
first part of this chapter is concerned with the former approach, using the so-
called singlet Orustein-Zernike equation; the latter technique is discussed in the
concluding sections.

11.1 Spherical Inhomogeneity

11.1.1 Ornstein—Zernike Equation

The Ornstein—Zernike equation for a multicomponent mixture was given in
Eqg. (9.33). In the case of a uniform, isotropic system this is

han(r12) = Cany(r12) + pr / drs hax(r13) exy(r32), (11.1)
By

where the Greek indices label the species.

Consider one of the species, say a = 0, to be a solute at infinite dilution,
po = 0. The remaining species, a > 0, comprise the solvent. In this case one
has

hary(’f'IQ) = Cary(’f'lz) + Z P /dl‘3 ha)\ (7'13) C)\,Y(’r'gz). (11.2)

A>0

277
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For a > 0, v > 0, only solvent pair functions appear, and this equation is just
that of the pure solvent in the absence of the solute. For o« = 0, v > 0 (or vice
versa), solute—solvent and solvent-solvent correlation functions are present. The
quantity p,[1+ ho,(r)] is the density of species v a distance r from the spherical
solute. Obtaining the density inhomogeneity from the solute Ornstein-Zernike
equation is called a singlet method because the solute—solvent total correlation
function is equivalent to the (singlet) density profile.

For @ = v = 0 this is an equation for solute-solute correlation functions
in terms of the solute-solvent ones. The logarithm of hgo(r) is essentially the
potential of mean force or constrained thermodynamic potential for two solutes
separated by r.

For the common case of a single-component solvent, one has the solvent—
solvent Ornstein-Zernike equation,

hii(rz) = e (ri2) + ;1 /dl‘s hi1(ris) er1(rsz), (11.3)
the solute solvent equation,

ho1(r12) = co1(r12) + p1 /(11‘3 ho1(r1s) cii(rae), (11.4)
and the solute solute equation,

hoo(r12) = coolri2) + m /(11‘3 hor(r1s) cor(rs2). (11.5)

By successive substitution in the solute solvent Ornstein Zernike equation, one
sees that the solute solvent total correlation function is the sum of chains of
solvent—solvent direct correlation functions, terminated by a solute-solvent di-
rect correlation function,

hor = Co1r +Cpr ¥ C11 0o x ey Rl O R er ke ke .. (116)

Hence it makes no difference whether the integrand of the solute solvent equa-
tion is written hgy % ¢y1 or ¢op * hyp. Similarly, the solute solute equation may
be written

hoo = con + cor * Clp T eor kCiy ¥ g F o1 R e ke ke . (11.7)

This is an important point: the Ornstein Zernike series function shows that
the indircct solute solvent and solute solute correlations propagate through
solvent—solvent correlations unaffected by the presence of the solute.

11.1.2 Closure

The solute -solvent potential may be denoted Vp,(r). Any spherical inhomo-
geneity can be represented in this fashion. A quite common system is that of a
spherical cavity of radius R,

v J oo, r<R+dy/2,
Voa(r) —{ 0, r>R+d,/2 (11.8)
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where d, /2 represents the distance of closest approach of the centre of the
solvent of type « to the surface of the cavity. As in the hard-sphere systems
discussed in Section 9.5.1, the solute—solvent density vanishes inside the cavity,
goa(r) = 0, or hga(r) = =1, r < R+ ds/2. One can can add to this core
part of the solute potential other spherically symmetric potentials, such as the
Coulomb potential, or one can replace it with, for example, a Lennard—Jones
potential.

In this example of a spherical cavity, the interaction potential between two
such solutes would be represented by

00, 1< 2R,
VE)O(T) = { 07 r>2R. (119)

Again one may add to this other solute—solute potentials.
The formally exact closure equation has been given previously, Eq. (9.43).
For a mixture it reads

ha'y(r) =14+ B_BUO‘“’(T)CS“A’(TH_dmA’(T), (1110)

where say = hay — Cavy iS the series function and day is the bridge function.
Hence the solute—solvent closure is just this with o = 0, and ugy, = Vg, and the
solute—solute closure has a = v = 0, and ugg = Vyo.

The closure approximations that one can make are the same as for a sim-
ple system. The hypernetted chain approximation neglects the bridge function,
dffv) = 0, the Percus Yevick approximates it as a sum of powers of the series func-
tion, and the mean spherical approximation invokes the asymptotic behaviour
of the direct correlation function.

One generally uses the same closure for all the pair correlation functions,
although there is in fact no logical necessity to do this. For example, in some
cases there may be some advantage to using the Percus—Yevick bulk total corre-
lation functions in the solute—solvent Ornstein—Zernike equation, together with
the hypernetted chain closure for the solute—solvent correlation functions.

11.1.3 Numerical Solution

As in the case of the homogeneous, isotropic single-component system, one
solves the present solute equations by using a Fourier transform to factorise the
Ornstein—Zernike equation. For a mixture a matrix formulation is convenient,
and according to Eq. (9.37) one has

H(k) = C(k) (Lg(k))”. (11.11)

In the present context this is the solvent—solvent equation, with the components
of the matrices being {H }4 = pé/zhowpl/z and {C}ay = p};/zca,ypi/z, foraa >0
and v > 0. o o

The usual iterative algorithm for solving the solvent equations, and, for

example, the hypernetted chain closure, is to Fourier transforin the nth iterate
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of the direct correlation function, C™ = C'("), and to use matrix inversion
and multiplication to obtain H®™ from the above equation. One can inverse
transform this, H(™ = H  and form the series function S = H( — C(7)
(or form this in Fourier space before transforming), which upon subtraction of
the pair potential and exponentiation of the components gives the next iterate of
the components of the total correlation function, H (1. This may be combined
with the series function to give the new direct correlation function, C**+1 =
H®D — S Quite often one mixes the new and old iterates to improve the
reliability of the convergence of this simple Picard scheme. Nonlinear methods
based upon the Jacobean of the iteration procedure have been used successfully
to accelerate the procedure and to make it more robust.!

In the case of the solute-solvent correlations, one can define vectors with
components {H}, = p(l)/ ZhOQ and {C}, = p(l)/ % co. In this notation the Fourier
transform of the solute solvent Ornstein Zernike equation is

H(k) = C(k)+C(k) (k)

(i—g(k)yl(_?(k)- (11.12)

One can either solve this equation in parallel with the solvent solvent equations
or simply invoke a converged solution for the solvent direct correlation function
matrix that appears. Omne still must iterate even in the latter case because
both the direct and the total solute solvent pair correlation functions appear
here. The iteration procedure is identical to the solvent case with successive
transformations between Fourier and real space.

For the solute-solute equation one has

iLOO(k) = Coolk) + Q(k)qﬁ(k)
alh) + CY (L 0 Ch). (11.13)

In this case oue can solve for the solute solute series function directly without
iteration, since the remainder depends only upon solute solvent funetions, which
have presumably already been obtained. The series function may be used to
obtain the solute--solute potential of mean force within the hypernetted chain
or Percus—Yevick approximation, and thence hog(r).

Cavities in a Hard-Sphere Solvent

Figure 11.1 shows the solute—solvent distribution function for a hard-sphere sol-
vent in the vicinity of a cavity. The density profiles are simply this multiplied by
the bulk density, p1(r) = p1go1(r; R). It can be seen that the oscillations in the
distribution function have the same period as those in the pure solvent, which
corresponds to the case D = d. These oscillations arise from the packing of the

IM. J. Booth, A. G. Schlijper, L. E. Scales, and A. D. J. Haymet, Efficient solution of
liquid state integral equations using the Newton-GMRES algorithm, Comp. Phys. Comm.
119 (1999), 122.
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go1(xR)

gOI(xy.R)

Figure 11.1: The solute—solvent radial distribution function for a hard cavity
in a hard-sphere solvent. The density is pd®> = 0.7, and the hypernetted chain
approximation has been used. From bottom to top at contact the diameters
of the solute are D = 1, 3, and 10d, which correspond to a distance of closest
approach of the solute and solvent centers of 1, 2, and 5.5d, respectively. The
inset shows on an expanded scale the effect of including the bridge function

(dotted curves). The abscissa measures the distance from contact z = — R —
a/2.

solvent molecules; separations that correspond to an integral number of solvent
layers have enhanced probability, whereas half-integral layers are unfavourable.
The density at contact increases with increasing cavity diameter, as does the
amplitude of the oscillations. As the curvature decreases, the propensity for
solvent layering increases, which magnifies the oscillations. The inset shows the
effect of including a Padé approximate to the bridge function consisting of all
solvent--solvent and solute-solvent bridge diagrams of second and third order in
density.2 The bridge function tends to decrease the contact value given by the
bare hypernetted chain approximation.

Figure 11.2 shows the distribution of two hard cavities in a hard-sphere
solvent. Compared to the solute—solvent case, the solute-solute distribution has
a much higher value at contact for the same size cavity. There is a peak in the
distribution at z = d, which is quite marked for the largest cavity shown. This

2P. Attard and G.N. Patey, Hypernetted-chain closure with bridge diagrams. Asymmetric
hard-sphere mixtures, J. Chem. Phys. 92 (1990), 4970.
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Figure 11.2: The solute solute radial distribution function for hard cavities in a
hard-sphere solvent at a density of pd® = 0.7, as given by the hypernetted chain
approximation. Tle abscissa measures the surface separation. From bottom
to top at contact the diameters of the solute are D =1, 3, and 10d. The inset
shows on a log scale the effect of including the bridge function (dotted curves).

corresponds to being able to pack a single layer of solvent hard spheres between
the surfaces of the cavities. Conversely, there is almost 0 probability of finding
the two large cavities at a surface separation of 2 = (0.5d. This separation would
correspond to a vacuum between the cavities for some region about the central
axis, since one cannot fit a hard sphere between their surfaces in this case.
One can give an analytic approximation for solute solute potential of mean
force near contact based upon the pressure volue work required to create such
a cavity, woo(z) = —pV. From simple geometry the volume of the exclusion re-
gion as a function of separation is V = #[(D + x)3/12 — (D + z)(D + d)?/4 +
(D + d)3/6]. The exclusion volume is 0 at # = d. For the pressure, Asakura
and Oosawa,3 after whom this depletion attraction is named, used that of the
ideal gas, p = pkgT. Although this is very inaccurate for the pressure of the
present, dense hard-sphere solvent, due to a cancellation of errors the consequent
solute -solute potential of mean force itself is not too bad.* For solute diameters
of D =1, 3, and 10, for the potential of mean force at contact, this approxi-

38. Asakura and F. Qosawa, On interaction between two bodies immersed in a solution of
macromolecules, J. Chem. Phys. 22 (1958), 1255.

4P. Attard, Spherically inhomogeneous fluids. II. Hard-sphere solute in a hard-sphere
solvent, J. Chem. Phys. 91 (1989), 3083.
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mation gives Bwgg(0) = -0.92, -2.02, and -5.86, and the hypernetted chain with
bridge function gives -1.16, -2.43, and -5.94, respectively. This is surprisingly
good considering the simplicity of the approximation and demonstrates clearly
the principle driving force for the adhesion of the cavities. The solute—solute
distribution function is simply goo(%) = exp —Bwgo(x). The Asakura—Oosawa
approximation hence explains the very steep increase in the contact value of the
solute solute distribution function with solute diameter, since the approxima-
tion predicts that it will scale with the exponential of the diameter cubed.

11.1.4 Asymptotics

In Section 9.6.3 the asymptotic behaviour of the total correlation functions
of a solvent mixture was derived from the Ornstein- Zernike equation, using
the fact that the direct correlation function decayed like the pair potential,
Can(T) ~ —BUay(r), for a power law potential, tq (1) ~ aayr 7, 1 — 00, > d,
where d is the spatial dimension. For the case of the solute—solvent equation,
similar analysis yields

H(r) ~ C(r)+HrEO) + AO0)Cw)
= [1+E80)] )+ HEREO). (11.14)

Since one still has the general result that coe(r) ~ —Buge(r), 7 — 00, which of
the two terms dominates depends upon the relative rates of decay of the solute—
solvent and the solvent—solvent potentials. When the latter is more long-ranged
(e.g., for a cavity in a Lennard—Jones solvent), one has

H(r) ~ H(r)C(0)

= [1-co)” emiro)

1+ 0)] et [L+ B0)] o) (11.15)

In this case the functional form of the asymptotic decay is determined by the
solvent correlation functions, and the solute only enters through the modulation
of the amplitude. Far from the solute the ratc of decay of the solvent density
to its bulk value is dominated by the indirect solvent-solvent correlations.

The opposite case that the solute-solvent potential is more long-ranged than
the solvent—solvent potential is less realistic but nevertheless one has

H(r) ~ [L+ H(0)] C(r). (11.16)

In this case the direct solute—solvent interactions determine the asymptotic de-
cay of the solvent density. Often the solute interacts with the solvent in a
fashion similar to that of other solvent molecules, and both terms contribute to
the asymptotic decay. As for the bulk solvent case, there is a unique rate of de-
cay shared by all of the components of the solvent density profile. This is due to
the mixing of the components by the matrix multiplications, which means that
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the most long-ranged asymptote (out of the solute—solvent potentials ug, (r) and
the solvent—solvent potentials u4(r)) dominates.
For the case of the solute—solute interaction one has

hoo(r) = coo(r)  ~ C(0)"H(r) + C(r)"H(0)
= QO [1-20)] ) + O L)

e [1- 2] cw). (11.17)

For the reasons discussed in Section 9.6, for integrable power law potentials
the bridge function is more rapidly decaying than the potential itself, and
consequently the potential of mean force is dominated by the potential and
the series function. Hence the solute solute potential of mean force goes like
woo(r) ~ wgo(r) — kg7 [hoo(r) — coo(r)], r — oo. The asymptotic decay is de-
termined by the most long-ranged of wugo (), wpa(r), and we(r).

11.1.5 Near Criticality

The solute asymptotes just found depend upon H (0). As discussed in Sec-
tion 9.6, the elements of the latter diverge at criticality, and hence the preced-
ing asymptotic analysis does not hold at the critical poiut or along the spinodal
line, although some of the general features recur. The critical analysis is sim-
plest in the first instance for a single-component solvent. Assuming the classical
Ornstein-- Zernike form,

Ae— ¢
4y

h11(7‘) ~ , '— 00, (1118)

the Fourier transform of the solvent solvent total correlation function is

- A
hii(k) ~ ———, k — 0, 11.19
11(k) e : ( )
with the decay length diverging at the critical point, £~ — 0o, p — pe, T — TiF.
As mentioned in Section 9.6, for the compressibility to be positive one must have
A > 0. The corresponding solvent solvent direct correlation function is

A
én(k — k— 0. 11.20
11( ) k2 + {2 /)1 ( )
Now add to the near-critical solvent a solute particle. The solute-solvent
Ornstein—Zernike equation gives

o
hoi(k) = 1 —pién (k)
~ ol k0, o

k2+£2’
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Hence the solute-solvent total correlation function has a simple pole at k = i€,
which means that the density profilc about the solute decays to the bulk value
at the same rate as the correlations in the bulk solvent,

Ae—¢"
4gr

}L()l(?“) ~ plé()l(if) , ' — 00, (11.22)
Although ¢ (k) may have a singularity closer to the origin than & = ¢, in which
case ho1(r) and cop(r) would decay at the same rate (this is certainly the case
for a Lennard—Jones or other power law solvent), onc is most interested in the
intermediate regime dominated by the divergence of the bulk correlation length
approaching criticality and this gives the pertinent asymptotic behaviour of the
solute.

The solute-solute Ornstein -Zernike equation gives

iboo(k) = éoo(k) +€01(l€)p1]‘\110(k)
2, SN2
piéo1(i€)* A
—_—., k— 11.2
e k— 0, ( 3)

again assuming that égo(k) is relatively short-ranged. This shows that the in-
teraction between solutes has the same range as the correlation length of the
bulk solvent,

Ae~ 57

4rr

r— 0

hoo(r) ~ [p1é01(i€))? ; (11.24)

and is therefore in a scnse universal. Moreover, the interaction is attractive
(because the numerator is positive). This last point is of interest because it
says that whatever the interaction of the solutes with the solvent, whether
they adsorb or desorb the solvent, in the vicinity of the solvent’s critical point
or line of spinodal decomposition the solutes are attracted to each other and
there is a strong driving force for aggregation. Again this represents a certain
universality, although the strength of the effect does depend upon the magnitude
of é01(i€) = é01(0).

Mixture

Now consider the multicomponent solvent. The asymptotics of a near-critical
bulk mixture were analysed in Section 9.6.3, where it was shown that the
solvent—solvent total correlation function decayed as

Ae~ 57

how(r) ~ :I7al’,y—4—7‘rr—.,

7 — 00, (11.25)
with A > 0. The vector of the dyad that appears here, z, is the eigenvector of
the solvent—solvent direct correlation matrix at k = i with eigenvalue

A
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Denoting the projection on z of the vector of the solute—solvent total and
direct correlation functions by he(k), and é,(k), respectively, and using the fact
that Q(k) is diagonal in the basis of its eigenvectors, then the £ component of
the solute-solvent Ornstein-Zernike equation is

1 Aé,
. (i€ A8 (i6)
1—A(k) k2 + g2

The remaining projections are analytic here, and since k = £ is the singularity

closest to the origin (assuming that C(r) is relatively short-ranged), this gives
as asymptote

hy (k) = k — ic. (11.27)

Ae—¢r
H(r) ~ & (1) ———az, 7 — 0. (11.28)

The solute—solute equation yields

hook) = éoo(k) + C(R)T [L—C()] k)

~ G (i€) ée (i), k — i€, (11.29)

_ﬁ_
k.2 + 52
Hence

hoo(r) ~ &, (i€)?

As expected, this is posxtwe, indicating a long-range attraction between the
solutes in the vicinity of the critical point.

A —&r
¢ , T — OC. (11.30)

11.1.6 Solvation Free Energy

The general expression for the excess chemical potential for a single-component
system was given above as Eq. (9.101). One can repeat the analysis for a
multicomponent system by summing all the interactions between the partially
coupled particle and the solvent species,

o0 (n)
Nva~y (1)
=2 [ {hm-) = tan(r) = o (1) 3 FEEE

n=1

- (11.31)

Since the excess chemical potential represents the difference in the thermody-
namic potential of a system with and without a particle fixed at the origin, in
the present case it represents the solvation free energy of the spherical solute,

Wg* = —pug*. Oue has the exact expression
: SN
-
va/ dr [hov() i) (1) = oy (r) Y nll } (11.32)
>0 n=1

For the case of the hypernetted chain closure for the solute—solvent correla-
(n

Oy

GWERHNC pr/ dr [eon (1) — hon () {hoy (r) — co, (r)}/2].  (11.33)

v>0

tion functions, v ) = 0, n > 2, the solvation free cnergy is
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The Percus—Yevick solvation free energy is

Py _ va/ *00_7(’"_)_111[1 +hoy(r) —con(r)]. (11.34)

~>0 hO'Y ) - CO'Y (r)

11.2 Planar Walls

11.2.1 Isolated Wall

Planar one-dimensional inhomogeneities are relatively common, as much from
ease of analysis due to the high symmetry as from actual physical applicability.
The density profile in the vicinity of a planar wall may be obtained by taking the
large R limit of the spherical cavity discussed in the preceding section.® Defining
a cylindrical coordinate system with its origin on the surface of the solute, and
with the z coordinate normal to the surface, the solute—solvent Ornstein—Zernike
equation may be written

hoa(’r”R)
= cpa(r; R) +27T2p7/ dz/ dss
>0
X hoy (V(R+2)? + 5% R)cha(V(R+ 2 = 1)2 + 52), (11.35)

where the dependence of the solute—solvent correlations on the size of the solute
has been shown explicitly.

Provided that the solute-solvent potential remains bounded in the large
radius limit, then the solute—solvent correlation functions also remain well be-
haved and reduce to functions only of the distance from the interface. Hence
again measuring from the surface, r = R + y, one may define the wall--solvent
correlation functions as

Rlim hoa(R + y; R) = hoa(y), Rlim coo (R + y; R) = cpaly). (11.36)

Further, because cyo(t) — 0, t — oo, the Ornstein—Zernike convolution integral
is dominated by regions s < R and z =~ r — R. Provided that attention is
restricted to regions of the solvent in the vicinity of the surface, r = R, this last
condition implies that |z| < R, which means that \/(R+2)2+s2 ~ R+ 2+
O(R 1), R — oo . Hence the limiting wall-solvent Ornstein-Zernike equation
is

hoa(y) = coaly +27r2p7/ dz/ dss
X hoy(2)cya(V (2 — 4)? + $2). (11.37)

5D. Henderson, F. F. Abraham, and J. A. Barker, The Ornstein—Zernike equation for a
fluid in contact with a surface, Mol. Phys. 31 (1976), 1291.
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For a hard wall one has
hoa(y) = =1, y < da/2, (11.38)

where d, /2 is the distance of closest approach of the solvent molecule to the
wall. Now the z integral above is dominated by regions z &~ y (because cqy is
short-ranged), and one has

Um cely) = —1+27r2p7/ / ds scya(v/(2 — y)? + 8?)

Yy——oc
>0

1+ ) pyéyal0). (11.39)

>0

For a single-component system, Eq. (9.91) shows that the right-hand side is
the inverse of the isothermal compressibility. More generally for a mixture,
Eq. (9.92) shows that

lim E Paonly) = —(knTxr)™ . (11.40)
Yy——00
a>0

The fact that neither hoo(y) nor epa(y) decay to 0 as y — —oc means that
their Fourier transforms do not exist (at least not numerically; they can be
defined in terms of gencralised functions for analytic work). Oue would like to
use the fast Fourier transform to evaluate the convolution integral above, which
reduces the number of operations from N2 to N log N, where N ~ 0210 is the
number of grid points. One way to proceed is to treat the core contribution
scparately by rewriting the wall solvent equation as

hO(r(y) = C()(y(.'(/) + H{y("/) + C{v(y)- (1141)
Here the contribution of the sovent direct correlation function to the Ornstein—
Zernike convolution integral from within the wall (hy,(y) = —1, y < 0) is
0
Coly) = —27r2p7 / / ds sCya (V(z — y)? + $?)
>0
= 27 va/ drrte,, ([ —y/r], y > 0. (11.42)
>0 ¥

Of course since this only depends upon the bulk solvent direct correlation func-
tions, which are presumed already known, one does not have to iterate it. The
remaining convolution iutegral,

—271’2/)/ / ds shoy (2)cva (V (2 — )2 + 2), (11.43)
frs 0

may, since Hq(y) — 0, y — £o00, be Fourier transformed,

=" pyhoy (k)éyalk)- (11.44)

>0
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The one-dimensional Fourier transform pair is

(o]

- oo . 1 - .
F = [y et and sto) = o [ abmete
0 T J_so
Also, the three-dimensional Fourier transform of a radial function may be writ-
ten

oy 4

(k) - /000 drrsin(kr) f(r). (11.46)

As for spherical solutes, one completes the wall-solvent Ornstein Zernike
equation with the usual closure approximations. The formally exact closure is
Jjust

hoa(y) = =14 exp [hoa (y) — coa(¥y) + doa(y) — Buoaly)] - (11.47)

The wall-solvent potential is 0 for z < 0, and one may have in addition a soft
potential that extends from the wall into the solvent. The hypernetted chain
approximation, for example, consists of the neglect of the wall solvent bridge
function, doo(y) = 0. One solves this set of cquations by iteration, successively
transforming between Fourier and real space.

Bridge Diagram

For a bulk solvent it was mentioned in an earlier chapter that the hypernetted
chain closure approximation could be improved by adding bridge diagrams, and
that it was feasible to evaluate the first bridge diagram by Legendre transform.
The Legendre transform of the Mayer f-function for a spherically symmetric
solvent was given as Eq. (9.53). For the case of a planar solute, the first bridge
diagram, resummed in terms of total correlation bonds and Legendre trans-
formed, is

oc ) 2 oo [ors]
d(()i) (y2) = 2n° Z Py PA Z < ) / dry ri / dry v hya(rs)
" — 2n+1 0 0

X aa (ra) RS (y2, 73)BGY (52, 4) RS (v, 74), (11.48)

where the Legendre coefficients of the bulk solvent-solvent total correlation
functions are as given above for the Mayer f-functions, Eq. (9.53), and those of
the wall-solvent total correlation function are

- n+1 [
héz)(y,r): n;— /ld:an(:c)hO[,(yArx). (11.49)

11.2.2 Interacting Walls

The above expression for the wall solvent Ornstein-Zernike equation was de-
rived as the large radius limit of the macrosphere—solvent equation. However,
it could also have been written down directly from the diagrammatic definition
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of the series function. Similarly well defined is the wall-solvent bridge func-
tion, and one sees that the only role specific to the wall is in determining the
appropriate geometry for the various integrals that appear.

In a similar vein, the results for two interacting walls also follow directly
from the diagrammatic definitions, with two subtleties. From the symmetry of
the problem most quantities scale with the cross-sectional area of the walls, and
hence one generally deals with the energy per unit area, etc. In particular, the
wall-wall series function per unit area is

boo(z) = va/ ds hoy(s)coy(z — 5), (11.50)

o0
>0 o0

where x is the separation between the surfaces of the walls. One generally avoids
writing this as hog(x) — coo(z) because neither of these two functions is defined,
not even per unit area. This is because both contain terms that scale like the
area to the power of the number of diagrams connected in parallel at the root
points. In contrast, the root points do not form an articulation pair in either
the series function or the bridge function, and hence they both scale linearly
with the area.

The second subtlety in the above concerns the fact that the arguments of the
wall-solvent correlation functions are signed quantities, which is in contrast to
all the previous analysis for spherical solutes and solvents. It matters whether
the solvent lies to the right of the wall as above, hoa(2) = =1, 2 < 0, or to
the left, hoo(2) = —1, 2 > 0. Hence these are two different types of solutes
related by ho o (2) = hoa(—2), and similarly ey (z) = con(—2). Two interacting
walls represent the interaction of the two types of solutes, and hence the series
function per unit area is, strictly speaking,

boo/ (.7) = Zp,y/ ds ]L()»Y(S)C»Y()/(S — .’L'). (1151)

oo
v>0 oo

Using the symmetry rule shows that this is equivalent to the form given above.
It is not necessary to restrict attention to the symunetric system, depending
upon the soft part of the wall solvent potential.

The series function may be calculated directly from the wall solvent corre-
lation functions. It is evident from the form of the convolution integral that the
integrand goes to 0 as s — +o0o. However, evaluating the integral by Fourier
transform is fraught with danger because neither of the two functions goes to
0 inside the wall. If one wishes to proceed down that path one must subtract
these constants before transformation and add their contribution separately.
Note also that the wall-solvent direct correlation function was only given for
positive values of its argument in the preceding section (since negative argu-
ments were not required in the iteration procedure). One must evaluate the
bulk solvent contribution C, (y) for y < 0 in order to obtain cy,(y) for negative
arguments.
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In view of the existence of all quantities, the wall-wall potential of mean
force per unit area is

Bu™ () = Buoo () — boo(z) — doo(), (1152)

where u and d are the wall-wall potential and bridge function, per unit area,
respectively. This quantity is also called the interaction free energy per unit area,
it decays to 0 as the separation goes to infinity. Since the series function may be
calculated directly from the wall-solvent correlation functions, and given some
approximation for the bridge function (e.g., neglect it, as in the hypernetted
chain), then one can obtain the wall-wall interaction free energy without further
iteration. The net pressure between the walls is the negative of the derivative of
this with respect to separation. This result was originally obtained by Attard
et al.®

11.2.3 Derjaguin Approximation

A very useful result can be obtained by taking the large-radius limit of the
macrosphere—macrosphere Ornstein—Zernike equation and comparing it with the
wall-wall series function just given. Using bipolar coordinates, the macrosphere—
macrosphere series function may be written

olriB) =3 py [ @ ho (0 R)esa(ir = Vi)

v>0
2t o0 r+o

= — pﬂy/ daahoW(U;R)/ dr rcoy(m; R).  (11.53)
r >0 0 lr—o|

The separation of the surfaces of the macrospheres, z = r — 2R, is small com-
pared to their radius |z| < R, at least in the planar limit, R — oo. Defining
s =0 — R and t = 7 — R, then because the solute-solvent correlation func-
tions are short-ranged, the integral is dominated by regions s << R and ¢t <« R.
Changing the variables of integration, the lower limit of the 7-integral becomes
2R+ 2z — s — R| — R =z — s, and the upper limit may be extended to infinity,
which gives

2n o0
boo(r; R) = QRH}:’”/ ds[s + Rlho,(s + R R)
>0

x/ dt [t + Rlco,(t + R; R). (11.54)
r—s
Now as s — —o00, t — oo, and coy(t + R; R) = 0. Therefore the integrals are
dominated by regions s > —R and |t| < R, and one has
boo(z + 2R; R) = wRva/ ds ho, (s )/ dt co- (1), (11.55)
>0 s
SP. Attard, D. R. Bérard, C. P. Ursenbach, and G. N. Patey, Interaction free energy

between planar walls in dense fluids: An Ornstein—Zernike approach with results for hard-
sphere, Lennard—Jones, and dipolar systems, Phys. Rev. A 44 (1991), 8224.
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valid for R > z. Dividing by R and differentiating with respect to separation
yields

aboo(x + QR, R) _
T Rox B va/

o0
v>0 —oo

ds hoy(s)coy(z —8), R>>x.  (11.56)

The right-hand side of this equation may be immediately identified as the neg-
ative of the wall-wall series function per unit area, as given above.
A similar result holds for the bridge function,”

6d00 (l’ + 2R; R)
1ROz

Realistic solute—solute potentials also obey a similar rule, —Ouge(z + 2R; R)
/T ROz = ugo(x); in many cases there is no direct solute solute interaction any-
way. This means that the derivative of the macrosphere-macrosphere potential
of mean force equals a geometric factor times the wall wall interaction free
cnergy per unit areca

—611}00(2 + QR, R)
Ox
The left-hand side is simply the force between the solutes, F'(x; R). One can

work through the analysis for macrospheres of radius R; and Rg, and in terms
of an effective radius

= —do(z), R>>z. (11.57)

= mRwgo(x), R >> . (11.58)

R Ry
= . 11.59
R+ R, ( )
the force of interaction is
F(z;R) = 2nRuwn2(x), R >> . (11.60)

This is known as the Derjaguin approximation.® The reason that it is such a
useful result is that once the interaction free energy per unit arca has been
obtained for walls, then the force between any sized particles with the same
surface properties can be obtained by scaling with a simple geometric factor.
Alternatively, the force measured for a particular pair of particles can be applied
to all other size particles by multiplying by the ratio of their effective radii.

Cavities in a Hard-Sphere Solvent

The Derjaguin approximation is tested in Fig. 11.3 for two cavities in a hard-
sphere solvent. It may De seen that even for these comparatively swall cavities
the potential is almost lincar in the radius, as predicted. There is an ambiguity in
the definition of the radius to be used for the scaling. One can regard the solutes

7P. Attard and J.L. Parker, Oscillatory solvation forces: A comparison of theory and
experiment, J. Phys. Chem. 96 (1992}, 5086.

8B. V. Derjaguin, Untersuchungen iiber die reibung und adhésion, IV, Kolloid Z. 69 (1934),
155. L. R. White, On the Derjaguin approximation for the interaction of macrobodies, J.
Colloid Interface Sci. 95 (1983), 286.
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Figure 11.3: The solute—solute potential of mean force, normalised by the radius
R = D/2, for identical hard solutes in a hard-sphere solvent at a density of
pd3 = 0.7, as given by the hypernetted chain approximation. From bottom to
top at contact the diameters of the solutes are D =1, 3, and 10d. The inset
uses as normalisation factor the radius of the cavity itself, R = (D +d)/2. The
abscissa measures the surface separation.

as the physical entities and use half their diameter as the radius. Alternatively,
one can consider the cavity- or solvent-excluded region as the important quantity
and use the distance of closest approach of the centres of the solvent and the
solute as the scaling parameter. Comparing the inset with the main figure one
can conclude that for small solutes the latter approach gives the least variant
results. Obviously for large cavities the difference between the two is negligible.
In general, the Derjaguin approximation improves as the radius increases.

11.2.4 Slab of Finite Thickness

In the above the walls were semi-infinite in extent, and it is of interest to consider
the solvation of a wall of finite thickness L. The solvent is now excluded from
the region |z| < L/2, and one has

hoa(z; L) = =1, |2| < L/2. (11.61)

(Of course in addition hos(z; L) = —1, [2] < (L + d,)/2, where d,/2 is the
distance of closest approach of the centre of the solvent to the surface.) The
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Ornstein-Zernike equation is formally identical to that given above for the iso-
lated wall, Eq. (11.37). In the present case, both hgy(z; L) and cpa(2; L) go to
0 as |z| — o0, so their Fourier transforms are well-defined. It should be noted
that if the thickness of the slab is less than the range of the solvent—solvent
potential, then the density profile at each surface of the slab is affected by the
presence of solvent on the other side (i.e., it will not be identical to that for
the semi-infinite half-space). Even if the wall is so thick as to preclude direct
interaction of solvent across it, using an approzimate closure can lead to an
unphysical thickness dependence of the density profiles.

£. quantity of interest is the solvation free energy per unit area for the slab.
From ..ie previous expression, Eq. (11.32), this is

Z Pry / dz
>0

o (n)
1 nug., (#; L)
X I:h(),y(z; L) U(()’Y)( ,L) — }I,(),Y(Z; L) ZI ];YT

n=

(11.62)

In the limit L — oo, the wall solvent correlation functions become con-
stant in the interior of the wall. This is clearly the case for the total correla-
tion function, as given above for any thickness, and. following the derivation of
Eq. (11.39), is also the case for the direct correlation function,

Coa(z L) = =1+ pyéay(0). 2| < L, L — oo. (11.63)
¥>0

Recalling that the o(") are convolution integrals of 7 solute solvent h-bonds,
which equal —1 when the solvent is inside the slab, with the (n + 1)-body direct
correlation function, which is short-ranged, then similar arguments show that
inside the slab

0§ (2 L) Z Py e e PGt D(0,...,0), L — 00, (11.64)

On the right-hand side appears the n-fold Fourier transforin evaluated at k™ = 0.

The fact that these functions go to constants means that the integral that is
the solvation free energy per unit area must be dominated by the interior of the
slab in the limiting case. Hence to leading order it is just L times the integrand
evaluated at |z| < L. However, on physical grounds, to leading order the free
energy must be the pressure volume work of inserting a cavity into the system
and hence one must have

Llim BWS*(L)/L
= —pp
= _ZPW+ Z Py1 Pyz Cryyy2 (0)
Y1,72
1)™n

+Z S PP, 0). (11.65)

n=1 Y15y Yn+1
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This is an exact expression for the pressure of a solvent in terms of its many-
body direct correlation functions. The first neglected term, which is of order
L~1, corresponds to twice the surface free energy per unit area of the wall. The
term linear in density here is that of the ideal gas, and hence the terms that
depend upon the direct correlation functions sum to the excess pressure. De-
spite the explicit appearance of powers of density, this is not a strict density
expansion because of the implicit density dependence of the direct correlation
functions. Given the relationship of the direct correlation functions to the den-
sity derivatives of the irreducible Mayer cluster integrals, it is not unreasonable
that an expansion such as this should exist, and it would be of interest to obtain
this result directly from the virial expansion.

Approximations

The hypernetted chain approximation sets v{™ =0, n > 2 in the expression for
the solvation free energy per unit area. Using the above result, it gives for the
pressure

1 R
U WA D D avA ()
v

Y172

1 1 _
= 52 P b (11.66)
Y

where Eq. (9.92) for the compressibility has been used. For a single-component
solvent this is Bp'NC = p[1 4 Op/dp]/2,° which is exact only to second order in
density (i.e., it yields only the first correction to the ideal gas equation of state).
This is in contrast to the HNC approximation for a bulk solvent, where the
pressure as an integral of the virial times the radial distribution function yields
the third virial coefficient exactly. This is a general rule: the approximate
closures to the singlet Ornstein-Zernike equation lose a power of density in
accuracy compared to the same approximation applied in the bulk.

