Chapter 1  Energy in Thermal Physics

Problem 1.4. “Twice as hot” on the Celsius (or Fahrenheit) scale would make no sense,
because the zero point is chosen arbitrarily. There’s no fundamental sense, for instance, in
which 2°C is twice as hot as 1°C. But if we measure temperatures from absolute zero, then
“twice as hot” makes perfect sense: the melting point of lead is twice room temperature;
the sun’s surface is 20 times room temperature; and so on. This is another good reason to
use kelvin temperatures.

Problem 1.5. I was taught to leave the thermometer in my mouth for at least three
minutes. However, the bulb of the thermometer must come moast of the way up to body
temperature within 10 or 20 seconds; waiting three minutes is necessary only because we
want a reading that is accurate to within a fraction of a degree. The numerical value of
the “relaxation time” could therefore be anywhere from 10 or 20 seconds to three minutes,
depending on exactly how we define it.

Problem 1.6. On a cold morning, when I step from the bathroom rug into the tub for my
shower, the tub feels a lot colder to my feet than the rug. Yet they must be at essentially
the same temperature, since they’ve been right next to each other all night long in a room
that is pretty well insulated from the weather. In fact the rug is just as cold as the tub, but
it sucks heat out of my feet much more slowly due to its relatively poor thermal contact
and low heat capacity. For another example, see the quote on page 48.

Problem 1.7. (Thermal expansion of liquids.)

(a) The mercury thermometer from my medicine cabinet has a roughly cylindrical bulb
that measures 4 mm in diameter by 5 mm long. Its volume is therefore about 60 mm?3.
Under a 1°C temperature increase, this much mercury should increase in volume by

AV =f-V-AT = (1.81 x 10~* K™1)(60 mm®)(1 K) = 0.011 mm®.

The expansion, however, takes place inside a narrow tube with a length of 8.5 mm (the
length of a 1°C increment on the scale) and unknown cross-sectional area. Assuming
that the tube is cylindrical, its radius would have to be

[AV /0.011 mm?
T= _;r-l_ = m = 002 mm,

so its diameter would be only 0.04 mm. No wonder it’s so hard to see the column of
* mercury, even with the optical magnification of the glass!

(b) As the water in a lake cools, the densest water will sink to the bottom and the less
dense water will rise to the top. Below 4°C, this means that the warmer water will
sink while the cooler water rises. The first water to freeze will therefore be at the top;
and since ice is even less dense, the ice floats on the surface. This ice then insulates
the rest of the water from the cold weather, so even during a long, cold winter, only
the smallest ponds freeze completely from top to bottom.

If the thermal expansion coefficient of water were always positive, then the coldest
water in a lake would always be at the bottom, so ice would form first at the bottom.

Problem 1.8

If ice were also more dense than liquid water, the lake would freeze from the bottom
up. Without the insulating layer of ice on top, many lakes would freeze completely,
and any fish in these lakes would be frozen along with them. (If ice were still less
dense than water, I suppose bits of ice would form at the bottom and then float to
the surface.)

Problem 1.8. (Thermal expansion of solids.)

(a) Let’s say the annual temperature extremes are —30 and +40 Celsius, for a total vari-
atijon of 70 K. Under this variation, the change in length of a 1-km steel bridge would
be

AL = oL AT = (1.1 x 1075 K~1)(1000 m)(70 K) = 0.77 m = 77 cm.

To be safe, I'd design the bridge to accomodate at least a meter of thermal expansion.

(b) The two metals in the coil have different thermal expansion coefficients, so as the
temperature increases, one expands more than the other, causing the coil to coil further
and turn.

(c) Imagine a rectangular solid with dimensions L, L,, and L,. When the temperature
increases, the solid expands in all three dimensions:
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Assuming that the expansion is infinitesimal, we consider it to be equivalent to adding
the three shaded slabs to the volume of the solid, neglecting the corner strips omitted
from the diagram. Then the volume increase is

AV =(AL;)L,L, + (AL)L.L, + (AL,;)L.L,.
Writing each AL in terms of the appropriate linear expansion coefficient, this becomes

AV = (0L, AT)L, L, + (ayLy AT)L,L, + (e, L, AT)L, L,
= (e + oy + )V AT,
Comparing to the definition of the volume expansion coefficient 5, we see that this
result has the same form, with 8 = a, + @y + a,.

Alternatively, we can rewrite the definitions of a and 3 in terms of derivatives:

1dL 1dv
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(Technically, these should be partial derivatives, with pressure held fixed.) With the
aid of the product rule, the derivation is now nothing but symbol-pushing:

1dVv 14 1[dL. dL, dL,
~ g = L) = | ke el Ly

’ dT
= % [(cx,Lz)LyLz + (ayLy)LoL; + (e, L2) L, Ly]

= %[cx: +ay +a;| L LyL. = a; + ay + a..

Problem 1.9. For a mole of air at room temperature and atmospheric pressure,

_nRT _ (1 mol)(8.31 J/mol-K)(300 K)
=—F =

— 3 _ 3
105 N/m? =0.025 m® = 25 liters.

v

Problem 1.10. Consider an “average” room measuring 4 meters square by 3 meters high.
The number of air molecules (at room temperature and atmospheric pressure) is
PV (10° N/m?)(4 m)(4 m)(3 m)

== =1.2 x 10*" = 10%".
N = 3T = 138 x 10-5 J/K) (300 K) x

(That’s about 2000 moles.)

Problem 1.11. Since the rooms are connected by an open door, the pressure must be the
same in each room; if it weren’t, air would rush from one room into the other. Also we're
told that the volume of each room is the same. Now look at the ideal gas law: PV = NkT.
The left-hand-side is the same for both rooms, so Room B, which has a smaller T', must
have a larger N, hence a larger mass of air.

Problem 1.12. The volume per molecule for an ideal gas at room temperature and
atmospheric pressure is

V KT _ (1.8 x 102 J/K)(300 K)

N= P 05 N /m? =4.1x10"* m® =41 nm*.

If we imagine each molecule being in a cube of this volume, then the width of the cube
would be the cube root of this number, 3.5 nm. This is then a good estimate of the average
distance between neighboring molecules. The diameter of a molecule like N, or H;O, on the
other hand, is only a few angstroms, about ten times smaller than this average distance.

Problem 1.13. In each case we merely need to determine the total number of protons
plus neutrons in one molecule {or for the solids, one atom). Since a mole of protons or
neutrons has a mass of one gram, this same number is the mass of the sample in grams.

a) Water is H,O; each hydrogen atom has just a single proton while the oxygen has 8
g
protons and 8 neutrons, so we have 18 nucleons total, and a mole of water therefore
has a mass of 18 grams.

Problem 1.15

(b) Each nitrogen atom has 7 protons and 7 neutrons, so an N; molecule has 28 nucleons
and a mole of them therefore has a mass of 28 grams.

(c) The atomic mass of lead is 207 (a weighted average over several common isotopes), so
a mole of lead has a mass of 207 g.

(d) A quartz “molecule” has 28 nucleons in the silicon atom and 32 in the two oxygen
atoms, for a total of 60, so a mole of quartz has a mass of 60 g.

Problem 1.14. For a mole of pure Nj, the mass would be 28 g; for O, the mass would
be 32 g; and for Ar, the mass would be 40 g. For the mixture found in dry air, therefore,
the mass would be the weighted average:

M = (0.78)(28 g) + (0.21)(32 g) + (0.01)(40 g) = 28.96 g ~ 29.0 g.

Problem 1.15. The upward buoyant force on the balloon is equal to the weight of the air
displaced. Assuming that this force is approximately in balance with gravity, we can write
pVg=(M+pV)g or po—p=M/V,
where po is the density of the surrounding air, V' is the volume of the balloon, and M is the
mass of the unfilled balloon and payload, and p is the density of the air inside the balloon.

According to the ideal gas law, the density of air is
_mn__mP
p= vV - ERT
where m is the mass of one mole of air (29 g, as shown in the previous problem). This
formula applies either inside or outside the balloon, with the same pressure in both places
but different temperatures. Therefore the balance of forces implies
mP mP M
R RV
where T is the temperature inside the balloon and Tj is the temperature outside. A bit of
algebra then yields

Let’s assume an outside air temperature of 290 K, and atmospheric pressure. The volume
of the balloon can be estimated from Figure 1.1: Comparing to the heights of the people
standing underneath, I estimate the balloon in the foreground to have a diameter of about
50 feet or 15 meters, and therefore a volume of 7r° = 1770 m®. The mass of the unfilled
balloon and payload is assumed to be 500 kg, so the previous expression evaluates to
1 1  500kg 8.31 J/K _ 1 11
T 290K 0.029 kg (10° N/m?)(1770 m3) 290 K 1235K 379K’
Thus the temperature inside the balloon must be about 379 K or just over 100°C. (Thanks
to Chuck Niederriter for informing me that this is indeed a typical operating temperature.)
Assuming this temperature, the mass of the air inside the balloon should be roughly
mPV  (0.029 kg)(10° N/m?)(1770 m®)
. RT ~ (8.31 J/K)(379 K)
more than three times the mass of the urfilled balloon and payload!

M. =mn=

= 1600 kg,




6

Chapter 1

Energy in Thermal Physics

Problem 1.16. (The exponential atmosphere.)

(2)

(b)

(c

~—

(d)

atea = A lP(z+dz)-A
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P(z)-A
Mechanical equilibrium requires that the vertical forces balance:
Mg

P(z+dz2) - A+ Mg = P(z) - 4, or P(z+dz)—-P(z)=—T,

where A is the area of the slab and M is its total mass. Plugging in M = pAdz,
canceling the A’s, and dividing through by dz gives

P(z+dz) — P(z) _ £=_ ]
_dz—— = —pg or 1z £

i i = = = is the average

The density of the gas is p = M/V = Nm/V = Pm/kT, where m is t : .
molecular mass and in the last step I've used the ideal gas law. Thus the differential
equation becomes

dP mg

—=——=P.
z kT
The function P(z) is one whose derivative is some constant {(namely —Trzg/ kT) .times
itself. The function Ae®* has this property, where a = ~mg/ ki." and 64 is an arbitrary
constant whose interpretation is the value of P when z = 0 (since € = 1). Thus the
solution is

P(z) = P(0) e™™o=/*T

The density p(z) is just m/kT times P(z), so it has the same exponential form with a
different constant out in front. The constant, P(0) - m/kT, must be p(0) because the
exponential again equals 1 at z = 0.

T'll take z = 0 at sea level so that P(0) = 1 atm. I'll also take T = 280 K as an
average temperature at the locations given. Air is 80% nitrogen (N3), so the mass
of a molecule in kilograms is about .028/N,4, hence the quantity kT'/'n_r,g is roughly
RT/(.028 kg)(9.8 N/kg) = 8500 meters or about 28,000 feet.. (Tkus is the he?ght
at which the pressure has fallen to 1/e atmospheres.) Plugging in the elevations
given, I find for Ogden (4700 feet), P = e~!" atm = .84 atm; Leadville (10500 feet),
P = .69 atm; Mt. Whitney (14,500 feet), P = .59 atm; Mt. Everest (29,000 feet),
P = .35 atm.
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Problem 1.17

Problem 1.17. (The virial expansion.)
(a) Truncating the virial expansion after the second term, we have

(b)

(¢)

PV =nRT<1 + %)

For given values of P, T, and B, this is a quadratic equation for V/n. However, it is °

reasonable to assume that the second term on the right-hand side is small compared

to the first, so we can find V/n accurately enough from the ideal gas law. At 100 K
and 1 atm,

V _ RT _ (8.315 J/mol - K)(100 K) _ 3
—=F= 1013 % 10° Pa = 0.00823 m®/mol.

Therefore the correction term under these conditions is

B(T)  —160 x 10~ m3/mol — _0.019
V/n = 000823 m®/mol

In other words, the volume of the gas is about 2% less than the ideal gas law would

predict (or at a given volume, the pressure is 2% less). Repeating the calculation for
the other temperatures, I find:

T B/(V/n)

100 —0.019
200 ~0.0021
300 —0.00017

400 +0.00027
500 +0.00041
600 +0.00043

Notice that at reasonably high temperatures, the correction to the ideal gas law is less
than one part in a thousand (at atmospheric pressure).

Attractive forces between molecules should reduce the pressure of a gas, yielding a
negative second virial coefficient, while repulsive forces should increase the pressure,
leading to a positive second virial coefficient. Apparently the forces between mole-
cules can be either attractive or repulsive, with attractive forces dominating at low
temperatures and repulsive forces dominating at high temperatures. Does this make
sense? I think so. Molecules attract each other weakly when they’re close but not
“touching.” At low temperatures, they’ll be moving slowly enough for this attraction
to have a significant effect on the pressure. But when molecules collide head-on, they
repel each other strongly. At high temperatures, when the molecules are moving very
fast, this should be the more significant effect.

Solving the van der Waals equation for P, then factoring out n.RT/V on the right-hand

. side, puts it into the form

1 an
PV_nRT(l—nb/V - RTV)'
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The second term on the right-hand side is already in the form of a temperature-
dependent coefficient over V/n, so it contributes to B(T). To put the first term into
the proper form, apply the binomial expansion:

[1 = (b/V)]* = 1 + (=1)(=nb/V) + —;-(—1)(—2)(nb/V)z =1 +nb/V + (nb/V)2.

(This expansion should be valid at low density, when n/V is sufficiently small.) Thus
the van der Waals equation takes the approximate form

b + ¥ af RT)
n/V  (n/V)? V/n )’
From this expression we can read off the second and third virial coefficients,

B(T)=b- C(T) = b

PV = nRT(l +

RT’
Since a and b are positive, B(T) is positive in the high-temperature limit and negative
in the low-temperature limit, as desired.

(d) First I'll estimate the values of a and b. In the high-temperature limit, B(T) — b
so I want b ~ 30 x 10~° m®/mol according to the data. On the other hand, I want
B(T) = 0 at approximately 300 K, so at this temperature, 0 = b— (a/RT) or

a = bRT = (30 x 10~° m®/mal)(8.3 J/mol - K)(300 K) ~ 0.10 I - m®/mol?.

(An interpretation of these numbers is given in the text on page 181.) To plot the
formula and the data I gave the following instructions to Mathematica:

data = ListPlot[{{100,-.00016},{200,~.000035},{300,~.0000042},
{400, . 000009}, {500, . 0000169}, {600, .0000213}}1;
vdw = Plot[.00003 - .1/(8.315+t), {t,100,600}1;
Show {data,vdw,PlotRange—>{{0,650},A11}];
The plot showed that my estimated values of a and b were both too low, so I adjusted
them by trial and error, eventually settling on the values a = 0.16 J.m®/mol? and
b = 0.00006 m?/mol, which gave the following graph:

0.000025 . .
= 100 200 G 400 500 600
2 -
g -0.000025 T (X)
= -0.00005
E .
~ -0.000075
&
& -0.0001

~0.000125

-0.00015

This is about as good a fit to the data as I could get, adjusting only two parameters to fit
six data points. So although the van der Waals equation does have the right qualitative
features, and can be made to fit data in an approximate way, it is nowhere near exact.

Problem 1.21

Problem 1.18. In applying equation 1.21, it is often easier to multiply and divide the
quantity k/m by Avogadro’s number, so it becomes R/M, where M is the molar mass of
the gas. Then, for N, at 300 K,

/ 3(8.31 J/K)(300 K)
VUrms = 0. 028 kg =517 m/s.

Problem 1.19. The mass of an oxygen molecule is 16 times that of a hydrogen molecule
(32 nucleons vs. 2). The rms speed is inversely proportional to the square root of the mass,
s0 we would expect the average speed of the hydrogen molecules to be greater, by a factor

of V16 = 4.

Problem 1.20. The atomic mass of fluorine is 19, so a UFg molecule containing uranium-
238 has a molecular weight of 352. The rms speed at room temperature for such a molecule
is :

3(8.31 J/K)(300 K)

Vrms = __M = 0.352 kg =145.8 m/s.

If instead the molecule contains uranium-235, the molecular weight is only 349. The rms
speed is then larger by a factor of

352
310 = L0043,

a difference of 0.43%. Numerically, the rms speed of the lighter isotope is 146.4 m/s.

Problem 1.21. The hailstones strike the window at intervals of 1/30 second (on average).
During this time, the average force exerted by the window on the hailstone must be

= Av,
Fe=mZt
where Av, is the change in the component of the hailstone’s velocity perpendicular to the
window. Assuming elastic collisions and a velocity of 15 m/s at 45°, this change in velocity
is 2v cos 45° = 21 m/s. The average pressure is just the average force divided by the surface
area:

= F mAv, (0.002 kg)(21 m/s)

P=>= Z = =2. 2.

A~ Adt T (05md(0033s o N/m

This is less than atmospheric pressure by a factor of about 40,000. (However, the instanta-
neous pressure during a collision is much higher, and the force of each hailstone is localized,
not distributed over the whole window.) .

9
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Problem 1.22. (Effusion.)

(2) Asin equation 1.9, Newton’s laws imply that each molecule colliding with the surface
exerts an average pressure of

— mAv
P=- =,
AAt
For an elastic collision, Av, = —2u,, as in equation 1.11. If there are N molecules,

the total pressure is the sum of N terms of this form, one for each molecule; the sum
over v, values can be written as NV times the average, N7;. Therefore,

m-2Nw; . PAAt
AAt T omu;

(b) This result follows directly from equation 1.15:

P=

kT

kT = ma? = (@)% = —

(c) What I called N in part (a) now becomes —AN, the decrease in the number of
molecules in the container. Substituting the result of part (b) for T then gives
PAAt m
2m kT’
Now use the ideal gas law to eliminate P, divide through by At, and take the limit

At — 0 to obtain
aN A kT 1
&=V N

Whel‘(? the last equality defines the constant . This equation says that N (t) is a
function whose derivative is —1/7 times itself; such a function is
N(t) = N(0)e™*/".
(d) To calculate 7, we first need the quantity /&T/m = /BT /M, where M is the molar

mass of the gas. Assuming that the gas is air near room temperature, this quantity is

[RT _ /(8.3 J/mol - K)(300 K)
w \/ 028 Kg/mol =293 m/s ~ 300 m/s.

The characteristic time for a 1-liter container punctured by a 1-mm? hole is then
re 2V _ 2(.001 m?)
A«/RT/M ~ (10-° m?)(300 m/s)

(e) To estimate the volume of the tire, I'll take it to be a cylinder, 2 meters long and 2 cm

in radius: V = 7(.02 m)*(2 m) = .0025 m®. Then if 7 is one hour, the area of the hole
should be roughly

= 6.7 seconds.

Ae_ 2V 20025m)
r/RT/M (3600 5)(300 m/s)

=5x10"% m?,

Problem 1.26

implying that the diameter of the hole is a little under a tenth of a millimeter.

(f) Suppose the volume of the space capsule is 50 m?, the area of the window is .2 m?,
and the temperature inside is comfortable for humans. Then the characteristic time
for the air to escape would be

po 20w

T (2m?)(300 m/s)

This is the time for roughly 2/3 of the air to escape. Even if they can open and close
the window in half a second, the amount of air that escapes will be significant.

1.7 s.

Problem 1.23. Helium has three degrees of freedom (translational only) per molecule, so
U = 3N-1kT = 2PV by the ideal gas law. (Note that P and V determine the product NT,
so you don’t need to know the temperature.) For P = 105 N/m? and V = 1073 m?, the
product PV is 100 J so the total thermal energy is 150 J. For air (oxygen and nitrogen),
however, there are five degrees of freedom (three translational, two rotational) at room
temperature, so the total thermal energy is £PV =250 J.

Problem 1.24. Each lead atom has six degrees of freedom: three from kinetic energy and
three from potential, corresponding to vibrations in the three orthogonal directions. The
atomic mass of lead is about 207, so a gram of lead contains 1/207 moles. Therefore the
total thermal energy is approximately

61

Uthermal = %TLRT = 55@(831 J/K)(300 K) =36 J.

Problem 1.25. Translation: Like any other gas molecule, a water vapor molecule has three
translational degrees of freedom, for motion in the z, y, and 2 directions. Rotation: A water
vapor molecule has no axis of symmetry, so it can rotate about all three perpendicular axes,
giving three rotational degrees of freedom. Vibration: A water vapor molecule has three
independent modes of vibration, which can be described in various ways. First consider
stretching of the two O-H bonds. Each H atom can independently move in and out, toward
and away from the O, so that’s two modes of vibration; alternatively, we can take one mode
to be the simultaneous motion of both H atoms in phase with each other, and the other to
be simultaneous out-of-phase motion. But even with no stretching of the bonds, the angle
between them can vary as the molecule flexes, with the two H atoms moving toward and
away from each other. So in total there are three vibrational modes, each of which counts
as two degrees of freedom (three kinetic, three potential). Add in the translational and
rotational degrees of freedom and we have 12 degrees of freedom in total. (At ordinary
temperatures, however, the two stretching modes are frozen out while the flexing mode is
only partially active.)

Problem 1.26. The flow of energy from the battery to the resistor is work, not heat. Even
though the resistor gets warm, there is no spontaneous flow of energy from the battery to
the resistor that is caused by a difference in their temperatures. In fact, the battery could
very well be cooler than the resistor, yet keep providing energy to it. The flow of energy
from the resistor to the water, however, is a spontaneous one caused by the resistor being
hotter than the water. This energy flow is therefore classified as heat, not work.

11
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Problem 1.27. Temperature increase with no heat added: The resistor in the previous
problem provides an example; it gets hot as the battery supplies energy in the form of
work (mot heat). Other examples would be “heating” a cup of tea in the microwave, or
compressing air to pump up a bicycle tire, or simply rubbing your hands together. Heat
input with no increase in temperature: I can think of two types of examples. The first is a
phase change, like boiling a pot of water on the stove. Heat is constantly flowing in, but
the temperature of the water remains at 100°C (or at whatever the boiling temperature
is at your altitude). The second type of example is when the system does work on its
surroundings to compensate for the energy put in as heat. For instance, you could have a
gas in a cylinder with a flame under it, while letting the piston out fast enough that the
gas actually cools.

Problem 1.28. Let’s say we have 200 g of water, initially at 20°C. Then the total energy
required to bring it to 100° is (200)(80) calories or 67,000 J. The microwaves pump in 600 J
per second, so the total time required should be (67,000 J)/(600 J/s) = 110 seconds, or
about two minutes. (This coincides roughly with my experience.)

There is no heat involved in this process because heat is a spontaneous flow of energy
from a hot object to a cold object. In this case there is no hotter object from which heat is
flowing into the water. (If anything, heat is flowing out of the water into the cup and the
surrounding air.) The transfer of energy from the magnetron into the water is classified as
electromagnetic work.

Problem 1.29. The 5° temperature increase of the water requires the input of energy:
specifically, 5 calories per gram, or 1000 calories total (4200 J). This energy could have
entered as heat, but it also could have entered as work, for instance, by someone vigorously
stirring or shaking the water. So the answer is that I can conclude nothing about how
much heat was added to the water. (Probably the amount of heat added was no greater
than 1000 cal, since there’s no easy way for the water to lose energy by doing work. But
it’s not impossible, and it’s certainly permitted by the first law of thermodynamics.)

Problem 1.30. For this experiment I used about an ounce of water in an eight-ounce
plastic bottle that was small enough to hold between my fingers and thumb for rapid
shaking. I was able to shake it back and forth about four times per second, with the water
traveling about a foot during each half-shake or about eight feet total per second. Using
the water’s average speed to compute the kinetic energy that gets converted to thermal
energy, I would then predict for each half-shake

2
meAT = %mv2 oo AT= ! ( 0.3 m

k)
2¢  2(4200 J/kg°C) \0.125 s

2

) = 0.00069°C.
With eight half-shakes per second, the temperature rise after one minute should therefore
be about 0.3°C. What I actually found upon trying the experiment three times, shaking
for three to five minutes each time, was a pretty consistent temperature rise of 1.0°C per
minute. However, my theoretical calculation could be on the low side because I used only
the average speed of the water, when perhaps I should have used the maximum speed.
Also, as a control I tried simply holding the bottle in my hand for a few minutes, and this

Problem 1.32 13

produced a temperature increase of between 0.3 and 0.5°C per minute simply from the heat
of my fingers. To do the experiment more accurately it would probably be best to use a
bit more water, and to wear gloves or otherwise insulate the system from the heat of my
fingers. But I've already demonstrated that kinetic energy can be converted to thermal
energy, producing a temperature increase of the expected order of magnitude.

Problem 1.31. (A belium expansion example.)

(a)

P (atm)

‘ 1 2 3V (liters)

(b) The work done is minus the area under the graph (shaded). The easiest way to
compute this area is to note that the average pressure during the process is 2 atm, so
W =-PAV = —(2 atm)(2 liters) ~ —(2 x 10° Pa)(2 x 1073 m?) = —400 J. -
The minus sign indicates that 400 J of work is done by the gas on its surroundings.
{c) Each helium atom has three degrees of freedom, so at any point the thermal energy

of the helium is I/ = $NkT = 3PV. The change in energy during this process is
3 3
AU = 3 [PV - PV = 3 [(3 atm)(3 liters) — (1 atm)(1 liter)]
= 12 liter - atm = 1200 J.
(d) By the first law,
Q=AU - W =1200 J - (—400 J) = 1600 J.
This amount of heat enters the gas.

(e) To cause such an increase in pressure (and temperature) as the gas expands, you must
provide heat, for instance, by holding a flame under the cylinder and letting the piston
out slowly enough to allow the pressure to rise as desired.

Problem 1.32. (Compressing water.)

]
2001

P (atm)

0.99 1.00 V (liters)
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Problem 1.27. Temperature increase with no heat added: The resistor in the previous
problem provides an example; it gets hot as the battery supplies energy in the form of
work (mot heat). Other examples would be “heating” a cup of tea in the microwave, or
compressing air to pump up a bicycle tire, or simply rubbing your hands together. Heat
input with no increase in temperature: I can think of two types of examples. The first is a
phase change, like boiling a pot of water on the stove. Heat is constantly flowing in, but
the temperature of the water remains at 100°C (or at whatever the boiling temperature
is at your altitude). The second type of example is when the system does work on its
surroundings to compensate for the energy put in as heat. For instance, you could have a
gas in a cylinder with a flame under it, while letting the piston out fast enough that the
gas actually cools.

Problem 1.28. Let’s say we have 200 g of water, initially at 20°C. Then the total energy
required to bring it to 100° is (200)(80) calories or 67,000 J. The microwaves pump in 600 J
per second, so the total time required should be (67,000 J)/(600 J/s) = 110 seconds, or
about two minutes. (This coincides roughly with my experience.)

There is no heat involved in this process because heat is a spontaneous flow of energy
from a hot object to a cold object. In this case there is no hotter object from which heat is
flowing into the water. (If anything, heat is flowing out of the water into the cup and the
surrounding air.) The transfer of energy from the magnetron into the water is classified as
electromagnetic work.

Problem 1.29. The 5° temperature increase of the water requires the input of energy:
specifically, 5 calories per gram, or 1000 calories total (4200 J). This energy could have
entered as heat, but it also could have entered as work, for instance, by someone vigorously
stirring or shaking the water. So the answer is that I can conclude nothing about how
much heat was added to the water. (Probably the amount of heat added was no greater
than 1000 cal, since there’s no easy way for the water to lose energy by doing work. But
it’s not impossible, and it’s certainly permitted by the first law of thermodynamics.)

Problem 1.30. For this experiment I used about an ounce of water in an eight-ounce
plastic bottle that was small enough to hold between my fingers and thumb for rapid
shaking. I was able to shake it back and forth about four times per second, with the water
traveling about a foot during each half-shake or about eight feet total per second. Using
the water’s average speed to compute the kinetic energy that gets converted to thermal
energy, I would then predict for each half-shake

2
meAT = %mv2 oo AT= ! ( 0.3 m

k)
2¢  2(4200 J/kg°C) \0.125 s

2

) = 0.00069°C.
With eight half-shakes per second, the temperature rise after one minute should therefore
be about 0.3°C. What I actually found upon trying the experiment three times, shaking
for three to five minutes each time, was a pretty consistent temperature rise of 1.0°C per
minute. However, my theoretical calculation could be on the low side because I used only
the average speed of the water, when perhaps I should have used the maximum speed.
Also, as a control I tried simply holding the bottle in my hand for a few minutes, and this
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produced a temperature increase of between 0.3 and 0.5°C per minute simply from the heat
of my fingers. To do the experiment more accurately it would probably be best to use a
bit more water, and to wear gloves or otherwise insulate the system from the heat of my
fingers. But I've already demonstrated that kinetic energy can be converted to thermal
energy, producing a temperature increase of the expected order of magnitude.

Problem 1.31. (A belium expansion example.)

(a)

P (atm)

‘ 1 2 3V (liters)

(b) The work done is minus the area under the graph (shaded). The easiest way to
compute this area is to note that the average pressure during the process is 2 atm, so
W =-PAV = —(2 atm)(2 liters) ~ —(2 x 10° Pa)(2 x 1073 m?) = —400 J. -
The minus sign indicates that 400 J of work is done by the gas on its surroundings.
{c) Each helium atom has three degrees of freedom, so at any point the thermal energy

of the helium is I/ = $NkT = 3PV. The change in energy during this process is
3 3
AU = 3 [PV - PV = 3 [(3 atm)(3 liters) — (1 atm)(1 liter)]
= 12 liter - atm = 1200 J.
(d) By the first law,
Q=AU - W =1200 J - (—400 J) = 1600 J.
This amount of heat enters the gas.

(e) To cause such an increase in pressure (and temperature) as the gas expands, you must
provide heat, for instance, by holding a flame under the cylinder and letting the piston
out slowly enough to allow the pressure to rise as desired.

Problem 1.32. (Compressing water.)

]
2001

P (atm)

0.99 1.00 V (liters)
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I've drawn the PV curve as a straight line only because this is the simplest plausible shape;
probably it should be slightly concave-upward, to indicate that the more you compress the
water, the harder it is to compress further. In any case, the average pressure during this
process is approzimately 100 atm, so the work done on the water is

W =~ —P AV = —(100 atm)(—0.01 liter) = 1 liter - atm = 100 J.

This is as much work as you would do lifting a 10-kg object a meter off the ground (say
a heavy bag of groceries from the floor to the table). Considering the enormous pressures
involved, you may have expected the work to be much greater.- However, work involves
not just force but also displacement, and here the displacement (change in volume) is very
small.