The Percus—Yevick closure uses the approximation véZ) = —(—v(()}l))”/n7
and the solvation free energy follows directly from the chemical potential given
above, Eq. (9.104). Hence one has

11—z,
B Y p gt ) (1167

x
a>0 @

where T, = > pPCary(0). Expanding for low densities this is
1 .,
pp"Y ~ Zpa —3 Zpapvcow(o) +0p?, (11.68)
« a,y

which is the same as the HNC to the leading two orders.

98. L. Carnie, D. Y. C. Chan, D. J. Mitchell, and B. W. Ninham, The structure of elec-
trolytes at charged surfaces: The primitive model, J. Chem. Phys. 74 (1981), 1472.
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Surface Tension

One can obtain an explicit expression for the surface energy per unit area by
subtracting the pressure contribution. For a thick enough slab the solute—solvent
total correlation function goes over to that of the semi-infinite wall treated
above,

LILH;O hOa(Z;L) = hOa(IZ! - L/2)7 (11'69)

and similarly for cg, and véz). Since the pressure contribution comes entirely

from within the slab, splitting the integral into two parts one obtains

Jlim [BW5(L) + BpL]
L/2
=i [ [ (e n o)
Y- :ﬁ - {vév (2 L) —u§"(0; L)})
n=1

+2) p, // (hm(z—L/z) — 0§ (2 = L/2)

¥>0

oo (n)
nuvg, (2 — L/2
'“hO'yZ_L/QZ: ()'y /))

— 1+ 1
_ (1) nAUU )
= Q;pv/ dz I:—A?)O )+ Z T
(1) n ’(()i; (%)
+2 Z e dZ h,(),y( ) U()’y ( ) - ll,(),y(Z) Z ﬁ . (1170)
>0 : n=1
Here
AP () =0l ()~ (1" 3 paypmelEY0,.,0) (11.71)
FVieesVn

goes to 0 as z — —oo. All the functions that appear on the final right-hand
side are either bulk solvent solvent functions, or wall solvent functions. This
then is an exact expression for twice the surface free energy per unit area of an
infinitely thick wall.

11.3 Other Solute Geometries

The singlet method is very flexible in its interpretation of a solute, which is one of
its great advantages. Macrospherical solutes and planar walls have already been
analysed. Now three other generic types of solutes will be treated: cylinders,
pores, and multimolecular species. These illustrate the range of problems that
may be treated within the singlet approach.
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<2

Figure 11.4: The cylindrical geometry used for the Ornstein-Zernike equation.

11.3.1 Cylinders

Whilst the singlet method was introduced by considering a multicomponent
mixture, in the final analysis results could have been written down directly
from the diagrammatic definitions. This in fact was the attitude taken for
the planar solutes. In general then, the Ornstein—Zernike equations formally
exist for any solutes. The shape and symmetry of the solute determines the
most convenient coordinate system for the correlation functions, and for the
evaluation of the Ornstein-Zernike convolution integral. The procedure holds
for arbitrary shaped solutes, but solutes that are homogeneous in one or two
of their dimensions are the most convenient. The spheres and planes treated
above have suflicient symmetry, and the only remaining homogeneous objects
in three dimensions are cylinders, which are now treated.

Define a cylindrical coordinate system R = (r, z), as shown in Fig. 11.4. For
an infinitely long cylindrical solute, the solute—solvent correlation functions do
not depend upon z, the position of the solvent along the cylinder. They depend
only upon r, the distance from the axis of the cylinder, and the cylinder—solvent
Orustein—Zernike equation is

ﬂ(rl) = Q(Tl)—l—/dSdezC(Rlz)ﬂ(Tg)

[ors] 2n [ors]
= Q(’I'l) +/ dzlz/ d912/ dSz SQQ(RIZ)E(TZ), (11.72)
—00 0 0

where Ryz = /22, + 72 4+ r2 — 2r1r3 cos f12. The formally exact solute-solvent
closure is

hoo(r) = —14exp[—=Buoa(r) + hoalr) — coa(r) + doa(r)] - (11.73)



298 CHAPTER 11. INHOMOGENEOUS SYSTEMS

For a hard cylinder of radius S, the cylinder—solvent potential is ug(r) = 0o
r < S, and

?

hoy(r) = —1, r < S. (11.74)

The two-dimensional Fourier transform of a circularly symmetric function
is the Hankel transform of order 0. This follows since integrating the Fourier
exponent over the cylindrical angle gives the Bessel function of order 0,

/O " dg e kreost = or Iy (kr). (11.75)
The Hankel transform pair is

fk) =2n /000 drrJo(kr) f(r), f(r) = % /000 dk kJy(kr) f(k), (11.76)
which uses the orthogonality property,

/dr Jolkr)Jy(k'r) = (2m)%6(k, K'). (11.77)

Accordingly, taking the three-dimensional Fourier transform of the Ornstein-
Zernike equation yields

H(k.)o(k.) = C(hr)8(ks) + C <\/k:‘;’-, £ kg) H(k,)5(k.). (11.78)

Here k, and k., are the radial and axial components of the three-dimensional
Fourier vector, and the Dirac deltas appear because of the constancy of the
cylinder functions in the axial dircetion. Integrating both sides with respect to
k., replacing k. by k, and rearranging, oue obtains

_ N —1__
H(k) = @ - g(k:)) C(k). (11.79)

The iterative procedure for solving the cylindrical systemn consists of successive
Hankel transforms between real and Fourier space. Lado has given an ‘almost’
orthogonal discrete Hankel transform, which, for cach transform, unfortunately
requires ON? operations. where N is the number of grid points.’’ The sin-
glet approach to cylindrically inhomogeneous systems has been discussed by a
number of authors.!!

The interaction between two parallel cylinders can also be treated at the
singlet level. As in the case of walls, for infinitely long cylinders the cylinder—
cylinder total and direct corrclation functions do not exist. The quantity of
physical import is the interaction free energy per unit length,

Brwgy () = Buoo(r) — boo(r) — doo(r), (11.80)

10F, Lado, Hypernetted-chain solutions for the two-dimensional classical electron gas, Phys.
Rev. B 17 (1978), 2827.

M. Lozada-Cassou, Fluids between walls and in pores, in Fundamentals of Inhomogeneous
Fluids (D. Henderson, Ed.}, Ch. 8, Dekker, New York, 1992. V. Vlachy and A. D. J. Haymet,
Electrolytes in micropores, Aust. J. Chem. 43 (1990), 1961.
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where uqg, bog, and dgg are the cylinder--cylinder potential, series, and bridge
function per unit length, respectively. In particular, the series function is

27 o0
boo(r) = / d@/ dssET(s)Q<\/r2 + 82— 2rs cos@) , (11.81)
Jo 0

where the total and direct correlation functions pertain to an isolated cylinder.
In Fourier space this is

T

boo(k) = H (k)C(k). (11.82)

As for the other solutes, it requires no further iteration beyond that required for
the solute-solvent quantities to obtain the interaction between the cylinders.
For the case of nonparallel or crossed cylinders, the interaction free energy
no longer scales with the length of the cylinders. Hence it exists, as do the
pair correlation functions. Because of the loss of symmetry in the geometry,
the result appears more complicated than for aligned cylinders, although the
analysis is fundamentally no different. The result for identical cylinders, one on
the z axis and the other lying in the plane z = r inclined at an angle 6 #£ 0, is

Buigy (r,8) = Buao(r, ) — boo(r,8) — doo(r, 0). (11.83)

The series function is

boo(r, 0) = /00 d:vdydz_f[r<\/x2 + y2> Clt(z,y,2)), (11.84)

— 00

where
t(r,y,2) = ((x — r)* + y? cos® O — 2yzsinfcos O + 2° sin” 9)1/2 (11.85)

is the perpendicular distance between a point (z,y, z) and the axis of the inclined
cylinder. Differentiation of this result with respect to r gives the force between
the cylinders, and differentiation with respect to 8 gives the torque. For both
alligned and crossed cylinders, the interaction free energy (potential of mean
force) goes to 0 at large separations.

Derjaguin Approximation

It is of interest to derive the analogue of the Derjaguin approximation for two
parallel cylinders. Above it was shown that in the large radius limit the force
between two macrospheres, divided by 7 times their radius, equaled the in-
teraction free energy between two walls. For interacting nonparallel cylinders
the same result holds, with a factor of sin@ appearing in the denominator.'?
The case of perfectly aligned cylinders is important because of its relevance to
hexagonal phases of rod-like polymers and macromolecules such as DNA, and to
the interaction between disc-like particles adsorbed on a planar surface or linear

12B. V. Derjaguin, Untersuchungen iiber die reibung und adhision, IV, Kolloid Z. 69 (1934),
155. L. R. White, On the Derjaguin approximation for the interaction of macrobodies, J.
Colloid Interface Sci. 95 (1983), 286.
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molecules confined to a membrane. The simplest way to make the point is by an
heuristic derivation. One postulates that the potential of mean force (per unit
length) for solutes of radius S can, at close separations, be written as the sum
of free energy densities acting between elements of area on their surface. In the
large radius limit the cylinders are virtually flat, and the free energy density is
taken to be that between planar walls at a local separation of h(y) = z +y2/S,
where z is the closest separation of their surfaces, and y is the perpendicular
distance from the plane containing the two cylinders. One has

Wiz +25.5) = / Wi (1 y2/S)d

B w(‘)’(‘f
= \/—/ m (11.86)

This shows that the potential of mean force per unit length between parallel
cylinders scales with the square root of their radius, and that it is a weighted
integral of the interaction free energy per unit arca of planar walls. (The weight
function has an integrable singularity.) As such it represents an efficient com-
putational procedure that allows the interaction cylinders of any radius to be
related to the interaction of walls (as above cylinders of different radii can be
treated by replacing S by 28 = 25152/(S1 + S2)). However uunlike the interac-
tion between spheres, differentiation does not yield a simple expression for the
force. This is rather different to the case of two spheres (or to a sphere and a
plane, or to two crossed cylinders), where the Derjaguin approximation gives
the total force as a geometric factor times the interaction free energy per unit
area between planar walls. For parallel cylinders, or for particles adsorbed on a
surface or confined to a membrane, the Derjaguin approximation only exists in
the sense of this result.

11.3.2 Membranes and Pores

The spherical, planar, and cylindrical inhomogencities that have so far been
analysed illustrate the variety of solute geometries that can be utilised in the
singlet approach. A conceptually different system, namely a confined system,
can also be treated by the singlet method by considering the solute to be a pore.
Spherical and planar geometries are the simplest. The planar slit pore will be
treated in the next section, and this section will initially focus upon an isolated
spherical pore of radius R, for which one has

H(ry=-1,r>R. (11.87)

Here {H(r)}, = pé/ ®hoa(r) is the pore solvent total correlation function. The
solvent is assumed to be in equilibrium with a bulk solution where they have
number density ps. It is not essential that they have a common distance of
closest approach to the pore wall, so that one could have hoo(r) = =1, r >
R —d, /2. The number of solvent molecules of a given type confined to the pore
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is given by

R
N, = 47rpa/ dr r?[1 + hoa(r)]- (11.88)
0

In the event that one wants to model a fixed number of molecules inside the pore,
one can adjust the bulk concentrations until the integrals of the individual pore—
solvent distribution functions give the specificd number of molecules; average
quantities (but not their fluctuations) will then be the same as if pore were a
closed system.

As usual the solute-solvent Ornstein—-Zernike equation is

Hi) = Cir)+ / as C(|r — s|)IL(s)

™ R
= Q(r)+27r/0 d9/0 dsg(\/rz—f—sz—Qrscos@)ﬁ(s). (11.89)

Since one is generally interested in positions r < R, the fact that the bulk
solvent—solvent direct correlation function is short-ranged means that the in-
tegrand decays to 0 for large s. Conversely, deep inside the solvent exclusion
region around the pore, r — 00, one may replace hoo(s) by —1 in the integrand
because the short range of coy keeps s &~ r, and one has

coa(r) — —1 +Zp7/dsca7 (Jr —s))
= —1+ Y pylay(0)
¥

= _(pakBTXT)ily r— 00, (1190)

which is the same result obtained above for planar solutes. These constant
litnits must be treated separately if the Fourier transform is to be used to solve
the convolution integral. If one defines short-ranged functions,

hia(r) = hoa(r) + 1 = goa(r), (11.91)
and
Coa(r) = coalr) + (paksTxT) ™", (11.92)

then the solute solvent Ornstein—Zernike equation becomes
H(r)y =C(r) + /dsg(]r — s|)H™(s). (11.93)

The Fourier transforms of all these functions exist and it is straightforward to
solve numerically in the usual faghion.

One of course also needs a closure relationship. The exact closure is formally
identical to those given above, and the various approximations can be applied
with no change.
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Interacting Pores

An emulsion or aerosol consists of droplets of one immiscible liquid in a con-
tinuous phase of another fluid. At a simple level, the spherical pores described
above can be used to represent the droplets, and the interactions of two such
droplets give an indication of the stability of the dispersion. The potential of
mean force between two such droplets is formally

Buoo(r) = Bugo(r) — boo(r) — doo(r). (11.94)
If one focuses on the series function one has
boo(r) = / ds H" (jr — s)C(s), (11.95)

which integral diverges due to the fact that the functions in the integrand do
not decay to 0 away from the droplet. However, if one subtracts these constants
and deals with the short-ranged functions discussed above, then one has

boo (r) = /dsE“T(lr —s[)C™(s). (11.96)

This is well defined and the interaction part of the series function goes to 0 at
large separations.

Similarly the pore pore bridge function, which counsists of pore solvent and
solvent—solvent total correlation functions, goes to a constant at large separa-
tions. The constant can be eliminated by replacing two of the pore—solvent
h-bonds by pore-solvent g-bonds (one connected to each pore, and not con-
nected to the same field point), which leaves a short-ranged part that decays at
the same rate as the solvent correlations of the bulk.

Semipermeable Pore

The pores treated above were cither isolated or interacting through an inert
phase. It is also possible to include the interactions with the surrounding
medium. For example, suppose that the solvent species 1 is confined to the
pore as above, pi(r) = 0, r > R, and that solvent species 2 is confined to
the region exterior to the pore, ps(r) = 0, r < R. Hence the surface of the
pore may be regarded as a semi-permeable membrane. The preceding analysis
goes through largely unchanged, except that hgo(r) is already a short-ranged
function, so that

(S)fx(r) = hOa(T) + 61047 (1197)
and
ha(r) = coa(r) — 010 + p1é1a(0). (11.98)

Hence the solute-solvent Ornstein—Zernike equation may be written in terms of
these short-ranged functions exactly as above

H™(r) =C™(r) + /dsg(lr —s|)H¥(s). (11.99)
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Note that the ¢, that appears is that of a bulk two-component mixture with
density p; of species 1 and ps of species 2. This may seem strange given the
physical separation of the two components, but this is what emerges from the
formalism. This indicates one limitation of the singlet procedure, wherein the
physical structure of the system is not incorporated directly into the formalism.

As above one can treat the interaction of two pores, except that now the
restructuring of the surrounding medium as the separation between the pores
is changed is taken into account. One is interested in the potential of mean
force, which means that one subtracts the large separation limit. Again this
means that the interaction part of the series function may be written in terms
of short-ranged functions,

boo () = /dSE’”T(Ir —s[)C¥(s). (11.100)

This is formally identical to the result given above, with the present short-ranged
functions being used.

Membrane

This method of treating the interaction between two pores can also be applied
to the thickness-dependent free energy of a planar membrane. The wall-wall
Ornstein -Zernike equation used above gives the interaction free energy per unit
area of two planar walls separated by a solvent(i.e., z > 0), Egs. (11.50) and
(11.52). This situation may be called a slit pore. However, as in the case
of spherical pores there is no fundamental impediment to applying the result
for z < 0, which could mode! solvent on either side of a bilayer membrane
of thickness |z|. Again one must account for the fact that the wall-solvent
correlation functions tend to constants deep inside the wall, and so one must
work with short-range functions. Using similar arguments to the above, the
interaction series function per unit area is

oo
bt (2) = / dz' HWP () C (2 — 2), 2 <0, (11.101)
0

where the first function in the integrand is the wall-solvent distribution function,
which vanishes for z/ < 0, and the second term has been made short-ranged
by subtracting the constant given by Eg. (11.39). One can also define the
interaction bridge function, which has two noncontiguous wall-solvent h-bonds
replaced by g-bonds, and is consequently short-ranged. Subtracting these from
the membrane thickness-dependent potential gives the interaction free energy
per unit area, Swit(z) = full(z) — bt (2) — dif¥(z). Note that there is no bulk
free energy contribution to this, which would be just the osmotic pressure of the
bulk solvent times the thickness of the membrane, nor any surface free energy
part. This is purely the interaction free energy per unit area, which arises from
correlations between solvent molecules on the two sides of the membrane. It
represents a van der Waals force, and for large thickness it should approach 0
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from below, wif(2) ~ O(2*™"), 2 — —o0, where the solvent—solvent correlation
functions go like r=", r — —oc.

In some ways this method that treats the membrane as two interacting walls
at negative separations is not the most obvious way of analysing the problem.
What is perhaps more intuitive is to consider the membrane as a single planar
wall of finite thickness ¢. Then all of the analysis for the isolated wall holds,
with minor modifications due to the replacement of the core exclusion condition

by
hoo(2z) = =1, |2] < t/2. (11.102)

This method and the one of the preceding paragraph treat the same problem,
and each has its own advantages. The membrane free energy is obtained directly
in the first approach, but not in the second, whercas the solvent profiles on
both sides of the membrane are given directly by the second approach, but not
the first. The two approaches illustrate another aspect of the singlet method,
namely that it is possible to regard two interacting solutes as a single species,
and this is the topic of the next section.

11.3.3 Dumb-bells

The flexibility of the singlet Ornstein Zernike approach is nowhere more evident
than when the solute is a cluster of particles or solvent molecules. The membrane
example at the end of the preceding section showed the fundamental equivalence
of treating interacting walls cither as two solutes or as a single molecular species.
More generally the solute can be a cluster of n solvent molecules, and then the
solute—solvent density profile simply corresponds to the solvent (n + 1)-particle
distribution function. When the solute is taken to be two spherical particles,
the method may be called the dumb-bell singlet approacly; it is based upon the
solute—solvent Ornstein Zernike equation, as above, but it yields the properties
of interacting solutes directly.'® As such it must be distinguished from the singlet
method explored in detail above that utilises the solute solute Ornstein—Zernike
equation for the interacting solute problem. Essentially the dwnb-bell can be
formed from any two particles at a fixed separation. A particularly interesting
example is for a solute composed of two solvent molecules, because this gives
the triplet distribution function of the bulk solvent. In the dumb-bell method
one must take care of additional geometric factors in formulating the solute—
solvent Ornstein Zernike integral, which may then become complicated in detail
though it remains conceptually straightforward. The simplest geometry is the
planar case, and this scction will focus upon two infinitely thick walls, which
corresponds to the wall wall analysis given above in Section 11.2.2, and which
can also be considered as a slit pore.

A solute composed of two semi-infinite half-spaces separated by ¢ has for the
solute solvent total correlation function

hoa(2:t) = —1, |2] > t/2, (11.103)

13M. Lozada-Cassou, Fluids between walls and in pores, in Fundamentals of Inhomogeneous
Fluids (D. Henderson, Ed.), Ch. 8., Dekker, New York, 1992.
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which manifests the confinement of the solvent between the walls. That the
solute actually consists of two walls will be explicitly signified by the separation
appearing in the argument of the solute-solvent correlation functions. Attention
will be restricted to the symmetric systein, hoo(—2;t) = hoo(z;t), and hence
the number of confined solvent particles per unit area is

00 t/2
Ny = pa / dz 1+ hoa(z;t)] = pat + 2pa/ dz hoe(z;t). (11.104)
0

J —00

As usual the solute solvent Ornstein Zernike equation is

Hist) = Cl0+ [ Ce—rHY)
= Q(z;t)+27r/oodr’r’/oo dz

xg<7ﬂ+@-zw)ﬁw¢y (11.105)
The closure is formally
hoo(2;t) = —1 + exp [~ Buoa(2; ) + boa(2;t) + don(z;t)] . (11.106)

In the exponent appear the solute—solvent potential, series function, and bridge
function. Generally the solute—solvent potential is the sum of the potentials of
the two isolated walls, and these potentials go to 0 far from the walls to allow
the density to obtain its bulk value. For the confined solvent, nowhere does
the density equal its bulk value except in the centre of the system in the limit
t — 00.

The equations above determine the solvent profiles between two walls sepa-
rated by t. For the study of slit pores these are the main quantities of interest.
The wall-wall Ornstein—Zernike equation of Section 11.2.2 did not determine
the density profiles between the two walls, and so for the study of slit pores the
dumb-bell approach is preferable. What the wall-wall approach did give was
the interaction free energy per unit area, a quantity not directly available from
the formally exact dumb-bell equations given above. The separation-dependent
free energy is an important quantity in the study of solute—solute interactions (it
determines, for example, whether particles stick together or remain dispersed),
and can be more or less directly measured. The solvation free energy, or solute
chemical potential, does allow this interaction free energy per unit area to be
extracted. According to Eq. (11.32), the solvation free cnergy per unit area is

BWE () = j{:;xyj(fo dz

>0

nvyy (2 1)
X {hov(z; t) — v(();)(z; t) — hoy(2;t) E — 2

n=1

(11.107)

Due to the fact that the correlation functions go to constants inside the walls,
as has been discussed several times above, this expression is divergent.
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In the large separation limit, the correlation functions go to

Jim hoy(2;t) = hoy(2 4+ t/2) + hoy(—2 + t/2) (11.108)
and
tlim véz)(z; t) = véz)(z +1/2) + véz)(—z +1/2), (11.109)

where both functions on each right-hand side refer to a semi-infinite half space
that confines the solvent to z > 0. By subtracting the limiting forms one obtains
the interaction part of the solvation free energy per unit area,

BWE™ ()
= Z Pv/ dz [Ahov(z; t) — Av&)(z; t)
N

N n )
7; — 1A{h07(z,t)v07 (z,t)}] . (11.110)

All the functions in the integrand are short-ranged in both directions, and since
the integrand goes to (0 as £ — o0, one can conclude that indeed this is a
formally exact expression for the interaction free energy per unit area between
the walls of the planar dumb-bell Ornstein Zernike equation. As usual, one can
implement the HNC or the PY approximations by neglecting or approximating
the bridge functions. The derivative of this with respect to separation gives the
net pressure.

Born—Green—Yvon Interaction

As mentioned above the density profile around a solute rn-ion corresponds to
the (n + 1)-particle distribution function. The Born Green Yvon hierarchy
also relates these two levels of distribution functions. For the dumb-bell solute
the second member of the hierarchy is required, Eq. (9.74). This expresses
the gradient of the pair distribution function as the average direct force plus
the indirect force mediated by a third particle. Recalling that the potential of
mean force is related to the radial distribution function by g(r) = exp —Bw(r),
it follows that ¢'(r) = —fBw'(r)g(r). Hence dividing by the pair distribution
function one can rewrite the second member of the Born Green Yvon hierarchy
as an expression for the gradient of the potential of mean force. For two spherical
solutes, Eq. (9.74) becomes

who(r12)

' alrio, 713, co80
= Vyo(r12) +Zpa/drgu(l)a(Tl;g)COS@gOO (112,713, €08 6)

900(7“12)

(11.111)

?

where Vjg is the solute solute potential, and ug. is the isolated solute-solvent
potential. The solvent density times the solute-solute-solvent triplet distri-
bution function divided by the solute-solute pair distribution function is the
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probability of finding a solute conditional upon the solutes being at r; and ry.
This is just the dumb-bell solvent distribution function and one has

gooa 712,713, cOS 6)
900(7“12)

90a(r13)goa (123) €xp —BTo0a (712, 713, cOS 0)
= 1+ hoa(rs;riz). (11.112)

On the right-hand side of the first line appear the isolated solute—solvent dis-
tribution functions, gg., whercas on the right-hand side of the second line the
quantity hg, refers to the dumb-bell-solvent total correlation function, with riy
being the separation between the two bells.

Strictly speaking the numerator and the denominator of the left side do not
individually exist for planar walls of infinite area (cf. the discussion of the wall-
wall Ornstein—Zernike equation, Eq. (11.50), above), but the right sides are well
defined for both finite and infinite solutes. (The quantity 7 is the solute—solute -
solvent triplet potential of mean force, which is the set of connected, nonparallel
diagrams with nonadjacent root points.) Inserting the dumb-bell distribution
function into the Born Green—-Yvon equation gives the mean solute—solute force
(and upon integration their interaction free energy). This enables the interaction
of spherical and other finite solutes to be characterised.

For infinite planar solutes the analogue of the Born-Green—Yvon equation
reduces to the contact theorem, as is now shown. Equation (11.111) says that
the mean force between solutes is the sum of a direct part and an indirect part
due to the mediation of the solvent. In the planar case one must deal with the
force per unit area, but the same situation holds: the mean force per unit area
is the direct pressure between the walls plus the force on one wall due to the
solvent, summed over species and integrated over space, weighted with their
probability. The indirect contribution clearly scales with the area of the plates,
and hence it is the axial integration that gives the indirect force per unit area.
That is,

who(t) = Vgo(t) + Zpa/ P dz ug, (2)[1 + hoa(2;t)]. (11.113)
—t

Note that cos@ has been set equal to 1 because in this planar geometry the
component of force is always parallel to the line connecting the walls. It’s
worth mentioning that this result can be derived directly from Eq. (11.111)
by taking the infinite solute radius limit, and by invoking the relationships of
Section 11.2.3. Because there is no solvent on the far side of these plates, the
left side represents the total pressure between the walls, p'°*®!(t) = —w{y(t).
To obtain the net pressure one subtracts the pressure due to the bulk solvent,
pet(t) = p'°*8l(¢) — ps, and thence the interaction free energy per unit area
follows by integration,

wint(t)z/t dt’ p"et(t), (11.114)

with w'mt(t) — 0, t — o0.
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For the solvent confined between walls, the wall solvent potential contains
a hard-wall term, which gives a Dirac § when differentiated,!*

U (2) = e (2) — ks Td(z — t/2), (11.115)

where the first term is the soft part of the potential if any. Note that this refers to
only one wall of the dumb-bell. Hence the wall wall Born—Green -Yvon equation
becomes

ptotal(t)

= Vo)~ Lo / Az [ (2) — kT8(z — 1/2)] [1 + hoa(z: 1)

— VLt )+ABTZ/) (14 hoa(t™/2:1)]

[e7

- Z Do / dz @4, (2)[1 + hoa(z;t)]. (11.116)

—t/2

This formally exact expression says that the total pressure (force per unit area)
acting between the walls consists of the direct force per unit arca between the
walls, plus the average 'soft’ force acting on the solvent due to one of the walls,
plus the kinetic pressure at that wall due to the thermal motion of the solvent
in contact with it. This is just the contact theorem, Eq.(7.93).

11.4 Inhomogeneous Ornstein—Zernike Equation

The singlet Ornstein Zernike equation treated the density inhomogeneity as
arising from the presence of a solute in an otherwise uniform system. In this
approach the solvent density was a constant, the solvent solvent pair correla-
tions were homogencous, and the geometry of the solute was reflected in the
symmetry of the solute solvent pair correlations. A drawback of the approach
is that the solute potential, which causes the density inhomogeneity, appears on
the closure equations. In practice this is the approximate part of any numerical
procedure and since the solute potential can represent an extremely significant
perturbation, this represents a limitation on the accuracy that can be achieved
with the procedure.

An alternative approach considers the density inhomogeneity to arise from
an externally applied potential. No solute appears in this approach, and the
solvent density itself is nonuniform. In this method, for a single-component
solvent, one invokes the inhomogeneous Ornstein Zernike equation,

h{ry,re) = e(ry,r2) + /v drs p(r3)h(ry, r3)c(rs, rs). (11.117)

More precisely, u’(2)g(z) = u'(2)e P PP g(z) = —kpT[de Pu(*) /dz]y(z). The
derivative of the unit step function, the first part, gives the Dirac &, and y(z) is the cav-
ity function, which, due to the cancellation of the e(r)-bond between the root points, is
continuous across the wall.
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For the case of a multicomponent system, the convolution integral includes a
sum over the species index.
The closure equation is unchanged by the inhomogeneity,

h(ry,r2)+1 = exp[—Bu(ri.ry) + h(ry,ry) — ¢(ry,r2) + d(ry,re)] (11.118)

As usual one generally invokes an approximation for the bridge function, either
neglecting it (hypernetted chain) or expressing it as a series of series functions
(Percus—Yevick). The mean spherical approximation can also be used.

Hence one has two equations for the two pair correlation functions. The
density profile is also unknown, and one therefore needs a further equation to
complete this inhomogeneous approach.

11.4.1 Density Equations

There are various formally exact expressions for the density profile of an inho-
mogeneous system. In a previous chapter the Born- Green-Yvon hierarchy was
given. The first member of the hicrarchy, Eq. (9.70), for a system with only
singlet and pair interaction potentials, is

V) = V() VB (r)
—/ dry p® (r1, 1)V Bul? (r1, ). (11.119)
v

Hence if the inhomogeneous pair distribution function is known, this represents
an integro-differential equation for the density profile.
An alternative is based upon the direct correlation function,

2(r) = p(ry) exp =M (ry), (11.120)
as given in Eqs. (8.69) and (8.75). Taking the gradient of the logarithm of the
density one has

VinpM (r1)A®

— VB (1) + Ve (ry)

5D ()
= —vayM el 2 )
B ﬁu (rl) * [/ drz 6p(1)(r2)

= —Vﬁu(l)(r1)+/ dry ¢ (ry, 1)V (1y). (11.121)
v

Vo (rp)

This equation may be named after Triezenberg and Zwanzig (TZ).!°
If one takes the gradient of the density itself one obtains

6p(1)(r1)
(1) - o S NV g, (1)
VptH (ry) /V(rz 6u(1)(r2)vu (r2)

= —[3/ dry p8 (v, 1) VD (1), (11.122)
\%

15D. G. Triezenberg, and R. Zwanzig, Fluctuation theory of surfacc tension, Phys. Rev.
Lett. 28 (1972), 1183.
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as follows from the definition of the pair density, Eq. (9.17). Wertheim, and
Lovett, Mou, and Buff (WLMB) originally derived this result.!® Note that the
external potential, u(!)(r), often includes a solvent-exclusion term (hard-wall,
or hard-solute) that contributes a d-function when the external potential is dif-
ferentiated. This contact contribution from the pair correlations with a solvent
molecule at the wall is often evaluated and displayed explicitly outside the in-
tegral.

The TZ and WLMB equations are related to cach other by the inhomoge-
neous Ornstein—Zernike equation. The TZ equation may be written, using the
fact that cs(r1,1e) = 6(ry,12)/p 0 (r)) — (1), 12),

~VBuI(r)) = / drz(:gz)(rl,rz)Vp(l)(rz). (11.123)
Jv

Multiplying both sides of this by pgz) (rs,r;) and integrating over r; one obtains

—/ dr; pf;z)(r3, rl)Vﬂu(l)(rl)
14

= / dr; dr, p((f)(rg,rl)ch)(rl,rg)Vp(l)(rz)
v
= Vp(rsy), (11.124)

where the fact that /)((52) and (:((52) are functional inverses has been used. This
is just the WLMB equation. Hence if the pair correlation functions satisfy the
Ornstein Zernike equation, the WEMB and the TZ equations are equivalent
for any approximate closure. In contrast, for an approximate closure the BGY
equation will yield a density profile that differs from these two.

The WLMB and TZ equations are also equivalent to the sccond member of
the BGY hierarchy, Eq. (9.74). This may be scen by invoking the latter for a
homogeneous solute solvent mixture,

Vgor (7'()1 )
= —f3go1(r01)Vug1(ro1) — Bp /dl‘z Vuor(roz2)gor(Tor1. roz). (11.125)
Replacing the solute potential by the external potential, these may be rewrit-
ten in terms of the density profile and the inhomogeneous pair total correlation

function, (since the integral of the force over the unconnected diagrams van-
ishes),

Vp(ry)
= —[jp(rl)Vu(l)(rl) — Bp(ry) /drz p(rz)Vu(l)(rz)h(rl,rg), (11.126)
16M. S. Wertheim, Correlations in the liquid—vapour interface, J. Chem. Phys. 65 (1976),

2377. R. Lovett, C. Y. Mou, and F. P. Buff, The structure of the liquid-vapour interface, J.
Chem. Phys. 65 (1976), 570.
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which is the WLMB equation given above.

Another equation for the density profile may be derived from the formally
exact expression for the chemical potential, Eq. (9.101). This expression was
derived for a uniform system, but it is evident that the analysis can be car-
ried through for an inhomogeneous system with the partially coupled solvent
molecule at ry, yielding

(=Bsps™(r1)) = —pV(ri) + /dFZP(FZ)[’L(rLFZ) — o (ry,rp)
h(ry,r2 2n+1 rl,rz)} . (11.127)

Comparing with Eq. (9.96), one sees that the integral represents the local field
felt by an atom at r; due to the other atoms, and that the first term is the
contribution from the external potential, which was not previously present. Note
that the averand on the left-hand side is the excess chemical potential, not
the local chemical potential 4 — V(r) used in the previous chapter. The ideal
contribution is

(Bsp! (x)) = In p(r) A%, (11.128)

and p,(r) = pid(r) + pe*(r). The chemical potential must be constant through-
out the system since it is fixed by the reservoir. Hence this represents an implicit
equation for the density profile,

(ps(r)) = p- (11.129)

Approximations

These exact equations for the density profile each involve an inhomogeneous pair
correlation function. A common approximation is to replace this by a bulk pair
function, which then bypasses the need to invoke the inhomogeneous Ornstein—
Zernike equation. One needs to evaluate the bulk function at an appropriate
density. One choice is the density of a uniform system at the same chemical
potential as the system of interest. One can also choose the average of either the
local density at the two positions in the inhomogeneous system or a nonlocal
density weighted over some neighbourhood. In some cases this average density
can be problematic as it may not represent a stable bulk density.

If the inhomogeneous direct correlation function is replaced by the bulk
one, then one recovers the singlet hypernetted chain approximation.!” For a
solvent mixture, replacing the inhomogeneous cq(ri,r2) by the bulk cqqy(r12),
the Triezenberg-Zwanzig cquation for the density profile, Eq. (11.121), may be
rewritten

1 6pa(r1)

pa(ry) Orp

17J. P. Badiali, M. L. Rosinberg, D. Levesque, and J. J. Weis, Surface density profile of the
one-component plasma, J. Phys. C: Solid State Phys. 16 (1983), 2183.
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L OVa(r) Op,(ra) ,
= —ﬁa—l_le;/drz *g—rz——cw(’flz)

81‘1 (91‘2

_ aVa(rl) ac’ya(TIZ)
= 7[38—1‘1 + ;/drg pny(rz)a—r1

- _ﬁ—6VO‘(r1) - Z/dl‘z py(m)———w

8Va(r1)

0
= ——ﬁ——a-IT- + a—rl- va/drg ’L(),Y(I‘Q)Cary(’f'lz). (11130)
Y

The second equality follows an integration by parts, the integrated portion van-
ishing, the third equality arises because Of(r12)/0re = —0f(r12)/0r1, and the
final equality is due to the fact that p.,(re) = p,[1+hoy(r2)], where the constant
part gives a contribution that is independent of r;. Integrating this one obtains

In[1 + hoa(r1)] = =8V, (ri) + pr / dry hoy (r2)Cya(r12), (11.131)
S )

both sides vanishing as r; — oo. This is just the singlet hypernetted chain
approximation.

For the case of the chemical potential expression for the density profile, a
common practice is to invoke the same approximation as for the closure to
the inhomogeneous Ornstein- Zernike equation. That is, for the hypernetted
chain approximation one neglects v for n > 2, and for the Percus—Yevick
approximation one replaces the bridge diagrams by products of series diagrams.
This is in contrast to the other three density equations, which are implemented
exactly, and the only approximation is in the closure.

11.4.2 Planar Inhomogeneity

What makes the Ornstein Zernike approach so popular for bulk fluids is that
the convolution integral factorises upon Fourier transformation; the consequent
algebraic equation is readily ‘solved’ for cither the total or the direct corre-
lation function. The availability of the fast Fourier transform is a significant
advantage because one alternately iterates the closure in real space and the
Ornstein -Zernike equation in Fourier space. For an isotropic, uniform system
of spherically symmetric molecules, the pair correlation functions depend only
upon the radial coordinate and are defined on a grid of size N, and the con-
volution integral in Fourier space takes just N cvaluations. The fast Fourier
transform takes N log, N operations. Even with N a 210 this is quite feasible,
even trivial, on modern computers.

In general, inhomogencous pair functions defined on a grid of N points in
each dimension require arrays of size N® to store, and N® multiplications to
evaluate the Ornstein—Zernike three-dimensional convolution integral directly.
This is prohibitive for even moderate grids. Only the most symmetric inhomo-
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geneous problems can be considered feasible, and in practice only planar and
spherical inhomogeneities have been treated to date.

For a planar inhomogeneity (such as a wall, a flat membrane or interface
between two phases, or a slit pore), the density is just a function of the distance
from the surface, p(2), and the pair correlations are functions of the positions of
the two atoms of the solvent from the surface, z; and z,, and of the lateral com-
ponent of their separation, r12. That is, h(r;,r3) = h(r2, 21, 22), and the actual
separation between the atoms is Rjz = /(21 — 22)2 + r%,. In this geometry the

Ornstein—Zernike equation becomes

e's} 27 00
h(Tz,Zl,Zz) = 6(7‘2721722)—{—/ ng/ d@/ dryrs
J—00 0 0
x p(zz)e(rs, 21, 23)h(rsz, 23, 22), (11.132)

where the axis of the cylindrical coordinates has been set at r1 = 0, and hence
32 = \/T5 + 13 — 2rar3cosf.

For the case of solvent-excluding walls, the density vanishes in certain regions
(e.g., p(z) = 0, z < 0), and the limits on the z3 integral may be adjusted
accordingly. Conversely, the density profile goes over to the bulk value far from
the surface, as do the pair correlation functions. Hence for an unconfined solvent
(e.g., a single wall, or membrane or interface between two phases), one typically
introduces a z-cutoff, and only solves the inhomogeneous problem within the
cutoff. The contribution to the convolution integral from outside the cutoff is
approximated by the contribution from bulk functions.

The Fourier transform of a cylindrically symmetric function becomes a Han-
kel transform of order 0 (sec Section 11.3.1). Hence the Hankel transform fac-
torises the radial part of the Ornstein—Zernike equation,

oo
h(k,z1,22) = ek, 21, 22) +/ dzs p(23)e(k, 21, 23)h(k, z3,22).  (11.133)
— o0
The one-dimensional integral that remains is readily evaluated, and hence the
transformed equation is in a form suitable for solution. Typically one evalu-
ates the convolution integral once each iteration between Hankel and real space.
Alternatively, it is possible to express this as a matrix equation, with the k-
dependent elements representing pairs of z-layers, and to solve explicitly the
resultant equations by matrix inversion. Because one must transform back
and forth from Hankel space many times, numerically a discrete orthogonal
transform is desirable. Lado has given an ‘almost’ orthogonal transform, which
appears to be quite robust in practice.!®
Representing the density on a grid of N, points, and with a radial grid of
N, points, it takes an array of size N, N2 to storc the pair correlation functions,
and N, N? operations to evaluate the convolution integral in Hankel space. The
Hankel transforms take N2N?2 operations. The latter is the limiting step and a
fast version of the Hankel transform would be highly desirable.

I8F. Lado, Hypernetted-chain solutions for the two-dimensional classical electron gas, Phys.
Rev. B 17 (1978), 2827.
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The deunsity profile equations are also simplified by a Hankel transform. The
BGY equation becomes

/ - —p(z (s 7)0(2:1) o Z
plz1) = —p(z1)BV'(z1) (QW)Z/_OOdZ/dk

oD (k, 21, »
X p(zz)g(k,zl,zz)~%, (11.134)
21
the TZ equation is
) = =ple)BV () + [ deapf(a)e(0. 21, 2), (11.135)
and the WLMB equation is
p'(z1) = —p(21)3V'(21) — [jp(zl)/ dza p(22)V' (22) (0, 21, 22). (11.136)

The planar inhomogeneous Ornstein Zernike equation has been solved for
isolated!® and for interacting?® planar walls.

11.4.3 Spherical Inhomogeneity

For the case of a spherically inhomogencous system, such as that around a spher-
ical solute, that confined to a spherical pore, or that of bubbles or droplets, the
density depends upon the distance from the origin, p(r), and the pair correla-
tions depend upon the two distances of the solvent molecules from the origin
ry and rg and the cosine of the angle between them, 213 = cosfiy. That
is, h(r1,r2) = h(ri.re,212), and the actual separations between the atoms is
Riz = \/r? + 12 — 2rirom15. The Orustein Zernike equation is

h(ﬁﬂ“z,xm)
=c(r1,ro,x12) + /dr;; plra)h(ry,ry, x13)e(rs, ra, 32). (11.137)

In this case a Legendre transformation factorises the angular convolution,

47 "0

2n+1 J,
x p(r3)h U (ry, 7)) (rg, ry). (11.138)

W (ry,ra) = @M (ry,rg) + dry 7

This factorisation follows from the orthogonality properties of the Legendre
polynomials and from the addition theorem for spherical harmonics. Using the
fact that

cos B33 = cos B2 cos O3 + sin B4 sin 6,3 cos @3, (11.139)

198, Sokolowski, On the solution of the nonuniform Percus-Yevick equation, J. Chem. Phys.
73 (1980), 3507. R. M. Nieminen and N. W. Ashcroft, Theory of inhomogencous fluids, Phys.
Rev. A 24 (1981), 560.

2OR. Kjellander and S. Maréelja, Inhomogeneous Coulomb fluids with image interactions
between planar surfaces. I, J. Chem. Phys. 82 (1985), 2122.
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the latter is
_ ! .
Po(z33) =2 Z'MP;n(xlz)p;n(xlg)elm%. (11.140)

The orthogonality relations are

1
2
dz F, P7n = 5 < 9m,
[1 z B, (2) P, (x) 2n+16 and
241
3 "; Po(z)Pa(z) = &z — ). (11.141)
n=0

In view of this the Legendre transforms are

1 e’}
2";1/_1dxpn(x)f( 2), and f(z Z F Py ( (11.142)

f(n) —

The algorithm for solving the spherically inhomogeneous Ornstein- Zernike
equation is similar to that of the planar case, as are the considerations for
making a connection with the bulk far from the inhomogeneity. The numerical
complexity is identical. A discrete orthogonal (but not fast) version of the
Legendre transform performs well in practice, and a fast (but not orthogonal)
version is known.?!

The equations for the density profile in spherical geometry also simplify upon
Legendre transform. The WLMB equation becomes

plr) = —Bp(r)V'(r)
 AnBp(r1)

3 / dry r2p(ra) R (r1, 72) V' (1), (11.143)
0

where V(r) = uV(r) is the external potential. The TZ equation is

pl(r) = —Bp(r)V'(r1)
+47r03(m)/ dry 1280 (11, 12) 9/ (r2). (11.144)

0

The BGY expression becomes

pl(’f'l) = —[jp(rl)vl(rl) —278p(ry) Z o+ 1
n=0
00 7{(n)
<[ Bt s P, (11.145)
0 L

21p. Attard, Spherically inhomogeneous fluids. I. Percus—Yevick hard-spheres: Osmotic
coefficients and triplet correlations, J. Chem. Phys. 91 (1989), 3072. P. Attard, Lennard-
Jones bridge functions and triplet correlation functions, J. Chem. Phys. 95 (1991), 4471. B.
K. Alpert and V. Rokhlin, A fast algorithm for the evaluation of Legendre expansions, STAM
J. Sci. Stat. Comput. 12 (1991), 158.
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The spherically inhomogeneous Ornstein Zernike equation is particularly
interesting because the inhomogeneous pair correlation function in the presence
of a spherical solvent is equivalent to the triplet correlation of the uniform bulk
system (sce the papers by Attard in the preceding footnote). It has also been
used to treat a spherical solute.??

The planar and spherical geometries are the only two geometries in which
the inhomogencous pair correlation functions depend upon three variables, one
of them in an homogencous fashion. In contrast, for example, for systems with
cylindrical symmetry they depend upon the two distances from the axis, the
mutual angle, and the mutual separation along the axis. Currently it does
not appear feasible to solve the inhomogeneous Ornstein—Zernike equation in
any but planar and spherical geometry (or circular or linear geometry in two
dimensions).

Summary

¢ Inhomogeneous systems may be treated by regarding the external poten-
tial as due to a solute at infinite dilution, with the density inhomogeneity
being given by the solute solvent distribution function. The interpretation
of solute is quite general, and includes spherical, planar, and cylindrical
bodies and pores, and multimolecular species. The solvation free energy
may also be obtained.

e The solute solute Ornstein Zernike equation gives the pair-wise interac-
tion of solutes. For the case of walls, it is the interaction free energy per
unit area that is the relevant quantity.

o In the asymptotic regime, the rate of decay of the density profile to its
bulk value and the rate of decay of the solute solute interaction are at
least as long-ranged as the solvent solvent corrclations. A long-ranged
attractive interaction is induced between solutes approaching the critical
point or the spinodal line.

¢ An inhomogeneous Ornstein Zernike equation can be formulated, and this
this can be solved with a standard closure and one of several exact equa-
tions for the density profile in terins of the external potential and the
anisotropic pair corrclation functions. It is feasible to treat planar and
spherical inhomogencous systems in this fashion.

22p. Attard, Spherically inhomogencous fluids. II. Hard-sphere solute in a hard-sphere
solvent, J. Chem. Phys. 91 (1989), 3083. M. Fushiki, An anisotropic hypernetted chain
approximation for the spherical cell model, Chem. Phys. Lett. 154 (1989), 77.



Chapter 12

Coulomb Systems

12.1 Mean Field Approximation

Coulomb systems represent an important class that includes plasmas, molten
salts, and electrolytes. The latter is perhaps the most frequently occurring and
it arises from the dissociation of ionic salts in polar solvents such as water. From
the theoretical point of view the long-range tail of the Coulomb potential creates
both opportunities and challenges for analysis. It allows a number of exact
asymptotic results to be obtained, and because to a large extent it determines
the properties of the electrolyte, it provides the basis for several simple, analytic
approximations.!

The simplest model of an clectrolyte is the so-called primitive model, in
which the pair potential consists of a hard-sphere and a Coulomb term, uq~(r) =

ulfxiy(r) + ugﬁy)“l(r). The hard-sphere potential is

s 00 1< dy
u‘;ﬁ(r):{ 0 T>da: (12.1)

where the Greek indices label the species, and d,~ represents the distance of

closest approach of the centres of the two ions of the given type. One usually

deals with additive hard-sphere diameters, doy = do + d. Sometimes the finite

size of the ions is instead modelled with a soft-core repulsion (e.g., r~12).
Coulomb’s law in media is

'lLCOUl(T') — Gdaly

o o (12.2)

k

IThere have been a number of reviews of statistical mechanical techniques and results for
the electric double layer: S. L. Carnie and G. M. Torrie, The statistical mechanics of the
electrical double layer, Adv. Chem. Phys. 56 (1984), 141. L. Blum, Structure of the clectric
double layer, Adv. Chem. Phys. 78 (1990), 171. P. Attard, Electrolytes and the electric double
layer, Adv. Chem. Phys. 92 (1996), 1. The analysis in this chapter follows closely that of P.
Attard, Asymptotic analysis of primitive model electrolytes and the electrical double layer,
Phys. Rev. E 48 (1993), 3604.
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where ¢, is the charge an ion of type . In the primitive model, the solvent
is subsumed into a continuum dielectric constant: € = 4mege,. is the total per-
mittivity, with €g being the permittivity of free space, and €, being the relative
dielectric constant of the medium. Accordingly, the Coulomb potential is the
longest-ranged pair part of the interaction free energy that arises from inte-
grating out the solvent and electronic degrees of freedom. Similarly, the ionic
diameter used is generally larger than the spacing in an ionic crystal to account
for the first solvation shell of the ions, which may be argued to be irremovable.
The simplest version of the primitive model, a binary symmetric electrolyte
with all ions bheing the same size and the two species having equal but opposite
charge, is called the restricted primitive model.

12.1.1 Poisson-Boltzmann Approximation

The most wide-spread approach to Coulomb systems is the Poisson-Boltzmann
approximation. This is a mean field approximation that replaces the local po-
tential felt by an ion by the mean electrostatic potential at that position. The
approximation can be applied to inhomogeneous systems where there is an ex-
ternally applied potential (see the electric double layer below), but here it will
be illustrated for a uniform system.

For a homogeneous clectrolyte, the mean electrostatic potential at a distance
r from an ion of type v is

Py ( =& +Zp,\/dsqw\ $) L, (12.3)

€lr — s

This comprises the direct potential due to the ion v, plus the contribution from
the other ions in the electrolyte. The first term in the integrand represents
the probability of finding an ion of type A at s, and the second term is the
contribution to the electrostatic potential at r from that ion.

The radial distribution function is obtained by approximating the potential
of mean force by this mean clectrostatic potential

Gor (1) = x|~ Baathy (1)) (12.4)

where § = 1/kgT. This is known as the Boltzmann approximation. It is an
approximation because the actual potential of mean force includes the change
in the local potential from the mean value due to correlations between the ions,
as well as nonclectrostatic effects such as those due to the finite size of the
ions (e.g., hard core). In so far as the long-range part of the Coulomb potential
dominates the interaction between the ions (i.c., dilute systems), one may expect
this approximation to be reliable. Considering p.(r) = paga(r) as the density
profile about the ion v considered as a source of an external field, it may be
seen that the Boltzmann approximation is identical to the mean field theory of
Section 6.5.

These two equations may be solved simultaneously. It is traditional to recast
the integral form for the mean potential into a differential equation by taking
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the divergence of the above. This is Poisson’s equation,
—4r
V24, (r) = — Zq,\P,\gw\(T% (12.5)
DY

which says that the divergence of the electrostatic potential is proportional to
the charge density. The combination of the exact Poisson equation and the ap-
proximate Boltzmann form is known as the Poisson—Boltzmann approximation.
In the present case it is

19 (,0 —4
2o (’"2 %r(r)) = :;qmew[—ﬁqu(rﬂ. (12.6)

12.1.2 Linear Theory

In the case that the mean electrostatic potential is weak, |3qx1~(r)| < 1, which
is true at high temperatures or at large separations, then one can linearise the
right-hand side of this to obtain

10 [ ,0 —4
_a_<w7<g> = X awall= 60 (0

A
= 52D¢7(¢)~ (12.7)

Here the electro-neutrality condition for the bulk electrolyte has been invoked,
> aon =0 (12.8)
A

This is an important constraint that all real systems must obey and that will
recur several times below. Also, the Debye parameter has been defined,

4n
K = — > @i (12.9)
i A

The quantity /@51 is known as the Debye screening length; it sets the length
scale of the interactions in an electrolyte, at least in this approximation. It is
in inverse proportion to the square root of the concentration, and it is shorter
in multivalent electrolytes than in monovalent.

It may be confirmed by differentiation that the decaying solution to this
linearised Poisson—Boltzmann equation is

Py (r) = Yy pror (12.10)

r

Accordingly, the radial distribution function is given by
o) = 1= 2 a2

From these it is clear that the mean potential due to an ion is exponentially
screened, and hence so are the correlations between ions. The decay length is
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given by the Debye length, which as mentioned above decreases with increasing
concentration and valence, and with decreasing diclectric constant. This says
that the charge on each ion is more efficiently screened by the surrounding ion
cloud, and that the correlations amongst the ions are increasingly short-ranged,
as the coupling between the ions is increased.

Just as the electrolyte itself must be electro-neutral, so must the charge in
the ion cloud surrounding an ion be equal and opposite to that on the ion, as
will be proven below. This determines the prefactor,

4y = qux/drgw(r)
A

—471’,[3'1/)72%2\/),\/
A

ges)
0

KDY

drre”

= —ety. (12.12)

Hence the total correlation function, h =g — 1, is

B (r) = D0 e (12.13)
er
This shows that the amplitude of the correlations is proportional to the product
of the charges on the ions, which means that it is symmetrie in the indices, as
it must be.

12.1.3 Debye—Hiickel Theory

The lincar Poisson Boltzmann approximation applied to electrolytes is known as
Debye Hiickel theory. It may be used to obtain the thermodynamic properties
of the clectrolyte. In this theory the size of the tous is neglected, d = 0.

Using the virial expression, Eq. (7.88). Debye Hiickel theory gives for the
excess pressure of the clectrolyte,

. Couly,.
DH.ex -1 / d“’(wy (’)

p = — /)(Y/).). drrT,q(w(’r)

4 h 37 Yo 3 P L
= 1 Pov Py / dr 7"3 4 ‘(17 ):1 — Bq (I’Y(,-M)r}
J0

2

6 er er
(Y’Y
it
- ) 12.14
2473 ( )
Here the bulk electro-neutrality condition, > page = 0. has been used to

convert the radial distribution function to the total correlation function, as well
as the definition of the Debye length, Eq. (12.9). The ideal contribution is of
course pY = kgT Y po. The Debye- Hiickel theory is valid in the limit of
vanishing concentrations. This result shows that the leading correction to the
ideal gas behaviour goes like p?/2, not the p? predicted by the virial expansion. It
can be confirmed that the individual virial coefficients diverge for the Coulomb
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3/2 result arises from a resummation

potential, and hence this Debye—Hiickel p
of all the virial coefficients.
The chemical potential in the zero-size mean spherical approximation is given

by Eq. (9.106). Hence one has

1
/LEH.CX = Zp,y/drucoul( ) I:l + §h(yy(r)}
Y
4 = ~ P
_ me/ drr? ﬁq q” eNor
0
Y

2
= %fb (12.15)

2¢
where again the bulk electro-neutrality condition has been used. In view of
the fact that the grand potential density is Q/V = —p, and the fact that the

Helmholtz free energy density is F/V = Q/V + > pafia, one has

ﬁFDH ,ex V ﬁz _qO‘KJD — _Fi% (12 16)
/ 2ar " e l12n’ '

12.1.4 Modified Debye-Hiickel Theory

At higher concentrations the hard core of the ions can no longer be neglected.
The exponential behaviour given for the total correlation function by Debye
Hiickel theory cannot hold within the hard-core region. One must have h,(r) =
—1, » < d, assuming that the ions are all the same size. This means that the
electro-neutrality condition is no longer satisficd by applying Eq. (12.13) beyond
the core. Retaining the Yukawa form but scaling the prefactor to satisfy clectro-
neutrality, one obtains the modified linearised Debye—Hiickel approximation,

-1, r<d

ha'y(r) - _ﬁQQq'yeﬁDd e fer r>d (1217)
e[l + kpd] r

A problem with this theory is that it allows the coion radial distribution
function to become negative. This problem may be traced to the linearisation
of the exponential, whick is only valid for low potentials. Unfortunately one
cannot give a closed form analytic solution to the nonlinear Poisson—Boltzmann
equation in this spherical geometry. An alternative approximation is to retain
the Yukawa form for the potential of mean force and to exponentiate this for
the radial distribution function,

_ﬁqaq'y e FOT

} > d. (12.18)
€r

Gavy(r) = exp [
It is evident that there are certain inconsistencies in this approach (it satisfies
neither electro-neutrality nor Poisson’s equation). When the nonlinear terms
are negligible, the linear and the nonlinear total correlation functions will be
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approximately equal and the theory could be said to be internally consistent.
However, when the nonlinear terms make a contribution, it is arguably better to
use the exponential of the potential of mean force even though this is not fully
consistent with the linearisation that was assumed to solve Poisson’s equation.
This nonlinear version has the same asymptotic form as the modified Debye—
Hiickel approximation (albeit with a different prefactor), but experience shows
that overall it tends to be a better approximation, in part because it always
remains physical at small separations.

A more sophisticated approach is to solve the nonlinear Poisson-Boltzmann
equation numerically. This approach is used widely in studies of inhomogeneous
electrolytes and the electric double layer.? For the case of the present uniform
electrolyte one should be aware that the nonlinear theory is inconsistent; for dif-
ferent sized ions the pair correlation functions are not symmetric in the indices,

Gathy(r) # gyta(r).

12.1.5 Electric Double Layer

In the case of an applied electric potential ***(r), the electrolyte becomes
inhomogeneous and the expression for the mean electrostatic potential is

P(r) = = (r) + Z/Vdspa(s)dq—“. (12.19)

|r — s
The Boltzmann equation is

Ya(r) = Paso exp[—Haatp(r), (12.20)

where pq.o is the density far from the influence of the external field, ¥(r) = 0.
Rewriting the mean potential as Poisson’s equation, the nonlincar Poisson
Boltzmann equation is

—4
V2¢(r) = Tﬂ- Z G Po:0 eXp{fﬁqa’l/)(I‘). (12.21)

These equations may be compared with the mean field theory of Section 6.5.
It may be seen that the expressions given there for the thermodynamic and for
the fluctuation potential can be immediately applied to the Poisson Boltzmann
approximation for the clectric double layer.

28. L. Carnie, D. Y. C. Chan, and J. Stankovich, Computation of forces between spherical
colloidal particles: Nonlinear Poisson-Boltzmann theory, J. Colloid Interface Sci. 165 (1994),
116. B. Honig, K. Sharp, and A.-S. Yang, Macroscopic models of aqueous solutions: Biological
and chemical applications, J. Phys. Chem. 97 (1993), 1101. M. K. Gilson, M. E. Davis, B.
A. Luty, and J. A. McCammon, Computation of electrostatic forces on solvated molecules
using the Poisson-Boltzmann equation, J. Phys. Chem. 97 (1993), 3591. K. E. Forsten, R.
E. Kozack, D. A. Lauffenburger, and S. Subramaniam, Numerical solution of the nonlinear
Poisson-Boltzmann equation for a membrane-electrolyte system, J. Phys. Chem. 98 (1994),
5580.
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12.2 Electrolytes

12.2.1 Formalism and Moment Conditions

One of the most important consequences of the long-range of the Coulomb
potential is electro-neutrality. As mentioned above the total charge in an elec-
trolyte must vanish, > gapa = 0. It is also true that the charge on each ion
is balanced by an opposite charge in the ion cloud that surrounds it, as is now
shown.

For a multicomponent fluid, the Ornstein- Zernike equation, Eq. (9.33), is

oy (1) = Coy (T +Zp>\/dsha,\ s)eay (I —s|). (12.22)

Defining symmetric matrices by

{H(r)}an = /20y *han (7) (12.23)
and
{C(r)}ay = P2 Y Car (), (12.24)

the Ornstein Zernike equation can be written

1) = Cr) + [ ds H(s)C(r ), (12.25)
with Fourier transform

H(k) = C(k) + H(E)C (). (12.26)

In view of Coulomb’s law in media, one defines the dyadic matrix

Q- @qu (12.27)

7

where § = 1/kpT and where the components of the column vector ¢ are

{a}e = P Gac (12.28)
The trace of this matrix is
4 4
Tr{Q} = Wﬁ q'q Wﬁ Zpaqa = xp, (12.29)

where the Debye parameter was introduced above; /@51 is the screening length of
the electrolyte, at least at low concentrations. In view of this it is straightforward
to show that

Q" = kB'Q, (12.30)

so that although @ itself is singular, Det{Q} = 0, and one has

L+ta@) ' =1-——0Q. (12.31)
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Zeroth-Moment Condition

In what follows it is assumed that the total correlation function is integrable,

/dr Bany (1) = haw (0) < 00, (12.32)

which is true if the compressibility is finite. Also, the asymptotic analysis in
previous chapters showed that the direct correlation function goes like ¢~ (r) ~
fﬂugﬁ;“l(r), r — 00. In view of this asymptote one defines

Xary (1) = Can(r) + BuSS (7). (12.33)

The working hypothesis is that x.-(r) is of shorter range than the Coulomb
potential. (Later it will be shown to be exponentially decaying.)

The Fourier transform of the Coulomb potential is {Lgﬁ;“l(ls) = A7qaq, [€k?,
and hence the Ornstein Zernike equation may be written
H(k) = x(k) = QK™% + H(k)k (k) — H(k)Qk >, (12.34)

Now in the limit &£ — 0, kZX(k) — (), since x(r) decays faster than the Coulomb

potential. Hence rnultiplyir_xg both sides by &2 and taking the limit, in view of
the integrability of the total correlation function. one must have
0=-Q - H(0)Q. (12.35)

Explicitly, this is the electro-neutrality condition
o = — prq7 / dr b~ (r), (12.36)
5 .

which expresses the fact that each ion is surrounded by a cloud of ions bear-
ing a net equal and opposite charge. The electro-ucutrality condition provides
constraints on the sums of the zeroth moments of the total correlation functions.

Moments

The electro-neutrality condition is also called the zeroth moment condition, and
it is here appropriate to define the moments. In general the transform of an
integrable function possesses a small-k Taylor series expansion; in the case of
radial functions only even powers of k appear. One has

Hk) ~H" + HOR? ¢ HOR k-0, (12.37)

and similarly for X(k). This expression may be obtained by cxpanding the
integrand of the Fourier transform, and the moments are defined as
A (1) [ .
E(Zn) — ( ) / drﬁ(r) p2nt2 (1238)
= 2n+1)! Jo =
In general only a finite number of moments exist; if A(r) ~ r=", r — oo, then
the moment integral is divergent for 2n + 2 — 7 > —1. All moments exist for an

exponcntially short-ranged function, and the task is to show that this is indeed
the case for the correlation functions of the electrolyte.
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Second-Moment Condition

The electro-neutrality condition or zeroth-moment condition arises from the
equality of the coefficients of k=2 in the small-k Taylor expansion of the Fourier
transform of the Ornstein—Zernike equation. It depends upon the long-range
nature of the Coulomb potential, the integrability of the total correlation func-
tion, and the assumption that the direct correlation function is faster than the
Coulomb potential. The second-moment condition uses the coefficients of k°,
and it is necessary to invoke the integrability of x(r). At this stage this will
simply be assumed, pending the proof in the next section that it is actually
exponentially short-ranged.
The coefficients of k¥ in the small-k Taylor expansion of the Ornstein—Zernike
equation may be equated to give
HO = X(O) + H(O) Q (12.39)

Premultiplying by g, this gives

gg(o) = gé(o) +gg(0)é(0) — Q£(2)27 (12.40)
or, using Eq. (12.35),

-Q=-QH%Q. (12.41)

Explicitly this is,

—47f3
1=— ququm/drhw(r)rz. (12.42)

This is known as the Stillinger-Lovett second moment condition.?

For an m-component electrolyte there are m zeroth-moment conditions but
only one second-moment condition; the latter provides a constraint on the to-
tal sum of the second-moments of the ion pair correlation functions but does
not determine the individual second-moments. Summing the second-moments
with weights equal to the ionic charges results in the cancellation of the terms
involving the %q(0), which accounts for the universal nature of the result; it is
independent of any short-range interactions between the ions. This is a univer-
sality similar to that displayed by the electro-neutrality condition.

12.2.2 Exponential Screening

It is now shown that cither the short-range part of the direct correlation function
decays as the square of the total correlation function or it decays exponentially.
This will complete the above proofs of the moment conditions, and it used to
show that the total correlation function decays exponentially.

3F. H. Stillinger and R. Lovett, Ion-pair theory for concentrated electrolytes. I. Basic
concepts, J. Chem. Phys. 48 (1968), 3858. F. H. Stillinger and R. Lovett, General restriction
on the distribution of ions in electrolytes, J. Chem. Phys. 49 (1968), 1991.
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The argument is based upon the exact closure to the Ornstein-Zernike equa-
tion, (9.43),

hay(r) = =1+ exp [=Bugf®(r) = car(r) + han(r) + day (r)]
= —1+exp[hay(r) = Xay(r) +day(r)] - (12.43)

The exponential can be linearised since the left-hand side must decay to 0 for
large r in order for h(r) to be integrable. Hence

har (1) ~ =Xar (1) 4 han (r) + day (r), r — o0, (12.44)

where the neglected terms decay as the square of the pair correlation functions.

If the total correlation function is exponentially decaying, which is to be
proved, then it can be shown that both the direct correlation function and the
bridge function are also exponentially decaying (see below). At this stage the
contrary will be assumed, namely that the total correlation function decays as
an integrable power law, h(r) ~ =, n > 3.

The bridge diagrams are composed of hA-bonds and have no nodal points
between the root points. Hence at least two h-bonds must bridge between the
root points, and the individual diagramns of d(r) cannot decay slower than the
square of A(r). This result is certainly true if A(r) decays as an integrable power
law because then the convolution integrals are dominated by regions with the
field point close to one or other of the root points (because (r/2)727 < r=7).
One concludes that the bridge function goes like

Aoy (1) ~ Ol ()2, 1 — . (12.45)

at least when h(r) ~ +7" 5 > 3. Strictly speaking what appears on the right-
hand side should be the most long-ranged of the various h(r). It will later be
shown that in fact the total correlation functions between different pairs of ions
all have the same range; for the present the analysis may be interpreted as
applying to the longest ranged of the correlation functions.

Since in the linearisation of the closure there remains nothing to cancel the
short-range part of the direct correlation function, one concludes that if h(r)
decays as an integrable power law, then x(r) must decay as the square of the
total correlation function,

Xar (1) ~ Ohoy (1), 1 — 0. (12.46)

This is sufficient to ensure that the zeroth moment of x(r) exists, as was assumed
above. It also completes the proof of the earlier assumption that

Car (1) ~ =BuS (r), r — oc. (12.47)

Now for the case that h(r) is exponentially decaying. It will be proven by
induction that in this event all of the moments of x(r) exist and hence it is also
exponentially decaying. Assume that all of the X(”) exist for n < 2m — 2, where

m > 1. Since h(r) is assumed exponential all of the g(l) exist. Now equate
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the coefficients of k2™ in the small-k Taylor expansion of the Ornstein—Zernike
equation,

Hem é(Zm)_F {H(%n)é(o)+g(27n—2)§(2) +m+£(o)x(2m)}

+H®Q, (12.48)

which gives K(Zm) as the sum of a finite number of moments, which by as-

sumption are themselves finite. Hence if all the moments < 2m — 2 exist, then
|X(2m)| < 00. The zeroth moment exists (by inspection; note that Eq. (9.129)

shows that the compressibility is nonzero, 1+E(O) > 0), and hence by induction
all moments of x(r) exist. Thus if h(r) decays exponentially, then so does x(r).

Thus it has been shown that either all moments of x(r) exist or if h(r)
decays as an integrable power law, then x(r) has at least as many moments
as h(r) (since it decays as the square of the latter). This is sufficient to prove
that the total correlation function decays exponentially. The proof is again by
induction on the moments. Assume that all moments, ﬂ(”), exist for n < 2m,
m > 1. Since x(r) is either exponential or at least as short-ranged as h(r), all
of the X("), n < 2m, also exist. Equation (12.48) gives H?™2) a5 the sum of

a finite number of moments, which by assumption are themselves finite. Hence
if all the moments < 2m exist, then |L?™+?| < co. Since the zeroth moment
exists by fundamental assumption, then, by induction, all moments of the total
correlation function exist. This proves that the total correlation function must
be at least exponentially decaying.

From the above the short-range part of the direct correlation function is also
at least exponentially decaying, and, from Eq. (12.44), so is the bridge function.
For the case of a simple fluid when h(r) decays as an integrable power law,
both x(r) and d(r) decay as its square (see above). For the present electrolyte
with an exponentially decaying h(r), x(r) — d(r) ~ h(r)?/2, r — oo, but the
two functions do not necessarily individually decay as the square of the total
correlation function. In what follows it will be assumed that x(r) and d(r) have
a decay length strictly less than that of A(r). The mathematical justification
of this requires some detailed diagrammatic analysis, but the basic idea is that
x(r) is the multiply connected subset of diagrams of h(r) and hence cannot be
of longer range. This is perhaps clearest for the bridge function where there are
always two or more h-bonds connected in parallel between the root points, and
hence d(r) is more short-ranged than h(r), and consequently so is x(r).

This completes the proof that the total correlation function is exponentially
decaying in a bulk electrolyte, where ‘exponential’ covers both monotonic and
damped sinusoidal behaviour. The fact that the total correlation function for an
electrolyte is more short-ranged than the pair potential is in marked contrast
to fluids with integrable power-law potentials; for these the total correlation
function decays at the same rate as the pair potential, with a coefficient propor-
tional to the isothermal compressibility. (Hence the total correlation function
is of exactly the same range as the full direct correlation function.)



328 CHAPTER 12. COULOMB SYSTEMS

The preceding discussion considered the effect of the long-range Coulomb
potential alone, since one does not expect the additional short-range interac-
tions present in real electrolytes to qualitatively change the behaviour deduced
above. One expects that the charge—charge correlations will remain exponen-
tially screened, and that the density—density correlations will decay in propor-
tion to any power-law potentials that are present. (In the context of the present
proof, only a finite number of moments exist for these power law potentials.)

In addition to modifying the interactions between the ions, one can envisage
adding solvent as a specific molecular specics. The civilised model electrolyte
includes a multipolar solvent, and since the multipoles can be represented as
a sum of discrete charges each of which is screened, then the solvent multipo-
lar interactions themselves are screened. Hence the ion ion, ion solvent, and
solvent—solvent correlation functions should all decay exponentially. However
if the ions themselves carry multipole moments, only the charge-charge corre-
lations are exponentially screened; the nonspherical projections of the ion pair
correlation functions (such as the dipole dipole) decay as power laws. In sum-
mary then, irrespective of the specific short-range interactions between ions
or the presence of solvent or other additives, in an electrolyte the long-range
Coulomb potential can be expected to cause the charge charge correlations to
decay exponentially.

12.2.3 Debye—Hiickel Theory

The zeroth- and second-moment conditions, and the exponential screening of
the correlation functions, relied only upon the long-range part of the Coulomb
potential and the short-range of x(r). One of the carliest approaches to elec-
trolytes is the Debye Hiickel theory, which was derived above using the linear
Poisson - Boltzmann approximation. It can also be derived by simply neglecting
the short-range part of the direct correlation function,

X(k) = 0. (12.49)

For ions of () size this approximation is equivalent to the mean spherical closure
approximation, Eq. (9.58). The Debye Hiickel theory is expected to be valid at
low ionic couplings, for example in monovalent clectrolyte at low concentrations.
With it the Ornstein Zernike equation (12.26) becomes

i) = - (L+ Qk‘z)*lgk‘z
— ‘ —2
a <£ k2 + "912) 9) gk
= a2 (12.50)

where Egs. (12.30) and (12.31) have been used. This has inverse transform

—RKDT
—e D

Q, (12.51)

drr =
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or, in component form,

hor (1) = :ﬁ—eq:&e*”m. (12.52)

This was given above as Eq. (12.13). It shows that the correlations between the
ions are exponentially screened, and that their range decreases as the coupling
in the electrolyte increases.

Self-consistent Screening Length

The Debye—Hiickel result can be modified to take into account the finite size of
the ions, Eq. (12.17). Whilst the modified form was scaled so as to satisfy the
electro-neutrality condition, it may be secn that it does not obey the second-
moment condition. For finite-sized ions the modified Debye-Hiickel result can
only satisfy the Stillinger—Lovett condition by allowing for an effective screening
length to replace the Debye length. That is,

-1, r<d

hao(r) = 4 =Blagye™ k2 e (12.53)
€l +rd k3 r~’ '

This satisfies the electro-neutrality condition, and & is determined by the second-
moment condition,

. Wﬁ 9] ~[3qaq7€”d KJZ e~ BT 4
1 = wPa d — 4
fe Zq P qvpv/d " ell +rd] k& r o
ay
k3 1+ kd + (kd)?/2 + (kd)3/6

The assumption of purely exponential profiles is only expected to be valid
for small kd, and one expects this result to correct the Debye-Hiickel theory in
at least this regime. This expression only yields sensible results for kpd < /6,
which is the upper bound established by Stillinger and Lovett for monotonic
ion correlations, g4 (r) < g4+ (r), r > d, in the restricted primitive model. At
concentrations higher than this the correlations must be oscillatory; in practice
the oscillations occur before the bound is reached.