Problem 1.33. The work done on the gas is positive when its volume decreases (step C),
negative when its volume increases (step A), and zero when its volume stays the same
(step B). The net work done during the whole cycle is positive, since the average pressure
is higher during step C than during step A. To determine the sign of the change in energy,
note that for an ideal gas, U = {NkT = £PV, so any increase in P or V indicates an
increase in U. Therefore the energy increases during steps A and B, but decreases during
step C. For the whole cycle the energy must be unchanged, since both P and V are
unchanged. To determine the sign of @ for each step, just use the first law: @ = AU —W.
Here are the results in tabular form:

W AU Q
step A2 - + +
stepB: 0 + +
stepC: + — -

whole cycle: + 0 -

Apparently, the net result of the cycle is to absorb energy as work and emit energy as
heat. Furthermore, the heat emitted during step C could go to a different place than the
source of heat during steps A and B, so this “machine” could move heat around. Similar
cycles can act as refrigerators (see Chapter 4), but this particular cycle would not make a
practical refrigerator because the absorption of heat does not always take place at a lower
temperature than the emission of heat.

Problem 1.34. It’s easiest to first compute the work done during each step, using W =
—PAV. For steps A and C there is no work done because the volume doesn’t change;
for steps B and D the pressure is constant so we don’t need to set up an integral. So, for
instance, the work done on the gas during step D is +P;(Vz — V4).

Since each molecule has five degrees of freedom, the thermal energy of the gas at any
point is U = ENkT = $PV. Therefore AU during any step is 3(P;V; — P,V), where §
stands for final and ¢ stands for initial. For instance, during step D, AU = —%Pl (V2=W).

The heat added to the gas during any step is just @ = AU — W. So again for step D
we have Q = —$P,(V; — Vi) — Py(V; — Vi) = —1P,(V; — ).

Problem 1.36

Here’s a table of values for all four steps, computed in this way:

w AU Q

step A: 0 $Vi(P, - P1) SVi(P— P)
step B: —PB((V; - W) SP(Va—-W) IRV -W)
step C: 0 -2V~ P) -iW(PR-PR)
step D: PV, - W) —$P(Va-W) —IP(V:-W)
whole cycle: ~(P, — P)(V; - V) 0 (Pp - P)(Vz = V1)

I found the entries in the last row by adding up each of the columns and simplifying the
result as much as possible.

What’s actually happening must be something like the following: During step A we
hold the piston fixed but put heat in (say from a flame); during step B we let the piston
out and continue putting heat in at such a rate as to maintain constant pressure; during
step C we hold the piston fixed but suck heat out, perhaps by immersing the whole thing

. in an ice bath; and during step D we push in the piston while still sucking heat out so the

pressure again remains steady.

The net work done on the gas during the whole cycle is negative; in other words, the
net work done by the gas is positive. This is as expected, because the pressure is higher
when the gas is expanding than when it is being compressed. Notice that the net work
is just minus the area enclosed by the rectangular cycle on the diagram. The net change
in the energy of the gas is zero, as it must be: the state of the gas (as determined by its
pressure and volume) is the same at the end of a cycle as at the beginning. Therefore the
net heat put into the gas must be minus the net work done, as indeed it is. In summary,
this procedure results in a net conversion of heat input into work output.

Problem 1.35. Using the ideal gas law to eliminate T from equation 1.39 gives

_— = t .
14 ( Nk) constant
Raising both sides of this equation to the power 2/f then gives

P.VUWHF = Nk . (constant)?/.

The right-hand side of this equation is just some new constant, while the exponent on V is
% +1=(2+ f)/f = v, the adiabatic exponent. Therefore, during adiabatic compression
or expansion of an ideal gas,

P . V7Y = constant.

Problem 1.36. (Pumping up a bicycle tire.)
(a) From equation 1.40 (derived in the previous problem), we have

PNV . 1 atm \*” .
PV =PV, or V;=V;- (1—3;) =(1 hter)(7 atm) = 0.25 liters,
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where 4 and f refer to initial and final, and I've set v = 7/5 for air, which has five
degrees of freedom per molecule at ordinary temperatures.

(b) The pressure as a function of volume is P = constant/V7, where the constant can be
evaluated from the initial conditions as P;V]". The work done is then

v VTt \Vr
W=-/PdV=_P,.V;'/ V"’dV::—P,-W( )
v —7+1/ly
_PW /(1 1) _PY% V,-)"“_l
=W\ V) -1\
_ 1 liter-atm

575 [(4.0)%/° — 1] = 1.86 liter-atm = 188 J.

(c) From equation 1.39 we can write V;Tff 2 =VT? or

Vi N7 1liter \*°
Ty = Ti i = _— = . s .
i (Vf) (300 K) ( B3 liters) (300 X)(1.74) ~ 520 K

Problem 1.37. From equation 1.39 we can write VfT; 7= viT! * where i represents the
initial state and f represents the final state. 'l assume an initial temperature of 300 K
and f =5 for air. Solving for T then gives

v 2/f

T =1T;- (ﬁ-) = (300 K)(20)%® = (300 K)(3.31) ~ 1000 K.
f

This is presumably hot enough to ignite the fuel as soon as it is injected, without the aid

of a spark plug.

Problem 1.38. Since the bubbles each contain the same number of molecules and each
end up at the same pressure, the ideal gas law tells us that whichever one has the higher
* temperature at the surface also has the larger volume: V = NkT/P. And the one with the
higher temperature is the one with the larger energy content, by the equipartition theorem:
U = NkT/2. So the question is, which bubble has more energy at the surface? Since
both bubbles expand, they both lose energy as they do work on the surrounding water.
Apparently, bubble B absorbs heat to replace this lost energy and thus remains at the initial
temperature. Since bubble A does not absorb any heat, its energy drops. So bubble B,
the one that does absorb heat, ends up at the higher temperature and thus has the larger
volume.

Problem 1.39. (Bulk modulus and speed of sound.)
(a) During an isothermal compression, according to the ideal gas law,

dP d NkT NET

P A C

i

(b)

()

(@

Problem 1.39

and therefore the bulk modulus is

dP _ NkT _

av |4 P

Bisothermal =-V

During an adiabatic compression, on the other hand, the pressure of an ideal gas obeys
PV = C for some constant C. This implies

P _dC__C
W oavve - Yywo
d theref
and therefore ip c

B diabatic = _VW =Ty = ~P.

Since = is always greater than 1, the adiabatic bulk modulus is always larger than the
isothermal bulk modulus. This makes sense, because it’s harder to compress a gas
adiabatically (as its temperature rises) than isothermally.

Sound typically travels much faster than heat, so there's no way that heat could
flow back and forth between the compressed and rarified portions of sound wave fast
enough to accomplish any temperature equilibration. Therefore we can treat these
compressions as approximately adiabatic, with no significant heat flow at all.

Let m be the average mass of a gas molecule. Then the density, p, is Nm/V = mP/kT
by the ideal gas law. The speed of sound is therefore

=B | 2B __ [okT_ [¥RT
SN T mPET TV m TV

where M is the mass of a mole of the gas. This result is the same as equation 1.21 for
the rms speed of the gas molecules, except that the 3 is here replaced by 4. In other
words, the speed of sound is slower than the rms molecular speed, by a factor of 1/3/7.
(Note that + is always between 1 and 5/3, being largest for a monatomic gas.) This
result makes sense: The sound wave is carried by the molecules, so its speed should
be comparable to the average molecular speed, and definitely no faster. Numerically,
for air at room temperature,

. \/ﬂ(m IMYBOK) _apr Js.

0.029 kg

At high altitude, the pressure of the atmosphere is less than at sea level. But the result
of part (c) shows that for an ideal gas, the speed of sound is independent of pressure—
it depends only on temperature. (Both B and p are proportional to pressure, but this
dependence cancels in the ratio B/p.) If the environment throws your bagpipes out
of tune, it must be the temperature, not the lower pressure, that causes this effect.
In fact, the concert referred to was in a heated auditorium so there should have been
no significant effect due to temperature either. In any case, the musician managed to
tune his pipes just fine and the performance was superb.
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Problem 1.40. (Dry adiabatic lapse rate.)
(a) Starting from the first law and setting @ =0,
dU=Q+W=W =~PdV.
For an ideal gas, U = éNkT, so
%Nk dT = —PdV. (1.35)
In this equation there are three variables—T, V', and P. In this problem we want to

eliminate V in favor of T and P. One way to do this is to start with the ideal gas law
and consider a small change in each side of the equation:

d(PV) = NkdT.

The left-hand side is P dV + V dP, by the product rule for derivatives, so

PdV = NkdT — VdP = NkdT - #dﬂ
where I've used the ideal gas law again in the last step. Therefore equation 1.35
becomes

gdeT = —NkdTl + NTIdeP.

Canceling the Nk and collecting terms gives

f+2,.. T ar 2 T

== BT P

(You can also derive this differential equation from the solutions for T’ and P in terms
of V, equations 1.39 and 1.40.)
(b) The result of part (2) can be written
2 T
f+2P
this is the change in temperature under an infinitesimal adiabatic change in pressure
dP. If this change occurs because the air mass is rising a distance dz, and if the
vertical forces on it are balanced throughout this process, then the result of Problem
1.16(b) tells us that

dl’ = dP,

mg
dP = —ﬁP dz,
where m is the average mass of an air molecule. Therefore the change in temperature
is
2 Tmg 2 mg
T = 5P =z k&

and the temperature gradient is

ar _ 2 mg _ 2 Mg

= FiiEC Fii R

where M is the molar mass of air, 29 g/mol. Plugging in f = 5 and g = 9.8 N/kg, the
numerical value comes out to
dl  2(.029 kg)(9.8 N/kg)

%= 7 8315 Jmal K= 0% K/m = —9.8 K/km.

Problem 1.43

Problem 1.41. (Measuring a heat capacity.)
(a) The heat gained by the water is

M€y (AT ), = (250 g)(4.186 J/g-°C)(4°C) = 4186 J.

(b) The heat lost by the metal must be the same as the heat lost by the water, 4186 J,
since there are no other energy transfers going on and energy must be conserved.

(c) The heat capacity of the chunk of metal must therefore be
Q 41867

Cm=AT. = "i5°C

=55 J/°C.

(d) The specific heat capacity is the heat capacity per unit mass,

_ Cn _553/°C

M 100 g

=0.55 J/g-°C.

Problem 1.42. The heat lost by the water should be approximately equal to the heat
gained by the pasta. Therefore,

M Cou (T = Ty) = mpey(Ty — Tp),

where w stands for water, p for pasta, and f for the common final temperature. Solving
for Ty gives

Moy Cow Ly + Mpey Ty

My Cy + MpCp
_ (1500 g)(4.186 J/g-°C)(100°C) + (340 g)(1.8 J/g-°C)(25°C)
- (1500 g)(4.186 J/g->C) + (340 g)(1.8 J/g-<C)

Tf=

=03.3°C.

So we would expect the water temperature to drop by nearly 7°C, assuming that equilibra-
tion happens faster than the stove can provide any significant additional heat. To prevent

the water temperature from dropping so much, it might be wise to use a bigger pot of
water.

Problem 1.43. Suppose we have 18 g of water, which makes exactly one mole. The total
heat capacity is 18 - 4.186 J/K, so the heat capacity per molecule is

C 18-4.186 J/K _ _2o

N—W-l.%xlo J/K =9.07k.
If all the thermal energy were stored in quadratic degrees of freedom, then each would get
a heat capacity of k/2, so there would have to be 18 degrees of freedom per molecule—an
unrealistically large number. In fact, much of the thermal energy is stored in the energy of
intermolecular interactions, and these energies are not quadratic functions of position.
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Problem 1.44. The heat capacity (at constant pressure) of a mole of monatomic gas
should be R = 20.8 J/K; looking through the table I see that this prediction is pretty
much exact for all monatomic gases listed: Ar, H, He, and Ne. For a diatomic gas with
two rotational degrees of freedom but no vibration, Cp should be :;-R = 29.1 J/K; this
prediction is extremely close for CO and N,, but just a little high for H,, just a little
low for O, and significanty too low for Cl;. The linear polyatomic molecule CO; should
also have two rotational degrees of freedom, but its Cp value of 37.1 J/K indicates that
some vibration is also active, probably a “Hopping” that doesn’t actually stretch the bonds.
The other polyatomic gases should have Cp values of at least %R = 33.3 J/K, plus any
further contributions from vibrational modes. Water comes closest among those listed to
the prediction of pure rotation, followed by ammonia (NH;) and then methane (CH,). The
larger hydrocarbons, ethane and propane, obviously have quite a bit of vibrational energy
even at room temperature.

For one mole of an elemental solid, assuming all vibrational degrees of freedom are
active, the equipartition prediction is Cp = 3R = 24.9 J/K, plus any correction due to
the small difference between Cp and Cy. Aluminum, Copper, Iron, and Lead all come
reasonably close to this prediction, with small discrepancies that are easily understood in
terms of Figure 1.14. Diamond and Graphite are significant anomalies, with heat capacities
much lower, indicating that many of their vibrational degrees of freedom are still frozen
out at room temperature. Solid compounds have more atoms per mole and therefore larger
molar heat capacities. Both NaCl and CaCl, seem to have essentially all degrees of freedom
active, but Cp values of the more complicated compounds are all somewhat on the low side,
indicating that at least some of the bounds are too stiff to vibrate easily at room temperature.
The most extreme example is glucose, which would have a heat capacity of about 500 J/K
if all vibrational modes were active.

For liquids we can make no precise predictions, but notice that the heat capacity of
mercury is not much larger than we would predict for a solid, while the molar heat capacities
of water and ethyl! alcohol are significantly larger as expected.

Problem 1.45. (Partial derivative practice.)

(a) Starting with w = zy and = = yz, I find w = 3%z and also w = 22/z.

(b) To compute (8w/dz), one should start with a formula for w purely in terms of z and
y—in this case, w = zy. Treating y as a constant, I find (dw/dz), =y. On the other
hand, to compute (8w/dz). one should start with the formula w = z?/z; then it's
easy to see that (8w/dz), = 2z/z. Since y # 2z/z, these partial derivatives are not
equal. (Instead, y = z/z.)

(c) From w = zy one case also see that (dw/8y), = z. On the other hand, from w = y*z
one can see that (Gw/8y). = 2yz = 2z. So these partial derivatives aren’t equal either.
Finally, from w = z2/z one can see that (dw/8z), = —z%/22, while from w = y*2 one
can see that (fw/8z), = y® = +2%/2?, unequal yet again.-

Problem 1.46. (Compressibility and general P-V-T relations.)

(a) For a thermal expansion process at fixed pressure,

v

dv, = (B—T-)PdT = BV dT,

G s e e e e e s e L T U e e B A o e Ty e B e e T ST e B T i T R R e

Problem 1.47

where § is the thermal expansion coefficient, 8 = (1/V){(8V/8T)p.

(b) For a compression process at fixed temperature,

v
dVs = (ﬁ)TdP = —krV dP,
where xr is the isothermal compressibility.
(c) If these two processes are to result in no net change in volume, then dV, = —dV;, and
therefore,
aP\ _ (av/aT)p
—krV dP = —pV dT, or (aT)V-— P T

where in the last step I've used the definitions of § and xr.
(d) For an ideal gas,

178V 18 (NkT\ 1Nk 1
ﬁ‘V(ﬁ),,:Vﬁ(—P’):V—P‘:T’
1(8V 1 8 (NkT 1/ NkT\ 1
"Tz“V(ﬁ)T=‘Vﬁ<T) - 'V("_Pf) P
8P & (NKT\ Nk _P
<?ﬁ)v=ﬁ(_v‘)=7‘f'
So indeed, (8P/8T)v = B/x7.

(e) Treating the temperature change as approximately infinitesimal, the required pressure
change for water would be

-4 10-1
dP = <£> ar =L ar ﬂu—l(lo K) = 5.69 x 10° Pa = 56 atm.
v

aT Ky . 452 x 10~ Pa-
Similarly, for mercury,
B 1.81 x 1074 K~ .
dP . dT 104 % 10~ Pa-t (10K) 48 x 107 Pa atm

To measure Cy we would need to keep the volume fixed while increasing the temper-
ature by at least a few degrees. As just shown, this requires fairly large pressures,
for which we would need heavy-duty equipment (expensive and, for an amateur like
me, dangerous). So I’d much prefer to stay at atmospheric pressure and simply mea-
sure Cp.

Problem 1.47. The amount of heat that I want to remove from the tea is
Q = (200 g)(1 cal/g-°C)(35°C) = 7000 cal.

This heat enters the ice, brings it up to 0°C, melts it, and then brings the melted water up
to 65°C. If the mass of the ice is m, then

Q = m(0.5 cal/g-°C){15°C) + m (80 cal/g) + m(1 cal/g-°C)(65°C).

Solving for m gives m = 46 g.
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Problem 1.48. Consider a 1-m? patch of snow-covered ground, which is covered by 1 m®
of ice (and an equal amount of air mixed with it, which we can neglect). That’s nearly
1000 kg, so if it’s already at 0°C, the energy needed to melt it is 80 million calories or
335 MJ. Now direct sunlight provides to this patch of ground 1000 J/s, but only 10%, or
100 J/s, is absorbed. A full day of sunshine in late spring might be equivalent to 8 hours,
or about 30,000 seconds, of direct sunlight. So in one day the snow absorbs about 3 MJ of
solar energy. That means it should take more than 100 days, or 14 weeks, for the snow to
melt! Probably, though, the snow absorbs more energy from other sources such as the air
and any nearby rocks or trees.

Problem 1.49. Neglecting the final volume of the water, the work done by the collapsing
atmosphere is simply PV, where V is the volume of the initial 1.5 moles of gas. But by
the ideal gas law,

W = PV = nRT = (1.5 mol)(8.31 J/mol-K)(208 K) = 3717 J ~ 4 kJ.

So of the total 286 kJ of heat produced, only about 4 kJ comes from work done by the
atmosphere. The other 282 kJ must come from the internal energy of the system, mainly
chemical energy in the molecular bonds.

Problem 1.50. (Combustion of methane.)

(a) From the table on page 404, line 8, the change in enthalpy upon forming one mole of
methane from elemental carbon and hydrogen is —74.81 kJ; the change in enthalpy
for the reverse reaction is therefore +74.81 kJ.

(b) From the same table, AH to form one mole of CO; is —393.51 kJ (line 14), while AH
to form two moles of H,O vapor is 2 x (—241.82 kJ) = —483.64 kJ (page 405, line 5).

(c) Imagine first converting the mole of methane into elemental carbon and hydrogen,
then taking these elements and some oxygen and converting them into CO, and H,O.
The total change in enthalpy for all these steps is

AH = +74.81 kJ + (—393.51 kJ) + (—483.64 kJ) = —802.34 kJ.

Now the actual reaction doesn’t occur by this sequence of steps, but the end result is
the same, so the net change in enthalpy must be the same: a decrease of 802 kJ.

(d) In a constant-pressure process with no other work done, the heat given off is precisely
equal to the decrease in enthalpy, in this case, 802 kJ.

(e) In a constant-pressure process, AU = AH — P AV. This reaction starts with three
moles of gas and ends with three moles of gas, so AV is almost exactly zero (by the
ideal gas law). Therefore AU is the same as AH, —802 kJ. However, if the H,O ends
up as a liquid, things are a bit more interesting. Then AH to form the H,O from its
elemental constituents is instead 2 x (—285.83 kJ) = —571.66 kJ (page 405, line 4),
and the computation in part (¢} yields a net AH of —890.36 kJ. But the volume of
the system decreases substantially, because it starts with three moles of gas and ends
up with only one (while the volume of the liquid is negligible):

RT 2RT

Problem 1.52

The change in the system’s energy is therefore

AU = AH — PAV = AH + 2RT = (—890.36 kJ) + 2(8.315 J/K)(298 K)
= —890.36 kJ + 4.96 kJ = —885.40 kJ.

The heat given off is a bit more than the amount of energy lost by the system; the
difference comes from work done by the atmosphere as it compresses the system to a
smaller volume.

(f) A mole of methane has a mass of only 16 g, but two moles of O; have a total mass
of 64 g, giving a total of 80 g = 0.080 kg for the mass of fuel to produce the reaction

given here. If the sun were composed entirely of such fuel in the correct proportions,
it would contain ’

2 x 10% o
oo =25x10

moles of methane, which could give off a total of roughly
2.5 x 103 x 800,000 J =2 x 10%" J

of heat, by the reaction considered here. But at a rate of about 4 x 10%® watts, this
fuel would last only
2x10% J

2% 10% J/s

or about 1600 years. Other chemical fuels might give somewhat longer lifetimes, but
no chermjcal fuel could power the sun for more than a few thousand years.

=5 x 10'° seconds,

Problem 1.51. Imagine the combustion of the glucose occurring in two steps: First we
convert the glucose into elemental substances in their most stable states (graphite, Ho, and
O,); then we combine these elements with the additional oxygen to form carbon dioxide
and water. The change in enthalpy for the first step is just minus the enthalpy of formation
of a mole of glucose, so it can be read directly off the table on page 404: AH; = +1273 kJ.
For the second step we add the enthalpy of formation of six moles of CO; to the enthalpy
of formation of six moles of H,0: ’

AH, = 6(—393.5 kJ) + 6(—285.8 kJ) = —4076 kJ.

The net change in enthalpy for the actual reaction is just the sum of the changes during the
two hypothetical steps, —2803 kJ. The absolute value of this number, +2803 kJ, is called
the “enthalpy of combustion” of glucose. (Problems 5.6 and 5.7 address the question of
how much of this energy can be extracted as work rather than heat.)

Problem 1.52. As of this writing, the price of “regular” (85-octane) gasoline in Utah is
about $1.50 per gallon. So the price per kcal is

150 cents

31,000 keal = 0.0048 cents/kcal.
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In other words, you get a little over 200 kilocalories per penny. The price of the cheapest
corn flakes at the local Albertson’s is 10 cents per ounce (35-ounce bag of Good Day brand,
$3.49), so the price per kcal is

10 cents

100 kcal
That is, you get only 10 kilocalories for a penny. Thus, the price of corn flakes, per calorie,
is about 20 times higher than the price of gasoline. (And if you buy the smallest box of
Kellogg's brand, the price is another two and a half times higher, 50 times as much as
gasoline.) Still, I don’t recommend gasoline as a way of cutting down on grocery bills.

= 0.10 cents/kcal.

Problem 1.53. On page 405 we see that the enthalpy of formation of a mole of atomic
bydrogen is 217.97 kJ. To convert this enthalpy change to an energy change, we need to
subtract off the P AV term:
AU = AH — PAV = AH — (An)RT
=217.97 kJ - 3(8.31 J/K)(298 K) = 217.97 kJ ~ 1.24 kJ = 216.73 kJ.

(The 1.24-kJ difference between AU and AH is the work that you must do to make room
for the additional half-mole of gas created during dissociation.) Now, to get the energy
required to dissociate a single molecule, we divide by the number of molecules:

AU 216.7 kJ
- = —=—— = 7 0_19 = 4.49 V.
f = = Teozxiom 0%t J €

Problem 1.54. (Climbing Mt. Ogden.)

(a) To lift her weight to the summit, the hiker must perform mechanical work equal to
her increase in gravitational potential energy:

W = mgh = (60 kg)(9.8 N/kg)(1500 m) = 880 kJ = 210 kcal.

But if she’s only 25% efficient, she must “burn” four times this much fuel, or 840 kcal.
That’s about 8.5 bowls of corn flakes (without milk). (Note that I’'m neglecting the
small differences between energy and enthalpy in this problem, since all we want are
rough estimates.)

(b) Of the total of 840 keal, 75%, or 630 kcal, is converted to thermal energy. If this energy
is uniformly distributed over the hiker’s 60-kg body, each kilogram gets 10.5 keal.
Assuming that her body is mostly water (for purposes of computing its heat capacity),
this energy would be enough to raise her body temperature by 10.5°C. If this were
really the result, it would be fatal!

(c) Evaporating a kilogram of water takes 580 kecal (at 25°C), and we have 630 kcal of -

energy to dispose of, so we can evaporate
630 kcal
580 keal/kg -
That'’s 1.1 liters of water that the hiker should replace. (However, the metabolism
of 8.5 ounces of carbohydrates produces about 140 grams of water as a byproduct.
This leaves slightly less than a liter that she needs to drink. But I would recommend
playing it safe and carrying at least two liters of water on such a hike.)

=1.1kg.

Problem 1.55

Problem 1.55. (Gravitationally bound systems.)

(a) The kinetic and potential energies of the system are

U = ——_—, ,"’ \
® 2r ; / :

G 2
Ue=2- -;-m'u2 = mv?; i
To show how these are related, apply Newton's second ! cm |
law to the motion of one of the particles:
m
Gm? o2 \
F=ma = —_ = m—. L.
(2r)2 r AR

Multiply each side of this equation by 2r, and the left-hand side is the magnitude of
the potential energy. Therefore,

U, = ~2mv® = =20
(b) The total energy of such a system is
Uiotat = Uk + Up = Uy = 2Uy = ~Uh.

Therefore, increasing the total energy decreases the kinetic energy. In other words, if
T add one unit of total energy, the potential energy increases (becomes less negative)
by two units, while the kinetic energy decreases by one unit.

(c) The total kinetic energy of the star would be N-2kT, so the total (kinetic + potential)
energy would be

Uiotar = =Uy = _;NkTa

and the heat capacity would be

The heat capacity is negative, of course. (Since the star exists in empty space and
doesn’t really have a well-defined volume, this quantity shouldn’t be called Cy or Cp.)

(d) The total potential energy of the star should be a function of G, M, and R. The SI
units of these quantities are

_N‘mz.

[Gl= T (M]=kg; [Rl=m.

Note that N, m, and kg are independent units: None of them can be written in terms
of the others. Taking these as our three basic units, we need a combination of G, M,
and R that has units of J = N.m. To get this combination we need exactly one factor
of G (the only place we can get N). Then we need two factors of M (to cancel the
kg? in G), and we must divide by one factor of R (to cancel a factor of m). Up to a
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dimensionless constant, then, the potential energy must be GM?/R. It must also be
negative, since gravity is attractive.

(e) Using $NET for the kinetic energy and the result of part (d) for the potential energy,
the relation Uy = —1U, becomes

3 1 GM? GM?
g NVkT ~ -5(‘7) =R

Solving for T gives
GM?* GM M

3NEkR~ 3kR N
The factor M/N is the mass per particle, which is approximately half the mass of a
proton (since the electrons are much lighter than the protons). Numerically, then,

T =

T~ (6.7 x 107" N - m?/kg?)(2 x 10™ kg) - £(1.67 x 107" kg)

~ 5 K.
3(1.38 x 10~ J/K)(7 x 10° m) 4x 10

This is much higher than the sun’s “surface” temperature of only 6000 K (see Section
7.4). But careful calculations show that the sun's central temperature is 15 million
kelvin, so this estimated average is probably a little on the low side.

Problem 1.56. The thermal conductivity of air is 0.026 W/m-K, so the rate of heat
conduction through this layer of air should be

Q _ (0.026 W/m-K)(1 m?)(20 K)

At 0001 m =520W,

about ten times less than the rate of heat loss through a 3.2-mm pane of glass under the
same conditions (as calculated in the text).

Problem 1.57. (R values and heat loss through a window.)
(a) For plate glass,

Ar 32x10%m K- m?
=— = =0.0040 .
R= = tswm gV
For a 1-mm layer of air,
103 m K- m?
R= o wmg =008

nearly ten times as much.

(b) Because we're dealing only with temperature differences, the conversion for tempera-
ture units is 1°F = £ K. To figure out what a Btu is, I need to compute the energy
needed to raise the temperature of a pound (453.6 g) of water by 1°F:

1Btu = (453.6 g)(4.186 J/g - K)(§ K) = 1055 J.

(c

~—

(d)

Problem 1.57

(A standard reference gives the value 1054 J, indicating that my value of 4.186 J /gK
for the heat capacity of water is probably at a different temperature than that used
in the definition of the Btu.) One SI unit of R is therefore -

(1 °C-m2) 1°F) 3.281 £)* /1054 J\ / 1 hr gy Fft? hr

w 5K lm 1Btu /\3600s, Btu
Multiplying the values in part (a) by this conversion factor gives in English units
R =0.023 for plate glass and R = 0.22 for a 1-mm air layer.

Written in terms of R, the Fourier heat conduction law is

Q AT
AT.

_ At
For the double-layer situation shown at right, the intermediate
temperature T, will settle down to a constant value that causes
the rate of heat flow to be the same through both layers. Since
the areas of the layers are the same,

T2 —Tl

R R,

T3 - T2 T1 Tz T3

Solving for T; gives T> = (T3R; + Ty Ry)/(Ry + Rz). The “total” R, meanwhile, should
be defined by

Q __ ATs -T;

At Rtotal '

But Q/At and A are the same here as for either layer individually, so

-7 _T-T

Rto:al RZ

Plugging in the previous expression for T; and doing a bit of algebra yields for the
right-hand side (T3 — T1)/(R; + R,), s0 Riga; is simply R, + R,.

Adding the R values of a piece of plate glass and two 1-mm air layers, I obtain a
total R of 0.081 in SI units or 0.46 in English units. The rate of heat loss through
a 1-m? window, with an indoor-outdoor temperature difference of 20 K, is therefore
approximately

Q@  (1m?)20K)

At~ 0.081 K-m2/W
or 20 times less than the naive estimate given in the text, which neglected the air
layers.

=250 W,
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Problem 2.4. The number of ways of choosing five cards from 52 is simply

52 501
( 5 ) = G ~ 28 1,

or 2.6 million. Of all of these possible hands, only four are royal flushes, so the probability
of getting a royal flush on the first deal is
4

TEw I = 1.54 x 1078,

that is, somewhat better than one in a million.

Problem 2.5. (Microstates of a small Einstein solid.) To represent each microstate I'll
use a sequence of digits, for the number of energy units in the first, second, and third
oscillators, respectively.
(a) N=3,¢g=4:

400 310 031 220 211

040 301 103 202 121

004 130 013 022 112

1 count 15 microstates. And according to the formula, there should be

- 1 .
oA EL L

(b) N=3, ¢=5:

500 410 041 320 032 311 221
050 401 104 302 203 131 212
005 140 014 230 023 113 122

I count 21 microstates. And according to the formula, there should be

(c) N=3, g=6:

600 501 015 042 141 033 132
060 150 420 204 114 321 213
006 051 402 024 330 312 123
510 105 240 411 303 231 222

I count 28 microstates. And according to the formula, there should be

6+4+3-~-1 8! 8.7
( 6 )_é!_m—_f_%'

Problem 2.7

(d) N=4¢,¢=2:
2000 0020 1100 1001 0101
0200 0002 1010 0110 0011
I count 10 microstates. And according to the formula, there should be

2+4-1 51 5.4
( 2 >—ﬁ—7-“’-

() N=4, ¢g=3:
3000 2100 0210 0021 1110
0300 2010 0201 1002 1101
0030 2001 1020 0102 1011
0003 1200 0120 0012 0111
I count 20 microstates. And according to the formula, there should be

3441 6!  6.-5-4
( -3 )‘ﬁ-‘ 3.0 =2

(f) If N =1, then all the energy must belong to the one and only oscillator, so there's only
one microstate, which we would denote simple “q”. And according to the formula, the
multiplicity should be

(q+1—1) g 1
q ¢

(g) If g =1, then there’s only one unit of energy to distribute among the N oscillators, so
the allowed states would be 1000- - -, 0100 - -, 0010- - -, and so on up to - --0001. There
are N places to put the unit of energy, so the number of possible microstates is N.
And indeed, according to the formula,

1+N-1 N!
Problem 2.6. For N = 30 and ¢ = 30, the number of microstates should be
_(30+30—1\ 590 16
€(30,30) = ( 30 ) = Gon 29y = 5.91 x 10%°.

Problem 2.7. To represent a system with four oscillators, we need three vertical lines
(partitions between the oscillators). We also need two dots,. to represent the two units of
energy. So we want to draw all possible sequences of three lines and two dots. Here they
are:

oo ||| Jelel]
olel] el e
ollel XN
o1l 1ol
EXIN |1 lee

These ten microstates are, of course, the same as those enumerated in Problem 2.5(d).
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Problem 2.8. (Two small Einstein solids.)
(a) Of the 20 units of energy, anywhere from 0 to 20 could be in solid A. Each possibility
from 0 to 20 defines a different macrostate, so there are 21 macrostates in total.

(b) The combined system has 20 oscillators and 20 units of energy, so the total number
of microstates is

0(20,20) = (

_ 1
20 + 20 l) - 391 _ 680 x 10%.

20 ~(201)(19Y)

(c) For the macrostate with all the energy in solid A, the multiplicity of solid 4 is

20+10-1 29!

200,20 = (* 70" = oy

while the multiplicity of solid B is 1. Assuming that the system is in equilibrium, all
microstates are equally probable, so the probability of this macrostate is

Q(this state) _ 1.00 x 107

Q(total) — 6.89 x 1010

(d) For the macrostate with half the energy in each solid, the multiplicity of the combined
' system is

_ _(104+10-1\/10+10-1 190\ .
am g = (PO (011071 (LYo

=1.00 x 107,

Probability = =145 x 1074,

so the probability (in equilibrium) is
8.53 x 10°

889 x 100 ~ 0124

(e) The probability of the energy being evenly distributed is greater than that of all the
energy being in A by a factor of nearly 1000. So if this system started out with all (or
nearly all) of the energy in one solid or the other, then we could be pretty sure that
it would evolve toward a state with energy more evenly distributed. And if it started
out with the energy evenly distributed, we could be pretty sure that at some later
time we wouldn’t find all the energy on one side or the other—this would happen less
than one time in a thousand. So the evolution from the unlikely state to the likely

one is sortof irreversible, but not exactly since the process does occasionally happen
in reverse.

Probability =

Problem 2.9. I used the Excel spreadsheet program (version 4). Here are the formulas
that reproduce the table in Figure 2.4:

=A7+1 =COMBIN(A8+$B$2-1,A8) =$F$2-A8 =COMBIN(C8+$D$2-1,C8) =B8*D8

=A8+1 =COMBIN(A9+$B$2-1,A8)  =$F$2-A9 =COMBIN(C9+$D$2-1,C9) =B9°D?

=COMBIN(A10+§B$2-1,A10) =$F$2-A10 =COMBIN(C10+$D$2-1,C10) =B10°D10
=SUM(E4:E10)

A | B | [ i D | E | F]
1 [Twa Einstein Solids
2 [NA= 3 N_B = 3 q_total = 6
3 [qA Omega_A q_B Omega_B Omega_total
4 |0 =COMBIN(A4+$B$2-1,A4)  =$F$2-A4 -COMBIN(C4+$D$2 -1,C4) =B4°Da
5 |=A4+1 =COMBIN(A5+$B$2-1,A5) =$F$2-A5 =COMBIN(C5+$D$2-1,C5) =B5"D5
6_|=A5+1 =COMBIN(A6+3B$2-1,A6) =5F32-A6 =COMBIN(C6+$D$2-1,C6) =B6"D6
7_|=A6+1 =COMBIN(A7+$B$2-1,A7) =$F$2-A7 =COMBIN(C7+$D$2-1,C7) =B7°D7
8
9

-
o
i

>
7]
+

-

|
[

Problem 2.10

Then I changed the values in cells B2 and D2 to obtain the following table:

Two Einstein Solids
N A=|6 N B =|4 g total =|6
qA |Omega Al q_B | Omega B| Omega_total 1
0 i 6 84 84 1500
1 8 5 56 33g]| > 5
2 21 ] 35 735 3
3 56 3 20 1120]] = 1000
4 126] 2 10 1260[] = E
5 252 1 4 1008]] T S00
6 462 0 1 462]| € |
5005 0 |
S - N M W O
energy in solid A

The most probable macrostate is g4 = 4, gg = 2, with probability 1260/5005 = 25.2%.

The least probable macrostate is g4 = 0, gg = 6, with probability 84/5005 = 1.7%.

Problem 2.10. Here’s an Excel spreadsheet showing the case Ny = 200, Ng = 100, and

Qrotal = 100:

Two Einstein_Sollds
N_A=[(200 N_B =|100 __g_total ={100

9 A |Omega A| g B _| Omega B| Omega _total
0 1] 100 S5E+584.527E+58
1 300 99| 2E+58] 4.55E+60 1.4E+95
2| 20100 98| 1E+58| 2.286E+62 1.2E495
3| 1E+06] 97| 6E+57 7.659E+63|| =
4| 7E.-07] 96| BEsB7[1.924Es65)| 3 1E+9S
5| 3E+09] 95| 1E+57 3.864E+66]| = 8E+94
6] 1E+11] 04| 7E+56[6.464E+67]| = ge.04
7] 8E+i2] 93| aE+56| 9.2656+68}] S
8| 7E+13] 92| 2E+56|1.161E+70]| £ 4E+94
9| 2E+i5] 91| BE+55[ 1.293E+71 2E+94 I
10| 4E+16] 90| 4E+55| 1.294E+72 o
11| 7E+17] 89| 2E+55| 1.176E+73
12] 1E+19] 88| BE+54] 9.792E+73 0 20 40 60 80 100
13] 2E+20 87| 4E+54| 7.515E+74 energy in solid A
14| 3E+21] 86| 2E+54[5.348E+75
16| 4E+22] B5| 8E+53| 3.547E+76

16| 6E+23 84| 4E+53| 2.202E+77

17| 7E+24 83| 2E+53!1.284E+78 total multiplicity =11.6814E+96

(To save space I’ve shown only the first 18 of the 101 rows.) The most probable macrostate
is g4 = 67, gg = 33, with probability 1.23x10%/1.68x10% = 7.3% (not terribly large). The
least probable macrostate is g4 = 0, gg = 100, with probability 4.53 x 10%%/1.68 x 10°¢ =

2.7 x 107 (tiny!).
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Problem 2.11. The main difference between this system and the system of two Einstein
solids considered in the text (and in the previous three problems) is that for a two-state
paramagnet with N elementary dipoles and ¢ units of energy (equal to the number of
dipoles pointing down), the multiplicity is simply

-2,

This formula therefore appears in the second and fourth columns of the spreadsheet. For
example, the formula in Cell B4 is “=COMBIN($B$2,44)”. With g,ta = 80, the main body
of the spreadsheet contains 81 rows, the first several of which are as follows:

|Two_ Paramagnets

N_A=[100 N_B=[{100 g_total =i80

Omega Aj g B | Omega Bi Omega _total N
1 80| 5E+20f 5.36E+20

100 79] 2E+21]2.042E+23 2E+56

4950 78% 7E+21f 3.629E+25

161700 771 2E+22{4.021E+27

5

> 2E+56
4E+08] 76/ BE+22|3.128E%291| 3
BE+07, 75| 2E+23| 1.826E+31]]| =
TE+00] 74| 7E+<23|8.330E+32]| = 1E+56
2E+10] 73] DPE+04| 3.060E+34}| S
2E+11] 72 B5E+24] 9.302E+85]| E SE+55
2E<12] 71| 1E+25i 2.361E+37
2E+13] _ 70] 3E+25] 5.084E+38 0 . , , ,
1E+14] 69| 7E+25] 9.394E+39 ' ! - ) '
0 20 40 60 80

1E+15 68] 1E+26i 1.502E+41
7E+15] 67 3E+26! 2.095E+42
4E+16 66{ 6E+2612.566E+43
3E+17 65| 1E+27}2.774E+44

1E+18 64| 2E+27{2.661E+45
17 7E+18i -63| 3E+2712.274E+46

energy in paramagnet A

alalala]alaia
olo] rlwlv]|wlofo]loiNjolnls|wiv]wjo

total multiplicity =}{1.6473E+57

Although the graph of Qs looks very similar to the case of two identical Einstein solids,
it is interesting to note that the multiplicities of the individual paramagnets are maximized
when g = 50, that is, when half the dipoles point up and half point down; the consequences
of this behavior are explored in Section 3.3.

Since the two paramagnets are the same size, the most probable macrostate is the one
with the energy evenly distributed: g4 = gg = 40, With Qo = 1.9 X 10%¢ and probability
11.4%. The least likely macrostates are the two at the extremes, with all the energy on
one side or the other: g4 = 0 and gg = 80 (or vice-versa), with Qo = 5.4 x 10%° and
probability 3.3 x 10-%.

Problem 2.12. (Properties of the natural log function.)

(a) From the definition "% = z we can see that Inzx is defined only for positive z, and
that it is an increasing function of z. A few particular values arelnl =0,lne =1, and
In(1/e) = —1. Starting from these values it’s easy to sketch the graph. For this official
solution, however, I plotted a precise graph using Mathematica, with the instruction

Problem 2.12

Plot[Log[x],{x,0,5},PlotRange->{-4,2}]:

(b) To prove that Inab =Ina + Inb, start with the exponential of the left-hand side:

Ina _lnb _ _lna+ind
€ - )

e —gh=¢ e

where the last step follows from the properties of exponents. Undoing the exponenti-
ation now gives the desired identity. Similarly,

elna" = a!) = (elna)b = eblna’

so we can conclude that Ine? = blna.

(c) Let y = Inz, so that e¥ = z. Differentiating the latter equation gives dz/dy = e¥,
and taking the reciprocal of this result gives dy/dz = 1/e¥ = 1/z, in other words, the
derivative of Inz is 1/z.

(d) You can derive this approximation, and improvements to it, using a Taylor series. But
it’s simpler to just approximate In(1+z) by the best straight line near the point z = 0,
that is, where the argument of the log function equals 1:

1+

“1F

At this point, the derivative of the natural log function is 1/1 = 1. Therefore, if
you imagine zooming in on a tiny part of the graph around this point, it will look
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like a straight line with a slope of 1. The equation of this line is y = z, so we can
approximate In(l + z) =~ z. For z = 0.1, In(1 + z) = 0.0953, off by about 5%. For
z =0.01, In(1 + z) = 0.00995, off by only 0.5%.

Problem 2.13. (Fun with logarithms.)
(a) ealnb = (elnb)a = po.
b b . T
(b) In{a+b) =1n [a (1 - ——)] =lna+ 1n(1 - -). The second logarithm can be simplified
a

a
using the approximation In(1 + z) = =z, which is valid when |z| <« 1. In this case the

logarithm is just b/a, so In{a + b) ~ Ina + (b/a).
Problem 2.14. We want to solve the equation
e =10°
for z. A good first step is to take the natural log of both sides. Then the left-hand side
becomes simply 10%, while the right-hand side becomes In 10 = £1n 10. Therefore,

1 023
=110

= 4.34 x 10%2,

Qo el0® = 104-34x10%

Problem 2.15. According to my calculator, 50! = 3.0414 x 1054, Stirling’s approximation,
however, gives
50! = 50%°¢~%%/27 . 50 = 3.0363 x 10%,

off by about 0.2%. The natural logarithm of 50! is 148.5, while the simplified form of
Stirling’s approximation gives

In 50! =~ 501n 50 = 50 = 145.6,
off by about 2%.

Problem 2.16. First note that for 1000 coins, the total number of possible outcomes
(microstates) is 2199,

(a) The number of ways of getting exactly 500 heads and 500 tails is

Q(500) = (1000) 1000 _ 1000190~000,/37 000 1%
T \500/ (50002 (500509¢-500,/27 - 500)2 /5007

The probability is this divided by 2'%°°, or simply 1/+/500m = .025. So the chance of
getting exactly 500 heads is about 2.5%, or 1 in 40.

(b) The number of ways of getting exactly 600 heads and 400 tails is

0(600) = 1000\ _ 10000 100010001000, /5271000
T\ 600/ — 600! 400! 60052069 /S7 . GO0 40040e~400,/D7 . 400
1000°%°
600600400490 /4807

DU G A2 | T Aoy 2 L S

Problem 2.18
Again, the probability is this divided by 2'°%:

5001000 500600500400 5 600 5 400 1
600%04004%° /2807 600690400400 /480m (E) (Z) Va80x

Now all the factors can be evaluated on a calculator. The result is P(600) = 4.6x10711,
much smaller than P(500).

P(600) =

Problem 2.17. To simplify 2 in the limit ¢ < N (with both g and N large), we can start
by repeating exactly the same steps as in equations 2.17 and 2.18 to obtain

InQ~=(N+qln(N+g)—qlng—NhAN.

Now expand the first logarithm in the limit ¢ « N:

In(N +q) =ln[N(1+%)] =InN+ln(1+%) ~IN+ 4.

Plugging this result into the previous equation and canceling the N In NV terms, we obtain

e _

1anqlnN+q+N

N
qglng~gln—+gq,

q
where in the last step I've dropped the q?/N since it’s much smaller than the others.
Exponentiating now gives

Q ~ o9 N/D gt — (%)qeq _ (%V.)q.

Since the original formula for £ is symmetrical under the interchange of g and N (after
the initial approximation in equation 2.17), we could have obtained this result simply by
interchanging ¢ and N in equation 2.21.

Problem 2.18. First note that (N — 1)! = N!/N, since dividing by N cancels the final
factor in N, leaving just the first N — 1 factors. Similarly, (¢ + N ~1)! = (g+ N)!/(g+ N).
Thus, as the hint says,

QW) = (q+N—l) _(@+N-1)! _(g+N)! N

q TAW-DI T ¢NT ¢+ N

Now apply Stirling’s approximation to each of the factorials and cancel as many factors as
possible:

o, q) ~ 2t N)y#Ne~ @M \2n(g+ N) N (g+N)#¥ N
4 q?e=1,/2nqNNe-N\/27N q+N g7 NN 2nq{g+ N)’

Finally, write (g + N)¥*V as (¢ + N)?- (¢ + N)¥, to obtain

N, ) ~ (% J;N)q(q ;FVN)N\/;W(T;)'
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Problem 2.19. The multiplicity of a two-state paramagnet is

":(z]vvl)w—m—ﬁ!—W'

Applying Stirling’s approximation to each of the factorials gives

0n (/&) } N
T (NN (N = N /ey M T NN (N - N
up to factors that are merely large. Taking the logarithm of both sides gives
(N = N)In(N — Ny).

The final logarithm can be written In[N(1 — N;/N)] =In N +In(1 — N;/N). In the limit
N, « N, the second term is approximately —N| /N, so

InQ~NIhN-N=nN, -

@~ NN~ NN - (N -N)(laN - %)

The Nln N terms cancel, while the term Nf /N is negligible compared to the others. Gath-
ering the remaining terms gives

N Ne NeyM
@~ Nyl 5+ Ny = Nyl = = II‘(E) ,
so in this limit the multiplicity is approximately
Ne\M
o~ (7)

This is the same result as in Problem 2.17, but with g replaced by N,. The difference
between the two systems is that each particle in the paramagnet can hold at most one unit
of energy (obtained by flipping the dipole from up to down), while each oscillator in the
Einstein solid can hold arbitrarily many units of energy. Apparently, in the limit where the
total number of energy units is much less than the number of particles, the states of the
Einstein solid in which some oscillators contain more than one unit of energy (each) are
insignificant; they contribute a factor to the multiplicity that is merely large.

Problem 2.20. To shrink Figure 2.7 to fit on the page, we would have to reduce the full
scale of 100,000 km down to about 20 cm. That'’s a reduction factor of

100,000 km 108 m
20cm  02m

The width of the peak would therefore be reduced by this same factor, from 1 cm down to

=5x 108

1lcm

W =2x107" m=02 é.ngStI'OmS,

a few times smaller than the size of an atom(!).
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Problem 2.22

Problem 2.21. First let’s check the algebra in the problem. Defining z = q4/g, we have

1_2_1_‘1_":@: B

q g  q’

Ky

as claimed. We can therefore rewrite equation 2.22 as

Q= (—;7)2”[42 Q=) = (}lv—e)zN[Z(l—z)]" = (%)2N[42(1—z)]1v.

The first factor is just the height of the peak, Qmax (see equation 2.23). Dividing by this
factor should give a function of the same shape, but scaled so that its maximum value is 1.
To plot this formula for several values of N, I used the Mathematica instruction

Plot[Evaluate[Table[(4z(1-2))~(10°p),{p,0,4}1]1,{z,0,1},PlotRange->A11];

This produced the following graph, showing how the peak gets skinnier as IV increases:
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Problem 2.22. (Estimating the width of the multiplicity peak.)

(a) The number of energy units in Solid A can be 0, 1, 2, etc., up to 2N, so the total
number of macrostates is 2N + 1.

(b) According to Problem 2.18, the multiplicity of any large Einstein solid is

N, q) = (QZNY (q JJrvN)N\/ 21rq(t11V+ N)'

Here we want to substitute 2V for both NV and g, so the multiplicity reduces fo

2N+2N 2N(2N+2N)2N 2N _ g [[1 o
2N ) 2N 21 -2N(2N+2N) ~ 8N  8rN

Qeotal = (
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(¢) The multiplicity of just Solid A, when it has exactly half of the energy (g = N), is

Q _(N+N)N(N+N)N N _oNgn [ 1 2
AT\"N N 2r- N(N+N) 4N = JinxN'

Since the multiplicity of Solid B is the same, the multiplicity of the composite system
in this macrostate is just the square of 4,

24N
Qmcas': likely = 47FN

(d) Since the height of the peak is mostlikety While the area under the peak is Quoral, the
width of the peak must be roughly

Qeoar_ 2°Y/V8aN _ 4xN
1N f4nN ~ /3aN
This is fairly large, but the width of the entire graph of § vs. g4 is 2N + 1, so the

fractional width of the peak is 27N /(2N) = /m/(2N) ~ 1/+/N. This is quite small:
when N = 10%, the fractional width is less than 10}, or one part in 100 billion.

=V2nrN.

Qmost likely

Problem 2.23. (A large two-state paramagnet.)
(a) With N dipoles of which exactly N/2 point up, the multiplicity of the paramagnet is

Q_(N)_ N NNeNarN v [2
TA\N/2) TN/ T v/ eV /aN T C VAN

For N = 102, then, the multiplicity is roughly 21°” /(4 x 10'2). Since the denominator
is merely large, we could just as well neglect it and say that = 21°, which is the
number of microstates if we allow any number of dipoles to be pointing up.

(b) A year is about 3 x 107 seconds, so ten billion years is 3 x 10*” seconds or 3 x 10%
nanoseconds. If the microstate of the system changes once per nanosecond, this is
how many microstates the system will explore in the age of the universe. But this is
a tiny fraction of the total number of microstates—so small a fraction that the ratio
ofogg.ates not explored to states explored is, to within the limits of compact notation,
2107,

(c) Even if we wait for the age of the universe, the fraction of all “accessible” microstates
that are actually explored by this system is so tiny that it might be more accurate
to say that the system explores none of its “accessible” microstates. When we call
a microstate “accessible,” therefore, we should not think that the system will ever
actually be in that microstate. So what do we mean? I think the best interpretation
is in terms of our ignorance of which microstates the system will actually explore in
the future. For all we know, the system might soon be found in any of its “accessible”
microstates, even though the probability of its being found in any one of them is
Vanishingly small.
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Problem 2.24. (Multiplicity of a large two-state paramagnet.)
(a) The most likely macrostate is N; = N| = N/2. At this point the multiplicity is

N N NVNe N\/2xN oN 2

NiING! = @02 =~ ((%)N/ze—mzm)z —l

Qmax =

(b) By Stirling’s approximation, the multiplicity is

g N NNe-N/2nN _NM N
T NN T NN f2ar Ny NN e M 2N, - NYN 22NNy

If we set Ny = (N/2) + z, then N| = (N/2) — z, and the multiplicity can be written

~

0x NV ] N
T )

(GT-AT G G- N (BT -

At this point it becomes simpler to work with the logarithm of the multiplicity:

1nQ=NInN—gIn[(§)2—z2} —zln(%l+x) +zln(§—a:)

N 1 Ny o,
+iay/gz - 3((3) -
So far I haven't assumed anything about the size of z relative.to N. But if z « N,
we can expand each of the logarithms containing two terms. For example,

al(3) -] = (g ) +ufi- (F)] ~2n(z)- (5

N N 2z N 2z
With these approximations, the logarithm of the multiplicity becomes

Similarly,

N 227 N 27 N 2z
lﬂQ=N]DN—N1D3+W—Iln?—‘T'i'Iln?—W
N N 272
oy kst

22 2 22
=Nh2-F+hyig - %
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The last term is much smaller than the others and can be neglected. Exponentiating
the remaining terms gives

Q=2N”7—r2ﬁe—222m (for z < N).

This is a Gaussian function, peaked at z = 0, where its value agrees with the result
of part (a).

(c) The Gaussian function falls off to 1/e of its peak value when 2z2/N =1 or z = \/N/2.
So the full width of the peak would be twice this, or vV2N.

(d) For N = 105, the half-width of the peak in the multiplicity function would be /500, 000
or about 700. So an excess of 1000 heads puts us only a little beyond the point where
the Gaussian has fallen off to 1/e of its maximum value. I wouldn’t be surprised to
obtain approzimately this many heads, though I might be surprised to get an excess of
ezactly 1000. On the other hand, an excess of 10,000 heads lies far outside of the peak
in the multiplicity function. At this point the Gaussian has fallen off to e~ ~ 10~%7
of its maximum value. If I got a result anywhere close to this, I would be quite certain
that the coins were not fair.

Problem 2.25. (Random walk.)

(a) Since each step of a random walk is equally likely to be forward or backward, the
most likely ending place is right where I start—after an equal number of forward and
backward steps.

(b) The distribution of possible ending places is the same as the probability distribution
for coin tosses, as treated in the previous problem. For a large number of steps, this
distribution is a Gaussian of the form e~2="/¥ , where N is the total number of steps
and ¢ is the ezcess of forward steps over N/2. If each step has size £ (the mean free
path), then the net distance traveled is £ times the difference between the numbers of
forward and backward steps, that is, 2z¢. In this problem I’d rather use the symbol =
for this net distance traveled, so let me substitute z — z/2¢ in the formula and write

Distribution of ending positions oc e~= /2N
The half-width of this distribution (where it falls off to 1/e of its peak value) is V2N ¢,
or V2N step lengths. For N = 10,000, the half-width is about 140 steps, meaning
that there’s a good chance I'll end up within about 140 steps (in either direction) of
my starting place. The chance of getting farther than about five hundred steps is
negligible.

(c) Ascomputed on page 42, the mean free path (£) in air under atmospheric conditions is
approximately 150 nm, and the average collision time (At) is about 3 x 107* s. So in
one second, the number of steps is about N = 3 x 10°, and therefore the expected net
distance traveled is about /2N = 80,000 steps, or 12 million nanometers, or 12 mm.
If we wait longer, the number of steps increases in proportion to ¢, but the average
net distance traveled increases only in proportion to v/. At higher temperatures (but
fixed pressure), the mean free path, which is proportional to V/N, would increase in

i
E
1

Problem 2.27

proportion to T. But the molecules are also moving faster, in proportion to VT, so
the collision time, A% = £/, increases only in proportion to v/T. The number of steps
taken per second is therefore less, proportional to 1/v/T. The expected net distance
traveled, measured as a number of steps, is proportional to vN o T~4, Multiply
this by the step size, which is proportional to T', and we finally find that the expected
net distance increases in proportion to T%4.

Comparison to Section 1.7: In Problem 1.69 we found that a localized concentration
of particles diffuses with time according to the Gaussian distribution

. 2
Excess concentration o e~% / ‘w‘,

where D is the diffusion coefficient. And in Problem 1.70, we found that the diffusion
coefficient is roughly
1
D= §Z ﬁ,
where £ is the mean free path and 7 is the average thermal velocity, equal to £ divided
by the average collision time At. Therefore the distribution of excess concentration
can be written
At 2.
Excess concentration o e~ /28t = g~="A%/28¢
But t/At is just the total number of steps that a molecule can take in time ¢. Therefore
this distribution agrees exactly with result of the present analysis in terms of a random
walk. The only difference is that here we’re talking about the statistical distribution
in the position of a single particle, whereas in Section 1.7 we thought in terms of a
large number of particles spreading out simuitaneously.

Problem 2.26. For a single atom confined to an area A, we would expect the multiplicity
to be proportional to A - A, in analogy to equation 2.29. The constraint that determines
the allowed region of momentum space is simply p2 + p2 = 2mU, and the constant of pro-
portionality is 1/h?, since the number of distinct states for each dimension is still LL,/h.
Putting all these factors together gives Q; = AA,/h?. For a gas of N atoms we more or
less raise this expression to the Nth power, as in the three-dimensional case. Again, how-
ever, there is a factor of 1/N! to compensate for multiple counting of states with particles
interchanged. And the momentum-space factor is the “surface area” of a hypersphere of
dimension 2N (and radius v2mU as before). Thus the multiplicity of the flatland gas is

1 AN ¥

(2mU)N.
As in equation 2.40, I've omitted a few factors that are merely large.

Problem 2.27. The probability of finding any particular gas molecule in the leftmost 99%
of a container is 99%. So the probability of finding all 100 molecules in the leftmost 99%
would be

(0.99)™°° = 0.366;
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The last term is much smaller than the others and can be neglected. Exponentiating
the remaining terms gives

Q=2N”7—r2ﬁe—222m (for z < N).

This is a Gaussian function, peaked at z = 0, where its value agrees with the result
of part (a).

(c) The Gaussian function falls off to 1/e of its peak value when 2z2/N =1 or z = \/N/2.
So the full width of the peak would be twice this, or vV2N.

(d) For N = 105, the half-width of the peak in the multiplicity function would be /500, 000
or about 700. So an excess of 1000 heads puts us only a little beyond the point where
the Gaussian has fallen off to 1/e of its maximum value. I wouldn’t be surprised to
obtain approzimately this many heads, though I might be surprised to get an excess of
ezactly 1000. On the other hand, an excess of 10,000 heads lies far outside of the peak
in the multiplicity function. At this point the Gaussian has fallen off to e~ ~ 10~%7
of its maximum value. If I got a result anywhere close to this, I would be quite certain
that the coins were not fair.

Problem 2.25. (Random walk.)

(a) Since each step of a random walk is equally likely to be forward or backward, the
most likely ending place is right where I start—after an equal number of forward and
backward steps.

(b) The distribution of possible ending places is the same as the probability distribution
for coin tosses, as treated in the previous problem. For a large number of steps, this
distribution is a Gaussian of the form e~2="/¥ , where N is the total number of steps
and ¢ is the ezcess of forward steps over N/2. If each step has size £ (the mean free
path), then the net distance traveled is £ times the difference between the numbers of
forward and backward steps, that is, 2z¢. In this problem I’d rather use the symbol =
for this net distance traveled, so let me substitute z — z/2¢ in the formula and write

Distribution of ending positions oc e~= /2N
The half-width of this distribution (where it falls off to 1/e of its peak value) is V2N ¢,
or V2N step lengths. For N = 10,000, the half-width is about 140 steps, meaning
that there’s a good chance I'll end up within about 140 steps (in either direction) of
my starting place. The chance of getting farther than about five hundred steps is
negligible.

(c) Ascomputed on page 42, the mean free path (£) in air under atmospheric conditions is
approximately 150 nm, and the average collision time (At) is about 3 x 107* s. So in
one second, the number of steps is about N = 3 x 10°, and therefore the expected net
distance traveled is about /2N = 80,000 steps, or 12 million nanometers, or 12 mm.
If we wait longer, the number of steps increases in proportion to ¢, but the average
net distance traveled increases only in proportion to v/. At higher temperatures (but
fixed pressure), the mean free path, which is proportional to V/N, would increase in
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proportion to T. But the molecules are also moving faster, in proportion to VT, so
the collision time, A% = £/, increases only in proportion to v/T. The number of steps
taken per second is therefore less, proportional to 1/v/T. The expected net distance
traveled, measured as a number of steps, is proportional to vN o T~4, Multiply
this by the step size, which is proportional to T', and we finally find that the expected
net distance increases in proportion to T%4.

Comparison to Section 1.7: In Problem 1.69 we found that a localized concentration
of particles diffuses with time according to the Gaussian distribution

. 2
Excess concentration o e~% / ‘w‘,

where D is the diffusion coefficient. And in Problem 1.70, we found that the diffusion
coefficient is roughly
1
D= §Z ﬁ,
where £ is the mean free path and 7 is the average thermal velocity, equal to £ divided
by the average collision time At. Therefore the distribution of excess concentration
can be written
At 2.
Excess concentration o e~ /28t = g~="A%/28¢
But t/At is just the total number of steps that a molecule can take in time ¢. Therefore
this distribution agrees exactly with result of the present analysis in terms of a random
walk. The only difference is that here we’re talking about the statistical distribution
in the position of a single particle, whereas in Section 1.7 we thought in terms of a
large number of particles spreading out simuitaneously.