One could obviously implement more sophisticated versions of the present
approximation (such as a nonlinear version with exponential potential of mean
force, or a version for ions with different diameters), or one can go beyond the
mean spherical approximation. What is more important than the approximation
itself is the underlying point: the screening length of the electrolyte is not the
Debye length (although it is approximately equal to the Debye length at low
concentrations).

It is worth mentioning that analytic solutions exist for the mean spherical
approximation for the primitive model.* For the restricted primitive model, this

4E. Waisman and J. L. Lebowitz, Mean spherical model integral equation for charged hard
spheres. 1 and II, J. Chem. Phys. 56 (1972), 3086 and 3093. J. S. Hgye and L. Blum, The
mean spherical model for asymmetric electrolytes: Thermodynamics and the pair correlation
function, Mol. Phys. 35 (1978), 299.
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Figure 12.1: Total correlation functions in restricted primitive model electrolytes
(monovalent., €, = 78.5, T = 300 K, d = 0.5 nm, hypernetted chain approxima-
tion). Three regimes are showi: monotonic (0.5 M, dotted curves), oscillatory
electrostatic (2 M, dashed curves), and oscillatory core (5 M, solid curves). For
each pair of curves, the counterion curve is greater than the corresponding coion
curve near contact.

approximation gives for the screening length k=1 = d/[~1 + /1 + 2kpd]. Ana-
lytic solutions for the mean spherical approximation also exist for the ‘civilised’
model in which the solvent is modelled as multipolar hard spheres.®

12.2.4 Asymptotic Analysis

For the restricted primitive model (binary symmetric clectrolyte), there are
three types of asymptotic behaviour of the ion ion corrclation functions (see
Fig. 12.1).5 At low concentrations (more precisely low ion coupling) the total
correlation function decays monotonically; the counterion density about an ion
always exceeds the coion density. This is the exponential behaviour of Debye—
Hiickel theory. A transition to oscillatory behaviour occurs as the concentration
is increased. First electrostatic-dominated oscillatory decay, where the oscilla-
tions are in the charge density, occurs, and the counterion and coion densities
oscillate out of phase. Then at the highest couplings (core-dominated oscilla-
tory decay), it is the number density that is oscillatory, and here the counterion

5L. Blum, Mean spherical model for a mixture of charged spheres and hard dipoles, Chem.
Phys. Lett. 26 (1974), 200. J. S. Hgye, J. L. Lebowitz and G. Stell, Generalised mean spherical
approximations for polar and ionic fluids, J. Chem. Phys. 61 (1974}, 3253.

SP. Attard, Asymptotic analysis of primitive model electrolytes and the electrical double
layer, Phys. Rev. E 48 (1993), 3604.
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and coion densities are in phase. In the core-dominated regime the period is
close to the ionic diameter, whereas in the electrostatic regime it is much larger;
the charge oscillations correspond to alternating shells of positive and negative
charge, and hence the period in this case is at least 2d, and can be considerably
larger than this close to the monotonic-oscillatory transition. (Electrolytes with
more components have a richer variety of oscillatory asymptotic phases, depend-
ing upon their symmetry and the linear combinations that may be formed.)?

Monotonic Asymptotic Decay

Solving the Ornstein-Zernike equation, (12.34), for the total correlation function
one obtains

aw = (150 + @) (10 - ak)

= (z(-am) ar)

. A
X (K(k) —22175) (12.55)
= €
The effective charge function defined here,
R . —1
q(k) = (£ - ;(k)) a (12.56)
may be equivalently written
a(k) = g+ x(k)q(k). (12.57)

Using Eq. (12.31) the first inverse is readily evaluated,

1
<£ + Q(k)_T%> =1- %Q(lﬂ)f, (12.58)

where a function that will become the screening length has been defined,

4
A = 3By, (12.59)
e 4 WY
(This should be compared with the definition of the Debye length, Eq. (12.29).)
A pole in the total correlation function will occur at & = ik, where the inverse
decay length satisfies A(ik) = k. This determines its asymptotic behaviour, as-
suming that x(r) is more short-ranged than A(r), and hence that any singular

"For reviews of the various asymptotic analyses that have been performed for Coulomb
systems, see the first footnote to this chapter.
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behaviour of ¥(k) occurs further from the origin than this k. There is a single
pole corresponding to the vanishing of the scalar denominator that multiplies
the remaining matrices. Hence each element of the matrix of total correla-
tion functions has a pole located at A(ix), and hence each will have the same
asymptotic decay. Neglecting the regular part, one has

0~ g (1= 10) (10 -0

— AT (100 - 4" o )

*471’[3/6
k2 + A(k)
—47Tﬂ/6 T .
bl k Yy
k2 +A(l€) qq — 1K
where Eqgs. (12.56) and (12.57) have been used to give the second and final
equalitics, respectively. Also, ¢ = g(ix). In order to exhibit the residue explicitly

and to cast it in an identical form to the Debye Hiickel result, Eq. (12.50), one
needs the Taylor expansion of the denominator about k& = ik,

(12.60)

Al +
k2+A(k;)2 ~ (k—m) <27:’{+L[QTQ'>+...

~ (K + K% <1 + i—Lq q) + Ok —ir)>. (12.61)
Here
o
- Ok k=ir
_ ok Ak
R Ok i g+é(2l€) Ok 1oy
I -1 Ox(k) 3
= (Z—g( )) | ¢ (12.62)
Accordingly onc defines the constant
v = 1+ 4?1’/3(17(},
2iKke= =
drf T RS P
= gt (I-kGR) KGR
_ 471'/} Toatyre N~
= 1+ 9irel X:(zn)g. (12.63)
One now has
X -4 Gat
Ay~ 20 48 (12.64)

ev k2 kg2’
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with inverse

- }~(y q K
han(r) ~ —[q—(]le—, r — o0. Im{x} = 0. (12.65)
eV T
Note that if x = 0, Eq. (12.56) implies that ¢ = ¢, Eq. (12.59) yields x = kp,
and Eq. (12.(73) shows that v = 1. That is, the exact asymptote, Eq. (12.65),
reduces to the Debye Hiickel result, Eq. (12.52).

Recall that ¢ is given by Eq. (12.56) evaluated at k = ix. With this definition
the actual screening length, Eq. (12.59), assumes a form similar to the Debye
length

) @EJT  4np

K q= —E— Pafada- (1266)

[e4

The concept of an effective charge and the non-Debye screening length has been
used by a number of authors.®

The mean electrostatic potential about an ion was given above as Eq. (12.3).
Writing this as a vector in the usual fashion, the Ornstein—Zernike equation may
be rewritten

1) = ~56(r)g" + x() + [ ds H(s)x(]r = s (12.67)

with Fourier transform

() = —Bd(k)g" + X(K) + H(k)x(k)

[

~ =Bk, k — i (12.68)

The last line follows since x(r) is more short-ranged than h(r), and hence only
the first term contributes to the asymptote. In other words, the mean elec-
trostatic potential about an ion has the same range as the total correlation
function, and one has

hany(r) ~ =BGy a(r), T — 0. (12.69)

Compare this with the Debye -Hiickel result, Eq. (12.52), which is based upon
the linear Poisson Boltzmann approximation. One sees that it is the effective
charge on the ion that gives its response to the mean electrostatic potential.

8. Stell and J. L. Lebowitz, Equilibrium properties of a system of charged particles, J.
Chem. Phys. 48 (1968), 3706. S. Alexander, I. M. Chaikin, P. Grant, G. J. Morales, P. Pincus
and D. Hone, Charge renormalization, osmotic pressure, and bulk modulus of colloidal crystals:
Theory, J. Chem. Phys. 80 (1984), 5776. P. Attard, Asymptotic analysis of primitive model
clectrolytes and the electrical double layer, Phys. Rev. E 48 (1993), 3604. R. Kjellander and
D. J. Mitchell, Dressed-ion theory for electrolyte solutions: A Debye—Hiickel-like reformulation
of the exact theory for the primitive model, J. Chem. Phys. 101 (1994), 603.
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Now from symmetry ha(r) = hya(r), and one concludes that 1, (r) o< Gy. The
precise relationship follows from Eq. (12.65),

—RKT

Yay(r) ~ Gy——, 7 — 0. (12.70)
The asymptote of the potential of mean force has linear Poisson-Boltzmann
form, wa~(r) ~ Gatvy(r) = Gadyy(r), which is significant because the full sym-
metry of the pair correlation functions is preserved. The dyadic nature of the
asymptote for a mixture with components interacting with power law potentials
was noted in Section 9.6.3.

€vr

Oscillatory Asymptotic Decay

If x is complex, then the asymptote is oscillatory. Because hqa.(r) is a real,
even function of r, its Fourier transform is even, hqy(—k) = hay(k), and any

series expansion in k has real coefficients, hq. (k) = iza,y(E), where the overline
denotes the complex conjugate. Accordingly there are four poles located at +ix
and +ig, and the singular part may be written

s A A
=172t =
k% + & k2 + &
Hence closing the contour in the upper half plane, for the Fourier inversion
(choosing « to be in the first quadrant), one picks up the residue at k = +ix,
which is A/(2ik), and also its complex conjugate from the residue from the pole

at k = —ik, which is A/(2i%). The sum of these two is twice the real part of
cither one, and one has

(12.71)

—BGady
B (1) ~ 2 Re {ﬂ(_

€V I

} ,r— o0, Im{x} # 0. (12.72)

The abrupt disappearance of the factor of 2 as the poles coalesce on the imag-
inary axis suggests nonanalyticity in the amplitude of the correlation functions
at the transition from monotonic to oscillatory decay. In fact the amplitude
becomes infinite, as may be scen by letting the pole just move off the imaginary
k axis, k = K, + ik;, k; — 0. Expanding Eq. (12.59) one obtains

4np 1/2
Kr +iK; = (L/qTZJ(m—M)>
A

Amf3 g 2 ki 44 (iry) 2
~ - PR 1— —== 2
(P atinn)) > ey FO0D)

s A7 v

= Kk — 12.73
" 26, € — 7 ( )
Equating the coefficients of k;, one obtains
4
s qT¢ = —i, k; — 0, (12.74)

2K.6— —
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or from the first equality of Eq. (12.63),
v—0, Kk — 0. (12.75)

That is, the amplitude of the total correlation function becomes infinite at the
oscillatory to monotonic transition.

One must be careful in interpreting this result. The vanishing of v means
that the next term in the Taylor expansion (12.61) is nonnegligible. Hence
the denominator corresponds to a double pole, and the residue comes from
the linear term in the numerator, which ensures that the asymptotic behaviour
remains exponential. For infinitesinal but nonzero v, the present formulae
give the strict asymptote, but the regime of applicability moves to ever larger
separations. For fixed r, as v — 0 the h(r) have a large contribution from the
(finite) second term. For fixed nonzero v, as r — oo the h(r) are given by the
strict asymptote. So even though the amplitude diverges, so do the relevant
separations, and consequently thermodynamic properties such as the internal
energy remain finite at the monotonic-oscillatory transition.

Core Domination

The formally exact analysis of the previous section guarantees that the Fourier
transforms of the total correlation functions have a pole at k = ik, for k sat-
isfying Egs. (12.56) and (12.59). However if there is another pole, k& = i€,
with Re{¢} < Re{x}, then it would be the one that determines the asymp-
totic behaviour of the correlations. Such a pole would correspond to the matrix
I — X (i€) being singular, and this would give rise to qualitatively different be-
haviour. This will occur at high densities where the short-range interactions
become important and give rise to the ‘core-dominated’ asymptote.

This regime will be treated subject to the following restriction. Locally
the asymptotic charge density about an ion must vanish (because electrostatic
effects are of shorter range). Hence with the amplitude of the total correlation
functions in the asymptotic regime denoted by a4, one has

> qapatay =0. (12.76)

This is an exact result that holds in the core-dominated asymptotic regime. One
way of satisfying this equation is if

oy = a, all species, ' (12.77)

to which case the following results are restricted. There are two cases where
this equation holds exactly with no approximation. First, there is the general
binary electrolyte, in which case this is the only possible solution. Second, there
is a multicomponent electrolyte with the short-range interactions between the
ions being identical; since it is the latter that determine the asymptote, then
the total correlation functions between all the species must be asymptotically
equal.
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Using Eq. (12.77), and solving the Ornstein-Zernike equation for the direct
correlation function near the pole, one sces that the short-range part of the
direct correlation function goes like

X(k) ~ ppTa(k), k — i€, (12.78)

where {p}o = pi/?. Note that pTq =0, and hence near the pole

1

(L-cm) " ~ w-s

Tx(k) +qqtAnB/ek?)”
o pt (k) qq" 43/ ek?
T Tpa(k) 1+ g gAnpek?

Ib

(12.79)

Now it is the middle term which has the pole at & = i€, and neglecting the
remaining regular parts one obtains

pp (k)

(k) ~ 1= o) (ppTua(k) — aq" 4mB/ek?)

p"

P

prpak) o

= pTpa(R)tr
Amsx(zo

o ) +e)EE

Here the denominator has been Taylor expanded, and use has been made of the
fact that & satisfies

fl

Tk —ig (12.80)

P pu(i€) = pu(i§) =1, (12.81)
where the total number density is p = 3", po = p"p. It follows that
By (1) ~ 2R, 2 o ¥ (12.82)
ay\T) ~ €Y T 5 5, (. —0OC. i
7 drp?a! (i) '

This analysis is not restricted to electrolytes; it also holds for uncharged par-
ticles, subject to the restriction (12.77). From this one sees that in the core-
dominated regime, the ion-ion total correlation funetions decay like damped
sinusoids with a single amplitude (£ is complex with positive real part). The
surrounding counterions very rapidly neutralise the charge on an ion, and it is
packing effects that determine the correlations that persist in the dense elec-
trolyte or molten salt. The period of the oscillations corresponds approximately
to the size of the ions, which contrasts with the larger period that occurs in the
case of charge oscillations.

12.3 Electric Double Layer

In general solutes in a polar solvent or electrolyte acquire a charge on their sur-
faces, either by dissociation or dissolution of the surface species or by chemical
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or physical binding of ions to the surface. The counterions diffuse away from
the surface and into the electrolyte so that a charge separation occurs. This is
known as the electric double layer. The charge on the surface is screened by
the electrolyte in the same way that the ions in the electrolyte themselves are
screened. The analysis of the electric double layer proceeds in much the same
way as that for inhomogeneous systems more generally, as given in Ch. 11.

12.3.1 Spherical Solutes
Double-Layer Moments

The analysis of Section 12.2.1 is here extended to the double layer about a
charged solute. Following the general analysis for inhomogeneous systems, Sec-
tion 11.1, one of the components of the electrolyte is taken to be a spherical
solute, species o« = 0 with charge ¢5. The double layer about this solute in
isolation is treated by taking the infinite dilution limit, pg = 0.

Focussing on the solute—ion contributions to the multicomponent Ornstein—
Zernike equation (12.22), one defines a vector of solute-ion total correlation
functions

{H(r)}, = pi/?hoy(r), 7 >0, (12.83)

and similarly for the direct correlation functions. The density of ions of type
7 in the double layer about the solute is p,(r) = p,[ho,(r) + 1]. As given in
Eq. (11.12), the Fourier transform of the solute-ion Ornstein—Zernike equation
is

H(k) = C(k)+C(k)H(k)
= Xx(k) - 4:53% + (k) H (k) — QA (k)k 2. (12.84)

The ion—solute correlation functions are exponentially decaying, as may be
shown using the same arguments as for the ion—ion case above. Hence all of
their moments exist, and one may equate the coefficients of k™2 to obtain the
solute electro-neutrality condition

0= "HO — Y g, / dr ho, (7). (12.85)
Y

This shows that the charge on the solute is exactly cancelled by the net charge
in the double layer. Either this counter-charge must have dissociated from the
originally ncutral surface or ions from the originally neutral bulk electrolyte
must have adsorbed to the solute, giving it its charge.

Turning now to the second moment, the coefficients of kY in the Fourier
transform of the Ornstein—Zernike equation give

HO =@ 4 yOFO _ou® (12.86)
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or, using the electro-neutrality condition,
—qo = QTX(O) _,_gTé(o)ﬁ(o) _ KQD(_]TE(Z). (12.87)

In this case the second moment of the ion—solute total correlation function
depends upon the zeroth moment of the short-range part of the ion—solute direct
correlation function. The former is analogous to one of the individual second-
moments of the ion—ion total correlation functions of the bulk electrolyte, and
it will be recalled that these were not individually constrained by the second-
moment condition. It was only their sum that was constrained, and because the
solute is at infinite dilution, this last result can be added to the bulk second-
moment condition, Eq. (12.42), without effect.

The pair-wise interaction between the solutes is given by the singlet approach
when @ = v = 0 in Eq. (12.22). Using Eq. (11.13), the solute-solute Ornstein—
Zernike equation for identical solutes is in Fourier space

hoo(k) = éoo(k) +C(k)"H(k)
i3 2 ~ T30 T 7
= Xoo(k) — 46550 + X(k)TH(k) — %g H(k). (12.88)

Since the bulk closure remains the same, the exponential decay of the solute-
solute interaction follows immediately. However, the cocfficient of k=2 yields

—qo=q"H", (12.89)

which contains nothing new, and the coefficient of &% yiclds

. 47 Bqy o
h(()(())) _ X(()%) 4 X(O) rg© _ @qlﬁ(z). (12.90)

Using the result given above, the second-moment could be climinated and this
could be reexpressed in terms of the zeroth moments of the various correlation
functions. There is no electro-ncutrality condition for the solute -solute total
correlation function; in this case the zeroth moment is nonuniversal and depends
upon the zeroth moments of various solute correlation functions.

Asymptotic Analysis

Asg in the asymptotic analysis of Section 11.1.4, which was for a solute in a
general solvent, a charged solute does not affect the properties of the electrolyte,
and the formal asymptotic analysis for the behaviour of the double layer is
virtually unchanged from that given above for the bulk electrolyte. The solute
is at infinite dilution and does not contribute to the solvent correlation functions
because the Ornstein—Zernike convolution integral, Eq. (12.22), is multiplied by
po = 0 whenever the solute correlation functions appear in the integrand. Hence
the decay length k1, the effective charge on the ions G,, v > 0, and the scale
factor v stay the same. The Fourier transform of the solute—ion Ornstein—
Zernike equation may be written

H(k)= (g—g(k-)) 1Q(k). (12.91)
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The singularity in the inverse gives the pole that determines the asymptotic
behaviour of the solute-ion total correlation function. Since the inverse consists
solely of the bulk ion direct correlation functions it is unchanged by the solute;
the determinant vanishes at the same k = ix as in the bulk electrolyte. Further,
the pole of the solute -solvent total correlation functions have the same residue
as in the bulk electrolyte, with an effective solute charge gy appearing. It follows
that

f{ —471'/6/6 -~

H(k) ~ W1 Ak 0L k — ix, (12.92)

with the cffective charge on the solute being given by

G = § C(ix)

= qo+q X(ir). (12.93)

The asymptote is

s
hoy(r) ~ 2Re’{7_6q°q”e—} 7 0. (12.94)
ev T

As mentioned above, the solute does not affect «, v, or ¢,, v > 0; thesc are all
properties of the bulk electrolyte. Only gy depends on the nature of the solute,
via the short-ranged part of the solute—solvent direct correlation functions.

The interactions between two such solutes is given by the solute -solute total
correlation function. Its asymptote follows by setting v = 0 in this result, and
one sees that it depends on the square of the effective solute charge.

Because the decay length x~! is determined by the bulk electrolyte, the
range of the double layer (i.e., the rate at which the ion densities decay to their
bulk concentrations) is the same as the bulk screening length. This is also the
range of the interactions between the solutes. Amongst other things this means
that the ion profiles will become oscillatory at a point determined by the bulk
electrolyte concentration, and similarly for the interaction between the solutes.

The nature of the solute contributes to the asymptote via the amplitude gy,
and the interaction between two identical solutes scales with the square of their
effective charge. Hence in the monotonic regime there can only be a repulsion
at large separations between two identical macroions. This follows because all
quantities are real, o occurs as a square, and v > 0. (At low coupling, v — 1,
the Debye—Hiickel result, and at the monotonic-oscillatory transition, v — 0,
Eq. (12.75).) In the oscillatory regime it is periodically attractive, and the
attractive regions can be quite large since the period of oscillations becomes
infinite as one approaches the bulk oscillatory—monotonic transition.

In the core-dominated regime, the analysis proceeds as in the bulk. Assuming
once more that the electrolyte ions have identical short-range interactions, the
double layer about a spherical solute goes like

o =2iga(i€)
B0~ e 1 e

pp R(i), k — ig. (12.95)
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with corresponding asymptote

hoa(r) ~ QRC{ 26 er Y kAl zé} (12.96)

A p? 5’ (i€) =

Since o does not appear on the right-hand side, one concludes that the solute—
jon profiles become identical at large separations whatever the direct solute—
ion interaction for each species is (provided that the correlations of the ions
themselves are asymptotically identical in the bulk).

The solute—solute total correlation function has a dominant pole

hoo(k) = oo(k) + H (k)C(k)

pra;(Qif)gégfl gZ)XT(iﬁ)/_’BTX(iﬁ)» k — i€, (12.97)

since the solute-solute direct correlation function is more short-ranged than
the total correlation function, and since p'C = pT§ because ptq = 0. The
macroion macroion asymptote is therefore

2 &
hoo(r) ~ 2Re 465( (Z Py X (E€) ) ,r—o00. (12.98)

Awp?z’(i€) T 0

The sum evidently represents the effective ‘charge’ of the solute; it gives the
magnitude of the ion density profile in the double layer about the isolated solute,
and its square gives the magnitude of their pair-wise interaction.

12.3.2 Isolated Planar Solutes
Wall-Ton Ornstein—Zernike Equation

The planar clectric double layer is now analysed by taking the solute to be a
planar wall, as was done more generally in Section 11.2. The wall ion correlation
functions depend only upon the perpendicular distance from the surface of the
wall, which is assumed located to the left of z = 0. Assuming for simplicity a
common distance of closest approach, and setting this plane at the location of
the wall, one has

hoa(z) = =1, 2 < 0. (12.99)
Of course one must also have eclectro-neutrality,
—c :/ dz ¢"H(2), (12.100)
0 4

where o is the surface charge per unit area on the wall.
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The wall ion Ornstein—Zernike equation may be rewritten in terms of the
mean electrostatic potential,

= C(z)+2r /00 dss/oo dz’g VZ—2)%+ 52) H(z"), (12.101)
= —BY(2)g+x(?)

+27r/ dss/ de (2 — z)? +5>H( 2"). (12.102)

Here the vector of wall-ion total correlation functions has components {H(z)},,

= p})/ 2ha(z), and similarly for the wall-ion direct correlation function C(z) and
its short-ranged part x(z). As before one has

Coa(2) = X0a(2) = BaaVy "' (), (12.103)

where the Coulomb part of the solute-ion potential may be written in general
as

a(s)
y/Coul () _ /d . 12.104
ot = [fas 22 (12.101)
In the present case, the wall charge density is o(r) = ¢8(z). The mean electro-
static potential is defined by the passage from the first to the second form of
the Ornstein—Zernike equation,

W) = _/ dz/ ds s[o8(2") + " H(» )Jm

= ‘_2” dz (06(2") + " H(2)]|z — 2|

— _/ dzq +—/ qu 2z —2"), (12.105)

for z > 0, and ¥(z) = ¥(0), 2 < 0. (The electro-neutrality condition has
been used to cancel the upper limit of the first integration.) The first term is
independent of z, whereas the second term goes to O far from the wall. Hence
¥(z) — —(0), z — oo. This is undesirable because in order for the density
to decay to its bulk value far from the wall, the second form of the Ornstein-
Zernike equation implies that x(z) — —B¢¥(0), 2 — oo (and the closure below
implies the same limiting behaviour for the bridge function). By subtracting
the constant one can set the 0 of the potential to be in the bulk,

¥(0), z <0,

b(z)=1 4 >
il qvpv/ dz’ hoy(2)(z — 2'), 22>0,

€
v

(12.106)

and now (z), x(2), and d(z) all go to 0 in the bulk far from the wall.
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Choosing the functions to vanish far from the wall is equivalent to choosing
the constant of the wall-ion Coulomb potential such that

VOCoul(z) —

2
27m[z] + g + @, all z, (12.107)
€

€
where S — o0 is the lateral extent of the wall. The potential drop across the
double layer is

4 oo
¥(0) = — qvp,y/ dz" hoy(2')2. (12.108)
¢ 0

Y

Differentiating this with respect to surface charge gives the capacitance. The
first moment of the total correlation function represents the dipole moment of
the double layer, and (0) is just the drop in electrostatic potential across a
dipole layer.

As in Section 11.2, the exact closure is

hoo(2) = —1+exp[—BqaVol(z) + hoa(z) = con(z) + do(?)] (12.109)
= —1+explhoa(z) — Xx0o(2) + don(?)], (12.110)

where dp,(2) is the wall ion bridge function. Henceforth it is assumed that the
ions interact with the wall only via the Coulomb potential, for z > 0, and that
there is an infinite repulsion (hard core) for z < 0. Setting xa~(r) and doq ()
to 0 in the second form of the closure, Eq. (12.110), with the second form of
the Ornstein Zernike cquation, Eq. (12.102), yiclds the nounlinear Boltzmann
approximation, which is the traditional approach to the electric double layer.
Note that the surface charge density does not explicitly appear in the expression
for the mean clectrostatic potential, Eq. (12.106), or in the alternate forms for
the Ornstein Zernike and closure equations, (12.102) and (12.110); it must be
determined by the clectro-neutrality condition, Eq. (12.100).

The wall-ion total correlation function that appears here may be identified
with the solute ion total correlation function of the preceding section in the
limit that the radius of the macroionic solute goes to infinity,

Rlirn hoo (R + 2 R) = hoo(z), (12.111)

where on the left side macroion ion total correlation function appears with its
dependence on the macroion radius shown explicitly, and the right side defines
the wall ion total correlation function. An identical limnit holds for xo. (%), but
in the case of ¢y (2), Vo(2), and ¢(z) the limiting equality only holds up to an
arbitrary constant.

As in the case of the spherical solute, the short-range part of the wall-ion
direct correlation function is exponentially short-ranged, and assumed to have
a decay length shorter than that of the total correlation function. This is true
of the electrolyte side of the wall, but within the wall it goes to a constant, as
was seen in Section 11.2. This can be seen explicitly from the Ornstein-Zernike
equation (12.102), where in the limit that 2 — —oco the convolution integral is
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dominated by regions 2z’ & z, because x(r) is exponentially short-ranged, and
y reg X p y ged,

hence H(z') may be replaced by —1 and taken out of the integral. The result is

limxo0a(2) = ~ 1+ B4aw(0) + Y pyXar(0), (12.112)
Y

or, in view of Eq. (9.92) and electro-neutrality,
P x(z) = =Bxz', 2 — —o0. (12.113)

This result may be compared to that obtained above for non-Coulomb sys-
tems, Eq. (11.40). The fact that xoq(2) goes to a constant means that its one-
dimensional Fourier transform is well defined in the upper half of the complex
plane.

Asymptotics of the Isolated Planar Double Layer

The asymptotic ion density profiles for the planar electric double can be obtained
from the preceding analysis and the large radius limit of the solute asymptotes
in Section 12.3.1. In the planar case the Fourier transforms are one-dimensional.
Taking the large radius limit the relationship with the radial Fourier transform
is

feR) = 4% Oodrrf(r; R) sin kr
0
= 477( oodzf(R—i—z;R)sin[k(R—f—z)] (R+ 2)
© J-R
= ilz b dz f(R+ 2 R)sinh [ik(R + 2)] (R + 2)
ik -R

92 l*ikR o] ]
~ —WRL—/ dz f(2)e %% R — oo, Im{k} > 0,

ik oo
—2nRe™ R _
= =T, (12.114)

which defines the one-dimensional Fourier transform (overlined).

The Fourier transform of the Coulomb part of the wall potential turns out
to be a generalised function, which may be treated by rewriting Eq. (12.107) in
terms of Heaviside step functions

—270 2mo ¥(0)

VOCO“I(Z) _ - [20(2) — 20(—2)] + TS 4 — (12.115)

Now the Fourier transform of 26(z) is k—2, provided Im{k} < 0, and the Fourier
transform of —z60(—z) is also k2, but for Im{k} > 0. Using analytic contin-
uation, the transform of the wall-ion Coulomb potential in the whole complex
plane is

—Co —4 2 0
Coul,,\ 7ro+{7;o P(0)

Vo (k)= 2 —S5+ —2~} 2m(k), all k. (12.116)
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With these results the effective charge on the macroion, Eq. (12.93), becomes

QW(R) = §"C(ir;R)
QWRCKR ST . 7T —Coul,.
~ — [ng(m) - ﬁngVO (m)} , R — o0
2 xR
_ Inher” o+ 3 x(iK)] (12.117)
P X

where the fact that x? = (47r[j/e)QTg has been used. In view of this the effective
surface charge density is defined as

&= % [0 +a"x(ix)] (12.118)
where a factor of 1/2 is included in the definition to preserve the Poisson—
Boltzmann form for the asymptote, and so that at low concentrations ¢ = o.
This last fact follows because in the Poisson Boltzmann limit xq-(r) = 0, and
hence x = kp and § = ¢. In this regime the linear Poisson Boltzmann profile
holds, H(z) = —[jc_]zZ(z),_z > 0, and Eq. (12.102) shows that xga(z) =0, z > 0,
and that xo.(2) = =1 + Bg.4(0) , 2 < 0. In this limit ng(z) = kP e(0) /4 =
kpo, z < 0, and hence ¢Tx(ikp) = o.

The solute ion total correlation function, Eq. (12.94), becomes

—Bdn(R)§. ¢~ (R+z)
hm(R+z;R)~2Re’{ ﬁqo(y )q”(R+ },z—»oo, (12.119)
€ <

and one obtains in the planar limit

hooy(2) ~ 2 Re! {Me“} 7 — oo, (12.120)

VK
The limiting procedure is R — o0, z — 00, z/R — 0. (The factor of 47/k
comes from the prefactor of §o(R2) and the factor of 1/2 in the definition of
5.) Here, Re'{z} means to take the real part of z if z is complex, and to take
half of z if 2 is real, a consequence of the two mutually conjugate poles located
in the upper half of the complex planc. The fact that the decay length for
the density profile of the planar double layer is the same as for the spherical
double layer and for the bulk electrolyte is not unexpected, and obviously the
transition from monotonic to oscillatory double-layer profiles will occur at the
same point as in the bulk electrolyte. Note that in planar geometry the Yukawa
form of the spherical case has become a pure exponential decay, a consequence
of the fact that the three-dimensional Fourier transform of the short-ranged
direct correlation function has been replaced by a one-dimensional one. The
asymptote for the mean electrostatic potential, Eq. (12.106), may be obtained
directly with the above expression,

P(z) ~ 2Re’ {—~e_”z} , % — 00. (12.121)
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Again one sees that the effective charges give the response to the mean electro-
static potential, and that in the asymptotic regime the latter is proportional to
the effective surface charge density.

The core-dominated regime is independent of the electrostatics, and so one
can immediately take the planar limit of the core-dominated spherical solute
result, Eq. (12.96), to obtain

— 248
hoo(z) ~ 2Re { L prio,y(iﬁ)} ,a >0, z— oo. (12.122)
>0

pr/(,L{) £

Despite the charge on the wall, this shows that all of the ion profiles are asymp-
totically identical in the core-dominated regime.

12.3.3 Interacting Charged Walls
Wall-Wall Ornstein—Zernike Equation

The singlet approach can be applied to the problem of overlapping planar double
layers using the techniques given for interacting walls in Section 11.2.2. As
mentioned there, the relevant quantity is the potential of mean force per unit
area, which is just the exponent of the closure equation. One has

Bulf(2) = BVho(2) — dole) — | a2 HN(C( - ), (12.123)

— 00

where 8 = 1/kpT, and where the wall- wall quantities per unit area symbolised
by w, V, and d are the interaction free energy, potential, and the bridge function,
respectively.

The series function per unit area, which is the convolution integral, con-
tains the wall-ion pair correlation functions discussed above. The walls will
be assumed to interact only with the Coulomb potential, in the region z > 0,
where z represents the width of the region available to the centres of the ions
(cf. Eq. (12.99) above). In order to express this interaction free energy in terms
of short-range functions, one needs to remove the wall-ion Coulomb potential
from the integral of the wall-ion direct correlation function (cf. Eq. (12.103) ).
One has

/ dz’ ET(Z/)QVOCOUI(Z _ Z/)
0
2wo? 202

= op(z) + S —oy(0), z > 0, (12.124)
where the single-wall electro-neutrality condition, Eq. (12.100), the mean elec-
trostatic potential due to a charged wall, Eq. (12.106), the wall-ion Coulomb
potential, Eq. (12.107), and the potential drop across an isolated double layer,
Eq. (12.108), have all been used. By choosing the arbitrary constants in the
Coulomb part of the wall-wall potential to cancel the above constants, only



346 CHAPTER 12. COULOMB SYSTEMS

the mean electrostatic potential remains on the right-hand side, and hence the
integral decays to 0 at large separations. Hence one chooses
2ro? 2mo

Voo(2) = 0) -

and the interactlon free energy per unit area becomes

wis (2 z) = Boyp(z) — doo(Z)—/_ dz' HT( ) (z—2"), 2>0. (12.126)

z,2>0, (12.125)

Note that wil¥(z) — 0, z — oo (see below), and hence the surface and bulk
contributions have been removed from this expression for the free energy. Dif-
ferentiating this, one obtains the net pressure (force per unit arca) between the
walls
pnet(z) _6,wmt( ) )
0z

This is the total pressure of the electrolyte confined between the walls less the
pressure of the bulk electrolyte imagined to be pressing in on the far sides of
the walls (at infinity).

The above expressions are for two identical walls, but the generalisation to
the nonsymmetric situation is immediate. If one uses the subscripts ‘1’ and ‘2’
to denote the two walls, then one has

(12.127)

[jwmt( ) = Borpa(z) — dia(z) — /jo dz’ HT( )XZ(Z -2
= fBoypi(2) — dia(2) —/_m d2' Hy ()x,(z = 7). (12.128)

Asymptotics of Overlapping Planar Double Layers

The asymptotic interaction of the charged walls can be obtained from the in-
teraction free energy, Eq. (12.126). One assumes the bridge function to be the
most short-ranged function appearing in this expression, consistent with its be-
haviour in the bulk clectrolyte and in the isolated double layer. The range of
the dominant wall ion mean electrostatic potential and the short-range series
function is . From the trausform of Eq. (12.120) one obtains

—AnBe . 1
q
vk —K+ ik
and from Eq. (12.121), one obtains

Bk~ 2T

evK K+ ik
assuming for the present that x is real. Hence the wall-wall interaction free
energy per unit area, Eq. (12.126), in the vicinity of the pole is
4drfBoc 4AnBo
poo | Ao x

1
k)| ——, k — 1
VK VK q x(ir) K+ ik’ —

8rpa? 1
- I 12.131
evk K+ ik’ ( 31)

H(k) ~ k> ik, (12.129)

 k — ik, (12.130)

Wy (k) ~
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where the expression for the effective surface charge density, Eq. (12.118), has
been used. It follows that the asymptote in the monotonic regime is

8 ~2
wiy () ~ :;Z e ", 2 — o0, Im{xk} =0, (12.132)

and, in the oscillatory regime, it is

8752

we (1) ~ 2 Re{ P e_”z} .z — 00, Im{k} #£ 0. (12.133)
This depends only on properties of the bulk electrolyte, x and v, and the effective
surface charge of the isolated double layer, &. This result reduces to the linear
Poisson-Boltzmann theory in the Debye-Hiickel limit, xoy = 0. Since the
effective surface charge occurs as a square, and because k and v are both positive,
in the monotonic regime the force between identically charged walls is repulsive.
That is, the interaction between two similar double layers is either monotonically
repulsive or oscillatory, and any attractions cannot persist for all separations
(although there can be a very large period of oscillation near the bulk transition).

Finally, in the core-dominated bulk regime the interaction free energy per
unit area is

: —2je 4%
t !
Bw™(z) ~ 2 Re F ) (Z P Xor (1E) ) .z — 00, (12.134)
where again the effective surface ‘charge’ that described the amplitude of the
decay of the density profiles at the isolated wall appears as the square in their
interaction.

12.4 Algebraic Correlations along a Wall

A theme running through the preceding analysis of electrolytes and the electric
double layer has been that the long-range Coulomb potential is screened and
hence the correlation between ions is exponentially short-ranged, as are the
density profiles in the electric double layer and interactions of two double layers.
It is of interest to explore an exception to this rule. In the presence of a planar
wall it is not possible to surround an ion with counterions on all sides. Hence the
ions and their countercharge in the double layer have a net dipole moment, and
the correlation between these dipoles decays as an inverse cubic in separation
parallel to the wall.

As shown in Section 11.4.2 for the general planar inhomogeneous Ornstein—
Zernike equation, the density depends only upon the distance from the wall,
Pa(r) = pal2), and the pair correlation functions depend upon the distances of
the two ions from the wall and upon their separation in the direction parallel
to the wall, hay(r1,T2) = hay(s12, 21, 22). The matrix of distribution functions
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becomes {2(512, 21’22)}a7 = pé/z(m)hm(slz7 21, z2)p}/2(22). In this planar ge-
ometry the inhomogeneous Ornstein—Zernike equation partially factorises upon
Fourier transformation in the lateral direction, Eq. (11.133),

g(k,zl,zg) :g(k,zl,zz) +/ dzg H (k 21723)£(k,23722). (12.135)
0

In this section the circumflex signifies the two-dimensional Fourier transform
of a function with cylindrical symmetry, which is just the Hankel transform of
order zero, Section 11.3.1.

The ion-ion potential in cylindrical coordinates is

1/47f3

gc"“l(slz,zl,zz) = ~ Q(21,22), (12.136)
8o + (21 — 22)2 =
with transform
- Coul e~ klz ==l
U (k,zl,zz) Qﬂ g(zl,zz). (12.137)

(The spatial dependence of the charge matrix arises from the densities that it
contains.) Assuming that the inhomogeneous ion-ion direct correlation function
decays like the Coulomb potential (as in the bulk and in the singlet analysis of
the double layer), and hence that the function x(si2, 21, 22) = C(s12, 21, 22) +
BuCo (519, 21, 29) is at least integrable, the Ornstein Zernike equation may be
alternatively written

Lj(k,zl,ZZ) = X(k,zl,z2)+/ dzs H (k 21, z3) X (K, 23, 22)
S Jo fal
(,—k|zl—22r
—Q(zl,ZQ)T

00 ~k|z3—2z2|
— / dzy (k z1,23)Q (23, 20) ———. (12.138)
40 = 2k

The last two terms represent the transform of the mean potential about an ion;
o812, 21; 22) is the change in the mean electrostatic potential at sg, 23 due to
an ion of type o being at (s, 21),

((X
Pals12, 215 22) = o +Z /dr;h,w 513721,Z;)——p7(z;) (12.139)

€12

This potential in the double layer plays the same role as the mean electrostatic
potential about an ion in the bulk electrolyte.

As in the analysis of the bulk electrolyte for an exponentially short-ranged
function all moments exist and the odd moments are (). In this planar geom-
etry the Hankel transform of the Coulomb potential contains odd powers of k
(whereas only 1/k? appeared in the bulk), and hence the correlation functions
will exhibit power-law decay parallel to the wall. The moment expansion is

g(k,zl,@) = _ﬁ_(o)(zl,z;;) + |kl£(l)(zl,23) +.o., (12.140)



12.4. ALGEBRAIC CORRELATIONS ALONG A WALL 349

and similarly for ¥. Note that since H(r,21,22) is a real even function of r

the absolute value of k appears. Taking the limit that & — 0 in the Ornstein-
Zernike equation and one can equate the coeflicients of the powers of k. (For
finite |z; — 22| it is permissible to expand the various exponentials since 23 is
kept finite by the short-range of the total correlation function in the integrand.)
Equating the coefficients of k= one has

1 1 [
0=0+0~- §Q(zl, z9) — 5/ dzs g(o)(zl, 23)Q (23, 22), (12.141)
= 0 =

or
= qu/dzz dsy hany (s12, 21, 22) P4 (22)- (12.142)
¥

This is just the local electro-neutrality condition in planar geometry.
The coefficient of k¥ yields

_E_(O)(Zlv 22)

& 2 — 2
= X(O) (21, 22) + / dzs g(o)(zhzg)x(o)(% Z) + Q(zl,ZQ)Il—Qzl
& Jo fal =
23 — 2

+ / ngH (21 Zq)Q(Zg,Zz)l&—Q—Z*‘

JO —

1 x>
- 5/ dzs H H( (21,23)Q(23, 22). (12.143)

o =

Multiplying by Q(zo, 21) and integrating over z; cancels most of these terms by
the local electro-neutrality condition. One obtains

g(zo,zz / dzl/ dng (20, 21)H (z1 zg)g(z;;,zz) (12.144)

or
27w
= ﬁanqW/ dzl/ dzg palz1) p,y(zz)h( )(21,22) (12.145)

This shqws that the first moment of the total correlation function is nonzero.
Now if f(k) ~ constant + Alk|, k — O, then f(r) ~ —A/2wr® | r — co. Hence,

—hi (21, 22)

o , T — 00, (12.146)

hfa’y(rv 21, ZZ) ~
where the numerator obeys the sum rule, Eq. (12.145). The asymptote and
the sum rule for an electrolyte next to a planar wall have been discussed by
Jancovici and others.?

9B. Jancovici, Classical Coulomb systems near a plane wall. I and 11, J. Stat. Phys. 28
(1982), 43 and 263. M. Baus, Long-range correlations along an interfacial electric double layer,
Mol. Phys. 48 (1983), 347. S. L. Carnie and D. Y. C. Chan, Correlations in inhomogeneous
Coulomb systems, Mol. Phys. 51 (1984}, 1047.
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This result — that the ion—ion correlations decay as inverse cubics in the
direction parallel to a planar wall — is in marked contrast to the exponential
decay of the bulk electrolyte. It is a consequence of the fact that the wall
prevents the electrolyte from screening the charge on an ion equally on all sides.
The ion plus countercharge cloud has a net dipole moment, and the dipole-dipole
interaction decays as r 3. For similar reasons ions confined to a two-dimensional
surface or membrane exhibit identical decay. In this case the charge—charge
correlation function has a universal asymptote.?

Summary

s All Coulomb systems are electro-neutral and the pair correlations obey a
second-moment condition. All charges are screened, and the correlations
between them are exponentially decaying.

e The Poisson Boltzmann approximation is a mean field approximation that
is valid at low coupling. For a bulk electrolyte the linear version, known
as Debye-Hiickel theory, shows that the virial expansion is not valid for
nonintegrable potentials.

e The exact asymptote for the ion correlation functions has linear Poisson—
Boltzmann form, but with effective charges responding to the mean po-
tential. The actual screening length reduces to the Debye length at low
couplings. The correlations become oscillatory at high ionic couplings.

s The hehaviour of the electric double layer about a charged solute is similar
to that of the bulk electrolyte. The counterion charge balances the solute
charge, and the ion density profiles are exponentially decaying at the same
rate as in the bulk electrolyte. Asymptotically one can treat the solute
as having an effective charge. The asymptotic interaction between two
solutes is determined by the product of their effective charge and by the
bulk decay length.

e Long-range correlations occur when the electrolyte can’t screen a charge
on all sides. In the case of a planar wall the pair correlations decay as
inverse cubics parallel to the wall.

0P, Attard, R. Kjellander, and D. J. Mitchell, Interactions between electro-neutral surfaces
bearing mobile charges, Chem. Phys. Lett. 139 (1987), 219. P. Attard, R. Kjellander, D.
J. Mitcheli, and Bo. Jonsson, Electrostatic fluctuation interactions between neutral surfaces
adsorbed with mobile ions or dipoles, J. Chem. Phys. 89 (1988), 1664.



Chapter 13

Computer Simulations

Computer simulations complement the semi-analytic approaches to statistical
mechanics detailed in the preceding chapters. They closely mimic the actual
molecular motion of the system and provide a wealth of molecular level detail
not obtainable with the other methods. In one sense simulations are the most
basic approach to statistical mechanics, since one does not have to perform any
diagrammatic or functional analysis, or to carry out asymptotic or other expan-
sions. However, the fact that they represent a brute force approach also means
that they yield practically exact results, and they provide useful benchmarks
to test the more efficient but approximate methods. The main limitation on
simulations are the size of the system that can be simulated and the length of
the simulation. The fact that both of these are determined by computer power
accounts for the increasing importance and use of simulations in recent years.
Moreover, the development of more efficient algorithms that represent elegant,
nonphysical trajectories for the system have enabled larger and more complex
systems to be studied.

There are two types of simulations: Monte Carlo and molecular dynamics.
The Monte Carlo method essentially evaluates the multidimensional averages of
statistical mechanics by a weighted random generation of a configuration of the
system. In its simplest form the weight is the Boltzmann factor for a constant
temperature system, and averages are simple averages over the configurations
visited. In contrast molecular dynamics is deterministic: it follows in time a
single trajectory of the system on the energy hypersurface in phase space using
Hamilton’s equations of motion; again more sophisticated versions exist. The
averages used are simple time averages. The main advantage of Monte Carlo is
that it is not restricted to the physical trajectory (i.e., it is not determined rigidly
by the intermolecular potential), and mathematical techniques can be used to
visit important configurations so as to increase the efficiency of the simulation.
The advantage of molecular dynamics is that time-dependent phenomena can
be studied (e.g., diffusion, viscosity).

In what follows a brief account of the two basic methods is given. Summaries
of some of the more advanced techniques are also included. Broader and more

351
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comprehensive treatments may be found in specialised monographs.’

13.1 Molecular Dynamics

13.1.1 Equations of Motion

In molecular dynamics one seeks the trajectory in phase space of the system.
Demnoting the position of the ith atom at time ¢ by q;(¢) and its momentum by
pi(t), one proceeds from the Hamiltonian,

H(q",p") = K(p") +U(a"), (13.1)

where the kinetic energy is

N
1
K(p") = -3 _n, (13.2)
=1

and the potential energy is

N

U(@") = ulg;) (13.3)

i<j
This is obviously the simplest case, with all atoms having identical mass m,
spherically symmetric pair potentials, and no external potential or many-body
potentials. Hamilton’s equations of motion give the velocity at a given time,
_OH
4] o

qi = pi/’ﬂl,, (134)

and the rate of change of momentuin,

L SOH S
P 5 = > o' (ai) (13.5)

j=1

where the j = ¢ term is excluded from the sumination, q;; = q; — q;, and the
circumflex denotes the unit vector. The right-hand side is the total force on
atom ¢, which can be denoted by F;.

In order to compute the trajectories as a function of time one must discretise
these equations. Assuming that the positions and momenta are known at time
t, the simplest approach is to carry out a first-order Taylor expansion,

qi(t + Ap) = qi(t) + Apqs(t) = qi(t) + Aepi(t)/m, (13.6)

Pi(t +A) = pi(t) + Api(t) = pi(t) + AcFi(2). (13.7)

IM. P. Allen and D. J. Tildesley, Computer Simulation of Liguids, Clarendon Press, Ox-
ford, 1987. P. Lykos (Ed.), Computer Modelling of Matter, ACS Symposium Serics, Vol. 86,
Am. Chem. Soc., Washington, DC, 1978.
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This simple time stepping has an error proportional to A? at each step. The
central difference method is a slightly more sophisticated approach based upon
the third-order forward and backward differences,

AN AL
Adding these two together, the odd terms cancel and one obtains

AZ
it + As) = 2q4(8) — qi(t — Ar) + ﬁFi(t) +OA}. (13.9)

Hence each new configuration is generated from the two previous configurations.
In this approach the momenta do not appear. If these are required, they can be
obtained by subtracting the two differences,

Gilt) = i; Qi+ D) — qult — An)] + OA%, (13.10)
A higher-order expression for the momenta can be obtained by subtracting one-
eighth of the difference between the q;(t & 2A,;). These simple time-stepping
algorithms have proved robust and practical. More sophisticated predictor—
corrector algorithms have also been used.?

The smaller the time step, the more accurate will be the trajectory. However,
this must be balanced against the fact that for a given number of steps, a large
step allows a larger and presumably more representative region of the energy
hypersurface to be visited. A good guide to the largest acceptable step can
be obtained by monitoring the energy of the system. On the exact trajectory
the energy is constant. In practice it fluctuates due to numerical errors arising
from the finite difference approximation to the differential equation. In general
a time step that conserved energy to three or four digits would be considered
acceptable.

For the case of a Lennard—Jones fluid, the time scale that appears naturally
is

T =+/mo?/48e, (13.11)

where o is the diameter and e is the well depth. For the case of argon, o = 3.41 %
1079 m, e = 1.65x10"2 J, and m = 6.63 x 10726 kg, one has 7 = 3.1 x 1073 s.
Typically, for condensed materials the time step required is on the order of A; ~
0.1-0.017.

Hard-Sphere Potential

The preceding discussion assumed a constant time step. This is appropriate
for continuous potentials, where all the atoms simultaneously interact and the
collision process is a continuous one. For the case of hard spheres, the collisions

2H. J. C. Berendson and W. F. van Gunsteren, in Molecular Dynamics Simulation of
Statistical Mechanical Systems, Proceedings of the Enrico Fermi Summer School, Varenna, p.
43, Soc. Italiana di Fisica, Bologna, 1985.
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are instantaneous and strictly binary. In such systems the trajectories of the
atoms are strictly linear between collisions, and so one can readily calculate
the time that the next collision will occur. Time steps correspond to successive
collisions and are not equally spaced.

The discontinuous nature of the hard-sphere potential means that its differ-
ential is a generalised function, which creates problems in the direct application
of Hamilton’s equations. The way to proceed is to invoke energy and momen-
tum conservation by the elastic collision. This has the consequence that for each
particle the velocities perpendicular to the intermolecular vector are unchanged
by the collision, whereas the two velocities along the intermolecular vector are
interchanged.

13.1.2 Initiation

The above describes how the trajectory at the next instant in time is calculated,
and it remains to discuss the initial starting point. The best starting point is
from a previously equilibrated configuration of the same systemn. The second
best starting point is from a previously equilibrated system at a nearby state
point. The final possibility is from a regular lattice configuration with param-
eters chosen to yield the desired density. The worst possible choice would be
a completely random arrangement of atoms. In the last two cases the velocity
components of each atom are chosen independently from a Maxwell -Boltzmann
distribution at a given temperature.

In most cases one must divide the sirnulation up into a transient equilibration
phase and the equilibriumn production run. That is, one must run the simulation
long enough so that the effects of the starting configuration are negligible, since
this by definition is an atypical configuration. In practice one monitors the
potential energy, which almost always decreases steadily during the equilibration
phase. Since the total energy is conserved, the kinetic energy correspondingly
increases. In view of the Gaussian nature of the momentum integrals in the
partition function, at equilibrium the average kinetic encrgy per molecule is
given by

kT
(p?/2m) = 3 ; : (13.12)

Hence the kinetic energy gives the average temperature of the system. Periodi-
cally during the equilibration stage the velocities of all the particles are rescaled
to reset the kinetic temperature to the desired level.

After the equilibration phase the production part of the simmulation begins.
In this phase, which may not even be the bulk of the simulation, configurations
for the generation of the averages of whatever quantity is of interest are accu-
mulated. The configurations from the initial phase are discarded and are not
used for the averages. The distinction betwecn equilibration and equilibrium
1s not clear-cut. To some extent it is a matter of judgement as to when the
changes in the kinetic temperature are no longer steady, but represent equilib-
rium fluctuations. One should avoid any velocity rescaling once the simulation
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proper has begun.

It was mentioned above that the total energy often fluctuates due to discreti-
sation errors. A steady change in the energy is most likely due to a bug in the
program. That having been said, there can occur a weak increase in the total
energy due to the numerical errors introduced by the finite difference algorithm.
Although in general the errors are random, the consequent energy fluctuations
are more often positive rather than negative. This of course is due to the fact
that entropy is a monotonic increasing function of energy: since there are more
configurations of higher rather than lower energy, the random numerical errors
are more likely to yield an increase rather than a decrease in total energy. This
weak increase in total energy will result in a weak but steady increase in the
kinetic temperature. Either one must use a small enough time step so that this
increase remains acceptable over the course of the simulation or one must peri-
odically use velocity rescaling. In the latter event, one should be cautious about
carrying out averages (particularly for time correlations) across the rescaling
events.

13.1.3 Averages

The trajectory followed by a molecular dynainics simulation is I'(¢|T), where
T’y is the point in phase space at the beginning of the equilibrium simulation.
Molecular dynamics invokes a simple time average,

S
@ = 5 dtarero)

1 M
= MZgi, (13.13)
i=1

where g; = g(T'(¢;|Tg)), ¢; being one of the discrete time steps of the simulation.

In general it is not necessary to collect a value for the average at every
step of the simulation. Successive steps are highly correlated and very little
new information is generated. Although this redundancy does no harm, it is
inefficient. Typically once every 10-100 steps is sufficient, depending upon the
property being sought. Quite often the simulation itself is only used to generate
configurations and a regular selection of these is periodically saved to disk. The
averages can then be calculated at leisure by analysing these saved configura-
tions.

In order to ascertain the precision of the simulated quantities, the simula-
tion is broken into 10-100 blocks, and the averages are taken over each block
independently. If the blocks are large enough, correlations between them can
be ignored, and the standard deviation for the blocks can be estimated. The
average value of the quantity is the average of the block averages, and the stan-
dard error is the standard deviation divided by the square root of the number
of blocks. To be precise, suppose that there are m blocks and that G is the
average value obtained from the jth block. The average value obtained from
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the simulation is

(g) = 1 Z Gy, (13.14)

o= L3716, — (g). (13.15)

One might expect the blocks to obey a normal distribution, p(G;) = (¢! /v/27)
exp—|[G; — (9)]?/20%. In any case, the statistical error of the simulation is
e = o/y/m, and one would report the result as (¢g) £ e. This error should be a
property of the simulation and independent of the number of blocks that it is
broken up into.

It should be clear that the trajectory and any averages derived from it depend
upon the starting position I'y. In so far as all points on the energy hypersurface
have equal weight (i.e., p(T|E) x §(H(T') — E)), this assumption is acceptable,
which is to say that any starting point is as good as another. One also implicitly
assumes that the trajectory samples all regions on the energy hypersurface, or
at least a fully representative subset of them. This is difficult to ensure or to
check. One can possibly run the simulation for longer times, or one could choose
a variety of starting points and run several independent simulations. For simple
systems problems with ergodicity are rare. For very dense or glassy systems,
or for polymeric systemns, or for two-phase coexistence and phase transitions,
problems with metastability, entrapment, and incomplete sampling must be
grappled with.

13.2 Periodic Boundary Conditions

One of the limitations of both molecular dynamies and Monte Carlo is the size
of the system that can be treated. Tt is generally not feasible to treat more than
some tens of thousands of atoms, and for more cotnplex potentials or molecules
several hundred atoms may be more realistic. Since in general one is interested
in a bulk system (the thermodynamic limit), one must miniinise the effects of
any boundaries or walls. The way that this is commonly done is by means of
periodic boundary conditions, as illustrated in Fig. 13.1.

One imagines that the cell used for the simulations is but one of an infinite
number of identical cells all arranged on a simple cubic lattice. Each of the N
atoms in the central ccll has an image at the same relative position in all the
cells. When an atom leaves the central cell, its corresponding image enters the
central cell from the opposite face. In this way the number of atoms is conserved
during the simulation. When an atom leaves the cell in this way one usually
resets its coordinates to that of the image that has entered the cell so that the
atoms in the simulation always appear to be in the central cell. This is not
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Figure 13.1: The central cell, its periodic images, and the four nearest neigh-
bours of the moved atom.

strictly necessary, and for some properties (e.g., the self-diffusion coefficient), it
is preferable to keep the real coordinates for each atom.

Each atom in the central cell interacts with the other atoms, or with one of
the images of the other atoms. In choosing between an atom and its image, only
the closest is used for the interaction. This is known as the minimum image
convention, and is illustrated by the shaded atoms in the figure. In this way
the boundaries of the cell are effectively invisible, so that each atom feels as if
it is part of an infinite system. This is not entirely true because the finite size
of the central cell can still have an influence on the properties being simulated.
For example, if the true pair correlation function had a range that was greater
than the size of the cell, then effectively each atom would feel the tail of its
own interaction. To put it another way, it is not possible to simulate physical
properties that range in space beyond the central cell.

Molecular dynamics requires the force on each atom, and Monte Carlo re-
quires its interaction potential. For a pair-wise additive potential for each atom
there are NV such interactions to be calculated, which means N(N —1)/2 calcu-
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lations for each time step. Hence the computational burden of the simulation
grows quadratically with the number of atoms. This is ultimately what limits
the system size.

This procedure is very inefficient because it takes as much effort to calcu-
late the interaction between atoms close together, where the potential is all-
important, as for atoms far apart, where the potential is weak and has little
influence. One way to decrease the computational burden is to introduce a
cutoff for the potential, u(r) = 0, r > R., and to only include atoms that are
within this cutoff in the calculation of the force on each atom. Roughly speaking
then. the number of calculations per atom is decreased by a factor of 4w R3/3V/,
where V' = L? is the volume of the central cell. The largest that R, can be
is L/2, because this guarantees that each atom will interact with at most one
image of every other atom. In practice R, can be much smaller than this. For
a Lennard Jones potential a value of R, = 2.5¢ is not uncommon, compared to
system sizes on the order of L = 100 and larger.

The use of a cutoff potential is inappropriate for ionic or dipole systems,
where it can lead to serious errors. In these cases Ewald summation® or reaction
field* techniques are advised.

The use of a cutoff introduces a discontinuity in the pair potential and in
the force at the cutoff. To avoid any unphysical behaviour there, in the case of
molecular dynamics a constant is added to make the force go to (0 at the cutoff.
That is, the force that one actually uses in the simulation is

£ (1) = { i) e, e e (13.16)

Hopefully the cutoff is large enough that at smaller separation £(1R..) is relatively
negligible compared to the force, f(r).

The average value of the simulated quantities should be corrected for the
truncation of the force or potential. For example, the average potential energy
per atom is

1y
U/N = IN /v dry dry p® (r19)u(r12)

Vo
= NP /vdrg(r)u(7)
‘R,

= 27p {/0 drr?g(ryu(r) + /00 dr 7'2_(1(7')11,(7')} . (13.17)

JR.

38. W. De Leeuw, J. W. Perram, and E. R. Smith, Simulation of electrostatic systems in
periodic boundary conditions. I. Lattice sums and dielectric constant, Proc. R. Soc. London
A 373 (1980), 27. D. M. Heyes, Electrostatic potentials and fields in infinite point charge
lattices, J. Chem. Phys. 74 (1981), 1924.

4J. A. Barker, Reaction field method for polar fluids, in The Problem of Long-Range
Forces in the Computer Simulation of Condensed Matter (D. Ceperly, Ed.), NRCC Workshop
Proceedings, Vol. 9, p. 45, 1980. H. L. Friedman, Image approximation to the reaction field,
Mol. Phys. 29 (1975), 1533.
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The first of these corresponds to the actual molecular dynamics average,

M N N
L @)
Unp/N = ~7+ SN wa(ry), (13.18)

=1 j=1k=j+1

where rj(;c) is the separation between atoms j and & in the ith configuration. The

tail correction that should be added to this is the second term,

(o]

Uiait /N = 27rp/ drr?u(r). (13.19)
R

For the tail the radial distribution function has been replaced by its asymptotic

value, g(r) — 1, r — co. Often this tail integral can be evaluated analytically.

13.3 Monte Carlo

The Monte Carlo method follows a stochastic trajectory through configuration
space, which is in contrast to the determinism that is molecular dynamics.
However, like molecular dynamics it gives average values without evaluating the
configuration integral or the partition function. The average of some function
of the coordinates, f(r"), is defined to be

(f) =/VdrN o) f(x™). (13.20)

For the simplest canonical case (constant temperature), the probability density
is

1 ,
p(rINV,T) = QN VT P —pU (xN). (13.21)

Note that the Monte Carlo method only deals with configurations; the momen-
tum integrals have been performed and incorporated into the thermal wave-
length.

To implement this average one generates a sequence of points in configuration
space according to some recipe. Let w(r’) be the weight attached to choosing
a particular point. In this case the average becomes

M
() = 52 S0 TN )pled IN, V. T) e, (13.22)
a=1

where rY¥ is one of the M generated configurations, and where the total weight

is W= 224:1 o(rNIN,V,T)/w(r). One must include w in the denominator to
cancel the extra probability with which the points in the trajectory occur.
Although the weighting function is arbitrary and this formula will yield ex-
act results for any choice, an inappropriate weight may require a prohibitively
lengthy trajectory to yield reasonable results. For example, choosing the con-
stant weight, which makes all points in the sequence equally likely, and which
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would correspond to choosing N points in the volume randomly, uniformly, and
independently each time, fails for condensed systems because of the overwhelm-
ing probability that the configurations generated will be forbidden because some
molecules overlap. One needs to bias the trajectory so that it covers the impor-
tant configurations, which are those of low energy. The most common weight
is one that cancels the Boltzmann factor, w(r") o« exp —pU(r"), so that the
ratio of the probability and the weight is constant and independent of the con-
figuration. The constant may be set equal to unity so that one has

1 M
(F) =37 2_Fxd). (13.23)
a=1

One sees that with this choice of weight all configurations generated contribute
equally to the average.

13.3.1 Metropolis Algorithm

The crucial question is how to generate successive states along the Monte Carlo
trajectory so that their weight is proportional to the Boltzmann factor. The
Metropolis algorithm does this by forming a Markov chain in which the proba-
bility of generating the next configuration depends only upon the current con-
figuration. The configurations of the system may be imagined to be discretised
and labelled with a subscript. A trial transition matrix is defined, with elements
T, that represent the probability of choosing state m for a possible move from
state n. Generally one ouly attempts to move between neighbouring configura-
tions, which in practice means one of the atoms of the system is displaced a small
amount. For example, for some j € [1, N], v, =r;, 1 # j, and r; =r;+Aa. Here
a is a random vector generated for each trial move by choosing three random
numbers &1, &, and &3, each independently and uniformly distributed on (0, 1),
with a; = (2€; — 1), etc. The step length A is typically a fraction of the atomic
diameter. It is clear that this method for generating neighbouring configurations
gives a symmetric trial transition matrix (i.c., T(r; — r}) = T(r] — r;)).

One must make a decision about whether to accept or reject cach trial move,
and this is where the Boltzmann weight occurs. If the energy of the trial con-
figuration is less than or equal to the energy of the current configuration, then
one accepts the move. If the energy increases, then one accepts the move with
probability proportional to the Boltzmanun factor of the change in energy. More
generally to generate states for an arbitrary probability distribution one always
accepts the trial state if it is more probable than the current state, and one
accepts it with probability in proportion to the ratio of the new and old prob-
abilities if it is less probable than the current state. This is the Metropolis
algorithm. It gives for the transition probability matrix

Tom®m/Pn,  ©m < on-

The elements II,,,, denote the probability of next moving to state m given
that one is in state n. A move is accepted if the ratio of the probabilities is

>
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greater than a random number uniformly distributed on (0,1). If the move is
rejected, then the old configuration is counted as the new configuration in the
trajectory (and one chooses a new atom for a trial move). Hence the probability
of remaining in the same configuration is Il,,,, = 1— Zm#n I1,,.,, which, because
T is normalised, clearly lies between 0 and 1. Either one can randomly choose
successive atoms for a trial move or one can systematically cycle through all
the atoms of the system, trying to move each one in turn. Such a cycle of one
attempted move for each of the N atoms is comparable to a single molecular
dynarnics time step.

In general one should use a symmetric trial transition matrix, Tym = Tmn,
since this ensures that the transition matrix itself obeys microscopic reversibility,
onllym = pmIlm,, which is to say that the probability of observing sometime on
the trajectory the transition n — m is the same as the probability of observing
the reverse transition, m — n. This latter condition is sufficient to ensure that
p is the eigenvector of IT with the largest eigenvalue of unity, which is to say
that it is the limiting probability distribution for the Markov states generated
by II.

The Metropolis algorithm has the effect of keeping the trajectory that the
system follows through configuration space close to the energy valley floor.
Whilst low-energy states are favoured, states higher in energy are not totally
forbidden, depending how much larger than 0 is the ratio of the probabilities
of the new and old states. Obviously at lower temperatures low-energy states
dominate, and at higher temperatures more energetic configurations become
increasingly accessible and contribute to the average.

As in molecular dynamics, the Metropolis algorithm for Monte Carlo sim-
ulations uses a simple unweighted average over the trajectory. Both also seek
to cover a large and representative region of phase space economically and effi-
ciently. In Monte Carlo the step length plays a crucial role in determining the
acceptance ratio. A small step length will give an almost 100% acceptance rate,
but the trajectory will move agonisingly slowly. Whilst a large step length might
appear to increase the distance travelled, it can be akin to randomly inserting
an atom in the system, and because of the overwhelmingly high probability of
molecular overlap in dense systems, such moves are almost certainly rejected.
Again the trajectory does not move far enough to sample a representative por-
tion of configuration space. A practical compromise is to adjust A by trial and
error to give an acceptance rate of 30-50%.

The considerations of ergodicity and metastability are similar in Monte Carlo
and in molecular dynamics. Because the trajectory followed in Monte Carlo
is not a physical trajectory, one has greater flexibility in choosing the trial
moves or the configuration weight in order to bypass bottlenecks or to escape
trapped configurations. If ergodicity is a problem, it may be worthwhile using
infrequently a trial move with a larger than normal step length in the hope
that despite the low acceptance rate, the trajectory will occasionally jump to
a new region of configuration space. Similarly, using a flatter weight than the
Boltzmann weight (e.g., a higher temperature) means that one explores further
up the sides of the energy valleys, and hence one might pass over the col between
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two valleys more easily. Of course for such nonphysical weights the averages are
no longer simple; each configuration on the trajectory must be weighted by the
ratio of the Boltzmann weight and the actual weight used in the simulation.

Other aspects of Monte Carlo are almost identical to those already discussed
for molecular dynamics. One must start the simulation from an initial configu-
ration, which ideally comes from a previously equilibrated system. If not, one
must discard from the averages the initial equilibration phase. Again this may
be identified by monitoring the energy or the pressure. An infinite system is
mimicked by using periodic boundary conditions. The computational burden
lies in evaluating the potential energy; the quadratic dependence on the number
of atoms can be reduced to a linear dependence by using a potential cutoff.

13.4 Advanced Techniques

13.4.1 Neighbour Tables

Whilst it is desirable to simulate a large system, both molecular dynamics and
Monte Carlo are limited by the fact that the number of pair interactions grows
quadratically with the number of atoms. As mentioned above. the situation can
be ameliorated somewhat by using a potential cutoff. This reduces the number
of evaluations from N?2/2 to approximately pRR2 N, where p is the density and R
is the cutoff. However, even though one does not have to caleulate the potential
for atoms beyond the cutoff, one still must calculate their distance from the
central atom in order to decide whether they lie within the cutoff. Hence there
arc still N?/2 such distances that must be caleulated, and this can become the
limitation on system size.

The use of neighbour tables allows one to keep track of the atoms close to
a given atom and hence one need ouly consider such atoms to decide whether
they lie within the cutoff. The two types of neighbour tables in common use
are spatially based cells and atom-based tables.”

Spatial Neighbour Tables

Suppose that the simulation consists of N atows in a cubic box of side length
L. One subdivides the system into A/? cubic cells of length | = L/M. One
chooses M such that [ > R., where R, is the potential cutoff. One then creates
a list of the atoms in cach cell by examining the coordinates of cach atom. The
list is most casily maintained as a linked list in which the index of each atom
in a particular cell is stored consccutively. One makes an array of size M? that
contains the index of the first atomn in the cell, and a pointer array of size N
that contains at each atomic index the index of the next atom in that cell. A O
is used in this poiuter array to signify that this atom is the last atom in its cell.
These two arrays allow the atoms in each cell to be identified.

5R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, McGraw-Hill,
New York, 1981.
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Once the neighbour list is created, one proceeds to evaluate the interaction
energy (for Monte Carlo) or force (for molecular dynamics). One loops through
all the cells, and through each atom in each cell. For each atom one must
examine every other atom in that cell and in each of the 26 neighbouring cells,
taking into account the periodic images of the cells. The potential or force
is calculated for any pair of atoms that lie within the cutoff. For the case of
molecular dynamics using the fact that the force on atom i due to atom j is
equal and opposite to the force on atomm j due to atom i, one can halve the
number of pair calculations.

Since the cost of creating the neighbour table is linear in N, one can afford
to do this at every step (molecular dynamics) or cycle (Monte Carlo) of the
simulation. In the case of Monte Carlo, one should have [ > R, + A, so that
no atom can move within the cutoff during the cycle. (In fact, if | > R., then
one can do the update less frequently, provided that one can guarantee that
no separation can change by more than [ — R, in the interim.) The spatial
neighbour table reduces the number of calculated separations per cycle or time
step from N? to approximately 27N pR2, which is a substantial saving.

A variant of the spatial neighbour list uses very small cells that can contain
at most one atom. One creates a large array that represents the cells, and that
contains either 0 or the index of the atom in the cell. A related array gives the
number of the cell associated with each atom. For calculating the potential or
force for a given atom, one finds its cell and identifies the neighbouring cells
that lie within the cutoff R, (or R, + A in the case of Monte Carlo). This is
straightforward to do and can be done at the start of the program if desired.
The occupancy of these cells gives the indices of the atoms required for the
separation and potential or force calculation. Because these small cells more
tightly bound the cutoff sphere than the large cells, one has a saving in the
number of separations that need be examined. Howcver, the cost of setting up
these larger arrays is greater, and so this method is more effective for larger
systems.

Atomic Neighbour Tables

A second type of neighbour list is centred on the atoms. One defines a cutoff
R; > R, and constructs for each atom a list of the indices of the atoms that fall
within this neighbour cutoff. One must evaluate N?/2 separations to construct
the list. One neighbour array A (of size approximately 47 NpR3?/3) contains all
the neighbours of cach atom consecutively. The pointer array B of size NV + 1
contains the address of the the first neighbour of each atom. Hence the indices
of the neighbours of atom i are stored between A(B(%)) and A(B(i + 1) — 1),
inclusive. If atomn 7 has no neighbours, which could happen in a dilute gas, then
A(B(i + 1)) = A(B(i)).

The advantage of this atom based list is that it does not need to be recon-
structed every time step or cycle. One must choose the interval to guarantee
that no new atoms can enter the potential cutoff sphere from beyond R; during
the interval. This can be done at the start of a Monte Carlo simulation directly
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from the step length. It can also be done automatically during the simulation
by monitoring the diffusion of every molecule during the interval and carrying
out a reconstruction whenever the maximum change in separation that could
occur is greater than R; — R..% Typically one chooses R; to be on the order of
10% larger than the potential cutoff, and updates the list every 5-20 cycles or
time steps. Savings of a factor of 2 have been achieved with this method, and
this increases with system size.

13.4.2 Isobaric Monte Carlo

The configurational probability for an isothermal system is p(r™|N,V,T) o
exp —pU(r"™), and in the Metropolis algorithm it is the change in the energy
that determines the success or otherwise of a trial move. That is, if moving
atom 4, one calculates

N
AUi = Z*u(rij) - u(rij), (13'25)
j=1

where the prime signifies the trial position, and the asterisk indicates that the
j = i term is excluded from the sum. If AU; is negative or 0 the move is
accepted. Otherwise, one calculates exp —8AU; and accepts the move if this is
greater than a random number uniformly distributed on (0,1). If the move is
rejected a new atom is chosen for a trial move.

For an isobaric isothermal system, both the energy and the volume fluctuate
in connection with a temperature pressure reservoir. The volume configuration
probability is

o(rN VIN,p,T) x emAUEN) =PV (13.26)

It is straightforward to implement a Monte Carlo algorithin for this isobaric-
isothermal system.” In this case the trial move can be either an attempt to move
an atom, r; = r;+Aa, or an attempt to change the volume, L' = L+ A (26—1),
where L is the length of the simulation cell and € is a random number uniformly
distributed on (0, 1). Hence a trial move is now considered on the basis of the
change in enthalpy, which is AU + pAV.