Problem 2.26. For a single atom confined to an area A, we would expect the multiplicity
to be proportional to A - A, in analogy to equation 2.29. The constraint that determines
the allowed region of momentum space is simply p2 + p2 = 2mU, and the constant of pro-
portionality is 1/h?, since the number of distinct states for each dimension is still LL,/h.
Putting all these factors together gives Q; = AA,/h?. For a gas of N atoms we more or
less raise this expression to the Nth power, as in the three-dimensional case. Again, how-
ever, there is a factor of 1/N! to compensate for multiple counting of states with particles
interchanged. And the momentum-space factor is the “surface area” of a hypersphere of
dimension 2N (and radius v2mU as before). Thus the multiplicity of the flatland gas is
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(2mU)N.
As in equation 2.40, I've omitted a few factors that are merely large.

Problem 2.27. The probability of finding any particular gas molecule in the leftmost 99%
of a container is 99%. So the probability of finding all 100 molecules in the leftmost 99%
would be

(0.99)™°° = 0.366;
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in other words, the rightmost 1% of the container will be empty about a third of the time.
If instead there are 10,000 molecules, however, the probability drops to

(0.99)190% — (0.366)1%° = 2.25 x 10~%;

so this will “never” happen. And if there are 10 molecules, the probability would be
unimaginably small,
(0_99)10“ = 10~%4x 10’"_

Problem 2.28. There are 52 possible cards that could be on top, and for each of these
choices there are 51 possibilities for the next card, then 50 for the next, and so on down to
1 choice for the bottom card. So the total number of arrangements is just 52! = 8.06 x 1067,
If all arrangements are accessible, then the entropy is

s
7 =52l = 156; S =156k = 2.16 x 1072 J/K.

This is then the amount of entropy created by shuffling the cards, and it’s tiny compared
to the entropy associated with thermal motions, which is typically a large number (pro-
portional to the number of particles) in fundamental units and a pumber of order 1 when
multiplied by Boltzmann’s constant.

Problem 2.29. For the most likely macrostate (with g4 = 60),

S

%= In(6.9 x 10"*) =In6.9 + 1141n 10 = 264.4.

And for the least likely macrostate (g4 = 0),
5 81
= In(2.8 x 10%) = 187.5.

Even though the most likely macrostate is 103 times more probable than the least likely
macrostate, its entropy is larger by less than 80 units.
Over long time scales, where all macrostates are allowed, the entropy is

s
= In(9.3 x 10"%) =In 9.3+ 1151010 = 267.0,

only slightly larger than the entropy of the most likely macrostate.

Problem 2.30. (Entropy of two large interacting Einstein solids.)
(a) When all microstates are allowed, the entropy is

S 4N
Z =i 2
k 87N

for N = 1023,

=4NIn2 -Inv8rN =277 x 10 - 28.1

Problem 2.33
(b) For the most likely macrostate,

5 m 2 N2 In(47N) = 2.77 x 10% ~ 55.5
E P @mN T T = e

(c) Notice that the 4N In2 terms are the same in both cases above, so the difference
between these two entropies is only 55.5—28.1 = 27.4 units, utterly negligible compared
to either of the values themselves. Therefore the issue of time scales is quite irrelevant
for such a large system.

(d) Inserting the partition causes the entropy to decrease by about 27 units out of 2.8 x

10%, or about one part in 10?2, I would call this “violation” of the second law insignif-
icant; no, I wouldn't lose any sleep over it.

Problem 2.31. Starting from equation 2.40 for the multiplicity, we have for the entropy
of an ideal gas

S-—].n 1 VN g3N/2 2rmU
&~ T\ N'R3 (3N/2)! 2

2rmU\¥? 3N. /3Ny 3N
_Nan+Nln( i ) —NmN+N—Tln(T)+T

v 2rmU ¥/ 3N\3/2 5 V (4rmU~\32\ | 5
-wfwg+n(PEE) -w() 3] v e(F G ) + 3
In the second line I've used Stirling’s approximation twice, in the form of equation 2.16

which omits the merely “large” factor of V2w N. The final expression is the Sackur-Tetrode
result, equation 2.49.

3N/2
(2mU)3N/2> =lnV¥ + In( ) —ln Nt —In[(3N/2)1]

Problem 2.32. Taking the logarithm of the result of Problem 2.26 and using Stirling’s
approximation, we have

§ 1 2rmUANN 2rmU A
Z=m<(T1)3 =) )_Nln( . )—2(N1nN—N)

2rmU A A 2mmU
= N[ln(—ﬁz—-) +2] = N[In<ﬁw—) + 2]

Problem 2.33. For argon at room temperature and atmospheric pressure, the volume per
molecule is

V kT (1.38 x 10-% J/K)(300 K) o s
Y _’T_ =4.14x 10 ,
NP 105 N/m? x o

while the energy per molecule is

v
N

= ng = 3(1.38 x 1072 J/K)(300 K) = 6.21 x 10°% J.
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The mass of an argon atom is 40 u or 6.64 x 10726 kg, so the argument of the logarithm in
the Sackur-Tetrode equation is

V r4mmU

_( 47(6.64 x 10728 kg)(6.21 x 102 J)
N\ 3Nh?

3(6.63 x 10~34 .]/5)2 ,
The entropy of a mole of argon under these conditions is thé;ef 2
S = R[In(1.02 x 10") + | = R[18.64] = 155 J/K.

a/2 3/2
) =(a1ax 107 ms)( ) =1.02x 107.

The only relevant difference between argon and helium in this calculation is the larger
mass of the argon atom, which increases the argument of the logarithm by a factor of
(40/4)%? = 31.6. The reason why m matters is because for a given energy, a molecule with
more mass has more momentum, resulting in a larger “hypersphere” of allowed momentum
states for the gas and hence a larger multiplicity.

Problem 2.34. The increase in entropy during quasistatic isothermal expansion of an
ideal gas is computed in equation 2.51 as

Vi
AS =Nkln A
where V; and V; are the initial and final volumes. But the heat input during this process
was computed in equation 1.31 as
Vi N&T V;

Q=_W=+/V 4V = NiTla

Dividing this expression by T" gives the preceding expression for AS, so indeed, AS = Q/T.

For the free expansion process, however, AS is still given by the same expression but @ = 0;
therefore AS is most definitely not equal to Q/T.

Problem 2.35. Writing 5/2 as Ine%2, the Sackur-Tetrode equation becomes

4rmU )3/ 2
3Nh2 ’

‘We want to know when this quantity is negative, that is, when the argument of the logarithm

is less than 1. So set it equal to 1 and use the equipartition theorem to write U in terms
of T:

_ v 5/2
5= Nlc].n[ﬁe (

14 5/2(41rmU )3/2 _ 165/2(27rka)3/2.

I=w¢"Fwz) =n h2
Solving for T gives
N\23 B2
T= (7) 2meS/3mk’

We're to assume that N/V is the same as at room temperature (Tp) and atmospheric
pressure (P, ), so we can use the ideal gas law to write it as Py/kT,, then plug in P, = 10° Pa
and Tp = 300 K. The mass of a helium atom is 4 u, where 1 u = 1.66 x 10~% kg. Plugging

in all these numbers, I get T =~ 0.01 K. Below this temperature, the methods of Chapter 7
become necessary.

Problem 2.38

Problem 2.36. A kilogram of carbon is about 100 moles, so the entropy of the book
in fundamental units should be something on the order of 10%. In conventional units,
S ~ Nk~ 10%.10-2 J/K = 1000 J/K.

A kilogram of water would be about 50 moles, so a 400-kg moose would contain roughly
20,000 moles of particles. Its entropy in fundamental units would therefore be on the order
of (2 x 10)(6 x 10%) ~ 10%, or perhaps 10% if the “small” coefficient on Nk is on the
order of 10 for a material that’s mostly liquid. In conventional units, S ~ 102 - 10-2 J/K
= 10° J/K.

A mole of hydrogen has a mass of only a gram, and when ionized actually contains
two moles of particles. The sun, therefore, contains roughly 4 x 103 moles of particles, or
24 x 106 particles. T would guess that its entropy in fundamental units is this number times
a coefficient of at least 20 (given the high temperature compared to the room-temperature
gas considered in the text), so I’ll guess a fundamental entropy on the order of 10%. In
conventional units, that would be about 10*¢ J/K.

Problem 2.37. The number of B molecules is zN. When the partition is removed, these
molecules expand to fill a volume that is greater by a factor of 1/z, so their entropy increases
by

ASp = (:cN)klné =—-Nkzlnz

according to the Sackur-Tetrode equation. Similarly, the number of A molecules is (1~z)N
and these expand in volume by a factor of 1/(1—z), so

A8, = [(1-2)Nkln ;- = ~Nk (1-2) In(1-2).
The total entropy increase upon mixing is simply the sum,
ASmixing = AS4 + ASp = ~Nk[zlnz + (1—z) In(1—z)].
When = = 1/2, this expression reduces to
ASmixing = —Nk[iIni+ilnl] = -Nklni = Nkln2.

Since this N is the fotal number of molecules, which is called 2N in equation 2.54, the
results are in agreement.

Problem 2.38. In the unmixed state, this system could have quite a bit of entropy due
to molecular energies and (for fluids) configurations. When we allow the system to mix,
assuming that the mixture is ideal, the only change is that molecules of different types
can now switch places with each other at random (with no inherent tendency to prefer
like or unlike neighbors). Therefore, to compute the mixing entropy, we can ignore the
initial entropy and pretend that the molecules are initially frozen in place. Upon mixing,
molecules randomly switch places with each other but still occupy the same collection of
N fixed sites. The increase in multiplicity due to mixing, therefore, is the number of ways
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of assigning the two species of molecules to the N sites, that is, the number of ways of
choosing N4 of the sites to be occupied by molecules of type A:

N
Qmixing = (NA) .

The entropy of mixing is then k times the natural log of this expression:

N N!
ASmixing =kln (NA) = klﬂ(m) .

Assuming that both N4 and N are large, we can approximate the factorials using Stirling’s
approximation:

ASmixing X k[NInN — N ~ N4In Ny + Ny — Ngln Ng + Ng|
=k[NlnN—NAlnNA—NBInNB]

Now substitute Ny = (1-z)N and Ng = zN:

ASixing = k[N 1o N — (1—z)N In[(1-z)N] — zN In[zN]]
= Nk[lnN - (1-z)In(l-z) — (1-z)In N — zlnz —zln N].

The In N terms now cancel, leaving us with the same expression as in Problem 2.37,

ASixing = —Nk[zlnz + (1-z) In(1-2)].

Problem 2.39. Rather than computing the entropy from scratch using equation 2.57, I'll
take advantage of the calculation of the actual entropy of a mole of helium at the top of
page 78. There I found that the argument of the logarithm was 330,000. Here, however,
the argument of the logarithm lacks a factor of N in the denominator, so it is larger by a
factor of Avogadro’s number. The logarithm itself is therefore

In[(6 x 10%)(330,000)] = 67.5,
and so the entropy of this hypothetical system would be

S = NEk[67.5+1.5] = 69Nk = 573 J/K.

That'’s four and a half times as large as the actual entropy of a mole of indistinguishable
helium atoms.

Problem 2.41

Problem 2.40. {Irreversible processes.)

(a) When you stir salt into a pot of soup, the sodium and chlorine ions can roam through-
out the entire volume of the liquid. They can then have many more possible arrange-
ments than when they are locked into crystals. More arrangements means higher
multiplicity and hence higher entropy. And as we all know, it’s not at all easy to
reverse the process and get the salt out of the soup.

(b) Scrambling an egg mixes the yolk with the white, so that creates mixing entropy as the
“yolk molecules” and “white molecules” can mix among each other. In addition, cook-
ing the egg “denatures” the protein molecules, undoing their special folded patterns
and stretching them out into long chains that can flop around randomly.

(c) Humpty Dumpty’s fall itself is reversible (to a good approximation, neglecting air
resistance), but when he lands and breaks into many pieces, his entropy suddenly
increases because there are many more ways for him to be broken than whole. If the
king’s horses and the king’s men just knew the second law of thermodynamics, they
wouldn’t have wasted their time trying to put him back together again!

(d) There are many more ways for the sand to be scattered about than for it to be sculpted
into a sand castle, so the action of the wave most definitely increases the multiplicity
and entropy of the sand.

(e) You can cut the tree in many places, at many angles, and it can fall in many directions,
so there are many more ways for it to be cut down thap for it to remain standing.
Hence its entropy has increased. And of course, we all know that it’s pretty much
impossible to undo the cutting.

(f) When you burn gasoline, not only do you convert a smaller number of relatively large
hydrocarbon molecules into a larger number of relatively small exhaust gas mole-
cules, but you also release a great deal of thermal energy (converted from chemical
energy) into the environment. This energy can arrange itself in many ways among the
surrounding atoms, so the entropy of the environment increases a great deal as this
thermal energy spreads farther and farther.

Problem 2.41. Several of my favorite irreversible processes are described in the previous
problem. Another familiar one is spilling a pail of milk (more ways for the milk to be
splattered on the ground than contained in the pail), which you shouldn’t cry over because
crying won’t make the process any less irreversible. Then there are geological processes
such as erosion by streams and landslides; these convert gravitational energy into thermal
energy and also often break large rocks into smaller pieces, with more arrangements possible
for the final state either way. Finally, the process of feeding hay to 2 horse is irreversible
(metabolism converts chemical energy to thermal energy with more possible arrangements),
as is implied by a paraphrase of the second law that I read in Nordstrom and Munoz (1994):

“You can’t shovel manure into the rear end of a horse and expect hay to come out of its
mouth.”
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Problem 2.42. (Entropy of a black hole.)

(a) In the SI system, the units of G are N - m?/kg®. But a newton is a kg - m/s?, so the
units of G can also be written as m?/kg - s>. Meanwhile M has units of kg and ¢
bas units of m/s. We want a combination of these three quantities that has units of
meters. We can get meters from either G or ¢, but each also involves seconds; the
only way to make the seconds cancel is to take the combination G/c?, which has units
of m/kg. Now we have meters to the first power as desired. To cancel the kg in the
denominator, just multiply by M: radius ~ GM/c® (up to a purely numerical factor).

(b) Ordinarily, the entropy of a system is of the same order as the number of particles in
the system. If we take a system of N particles and compress it to form a black hole,
the second law requires that when we’re done, the entropy of the black hole is still at
least of order V. But since the end result is the same whether we start with 2 lot of
particles or a few (with the same total mass), the final entropy must in fact be of the
order of the mazimum N, the largest possible number of particles that it could have
been formed from.

(c) Suppose we start with N photons, each of which has a wavelength equal to the size
of the black hole: A = GM/c?. Each photon has an energy ¢ = hc/), and the total
energy of all of them must equal Mc%:

Nhe NhE
M 2 = — = —,
c=Ne=—"=Tm
Solving for N gives
GM?
N =
he ’
and so the entropy in conventional units must be of order
GM?%*%k
S~ .
he

(d) For a one-solar-mass black hole,

S 8r%(6.67 x 10~ N - m?/kg?)(2 x 10*° kg)?
k- (6.63 x 10-3¢ J . 5)(3 x 108 m/s)

=1.06 x 1077,

or in conventional units,
5 =(1.06 x 107)(1.38 x 107% J/K) = 1.5 x 10** J/K.

This is an enormous entropy. For comparison, an ordinary star like the sun contains
of order 1057 particles, so its entropy is something like 1087k. To equal the entropy
of a single one-solar-mass black hole, you would need 10?° ordinary stars, or enough
to populate a billion (10°) Milky Way galaxies. Furthermore, since the entropy of a
black hole is proportional to the square of its mass, a million-solar-mass black hole (as
may exist at the center of our galaxy) would have a trillion (10'2) times the entropy
of a one-solar-mass black hole.

T

i
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3 Interactions and Implications

Problem 3.1. In each case I'll use a centered-difference approximation, taking a difference
of values just above and just below the point where I want the derivative. When g4 =1,
AU, 2e — Qe €
=—"=———=19-=220K
Ta AS, 107k -0k 2 ’

where the last value is for ¢ = .1 &V (so that ¢/k = (.1 eV)/(8.62 x 10~° eV /K) = 1160 K).
Similarly, - .

AUg 100c — 98¢ € _

Ts = Rs, = 7ok 1853k~ Lp = 060K

As expected, Solid B is much hotter when it has nearly all of the energy. However, at
qa =60,

61le — 59 €
Ta=Tooor—ts7.ak % = 0 X,
while
Ts Hle—3e 7€ _ 60 K.

~ 107.0k — 1035k k
At this point the temperatures are essentially the same.

Problem 3.2. If A is in thermal equilibrium with B, then T4 = T and therefore

a8\ _ (oS

au ), \au /g’
where it is understood that N and V are fixed in each derivative, and the subscripts merely
indicate which system. Similarly, if B is in thermal equilibrium with C, then Tg = T and

therefore
) _(2)
U j, ~ \dU /.

But these two equations together imply that

asy _ (28

ou ),  \au ).
which says that T4 = T¢, which means that A is in thermal equilibrium with C. Basically,
all we need to know for this proof is that “thermal equilibrium” implies equal temperatures,

and that temperature is a property that has a numerical value and therefore obeys the
“transitive” law of mathematical equality. Not a very interesting proof, in my opirion.
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Problem 3.3. Look at the slopes of the tangent lines at the initial energy values:

Sp

|
¢
|
'

— T bl UA [ —- . - UB
Us: Uy Us.r Us,:

Since the slope of graph A is steeper than the slope of graph B, a transfer of energy
from B to A will cause A to gain more entropy than B loses; therefore this will happen
spontaneously. Energy flows from B to A until the slopes of the entropy graphs become
equal, at the points marked Uy ; and Up 5.

-

Problem 3.4. A “miserly” system (A) can certainly be in thermal equilibrium with
another system (B)—they just need to be at the same temperature. Usually, however,
the equilibrium will not be stable. If system B is also “miserly,” then any small flow of
energy from B to A will cause the temperature of B to increase while the temperature
of A decreases. We then get a run-away effect, as more and more energy spontaneously
flows from B to A. And if the initial fluctuation results in energy flowing from A to B,
the run-away effect goes in the opposite direction. (This instability is sometimes offered as
a proof that miserly systems cannot even exist. Imagine splitting a single miserly system
into two parts, A and B; then since A and B cannot be in stable equilibrium with each
other, the system as a whole is unstable. However, this “proof” has a loophole: If there
are long-range forces between the particles in the original system, then we cannot mentally
divide it into two miserly subsystems that interact only thermally. Gravitationally bound
systems like stars can be miserly precisely because of the long-range gravitational forces
between the particles.) But what if system B is not “miserly”? If it is a large “reservoir”
whose temperature doesn’t change significantly when it absorbs or emits energy, then again
any small transfer of energy from B to A will result in A becoming colder than B so we
get a run-away effect. The oply way for the equilibrium to be stable is if system B is
“normal” and sufficiently small (more precisely, has a sufficiently low heat capacity) that a
spontaneous transfer of energy from B to A causes B to cool off more more than A does.
Then A will become a bit hotter than B and the energy will spontaneously flow back.

Problem 3.5. The result of Problem 2.17 was

Q= (ﬂ)q
q b
for an Einstein solid in the “low-temperature” limit ¢ <« /N. Therefore the entropy in this
limit is

5= k].n(e—qu)q = kqln(%) =kg[lne+InN —Ing] = kg[InN —Ing+1].

Problem 3.7

But U = ge, where ¢ is the size of each energy unit, so
§= %]-[lnN—an+lne+1].

Differentiating with respect to U now gives

1_05 &
T 8U «

Solving for U is now just a couple of steps:

eull)

Note that as T — 0, the energy goes to zero as expected.

[In(Ne/U) +1) + %(——1-) = é m(&).
€T = J—VU—E =

Problem 3.6. We're given that the multiplicity of the system has the form
Q=A4.UN",

where A is some constant that’s independent of U. The entropy, therefore, is

S=klnQ= klnA+N—2fflntf.
Differentiating with respect to U gives the temperature,
1 88 _kNf1l
T U 2 U
and solving for U gives simply
_NfkT

2

This is the equipartition theorem: Each degree of freedom gets an average energy of k7'/2,
and the total energy is this times the number of degrees of freedom, N f. The theorem is
valid whenever our original formula for the multiplicity is valid, that is, when all the energy
is in quadratic degrees of freedom and the number of energy units is much larger than the
number of degrees of freedom (high-temperature limit). But the theorem cannot be valid
for arbitrarily small values of U, because as U — 0, its logarithm goes to —co and therefore
the entropy becomes negative, which is impossible.

Problem 3.7. From Problem 2.42, the entropy of a black hole is

_ 8n'GM%k _ 8m®G(M*)k _ 8n2GU%k
- he - hc? T he

where U is the black hole’s energy. To find the temperature, just differentiate with respect
to U:

S

dS _ 16n°GUk _ 16m*GMk

1
T dU RS e
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or
hc?

_ ~ 16n°GMk’
For M = 2 x 10% kg (our sun’s mass), this evaluates to

T

(6.63 x 1073 J-5)(3 x 10° m)?

= =61x10%K,
1672(6.67 x 1011 N-m?/kg?)(2 x 10% kg)(1.38 x 10-2 J/K)

T

a temperature so tiny that for most purposes it may as well be zero. Notice also that‘as'M
(or U) increases, T decreases. Because S oc U2, a graph of § vs. U is an upward-opening
parabola:

Sk

> U

The concave-up shape indicates that as energy is added to this system, its tendency .to
absorb energy increases—it becomes more and more “greedy,” or less “generous,” that is,
colder. In the language of Figure 3.2, this is a “miserly” system. :

Problem 38.8. For an Finstein solid in the low-temperature limit, U = Nee™*/*T and
therefore

Cu = Neba ™ = Ne( 55 ) 4™ = Nk((5 ) e/,

Even though the prefactor ¢/kT blows up as T — 0, the whole expression goes to zero
because of the exponentially small exponential factor. To plot the heat capacity I gave
the instruction Plot [(1/t) “2*Exp[-1/t],{t,0, .2} ,PlotRange~>Al11] to Mathematica,
and it produced the graph below, showing the exponentially suppressed heat capacity as
T—-0.

0.125
0.1
0.075
0.05
0.025

Cy [Nk

T0.05 0.1 0.15 a2 kT/e

Problem 3.11

Problem 3.9. If each of the N CO molecules has two equally-likely orientations, then the
multiplicity of the system would be 2V, and the associated entropy is simply

S=kIlnQ=kln(2") = Nkln2.
For one mole N = 6 x 10%, this evaluates to 4.2 x 10 units of entropy (S/k), or a
conventional entropy of 5.8 J/K.
Problem 3.10. (Melting an ice cube.)
(a) As the ice melts into water, its entropy increases by

Q _mL _ (30g)(338 J/g)
T T~ 273 K

(b) As the water’s temperature rises, its entropy increases by

" cdr T 208 K
A5 = /T T — Cmf = (30 g)(4.186 J/g - K) In r = 11.0 J/K.

AS = =36.6 /K.

(c) The heat lost by the kitchen is the same as the heat gained by the ice/water, mL +
mcAT. So the change in the kitchen’s entropy is

as = 9 _ —(80)(333 J/g) - (30 g)(4.186 /g - K)(25 K)
T 208 K

(d) The net change in the entropy of the universe due to these events is

ASira = 36.6 J/K +11.0 J/K — 44.1 J/K = 3.5 J/K.

=—44.1 J/K.

Since this is an irreversible process, the entropy of the universe has increased (but
only slightly, since the temperatures of the ice and the kitchen differed by less than
10%).

Problem 3.11. The difference in temperature between the hot water and the cold water
is 45°C, but there’s twice as much hot water than cold, so the cold water will go up in
temperature twice as much as the hot water comes down. This implies that the final
temperature is 15°C less than the initial temperature of the hot water, that is, the final
temperature is 40°C. Knowing this, we can calculate the change in entropy of the cold
water,

S3K g 313
ASead = (25 ke)(4186 J/kgK) — = (104,650 J/K)In === = 10, 550 J/X,
83k 1 283

and the change in entropy of the hot water,

313 K dT
AShe: = (50 kg)(4186 J/kg-K) / - = (209,300 J/K)

313
In —
ask T

55 = —9800 J/K.

The total change in the entropy of the system is, of course, positive:
ASioral = 10,550 J/K — 9800 J/K = +750 J/K.
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Problem 3.12. In Problem 1.59 I estimated that the rate of heat loss from my home in
January is about 3.7 kW, so the total heat loss in one day would be roughly 3 x 108 J. The
indoor temperature is about 65°F or 291 K, while the average outdoor temperature is 33°F
or 274 K. Therefore, the entropy gained by the outdoors is

Q 3x10°7]

BSewsie =7 = “Fa K

=1.09 x 10° J/K,

while the entropy lost by the interior is

. . =_—_——= ————= 1, 5 .
ASmsnde T 01K 1.03 x 10 J/K

The net change in the entropy of the universe due to this heat flow is therefore
A8 = (1.09 x 10° J/K) — (1.03 x 10° J/K) = 6 x 10* J/K.
In fundamental units, that’s about 4 x 10?7 units of entropy.

Problem 3.13. (Entropy generation by solar heating.)

(2) Assuming an average of eight hours of high-quality sunlight per day, a square meter
of earth’s surface receives in one year a total energy of

(1000 J/s)(3600 s/hr)(8 hrs/day)(365 days) = 1.05 x 10¥° J.
The entropy gained by the earth upon receiving this much energy is

10
Asem}l:Q: 1.05 % 101 J

— 7
7 R = 3% 107 JK.

The entropy lost by the sun upon emitting this much energy is 20 times smaller than
this, since the sun’s surface is 20 times hotter than the earth’s. The net change in
entropy due to this process is therefore 19/20 of the preceding result; I'll just round
it down to 3 x 107 J/K.

(b) On a square meter of earth, in one year, you might be able to grow a few kilograms of
grass, containing perhaps 1000 moles of carbon and other atoms. Even if this grass has
zero entropy, the net reduction in entropy upon assembling it out of smaller molecules
would only be of order

Nk = nR =~ (1000 moles)(8.3 J/mol-K) ~ 10* J/K,

about 3000 times less than the entropy created by sunlight warming this patch of
ground. So there’s no violation of the second law here: The growth of the grass
merely reduces the increase in entropy by a small fraction of a percent. A similar
analysis could be applied to the growth of any other living thing, as well as to the
process of evolution, which is claimed (by the so-called “scientific crestionists”) to
violate the second law.

Problem 3.15

Problem 3.14. As the temperature of the aluminum increases from 0 to some final
value T}, its entropy increases by

Ty Ty 3 Ty
AS:/ C"TdT=/ ol + T dT=/ (a+bT2)dT=an+§T;.
[v] 1] a

T

Assuming that the aluminum has no entropy at 0 K, this formula gives its absolute entropy
at temperature Ty. Setting Ty = 1 K and plugging in the given values of a and b gives

S(1 K) = (.00135 J/K?)(1 K) + %(.0000248 3/K%(1 K)? = .00136 J/K.

At this very low temperature, nearly all of the entropy comes from the linear term, that is,
from the conduction electrons. At 10 K, however,

5(10 K) = (.00135 J/K?)(10 K) + %(.0000248 J/K*)(10 K)® = .0218 J/K,

so most of the entropy comes from the lattice vibrations. In fundamental units, these results
become

5(1K) 100136 J/K

_ S(I0K) 0218 J/K
E 138x10BJ/K

k. 1.38x10-2 J/K

= 9.8 x 10'%; = 1.58 x 102,

So even at 1 K, the entropy is quite large. On the other hand, since most “degrees of
freedom” are frozen out, the entropy is much smaller than the number of particles.

Problem 3.15. In Problem 1.55 I showed that the heat capacity of a gravitationally bound
system is

3
C = 3Nk,

where N is the number of particles. The entropy should therefore be

C 3 1 3
S—/TdT——§Nk/TdT——-§Nk].nT+consta‘nt

Since the total energy is U = —-%N kT, the entropy can also be written

3 -2U 3
S = —-éNkln(m) -+ constant = —§Nk In(—U) + constant,

where I've absorbed as much as possible into the constant in the final expression. To sketch
the function S(U), start with the natural logarithm function and then flip it both horizon-
tally and vertically to take care of the two minus signs. To plot the function accurately, I
used the Mathematica instruction Plot[-Log[-u],{u,-1,0},PlotRange->{0,5}], which
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produced the graph below. Notice that the curve is concave-up, indicating that this is a
“miserly” system whose temperature decreases as you add energy.

s

= U

Problem 3.16. (Thermodynamics of computing.)

(a) Before the memory was erased, it could have been in any one of 22" different mi-
crostates (at least). After it is erased, its new microstate is completely specified and
unrelated to the previous one, but somehow the whole system, including the hardware
that did the erasing, must still have 22" possible states, corresponding to the number
of possible initial conditions. This multiplicity of possible states gives the system an
entropy equal to

S=kIn2®" =k-2%m2=k- (6.0 x 10°) =8.2x 107 J/K.

(b) To dump this entropy into an environment at 300 K would require a heat transfer of
at least

Q =TAS = (300 K)(8.2 x 1071* J/K) =2.5 x 10~ J,

or 25 picojoules. Not a very significant amount. Of course, today’s computers are
much less thermodynamically efficient, expelling a good deal more waste heat than
this lower limit. But at the rate computer technology is progressing, who knows how
long it will be before the thermodynamic limit becomes a significant constraint?