In practical terms, because of the periodic boundary conditions, one uses
the length of the simulation cell as the unit of length, and one scales all of the
coordinates such that x; = r;/L. Now the potential energy becomes a function
of the volume of the cell, U(x"; L), and changes with cach change in volume.
Since the partition function is

1 o0 N
- dv N =BUGET) —BpV
Ay AN /0 /vdr e e

6D. Fincham and B. J. Ralston, Molecular dynamics simulation using the CRAY-1 vector
processing computer, Comput. Phys. Commun. 23 (1981), 127.

71. R. McDonald, NpT-ensemble Monte Carlo calculations for binary liquid mixtures, Mol.
Phys. 23 (1972), 41.
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the probability distribution becomes

p(XN,L“\,7 p,T) x e—[}[U(xN;L)+BpL3+kBT(3N+2)In L}_ (13.28)

The quantity in brackets is sometimes called a pseudo-potential. Fach trial
move, whether in atomic position or in length, is assessed on the basis of the
change in the pseudo-potential.

In general one does not have to recalculate all N2 pair potential interactions
following a change in volume. For example, the Lennard—Jones potential may
be written

4
U(xN; L) le Z o? 0. (13.29)

1<g 1<y

Hence if one keeps track of the total energy and of the two terms separately,
then one simply rescales each to find the change in energy following a trial vol-
ume move. One should add the contribution from the tail due to the change
in density in assessing the change in the potential due to the change in vol-
ume. Similarly, for the case of a hard-sphere system one monitors the minimum
atomic separation in the configuration. If a volume decrease rescales this closest
separation to less than the atomic diameter, the volume move is rejected.

Typically, one might attempt a trial volume move once every 5-10 cycles of
trial configurations. There is no point in attempting more frequent changes than
this because the volume is related to the system as a whole, and the vast bulk
of each configuration is unchanged by even several successive atomic moves.

13.4.3 Grand Canonical Monte Carlo

Monte Carlo algorithms have also been developed for open systems that can
exchange both energy and atoms with a reservoir.® The probability density is

A—3N oBuN
N!

Hence introducing the constant iz = 4 — 3In A, the pseudo-potential to be used
in the Metropolis algorithm is

o(rN, N\, V, T) =AU, 13.30
¢ p

UrN,N)=U(@N) - gN + kgTIn N!. (13.31)

Trial configurations can be the usual single atom move, in which case only the
actual potential changes, or they can be an attempt to change the number of
atoms in the system. Either one can attempt to delete an existing atom or one
can attempt to insert a new atom somewhere in the volume. In both cases all
terms in the pseudo-potential change.

8D. Nicholson and N. G. Parsonage, Computer Simulation and the Statistical Mechanics
of Adsorption, Academic Press, London, 1982.
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The simulation is carried out for fixed value of ji. At the end one has the
average number of atoms (N) and the most probable or equilibrium number
of atoms, N. For the ideal gas one has (N) = AffsVeB"‘d7 and also N =

A=3VePH || In view of the first of these, one sees that the excess chemical

potential is related to the constant g by
p =p—In(N)/V. (13.32)

Insertions become increasingly difficult in dense systems because of the high
probability that the new atom will overlap with an existing atom; atom-sized
cavities are quite rare. Similarly, an atom tends to be located in the poten-
tial wells of its neighbours, and the large increase in energy upon its deletion
makes this a rare event also. One generally does not attempt to change the
number of atoms more frequently than once every 10-50 cycles. One finds that
a successful insertion tends to occur in the cavity left by a previously successful
deletion, and vice versa, unless one gives the system time to relax between these
nonequilibrium events.

In general the decision whether an attempt to change the particle number is
an insertion or a deletion move is made randomly. For a deletion the initial state
is r and the trial state is v /r;. For an insertion, the initial state is rV/r;
and the trial state is r’V. Hence if insertions and deletions are attempted with
equal probability, then the trial transition matrix is symmetric and microscopic
reversibility is ensured. The label of the atom to be deleted, and the label to
be given to an inserted atom, should be chosen randomly. If the trial move
is successful, the remaining atoms should be relabelled to accommodate the
change.

13.4.4 Inhomogeneous Systems and Preferential Sampling

The above discussion of stimulation techniques assumed that the ounly potential
present was the pair one. Three-body potentials are prohibitive because the
cost of evaluating them scales with N3. However, singlet potentials that create
a density inhomogeneity are quite feasible.

In essence the two types of inhomogeneities typically simmulated are due either
to a solute or to confinement of the system. It is difficult to simulate the effects
of an external field on a macroscopic system because of the periodic boundary
conditions. In general the confined systems are either fully confined with walls
on all sides (e.g., a spherical pore) or periodic in one (c.g., a cylindrical pore)
or in two (e.g., a slit pore that represents a system confined between two walls)
dimensions. If the walls are far enough apart one can mimic the solvation of an
isolated surface (albeit two of them).

Inhomogeneities can also be caused by the presence of solutes or other in-
clusions in the system. Quite often one wants to carry out the simulation for
a finite concentration of solutes. On other occasions the properties of the iso-
lated solute are required. In the later case one must be aware that because of
the periodic boundary conditions the lowest concentration of solute that can
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be simulated is pg = 1/V. This becomes important when the volume of the
systemn is small, or when the solute is relatively large, because in these cases the
density inhomogeneity can extend beyond the central cell and the solute begins
to interact with its own image. Also, there is a limit to how large a solute
can be simulated. As both the length of the system L and the solute radius
R increase, the number of solvent atoms required scales with pR?(L — R). To
avoid interactions between the solute images L — R cannot be too small, and it
is this that limits the solute size that can be handled.

The requirement that there be a bulk beyond the surface of the solute can
mean that most of the computational effort in the simulation is directed toward
moving atoms far from the solute (because there are relatively more of them).
Presumably one is most interested in the solute-specific properties, which are
those in the inhomogeneous region of the system, and one would like to direct
most attention here. Preferential sampling implements frequent vicinal cycles,
where only atoms initially in a defined neighbourhood of the solute are moved
while the remaining atoms are fixed.? For example, one might carry out a full
cycle of moving all the atoms, and then 5-10 vicinal cycles. At the start of
the first vicinal cycle one identifies the vicinal atoms, which might be all atoms
within a certain distance of the solute. These vicinal atoms are then moved
in a number of cycles. In order to ensure microscopic reversibility one must
continue to move all of the atoms initially identified as vicinal throughout the
cycle, even if they move away from the neighbourhood of the solute. The vicinal
atoms interact with the solute, with each other, and with the remaining atoms
as normal. The sequence of a single full cycle followed by a set of vicinal cycles is
repeated. In this way the coverage of configuration space in the neighbourhood
of the solute is greatly improved and the statistical error for solvation properties
reduced.

13.4.5 Importance and Umbrella Sampling

In generating the Markov chain for the system average, the Boltzmann weight is
convenient because if focuses on the most likely configurations. However, one is
not restricted to this since the method works in principle for an arbitrary weight,
as shown by Eq. (13.22). NonBoltzmann sampling has been used for free energy
estimation.!® Another example might be to use an elevated temperature in the
Boltzmann factor, which allows a broad region of phase space to be covered.
If the configurations and their energy are saved, one can generate the average
for the temperature of interest by simply removing the weight. For example, if
Bo = 1/kpTy corresponds to the temperature used in the Metropolis algorithm,
then the weight is w(r™) o« exp —FoU(r"). Hence an average at temperature

9J. C. Owicki and H. A. Sceraga, Preferential sampling near solutes in Monte Carlo cal-
culations on dilute solutions, Chem. Phys. Lett. 47 (1977), 600. P. K. Mehrotra, M. Mezei,
and D. L. Beridge, Convergence acceleration in Monte Carlo simulation on water and aqueous
solutions, J. Chem. Phys. T8 (1983), 3156. P. Attard, Simulation of the chemical potential
and the cavity free energy of dense hard-sphere fluids, J. Chem. Phys. 98 (1993), 2225.

10G. M. Torrie and J. P. Valleau, Nonphysical sampling distributions in Monte Carlo free
energy estimation, J. Comput. Phys. 23 (1977), 187.
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T = 1/kpB can be obtained from the configurations generated with this weight
by removing the weight,

M
(e =15 D SN explfo — AU, (13.33)

where W = 22/[:1 explfo — BJU(rY). This method works because in general
the important high-temperature configurations encompass the important low-
temperature ones, and more besides. The cost of evaluating an average is small
compared to the cost of generating the configurations and the energy. Hence the
advantage of this method is that averages at many temperatures can be obtained
from a single simulation. The restriction is that onc may have to generate more
configurations than normal because many of them will be wasted. In practice
as the temperature is decreased, the viable part of configuration space becomes
relatively small, and unless the reference configurations are obtained at almost
the same temperature one does not visit the important regions often enough to
give a good average. In other words, there must be substantial overlap between
the weight and the actual probability distribution for the method to work.

This is an example of umbrella sampling, where the actual sampling is
broader than that required. One can do a similar sampling on density. If
the configurations are generated on the unit cube and the different parts of the
potential are stored according to how they scale with the system length, then
the Boltzmann weight required to obtain a system average at a ncarby density
from these configurations follows by simply rescaling the parts of the potential.

Using the Boltzmann weight in the Metropolis algorithm usually works well
when the quantity being averaged varies slowly compared to the exponential fac-
tor. This is not always the case, as shown by Widom’s ghost particle expression
for the chemical potential, Eq. (7.63),

ex 1 7/ Nt
—Bu - = 1 < —BAU(rn;T )> 13.34
e 5 /V dry (e . (13.34)
and the real particle version, Eq. (7.64),

Bu _ [ BAU@NeN )
o <e >N , (13.35)

In the first of these the configurations of the N —1 atoms are independent of the
ghost particle at ry. Hence in a deuse system one or more real atoms will almost
certainly overlap with the ghost atom, and the averand will be 0. Conversely,
in the second expression atom N is real and part of the system, which means
that no overlaps will occur. However, because of the positive exponent in the
averand, it is precisely these overlaps that give the greatest contribution. These
are two examples where the quantity being averaged varies on a scale comparable
with the Boltzmann weight, and where one should endeavour to take this into
account in generating the Markov chain.
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In this case, recalling that the contribution to potential from atom N is
AU(ry;tV 1) = Un (V) — Uy_1(r¥ 1), one may choose the weight to reflect
a partial coupling of the Nth atom,

w(ry) = e AUNLEN T = ABAU (e ™) (13.36)

(Tnstead of scaling the temperature by A € (0,1), one could use an appropri-
ate nonlinear coupling for the pair potential.) With this weight the second
expression for the average chemical potential becomes

M
() = ZZ“_I o (13.37)
” M : :
M e=(1-3)BAU,

Suitable choice of the value of the coupling constant allows more overlap be-
tween the weighted configurations and the quantities being averaged than would
otherwise he the case.

The problems with chemical potential estimation can also be ameliorated by
using a coupling constant integral.!! Using Eq. (7.61) onc has

(—Bu™) = ImQ(N,V,T)—InQ(N —1,V,T)

1
d
/O A 5 I Q(N, V,T;\)

1 —_ .
= [ D [ At

= f[j/d)\drN o(rN NN, V, T) AU (ry; vV 71

—BY A AUxap(r; A) /() A

D1 (5 A) fw(rls A)

One chooses the weight to cancel the Boltzmann factor for the atoms, and in
addition to provide an external potential conjugate to the coupling,

w(I‘N' A) = e=BUNEN) =B (A) (13.39)

@

Hence one carries out a simulation on configuration space augmented with the
extra coordinate A. Moves in particle position and in coupling constant are
attempted according to the usual Metropolis algorithm. The potential ¢ is
chosen to give as broad a distribution in A as possible. A good start is to choose
P(A) = —pVi, where p is the pressure of the system and V) is the volume of the
partially coupled atom. One can also update this external potential during the
course of the simulation to broaden the distribution. The potential 1 has the
effect of forcing the configurations important in the evaluation of the chemical
potential to be sampled by the Markov chain. In the event that one cannot find

HK. K. Mon and R. B. Griffiths, Chemical potential by gradual insertion of a particle in
Monte Carlo simulation, Phys. Rev. A 81 (1985}, 956. P. Attard, Simulation of the chemical
potential and the cavity free energy of dense hard-sphere fluids, J. Chem. Phys. 98 (1993),
2225.
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a potential to give an adequate sample of the whole unit interval, one can break
the coupling constant integral into stages with a different weight for each stage.

The probability distribution obtained from the simulation also gives the
solvation free energy of the partially coupled solute atom (after the effects of
the external potential ¢ are subtracted). That is, if p(A|y) is the distribution
of couplings that emerges from the Markov chain, then the solvation free energy
is given by

p(AlY)
w(0l)

This expression offers an alternative route to the excess chemical potential,
namely p®* = W (1) — W(0).

W(X) — W(0) = —ksTIn — [ (N) — (0)] . (13.40)

13.4.6 Time Correlations

As the preceding sections indicate, the Monte Carlo approach has great flex-
ibility in choosing the trajectory followed by the simulation, and this can be
designed to obtain the quantity of interest in the most efficient manner. This is
an advantage over the molecular dynamics approach, which is largely restricted
to trajectories generated by Hamilton’s equations of motion (but see below).
However, the molecular dynamics method is unique in being able to study time-
dependent phenomena, and these can be used to obtain physical properties, the
diffusion constant, the shear viscosity, and the heat conductivity, as examples.
This section illustrates the use of time correlation functions, which are discussed
elsewhere in greater detail.'?

A dynamical variable is a function of the position in phase space due to the
motion along the trajectory, A(t) = A(q™(t),p"(¢)). (This assumes that the
dynamical variable does not explicitly depend on time. A similar assumption
will be made for the Hamiltonian itself.) Examples include the velocity of a par-
ticular particle, A(t) = p;(t)/m, or the local deunsity, A(r,t) = vazl d(q;(t)—r),
or the local current, A(r,t) = Zfil pi(t)6(q;(t) — r)/m. The time correlation
function for two such dynamical variables is

Cip(t) = (A(t)B(0))
= lim 1/ dt’ (A(t +t")B(t"))

The auto-correlation function is C% ,(¢) = (A(t)A(0)), and the equilibrium cor-
relation function is lim; o C} g(t) = (A(0)B(0)). Also at large times the dynam-
ical variables become uncorrelated, lim; .o, C%g(t) = (A) (B), where because
of time homogeneity time necd not be shown in the arguments of the dynamical

123. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd ed., Academic Press,
London, 1986. D. A. McQuarrie, Statistical Mechanics, Harper and Row, New York, 1976.
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variables. Therefore the time correlation function is in general defined in terms
of the departure from the average value,

Caslt) = ([A(H) — (A)[BO) - (BY). (13.42)

It is often convenient to take the temporal Fourier transform of this,

R 1 oo )
CAB(w) = 2—/ dt eu‘JtCAB(t). (1343)

™ Jo

These spectral components of the time correlation functions can sometimes be
measured experimentally.

Physical properties are often related to the time integral of the correlation
of the derivative of the dynamical variables,

v = /Ooo dt <A(t)A(O)> . (13.44)

The corresponding Einstein relationship is

29t = ([A(t) — A(0))%) . (13.45)
As an example the velocity auto-correlation function is defined as
1
Z(t) = — (pi(t) - p:i(0)) . 13.46
(0) = = (pilt) - p:(0)) (13.46)

At t = 0 this is essentially the average kinetic energy of the particle, Z(0) =
kgT/m. In this case since there is no preferred direction of motion, the average
velocity is 0 and the velocity auto-correlation function decays with time from
this peak value. The diffusion coefficient is the time integral of this,

1 oo
D= dt (p:(t) - ps . 13.47
7 4t @) pi(0) (13.47)
Alternatively
1
2Dt = < {[ai(t) — q:(0)]%) . (13.48)
This Einstein result corresponds to the diffusion probability

p(aslai(0), 1) = ﬁ

From the simulation the dynamical variables are obtained as a function of
time. The time correlation function at time ¢, Cag(t), is obtained by multiplying
B(t;) and A(t; + t) together for a set of starting times ¢; along the trajectory,
and averaging the result,

e~ lai—ai(0)]/12Dt (13.49)

M
Caplt) = % Z A(t; + t)B(t;). (13.50)
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If necessary it is actually the departure of the dynamical variable from its long
time average that is used, A—(A) and B—(B). In general one tries to choose the
starting times separated by more than the correlation time, which is the time
taken for the time correlation function to decay to 0, Cap(t;11 —t;) = 0. Little
statistical advantage is gained by using more starts at closer intervals because
of the redundancy in the information. After the average for the time correlation
function is taken, the time integration is performed to obtain the value of the
transport coefficient.

In the case of the diffusion constant for an atom of the system, the statistics
can be improved by averaging over all the particles. The Einstein form of this
result, which relies upon the displacement of the tagged particle, must be used
with some care. This average will be invalidated whenever the particle leaves
the central simulation cell and its position is reset to that of its image that
enters from the other side. Often the actual position of the particle is retained
for cases like this, and it is the intermolecular separation that is reduced to less
than half the box length for the evaluation of the force or potential.

13.4.7 Isothermal and Isobaric Molecular Dynamics

Techniques for carrying out molecular dynamics at constant temperature and
pressure have been developed. The so-called ‘extended system’ methods aug-
ment phase space with an extra coordinate whose purpose is to mimic an ex-
ternal reservoir of the desired type.!® For the case of the isobaric system it is
the volume of the system that is allowed to move by adding to the Hamilto-
nian a kinetic encrgy, MV2/2 = W?2/2M, where M is its “mass’ and W is its
momentum, and a potential energy pV, where p is the reservoir pressure. In
view of the periodic boundary conditions the particle coordinates are scaled to
the unit cube, 8; = V~'/3q,. In order to obtain the Hamiltonian for the new
coordinates one requires a canonical transformation of the second type, with
generating function,!4

Fa(q¥, m" ”“Zq,m (13.51)

This gives the desired result for the scaled coordinates,

oF; .
9; = =V Vg, 13.52
and the conjugate moienta may be obtained from
OF:
pi = aqz_ =V~3g, (13.53)

13H. C. Andersen, Molecular dynamics simulation at constant pressure and/or temperature,
J. Chem. Phys. T2 (1980), 2384.
14H. Goldstein, Classical Mechanics, Ch. 8, Addison-Wesley, Reading MA, 1950.
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With these the Hamiltonian becomes
HEON 7NV, W)
= H(@",pV; VW) + ==

N W2
= 2 Ny, =
= 3 ;pﬂr (@") + 557 +PV
V72/3 N w2
= == dSoml+u v+ o7 TPV (13.54)
i=1
Hence the equations of motion are
0; =V~ 2Bx,/m, 7; = VI/3F, (13.55)
and
. . v-5/3 N v-2/3 N
= L W= — 2 F; -0, 13.
V= W/M, Pt ;wﬁ 3 ; (13.56)

where F; is the usual force on particle ¢ due to the intermolecular interactions.
The Newtonian form of these is instructive,

—2/3
b, = VP Miyspy
m 3m
y-1/3 2V
_ F,—--6,, 13.57
m 3V ( )
and
N N
. —p VBB , VB
= s i Fz 92
VT M s &7 ;
N N
1 1 , 1
- a7 | o 17 : o1 Fz 1
1Pt V;pl+3vi2 aq
1
= [P, p™)—p|. (13.58)

Here the instantaneous pressure has been defined, which is related to the virial,
Eq. (7.29). One sees that the force acting to change the volume is proportional to
the difference between the internal and the external pressures. These equations
of motion conserve the augmented Hamiltonian, which is essentially the enthalpy
of the system. Hence these equations of motion approximate an isenthalpic—
isobaric, or (N, p, H) system.

A constant temperature system may be mimicked by augmenting phase space
with an additional variable s that acts to rescale the velocities.!> The Hamilto-

158, Nosé, A unified formulation of the constant temperature molecular dynamics methods,
J. Chem. Phys. 81 (1984), 511. H. J. C. Berendsen, J. P. M. Potsma, W. F. van Gun-
steren, A. DiNola, and J. R. Haak, Molecular dynamics with coupling to an external bath, J.
Chem. Phys. 81 (1984}, 3684. W. G. Hoover, Canonical dynamics: Equilibrium phase space
distributions, Phys. Rev. A 31 (1985}, 1695.
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nian may be taken to be

1
2ms?

N 2
S PP+ UE) + ;’—Q +3NkgTlns,  (13.59)

where @ is the ‘mass’ of the new coordinate and v is its momentum. Again the
Newtonian form reveals the nature of the procedure,

N
. —1 — 9 3NEkgT
oG e

H(q"V,pV;s,v) =

=1

Q | 2ms® ¢
2 N
= 0 [K (p™)
where K(p") is the instantaneous kinetic energy of the system. If the latter is
larger than the desired average value, one sees that the acceleration is positive,
leading to an increase in § and eventually to s. Such an increase in s decreases
the kinetic energy, as desired. The converse occurs if the kinetic encrgy is too
low.

One problem with these extended system methods is that the ‘masses’ M
and @ are somewhat arbitrary. Too large a value means that it takes the system
too long to adjust; in the limit that these go to infinity the method reduces to the
conventional (N, V, E) molecular dynamics technique. Conversely, too small a
mass decouples the ‘friction’ term, and long-lived, undamped oscillations about
the equilibrium value occur. It takes some trial and error to find an optimum
value.

A second difficulty is that the equations of motion are somewhat ad hoc.
There seems no compelling reason to choose these particular ones over other
similar versions, nor any well-defined procedure to develop new equations for
these or other systems. Also, it is unclear precisely what conventional ther-
modynamic system they correspond to, and how to relate the fluctuations that
occur in these systems to the actual fluctuations that occur in reality.

NkpgT
- 5”&} , (13.60)

2

13.4.8 Constraint Molecular Dynamics

A different approach to using molecular dynamics for an isothermal system is
to alter the equations of motion. One introduces fictitious forces that constrain
the system to comserve desired properties.!® The equation for the velocity is
unchanged,

. oH(qN,p™)
= ) = pi/m, 13.61
q o0, pi/m (13.61)
but the acceleration is given by
pi =F; +1, (13.62)

18W. G. Hoover, A. J. C. Ladd, and B. Moran, High strain rate plastic flow studied by
nonequilibrium molecular dynamics, Phys. Rev. Lett. 48 (1982}, 1818. D. J. Evans and G. P.
Morriss, Non-Newtonian molecular dynamics, Comput. Phys. Rep. 1 (1984), 297.
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where F; = —0H /dq; is the usual force and f; is the non-Hamiltonian fictitious
force of constraint.

For the case of an isothermal system one wants to constrain the kinetic
energy to equal the thermal energy,

1 N
_ b Z _3 kBT (13.63)
m :

The way to do this is to insist that the time derivative vanish, K = 0, or

1 1
= — i Pi=— T AN 13.64
m;p p m;p [F; + )] (13.64)

This alone is not sufficient to determine the force of constraint. The extra
information is supplied by Gauss’ principle of least constraint, which holds that
the fictional force should be as small as possible. The latter is taken in a least-
squares sense, so that one should minimise

N
c=> f (13.65)
i=1

subject to the constraint K = 0. That is,

dle + AK] A

0= =2f; + —ps, 13.66
5, +—p (13.66)
or f; = ap;. The Lagrange multiplier is determined by the constraint equation,
N
I - F;
a= ZN1=+I’. (13.67)
> =1 Pi P
Accordingly, the acceleration is given by
N
—1Pi - Fy
mé; = F; — ;pri. (13.68)
Zi:l Pi - P:

These non-Hamiltonian equations of motion guarantee that the kinetic energy
will remain constant during the trajectory. In this regard the fictitious force is
much stronger than the friction force of the preceding section, which only keeps
the kinetic energy constant on average.

Conversely, however, a system obeying these equations of motion is neither
constant energy nor constant temperature. It is a constant kinetic energy sys-
tem, which is not one of the systems of classical thermodynamics. Hence the
fluctuations in (potential) energy are not the same as the fluctuations of a clas-
sical system. The phase space probability density that corresponds to these
equations of motion is unknown.

An additional caveat is that the full consequences of altering the equations of
motion are unknown. Although one has sought to minimise the influence of the
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fictitious force by invoking Gauss’ principle, it is unclear whether the constraint
itself is too strong; possibly some smaller constraint could be used. Despite these
reservations, there is empirical evidence that the averages obtained with these
types of non-Hamiltonian molecular dynamics are comparable to those obtained
with more traditional methods. In this regard the extended system approach
and the constraint methods offer flexibility in the choice of trajectory that can
be fine-tuned to optimise the efficiency of the simulation. This represents an
interesting convergence of molecular dynamics and Monte Carlo methods that
increasingly makes them feasible for more complex systems.

13.4.9 Stochastic Molecular Dynamics

A hybrid simulation technique that combines molecular dynamics and Monte
Carlo has been motivated by the underlying philosophy of this book, which
seeks a physical realisation of statistical mechanics. In this method, which may
be called stochastic dynamics, the external or coustraint force f; that appears in
Eq. (13.62) is interpreted as a weak random force that arises from the reservoir.
For the case of a thermal reservoir, the statistical nature of the perturbations is
such that the Boltzmann distribution is ensured, p(T|N.V, T) o exp —H(T).17
The algorithm consists of a deterministic part and a stochastic part. The
trajectory may be written as a Markov chain by discretising time ¢ in steps of
length A;. The ‘natural’ Hamiltonian evolution of the subsystem i
Got+ A1) = qialt) + Aypia(t)/m
Pt + A1) = pialt) + ArFia(t). (13.69)
(This has been written in the simplest form. In practice one often solves the
natural motion to higher-order accuracy than this.) This deterministic step is
augented by a stochastic step,
Gia(t+ A1) = g (t+4)
piw(t + At) = P?,V (f + Af) + Affi(v(t + Ai) (1370)
One must choose the stochastic force in such a way that the Boltzmann
distribution is stationary with respect to these equations of motion. In general

the evolution of a probability distribution under the action of such a transition
probability is given by

Here T(I'3;T'y) gives the probability of being in the state T'y at time ¢4+ A given
that the system was in the state T'; at time ¢, and it is obviously normalised,

ITH. C. Andersen, Molecular dynamics simulation at constant pressure and/or temperature,
J. Chem. Phys. 72 (1980), 2384, gives a hybrid method similar to that discussed here. In
Andersen’s method the momentum of a randomly chosen particle is replaced by a new value
randomly drawn from the Boltzmann distribution, whereas here it is changed by a small
perturbation.
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For deterministic equations of motion, the transition probability is
T(T; ) = 5<F1 + AT — Fz) ) (13.73)

where I’y = I'(T';). Inserting this in the evolution equation and taking the limit
Ay — 0, it is straightforward to show that this gives Liouville’s theorem for the
deterministic evolution of a statistical ensemble

%’—t—) + V- [Tp(T,t)] =0. (13.74)
Because energy is conserved by Hamilton’s equations, the second term vanishes
for any distribution that is a function of the Hamiltonian, and hence the Boltz-
mann distribution is stationary during the deterministic natural evolution.

In the stochastic case, at equilibrium, the probability of the states are pro-
portional to their weights, which arise from the transition probabilities. If the
transition from 1 to 2 is more likely than that from 2 to 1, then state 2 is more
likely than state 1 by the same factor,

T(Ty;Th) _ ()

= ) 13.75
T(CiTy) ~ p(T) 13.75)

Such transition probabilities are reversible,
T(To;T)p(T1,t) = T(T1;02) (T, t), (13.76)

which is to say that the forward transition is just as likely to occur as the re-
verse transition. (Note the distinction between 7 (1;2), which is the conditional
probability of a particular transition, and 7 (1;2)p(2), which is the probability
of a particular transition.) In this case the equilibrium or steady state condition
is automatically satisfied

Tyt +4A,) = /drlT(Fz;Fl)p(Fl;t)

/dI‘1 T(Fl; Fz) p(l"z; t)
p(Ty;1). (13.77)

Hence by choosing the stochastic transition probabilities 7;, so that they
are reversible, then the Boltzmann distribution will be stationary. This is easy
to achieve since the Boltzmann distribution itself factors into the product of
components of the momenta, and one only must ensure microscopic reversibility
for each. A convenient choice is that of Metropolis,

1 * *
Twirkh) = ad(8,)+ 3000 +8,)0" ~ 4y)

x [0(—AH) + 0(AH)e PAT] (13.78)
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where the rejection (same-state) factor ensures the correct normalisation and is
given by

/p A, [0(~AH) + 6(AT)eHAH] (13.79)

—-p

a=1-—

2p*
with clearly 0 < a < 1. Here 8 is the Heaviside step function, the change in
momentum is A, = p;o — pY,,, the change in energy is AH = [p?, — (p,)?]/2m,
and p* is the maximum change in momentum, which is related to the maximum
stochastic force from the reservoir, f* = p*/A,. One can readily confirm that
with the Metropolis choice,

e~ p1/2mksT o—P3/2mknT
; - T ;/) bl
(p2i1) V2mmkgT (Pr;p2) 2rmkgT

and hence that the Boltzinann distribution is stationary under the total transi-
tion probability.
The implementation of the Metropolis algorithm begins with a trial move

(13.80)

P =10, + A, (13.81)

where Ay = A, fiy is a random number uniformly distributed on [—p*, p*]. The
change in energy of the trial move is

AH(T) = [0, + D)2 — (0,)%] /2m. (13.82)

[Xed

and the move is accepted if, and ouly if,
e PAH > ¢ (13.83)

where £ is a random number uniformly distributed on [0,1]. If the trial move
is rejected oue goes to the next component of momentum, leaving this one
unchanged from its deterministic evolution.

Note that although this stochastic step only depends upon the change in ki-
netic energy, the phase space probability density is not proportional to a Boltz-
mann factor of the kinetic energy alone because the latter is not a constant
of the natural motion and so gk is not an ecigenvector of 7. Also, the maxi-
mum step in momentum is typically related to the root mean square velocity,
p* = AVvmkgT, where A =0.1-0.01. In practice A is decreased as equilibration
proceeds. An acceptance rate of 98% is typical.

In the usual Monte Carlo simulation technique, a trial move that decreases
energy is more likely to be accepted than one that gives an energy increase.
However, there are many more trial moves that lead to an energy increase than
there are moves that decrease energy, and in equilibrium these tendencies are in
balance.'® This equilibrium balance, and the precise way in which it is achieved,

181t follows that because there are a larger number of states at higher energy, random
numerical errors are likely to increase the encrgy of the system. This explains the small
but monotonic increase in energy and temperature observed in conventional constant energy
molecular dynamics simulations.
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is manifest by temperature equality of the subsystem and the reservoir. One
can see this from the macrostate transition probability, 7 (Ey + AE; Ey), where
AE is change in the Hamiltonian after a full step in the Markov chain. Invoking
the simplest ansatz that obeys the steady state condition, namely that this is
just proportional to the probability of the destination macrostate (and is O if
|Ap| > E*/2), one has

T(EO -+ AE, Eo)

= p(Eo+ AE|T)

_LGS(E(H-AE)/kBe—(E0+AE)/kBT
"(T)

L IS(Bo)+AB/T.(Eo) ks ~(Bo+AE) ke T
Z'(T)

N

1 A
_ BAE .
= ———— Ap| < E*/2, 13.84
S e 1Asl < B (13.8)
where the difference in the reciprocal temperature of the subsystem and the
reservoir is kpAf = TS(EO)*1 — T71. This uses the fact that the macrostate
probability is proportional to the exponential of the macrostate entropy. With
this the average change in energy is

_E)r 1 1
(AE)p, = o (TS(Eo) - T) . (13.85)

This shows that if the subsystem temperature is too low, the average change
in energy is toward higher-energy states, and vice versa. The first term is due
to the greater number of states available to the subsystem at higher energies,
and the second term represents the loss of entropy by the reservoir at higher
subsystem energies.

It is of interest to contrast this result for the average change in an energy
macrostate with the average change in momentum for a momentum microstate.
Using the Metropolis algorithm of the present method, one can show that the
average change in momentum for a component of momentum p at each stochastic
step is

Ay ~ =0
P 6mkgT
This says that provided the speed is not too small, it is most likely to decrease
from its current value. This must be the case because the Boltzmann distribu-
tion of microstates is a monotonically decreasing function of speed. Given that
the system is in an unlikely state it must favour transitions to more likely states
than to less likely states simply to maintain the steady state. This is in contrast
to the transitions between energy macrostates found above, which can be pos-
itive or negative because the energy probability distribution is nonmonotonic
due to the combination of the increase of subsystem entropy with subsystem
energy and the decrease of reservoir entropy with subsystem energy. In other
words, there is no internal entropy for the momentum microstate, and so the
term involving the temperature of the subsystem is missing.

p, |p| > p*/2. (13.86)
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Summary

Computer simulations readily yield the properties of a system of 10?-10*
atoms. Molecular dynamics follows the trajectory through phase space
according to Hamilton’s equations of motion. Thermodynamic and statis-
tical properties for the closed system are collected as simple time averages.

The Monte Carlo method is a stochastic approach that generates config-
urations of the atoms with weight proportional to the desired probability
distribution, usually constant temperature. The common way of doing
this is via the Metropolis algorithm. Averages are simple averages over
the configurations.

An infinite system is mimicked by using periodic boundary conditions.
The pair potential is generally truncated and a tail correction added for
the averages. Neighbour tables are used to facilitate the treatment of large
systems. Confined and inhomogeneous systems may also be simulated.

Monte Carlo can be used to simulate both isobaric and grand canonical
systems by including volume moves and particle insertions in the configu-
rations. Omne can improve the statistics of a simulation by increasing the
number of moves relevant to a property of interest (preferential sampling),
or by using a non-Boltzmann weight to generate more of the relevant con-
figurations (importance or umbrella sampling).

Molecular dynamics yields time correlation functions. which can be used to
obtain the hydrodynamic transport cocfficients. It can be used to simulate
nonisolated systems by using extensions of phase space that include the
motion of extra variables in the trajectory. Constraint methods that utilise
non-Hamiltonian equations of motion, and stochastic forces that mimic the
influence of a reservoir, can also be used.



Appendix A

Nature of Probability

A.1 Set Theory

Consider the finite denumerable set T of outcomes of an event. Denote the
possible outcomes by the elements o = 1,2,...,m, and the various sets of
outcomes by a, b, etc. For example, the event might be rearrangements of the
eggs in a carton able to hold half a dozen eggs, and the outcome might be the cell
occupied by one particular egg. One could have a as the set of even numbered
cells, b could be the set of cells numbered less than or equal to 3, etc.

Form an algebra consisting of the binary operators conjunction, ab (read a
and b, occasionally to be written as a,b), disjunction a + b (read a or b), and
the unary negation operator @ (read not ¢). The conjunction of two sets is their
intersection, which is the set of elements they have in common. The disjunction
of two sets is their union, which is the set of elements they have in total. The
negation or complement of a set is the set of elements not in the set. In the
example above, ab is an even number less than or equal to 3 (i.e., the second
cell), a + b is the set of numbers that is even or less than or equal to 3, which
means that the egg could be in any cell but the fifth, and @ is the set of uneven
numbers. In contrast to ordinary algebra one has

ag =a, a+a=4a. (A1)

The usual rules of associativity and commutativity hold, a(b + ¢) = ab+ ac =
(b+ c)a. In terms of the fundamental elements one has by definition a8 = 0, if
a # (0 is the empty set), and > a=14+2+...+m="T.

The complement of a set is the set of all elements that are not in the set.
Hence

ac=0, a+a="T. (A.2)

Obviously @ = a. For negation of composition one has the rules that

ab=a+b, a-+b=ab. (A.3)

381
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If a subset ¢ is wholly contained within a subset b then

ab=a, b=a+b. (A.4)

(These two equations are the same; the right one follows by disjoining b to the
left one.) If the left equation is negated, then it is converted to that on the right
with b replaced by @ and «a replaced by b,

=
+
|
Il
Rl
<>
Il
2l

(A5)

which is to say that not b is contained within not a. For example, the set ¢ = 2
is contained within the set of even numbers, a, so that ac = ¢. Conversely the
set of numbers not equal to 2, ¢, contains the set of uneven numbers @, ac =a.