Problem 3.17. For N = 100 and N; = 98, there are 98 dipoles pointing up, each
with energy —uB, and two pointing down, each with energy +uB, so the total energy
is —96uB, as indicated in the second column of Table 3.2. The total magnetization is
+98u — 2u = 96y, so M/Np = 0.96, as indicated in column 3. The multiplicity is the
number of ways of choosing the two down-dipoles from among the total of 100, which is
(100)(99)/2 = 4950 (column 4). The entropy in units of k is In 4950 = 8.507 (column 5).
The temperature is

r AU _ (-94uB) - (~984B) _ 4uB uB
- 1199k — 461k  7.38k

AS = = 0.54 =
where I've used a centered-difference approximation, involving the two adjacent rows of
values, to evaluate the derivative; this verifies the entry in column 6. Similarly, the heat
capacity is

_AU 4uB

T AT ~ (.60pB/k) - (4TuB/k)
or 0.31k per dipole, verifying the entry in column 7.

o

= 31k,

Problem 3.18

Problem 3.18. Here are the formulas from the first few rows of the Excel spreadsheet
that I used to produce Table 3.2:

A

B C D E F G
1 |Nup U/uB M/Nu Omega S/k kT/uB C/Nk
2 [100 =100-2"A2 [=-B2/100 {=COMBIN(100,A2} IsLN(D2) [0
3 [=A2-1 |=100-2"A3_|=-B3/100 |=COMBIN(100,A3) |=LN(D3) [=4/(E4-E2) |=4/(F4-F2)/100
4 [=A3-1 |=100-2"A4 [=-B4/100 [=COMBIN(100,A4) [=LN(D4) [=4/(E5-E3) |=4/(F5-F3)/100
S [=A4-1 [=100-2"AS5 [=-B5/100 |=COMBIN(100,A5) [=LN(D5) |=4/(E6-E4) |=4/(F6-F4)/100
6 |[=A5-1 |=100-2"A6_ |[=-B6/100 |=COMBIN(100,A6) [=LN(D86) |=4/(E7-ES5) |=4/(F7-F5)/100
7 |=A6-1_|=100-2"A7 |=-B7/100 |=COMBIN{(100,A7) |=LN(D7) |=4/(EB-E6) |=4/(F8-F6)/100
8 [=A7-1 |=100-2"A8 |=-B8/100 |=COMBIN(100,A8) |=LN(D8) [=4/(E9-E7) |=4/(F9-F7)/100
9 [=A8-1 |=100-2"A9 [=-B3/100 |=-COMBIN(100,A8) [=LN(DS} |=4/(E10-E8)|=4/(F10-F8}/100
10 ]=A9-1 [=100-2°A10(=-B16/1001-=COMBIN(100,A10) [=LN(D10)/=4/(E11-E9){=4/[F11-F9}/100

For the computed values, see the table as printed in the book. Here are spreadsheet-
generated graphs of entropy and temperature vs. energy:
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x> i 20l y 100 50,40 50 100
2 : L '
- 10 4 ] _404
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-100 -50 0 50 100 -s0d
Energy (units of uB) U/uB
And here are graphs of heat capacity and magnetization vs. temperature:
0.45 + = 1 .
atat 0.8 1%
H :
0.35 +" % 0.6 + =
u EY
0.3+" % 0.4 1 "
2025 % . 02l T,
z L ] z L]
G 02 % < L 6 i
o 0 . = e,
0.15 5 -10 " "=sq,-0.2 10
. o
0.1 ., -0.4
0.05 }' e, 0.8
04 ot -0.8
0 5 10 -1
kT/uB kT/uB

(To get Excel to make the last plot, I had to copy the magnetization into a new column to
the right of the temperature.)
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Problem 3.19. Starting from equations 3.28 and 3.29, we have

1 k
7= %5 aNT[NlnN N;InN; = (N=Np) In(N—Np)]

ok N N-N;| & N;
=55 =M ]—V+1n(N N+ NJ_%B]nN_NT.

Il

But from equation 3.25, N; = N/2 — U/2uB, so

1_ k_ , (N-U/uB
T~ 2uB \N+U/uB

where I've canceled the factors of 1/2 in the numerator and denominator of the argument
of the logarithm. To solve for U, first isolate the logarithm and then expomentiate both
sides to obtain

N-U/uB _— 2uB/KT u _ 2uB/KT U
_—N+U/[J,B~e , or N_;E—e (N+#—B)

Now gather the terms containing U’s:

%(1 + ezuB/kT) = N(1 - eB/AT),

— p2uB/kT
ie., U=N,uB(1 e )

14 e2uB/kT ‘

To write this in terms of a tanh function, multiply the numerator and denominator by
e—»B/KT,

e~ #BIKT __ guB/kT —2sinh(pB/kT) uB
U= — | = — M
NuB (e—"a/"T ¥ e“B/“T) NuB ( 2 cosh(uB/kT) ) ~NuB ta“h( kT)

Finally, to evaluate the heat capacity, note that

2
4 anhz d sinhz cosh z — sinh*z 1
d = Gzcoshz cosh® z = cosh’z

where the last step follows from the identity cosh® z — sinh® z = 1 (which you can prove by
brute-force reduction to exponential functions). The heat capacity is therefore

U 8 uB 1
Cp=—==—-NuB— —_— = - [ — —~2
s = g7 = ~NuBgp tanh () N“Bcoshﬂ(yB/kT)( )( -
_(uB/KTY
cosh®(uB/kT)"

Problem 3.21 69

Problem 3.20. For the numbers given, the quantity uB/kT is

(927 x 1072 J/T)(2.06 T)
= kT (1.38 x 102 J/K)(2.2 K) = 0.620.

The hyperbolic tangent of this number is 0.558, so
U M
NuB anh z 558; Nu T
To find the entropy, you could use the formula derived in Problem 3.23 below. Alternatively,

note from equation 3.25 that the total energy determines the fractions of up and down
dipoles:

Ny 1 U N, N;
W‘E( ~N.B & =1- =022
From equation 3.28, the maximum possible entropy is Nkin2, and the ratio of the actual
entropy to the maximum is

S Ny N, _ 1/N 7 NN
5= 1n2(lnN NN~ M) =~ (P + glhg).
Plugging our numbers into this formula gives 0.76, meaning that the entropy is about 3/4
what it would be if half the dipoles pointed up and half pointed down.
To achieve 99% of the maximum magnetization, we would need tanhz = 0.99 or ¢ = 2.65,
about 4.2 times greater than the value for our parameters. So we would need to increase
the magnetic field to 4.2 x 2.06 T = 8.65 T, or decrease the temperature to 2.2 K/4.2
= 0.52 K, or combine a somewhat smaller increase in the field strength with a somewhat
smaller decrease in the temperature.

) =0.779;

Problem 3.21. For these parameters,
pB _ (5x107% eV/T)(:63 T)
kT~ (8.617 x 10~% ¢V/K)(300 K)
Because this quantity is so small, I can use the linearized formula 3.35 for the magnetization:

=122x 107"

M _uB _ 6
N_p, = —’_CT =1.22x 10 N
or M
= (122 x 1076)(5 x 1078 eV/T) = 6.1 x 107 eV/T.

The excess of up dipoles over down dipoles is only of order one part in a million. Further-
more, these nuclear dipoles are very weak to begin with. It’s a wonder that Purcell and
Pound were able to detect the magnetization. The energy difference between the two states
of a dipole is

€=2uB =2(5x 1078 eV/T)(:63 T) = 6.3 x 1078 &V.
A photon with this energy has a wavelength of

(4.14 x 1075 eV - 5)(3 x 10% m/s)

A= E = = 19.7 meters

€ 6.3 x 10-8 eV
or about 20 meters—in the radio wave portion of the electromagnetic spectrum.
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Problem 3.22. From the numbers in Table 3.2 you can see that the entropy goes to zero
as T — 0, and goes to a constant value as T — co. (If the number of dipoles is large, that
constant value is N In2, since the multiplicity is equal to 2V up to a factor that is merely
large.) To plot an accurate graph of S(T'), I used the same spreadsheet that generated
Table 3.2 (though Excel made me put a copy of the entropy column to the right of the
temperature before it would plot S vertically and T horizontally):

50 &

A

S/k

204 §
a
H
L

0 5 10
kT/uB

Since the natural unit of temperature on this graph is uB/k, increasing the value of B
would increase the temperature scale over which the entropy rises. That is, when the field
is strong, a higher temperature is required to reach a given entropy value. This makes
sense, because in a stronger field there is more tendency of the dipoles to be aligned in an
orderly way, hence less entropy (at a given temperature).

Problem 3.23. Equation 3.28 gives the entropy in terms of N; and N|,
S
5= NInN ~N;InN; — N InN|,

while equation 3.25 gives Ny and N| in terms of the energy U:

NT=%(N—#£B); N1=N—NT=%(N+#£B).

Finally, equation 3.31 gives U/uB in terms of temperature:
U

—— =-=Nt
B N tanh z,

where z = uB/kT.

Therefore the number of up dipoles can be written

N N
N; = 7(1 +tanhz) = ?(
where the last step follows from the definitions of cosh and sinh. Similarly, the number of

down dipoles is

cosh::+sinhz) _ Ne
coshx " 2coshz’

le-l;—[(l—tanhz)=%(

coshz — sinhz) _ Ne—*
coshz " 2coshz’

=
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Plugging these expressions into the entropy formula gives

S e* Ne® e ® Ne=
Nk~ N - 2cosh:cln(2005hz) " 2coshz ln(2cosh:r:)

e~*

et

=N - 2coshz

[lnN + z —In(2cosh z)] — [N — z —In{2coshz)].

2coshz

The In N terms now cancel, leaving

S er —e”* et +e™*
Nk~ _I( 2cosha:) + (2coshz) In(2 coshz)

= In(2coshz) — z tanhz.

This function is plotted in Figure 4.14. AsT — 0,z — oo so tanhz — 1 and 2coshz — &7.
Therefore S/Nk — Ine* —z =z —z =0, as expected. As T — oo, £ — 0 so tanhz — 0
and coshz ~ 1. Therefore S/Nk — In2, again as expected (since the multiplicity when
N; = N/2 differs from the total multiplicity of all macrostates, 2", by a factor that is
merely large).

Problem 3.24. Here’s an Excel spreadsheet showing the first 15 rows of the table and the
entropy-energy graph for an Einstein solid with 50 oscillators:

Einstein Solid |# of oscillators =[50

q S/k_| kT/eps | C/Nk
1 0 0 )
50 3.9 0.28] 0.12 |
1275 7.2] 0.33] 0.45 100 |
22100] 10.0] 0.37] 0.54 80 [

S/k

3E+05 12.6 0.40] 0.59
3E+06 15.0 0.44| 0.64 60

Y N Y N
S N PN = S AN A L S S Y )

3E+07| 17.2| o0.47] 067 2 L
2E+08] 193] 0.49] o0.70]|] 2 40 I
2E+09] 21.2[ 0582[ 0.73]] E 9 I
1E+10] _23.1]_0.55] 0.75

6E+10] 24.9] 0.58] 0.77 04 } i ]
3E+11]  26.6] 0.60] 0.78 0 50 100 |
2E+12] 28.2] 0.63 0.80

8E+12] 297 065 0.81 energy, q I

14| 4E+13 31.3 0.68] 0.82 T T
Since the graph is increasing and concave-down, this system behaves “normally”: its tem-
perature is always positive and increases as energy is added.

The graph on the left below shows that heat capacity per oscillator as a function
of T for N = 50. Note that in the high-temperature limit the heat capacity approaches
the result predicted by the equipartition theorem, C = Nk (since there are two degrees
of freedom per oscillator). Below T = €, however, the heat capacity falls dramatically.
The low-temperature behavior is better shown on the graph at right, obtained simply by
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changing the number of oscillators to 5000.

1.00 T - « 1.00
z £
o 0.80+ G 0.80 ¢
2 0601 2 060+
Q Q
o ]
2 0.40 4 2 0.40 4+
2] Q
= 0.204 = 0.20 -/
[ Q -‘
£ =
0.00  — } 0.00 } —
0.00 1.00 2.00 0.00 1.00 2.00
temperature, kT/eps temperature, kT/eps

The data in Figure 1.14 follow curves of similar shape, except that the heat capacity
continues to rise gradually, exceeding the equipartition value, at high temperatures. As
explained in the caption to Figure 1.14, this behavior is a feature of Cp but not Cy.
The value of € for each solid can be estimated by noting that the heat capacity reaches
half its equipartition value at kT =~ €/3. For lead, this temperature is about 22 K, so
= 3(8.6 x 1075 eV/K)(22 K) = .0057 eV. For aluminum it’s at about 100 K, so ¢ =
.026 eV. And for diamound it’s at about 460 K, so € = .12 eV. Because € is proportional to
the frequency of each atomic oscillator, and stiff and/or light materials vibrate at higher
frequencies, it makes sense that ¢ would be lowest for lead and highest for diamond.

Problem 3.25. (Einstein solid, analytic treatment.)
(a) Starting with the formula given for 2,

S=kln

= en( L5 (L)

=k m(qJ;N) V(1= JI’VN)

The omitted factors in 2 were of order vN or /@, merely “large”. The logarithm of
such a factor is a small number, negligible compared to ¢ or N.

(b) It's easiest to first re-express the derivative using the chain rule:

1_985 08985 188
T 8U 8Udq cdq
=Sai[qln(q+N)—q1nq+Nln(4+N) NlnN]
k q N
i ¥ hmg-%4+_ " 4o
e[ (g+N)+ +N Ing + +N+]
k q+N q+N q
z ~— 2 == 1+—].
e[ q+N q eln( * q)

()

(d)

()

Problem 3.25

So the temperature is

~ k(l+ Ne/UY
Solving for U yields
_ Ne
- ee/kT — 1"
The heat capacity is therefore
c=% _ Ne 8 ur_Ne& e

T = (/T —1p20T° = K2 (el —1)2

When kT > € the exponential e*/*T is approximately 1 + ¢/kT. In the numerator we
can just keep the 1 term, but in the denominator we need to keep the next term as
well since the 1 cancels. Thus,

Ne2 1

~ e ey - VR

This is just the prediction of the equipartition theorem, since each oscillator counts as
two degrees of freedom (one kinetic, one potential).

The function we want to plot is

C ellt
Nk~ 2(ett —1)2

1 like to do these kinds of graphs in Mathematica. In this case the instruction would
be Plot [Exp[1/t]/(t"2(Exp[1/t]-1)"2),{t,.001,2}]. This instruction generated
the solid curve on the graph shown below. The dashed curve shows the approximate
result of part (f).

0.5 1 1.5 2

Comparing the shape of this curve to the data in Figure 1.14, we see that it is generally
similar but not exactly the same. We can neglect the discrepancy at high temperatures
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where the measured heat capacities gradually rise above the equipartition prediction,
because this is a feature of Cp, not Cy. At low temperatures, however, there is a
subtle but significant difference: The curve predicted by the Einstein model is much
flatter as it approaches the origin than the data. This discrepancy is discussed in
Section 7.5. Neglecting these details, we can estimate the value of ¢ for each solid by
noting that the heat capacity reaches half its equipartition value at kT & ¢/3. For
lead, this temperature is about 22 K, s0 € = 3(8.6 x 10~° eV/K)(22 K) = .0057 eV. For
aluminum it's at about 100 K, so ¢ = .026 eV. And for diamond it’s at about 460 K,
so € = .12 eV. Because ¢ is proportional to the frequency of each atomic oscillator, and
stiff and/or light materials vibrate at higher frequencies, it makes sense that e would
be lowest for lead and highest for diamond.

(f) First note that the exact expression can be written
c e
Nk~ (es-1)¥’

where z = ¢/kT. Now expand each exponential as €* =~ 1+ z + 32? + 1z

¢ 2(l+z+37% +377)

Nk~ (A+z+is?+is8 1)

Again the 1's in the denominator cancel, and the z? in the numerator then cancels
two factors of z in the denominator:

C l4z+3a?+3c®  l+z+3z® 1+z4 328

Nk~ (+lz+122)?  l1+z+ir2+122 1+z+ Zo2

In the second step I’ve squared out the denominator, keeping terms only through order
z? since z® terms have already been dropped. I've also dropped the z° term in the
numerator, for the same reason. Now just use long division to obtain the result

1, 1 (kT2
=NE[1-2z24...] = k[——(—) ]
C =Nkt - ot +-| = Nk[1- () +
So as the temperature is lowered, the heat capacity drops off from its asymptotic value.
At T = ¢/k the reduction is by only one part in 12, but below this temperature the fall-
off becomes more dramatic (and the approximations made here become inaccurate).

Problem 3.26. As in the previous two problems, note that the heat capacity curve
predicted by the Einstein model reaches half its maximum value at approximately kT /e =
1/3. From the vibrational portion of the hydrogen data in Figure 1.13, we see that this
halfway point occurs at a temperature of somewhat less than 2000 K; I'll call it 1700 K.
Therefore, -

k

2(1700 K)~ = €~ 3(1700 K)(8.6 x 107° eV/K) = 0.44 eV.

Wl

T=T7°
/; L Problem 3.29
Problem 3.27. If dS = 0, then the thermodynamic identity becomes simply dU = —PdV,
or -

P=- (ﬂ) .
oV /s
This equation merely describes the work done during a “purely mechanical” compression
(or expansion) that involves no change in entropy. When there’s no entropy change there
can be no heat flow, since heat flow is caused by the tendency of entropy to increase. In
this case, therefore, dU = W, the work done on the system, which is the force exerted
times the displacement, or, multiplying and dividing by the area of the moving surface, the
pressure times the change in volume. The minus sign indicates that the work done on the
system is positive when its volume decreases.

Problem 3.28. For a diatomic gas such as air, Cp = InR; in this case, nR = PV/T =
(10° N/m?)(10~% m?)/(300 K) = 1/3 J/K. Since the volume of the gas doubles but the
pressure doesn’t change, the ideal gas law tells us that the temperature also doubles. There-
fore,

T Cp

7
= —d = = .
AS e T T 2nR In

T, 71 3
7= 5(§ J/K) In2 =081 J/K.

Problem 3.29. For an infinitesimal change at constant 54

pressure, we can write
Q _ CpdT

ds ==
T T

and therefore the slope of a graph of § vs. T should be

(65’) _Cp

) T T
For a typical solid, Cp behaves as shown in Figure 1.14; the ratio Cp/T will also go
strongly to zero at low temperature, so as T — 0, the entropy graph should go to zero
with a horizontal slope. The curve should then steepen until the ratio Cp/T peaks, then
become gradually shallower as Cp becomes relatively constant. When the solid melts,
however, there is a large heat input and hence a large AS with no change in temperature.
At higher temperatures the slope takes on a new value, Cp/T with the new Cp value of
the liquid (normally higher than that of the solid). Assuming that Cp for the liquid is
relatively constant, the curve then becomes gradually shallower with increasing T until it
jumps suddenly again at the liquid-gas phase transition. For water, at least, Cp of the gas
is less than that of the liquid so above the transition the curve will be shallower than below.
The graph above shows my attempt to correctly sketch all these features.

75



74

Chapter 3 Interactions and Implications

where the measured heat capacities gradually rise above the equipartition prediction,
because this is a feature of Cp, not Cy. At low temperatures, however, there is a
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aluminum it's at about 100 K, so ¢ = .026 eV. And for diamond it’s at about 460 K,
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stiff and/or light materials vibrate at higher frequencies, it makes sense that e would
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c e
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numerator, for the same reason. Now just use long division to obtain the result

1, 1 (kT2
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So as the temperature is lowered, the heat capacity drops off from its asymptotic value.
At T = ¢/k the reduction is by only one part in 12, but below this temperature the fall-
off becomes more dramatic (and the approximations made here become inaccurate).

Problem 3.26. As in the previous two problems, note that the heat capacity curve
predicted by the Einstein model reaches half its maximum value at approximately kT /e =
1/3. From the vibrational portion of the hydrogen data in Figure 1.13, we see that this
halfway point occurs at a temperature of somewhat less than 2000 K; I'll call it 1700 K.
Therefore, -
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2(1700 K)~ = €~ 3(1700 K)(8.6 x 107° eV/K) = 0.44 eV.
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Problem 3.27. If dS = 0, then the thermodynamic identity becomes simply dU = —PdV,
or -

P=- (ﬂ) .
oV /s
This equation merely describes the work done during a “purely mechanical” compression
(or expansion) that involves no change in entropy. When there’s no entropy change there
can be no heat flow, since heat flow is caused by the tendency of entropy to increase. In
this case, therefore, dU = W, the work done on the system, which is the force exerted
times the displacement, or, multiplying and dividing by the area of the moving surface, the
pressure times the change in volume. The minus sign indicates that the work done on the
system is positive when its volume decreases.

Problem 3.28. For a diatomic gas such as air, Cp = InR; in this case, nR = PV/T =
(10° N/m?)(10~% m?)/(300 K) = 1/3 J/K. Since the volume of the gas doubles but the
pressure doesn’t change, the ideal gas law tells us that the temperature also doubles. There-
fore,
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AS e T T 2nR In
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(65’) _Cp

) T T
For a typical solid, Cp behaves as shown in Figure 1.14; the ratio Cp/T will also go
strongly to zero at low temperature, so as T — 0, the entropy graph should go to zero
with a horizontal slope. The curve should then steepen until the ratio Cp/T peaks, then
become gradually shallower as Cp becomes relatively constant. When the solid melts,
however, there is a large heat input and hence a large AS with no change in temperature.
At higher temperatures the slope takes on a new value, Cp/T with the new Cp value of
the liquid (normally higher than that of the solid). Assuming that Cp for the liquid is
relatively constant, the curve then becomes gradually shallower with increasing T until it
jumps suddenly again at the liquid-gas phase transition. For water, at least, Cp of the gas
is less than that of the liquid so above the transition the curve will be shallower than below.
The graph above shows my attempt to correctly sketch all these features.
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Problem 3.30. I used a ruler and pencil to extrapolate the heat capacity curve for diamond
up to 500 K, using a straight line with a slope of 0.0414 J/K? and an intercept of ~6.1 J/K.
Writing the heat capacity as

Cp=aT—b,

we can integrate to obtain the change in entropy,

Tr oI — b T
As_/n 2 dT = a(Ty —T) - bl 7.

Plugging in T; = 298 K, T = 500 K, and my measured values of a and b give
50
S(500 K) = 5{298 K) + (0.0414 J/K)(202 K) — (6.1 J/K) ln2—gg = 5(298 K) +5.21 J/K.

The table on page 404 gives S(298 K) = 2.38 J/K, so this estimate gives S(500 K) =
7.59 J/K.

Problem 3.31. To find the change in entropy, just divide Cp by T and integrate:

T Cp Tt 0 +bT — T2 T; c
As_/n TdT—/ ————dT—alnf_+b(Tf—Ti)+—2-(

o T TL}—II_’?)

Plugging in our numbers gives

B 500 , 854x10°JK, 1 1
AS = (16.861/K) In 702 + (00477 I/K*)(202 K) + : ( T K)z)

= (8.725 J/K) + (0.964 J/K) + (—3.100 J/K) = 6.59 J/K.

The entropy at 298 K is given on page 404 as 5.74 J/K, so the entropy at 500 K should be
approximately 12.33 J/K.

Problem 3.32. (A non-quasistatic compression.)
{a) The work I do is the force I exert times the displacement:

W = (2000 N)(.001 m) =2 J.

(b) Absolutely no heat has been added. There was no spontaneous flow of energy from a
hot object to a cold one.

(c) By the first law, AU =Q+W =0+2J=21.

(d) The change in volume is AV = —(.01 m?)(.001 m) = —1075 m?, so
1
T

23+ (10° N/m¥)(-10°m®) 2J-1J 1
300K T 300K T 300
I've created entropy, because this is an irreversible, non-quasistatic compression; the

force exerted on the piston from outside was twice as great as the force exerted by the
gas from inside.

AS =

AU + gav = I/K.
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Problem 3.34

Problem 3.33. In an constant-volume process, the thermodynamic identity reduces to
dU = T dS. Making this substitution for dU in the definition of Cy gives

au 8s
Cv=\=| =T =] .
Y (aT)V (6T>V
To derive a similar formula for Cp, we need a “thermodynamic identity” for the enthalpy H.
From its definition H = U + PV, we have

dH =dU+d(PV)=dU 4+ PdV +VdP=TdS+V dP,

where the last step follows from the ordinary thermodynamic identity. In a constant-
pressure process, therefore, dH = T'dS, so

o (), (3,

Problem 3.34. (Rubber band model.)

(a) Each link can point either left or right, so this system is mathematically the same as
a collection of coins or a two-state paramagnet. The multiplicity is 2 = ( 1{,‘; ), so the
entropy is

%:mn:m(}e’;) =1n(']#i%)l)

~ NN — N — (Ngln Ng — Ng) — [(N=Ng) ln(N~Ng) — (N—Ng)]
=NInN — Npln N — (N—Ng) In(N—Ng),

in analogy with equation 3.28.
(b) Each right-pointing link increases L by £, while each left-pointing link decreases L by

£, so the pet length must be
1/L
Np = 3 (7 + N) .

(¢) If L is analogous to V and F is analogous to —P, then the thermodynamic identity
should be

L=£(NR—NL)=E(2NR—N), or

dU =TdS + FdL.

The second term makes sense: It is the work (force times displacement) done on the
system by quasistatically stretching it an amount dL.

(d) Imagine a process for which dU = 0. Then the thermodynamic identity says that

FdL=-TdS, or
a8
F= ’T(E)U'

™




Chapter 3 Interactions and Implications

For our system, it is convenient to express this partial derivative in terms of Np, using
t in rule:
he chain rule o5 95 9Nk _ 2 l
8L ~ BNz 8L  ONp2L
Therefore, by the result of part (a),

kT
2¢

[— Nz — 2B 4 in(N-Ng) +

F=
Nr

N—NR ——Hln N"NR
N-Ng| 2¢ Nr J°

The result of part (b) can be used to write this in terms of L:

kT 2 _ kT _(1—L/Ne\ kT 1+L/NZ>
F‘"Eih‘(L/NeH_l)“‘2?“(1+L/Ne>‘ﬁln(1-1:/m '

(e) When L <« N¢, the argument of the logarithm is approximately

1+ L/Nt _ 2L
s +L/NO(L+L/NO ~ 1+ 55,

so the logarithm itself is approximately 2L/NZ¢ and therefore

kT 2L kTL

Frsivi ™ Ne

This expression is linear in L; it has the form of Hooke’s law, with the “spring constant”
equal to kT'/N¢2.

(f) The tension is proportional to T, so it’s greater at high temperature than at low
temperature. For a given tension, increasing T should cause the rubber band to
contract: L must decrease to compensate. Although this behavior is opposite to that
of an ideal gas, it does make sense if you think about it. At higher temperature there
should be more randomness in the orientation of the links, causing the rubber band
to contract.

(g) Under such an adiabatic stretching, the total entropy of the rubber band should be
constant. Since stretching the rubber band decreases the configurational entropy com-
puted in part (a), the vibrational entropy must increase to compensate. But this im-
plies an increase in the number of units of vibrational energy, and therefore an increase
in temperature. I tested this prediction with a real rubber band as suggested, and the
effect is subtle but noticeable.

Problem 3.35. With three oscillators and four units of energy, the multiplicity is (**3™%) =

15. 4Iqule now add an oscillator without removing any energy, the multiplicity increases

to (**1”

N ) = 35. If we remove one unit of energy, the multiplicity is then (3"";"1) = 20,

still larger than what we started with. If we remove two units of energy, the multiplicity
decreases to (**27!) = 10, which is too small. So apparently, to hold the multiplicity (and
entropy) fixed while adding an oscillator, we need to remove somewhere between one and

two units of energy (whatever that means), i.e., u is somewhere between —e and —2e.

Probiem 3.37

Problem 3.36. (Chemical potential of a large Einstein solid.)
(a) We computed the entropy in Problem 3.25(a):

S= kqln(1+%v) + kNln(1+ %)

To compute the chemical potential, we need the derivative
a8 1 1 q 1 q
_— = —_— v = k —7ar Ty
Y ’“"<1+N/q)q +hi(le )+ N(1+q/N>( w)

= k(i) +rm(1+ ) -+(55)

=k1n(1+%).

The chemical potential is therefore

o= —Tg—; = —len(l + %)

(b) In the limit N 3> g, the logarithm is approximately q/N, so u =~ ~kT'q/N. This says
that when we add a “particle” to the system but no energy, the entropy in fundamental
units increases by g/N, a number much less than 1. In the other limit, N < g, the
logarithm is approximately In(g/N), so u & —kT In(q/N) and therefore, when we add
a “particle” to the system but no energy, the entropy in fundamental units increases
by In(g/N)—a number somewhat larger than 1. This is a significantly larger increase
than in the first case. In other words, when there’s already a large excess of particles
over energy, adding yet another particle doesn’t increase the entropy by much. But
when there’s an excess of energy units over particles, adding another particle gives a
significant increase in entropy. Basically, the system “wants” to gain particles more
in the second case than in the first.

Problem 3.37. (Ideal gas in a gravitational field.)

(a) The energy of the gas is
U= Ukinetic + ngz1

where the second term is the gravitational potential energy for the N molecules in
the gas. The easiest way to compute the chemical potential is from the formula
u = (8U/8N)sy. The derivative of Uneric iS not easy to work out, but we know
that it must reduce to the formula given in the text for the chemical potential of a
monatomic gas. (To prove this directly you would have to write Uyiperic in terms of
entropy, then take the derivative, etc.) Meanwhile, the derivative of the potential
energy term is just mgz. Thus the chemical potential is

ou V' 1 2emkT\3/2
u= (W)s,y =pu(z=0)+mgz = —lenI:N (T) ] + mgz.
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Although it is a bit more difficult, we can also compute the chemical potential from
the definition g = —T(85/8N)y v, using the Sackur-Tetrode equation (3.62) for the
entropy. However, the U that appears in the Sackur-Tetrode equation represents only
the kinetic energy; to see this, look back at the derivation in Section 2.5. In this
problem, therefore, we should replace it by U — Nmgz:

— 3/2
g= Nk[]n<v(4_7rﬂw1‘fm_9ﬂ) ) _mN5/2+g].

Taking the derivative with respect to /N, we get the same expression as in equation
3.63, plus an additional term from the derivative hitting the logaritbhm of (U — Nmgz):

_ V /2nmkT\3/2 7] 3/2
V (2rmkT\3/2 3 —-mgz
‘"m’“[ﬁ( 2 ) ]‘NkT'E'U—ngz
V s 2nmkT\3/2 3 mgz
= i[5 ()" e w5

(In the last step I've again used the fact that the kinetic energy is U — Nmgz.)
Canceling factors in the final term reduces this expression to the desired result.

(b) In equilibrium the two chemical potentials must be equal:

L (21rka

kTl [N(z) L (21rka)3/2]

3/2 T
) ]*’"92-"“ [N(O) w

Each logarithm can be written as the log of a bunch of constants (including the volume
and temperature which are the same for both) minus the logarithm of N. The logs of
the constants cancel between the two sides, leaving us with

kT ln N(z) + mgz = kT ln N(0).
Dividing through by kT and exponentiating both sides now yields the desired result,
N{z) = N(0)e~™9%/*T,

Problem 3.38. For a mixture of ideal gases, we can write the partial pressure of any
component as P; = z;P = z;NkT/V = N;kT/V. In other words, the partial pressure is
the same as what the total pressure would be, if only that component were present. Thus,
holding the partial pressure fixed as we add the other components is the same as holding
the number of molecules fixed, that is, doing absolutely nothing to the component that is
already present.