A.2 Laws of Probability

Attach to each of the elements of the set a positive weight we, and define
the probability of an element to be p, = wq/ Za wy - The probability is a
number between 0 and 1, with 0 corresponding to an impossible outcome and
1 corresponding to a certain outcome. The weight of a set a is the sum of the
weights of its elements, and similarly for its probability,

p(a) =) pa- (A.6)
aca

The probability of the empty set is 0, and that of the entire set is one. For
conjunction (read the probability of ¢ and b), onc has

pab) = > pa, (A.7)

acab

and for disjunction (read the probability of a or b),

platd) = > pa

a€(a+b)
= Zpa+z@a_zpa
a€a a€b wEab
= pla) +p(b) — p(ab). (A.8)

The final term corrects for double counting the common elements. For negation
(read the probability of not a),

p(a@) = Z Pa = Z@a - Z Pa;=1— pla). (A.9)
aca a aca

If the outcome of an event is known to be one of the elements in a set ¢, then
the probabilities should be modified since ¢ is now effectively the whole set of
possible outcomes. The probability of a set a given that the outcome is in the
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set ¢ is written as gp(alc) (read the probability of ¢ given ¢), and it is the weight
of the common elements divided by the weight of the set, or equivalently

ale) = @(ac) ) 1

oale) = 2 (4.10)
In the case that the sets have no common elements, p(alc) = 0, which says that
given an outcotne in ¢, then an outcome not in ¢ is impossible. In the case that
c is entirely in a, ac = ¢, then p(a]c) = 1 (i.e., if the outcome that occurred is in
¢, then it is certain that it is in @). If ¢ is entirely in ¢ (ac = a), then p(a|c) =
p(a)/p(c), so that the probability of ¢ is the fraction of ¢ that it occupies. In
view of this last result one could write p(a) = p(a|T). The law of disjunction
also holds for conditioned probabilities, g(a + blc) = p(ajc) + p(blc) — p(able),
as may be confirmed explicitly. The law of conditional probability may be
rewritten p(ablc) = p(albe)p(blc) = p(blac)p(alc), and so

p(blac)
plalbe) = plalc). All
) = S otalo (A1)
This is known as Bayes’ theorem. The denominator may be written
p(ble) = p(bla+a)lc)

p(balc) + p(balc)
p(blac)p(ale) + p(blac)p(alc), (A.12)

which says that the probability of an outcome may be written as the weighted
sum of probabilities conditioned on exclusive outcomes.

A.3 Probability and Entropy

This section summarises the formulae for probability in terms of the weight of
microstates and macrostates, and defines entropy in terms of these. Formulae
for the discrete and for the continuum are given alternately.

In the discrete case the microstates of the total set are labelled by ¢ and the
microstate weight is w;. The total weight is

W=> w. (A.13)

In the case of the continuum the points of the n-dimensional space are denoted
by x and the weight density is w(x). The total weight is

W = /dxw(x). (A.14)

Note that the weight density is measured with respect to the volume element
dx.
The probability that the system will be found in the microstate ¢ is

W 1
i = T (A.15)
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and the probability that the system will be found within dx of x is

——dx. (A.16)

These are evidently normalised,
L= D e
i
/dx p(x), (A.17)

and the average of a function is
(9) = Z £i9i
/dx p(x)g(x). (A.18)

A macrostate is a set of microstates. The set of macrostates that are labelled
by « are disjoint (i.e., a microstate belongs to only one such macrostate) and
complete (i.e., all microstates belong to one or other of the macrostates). The
characteristic function for the macrostate « is

(i|o) = 1, 1€«
XY= 90, otherwise.

The continuum analogue of a macrostate is a hypersurface of the space, which
in general is characterised by the constant value of m < n functions, F(x) = f.
The constant m-dimensional vector f labels the hypersurface, and the set of
hypersurfaces so labelled are both disjoint and complete. The characteristic
function for the hypersurface f is

(A.19)

b

x(x|f) = D(F,x)6(F(x) — ), (A.20)

where the generalised Jacobean is given by

D(F,x)* = Z IZ(’”)EIZ- (A.21)

i1 <t2<...<im

The dyadic matrix whose determinant appears here has elements 0F;/0z;,
where i € {1,2,...,m} and j € {i1,42,...,im}-
The number of states in the macrostate is

> x(ile)
=), (A.22)

1€

Ny
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and the area of the hypersurface is
)~ [ et
= / dydf D(F, x)8(F(x) — f)

- ]{ dy . (A.23)

Here dy is the element of area of the hypersurface, which has dimension n — m.
The relationship with the volume element is

dx = dydf = dydf/D(F, x). (A.24)

The normal to the hypersurface in the correct length scale is df. Evidently then,
the generalised jacobean serves to convert the element df to the correct units.
A point in space can be represented in either of the two coordinate systems
x = x(y, f), or (y,f) = (y(x),F(x)). By definition, F(x(y,f)) = f.

The weight of the macrostate is

W = Zx(z'[oz)w

A
The weight density of the hypersurface measured with respect to df is

w(f) = /dxé(F(x)—f)w(x)

_ Cwx(y,f))
o D F x(y,f)) (A-26)

It is also possible to formulate a weight density measured with respect to af ,
namely

w(f) = /dxx(x|f)w(x)
7£dyw(x(y7 f)). (A.27)

One can use this to give a probability density @(f)df = &(f)df/W, and also
the conditional probability for phase space given that the system is within af
of the hypersurface. However, this measure of the thickness of the hypersurface
appears less relevent than the measure df.

The probability that the system is in a microstate corresponding to the
macrostate « is

Po = W (A.QS)
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and the probability that the system is within df of f is
w(f)df
T

The discrete probability is evidently normalised since
OIS 9 SIS R (a30)
«
which follows from the disjoint and complete nature of the macrostates,

> x(ila) =1. (A.31)

p(f)df = (A.29)

The continuum probability density is also normalised,

/dfw(f) = /df /dxé(F(x) — fw(x)
/dxw(x)

= W (A.32)

The disjoint and complete nature of the hypersurfaces is manifest by

/df‘D(F,x)é(F(x) —f) = /df §(F(x) —f) = 1. (A.33)

The conditional probability for the system being in the microstate i given
that it is in the macrostate o is

plilo) = Z—ix(uu). (A.34)

The conditional probability for the system being at x given that it is within df
of the hypersurface f is

w(x)
x|f) = —=4§(F(x) — ). A.35
o(xlf) = AR~ 1) (4.35)
It is readily verified that this conditional probability is correctly normalised.
Since the microstate belongs to one and only macrostate one has

, Wi . We
? v T | (X
; p(ila)p Z o Xl 37

= % x(iler)

x

Similarly, a point in the phase space is on one and only one hypersurface, so
that one also has

[atotition = [ ar 25w - n4id

= px). (A.37)
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These results are a manifestation of Eq. (A.12).
One may restrict attention to the macrostate o only and write
Wy

P @)= =, i€a (A.38)

We

In the continuum case one may restrict attention to being within df of the
hypersurface f only,

w(x(y, f)) dy
w(f)  D(F,x(y,f))

P (y)dy = (A.39)

In both cases these are the respective conditional probabilities divided by the
characteristic function x. It is evident that both restricted probabilities are
normalised over the hypersurface.

Entropy
In both the discrete and the continuum cases the total entropy is

S=kplnW. (A.40)
The entropy of the microstate may be defined as

S; = kg lnw;, (A.41)

and the entropy of a point in the space may be defined as

S(x) = kg In [w(x)A(x)] . (A.42)
Consequently one may write the microstate probability as
S /kn
i = (A.43)
and the probability density as
eS(x)/kp
p(x) = W (A.44)

Here A(x) is a completely arbitrary volume element that is of no physical con-
sequence.
Similarly, the entropy of a macrostate may be defined as

Sa = kp Inw,, (A.45)
and consequently the macrostate probability may be written
es(x /kB
= A.46
o W (A.46)

Similarly, the entropy of the hypersurface may be defined as
S(f) = kpIn [w(f)A(T)]. (A.47)
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Consequently the probability density on it may be written
eS(f)/ks

p(f)df = < e (A.48)

Again A(f) is arbitrary and of no consequence.
One also can write the total entropy as a sum over the macrostate entropy,

S = k‘B InW
= Z @ak‘B InW
= Z Pa [Sa —kgln @a] s (A.49)

and as an integral over the hypersurface,
S = kglnW
= /df p(fkgIn W (A.50)

= /df () [S(f) — ks In {p(f)A(£)}].
A similar result holds for the sum over microstates,
S= Z pi [Si — kglng;], (A.51)
i
and for the integral over the space itself,

S = /dxg; — kg ln {p(x)A(x)}]. (A.52)

One can also define the discrete restricted entropy
S@(4) = kglnwy;, i € a, (A.53)

which is the same as S(4) for ¢ € «, and the restricted probability is proportional
to its exponential. In terms of the latter the entropy of the macrostate may be
written

S5, = kplnw,

Z Pl [ S (i) - kg In Wm)(i)}

ca

= 3 e [ ~ kplnpl© ()}. (A.54)

i€

In the continuum the restricted entropy is

w(x(y, f))

SO =kaln [D(F (3, )

A(y)A(f)} , (A.55)
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and the restricted probability density is the exponential of this. In terms of the
restricted probability density the entropy of the macrostate is

S(f) = kplhnw(f)A(f))
Fay o) [s0) -~ ko n {50 )Am) )] (A.56)
The above formalism for the continuum is invariant with respect to a change
of variable. Given some z(x) one has
Ix  p(x) _ wix)  A)

G e @) AR (A.57)

A.4 Interpretation of Probability

As shown in the first chapter, there is an intirnate connection between entropy
and probability. Statistical mechanics uses probability constantly, as do other
scientific and mathematical disciplines. Probability occurs so widely in every-
day life that almost everyone has some idea of the meaning of odds, chance, and
likelihood. Even more significant, although less well known, is the fact that the
laws of probability are those of inductive reasoning and of rational behaviour.
As such no field of human endeavour is unaffected by probability. For these
reasons it is worthwhile to explore the meaning of probability in a broad con-
text, and to be aware of various schools of thought, since these influence the
specific interpretation that one makes of entropy and the other phenomena of
thermodynamics and statistical mechanics.

At least three of the philosophical positions that have heen adopted find
some currency in statistical mechanics. The first and most common notion of
probability is that of frequency, namely that the probability of the outcome of
an event is proportional to the number of times that it recurs in a long sequence
of trials. The second view holds that probability is a physical property. To this
school belongs the idea of proportion: probabilities are the ratio of favourable
possibilities to the total number of possibilities. (This was the position taken
implicitly in the usage of probability in the above discussion.) A related view-
point holds that the apparent randomness of deterministic outcomes is due to
a sensitivity to the differing initial conditions between trials: the probability
of an outcome is proportional to the volume of the space of initial conditions
that leads to that outcome. The third and arguably the most radical position
is that the probability of an outcome is the degree of reasonable belief that
the outcome will occur. This subjectivist interpretation is widespread amongst
Bayesian statisticians, and depends upon the connection between probability
and logic, as explained below.

These three probabilities may be called frequency, proportion, and credi-
bility, respectively. One cannot reasonably expect one of these to hold for all
applications of probability, and arguably one should not speak of the interpre-
tation of probability, but rather the interpretation appropriate in a particular
circumstance. An interpretation of probability is viable if it obeys the laws of
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probability. To test this one needs to identify the outcomes and the elements of
the set upon which it is based, and to show that these elements have a positive
additive weight.

A.4.1 Frequency

In the frequency interpretation of probability the weight attached to the ele-
ments is just the number of times that that outcome occurred in many repeated
trials of an event. For N trials the probability of the outcome o is No/N. The
weight is obviously positive, and equally obvious is the fact that the weight of
a set of outcomes is the total nurnber of times any element in the set appeared,
which is just the sum of the weights of the elements in the set.

This is enough to show that frequency satisfies the laws of probability, but
it is a worthwhile exercise to treat conditional probability explicitly. The con-
ditional probability represents counting only those outcomes of the trials that
were in a particular subset, say b. The frequency with which any element in the
set ¢ occurs under this restriction, p(alb), is the number of times any element of
a that was also in b occurred, which is Ny, divided by the number of restricted
trials, which is just N,. However, this is p(alb) = Nup/N;, = p(ab)/e(b), which
is the required law of conditional probability.

Since frequency obeys the same laws as probability, it is a viable candidate
for probability. As mentioned above, it is the most widespread interpretation
of probability and it is a view held by commoners and professional statisti-
cians alike. In statistical mechanics, the frequency interpretation is implicit in
the time averages over a trajectory in phase space, coufiguration averages in
computer simulations, and the cnsemble averages of Gibbs. Whether or not
probability can always be interpreted as a frequency, there are situations where
one is genuinely dealing with a frequency, and in these cases frequencies must
be manipulated according to the laws of probability.

Oun several points the frequency interpretation of probability is unsatisfac-
tory. As is well known, the number of times a particular outcome occurs varies
between different trials. In consequence the frequency and hence the probability
that one assigns must also differ despite the fact that it is the same physical
process. It is commonly recognised that the frequency approximately equals the
probability, with negligible relative error in a long series of trials, but such a
recognition indicates that frequency cannot be identical to probability, but is
rather a consequence of it. Another problem with frequency is the fact that it
can only be calculated after the trial, which means that one cannot assign a
probability beforchand. Further, there are many once-only events to which one
might wish to assign a probability (e.g., a horse race), and one cannot physically
carry out repeated trials of these. In these case frequentists think of a fictitious
trial of repetitious events and speak of probability as referring to the frequency
of the outcome in this imaginary world. The ensemble averages devised by
Gibbs belong to this class. Obviously to maintain the frequency interpretation
of probability for once-only events requires a certain level of mental gymnastics
and a vivid imagination. It is arguable that in these cases probability should
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more properly be classified as a belief, and one should explicitly recognize that
frequency is being used as the scale of credibility.

A.4.2 Proportion

The second class of interpretations of probability take it to be a physical prop-
erty of the event. In this objective view probability may be called proportion
or measure. (Popper, in his objective philosophy of science, called it propen-
sity.!) The most straightforward argument says that the probability of a set of
outcomes is the proportion of the elementary outcomes that helong to the set,
assuming that the elementary outcomes are all equivalent. This proportional-
ity rule obviously satisfies all the laws of probability because the weights are
obtained simply by counting elements. In many cases the elements are not all
equivalent, and they will have attached to them a weight set by the physics of
the event. Provided that this weight is positive and additive, proportion will by
definition still obey the laws of probability.

Quantum mechanics takes randomness and probability as axiomatic. In con-
trast the existence of randomness in the deterministic world of classical mechan-
ics is problematic. One approach that yields probability as proportion supposes
that the outcome of an event is determined by the initial conditions, and that
a trial of apparently identical events actually consists of choosing from amongst
sets of slightly different initial conditions. Randomness and variability occur
because the sensitivity of the system is greater than the differences between the
initial conditions of each event (i.e., it is a consequence of limited resolution and
control). One identifies a space of initial conditions in which each point maps
to an elementary outcome, and every point has one such outcome; each element
is characterised by a set of points in the space. The weight of an element is the
volume of the corresponding space,

waz/ dx x(z, o), (A.58)
X

where x(z, «) is the characteristic function (it equals 1 if the conditions z would
have lead to the outcome «, and is 0 otherwise). Obviously this is a positive,
additive weight, as is required to satisfy the laws of probability. Explicitly, since
the conditional probability p(ald) is the probability of an outcome in ¢ given
that only outcomes in b are possible, one has

Jg dz x(2, a)
alb = r
olal) o
fX dz X(I, ab)
Jx dz x(z,b)
g"p(&b)) , (A.59)

1K. R. Popper, The propensity interpretation of probability, Brit. J. Philos. Sci. 10
(1959), 25.



392 APPENDIX A. NATURE OF PROBABILITY

where B is the domain that maps to b, and X is the entire space. In this
view, the probability of an outcome is the proportion of space that its initial
conditions occupy. Bayes’ theorem follows from this,
p(bla)

olalt) = 25 ola). (4.60)
In the interpretation of probability as measure, the probability on the left is
that of a given that the outcome b occurs, which acts as a physical constraint
or limitation on the possible initial conditions, and on the right p(a) is the
probability of a unconstrained by any such limitation. It is important to under-
stand that the outcome b need not be causally related to the outcome a, even
if p(alb) # p(a).

Probability as proportion is firmly a physical attribute that satisfies intuition
that probability has an objective reality. It seems reasonable that the probabil-
ity of an outcome should have an independent existence prior to an event and
apart from the mind of the observer. It avoids the problems of the frequency
interpretation in that it does not require repetitions, either real or imaginary,
and as such can comfortably handle once-only events. The physical interpreta-
tion of probability can be criticised as being circular, since the weights of the
elements are required (e.g., the measure of the space of initial conditions), and
that in many cases the existence and identification of the fundamental elements
may not be at all obvious. The argument in rebuttal of these criticisms is that
both are characteristic of the physical process or algorithm that is the basis of
the event, and whether they are known to an observer will affect only the values
calculated for probability, not the objective reality of the random process itself.

A.4.3 Credibility

The third interpretation of probability is a subjective one, namely that it is the
degree of rational belief that a particular outcome will occur. This approach
is radical in the sense that it is the most basie (it can be traced to Bayes and
Laplace), and also in the sense that it is the least conventional; professional
statisticians are particularly antagonised by the subjectivist viewpoint.

In order to establish the viability of the credibility interpretation of proba-
bility, one needs to show the connection with logic. One approach is due to Cox,
who cast set theory iu the language of assertions.?  For example, the element
1 could stand for the assertion ‘there is an egg in the first cell’, the set a for
the assertion ‘there arc n eggs in the first carton’, b = ‘the second set of cells is
fully occupied’, etc. The truth or falsity of assertions is the stuff of Aristotelean
logic. Since the elements of the set are assertions about the possible outcomes
of an event, then one can define the true element to be the once that asserts the
actual outcome observed. All other elements are false. Define a set to be true if
it contains the true element, and it is false otherwise. With this definition it is

2R. T. Cox, The Algebra of Probable Inference, Johns Hopkins Press, Baltimore, MD, 1961.
R. T. Cox, Of inference and inquiry: An essay in inductive logic, in The Mazimum Entropy
Formalism, (R. D. Levine and M. Tribus, Eds.), MIT Press, Cambridge, MA, 1978.
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easy to see that the conjunction of sets is true if all of the sets are true, and is
false if any of them is false. Also the union of sets is false if all of them are false,
and is true if any of them are true. These are the familiar rules of deductive
logic, as enunciated by Aristotle.

Implication plays the same réle in Aristotelean logic that proper subsets play
in set theory. One says that if a is a proper subset of b, ab = a, then ¢« = b
(read a implies b). It follows from set theory that if a implies b, and a is true,
then b is true. Also, if ab = a, then ba = b, which is to say that b = @. In
other words, if ¢ implies b and b is false, then a is false, which is the well-known
Aristotelean syllogism.

Obviously taking assertions to be only true or false is an extreme simplifica-
tion of the real world. The weight attached to statements forms a continuum,
and real thinking is far richer than Aristotelean logic allows. Consider for exam-
ple the case of implication, ¢ = b. If one is told that ¢ is true, then one deduces
that b is true. However, what if one is told that b is true? On this Aristotle
is silent, yet in practice most people would say that a is now more likely to be
true. This is an example of inductive or inferential reasoning: the information
about b has strengthened the belief in a.

This can be made clearer by way of example. Since one must break eggs
to make an omelette, the assertion a = ‘omelette’ implies the assertion b =
‘broken eggs’, because ab = a. Hence given an omelette, one knows that eggs
were broken, ¢ = b, and if onc knows that no cggs werc broken then one deduces
that there will be no omelette, b = @. If one is told that eggs were broken then
one cannot be certain that an omelette is on the menu, but nevertheless one’s
anticipation of an omelette is the greater for knowing it; broken eggs induce
salivation.

Probability theory quantifies the strength of one’s beliefs when one has lim-
ited information. Suppose then in dealing with the set of assertions about the
possible elemental outcomes of an event it is unknown whether an assertion
about an elemental outcome is true, but rather the state of an assertion about a
particular set of outcomes is known. (For example, one is told that there are n
eggs in a carton.) This is clearly less information than is provided by knowing
the actual elemental outcome, which would have determined the state of all the
sets of outcomes. (For example, knowing the configuration gives the number
of eggs in the carton, whether a particular cell is occupied, etc.) The subsets
of the set of assertions about the possible outcomes are now true, false, or in-
determinate, and the problem is to give a value to the indeterminate subsets
that represents how likely they are to be true. (For example, told that there are
eight eggs in a standard dozen-egg carton, one might conclude that it is more
likely than not that the assertion that the first cell is occupied is true.)

Drawing conclusions from limited information is the problem of inference,
and it is the law of conditional probability that generalizes the Aristotelean law
of implication and that is in accord with the familiar practice of inductive rea-
soning. The formula p(ablc) = p(blac)p(alc) does indeed behave satisfactorily.
If @ implies b (ab = a), one sees that g(blac) = 1, which is to say that b is true
if a is true. This is of course the Aristotelean case. In the opposite case that b
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implies ¢ (ab = b), one has p(blac) = p(ablc)/plalc) = p(blc)/p(ale) > p(ble),
since p(alc) < 1. This is what inductive reasoning suggests (if b implies a, the
truth of a increases the credibility of b), but which is beyond Aristotelean logic.

The algebra of assertions and the above examples demonstrate the connec-
tion between probability and inductive or inferential reasoning. In this approach
the probability of an event represents the degree of rational belief that the event
will occur. Although unashamedly subjectivist, the laws of probability offer a
prescription that ensures that rational individuals with the same information
possess the same beliefs. Beliefs arc modified in the light of new information or
data, and the mechanism for this is Bayes’ theorem,

p(blac)
p(bic)
The difference between the probability of ¢ that appears on each side of this
equation is the data b. On the right is the degree of belief that would be assigned
a prior to knowing the data, and on the left is the modified belief given the
information b. In the interpretation of probability as credibility, Bayes’ theorem
characterises that inductive procedure known as learning from experience.

The subjectivist interpretation of probability as the degrec of reasonable
helief may be traced to Laplace, and is the one held most widely by Bayesian
statisticians. In this interpretation, the probability of an outcome to an event
is the strength with which one believes that the outcome will occur. The in-
terpretation is nontrivial because it insists upon rational beliefs, so that two
people with the same information will assign the same probability to an event.
Evidently this epistemological interpretation of probability can handle the once-
only events that were beyond the frequency interpretation. Indeed the imaginary
trials that frequentists sometimes invent are really a mental artifice for using
frequency as a gauge of credibility. Therc are a number of fields (eg. inference,
decision theory, game theory) where it is natural and appropriate to interpret
probability as a belief. The question is whether one ought always take prob-
ability to be the degree of reasonable belief, or whether there are problems in
which probability is actually a physical phenomenon independent of the mind
of the observer.

plalbc) = p(alc). (A.61)

A.5 Subjectivity and Objectivity

A.5.1 Subjectivity in Statistical Mechanics

The principle of maximum entropy, which has some currency in statistical me-
chanics and which is discussed in the next section, was developed by Jaynes,
who strongly advocated the subjectivist view of probability and who introduced
it in his formulation of statistical imechanics. The principle is very deep and gen-
eral and it has had a revolutionary impact wide-spread beyond the discipline.

3E. T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106 (1957), 620,
108 (1957), 171. R. D. Rosenkrantz (Ed.), E. T. Jaynes: Papers on Probability, Statistics,
and Statistical Physics, D. Reidel, Dordrecht, 1983.
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The class of problems that it addresses are those of inference, namely given
limited information or data estimate the value of some parameter. In practice
one communicates the probability distribution of the likely values of the param-
eter, which is interpreted as indicating one’s belief or confidence in those values.
The principle of maximum entropy states that the probability distribution that
should be used is the one that maximises the entropy constrained by the given
information.

In the subjectivist view probability measures beliefs, which are modified by
data or information, and entropy measures lack of information or ignorance.
The more information one has, the sharper and more constrained is the prob-
ability distribution and the lower is the entropy. For this reason subjectivists
often speak of the information entropy. Typically, when a subjectivist gives the
number of eggs in a carton as n + 4, they are communicating the strength of
their belief about the different possible allocations in the form of a probability
distribution. The known information or data (e.g., the average number observed
in a trial) acts as a constraint on the possible probability distributions that they
can choose. The principle of maximum entropy gives the recipe for finding the
correct probability distribution given certain information. This distribution is
the least biased distribution; any other distribution would either be inconsis-
tent with the information or have a lower entropy, which implies the existence of
additional constraints. Either these additional constraints are known, in which
case they should be explicitly taken into account, or they are not known, in
which case the lower entropy is a manifestation of an unjustified bias in ones
beliefs. It is the laws of probability and the principle of maximum entropy that
give the prescription for unbiased and rational beliefs.

The impact that the principle of maximum entropy has made on other fields
contrasts with its influence on statistical mechanics. This is ironic since its orig-
inal enunciation by Jaynes was in the context of deriving statistical mechanics,
and it remains arguably a coherent and logically consistent formulation of that
discipline. The reason for this resistance appears to be that most scientists re-
gard the world as having some objective reality, which it is their happy task to
uncover, and the subjectivist viewpoint is alien to this philosophy. The depen-
dence of the outcome of an experiment upon the knowledge of the observer, as in
Jaynes’ interpretation of statistical mechanics, or as in the general credibility in-
terpretation of probability, is unsettling and disconcerting to those accustomed
to dealing with physical phenomena. It is arguable that this interpretation over-
emphasises the role of the observer, and that it divorces probability from the
underlying physical causes. Many see it as peculiarly solipsistic to view entropy
as a measure of the ohserver’s uncertainty rather than of the disorder of the
system.

A.5.2 An Example: Which Came First?

The brief description of the subjectivist position above does not do it full justice,
and others would doubtless respond persuasively to the above criticisms. There
are a number of reasons why many Bayesians have come to eschew objective
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probabilities. It is not only that the subjective interpretation is viable, and that
inference is all-pervasive, but it is also because the objective interpretation can
give rise to apparent paradoxes and contradictions. A simple example serves to
illustrate one such paradox, namely an apparent violation of causality.

Consider once more the probability of the N-carton with n eggs gaining or
losing an egg. Here the focus is on transitions that actually result in the gain
or loss of an egg, so that the transition rule is to choose a cell at random in
the N-carton and to take the egg out if it is occupied, or to put an cgg in if it
is free. Denoting the gain of an egg by ‘+’, and a loss by ‘—’, the probability
of gaining an egg is p(+|n, N) = (N — n)/N, and that of losing an egg is
p(—[n,N) =n/N. For two consccutive transitions the outcome is described by
an ordered pair, with the first entry referring to the first transition, so that

p({+ +}n,N) = (N -n)(N-n-1)/N?
p({+,—}Hn, N) = (N —n)(n+1)/N?
p({— +}n,N) = n(N-n+1)/N?%

ol —}nN) = n(n—1)/N2

(A.62)

(For this example one assumes that all transitions are actually possible, so that
2 < n < N —2.) Denote the union of both possible outcomes by a dot, so
that @({+, - Hn,N) = p({+, +}n, N) + p{+, =}n. N) = p(+|n, N). Notice
that the probability of first gaining and then losing an egg, p({+.—}|n, N), is
not equal to the probability of losing and then gaining an egg, p({—, +}|n, N),
even though the final state consists of 1. eggs in both cases. In other words, the
trial is not exchangeable. (Exchangeability is not central to what follows; an
exchangeable trial is treated below.)

Now suppose that on the second transition an egg was gained. This should
decrease the likelihood of having gained an egg on the first transition, because
if first one had a gain, the probability of a loss sccond is increased, and that
of a gain sccond is decreased, and vice versa. Since a gain is actually observed
for the second transition, one should accordingly increase the probability that
an egg was lost on the first transition. To quantify this expectation one uses
Bayes’ theorem in the formn of conditional probability,

p{+ +H{+hn N)
p{+ +1Hn)

p({- +}n N)
_ (N=n)(N~-n—1) N?
N N? (N—=n)(N—n—1)+n(N-n+1)
N-n—1

N+@2n—-N)/(N—n)
(N —m)[L = 1/(N = n)]
N —N/(N —n)
(N —n)
N
= p({+, }n,N). (A.63)




Figure A.1: The space of possibilities for two transitions of a 7-egg carton
initially containing 3 eggs (in cells 1, 4, and 6). The number of each row corre-
sponds to the number of the cell chosen first, and the number of each column cor-
responds to the number of the cell chosen second. In the left-hand diagram the
light and dark squares represent first choosing an occupied and an unoccupied
eell, respectively, and the probability of choosing an egg on the first transition
irrespective of the outcome of the second may be seen to be p({+,-}|4,7) = 4/7.
In the right-hand diagram the shaded and unshaded squares represent choos-
ing an unoccupied and an occupied cell second. Here there are there are 15
light squares, 12 dark squares, and 22 unshaded squares, and the probability of
choosing an empty cell on the first transition given that an egg was gained on
the second may be seen to be p({+,+}{-,+},4,7) = 12/27.

Since the dot represents the union of both possible outcomes, the left side could
equally well be written p({+.-}|{-,+},n,N). One sees that gaining an egg
on the second transition has indeed decreased the probability that an egg had
already been gained on the first transition. This is illustrated in Fig. A.1.

The subjective interpretation of this result is straightforward: the strength
of one’s belief that an egg was gained on the first transition has been diminished
by the information that an egg was gained on the second transition. There is
evidently no difficulty in accepting that knowledge of the outcome of a later
event can affect one’s beliefs about the outcome of an earlier event.

The objective interpretation of this result is not so straightforward, and
some have concluded that it violates causality.? That is, since the probabilities
are a measure of some physical process, there is the apparent paradox that
the outcome of the later process has affected the earlier process. Lest such an
unphysical conclusion force the abandonment of the objective interpretation of
probability, the physical transition rule needs to be examined more closely. The

“This example was motivated by that given in support of the pure subjectivist position by
E. T. Jaynes, Clearing up mysteries —The original goals, in Mazimum Entropy and Bayesian
Methods (J. Skilling, Ed.), Kluwer, Dordrecht, 1989.
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rule corresponds to choosing two cells (not necessarily different) at random in
the carton, and then in turn reversing their contents. The initial space (or set
of microstates) is the set of all ordered pairs of cells, each of the N2 such pairs
being equally probable. A subset of this space corresponds to gaining an egg on
the second transition. Bayes’ theorem quantifies by how much the proportion of
ordered pairs that correspond to gaining an egg on the first transition is smaller
on this subset than on the full set. The result does not say that the outcome
of the second event affected the first, but rather that the set of microstates
that could have led to the outcome of the second event is different to the set of
all microstates. Causality rules, and the objective interpretation of probability
remains viable.

It is worth noting in this example that the manipulation of the probabilities
and the quantitative results were identical in both the subjective and objective
interpretations. This is a general rule: the laws of probability are fixed and
immutable, and it is only in their interpretation that one has any flexibility.

A.5.3 Bernoulli Trials and Prior Distributions

An example that is unavoidably subjective is as follows. From an N-egg carton
containing n eggs, choose a cell at random, and denote the probability of choos-
ing a cell occupied by an egg by 6 = n/N. In this case do not transfer any eggs,
so that the contents of the cells are unaltered. The outcome of a trial is unaf-
fected by previous choices, and this general procedure is called an exchangeable
or Bernoulli trial. (A familiar example of a Bernoulli trial is tossing a coin, with
6 being the probability of heads.) The probability of having chosen m eggs in
M trials is

p(m|M,0) = MC,,0m (1 — )M, (A.64)

since the order doesn’t matter. The conditioning statement to the right of the
bar means that the probability of choosing an egg on any one trial 1s 6.

The above implicitly takes an objective view of probability; 4 is a fixed phys-
ical property of the system. Accordingly, in this interpretation the probability
of getting / eggs in a series of L trials, given the above outcoine, is just

o(I|L,m, M, 0) = o(I|L,0) = C10' (1 — 0)"~". (A.65)

That is, the outcome of the previous A trials does not affect the outcome of
the succeeding L trials because € is a fixed and known physical attribute of the
system. Likewise, @(l,m|L, M.0) = p(l|L,8)p(m|M. 8), since the two series of
trials are independent.

To illustrate the subjective procedure a somewhat different question is posed.
Suppose that one is unable to count the eggs in the carton so that the value of
0 is unknown. One cannot measure 6 directly, but one can estimate it from the
known data, m eggs in M trials. The well-trained scientist will report the error
in the measurement or estimation as 6+ A, which indicates that it is a subjective
belicf, because obviously the actual objective physical quantity has a unique
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value and no error associated with it. More general and useful than the simple
error estimate is the distribution of values of 8, p(8{m, M), which represents the
strength of one’s belief that an egg will be chosen with probability between 6
and 0 + df, based on the given data.® Using this quantity, the probability of
choosing [ eggs in L trials is

-1
o(|L,m, M) = /p(l,&lL,m,M)d@
0
1
= /p(l{L,m,]ﬂ,@)p(ﬂL,m,M)d9
0
1
_ / (1L, 6)p(0]m. M) do. (A.66)
0

The first line manifests the law of disjunction, namely that the probability of
an event is the sum of the probabilities of the conjunction of the cvent and
exclusive outcomes. The second line is just the law of conditional probability.
The third line results from the exchangeable nature of the trial, namely for the
first factor in the integrand that the series are independent, and for the second
that the same probability is to be assigned independent of the number of trials.
Notice from the right-hand side that the probability of getting I ¢ggs in L trials
now depends upon the previous data (m, M).

The mechanism for modifying probabilities in the light of information or
data is Bayes’ theorem. In this case one has

p(m|M, )

olOhm, M) = = oy

w(0), (A.67)

where p(m|M) = fo (m|M,0)p(0) df, and, as above, p(8|M) = p(6). This
last quantity is called the a priori distribution, and it represents one’s initial
beliefs about the probability of choosing an egg.

Such a priori distributions are problematic since there is no agreed recipe for
their general formulation. How does one represent mathematically the state of
complete ignorance? In general terms the distribution should be relatively broad
and should not exclude any possibility. One finds in practice that the modified
distribution becomes sharper and focussed upon the actual value of § as more
data are gathered, p(8|m, M) — §(6 —m/M), M — oo. For few data however,
the prediction does depend upon the initial distribution, and much discussion
has been made of the optimum choice. The obvious and superficially appealing
approach is to invoke a uniform distribution, the so-called Bayes-Laplace prior,
which was termed by Laplace as the principle of insufficient reason. Surely
complete ignorance should mean that one value of the parameter is not to be
preferred over another? This principle suffers from the difficulty that ignorance

50One could give a somewhat artificial objective interpretation of this procedure. With
6 =n/N, p(6) represents the probability of choosing an (n, N)-egg carton from an ensemble
of cartons, and p(f|m, M) represents the conditional probability that such a carton has been
chosen given that the carton has yielded m eggs in M trials.
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about the value of a parameter on the unit interval should imply equal igno-
rance about a nonlinear monotone transformation of the parameter, whereas
the transformed distribution is not uniform. In addition, experience shows that
the Bayes—Laplace prior gives insufficient weight to the end points.

An alternative approach is to look for symmetries in the problem. For the
case of a chance paramneter 6 € [0, 1], the only clear symmetry for the a priori
distribution is that between 6 and 1 —0, p(0) = (1 —6). (In the absence of any
information, one should assign equal probabilities to choosing an occupied and
an unoccupied cell.) What is required is a more symmetric formulation. First
the domain is extended to the unit square by defining 6; = 6 and 65 = 1 — 6,
and one seeks the distribution p(6;,02) = p(2,61) on the line ) +0; = 1. A
coordinate transformation is now made, a? = 6;, a; € [—1, 1], and the constraint
becomes o? + o3 = 1, which is the equation of the unit circle in the (a1, az)-
plane. The a priori distribution of a; and ay should reflect the constraint by
being only a function of a? + 2. That is, it can be a function of the radius of
the circle but not of angular position, since all positions on the circumference
of a circle are equivalent. One must have that (o, as)da dag = p(a? +

a%)é(l —a?+ oz%) day dow. Integrating out ap one obtains

plo)da; = dmy /g)((x? + ()z%)é(l -2+ (1%) dexg
Voi +of

= dayp(1) "
2

vo=F+/ 1*(!?
const. dog

= —. A.68

1—a? ( )
Using the change of variables formula for a distribution, p(a)do = p(6) d6,
one obtains

1

0(0) - \/m (A.69)
This particular e priori distribution of a chauce parameter is sometimes called
the Jeffreys prior, and there are a number of other approaches for deriving
it and other a priori distributions.® The two other cases of interest are for
a scale parameter, x € (0,00), in which case p(z) « 1/z, and for a location
parameter, 2 € (—00,00), which has p(x) = const. In the case of multiple
chance parameters the present argument will apply whenever it is possible to
map the problem to the surface of a hypersphere.