Now consider a mixture of just two ideal gases, A and B. (The generalization to
mixtures of more than two gases is completely straightforward.) For this mixture, we can
write the entropy as a simple sum,

Stotal = SA(UA7V1 NA) + SB(UB,V., NB))

N
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where S4 and Spg are each the same as if only that gas were present. (Although the energies
of the two components are not separately fixed, we may as well assume that they are, since
in equilibrium, any fluctuations away from the most likely values of U, and Upg will be
negligible.) The chemical potential of gas A is then

as 9S4 )
=~T{ 5 =-T ,
Ha (0NA )U,V,NE (6NA /A

which is the same as if gas B were not present. Similarly, up involves only the derivative
of Sg with respect to Ng, as if gas A were not present. So the chemical potential of any
component of a mixture of ideal gases is unaffected by the presence of the other components.

Problem 3.39. The entropy of the flatland gas, as computed in Problem 2.32, is

A 2rmU

To obtain the temperature, we differentiate with respect to U:

1 8§ 1

7= ="y
In other words, U = NkT, as expected for a system with two degrees of freedom per
particle. To obtain the pressure, we differentiate with respect to the area A:

This is the flatland version of the ideal gas law. Finally, to obtain the chemical potential,
we differentiate with respect to N:

a8 A 2gmU -2
w="Togy= "“T[‘“(N—Nh—z) ”} - NkT(FF)

A 2mrmU A 2rmkT

This is very similar to the three-dimensional result. The chemical potential is negative, as
expected (since the argument of the logarithm is normally quite large), and becomes less
negative as the density of particles (IV/A) increases.
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Problem 4.1. (Ideal gas engine with rectangular PV cycle.)
(a) The net work done by the gas during one cycle is

W|=(P.—R)V2— Vi) = (P1)(2Vl) =2P W,

while the heat absorbed (during steps A and B) is

5 7 5 33
Qn= §V1(Pg - Pl) + §P2(VZ - Vl) = §V1Pl + 4PV, = E'PIVI
Therefore the efficiency is

_IWI_2R% 4 e

T T ERY, B

(b) The relative temperatures at various points around the cycle can be determined from
the ideal gas law, PV = NkT. The lowest temperature occurs at the bottom-left
corner when P and V' are both smallest. As the pressure doubles during step A
the temperature also doubles; then as the volume is tripled during step B so is the
temperature. Thus the highest temperature, at the upper-right corner, is six times
as great as the lowest temperature. For these extreme temperatures the maximum
possible efficiency would be

T. 5
emax=1—T—h—1—6—n—g——83%

The rectangular cycle is extremely inefficient compared to a Carnot cycle.

Problem 4.2. (A steam power plant.)

(a) For these extreme temperatures the maximum efficiency would be

293
e=1—£=1 X

Th - ﬂ - 621%

(b) With the higher steam temperature the maximum efficiency would be

T. 293 K
e=1—— =

82

Problem 4.4

If this efficiency is actually attained, then for a given @, we would get more work
output than before by a factor of

664 _ 1 069,
621

that is, we get an additional .069 GW of power. To compute the additional profit,
multiply the extra energy by the price charged:

1 kw-hr ) ( 058

A$ = (069 x 10° J/s)(3.16 x 107 s/yr) (3 6% 1067 ) \ T

) =3x10" 8.
Not bad: we make 30 megabucks!

Problem 4.3. (Waste heat from a power plant.)

(a) An efficiency of 40% means that the other 60% of the energy consumed ends up as
waste heat. That’s 1.5 times as much as the amount that ends up as work. More
generally, by the definition of efficiency and the first law,

W W
Qn Qe+W’

e=

so the waste heat is

Q.= W(% ~1)=15W =15GW.

(b) In one second, the waste heat dumped to the river is 1.5 x 10° J, and this heat is spread
among 10° kg of water, so each kilogram gets 15 kJ. With a heat capacity of 4186 J/°C,
the water’s temperature increases by AT = Q/C = 15000 J/4186 J/°C = 3.6°C.

(¢) The latent heat to evaporate water is 2260 J/g (at 100°C). At room temperature
it's about 8% more, as mentioned in Problem 1.54 and Figure 5.11; so I'll take L =
2400 J/g. The total amount of water that must evaporate each second is then

1.5x10°J

_—— S =
2400 1/g 6 x 105 g = 600 kg.

That’s only 0.6 m3, or only 0.6% of the water in the river.

Problem 4.4. (Engine driven by the ocean’s thermal gradient.)
(a) Converting the temperatures to the kelvin scale, we get a maximum possible efficiency

of
T. 21T K
€=1—-ﬁ—1—m—0061,
or about 6%.

(b) A rigorous calculation of the absolute minimum amount of water that we must process
is not easy. As the engine extracts heat from the warm water, the water’s temperature
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decreases and therefore so does the efficiency of the engine. To make a rough estimate, (where f is the number of degrees of freedom per molecule). For the adiabatic expansion
however, let’s suppose that we extract heat from the warm water until its temperature 2-3, this implies
drops by 9°C (half the temperature difference between the warm and cool water), and VT2 = VT,

similarly that we expel heat into the cool water until its temperature increases by

9°C. Then the average temperatures of the reservoirs are 290.5 K and 281.5 K, so the while for the adiabatic compression 4-1 we have

N . 2 _ f/2
efficiency is only . 0815 . VT2 =V, T2,
T 2905 Dividing these two equations, we obtain V3/V; = V2/V;, as needed to cancel the logarithms
- The heat extracted from each kilogram of the warm water is 9 x 4186 J = 38 kJ, but in the preceding formula for the efficiency.
at 3.1% efficiency, this heat produces only 1.2 kJ of work. We need 10° J of work each
second, so the amount of water required is Problem 4.6. (Carnot cycle optimized for power.)
(a) The entropy gained by the engine as heat flows in is Qx/Thw, While the entropy lost
10°J =8.6x10°% kg : by the engine as heat flows out is Q./T.,,. Assuming that no other entropy is created
1200 J/kg ' ' inside the engine, these two quantities must be equal:
or about 900 cubic meters. Qn Q. @n _ Thu

Thw Tcw or Qc T—cw-
Problem 4.5. (Efficiency of an ideal gas Carnot engine.)

But the ratio Q,/Q. can also be expressed in terms of the four temperatures using the

£y 1 rate equations on the bottom of page 126. In this ratio, K and At cancel out, leaving
us with
Li=Tw _ T
Tc'w - Tc - Tcw ’
(b) The power output is the work done per unit time. The time required for the heat @
to flow in is
At=— P
) 3 K(Ty — Tra)’
T. isotherm . L. ) .
v and the total time for the cycle is just twice this, so
n wy Va
w - Q. K(Th — Thu K Tew
To compute @5, and Q. we need consider only the isothermal processes 1-2 and 3—4, since the Power = AL i 7 Q- X( hQ B ) =3 (1 - T—) (Th = Thw),
other two steps are adiabatic. Furthermore, the heat input during an isothermal process is k
equal in magnitude to the work performed, since for an ideal gas AU o< AT = 0. Therefore where in the second step I've used energy conservation (W = @, — @Q.) and in the
the heat input is y final step I've again used Q;./ Q: = Trw/Te,. Now solving the result of part (a) for
2 \Z
Qu=Wal= [ PdV = NATuln %, Tew gives T T 0
w 1 v o —C, 1
and similarly, - Tw  2Thw =T
Qo=Wul= [ Pav =M. 2. ' Power = X (1- =\ - 1),
B V Vi 2 2T 0w — Th
The efficiency of the engine is (¢) To find the value of T}, that maximizes the power, set the derivative equal to zero:
Q. T. In(Vs/Va) dP K 2T, T.
em1- YL 1 _ dPower K T.y—(1- ¢
@ T In(V2/W1) 0= [(mw —Th)? 3 (T = Th) (1 2T ~T,.)]
which is equal to the Carnot efficiency provided that V3/V, = V,/V,. To show that this is K 2T.(Tw — Thw) — (2Thw ~ Tu)? + Te(2Thw — Th)

the case, note from equation 1.39 that for each of the adiabatic processes, VT//2 is constant =7 (2T — Th)?
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At this point the constant K/2 and the denominator are irrelevant, so the condition

1S
0= 2T.T, — 2T Ty — AT2, + 470 The — T2 + 2T Thw — ToTh,

= —4T,?.u_, + 4T, Thw + T Th — TE

Applying the quadratic formula now gives

4T, + /@T ) - 16(12—T.0%) Th 1 L
1, = Tt VI h)s Lo Ih) By L VI = L (T + VT,

The — sign in the + gives an unphysical solution, as you can see by considering the
case where T, is only slightly lower than T; in this case the — sign would give T,
close to zero, whereas T},,, can’t be lower than 7. To find the corresponding formula
for T, just plug into equation (1):

T.Tn T. - YT+ VvTTh) 1 ( T.T, ) 1
T, = —elhw __Zc'3 =1 T.) = 3(T. + VT.TY).
Mw—Th Tht VT, —T.  2\VIT a(Te + VIT)

(d) The efficiency in the case of maximum power is

ee1-9_ Tw_, 3TH+VLT) | VLWT+VE) _,_ [T
Qn Thw %(Th + VITh) VIL(VTe + vTh) T

For the typical numbers given, this is

/298 K
e=1-— m—42%,

much closer to reality than the “ideal” efficiency of 1 — (298/873) = 66%. Of course,
if the cost of fuel ever increases to the point where it outweighs the cost of power
plant construction, it will become advantageous to design plants to be less powerful
and more efficient.

Problem 4.7. If you put an air conditioner in the middle of a building, then the only place
it can dump the waste heat is into the building (rather than outside). Since the waste heat
is always greater than the heat removed from the cold “reservoir,” the net effect would be
to raise the temperature inside the building rather than to lower it.

Problem 4.8. If you open the door of your refrigerator, the kitchen will injtially cool down
somewhat as the cool air from inside the fridge mixes with the warm air in the room. But
then, as the refrigerator tries to suck heat out of its interior, it will dump more waste heat
into your kitchen. So the long-term effect will actually be to increase the temperature of
the kitchen, as the refrigerator tries in vain to cool the same space where it is dumping its
waste heat.

Problem 4.12

Problem 4.9. Suppose that the air conditioner must maintain a temperature of 20°C
inside the building, while the outside temperature is 35°C. Then the maximum possible
COP would be

T. 293 K

COP=_-—"°_="—"7— =195
T.-T. 15K
However, this theoretical maximum is unrealistically high, because real air conditioners are
designed to work under more extreme temperatures, and to cool the air quickly rather than
efficiently.

Problem 4.10. As computed in the text, an ideal kitchen refrigerator could have a COP

of about T 955 K
COP=——_ = =
T.—T. 208K-255K
Therefore, by the definition of COP, Q. = 5.9W or W = Q./5.9. In each second, this
refrigerator must remove 300 J of heat from the inside, so the work required is W =
300 J/5.9 = 50 J. In other words, the power drawn from the wall could be as little as 50 W.
(In practice the operation won’t be ideal, of course.)

5.9.

Problem 4.11. For the temperatures given, the maximum COP would be

cop Lo _ 001K

T —T. TK—o01k 0

In other words, for each joule of heat extracted from the very cold reservoir, we must supply
at least 100 J (or 99, to be precise) of work.

Problem 4.12. P

A
1 v

For an ideal gas to execute the rectangular PV cycle shown above, it must absorb heat
throughout steps A and B and expel heat throughout steps C and D. The temperature of
the gas is proportional to the product PV, so it varies continuously throughout the cycle,
increasing during steps A and B and decreasing during steps C and D. But this means that
the gas must absorb heat over the full range of temperatures in the cycle, then expel heat
over the same full range of temperatures. In a refrigerator, however, the working substance
must absorb heat from a source that is significantly colder than the reservoir to which it
expels heat. In other words, the range of temperatures over which it absorbs heat must lie
entirely below the range of temperatures over which it expels heat. Since the rectangular
cycle does not have this property, it cannot function as a working refrigerator.
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Problem 4.13. The cost of operating an air conditioner is proportional to the energy put
into it as work. Using the definition of the COP, this is

But to maintain a constant temperature in the air conditioned space, ). must be equal to
the amount of heat that leaks in from outside. Assuming that this amount is proportional
to the temperature difference T}, — T, we have

T.-T.

COP
Now let us assume that the COP is given roughly by the Carnot formula T,/(T%, — T%.), or
at least, that it is roughly proportional to this function of the temperatures. Then

T, —T. _ i i _ 2
G- T T

W«

W

To maintain a given indoor temperature T, the work required to operate the air conditioner
is proportional to the square of the difference in temperatures between inside and outside.
Suppose, for example, that you wish to keep the temperature inside your house at 25°C. If
the air conditioning costs you $1 per hour when the outdoor temperature is 30°C, then it
should cost roughly $4 per hour when the outdoor temperature is 35°C.

Problem 4.14. The heat pump is physically the same as an ordinary refrigerator, so please
refer to the energy-flow diagram in Figure 4.4.

(a) The COP should be defined as the benefit divided by the cost. In this case the benefit is
the heat that enters the building, Q, while the cost is the electrical energy consumed,
W. So benefit/cost = Q»/W.

(b) The energy in is Q. + W and the energy out is Q4, so
Qr=Q.+W
under cyclic operation. The COP is therefore

Qn 1

COP=G-a. “T=aan

which is aelways greater than 1.
(c) The entropy expelled during the cycle must be at least as great as the entropy ab-

sorbed, so I o
Qh Qc c c
= > == —_ > =
. T, ~ T. Th = Qn
Because Q./Q» must be less than or equal to T./T}, the quantity 1 — Q./Q, must be
greater than or equal to 1 — T, /T},, and therefore, by the result of part (b),

1 T

T -T.

or

< -
P 1oTT,

LR,
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(d) For an electric heater, all the electrical energy (W) is converted to heat (Q,), so
the COP is 1. An ideal heat pump, though, always has a COP greater than 1. ,For
instance, if T}, = 25°C and T, = 0°C, then the COP can (in principle) be as high as
208/25 ~ 12. In practice the COP is never this high, but as long as T}, and 7. aren’t
too different, a heat pump offers a big advantage in efficiency over an electric heater.
Qn the other hand, a heat pump is more expensive to manufacture and maintain,
since it a complicated device with many moving parts. Fortunately, a central air
conditioning system can double as a heat pump in the winter. So if you're already
planning to install central air, and your winters aren’t tgo cold, get a heat pump.

Problem 4.15. First let me draw an energy-flow diagram for the absorption refrigerator:

-QJ; Hot reservoir, T}

Cold reservoir, T,

(a) The COP should be defined as the benefit/cost ratio, the quantity that we want to be
as large as possible. Here the benefit is Q. and the cost is @y, so COP = Q:/Q;.
(b) Cyclic operation requires that AU for the working substance be zero. Therefore the
total energy entering during a cycle must equal the total energy leaving:
Qf +Qc.= Qr-
This relation says nothing about the ratio Q:/Qy (either Q. or Q; could be bigger
than the other), so energy conservation does permit the COP to be greater than 1.
(c) For cyclic operation the working substance can’t gain or lose any entropy over the

long run, so the second law tells us that the total entropy expelled must be at least as
much as the total entropy absorbed:

Qr Qc Qf
Iy Yo XS
T.°T T,
Since the COP involves Q. and Q; but not Q,, let’s use energy conservation to elimi-

nate @Q,: 9 o 0 o
f Qe e, @y Q Q. Q Q.
ey e 2t 2L 2Ly X e
T.'T T, 2T T

T. T YT
Solving for Q./Q; and being careful with the direction of the inequality, we find
Q _T—7% T(T;-T)

7 <73 T = .

Cr " -7 THT.-T)
T.his is the desired limit on the COP, in terms of the three temperatures. As expected,
high T is good, as is a small difference between T, and T..
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Problem 4.16. Hook up the hypothetical engine to the Carnot refrigerator as shown
below, so each uses the same reservoirs and the refrigerator uses all the work produced by
the engine:

Hot reservoir, Th

For the ideal Carnot refrigerator, the heat input and output are in the same ratio as the
reservoir temperatures:
Qs _Tn

Qc,r Tc '

For a given W, this equality and energy conservation (Qs,r — Qor = W) determine the
values of Qx, and Q... If the hypothetical engine were ideal, the same equalities would
apply to it, so we would have Qn. = Qn, and Qe = Q.- However, if the hypothetical
engine is better than ideal, then it requires a smaller amount of heat input to produce
the same amount of work, 80 Q. < Qnr. Furthermore, energy conservation dictates that
its waste heat output must be smaller by the same amount, so Qce < Qcr. Thus, the
net effect of the engine-refrigerator combination is to transfer heat (in an amount equal
t0 Qnr — Q) from the cold reservoir to the hot reservoir, with no work input. It is a
“perfect” refrigerator, too good to be true. We are therefore forced to conclude that no
such hypothetical engine could possibly exist.

Problem 4.17. Hook up the hypothetical refrigerator to an ideal Carnot engine as shown
below, so that they use the same two teservoirs and their Q. values are adjusted to be
equal:

Hot reservoir, Th

ﬂlQh,r

Hypothetical
refrigerator

Cold reservoir, T

For the ideal engine, energy and entropy conservation determine the values of W and Qe
once we have fixed Q.. If the refrigerator were also ideal, energy and entropy conservation
would require that its W and @, values be the same as for the engine. However, if the
refrigerator is better than ideal, then it requires less work input (and produces less waste
heat output), so W, < W, (and Q. < Q). Thus, the net effect of the engine-refrigerator

Problem 4.19

combination is to produce work (in the amount W, — W,.) with no net heat flow into the
cold reservoir. It is a “perfect” engine, converting 100% of its net heat input from the hot
reservoir into work. Such an engine is too good to be true, so we are forced to conclude
that no such better-than-ideal refrigerator could possibly exist.

Problem 4.18. The efficiency of an engine can be written e = 1 — (Q./Qx), so we need
to compute the ratio Q./Qs- Note that Q, is the heat added in step 2-3 (as labeled in
Figure 4.5), while Q, is the heat expelled during step 4-1. There is no work performed
during either of these steps, so by the first law, equipartition, and the ideal gas law,

! Lvip, - oy
Q.=Us~Uy = Lk -1y = Lvi(p, - ),
The ratio Q./@ is therefore

Qh=U3—U2= Nk(T3—T2)=

Q. _Vi(Pi—P)

Qn Va(P-R)

To eliminate the pressures from this equation, use the fact that PV is constant during the
adisbatic processes 3-4 and 1-2:

PV = BV,

Solving these equations for P; and P, gives

7 A7) (#)
P-P=P(2) —B(2) =(m-P)[{2),
— P, {% {(72) = - P72

so the ratio of heats is simply

9 _B(B-R)(BY (1Y
Qn ValP=-P)\Vi) \V !

and therefore the efficiency is 1 minus this ratio, as given in equation 4.10.

PVY =Ry

Problem 4.19. Other factors that would affect the efficiency of an automobile engine
include friction, conductive heat loss, and incomplete combustion of the fuel. The energy
loss due to friction of the pistons with the cylinder walls should be roughly the same per
stroke regardless of the power and the amount of fuel consumed. As a fraction of the
total energy produced, therefore, I would expect this loss to be smallest when the engine
is operating at high power, producing as much work per stroke as possible. Conductive
heat loss would be greater when the engine is hot, but this is probably offset by the lower
viscosity of the motor oil, which lessens the friction. Incomplete combustion, however,
would be worse when there is proportionally less oxygen present in the cylinders, that
is, when more fuel is injected per stroke. So I would expect the greatest efficiency to
be achieved at relatively high power levels, but not so high that incomplete combustion
becomes a serious problem. Because most present-day anto engines are operated over a very
wide range of power levels (lowest when idling at a stop light and highest when accelerating
uphill), they come close to maximum efficiency only a small fraction of the time they are
running. Much of the advantage of hybrid-electric engines is that the internal combustion
engine always runs at near its peak efficiency, shutting off completely at other times.
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Problem 4.24. (Effect of temperatures and pressures on Rankine cycle efficiencies.)

(a) Lowering the maximum temperature to 500°C reduces the enthalpy at point 3 to
3081 kJ (per kilogram) and the entropy to 5.791 kJ/K. To find the fraction z of liquid
water at point 4, set this entropy equal to the sum of the liquid and gas components:

5.791 = z(0.297) + (1 — z)(8.667) = z = 0.344.
The enthalpy at point 4 is therefore
= (0.344) (84 kI) + (0.656)(2538 kJ) = 1695 kJ.
Thus the efficiency is

Hio—H, . 1695-84 _
e~l-g—g =1 3s-ss - 04

As expected, a lower maximum temperature gives a lower efficiency. However, the
reduction from when T}, = 600°C is quite small, only 2% out of 48%.

(b) Lowering the maximum pressure to 100 bar increases the enthalpy at point 3 to 3625 kJ
(per kilogram) and the entropy to 6.903 kJ/K. To find the fraction z of liquid water
at point 4, set this entropy equal to the sum of the liquid and gas components:

6.903 = £(0.297) + (1 — z){8.667) = z = 0.211.
The enthalpy at point 4 is therefore
H, = (0.211)(84 kJ) + (0.789)(2538 kJ) = 2021 kJ.
Thus the efficiency is

H, - H, 2021 — 84
=~ -— = — = V. 5.
e~l-g 7 =l gemoss - 4

Again, the efficiency is slightly less. This time, however, the reason is less clear,
because the extreme temperatures are the same as before. Apparently, less of the heat
transfer occurs at temperatures near the extremes, since the boiling occurs at a lower
temperature and there is more steam exiting the turbine.

(c) Lowering the minimum temperature to 10°C reduces H, to 42 kJ (per kilogram). Point
3 is the same as in the example in the text, but we must redo the calculation of the
fraction of liquid at point :

6.233 = £(0.151) + (1 — z)(8.901) = z = 0.305.
The enthalpy at point 4 is therefore
H, = (0.305)(42 kJ) + (0.695)(2520 kJ) = 1764 kJ,

and so the efficiency is

H,-H 1764 — 42
=1- = (.49.
oH - sad-o "

Since we’ve widened the range of temperatures, the efficiency increases, as expected.

ex~1-—

Problem 4.28

Problem 4.25. If the entropy increases in the turbine rather than remaining constant,
then the composition upon leaving the turbine will include more steam and less water (since
steam has more entropy than water at a given final pressure). The enthalpy at point 4 will
therefore be greater than we've been assuming. And since H, appears with a minus sign
in the formula

-

Ha - H, 2 ?
the efficiency will be less. Of course, we could have predicted this on general principles:

Producing more entropy during the cycle means we must expel more waste heat to get rid
of the entropy, and therefore there is less energy left to produce work.

e=1-

Problem 4.26. The net work done by the Rankine cycle is
W=Q,,—Q¢=(H3-—H2)—(H4 Hl) - Hy,

where in the last step I’ve approximated H, = H; as in the text. For a kilogram of steam
under the conditions assumed in the text, this is

W = 3444 kJ — 1824 kJ = 1620 kJ.

To generate 107 joules (in one second), the number of kilograms of steam required would
therefore be

w03

1,620,000 J/kg ~

If we take into account the 30-kJ difference between H, and H; (as calculated in Problem
4.23), the work done per kilogram is reduced by 30 kJ and so the number of kilograms
required is increased to 10°/1, 590,000 = 630.

617 kg.

Problem 4.27. Temperature isn’t the only variable that’s changing in Table 4.1; pressure
varies as well. At a given volume, increasing the temperature of a system normally increases
its entropy. For the liquid water, the volume doesn’t vary much with pressure so that’s the
whole story. But for the steam, the increasing pressure reduces the volume significantly.
Squeezing a gas into a smaller space reduces the number of microstates available to the gas
molecules, and thus reduces the entropy. Apparently, this effect is enough to outweigh the
increase in entropy caused by the increase in temperature.

Problem 4.28. Taking S = 0 for liquid water at the triple point, we can calculate the
entropy of steam at the same temperature and pressure using

as=2 - EE_ 2NN _osew,

precisely in agreement with the number that my dog ate. To fill in the next row of the
table, imagine starting with liquid water at the triple point and heating it to 10°C while
the pressure increases to 0.012 bar. This is not a constant-pressure process, so strictly
speaking, @ # AH. Instead, we can write approximately

AH=AU+PAV+VAP=(Q—-PAV)+PAV+VAP=Q+VAP.
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For a kilogram of water, the quantity V AP is less than 1 J, quite negligible compared to
AH = 42 kJ. Therefore,

ASz%zﬂ—ukJ

= g = 0151 KI/K,

again in perfect agreement with the tabulated value. Getting Siiearn 2t this temperature and
pressure is no harder than before. Even for the much larger increase in T and P between
the last two lines of the table, the same set of approximations gives for liquid water

210 k]

AS ~ 348 K

= 0.603 kJ/K,

right on the money.
To obtain the first entropy value listed in Table 4.2, start with the last one listed in
Table 4.1 (which is at essentially the same pressure) and again compute

_AH 199Kk

AS ==~ 3K

=0.470 kJ/K.

This is too low by 0.009 kJ/K, presumably because the arithmetic mean temperature is
the wrong weighted average; to do it right we would have to break up the calculation
into smaller pieces covering smaller temperature ranges, which would require enthalpy data
at intermediate temperatures. Moving across Table 4.2 involves similar inaccuracies; for
instance, the change at 1 bar from 200°C to 300°C should be approximately

199 kJ
AS ~ e = 0380 KI/K,

which is less than what the table says by 0.002 kJ/K. To move vertically in the table we
would have to compute V AP, or rather, the integral of V dP over the pressure difference.
At low pressures we could do this using the ideal gas law, but at high pressures the ideal
gas law no longer applies and we’d be stuck. So I would hope that my dog would leave at
least one entropy value in each row of Table 4.2, from which I could compute the rest (to
good approximation) using the enthalpy data.

Problem 4.29. For each kilogram of the HFC-134a, the initial enthalpy (from Table 4.3)
is 116 kJ. At the final pressure of 1 bar, the enthalpy of the liquid phase at the boiling point
would be 16 kJ, while that of the gas phase would be 231 kJ. Since enthalpy is conserved in
the throttling process, and 116 lies between 16 and 231, the final state will be a combination
of liquid and gas at the boiling point, —26.4°C. To find out what combination, let = be the
fraction that ends up as liquid. Setting the initial and final enthalpies equal to each other
then gives

_ 231116
= 231-16

So by mass, 53% of the fluid remains a liquid and 47% vaporizes.

116 = z(16) + (1 — £)(231)  or = 0.53.

Problem 4.31

Problem 4.30. (Household refrigerator.)

(a) The entropy at point 1, for a kilogram of fluid, is 940 J/K (from Table 4.3). Looking
at the 10-bar row of Table 4.4, note that at 50°C the entropy would be 943 J/K, only
slightly higher. Assuming that S is a linear function of temperature between 40° and
50°, it would increase by 3.6 J/K per degree, or 3 J/K in 0.83 degrees. Therefore the
temperature at point 2 must be 0.83 degrees less than 50°, or just over 49°C.

(b) From Table 4.3, H; = 231 kJ. To find H,, repeat the same interpolation in Table 4.4:
Between 40 and 50 degrees the enthalpy increases by 2.1 kJ per degree, so 0.83 degrees
below 50 the enthalpy should be less than 280 kJ by (0.83)(2.1 kJ) = 1.75 kJ, that
is, Hy = 278.25 kJ =~ 280 kJ. At point 3 the fluid is saturated liquid at 10 bars, so
H; = 105 kJ from Table 4.3. And since the throttling process leaves the enthalpy
unchanged, H; = 105 kJ as well. Plugging these results into equation 4.20, we obtain
for the coefficient of performance

H, - H; 231-105

COP =g —F “am0—a31 ~ 2%

To compare to a Carnot refrigerator operating between the same reservoir tempera-
tures, note that the high-temperature reservoir can be no hotter than 73 = 39.4°C =
312.6 K, while the low-temperature reservoir can be no colder than T = T} = —26.4°C
= 246.8 K. For this temperature range the Carnot COP would be

T, _ 24638
T,—T. 312.6-24638

= 3.75,

only moderately better than the actual efficiency of the cycle. To increase the efficiency
we could reduce T}, to a value only slightly higher than the temperature of the kitchen
(32°C?), and/or increase T, to a value only slightly lower than the temperature of the
freezer (—15°C?). However, for reasonably rapid heat transfer between the refrigerant
and either reservoir, we should probably have a temperature difference of at least
10°C; therefore the temperatures assumed in this example are probably about right.

(c) Setting the initial enthalpy equal the enthalpy of the unknown final mixture, we have
(with all numbers in kJ)
231-105
105 = 16z + 231(1 - = o
z+231(1-2z) o z ST — 16 0.59,

where z is the fraction that remains liquid. So 41% of the fluid (by mass) vaporizes
during the throttling.

Problem 4.31. If the fluid expands by pushing a turbine, the step 34 will approximately
conserve entropy (since it is adiabatic) rather than enthalpy. The entropy (per kilogram of
fluid) at point 3 is 0.384 kJ/K. To find the fraction z that remains liquid at point 4, set
the initial and final entropies equal:

_0.940 — 0.384

2(0.068) + (1 - z)(0.040)  or &= —es

= 0.638.

99



100

Chapter 4 Engines and Refrigerators

The enthalpy at point 4 is then
H, = (0.638)(16 kJ) + (0.362)(231 kJ) = 94 kJ,

compared to 105 kJ for expansion at constant enthalpy. The COP is still given by equation
4.14 (but not by 4.20):

H,-H, 231 - 94

COP = = =
P Hy—Hy—Hi+H, 280-105-231+94

3.6.

This is larger than the COP computed in the previous problem (2.7), because the coolant,
starting with a greater fraction of liquid, can absorb more heat in step 4-1. Note also
that this efficiency is only slighly less than the Carnot efficiency computed in the previous
problem for the temperature range T, to T3. However, the price of this higher efficiency is
the mechanical complexity of more moving parts. Most people seem to prefer a refrigerator
that is inexpensive to buy and reliable to operate, rather than efficient in its energy use.

Problem 4.32. For a household air conditioner, we want T} to be significantly colder than
the temperature inside the house, so the coolant can remove heat at an appreciable rate.
At 4 bar, the boiling temperature of HFC-134a is 8.9°C, which should be cool enough. We
also want T; to be significantly higher than the highest expected outdoor temperature, for
rapid transfer of the waste heat. If the outdoor temperature can be as high as 40°C, then
we’d better use a pressure of 12 bar, where the boiling temperature is 46.3°C. (Even higher
pressure might be desirable, but for this problem I'll stick to the options listed in the table.)
For these pressures, we have H; = 252 kJ (per kilogram of refrigerant) and H, = 116 kJ.
To find Hz, we need to know the temperature at point 2. Assuming isentropic compression,
the entropy at point 2 should be the same as at point 1, 0.915 kJ/K. This is almost exactly
equal to the entropy of the superheated gas at 12 bar and 50°C, so to the nearest degree,
T, = 50°C and therefore Hy = 276 kJ. Therefore the COP is

cop. i—Hy _ 252116 _

= =5.7.
Hy—H, 276-252

For comparison, an ideal Carnot air conditioner operating between reservoirs at 40°C and
20°C would have a COP of
T. 293 K

COPCarnot =7 7

T-T.  BK

Of course, this high efficiency is outweighed by the infinitesimal rate of heat transfer. A
Carnot air conditioner operating with the same minimum temperature differences as our
real air conditioner would have a COP of

T. 282K _

T.-T. 37K =16,

still somewhat better than our real air conditioner.

Problem 4.34

Problem 4.33. (Throttling nitrogen. )

(a) The initial (molar) enthalpy is 8174 J; in order for the enthalpy to stay fixed at this
value, the temperature must decrease to some value between 200 K (where H = 5800 J)
and 300 K (where H = 8717 J}. Interpolating linearly between these values, I find that
each degree increase in temperature increases the enthalpy by 29.2 J. Our H is less
than that at 300 K by 543 J, so the temperature must drop by 543/29.2 = 19 K. The
final temperature is therefore 281 K.

(b) Again the temperature must drop. Between 100 K and 200 K (at 1 bar) the enthalpy
changes by 29.4 J/K. Our initial enthalpy, 4442 J, is less than 5800 J (the value at
1 bar and 200 K) by 1358 J, so the temperature must drop by 1358/29.4 = 46 K. The
final temperature is therefore 154 K.

(c) Starting at 100 K, the enthalpy is —1946 J. This value lies between the enthalpies
of the saturated liquid and saturated gas at 1 bar, so we end up with a mixture of
liquid and gas at 77 K. To find the fraction z that ends up as liquid, just do another
interpolation:

_ 2161+1946

=0.74.

(d) The highest temperature at which some (infinitesimal) liquefaction takes place would
be the temperature at which the initial enthalpy is 2161 J. Now at 100 bars, between
100 K and 200 K, the enthalpy rises by 63.9 J/K. But 2161 is greater than —1946 by
4107, so the initial temperature is greater than 100 K by 4107/63.9 = 64.3 K, that is,
it’s 164 K.

(e) At 600 K, the enthalpy at 1 bar is slightly less than at 100 bar, so the constant-enthalpy
throttling process would have to result in an ¢ncrease in temperature.

Problem 4.34. (Liquefaction by the Hampson-Linde cycle.)

(a) We already know (from the argument on page 139) that the throttling process itself
conserves enthalpy. What about the heat exchanger? The heat lost from the high-
pressure gas as it flows toward the throttle is equal to the decrease in its enthalpy, since
this is a constant-pressure process. Similarly, the heat absorbed by the low-pressure
gas coming back from the throttle is equal to the increase in its enthalpy. Assuming
that no heat is lost in the heat exchanger, so the heat lost by the high-pressure gas
equals the heat absorbed by the low-pressure gas, the enthalpy lost by the former is
equal to the enthalpy gained by the latter and so there is no net change in the enthalpy
of the fluid throughout the heat exchanger and throttle. (The output, though, consists
of both the condensed liquid and the gas returned to the compressor.)

(b) Consider one mole of high-pressure gas entering the heat exchanger, with enthalpy
H;,. This fluid converts to z moles of liquid with enthalpy zHq, plus (1 — z) moles
of low-pressure gas returning from the heat exchanger, with enthalpy (1 — z)Hou:.
Conservation of enthalpy therefore implies

Hout = Hi
Hout - Hliq )

Hip = xHyq + (1 — =) Howe, or T =
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(c) For nitrogen at 100 bars and 300 K, we have Hj, = 8174 J. The condensed liquid at
1 bar will be at the boiling temperature, 77 K, so Hyq = —3407 J. And the returned
gas, after passing through the heat exchanger, will again be at 300 K, so H,,. = 8717 J.
Therefore the fraction liquefied will be

8717 — 8174

8717 — (—3407)

T

only four and a half percent. But for an initial temperature of 200 K, we instead have
H;, = 4442 J and H,,, = 5800 J, so
5800 — 4442

5800 — (—3407)

T

considerably better. This example shows the advantage of precooling the gas as much
as possible before putting it into the heat exchanger.

Problem 4.35. (Limits on magnetic cooling.)
(a) The field strength of one of these dipoles at a distance of 1 nm is

_ Bk gy (9x107%) 4

If a dipole has several neighbors, each creating a field of this strength but not neces-'

sarily in the same direction, I suppose the total field might be roughly 2 or 3 times
1072 T.

(b) Suppose that the effective field strength is reduced from 1 T to 2 x 10~2 T, that is,
by a factor of 500. Then, according to equation 4.21, the temperature must also drop
by a factor of 500 in order to maintain constant magnetization (and hence constant
entropy).

(c

~—

The graph of S vs. T rises most steeply at around kT = pB. Setting B equal to the
effective minimum field of 2 x 10~2 T gives

(9% 10~ J/T)(2 x 1073 T)

14 x 10-2 J/K ~1mK.

T‘steep =~

d

~—

At temperatures significantly below 1 mK, where the graph of .S vs. T is practically
horizontal, the heat capacity must be very small: C = Q/AT = TAS/AT =~ 0.
Even the smallest leakage of heat into the system will therefore raise the temperature
significantly. In practice you can’t completely stop heat leakage, so there’s no point
in trying to cool this system much below 1 mK.

Problem 4.36. The momentum of a photon is p = h/A. An atom emitting or absorbing
the photon will recoil with a comparable momentum, and a corresponding kinetic energy
of K = p?/2m. Setting this “minimum” kinetic energy equal to $kT and solving for T, we
obtain 0 5 52 b2
P
K= -K=r—=—.
T 3K 32m  3mA?

Problem 4.37
The mass of a rubidium atom is about 85 u, and the wavelength is given as 780 nm, so

N (6.63 x 10734 J.g)2
" 3(85)(1.66 x 10~ kg)(780 x 10-° m)?

kT =17x107%0J=11x10"" eV.

Dividing by k gives T & 1.2 x 10~7 K, or about 0.1 zK. To attain lower temperatures than
this, we would apparently have to make the atoms absorb and emit fractions of a photon.
And yet, according to the references given in the text, this limit has been surpassed by
ingenious techniques.

Problem 4.37. The third law of thermodynamics states that the entropy of a system
approaches zero (or perhaps some other finite constant) at absolute zero temperature. As
discussed in Section 3.2, this implies that the heat capacity of a system must approach
zero as T — 0. But this means that at very low temperature, even the tiniest heat leak
into a system will increase its temperature significantly. Any cooling mechanism therefore
reaches a point of diminishing returns when the temperature drops to the point where the
system’s heat capacity becomes negligibly small. For example, evaporative cooling of liquid
helium is ineffective below about 1 K because the heat capacity of the helium is so small
at subkelvin temperatures. Similarly, magnetic cooling of a paramagnet is ineffective at
temperatures where most of the dipoles line up spontaneously, reducing the entropy and
the heat capacity to negligible levels (see Problem 4.35). Nuclear paramagnets can be
cooled to very low temperatures precisely because the temperatures where they magnetize
spontaneously are so low. And as discussed in Chapter 7, even a laser-cooled gas will
eventually “condense” into a state where its entropy and heat capacity become negligible.
Fortunately, whenever a system has “interesting” behavior in a very low temperature range,
there seems to be a way to exploit that behavior to cool the system to that temperature
range. The unattainably low temperatures are precisely those for which the entropy is
already negligible, so that no further interesting behavior occurs.
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Problem 5.5. (Methane fuel cell.)
(a) Subtracting A of the reactants from Ay of the products, we have

AH = 2(~285.83 kJ) + (—393.51 kJ) — (~74.81 kJ) = —890.36 kJ;
AG = 2(—237.13 kJ) + (—394.36 kJ) — (~50.72 kJ) = —817.90 kJ.

(b) Under ideal conditions, all of the decrease in G comes out as electrical work, so the
electrical work output is 818 kJ.

(c) The decrease in enthalpy of 890 kJ is the sum of the electrical work output plus the
heat given off. Under ideal conditions the work output is 818 kJ, so the heat is the
difference, 72 kJ.

(d) For each methane molecule that reacts, eight electrons are pushed around the circuit.
Therefore the voltage is

electrical work done 818 kJ

voltage = total charge - (8)(6.02 x 10%)(1.6 x 10-% C)

=1.06 V.

Problem 5.6. (Muscle as a fuel cell.)

(a) The data as tabulated on pages 404 and 405 are (for one mole of each substance under
standard conditions):

AGH (k) ALG (k) S (J/K)

Glucose —1273 —-910 212
O, (g) 0 0 205
CO; (g) —393.5 —394.4 214
H,0 (1) —285.8 -237.1 70

To obtain AH or AG for the reaction glucose + 60, — 6CO, + 6H,0, we subtract
Ay of the reactants from Aj of the products. Therefore, in kilojoules,

AH =6-(—393.5) + 6 - (—285.8) — (—1273) = —2803
(as computed in Problem 1.51), and

AG =6 - (—394.4) + 6 - (—237.1) — (~910) = —2879.

(b) The maximum “other” work performed is just the amount by which G decreases for
the system: 2879 kJ for each mole of glucose consumed.

(¢) Under ideal conditions, the amount of work output, 2879 kJ, is more than the amount
by which the system’s enthalpy decreases (2803 kJ). To make up for the net loss of
enthalpy, 76 kJ of heat must flow into the system.

(d) The total entropy of the reactants is (in J/K)

212 4- 6 - 205 = 1442,

Problem 5.8
while the total entropy of the products is (in J/K)
6-214+6-70 =1704.

Therefore the system gains 262 J/K of entropy during this reaction. Because the
entropy increases, heat can flow into the system. In the ideal case, the amount of heat
entering is the maximum allowed for this entropy increase, namely (262 J/K)(298K) =
78 kJ. (This number agrees reasonably well with the result of part (c), 76 kJ; the small
difference gives some indication of the uncertainties in the data.)

(e) Under nonideal operation, new entropy would be created in the system during the
reaction, allowing less heat to enter (or even requiring that heat be expelled, if the
entropy created exceeds 262 J/K). Therefore less energy would leave the system as
“other” work. The values of AH and AG, however, are the same whether the operation
is “ideal” or not.

Problem 5.7. As computed in the previous problem, the metabolism of a mole of glucose
can, in principle, release up to 2879 kJ of energy in the form of “other” work (in this
case contracting the muscle). Dividing this number by Avogadro’s number should give the
maximum work per glucose molecule, and dividing by 38 should give the maximum work
per ATP molecule:

2879 kJ

__Sm T - —19
Ex10m)E) ~ LB X107

maximum work per ATP =

The actual work performed, though, is
actual work = (force)(displacement) = (4 x 1072 N)(11 x 107° m) = 4.4 x 1072 J,

about 35% of the maximum allowed by the laws of thermodynamics. (As a fraction of

AH, the work performed is very slightly higher, about 36%; this number is the efficiency

as defined for an engine in Chapter 4.)

Problem 5.8. Under any infinitesimal change,
dG=d{U~TS+PV)=dU-TdS - SdT + PdV +V dP.

But dU =TdS — PdV + udN, so the T dS and PdV terms cancel, leaving

dG = —-SdT'+V dP + udN.
. G
If dN and dP are zero, then dG = -SdT, ie., { — =-S.
T /yp

If dN and dT are zero, then dG =V dP, ie., | — =V.
0P/ p
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Problem 5.9. According to equation 5.24, the slope
of a graph of G vs. T at fixed P should be minus the
entropy. Therefore the slope is always negative, and
becomes steeper as T and S increase. When the sub-
stance undergoes a phase transformation, its entropy
increases abruptly, so the slope of the graph of G should
be discontinuous. The graph at right shows all these
features qualitatively.

Problem 5.10. From the relation (8G/0T)p = —S, we can write the change in G as
8G = —SdT. The table on page 405 lists the entropy of a mole of water under standard
conditions as 69.91 J/K, so the change in G from 25°C to 30°C is

dG = —(69.91 J/K)(5 K) = —349.6 J.

In other words, the Gibbs free energy is about 350 J lower at 30°C than at 25°C. If we
now imagine increasing the pressure at fixed temperature, the relation (0G/9P)y = V tells
us that dG = V dP, where V is the volume of a mole of water, 18.07 x 10~% m3. Raising
the pressure therefore increases G. To produce an increase of 349.6 J, we would need to
increase the pressure by
dG 349.6 J
=—=-——"""___ =193 x 107" Pa =193 bars.

P = = x5 o ks are
The moral of the story is that temperature changes tend to have much larger effects on G
than pressure changes, at least within the realm of conditions familiar to us in everyday
life.

Problem 5.11. (Hydrogen fuel cell at 75°C.)

(a) Under an “infinitesimal” temperature change dT', the Gibbs free energy changes by
dG = —SdT. Taking dT = 50 K and looking up the room-teraperature entropies, we
obtain (for a mole of each substance)

Hy: G =0- (131 J/K)(50 K) = —6550 J;
0, G=0- (205 J/K)(50 K) = —10250 J;
H,O: G = —237000 J — (70 J/K)(50 K) = —240500 J.

(Of course, the entropies are not constant over this temperature interval, so it would
be better to first estimate the entropy of each substance in the middle of the inter-
val, at 323 K, and use that value instead of the room-temperature value. For H,
the increase in entropy between 298 K and 323 K is approximately CpIn(T}/T}) =
(29 J/K)1n(323/298) = 2.3 J/K. The entropies of the O, and H;O are likewise only
slightly greater at 323 K.)

Problem 5.12
(b) At 75°C, AG for the reaction is
Gh,0 — Gu, — 1Go, = ~240500 J + 6550 J + 5125 J = —229 kJ.

Thus, the maximum electrical work done by the cell is only 229 kJ (per mole of
hydrogen consumed), about 3.5% less than the room-temperature value of 237 kJ.
Why the difference? The reacting gases have a lot of entropy, which must be gotten
rid of by dumping waste heat into the environment. At the higher temperature, we
need to dump more waste heat to get rid of this entropy, so less of the energy is left
to perform electrical work. '

Problem 5.12. (Maxwell relations.) Starting with the function U(S, V), we assume that
this function is well enough behaved that the mixed second derivatives are equal:

8 (8U\ 8 (8U

av\as /) as\aov /)
But the thermodynamic identity for U, dU = T'dS — PdV, tells us that (8U/8S)y =T
and (OU/8V)s = —P. Plugging in these quantities gives us our first Maxwell relation,

(@).=-(s),

Next, consider the enthalpy H, which due to the thermodynamic identity dH = T'dS+V dP
is best considered a function of S and P. Equality of the mixed second derivatives tells us

that
o (0HY _ o (oH
8P\ 8s )~ 95\6P )

But by the thermodynamic identity for H, (0H/0S)p =T and (0H/8P)s = V. Plugging
in these quantities gives us a Maxwell relation for H,

@)= (),

The Helmholtz free energy, due to its thermodynamic identity dF = —5 dT'— PdV, is most
naturally considered a function of T and V. The equality of mixed second derivatives is
therefore

o (0F\ _ 0 (0F
av\eT /) 8T\oV )’
But the thermodynamic identity for F tells us that (8F/8T)y = —S and (8F/dV)r = —P.
Plugging in these values gives a third Maxwell relation,

&), = (ar).

Finally, consider the Gibbs free energy, G(T, P). The relevant equality of mixed second

8 (00 _ 0 (3G
ap\aT )~ ar\opr)’

derivatives is
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The thermodynamic identity for G is dG = —8§ dT'+ V dP, which implies (G/8T)p = -5
and (0G/8P)r = V. Plugging in these quantities gives us our fourth Maxwell relation,

(3e).=~(e7),

Problem 5.13. The thermal expansion coefficient is defined as the fractional change in
volume per unit temperature change:

ﬁ_AV/V_l(Q)
TTAT T v\er/,

(The assumption that P is held fixed is the natural one to make, though it was unstated
in Problem 1.7.) According to the last Maxwell relation derived in the previous problem,
this partial derivative is equal to —(85/0P)r; therefore,

1/08
o=-3(5),
But the third law of thermodynamics says that as T — 0, the entropy approaches zero (or

perhaps some other constant), independent of pressure. Therefore, (35/8P)r goes to zero
as T'— 0. Since V' remains nonzero, we conclude that § — 0 as T — 0.

Problem 5.14. (Difference between Cp and Cv.)
(a) Expanding dS in terms of the desired partial derivatives, we have

i) 88
d = —_— —_— dV.
s=(37), 7+ (),
According to the result of Problem 3.33, the partial derivative in the first term is equal

to Cy/T.
(b) Similarly, expanding dV in terms of the desired partial derivatives gives us

ov v
dV = (W>p dT + (ﬁ)T dP.

Plugging this expression into the result of part (a) and setting dP = 0 gives

as as ov
dS)p = [ =—= — — | dT,
(@S)e (6T>V ar+ (6V)T(6T)P :
( o5\ _ (as o5\ (8V
ar),~\ar), T\av ) \a7 ),
Multiplying through by T and using the results of Problem 3.33, we obtain

: oS ov
Cp = CV —+ T(B_V>T (ﬁ)P

that is,

Problem 5.14

(c) We need a Maxwell relation that will eliminate the entropy (which is hard to measure)
from the right-hand side. The relation that we need is the one that comes from the

Helmholtz free energy,
asy _ (oP
v/, “\8T /),

Plugging this into the resuit of part (b) gives

opP oV
o=00=(51), (&),

Using the result of Problem 1.46(c), this becomes

av\? //ov
or-cv=-1(37),/ (57),

Now recall the definitions of the coefficient of (volume) expansion and isothermal

compressibility:
s=1(2V) . __1/8v
=v\er/),)) *T=7v\eP/,

Plugging these relations into our expression for Cp — Cy yields the final result,

2
Cp = Cy = —T(BVY2/(=rV) = + 22

K7
(d) For an ideal gas,
g L(NEY _1
TV\NP) T
while
wp = —n( NETY _ 1
TV P )T P

Therefore the result of part (c) predicts

TV/T? PV
Cr=Cv=—pp =7 =Nk

in agreement with equation 1.48.

(e) Although 8 can be negative (as it is for water between 0°C and 4°C), it is squared in
the formula. Meanwhile k¢ can never be negative, since that would imply that adding
pressure to a system increases the volume. For the type of system we're talking
about the temperature is always positive (since there is no upper limit on the energy).
Therefore the formula derived in part (c) for Cp — Cy is always positive (or zero, if
B =0).

(f) For one gram of water at room temperature (using the data in Problem 1.46(e)),

(298 K)(107° m3)(2.57 x 1074 K~1)?

Cp—Cy =
PtV 4.52 x 10-10 Pa-1

=0.0435 J/K,
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which is just over 1% of the heat capacity (4.186 J/K). For one mole of mercury (using
the data on page 405 for V),

(298 K)(14.8 x 10-® m®)(1.81 x 10~ K~1)2
4.04 x 10-1 Pa-?

which is just under 13% of Cp (28.0 J/K). This percentage seems unusually large to
me, but is of the same order as the percentages for lead and aluminum indicated by
Figure 1.14.

(g) The volume of a solid is not strongly dependent on temperature; nor is the com-
pressibility. Therefore, the temperature dependence of Cp — Cy is approximately
proportional to T2, As shown in Problem 5.13, 8(T') goes to zero as T' — 0; there-
fore the difference of the heat capacities should also go to zero as T — 0, as verified
by Figure 1.14. At high temperatures, assuming that 8(T) is relatively constant, the
difference Cp — Cy should be approximately linear in T'. And indeed, the Cp data in
Figure 1.14 seem to diverge linearly from the predicted curves for Cy.

CP—CV=

=3.58 J/K,

Problem 5.15. First consider U to be a function of T and V, and expand dU in terms of

partial derivatives:
ou U
U=|=—=]| dT — | dV.
w=(55), 7+ (&),

The partial derivative in the first term is Cy, so we’re making progress. To deal with the
second term, consider V to be a function of T and P, and expand dV similarly:

oV oV
dV = (ﬁ)PdT+ (ﬁ)z'dp.

Plugging this into to previous equation and setting dP = 0, we obtain

U\ o, (U (

ar ), = v T \av ), \oT )
The left-hand side is related to Cp, but not equal; rather, Cp is defined as (8H/8T)p,
where H = U + PV. In other words,

oo~ (U0) (), +5(3),

Combining this relation with the previous equation gives

e () (3), 4

Now comes the trick: Rewrite P as —(3F/0V)r, then combine the two terms in square
brackets into a single derivative of U — F =T'S:

ean(3) %), ()] #(8),8),

This is identical to the result of Problem 5.14(b). From here on the derivation proceeds as
in Problem 5.14(c), using a Maxwell relation to eliminate the entropy and then rewriting
the partial derivatives in terms of 8 and xr.

Problem 5.16

Problem 5.16. The isothermal and adiabatic compressibilities are defined as

n—-—l—ﬂ and n——i v
T="v\er/, ST v\ \epP)y

So, following the technique used in Problem 5.14, consider V' to be a function of P and T,
and expand dV in terms of partial derivatives:

15174 v
av =% YN ar.
<6P)po*'<aT)pdT

The first term is simply related to xy. To deal with the second term, consider T to be a
function of P and S, and expand dT similarly:

or or
dT = (ﬁ>sdP + (g)PdS.

Plugging this expression into the previous equation and setting dS = 0 gives

(2) =(2) + (%) (Z
8P)s \OP/, \8T/,\0P);
or, in terms of the compressibilities and 8 = (1/V)}(8V/8T)p,

0
—V.‘is = —-VKT + Vﬁ(gi;)s, that iS, Kr — Kg = ﬂ(g—g)s
The remaining partial derivative is one that is not easy to measure. However, the Maxwell
relation derived from H in Problem 5.12 says that this derivative is equal to (8V/8S)p.
Multiplying and dividing this derivative by dT gives

orN _ [(OVN _ [oV ar

aP),  \8S/, \8T),\08S /.
In the last expression, the first partial derivative is just BV, while the second is T/Cp.
Finally, therefore,

K — RKg = Cp . (1)

This result shows that s is always greater than (or equal to) s, since any system for
which these quantities are defined has positive T and Cbp.
To check this result for an ideal gas, first recall from Problem 1.39 that

L and Ks = 1
P s—'yP'

Kp =

Therefore the difference is

SN GRS D N PRI S N A
”‘“‘PO J‘P@ ﬁw)“P@+J'
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where f is the number of degrees of freedom per molecule. But the thermal expansion
coefficient is
5‘1 v\ _ 10 (NkT\ Nk _ 1
“v\er),"VerT\'P | PV T
while the constant-pressure heat capacity is

f+2

Cp = %Nk +NE= (T)Nk,

from equations 1.46 and 1.48. Therefore the right-hand side of equation 1 is

o= () = ()

which is indeed equal to the left-hand side.

Problem 5.17. (Magnetic systems.)

(a) Faraday’s law relates the back-emf in the coil (against which we must do work) to
the time rate of change of the magnetic lux. At any moment the magnetic flux is
&5 = NAB, where A is the cross-sectional area of the coil. According to Faraday’s
law, therefore, the magnitude of the back-emf is

d®p aB

emf =€ =~ @

and so the power that we must supply is

power = E] = NIA— =HLA— =HV

dB dB aB
dt dt dt’

since H = NI/L. To obtain the total energy (work) required for an infinitesimal
change in the current, we integrate the power over time to obtain

work =’HV/ %dt='HVdB.

(b) From the definition of H, we can write
B = uo(H + M/V),

and hence
dB = po(dH + dM/V).

The result of part (a) is therefore
work = VHpo(dH + dM/V) = poVHIH + poH dM.

In the first term we can write HdH = d(3H?), so this term is the change in the
quantity %V’Hz. If there were no specimen inside the solenoid, this term would give

Problem 5.18

the change in the vacuum field energy; with the specimen, H is the same as without,
so this term represents the work we would have to do to increase the field if there were
no specimen. If we define the work done on the “system” to exclude this term but
include everything else, then

W = work done on system = poH dM.

(c) The work done on a mechanical system is —P dV. Apparently, the analogous term for
a magnetic system is +ugH dM. The thermodynamic identity for a magnetic system
should therefore be

AU =TdS + peHdM.

(d) The magnetic analogue of the enthalpy would be
Hp =U — poHM,

in analogy with the ordinary enthalpy H = U + PV. An infinitesimal change in H,,
can then be written

dH,, = dU — poHdM — poM dH = T dS ~ poM dH,

where I've used the thermodynamic identity for U in the last step. Interpretation?
Apparently the quantity H,, is less than the “system” energy (at least for our situ-
ation), and is the more natural “energy” function to use when a process takes place
at constant H. To obtain the magnetic analogue of the Gibbs free energy, we can
subtract T'S just as for a mechanical system:

Gn=H,-TS.
Under an infinitesimal change in conditions,
dG,=dH,, —TdS - S5dT = —-8dT — poM dH.

Presumably, G, is the energy that can be extracted as work when the system is held
at constant T and constant H (whereas the Helmholtz free energy, F' = U —T'S, would
give the available work in a process at constant T and M). [The references given in
the text provide further interpretations of the various epergy functions for a magnetic
system.]

Problem 5.18. When you drop a brick, its total energy (kinetic plus gravitational) is
conserved as it falls, at least if we neglect air resistance. This downward motion is not a
consequence of the decrease of free energy or of any other law of thermodynamics—think of
it as merely a result of the initial condition of zero velocity and nonzero height. However,
when the brick lands, its energy suddenly decreases. The thud removes macroscopic kinetic
energy from the brick and converts this energy into various forms, primarily thermal energy
of random molecular motions. Some of this thermal energy might initially remain in the
brick, but with time it dissipates into the environment as the brick’s temperature returns
to that of its surroundings. So in the end, the free energy of the brick has spontaneously
decreased, just as it’s supposed to do. This decrease is entirely a result of a decrease in the
brick’s energy, since the entropy of the brick ends up unchanged. And the reason why the
brick’s energy decreased spontaneously is because the entropy of its environment increased
as a result of the transfer of energy. The total entropy of the universe therefore increased.
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Problem 5.19. Counsider two systems A and B, held at a common, fixed temperature by
interaction with a reservoir. Assume that the two systems are free to exchange volume with
each other (for instance, they could be separated by a movable partition), with their total
volume held fixed. The graphs of F’ vs. V for these two systems might look something like
this:

Ey Fp

i —_—

| : -V, ¢ —» Vg
Vai Va,i

(The slopes of the graphs are negative because adding volume to a system at fixed tem-
perature generally increases S and thus decreases F.) Under these conditions, the analysis
on page 161 tells us that the total Helmholtz free energy of the combined system tends to
decrease. Notice, that, for the case shown, the slope of the F' vs. V' graph of system A is
steeper (more negative) than that of system B. This means that volume will tend to be
transferred from system B to system A, since the decrease in F for system A will more
than outweigh the increase in F for system B. More generally, he steeper the slope of the
graph of F' vs. V', the more a system “wants” to gain volume, in order to lower its free
energy. But this is just the property that we normally associate with pressure. Therefore,
after checking that the units work out right (they do), we might guess that the pressure is
equal to minus the slope of the graph of F vs. V. In other words, (3F/8V)p = —P.

Problem 5.20. The Helmholtz free energy of the first excited level is
F=U-T5=(102eV)~T(kin4).

At low temperatures this is positive, so the atom would rather be in the ground state (which
has F' = 0); at high temperatures, however, F for the excited level becomes negative, so
this level becomes preferred over the ground state. The transition temperature is where
F =0,ie., when kT'In4 =10.2 eV or kT =7.36 eV or

7.36 eV

T=g8x10= eV/K

=85x10*K.

This is more than ten times hotter than the surface of the sun.

Problem 5.21. Heat capacity (C) is extensive, since the heat required to raise the tem-
perature of an object by a given amount is directly proportional to the size of the object.
For Cy = (8U/0T)y, we can also see this from the fact that U is extensive and T is
intensive: Dividing an extensive quantity by an intensive quantity results in an extensive
quantity. Specific heat capacity, ¢ = C/m, is intensive, because it is the ratio of two
extensive quantities. It doesn’t depend on how much of the stuff you have.

Problem 5.23

Problem 5.22. In Section 3.5 I showed that the chemical potential of & monatomic ideal

gas is
V ¢ 2xemkT\3/2 kT (2mkT \3/2
= —kTIn| —| ——— = - pinil
k m[N( A2 ) ] len[P( A2 ) }
In the last expression I've substituted V/N = kT/ P, since equation 5.40 is written in terms

of pressure rather than volume. To bring in the reference pressure P°, multiply and divide
by it inside the logarithm:

kT (27\'ka

i [PPET (2nmkTN2 3/2 .
= kTm[F}—D;(-—hz—) ] 7 (") J+kT1n(P/P ).

)

This expression is now in the form of equation 5.40, with the first term equal to p°(T), a
function of temperature but not pressure. (The reference pressure, P, is just a constant,
conventionally taken to be 1 bar.)

Problem 5.23. (Grand free energy.)

(a) Using the product rule for derivatives, an infinitesimal change in ® can be written
d® =dU ~TdS~SdTl — udN — Ndp.

Plugging in the ordinary thermodynamic identity for dU and canceling terms, this
becomes

d® = -SdT - PdV — Ndpu.

Thus the natural variables for the function & are temperature, volume, and chemical
potential. Holding any two of these fixed yields a partial-derivative formula:

a@) (a@) (a@)
=) =-5 —| =-P ) =-n.
(a:r v WV )z, % )ry

{(b) Asin the text (page 161), consider an infinitesimal change in the total entropy of the
system plus its environment (the “reservoir”):

dSiota; = dS + dSp.