A.5.4 Objective Beliefs

The reconciliation of the subjective and objective views of probability begins
with the recognition that there exists an objective reality, but that attempts to

SH. Jeffreys, Theory of Probability, 3rd ed., Oxford, London, 1961. J. M. Bernardo and A.
F. M. Smith, Bayesian Theory, Wiley, Chichester, 1994.
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measure, to understand, and to communicate it are purely subjective. A great
deal if not all of what passes as science is inference about the behaviour of the
world. One acts as if the laws derived are the actual laws of the universe, and it
is only when some contradiction arises that forces a change to these laws does
one admit that all along they were nothing but inferences based on limited data;
it is one’s beliefs that have changed, not the universe. One believes in a physical
universe that exists apart from one’s beliefs.

The acceptance of the inferential nature of science can create confusion in
a field such as statistical mechanics, because the word ‘probability’ is used to
describe both the beliefs and the subject of the beliefs. The random nature of
the physical universe is described by the probability that is a physical attribute
of some stochastic process. This physical probability is distinct from one’s be-
liefs about it. In other words, while the laws of thermodynamics and statistical
mechanics are inferential and part of one’s belief system, they are inferences
about ontological proportion, not about epistemological credibility. One easily
distinguishes between the measurement of the length of a rod, which is a belief,
and the rod length itself, which has a real existence; one’s treatment of the
measurements ought to be in accord with the laws of probability, whereas rod
lengths obey the laws of thermodynamics. It is harder to maintain the distinc-
tion between one’s estimation of the probability of an event (credibility) and
the actual probability of an event (proportion).

In setting out the basis for thermodynamics and statistical mechanics, it is
difficult to see any alternative to assuming that the probability distributions
and the consequent entropy invoked have a physical reality. As in all of science,
one articulates the laws and rules as those of nature, and one proceeds as if
they were absolute and independent of one’s beliefs. Thermodynamics has at
its basis the principle that entropy is maximised at equilibrium. This principle
of maximum entropy comes not from any subjective desire to make rational
and unbiased predictions based on given data (although one is occasionally so
tempted), but from the objective fact that the number or weight of microstates
determines both the entropy and the probability distribution. For this reason
the probability distributions derived in the present work are physical quantities
that arise from the total entropy of the system and the reservoir with which it
can exchange a conserved quantity. In mathematical content the objective and
subjective approaches are indistinguishable (as they must be, since credibility
and proportion both obey the laws of probability), but perhaps the present
physical interpretation of the principle of maximum entropy will make it more
readily accessible and digestible than has the subjective interpretation to date.

A.6 The Principle of Maximum Entropy

The formulation of statistical mechanics pursued in this book is based upon an
objective view of entropy and probability, and the use of physical exchanges of
some constrained quantity with a reservoir. An alternative approach that in
recent years has become increasingly widespread has been developed by Jaynes,
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based upon the so-called principle of mazimum entropy.” The results in practice
turn out to be very similar mathematically to the reservoir formalism. However,
whereas the latter is physically motivated and therefore completely objective,
the principle of maximum entropy is unashamedly subjective and cast in terms
of the information available to the observer. Such philosophical stances have
widespread ramifications, and the various interpretations of probability and
entropy were discussed above. Here the ‘maxent’ procedure itself is outlined.

In scrambling the eggs in the first chapter it was shown that macroscopic
fluxes were in the direction of increasing entropy, and that the equilibrium
macrostate was the one with the greatest entropy. This is of course an explicit
example of the second law of thermodynamics. Due to the intimate connection
between the number of configurations and probability, it was also shown that
entropy is a functional of the probability.

The principle of maximurn entropy may be viewed as a generalisation of the
second law of thermodynamics. In traditional thermodynamics one effectively
seeks the equilibrium value of a macroscopic parameter, which is the value that
maximises the entropy. In Jaynes’ version of statistical mechanics one seeks the
appropriate probability distribution to be assigned to the system, which is the
one that maximises the entropy. This maximisation is subject to any constraints
on the system. Obviously the probability distribution also gives the equilibrium
value of the parameter, and much other information besides.

The principle of maximum entropy yields the least biased probability distri-
bution. Any other choice of probability distribution would have lower entropy,
and it would reflect either an additional conustraint or some bias in the choice. A
physical constraint, such as one prohibiting certain configurations, or one that
made certain configurations more likely, narrows the probability distribution
and decreases the entropy. In other words, the entropy is as large as it can be
given the constraints, and the probability distribution should reflect this con-
strained maximisation. All known constraints should be taken into account in
determining the probability distribution. Ignoring some constraints would give
too broad a probability distribution and an artificially high entropy. Using a
probability distribution that satisfied the known constraints but that was not
optimal would by definition have a lower entropy, which cither reflects an ad-
ditional constraint, which should have been taken into account explicitly, or it
else manifests an unjustified bias, which has no rational basis.

A typical example of assigning a probability distribution occurs in inferen-
tial problems, where oue is asked to estimate some parameter given only limited
information or data. In such problems there are obviously many different prob-
ability distributions that could be assigned and still satisfy the given data. The
principle of maximum entropy supplies the missing rule that gives a unique
rational answer to such a question. The question is whether the probability dis-
tributions of statistical inechanics are similarly inferential in nature, or whether
they have an underlying physical reality.

7E. T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106 (1957), 620;
108 (1957), 171. R. D. Rosenkrantz (Ed.), E. T. Jaynes: Papers on Probability, Statistics,
and Statistical Physics, D. Reidel, Dordrecht, 1983.
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A.6.1 General Formalism

The equilibrium distribution p(z) is required. This is obtained by considering
the entropy as a functional of an arbitrary probability distribution and finding
the particular distribution that maximises it. The entropy to be maximised is

Slpl = —ks > _ plz) Inp(). (A.70)

This is the Gibbs- Shannon expression for the entropy, Eq. (1.12), which is the
one used by Jaynes. It neglects the internal entropy of the system in the state x,
and should arguably only be used when z labels equally probable microstates,
but this is generally not well recognised. Note also that no reservoir or second
system enters in this formalism. The relationship of the quantity on the left-
hand side with the three entropies defined in the text will shortly be identified.
One supposes that the probability distribution is constrained to yield the average
value of the parameter,

> o)z = (z). (A.71)
T
A normalisation constraint is also introduced,

> p(z) =1. (A.72)

The average value then is the information made available to the ohserver, and
maximising the entropy subject to this information yields the least biased prob-
ability distribution, both of which are obviously subjective.

Introducing Lagrange multipliers, the function to be maximised without con-
straint is

S*[p] = Slpl + N Y _p(@)z +p Yy o). (A.73)
The functional derivative is

5l (z) — kg + Nz + (A.74

6@@)— BT B s .74)

the vanishing of which gives the desired probability distribution that maximises
the entropy. This is

()—)\I
Ve = /—_ A.7
where A = —\/kp, and the normalisation factor is

Z(\) = e tulks =N e (A.76)

T
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The value of the multiplier follows from the constraint equation, which may
alternatively be written

olnZzZ

o (z). (A.77)
Finally, the entropy itself may be seen to be

Compared to the reservoir formalism, Section 1.4.2, which gave for the prob-
ability distribution p(z]A) = e¥(@)/kse=22/7/(X) the maxent formalism gives
P(z]\) = e **/Z(A). One sees that the latter is only correct if S(z) is 0 or
constant, which only occurs when the z states of the subsystem in isolation
are equally likely. Similarly, the reservoir result for the total unconstrained
entropy is Stota1(A) = kpIn Z’(A), which contrasts with the maxent result,
STpl = kg ln Z(A\) + kg (z). Since —kgAz is the reservoir contribution to the
total entropy in the state x, one sces that S[p] is the subsystem-only part
of the unconstrained entropy of the total system (with S(z) = 0). However,
the functional actually maximised, S*[p] = S[p] — kA (z) + 1 (1), is approxi-
mately equal t0 Sioal{A) & Stotal(TIA), provided that S(x) = 0 and neglecting
the final constant term. That is, $*[p] is in the thermodynamic limit the un-
constrained entropy of the total system (with S(z) = 0). In other words, by
introducing the average value as a constraint, Jaynes has effectively corrected
the Gibbs Shannon functional, Eq. (1.12), to the generalised Boltzinann expres-
sion, Eq. (1.11), at least in the case that the states @ of the isolated subsystem
are equally likely.

This interpretation of the maxent procedure allows a connection to be made
with the reservoir formalism. It shows that the quantity S[p] is just the subsys-
tem part of the total unconstrained eutropy, and that the quantity S[g]—ke A (z)
is the total unconstrained entropy. One concludes that in order to generalise the
principle of maximum euntropy to states of the isolated subsystem not equally
likely, one should invoke the functional, Eq. (1.11),

Slel = > o) [S(x) — ki Inp(a)] (A.79)

together with the constraint on (x). This correction is a little artificial in the
sense that if one knew S(x), then one could immediately write down the prob-
ability distribution, p(x]A) = ¢St @A) /Z7())which of course makes the opti-
misation procedure that underlies the principle of maximum entropy somewhat
redundant.

A.6.2 Egg Sample

The egg distribution problem of Scction 1.4.1 may be cast in a form suitable
for the application of the principle of maximum entropy. What is the best
possible estimate of the probability distribution given only limited information?
Suppose that N, the size of the carton of interest, and 7, the equilibrium number
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of eggs in it, are known. The size of the second carton (or equivalently the total
numnber of eggs) are not known. The principle of maximum entropy states that
the appropriate probability distribution is the one that maximises the entropy
subject to any constraints. The entropy to be maximised is

N
Slp] =Y pnlSn(n) — kzlnpn), (A.80)

n=0

where now has been included the internal entropy of the macrostate,

Nt
Sn(n) =kgln i

eTEETE (A.81)

The two counstraints on the probability distribution are that it be normalised,
Z::,:o ©n = 1, and that it give the known equilibrium allocation, which is taken
to equal the average allocation, ZQ’:O pnn = 7. From the formalism of the prin-
ciple of maximum entropy, the result for the optimum probability distribution

18
o 1 S (n) ks an N! ern
= . o — L © 82
on = Z(a)© T RN —n) Z(w) (4.82)

It is the best estimate that can be made for the probability distribution given
the limited information. Note that the internal entropy in this actual example is
certainly not constant, and neglecting it by using the Gibbs- Shannon formula,
Eqg. (1.12), as in the original maxent formulation of Jaynes, will give the wrong
probability distribution.

The normalising factor here is

N

Z(a) =) WN—‘—'TT)'PM = (1+e*)V, (A.83)

n=0
and the average allocation constraint gives

ﬁ:6an(oz): Ne 7 (A.84)
Ja 14+ ex

or

n
¢ = . A8
e N_7 (A.85)

Noting that /(N —7) = m/(M —77), one sees that the Lagrange multiplier
« has precisely the same value as the coefficient derived in Section 1.4.1 via the
reservoir formalism. Since the probability distribution is p(n|N, M,n + m) «
exp[Sn(n)/ks + Sar(m)/kgl, one sees that the reservoir lmit yields precisely
the maximum entropy distribution. The parameter « is set by the properties
of the reservoir, and is conjugate to the quantity that is exchangeable with the
reservoir, namely the number of eggs n. This then is the physical basis of the
principle of maximum entropy, and its accuracy is seen to depend upon the
extent to which a finite-sized second system can be approximated as a reservoir.
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The mathematical equivalence of this reservoir approach and the maximum
entropy approach ought to be clear, so that in general the maximum entropy
probability distribution is the exact probability distribution for a system in
contact with a reservoir. This represcents a physical interpretation and basis
for the principle of maximum entropy, namely in terms of a reservoir that ex-
changes some parameter with the system. In the context of thermodynamics
and statistical mechanics, the ohjective reservoir formulation is preferable to
the subjective interpretation of the principle of maximum entropy because the
systems being studied include actual physical reservoirs. Generalisations of
thermodynamics and statistical mechanics may likewise be made on the basis of
physical arguments in the reservoir approach, something which does not appear
so straightforward in the subjective method. This is not to say that there are
valid applications of the principle of maximum entropy in other fields such as
inferential reasoning. However, the present book takes an objective approach
in which the probability of a macrostate represents the weight of corresponding
microstates, and in which entropy represents the total weight of microstates.



Appendix B

Work and Conjugate
Variables

This Appendix shows that the derivatives of the entropy defined in the second
chapter have the same properties as the familiar physical quantities that bear
the same name. Also, pairs of conjugate variables are identified from the nature
of thermodynamic work.

B.1 Energy, the First Law, and Work

Since one can consider the energy of an isolated system as dependent upon
its entropy, E(S,V, N), the total differential for the entropy, Eq. (2.4), can be
rearranged to obtain

dE = TdS — pdV + pdN. (B.1)

This gives the partial derivatives of the energy as

<8E—(?VV’—N)> SN - >
and

Obviously one now has, for example, T(S,V, N) rather than T(E,V, N). The
uniqueness of the thermodynamic state means that the temperature has the
same value no matter what variables are used to specify the state.

407
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Now the first law of thermodynamics will be used to confirm the physical
interpretation of these derivatives. Logically, one does not need the first law.
The entropy derivatives given above can be taken as definitions of temperature,
pressure, and chemical potential, and the relationships between them can be
deduced solely from the principle of maximum entropy (the second law). In
so far as these relationships are entirely consistent with everyday experience, it
is appropriate to give these quantities the same name as the familiar ones. In
practice however, one generally has some mechanical notion of some or other
type of work, and it is then straightforward to invoke the first law to derive the
appropriate entropy derivative for the variables of interest. This is now shown
in detail how this is done for the familiar pV work.

The work done by an applied pressure pg to change the volume of a system
is dWW = —podV.} This says that one must do work to decrease the volume of
a system. The first law of thermodynamics states that the change in energy of
a system is equal to the heat flow into the system plus the work done on the
system,

dE = d@ — pdV. (B.5)
Compare this to the total differential given above for dN = 0,
dE(S,V.N)=T(5,V.N)}dS — p(S,V,N)dV. (B.6)

Thesc two equations obviously must be equal, dE = dE(S,V, N). One cannot
simply equate the cocfficients of dV, because the external pressure pg is the
change of energy of the system with volume at constant heat, whereas the
system pressure p(S,V,N) = —9E(S.V, N)/OV is the change of cnergy with
volume at constant entropy, and these are not the same things. One cannot in
general identify d@Q with T'dS, except in the case that no work is done, dV = 0.

In order to identify the coefficients, oune needs to set d@@ = 0 and dS = 0.
Heat can be prevented from flowing into a system by insulating it from its
surroundings, and so now such an isolated system. dQ = (0, will be treated.
Entropy is constant in reversible processes, dS = 0, and increases in irreversible
processes, dS > 0. Iu practice the former are distinguished by slow, quasi-
static transformations, whereas irreversible changes are always characterised by
sudden and rapid motion (e.g., suddenly placing a large mass on a piston). For
an irreversible transformation of an isolated system one has

[p(S,V,N) — py]dV =TdS > 0. (B.7)

If the system is compressed, dV < 0, as occurs if the external pressure is
suddenly increased, the internal pressure is less than the external pressure,
p(S,V,N) < py. For a sudden expansion, p(S,V, N) > pg. This is consistent

1One way to seec this is to imagine a piston of mass M in a gravitational field g acting on
a system of cross-sectional area A and height h. Then the external pressure is the force per
unit area, po = Mg/A, and the change in volume of the system is dV = Adh. The change
in energy of the piston, Mgdh, is equal and opposite to the work done by it on the system,
which equals the change in energy of the system dE = dW = —Mgdh = —podV.
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with familiar notions of pressure and volume changes. For a reversible process,
dS =0, and one has

p(S, V. N) = po, (B.8)

so that the internal and external pressures are in balance. Again this is con-
sistent with everyday experience: when the internal and external pressures are
equal, the volume doesn’t change. It is indeed appropriate to make the phys-
ical identification of the pressure of the system with the volume derivative of
the energy at constant entropy, p(S,V, N), which is equivalent to the original
definition of p(E,V, N) in terms of the entropy derivative at constant energy.

In general, the physical identification of thermodynamic derivatives proceeds
from the mechanical notion of work, and equates the appropriate coefficients
with the conjugate encrgy derivative at constant entropy. The procedure is
valid for isolated (or insulated) systems undergoing reversible (or quasi-static)
changes. The latter may be called adiabatic transformations,? but some caution
should be exercised since adiabatic is often used inappropriately to denote an
insulated system itself. As was seen above, isolating a system is not sufficient
to ensure constant entropy. It is necessary both for the system to be insulated
and for the change to be reversible to be able to identify the thermodynamic
derivatives.

B.2 Conjugate Variables

Pressure and volume form a conjugate pair, as do chemical potential and num-
ber, and temperature and entropy. Conjugate pairs consist of an intensive and
an extensive variable whose product has the dimensions of energy. As was de-
fined above, extensive variables scale with the size of the system since they are
linear additive quantities. Examples that have already been met are V, N, E,
and S. The fundamental quantity of thermodynamics is the entropy as a func-
tion of all the extensive variables of the system. Intensive variables such as p,
i, and T do not scale with the size of the system; they may also be called field
variables. In the example above the pressure is the field, and the volume may
be regarded as the response of the system to an external field.

In general, one can consider an intensive field variable z and an extensive
response X. One can attribute part of the total energy to external sources
such that the change in the external energy with X is dE®** = z°*%d X, where
T is the externally applied field. For example, changing the volume of the
system by dV against an external pressure p®™' gives dE®* = p™*'dV. This
change in the external part of the energy may also be called the work done on
the system. If the external field tends to decrease X (i.e., E®** decreases if X

?In quantum mechanics, an infinitely small, infinitely slow perturbation induces what is
known as an adiabatic transformation. Time-dependent perturbation theory says that the
eigenstates are conserved and the system stays in the same state during such a transformation.
The probability distribution of microstates is thus unchanged, as is the entropy, which is a
functional of these.
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decreases), then z®** is positive. If the external field variable is a constant, then
the external energy is E®*' = z®**X. (In certain cases the field variable may
contain contributions from the system that vary with X and the integration
does not have this simple form.)

The explicit expression for the energy due to external sources serves to iden-
tify the conjugate variables. For a truly isolated system in the absence of ex-
ternal fields and with the extensive parameter constrained, one defines the field
variable of the system as the entropy derivative at constant internal energy,

OS(E™ X)\ =z
<_—6X )E -z (5.9)

Only the relevant extensive independent variables are shown here, the remaining
ones being held constant during the differentiation. Of course in the absence of
the external field the internal energy is the same as the total energy.

When the external field is present, one separates the total cnergy into the
internal part and the external part, dE*t = dE™ 4+ dE°**. Above it was shown
that for a reversible volume change the internal and external pressures were
in balance. This property is preserved by the above definitions. The entropy
derivative at constant total energy is

<6S(X|Ei“t,xe"t)> B < oS ) <0Eint> N <a_s>
X B OE™ |\ 0X ) i OX ) pin

—zt
= T + T (B.10)
The first term arises because the change in entropy with internal energy is the
inverse temperature, and because dE™ = —dEt if the total energy is fixed.
One can sec that the entropy of the system is maximised at fixed total energy
when the internal and the external fields are in balance, z(X) = 2.

This procedure may be explicitly illustrated using pressure as an example.
Suppose that the system has height 7 and cross-sectional arca A, and its upper
boundary is a movable piston of mass M in a gravitational ficld g. In this case
the external cnergy is E®* = Mgh = p®'V, where the cxternal pressure is
p™* = Mg/A. As far as the system is concerned, the origin of the external
pressure is irrelevant. The total energy is EY = Ent 4 pext — gint 4 pexty
(this is also called the enthalpy). The external energy has a trivial effect on
the entropy so that onc can write S(V|E'*? ptot) = Sy(V|E™M). The right-hand

side is the entropy in the absence of the external pressure, and hence one defines

0 1 J
< Si’(r)lt> = 7o <ﬁ> = 37 (B.11)
OF v T oV ) g T
where p is the internal pressure of the system. One also has
<6S(V|Emt,peXt)> _ < oS ) <6Eint> . <§>
oV ot OE™ J o\ 0V ) puot OV J gint
_pext

= +

p
= B.12
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That is, the constrained entropy is maximal at the equilibrium volume, which
is the one at which the internal pressure balances the external pressure. These
results follow from the general formalism with V = X and p = 2.

There are a number of common examples of non-pV work. A rod or length
of wire under a tension f tends to expand, so that the change in the external
part of the energy due to a change in length is dE*** = — fd L. Hence the length
is equivalent to X and the tension is equivalent to —z, so that

oS\  —f
<ﬁ>g - (B.13)

Note how the tension is of opposite sign convention to the pressure. Note also
that it has not been specified whether this particular tension is at constant
volume or at constant area. Similarly one can define a surface tension that is
conjugate to the area of the system, so that dE®** = —~dA, where the surface
tension is

oS =
(5;1.> =7 (B.14)

These two examples are intended for illustration only, and more precise defini-
tions will be required for specific cases.

Another common class of systems is those acted upon by an external field
with the extensive parameter being a constrained property of the system rather
than a conserved one. For example, a system of mass M in a gravitational
field g changes energy with height by an amount dE®* = Mg dh. Accordingly,
X =h and z = My, and hence

oS _ Mg
(53>Em -2 (B.15)

Charge is a conserved quantity, and the conjugate variable is the electric
potential. The change in the external part of the energy due to a change in the
charge of the system is dE®** = 4d@Q. Here v is the potential difference between
the system and the point to which the charge is transferred to. If the system
is at the higher potential, then transferring charge to the system increases the
external part of the total energy, which is to say that a high potential tends to
decrease the charge in a system. Accordingly one has X = @, x = 1, and hence

as 9
(5@>Em = (B.16)

A more complicated class of systems is those with spatially varying external
fields. Consider an external electric field that polarises dielectric material, with
the total polarisation being an unconserved extensive quantity. In this example
the external electric field, E®**(r), is due to external charges and is the field
that would be present in the absence of the dielectric material. The interaction
of a given polarisation density, P(r), with this external electric field contributes
to the total energy an amount

Uet = A/Vdr E®(r) - P(r). (B.17)
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(Here the symbol U is used for the energy to avoid confusion with the electric
field.) Evidently the external field tends to align the dipoles of the system, since
this energy decreases as the number of dipoles pointing in the same direction as
the field increases. The functional derivative of this yields

Ut = ~E**(r) - 6P(r). (B.18)
Hence X = P and z = —E®**, and the entropy derivative at constant internal
energy is

48 -1
- = —E(r). B.19
(#007),0. = 720 (B19)

This is the field produced by an isolated system constrained to have a certain
polarisation and energy. It is also the external field that would have to be
applied to produce this polarisation in an equilibrated system.

When a paramagnetic sample is placed in a magnetic field Bt it becomes
magnetised, with the magnetisation density M(r) pointing in the same direction
as the field. The analysis is identical to that of a polarised dielectric in an electric
ficld and one similarly obtains

(¥t ). = 77200 -

B.2.1 Momentum

Linear additivity and conservation are the crux of the formalism for statistical
thermodynamics. In classical mechanics there are just seven lincar additive
constants of the motion: the energy and the components of linear and angular
momentum. Hence the momentum derivatives of the entropy are important
quantities.

A system of mass Al in uniform motion with velocity v has total momentum
P =} .p; = Mv. The peculiar monentum is that measured in a reference
frame moving with the system. p; = p, — m;v, so that P=0 Similarly, the
peculiar kinetic energy is K = Y, $52/2m, = K — Mv?/2, and the peculiar
energy is E = K + U.

The temperature is the peculiar energy derivative of the cutropy,

OSENV.E)_1 (B.21)
OF r

and since the number of configurations only depends upon the peculiar energy,
holding the latter constant during momentum exchange fixes the entropy,

dS(E,N,V,P)

7 =0. (B.22)

Now consider a second system with velocity v®** able to exchange momentum
with the subsystem. From momentum conservation, dP*** = —dP, the change
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in the energy of the second system following momentum exchange is dE®** =
vext.d P = —ve*t.dP. Hence energy conservation gives dE = ve**.dP. Also,
the change in the peculiar energy of the subsystem is dF = d(E — P?/2M) =
(v¥** — v) - dP, whereas that of the second system is 0, dE®* = d(E® —
(Pext)Z/QMext) — (_Vext + Vext) . dB =0.

The change in the total entropy during momentum exchange at fixed total
energy is

OS4o1a1(E, P; B, P
oP

B B
Etotdl
_ 2 dS(E, P)
- oP L -
E‘Lotal E

(ext ) 0. (B.23)

Etotal

The first equality follows because the entropy of the second system doesn’t
change; as shown above, its peculiar energy remains fixed. This result shows
that equilibrium occurs when the two systems move with the same velocity. It
also follows that the momentum derivative of the entropy of the subsystem at
constant energy is the negative of its centre of mass velocity,

(%(Ez)) (05@,3)) (6E> (as@,z))
oP oF ap) t\7ap |,
E P E E

-V
— +0. B.24
7 (B-24)

A similar treatment of a system’s macroscopic angular momentum J leads
to the definition

S(E, )\  —w

where w = J/I is the rotational velocity and I is the moment of inertia of the
system. One concludes that the entropy depends nontrivially on the microscopic
internal energy, and only trivially on the macroscopic kinetic and rotational
energies.



Appendix C

Mathematical Results

C.1 Notation and Context

It seems impossible to develop an unambiguous mathematical notation that
is independent of the context in which it is used. In the text a function is
generally denoted f(z), where f is the function and x is the variable. Generally
the argument is enclosed in parentheses, but on occasion, such as when dealing
with a function of a function, brackets may be used for clarity, as in f(g[z]).
However, brackets are also used to denote a functional, as in f[g], which depends
for its value not on the single point z, but on all the values of the function g(z)
on the appropriate interval. Parentheses (and brackets and braces) are also used
to specify the hierarchy of arithmetical operations, and so, depending upon the
context, the quantity f(z + y) could denote either the sum of the products fx
and fy or the function of the sum z + y.

The equality sign is used to denote both equality, as in = 2, and to define
a function, as in f(z) = x?. The ambiguity in writing f(z) = 2 (does this define
the constant function, or determine that z = /2?) can only be resolved from
the context. Occasionally the equivalence sign, § = 1/kpT, is used to define
a symbol that can be replaced by the string of symbols on the right-hand side
wherever it occurs; as often as not, the equal sign is used instead.

Usually the argument of a function is merely a placeholder that assumes
specific values; f(z) = f(y) when z = y. Although it would be preferable to use
different symbols to denote distinct functions, in order to prevent a proliferation
of symbols, distinct functions are often in the text denoted by the same symbol;
the arguments of the functions serve as well to distinguish them in these cases.
For example, S(N, V, E) is the entropy of an isolated system, whereas S(N,V,T)
is the total entropy of a subsystem in contact with a heat reservoir; these are
not equal to each other even if F is numerically equal to T'. It is arguable that it
would be better to distinguish these by using subscripts, as in St(N,V,T), and
this has been done when ambiguity is not precluded by the context. Because
arguments are used as both variables and distinguishing marks, mixing up the

415
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order of the arguments in a function should not cause great confusion.

C.2 Partial Differentiation

In the case of partial differentiation, usually all arguments of the function are
held fixed except that used for the derivative. Often this is made clear by
showing the function with all its arguments in the numerator, or by placing the
fixed variables as subscripts,

8S(E,N,V) oS
_— —_— . Nl
o8 <6E>NV (C.1)

The latter procedure is always followed when it is not the arguments of the
function themselves that are fixed, but rather some combination thereof.

Much of thermodynamics is an exercise in partial differentiation, and here is
summarised some of the main relationships. The partial derivative of a function
of two variables, f(z,y), with respect to z with y held fixed is

(g) =y JELy) = @) (C.2)

oz T1—T2 1 — T2 .

Sometimes one may write df(x,y)/0x, or f.(x,y), or f'(x), when no ambiguity
exists. Because the derivative is simply the ratio of two differences, one has

B, (),

This assumes f(z,y) < z(f,y). The total differcutial is

df = <g—{> dz + <g—£> dy. (C.4)

Setting df = 0 and rearranging yiclds

(@),-@).G), 3

The derivative holding some function z(x,y) constant is

(.- (), (). (2),

For the proof one simply chooses two nearby points such that z(zi,y1) =
z(x2,y2), and takes the limit of

flzi,p) = f(@2,92)
T1 — T2
_ flzi,y1) — f(z2,41) n [z, y1) — flz2,92) 11 — Y2 (C.7)

T — T2 Yr — Y2 T1 — T2
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Finally,

(2:),~ (@), (7), =

as follows from the limit of

fley, ) = flza, ) _ flen,m) — fle,41) Ty — 2 (C.9)
z(x1,y1) — 2(z2,11) Tl — T2 2(zr,y1) — 2(z2, 1) .

C.3 Asymptotic Analysis

For asymptotic analysis three notations are used. The tilde symbol is used for
the most precise characterisation of the asymptote,
flz) ~az™™, £ — oo, means lim f(z) =az™". (C.10)
T—00
This says that for any small positive number € there exists a large number X (¢)
such that |f(z) —az™"| < € for all z > X (e). The so-called ‘big O’ notation is
used to signify the functional form of the asymptote,
_ fen o flE)
f(z) =0(z™),  — o0, means lim =M (C.11)

— b
z—oo x— 1

where M is a bounded constant whose (unknown) value is normally nonzero.
Finally, the ‘little o’ notation is used to set a bound on the asymptotic behaviour,

£@) = o™}, 7 — o0, means i 1

=0 (C.12)

which is to say that the function decays faster than z~™. Quite often a series is
terminated by ellipsis, ..., which is the same as saying that the neglected terms
are little o of the last exhibited term, or big O of what is obviously the next
term in the sequence.

At the simplest level asymptotic expansions can be derived as simple Taylor
expansions,

F@) ~ F(0) +zf'(0) + é—jf"(O) ...,z 0. (C.13)

One of the more well-known asymptotic expansions is Stirling’s approximation
for the factorial,

Inn!~ninn—n+InvV2rn4+0On™! n— co. (C.14)

Perhaps the most common asymptotic expansions are based upon the binomial
expansion,
(n-1) 5

(1+1’)”~1+nx+?2—'x +...,z—0. (C.15)
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This terminates for positive integral values of n, but not more generally. The
so-called harmonic series follows from this,
1
1——*~1+x+x2+...,x—>0. (C.16)
—x

Obviously z — 0 is the same as 27! — oo; other limit points may be used.

Asymptotic expansions are often differentiated and integrated fearlessly.

The distinction between a convergent series and an asymptotic expansion
is that for a fixed valuc of the parameter z, convergent series are increasingly
accurate as the number of terms in the series is increased, whereas the series
representing an asymptotic expansion often diverges. An asymptotic expansion
becomes more accurate for a fixed number of terms as the parameter approaches
the limit point. In many cases increasing the number of terms in an asymptotic
expansion means that the parameter must be taken closer to its limit point
to achieve the same level of accuracy. For example, the asymptotic expansion
represented by the harmonic series for fixed |z| > 1 is not a convergent series.
However, for any |z| < 1 it is convergent. A more striking exainple is provided
by the complementary error function, which has asymptotic expansion,!

3! (2mn)!

2
Torfe z vl f e —
Vet erfe 2 R 21(222)? + (=2)mml(2z2)™m

z — 00.(C.17)
Clearly, for fixed z the series would diverge, but for fixed number of terms m,
the tail becomes increasingly small as z increases.

For the case of integration one might have a function f(x,y) that becomes
sharply peaked about some zg in the asymptotic limit, y — oo. In this case one
can perforin a Taylor expansion of a more slowly varying function about the
location of the peak and evaluate the integral.

Iy) = /.oo d g(x) f (2, y)

~ /jc dir {g(mo) + (v — o) (w0) + .. ] Flooy), y — o0
= glzo)lo(y) + g (@)1 (y) + ... (C.18)

One tends to find that the moment integrals are of the form I, = Oy~ ™, or
similar, so that this procedure generates an asymptotic expansion. Successive
integration by parts is another fecund source of expansions. The asymptotic
evaluation of convolution integrals was discussed in §9.6. There are of course
many other and more powerful asymptotic techniques.?

|

M. Abramowitz and 1. A. Stegun, Handbook of Mathematical Functions, Dover, New York,
1965.
2N. G. de Bruijn, Asymptotic Methods in Analysis, Dover, New York, 1981.
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total derivative of, 63
triplet, 151, 157, 163, 176, 196,
198, 222
pressure
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definition of, 20 screening, 324, 349

density expansion, 184 algebraic, 347

direct correlation, 295 exponential, 325

virial, 162, 175 length, 319, 329, 331, 333, 344
probability, 55-58 series function, 216

belief, 392 generator, 259

causality, 395 set theory, 381

density, 248, 383 simulation

energy, 99 average, 355, 359

frequency, 390 constrained, 374

Gaussian, 14, 60 equilibration, 354

laws of, 382 grand canonical, 365- 366

magnetisation, 124 isobaric, 364, 372

nature of, 389 isothermal, 373, 374, 376

objective, 391, 394, 400

microscopic reversibility, 361
of states, 9, 382, 383

molecular dynamics, 352-359

particle, 102 Monte Carlo, 359-362
ph.ase space, see phase space neighbour table, 362-364
pnor, 398 periodic image, 356
propensity, 391 potential cutoff, 358

proportion, 391
reservoir, 15

subjective, 392, 394, 402
time evolution of, 95
transition, 376

volume, 105, 106

preferential sampling, 367

stochastic, 376

time correlation, 370

umbrella sampling, 367
singlet hypernetted chain, 311
slit pore, 289, 304
radial distribution function, 175, 208, solute )

293 aggregation of, 285

charged, 337, 340

reference system, 266
cylinder, 297

reservoir
definition of, 21 free energy, 286
egg, 14 hard-sphere, 278, 280, 292
exchange with, 56 interaction of, 281
formalism of, 16 planar, 177, 287-296, 340
generalised, ’23 simulation of, 366
heat, 21-27, 70-72, 98-101 spherical, 178, 277-287, 292, 337
meta, 246, 257 solvation free energy, 286
meta-, 244 slab, 294
particle, 36-39, 72--74, 102 -103 spectral distribution, 116
probability, see probability, reser- spin-lattice, 121
voir spinodal line, 230, 238, 240
volume, 40-44, 74-78, 103--105 solute asymptote, 284
reversible processes, 408 stability
ring diagrams, 259 thermal, 30

rotation, 413 state, 7, 8
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probability of, see probability,
of states

uniqueness of, 29
Stillinger—Lovett, 325
superposition approximation, 224
surface energy, see tension
susceptibility

magnetic, 127
symmetry number, 186
system

isolated, 19

tail correction, 359
temperature
average, 167
constant, see reservoir, heat
definition of, 20
tension, 164, 178, 411
direct correlation expansion, 296
thermodynamic limit, 32
thermodynamic potential, see poten-
tial, thermodynamic
thermodynamics
first law, 407
second law, 21, 28, 59
zeroth law, 21
three-body potential, see potential,
triplet
total correlation function, 208
density expansion of, 209
functional of, 256 263
trajectory, see phase space, trajec-
tory
Triezenberg- Zwanzig, 309, 314, 315

van der Waals, 156
vibrational states, 115, 118
virial, see pressurc
coefficient. 185
hard-sphere, 200, 227
Lennard- Jones, 202
equation, 162, 176
expansion, 181, 185, 198
pressure
hard-sphere, 226

weight

INDEX

density, 383

of states, 9, 383
Weiss, 125
Wertheim, 310, 314, 315
Widom, 170
work, 407, 409

Yvon, see BGY
Yvon equation, 219