Applying the thermodynamic identity to dSp and assuming that V is fixed, we can
substitute

1 © 1 o
dSp = =dUp — = =—= =
r=7dUr TdNR TdU+TdN,
where I've used the fact that the changes in the system’s U and N are minus the
changes for the reservoir. Therefore,

_L

_ 1 o 1
dSiotal = dS — TdU‘FTdN:—T(dU—TdS—-‘udN) = T

d®,

provided that T" and u are constant. Spontaneous changes are those for which dS,
is positive, or equivalently, for which d® is negative.
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(c¢) To prove that & = —PV, you could make an argument a.na.logc.)us to th.at used to
prove G = Ny on page 164. Given that result, however, we can simply write

S=U-TS—-uN=U-TS+PV—-PV—-uN=G—-PV —uN=-PV.

(d) For the unoccupied state, U = § = N =0 so & = 0. For the occupied state, S is still
2ero but N =1so

V 2xmkT\3/2
éoccupied = UO —p= UO +kTn |:N( K2 ) :| )
where U = —13.6 eV and I've used equation 3.63 for the chemical potential. For
electrons at T = 5800 K, the complicated factor inside the logarithm is
B \32 (6.63 x 10734 J . 5)? )3’2
(27rka) - (21r(9.11 x 10-3 kg)(1.38 x 10-2 J/K)(5800 K)

=9.4x 1072 m®.

The volume per electron, V/N, is much larger than this: 0.5 x 101 m? so the
argument of the logarithm is 5.3 x 107 and the logarithm itself is 17.8. Therefore the
grand free energy is

B ceapiod = —13.6 &V + (17.8)(8.62 x 1075 eV/K)(5800 K) = —4.7 eV.

Because this is less than ® for the unoccupied state, the occupied state must be more
stable. To get a rough estimate of the temperature at which the two states would be
equally stable, we can neglect the gradual T-dependence of the logarithm to obtain
the simple equation

~U, 136 &V
(17.8)k ~ (17.8)(8.62 x 10~% eV/K)
This is not that much hotter than the sun and is cooler than the surfaces of many
stars. (To check the approximation, note that this is a 50% increase over the sun’s

temperature, so the logarithm should increase by In[(1.5)%%] = 0.8, fairly insignificant
compared to 17.8.)

Uy =(178)kT or T= = 8800 K.

Problem 5.24. We're free to choose an arbitrary reference point for measuring G values,
so for convenience let’s take G = 0 for graphite at 1 bar. Then for diamond, G = 2.9 kJ
at 1 bar. The equations of the lines drawn in Figure 5.15 are

G,=V,P and Gu=ViP+(29Kk),

where the subscripts are g for graphite and d for diamond, and technically, P is measured
relative to 1 bar, though we'll soon see that the difference between 0 bar and 1 bar is
negligible. To find the intersection of the lines, set these expressions equal and solve for P:

~ _(29KkJ) 29007
VP=VaP+QRIKD) = P=yo = 510 m

So the intersection is at 1.53 GPa, which is 15.3 kbar.

5 = 1.53 x 10° Pa.

Problem 5.27
Problem 5.25.

kI J 1 bar s Nem s g 3
! kbar (1 bar)(105 N/m2) =10 N/m? ~ 1077 m’ = 10 em’

The volumes ir the table on pages 404-405 are given in ¢cm?, so to convert them to kJ/kbar,
just divide by 10.

Problem 5.26. While it is true that a given quantity of graphite always has more entropy
than the same quantity of diamond (at the same temperature and pressure), diamond can
still be more stable than graphite under high pressure because it is the total entropy of the
system plus the environment that tends to increase. When graphite converts to diamond
under high pressure, it takes up less space so there is more space for whatever material
surrounds it. With more space available to the environment, the entropy of the environment
increases. This effect is more pronounced at high pressure, since pressure is proportional
to (85/8V)y. However, to be precise about this effect, we are better off working with G
instead of S, since we want to know what happens at fixed T, not fixed U.

Problem 5.27. (Diamonds and graphite, taking compressibility into account.)

(a) The compressibility of graphite means that at high pressures its volume will be smaller,
closer to that of diamond. This effect will decrease the tendency of graphite to convert
to diamond at high pressure. It will reduce the slope of the G vs. P graph for graphite,
moving the intersection in Figure 5.15 to the right, to higher pressure.

(b) The definition of the isothermal compressibility is

__Llfov
T="y\ap ),

so at constant temperature, V/8P = —krV. Since we don’t know how sy varies
with pressure, we’ll just have to hope that it’s fairly constant. Alternatively, and for
ease of calculation, we can assume that the product x7V is constant. Then we can
express the volume as

V(P)=V(0) + % -P=V(0) - koVP,

where V(0) is the volume at zero pressure, or, to a good approximation, the volume at
1 bar. Integrating this expression with respect to P then gives the Gibbs free energy,

G(P) = G(0) + V(0) - P — %Kq-VPz.

As in Problem 5.24, let’s take G(0) = 0 for graphite. Then for diamond, G(0) = 2900 J,
but xr is negligible. To find the pressure at which the two phases are equally stable,
set the G values of graphite and diamond equal to each other:

V,P - %K/TVQPZ = (2.9 kJ) + V,P.
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We could solve this equation using the quadratic formula, but that’s a bit cumbersome.
Instead, recall from Problem 5.24 that without the quadratic term, the solution would
be P = 15.3 kbar. Plugging in this value of P, we can estimate the size of the quadratic
term as

$FTVaP? % (3 x 1072 Kbar™)(0.531 kI /kbar) (15.3 kbar)? = 0.186 kJ.
(I’ve expressed V, in kJ/kbar, as discussed in Problem 5.25.) With this estimate of
the correction term due to compression, we have for the transition pressure

1 3.086 kJ
p —4(2,9 kJ +0.186 kJ) = 7189 kJ /kbar

= = 16.
VoV, 16.3 kbar,

only about 7% higher than what we got neglecting compression. The small effect of
the correction, moreover, justifies the various approximations made in this solution.

Problem 5.28. (Calcite and aragonite.)

()

(b)

The table on page 404 gives the molar Gibbs free energies of formation of both calcite
and aragonite, with the value for calcite being lower by 1.0 kJ. This means that the
Gibbs free energy of a mole of calcite is less than that of a mole of aragonite by this
amount, under standard conditions. Calcite is therefore the more stable phase, at
room temperature and atmospheric pressure.

In analogy with the diamond-graphite system, we can imagine plotting G vs. P (at
fixed T') for both calcite and aragonite. The slopes of the two graphs are V, =
3.693 kJ/kbar and V, = 3.415 kJ/kbar, according to the data in the table and the
conversion factor derived in Problem 5.25. Since the volume of aragonite is less, it
should become stable at high pressure, that is, the two lines should intersect at some
P > 0. For convenience, I'll set G. =0 at P = 0; then G, = 1.0 kJ at P = 0. The
equations of the two lines are then

G.=V.P and G,=V,P+(LOKJ).

Equating these two expressions and solving for P gives the transition pressure,

p_ 10K _ 10K

T V.-V, 0278 kJ/kbar

= 3.6 kbar.

Problem 5.29. (The aluminosilicate system.)
(a) The A;G values on page 404 indicate that at room temperature and atmospheric

pressure, kyanite has the lowest Gibbs free energy of the three phases. Furthermore,
it also has the lowest molar volume of the three; this means that increasing the pressure
causes its G value to increase more slowly than those of the other two phases. Since
it starts out lowest and increases slowest, it will never intersect the G values of the
other phases (in contrast to the graphite-diamond case illustrated in Figure 5.15).

Problem 5.29

(b) For either phase, (3G/8T)p = —S. Integrating this relation from T} to Ty gives

(c)

T2
G(Ty) - G(Ty) = — /T S(T)dT.

1

If we write this equation separately for two different phases and then subtract one
equation from the other, the G’s become AG’s and the S becomes AS, so we obtain
the desired result,

AG(Ty) = AGTY) - [ AS(T)dT.
T

Taking AS to be independent of 7', we can pull it outside the integral to obtain
AG(T) =AG(T) - (T, —Ty) - AS.

If we take T; to be the temperature at which the phase transition occurs (the two
phases are in equilibrium), then AG(T;) = 0. Solving for T then gives simply

Our thermodynamic data is at 298 K, so we'll use this value for 7}. For the kyanite-
andalusite transition, AG(T}) = 1.22 kJ (for one mole of material), while AS =
9.41 J/K. Therefore, the temperature at which andalusite becomes more stable than
kyanite should be approximately

1.22 kJ
T2—298K+m—-4281{.
Similarly, for the kyanite-sillimanite transition,
2.89 kJ
T2—298K+m=533K.
And for the andalusite-sillimanite transition,
1.67 kJ
T, =298 K + 289 /K 876 K.

So at atmospheric pressure, kyanite should be stable up to (approximately) 428 K,
andalusite should be stable from 428 K up to 876 K, and sillimanite should be stable
above 876 K.

(d) The change in entropy as the temperature is increased is given by equation 3.50,

Tz Cp

1
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If we write this equation for two different phases and then subtract, we obtain

T AC
AS(Ty) = AS(T) + / 2 dT.

r, T
Suppose, for the sake of a rough estimate, that ACp is independent of temperature.

Then
AS(Ty) = AS(TY) + ACp - In(T2/Th).

For kyanite — andalusite, ACp = 1.01 J/K (at room temperature). Taking T} =
298 K and T = 428 K, I find that the final term in this equation is 0.37 J/K,
compared to AS(T;) = 9.41 J/K. So over this range, AS is reasonably independent of
temperature. However, for andalusite — sillimanite, ACp = 1.80 J/K and we should
take T, = 876 K; with these numbers I get a correction term of 1.94 J/K, compared
to AS(T) = 2.89 J/K. With AS varying by nearly 70% over the temperature range
of interest, I conclude that the calculated temperature of the transition could be off
by as much as 100~200 K. To make a significantly improved calculation, however, we
would really need heat capacity data over the whole temperature range.

Problem 5.30. The slope of a graph of G vs. T is —5, so the slope of each graph should
be negative, and become more negative with increasing temperature. Furthermore, at
any given temperature, the stable phase should have the lowest value of G. For Hy0 at
atmospheric pressure, the stable phase is ice below 0°C, water between 0°C and 100°C, and
steam above 100°C. The plot at left below shows these features qualitatively.

Gl Gl

Water
0.001 bar
Steam
Steam
T > T
0°C  100°C 0°C  100°C

As the pressure is reduced, the relation (3G/8P)r =V tells us that the Gibbs free energy
of each phase will decrease. However, that of the gas phase will decrease the fastest by far,
since its volume is so much greater. At pressures below the triple point (0.006 bar), there
is no temperature at which liquid water is stable. So at 0.001 bar, the graphs of Gvs. T
would look something like the plot above right.

Problem 5.31. The slope of a graph of G vs. P is V, so the slope of each graph should be
positive, with the ice graph slightly steeper than the water graph and the steam graph much
steeper than either. The steam graph, furthermore, should have a significant downward
curvature due to its compressibility. At any given temperature, the curve for the stable
phase should be the lowest of the three. At 0°C, the stable phase is steam up to 0.0086 bar,

Problem 5.32

ice from there up to 1 bar, and water above 1 bar. The graph at left below shows these
features qualitatively.

GA 0°C Gl few °C

Ice

Water
Steam

P > P
0.006 bar 1 atm 0.006 bar 1 atm

As the temperature is raised, the relation (8G/0T) = —S tells us that the Gibbs free energy
of each phase will decrease. That of the gas phase will decrease the most, since it has the
most entropy, while that of the solid will decrease the least. Above 0.01°C, the intersection
of the solid and liquid G curves moves to the left of the gas curve, indicating that the solid
is no longer stable at any temperature. At a few degrees Celsius, the graphs would look
something like the plot above right.

Problem 5.32. (The water-ice phase boundary.)

(a) As ice melts into water the change in entropy (or the latent heat) is positive, while the
change in volume is negative (since ice is less dense), so the slope of the phase boundary,
AS/AV, must be negative. In more fundamental terms, converting ice to water lets
the entropy of the environment increase (by making more volume available), and this
effect is more important at high pressure since P = T(85/8V). So high pressures
tend to push the equilibrium in the direction of the phase that takes up less volume.

(b) Instead of considering a mole of ice/water, let’s just consider one gram. Then the
latent heat is 333 J, the volume of the ice is (917,000)! m® = 1.091 x 105 m?, and

the volume of the water is 1.000 x 10~ m?. Therefore the slope of the phase boundary
is

dP L _ 333 J
dT ~ TAV ~ (273 K)(—.091 x 105 m?)

= —1.35 x 10" Pa/K = 135 bar/K.

So if the temperature decreases by one degree (from 0 to —1°C), the pressure must
increase by 135 bars to remain on the phase boundary. In other words, ice will melt
at —1°C if the pressure is above 135 bars (or 133 atmospheres).

(c) Treating the glacier ice as a fluid, the increase in pressure at depth z is simply pgz,
where p is the density. (To derive this formula, consider a column of ice extending
down to depth z. The weight of the column per unit area is pgz, and this must be
balanced by the pressure from below.) In our case, to reach a pressure of 135 bars,

_P_ BBx10°Nm
T Pg (O17kg/m)(98N/kg)

123



124

Chapter 5 Free Energy and Chemical Thermodynamics

That’s pretty deep, just to lower the melting temperature by one degree. Apparently
the flow of glaciers is not caused primarily by lowering of the melting point under
pressure.

(d) The blade of an ice skate measures a few millimeters across by perhaps 25 cm long,
so the total area is perhaps 10 cm?. Even if you're leaning on the “corner” of the
blade, the total area in contact with the ice is probably more than 1 ¢cm? = 10~ m2.
If your mass is 50 kg, then your weight is about 500 N so the pressure on the blade is
roughly (500 N)/(10~* m?) = 5 x 106 Pa = 50 bars. Under this pressure the melting
temperature drops by only 50/135 & .4°C. This mechanism of friction reduction would
work only if the ice temperature is already within less than half a degree of melting,
and even then, only when you’re minimizing the area of the blade in contact with the
ice. In practice, the ability to glide doesn’t depend so critically on the ice temperature
or on how the blade touches the ice, so I don’t think this mechanism can be very
important.

Problem 5.33. The flaw in the inventor's reasoning is that the weight that can be lifted
by the water as it freezes into ice is limited, because too much weight would apply enough
pressure to lower the freezing point of the water below —1°C, and then the water wouldn’t
freeze at all. Let the water in the cylinder have height h, and cross-sectional area A.
When it freezes into ice, its height increases to h;. If the mass it lifts is m, then the work
performed upon freezing is mg(h; — h,,). If L is the heat needed to remelt the ice, then the
efficiency of the engine is
_ W mglhi— hay)

@n L ’

€

If the pressure on the system with the weight absent is atmospheric pressure, then there’s -

really no need for the high-temperature reservoir to be hotter than T), = 0°C; higher T},
would just lead to wasted heat as the system is cooled back to 0°C. If T, is the temperature
of the cold reservoir, then according to the Clausius-Clapeyron relation, the maximum
pressure we can add to the system without shifting the freezing point below T is

L

P =TTV

(Th. - Tc)7

where V; = h;A and V,, = h,, A are the volumes of the two phases, and I've used T} in
the denominator because L refers to the heat input from the hot reservoir. Setting this
quantity equal to the pressure exerted by the lifted mass gives

mg _ L(Ti-T.) or mg(h; —hy)  Th—T.
A ThA(h - hy)’ 7

In other words, the maximum efficiency of the engine is 1 — (T./T%).

Problem 5.34. (Liquid-solid phase boundary of *He.)

(a) The denser phase is always the one that is stable at higher pressure, according to
(8G/0P)r = V: Smaller volume implies a shallower slope to the G vs. P curve and
hence a lower value of G than the other phase at sufficiently high pressures. In our case,

Problem 5.36

the solid phase is stable at higher pressures, so it must be more dense. Meanwhile, the
negative slope of the phase boundary, together with the Clausius-Clapeyron relation
dP/dT = AS/AV, tells us that AS and AV have opposite signs: Whichever phase
has the smaller volume has the larger entropy. So near the phase boundary below
0.3 K, the solid phase of *He must actually have more entropy than the liquid. The
reason for this strange behavior is explained in Problem 7.26.

(b) The third law of thermodynamics says that the entropy of either phase must go to
zero as T — 0. Therefore the difference in entropy between the two phase goes to Zero,
and therefore, by the Clausius-Clapeyron relation, the slope of the phase boundary
must go to zero.

(¢) If you compress liquid *He adiabatically (and quasistatically), its entropy should re-
main unchanged. Mere conversion to a solid at T = 0.1 K, however, would increase the
entropy, as explained in part (a). The only way for the entropy to remain constant is
therefore for the temperature to drop, which it does. This method of cooling *He was
first suggested by I. Y. Pomeranchuk in 1950, and has been used with great success
as a method of reaching temperatures as low as 1 mK.

Problem 5.35. (Vapor pressure equation.) Neglecting the volume of the condensed phase
and using the ideal gas law for the volume of the gas, the difference in volume between the
two phases is approximately

AT
P b

assuming one mole. Therefore the Clausius-Clapeyron equation becomes

AVxV, ~

dP _ LP
aT ~ RT®

4P _ LdT
P RT?

Integrating both sides then gives

InP= -z + (const), or

T P = (const)e Z/BT,

Problem 5.36. (Effect of altitude on boiling water.)

(a) T'll use the data given at 100°C, or 373 K. Then the vapor pressure is just 1.013 bar,
or 1 atm. Plugging in L = 4.066 x 10* J/mol and R = 8.315 J/mol-K, I find L/R =
4890 K, so I can solve for the comstant (which I'll call Py) in the vapor pressure
equation:

1 atm = Pye—4890/373 — Py =4.91 x 105 atm.

{There’s not much point in trying to interpret this constant physically. According to
the equation, it's the pressure at which the boiling temperature would go to infinity.
But the critical point is reached long before, and the value of L changes significantly
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(b)

()

even before that.) Here’s a plot of part of the phase boundary:

1
0.8
g 0.6 Steam
:G_J‘
2 0.4
&
B Water
0.2
: |
50 60 70 80 90 100

Temperature (°C)
At T = 50°C the predicted pressure is .132 atm, about 7% higher than the actual
value.
To find the boiling temperature at a given pressure one can either read the value off
the graph or solve the vapor pressure equation for T*
L 4890 K
= RIn(Py/P) _ In(491,000 atm/P)’
For the elevations of Problem 1.13, I find:
Ogden (4700 ft)
Leadville (10,500 ft)
Mt. Whitney (14,500 ft) .59 atm 86°C
Mt. Everest (29,000 ft) .35 atm 73°C
If you're camping in the mountains at 10,000 ft above sea level, the boiling point is
about 90°C. At this temperature, noodles cook much slower than at 100°C. (I've heard
a rough rule of thumb that cooking time doubles for every drop of 5°C in the boiling
temperature. If this is correct, then noodles that are supposed to cook in 5 minutes
will actually take 10 minutes in Ogden, 20 minutes in Leadville, and nearly 40 minutes
on the summit of Mt. Whitney. I suspect that the actual cooking times don’t increase
quite this dramatically.)
From the values computed above, you can see that the boiling temperature decreases

by roughly 1°C for every 1000 ft of elevation gain. Alternatively, recall the general
result of Problem 1.16:

P(z) = (1 atm)e™™/*T = (1 atm)e*/280%0 F,

Plugging this into the vapor pressure equation yields the boiling temperature as a

function of z: . L/R L/R
b= =
In{Fo/P) Py, _ 2
l“(1 atm) 28,000 £t

T

.84 atm 95°C
.69 atm 90°C

Problem 5.38

The logarithm in the denominator now evaluates to 13.1; dividing through by this
constant and plugging in the value of L/R computed previously yields

313K
z

+ 367,000 &

For any reasonable value of z we can expand this using the binomial theorem to obtain

Tb =
1

z

=~ (37 -
% (33K)(1 367,000 ft

) =373 K — (.00102 K/ft)=.

Thus the boiling temperature drops by about 1.02 degrees Celsius per thousand feet
of elevation gain, or about 3.35 degrees Celsius per kilometer (assuming as in Problem
1.16 that the atmospheric temperature is constant).

Problem 5.37. Neglecting any variation in AS and AV with temperature and pressure,
the slope of the calcite-aragonite phase boundary should be

dP S.- S, 92.9 J/K —88.7 J/K 42 J/K s Pa bar
T V-V, " %83 emd 3l cd  amx 10w - o210 g =1 g
So the transition pressure should increase by
about 1.5 kbar when the temperature increases 4{§P (kbar)
by 100 K. However, the slope must go to zero at 1 21—
T = 0, since the third law of thermodynamics

1
requires S, = S, =0 at T = 0. At room tem- 101
perature we know from Problem 5.28 that the 81
transition pressure is roughly 3.6 kbar. Above 61
room temperature the slope may also vary, but 47
I won't try to guess how much. The phase di- 21 T (K)
agram should look something like the figure at T ; -
right, with reasonably large uncertainties. 200 400 600 800 1000

Aragonite

Calcite

Problem 5.38. Using the entropies calculated in Problems 3.30 and 3.31, we have

dP _AS _ 12.33J/K-759J/K _ ) N

at T' = 500 K. For comparison, I estimate the slope of the phase boundary in Figure 5.17
to be between 26 and 27 bar/K at temperatures of about 500 K and higher. We should
expect the slope to be fairly constant at sufficiently high temperatures because the molar
heat capacities should both plateau at the value 3R (neglecting the difference between Cp
and Cv), and when the heat capacities are equal, there can be no further changes in the
difference in entropies. For diamond, however, this plateau is not reached until around
700 ¥, so I'm a bit surprised that the slope of the phase boundary in Figure 5.17 is so
constant between 500 K and 700 K. As T — 0, on the other hand, the entropies of both
phases must go to zero, so AS goes to zero, so the phase boundary becomes horizontal.
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Problem 5.39. As in Problem 5.29, I'll assume that the differences in entropies between
the various phases are independent of temperature, even though the individual entropies
increase significantly with temperature. Then we can just use the room iemperature data
on page 404. Also recall from Problem 5.25 that a volume in cm? can be converted to J/bar
by dividing by 10. For the kyanite-andalusite boundary the slope should therefore be

dP AS  93.22 J/K—83.81 J/K

9T = AV " 5153 J/bar — 4.400 J/bar 12.65 bar/K.
Similarly, for the kyanite-sillimanite boundary,

dP  AS  96.11 J/K —83.81 J/K

T = AV ~ 1990 J/bar 4400 Jjbar 2 bar/
And for the andalusite-sillimanite boundary,

dP _AS _ 9611JK-932IK _ 1 oap.

dT ~ AV ~ 1.990 J/bar — 5.153 J/bar

Meanwhile, from Problem 5.29, we know that the phase boundary lines intersect the tem-
perature axis at 428 K, 533 K, and 876 K, respectively. From this information you can
easily sketch the phase diagram. I plotted it with Mathematica, using the instruction

Plot[{.01265% (t~428), .02117%(t-533), -.01773%(t-876)},
{t,300,1100}, PlotRange->{{300,1100},{0,6. 75}}]

This instruction produced the plot at
right, in which I've erased the unphysical 4
portions of the phase boundaries. Notice ~ ©
that the three lines intersect at a com- SL
mon point (a good check), at 690 K and .
3.3 kbar. You can also locate the triple 41 Kyanite
point algebraically, by solving for the in-
tersection of any two of the lines; for in-
stance, set 2t

P (kbar)

Sillimanite

Andalusite

.01265(T — 428) = .02117(T — 533) T (K)
400 600 800 1000
and solve for T. As in Problem 5.29, the uncertainties in the diagram are significant.
Experimental measurements of the aluminosilicate phase boundaries generally place the
triple point at somewhat higher temperature and pressure. For instance, M. J. Holdaway,
in American Journal of Science 271, 97-131 (1971), places the triple point at 774+20 K
and 3.76+0.30 kbar.

Problem 5.41

Problem 5.40. For the reaction albite — jadeite + quartz, the standard AG value, at
room temperature and atmospheric pressure, is

AG = —-2852.1 kJ — 856.6 kJ +3711.5 kI = 2.8 kJ,

according to the data on page 405. Because this number is positive, albite is more stable
than jadeite + quartz under these conditions. However, the jadeite-quartz combination
takes up considerably less volume than albite, so it should become stable at high pressure.
Solving for the transition pressure as in Problems 5.24 and 5.28, we obtain

p_ 28K 2.8kJ
AV~ 10.007 k3/kbar — 6.040 kJ/Kbar — 2.269 kJ/kbar

= 1.65 kbar.

The slope of the phase boundary, meanwhile, is given by the Clausius-Clapeyron relation:

dP _AS 2074 J/K—-1335J/K-41.8 J/K
aT ~ AV 1.70 J/bar

= 18.9 bar/K.

The diagram at right shows the regions of sta-
bility of the two phases, assuming that AS 13
and AV are independent of temperature and
pressure, hence that the phase boundary is a
straight line. As T' — 0, however, the slope of
the phase boundary would have to be horizon-
tal, as in Figure 5.17, according to the third 4
law of thermodynamics.

P (kbar)

Jadeite + quartz

Problem 5.41. (Effect of total pressure on vapor pressure.)
(a) We want to consider the change in the chemical potentials of the two phases under an

infinitesimal change in total pressure. For the gas, according to equation 5.40,
ig = constant + £T'ln P,,

where P, is the partial pressure of the gas, assumed to be equal to the vapor pressure.
Differentiating with respect to the total pressure P, we obtain

dbts _ KT AP,
dP ~ P, dP’

(WL write the derivatives as total derivatives, even though they’re really partial deriva-
tives, with temperature understood to be held fixed.) Meanwhile, for the liquid,
p = G/N (since it remains pure), so

dP T NjdP T N/
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For the two phases to remain in equilibrium as we change the total pressure, the
changes in their chemical potentials must be equal, so

kTdP, Vi . ab, W

P, dP ~ N, dP T NiT ™V

This is the desired differential equation for the function P,{P).

(b) The solution to this equation is a simple exponential function,
P,(P) = (constant) - e"V/N&T

where I've dropped the { subscripts on the ¥ and N in the exponent. Plugging in
P = P, (for the initial situation with no inert gas), this equation becomes

P,(P,) = (constant) . P VINET

Dividing the previous equation by this one cancels out the constant, leaving us with

P (P) = e(P=P)V/NKT
P,(P,) ’
where again the quantity V/N in the exponent is for the liquid.

(c) For water at 25°C, the vapor pressure is only 0.03 bar, so the P, in the exponent is
negligible compared to P =1 bar. It’s simplest to take NV to be one mole, so Nk =R
and V = 18 cm?; the exponential factor is thus

ex (10° N/m?)(18 x 107% m?)
P\ (831 I/K)(298 K)
implying that the vapor pressure is greater by 0.07% than its value in the absence of
the air. More generally, the quantity PV/NkT, where V/N refers to the liguid, will
always be much less than 1 as long as the molar volume of the liquid is much less than
that of the gas (for which PV/NkT =~ 1). Ounly near the critical point (which is at
fairly high pressures for most fluids) would this ratio be comparable to 1.

) = exp(0.00073) = 1.00073,

Problem 5.42. (Relative humidity and dew point.)
(a) The result of Problem 5.35 for the shape of the vapor pressure curve was

P= Poe_L/RT.
Using the data for T' = 25°C from Figure 5.11, we have

L _ 43,990 J/mol
R~ 8315 J/mol.K

solving for the constant P, therefore gives

= 5290 K;

P, = (0.0317 bar) exp (5290‘ K/298 K) = 1.626 x 10° bar.

I then plotted the vapor pressure curve using the Mathematica instruction
Plot [1626000*Exp [-5290/(t+273)],{t,0,40},Frame->True]
which produced the graph on the following page.

Problem 5.43

0.06

0.
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.04
0.03

0.02
Unsaturated

H30 partial pressure (bar)
(=]

0.01

0 10 20 30 40
Temperature (°C)
Indeed, the equilibrium vapor pressure of water approximately doubles for every 10°C

increase in temperature: 0.006 bar at 0°C; 0.012 bar at 10°C; 0.023 bar at 20°C;
0.043 bar at 30°C; and 0.074 bar at 40°C.

(b) At 30°C, a relative humidity of 100% would imply a partial pressure of water vapor
equal to 0.043 bar, so a relative humidity of 90% means 90% of this, or 0.038 bar. To
find the dew point, just find the temperature at which the equilibrium vapor pressure
of water is 0.038 bar; I estimate about 28°C from the graph, and calculate 28.2°C from
the formula. A relative humidity of 40%, on the other hand, implies a partial pressure
of water vapor equal to only 0.017 bar. The dew point at this humidity is 14.9°C.

Problem 5.43. On the diagram below (the same one plotted in the previous problem),
I've plotted the composition of the exhaled air (35°C, 90% relative humidity) and also
one possible composition of the outdoor air (10°C) as dots. Consider, now, the mixing of
parcels of air with these two initial temperatures and initial H,O partial pressures. If the

0.06

0.05

™
&
£
2
% Supersaturated
a 0.04 air
ke 0.03
E=) .
&
&
o 0.02
= Unsaturated
0.01
Qutdoor air
0 A
0 10 20 30 40
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parcels have equal mass, then the mixture will end up at a temperature halfway between
them (since the heat capacity of air is independent of its temperature), and also at an H,0O
partial pressure that is halfway between the partial pressures of the initial parcels. More
generally, for any value of the ratio of the initial masses, the mixture will have a temperature
and H,O partial pressure that lie somewhere on a straight line on the diagram, connecting
the dots representing the two initial states. (As the exhaled air mixes with larger and
larger amounts of environmental air, the state of the mixture will move downward along
this straight line.) To get cloud droplets, the state of the mixture must lie above the curve
representing the equilibrium vapor pressure; since this curve is concave-upward, this is
possible even when both initial states lie below the curve. By moving the dot representing
the outdoor air state vertically, we see that if it goes too low, the line will no longer cross
the vapor pressure curve. The minimum H,O partial pressure of the outdoor air in this
case is about 0.0032 bar, corresponding to a relative humidity of about 25%. If we do get
cloud droplets, therefore, we can conclude that the relative humidity is at least 25%.

Problem 5.44. At 25°C and 50% relative humidity, the partial pressure of water vapor
is (from the graph in Problem 5.42 or directly from the data in Figure 5.11) 0.016 bar. To
estimate roughly the elevation at which a cloud will begin to form, we can just read off from
the graph in Problem 5.42 the temperature at which this partial pressure is the equilibrium
vapor pressure—13.8°C—and then calculate the height at which the temperature would
drop to this level: at 9.8°C/km (as calculated in Problem 1.40), a height of 1.14 km.
However, in rising to this level, the air will expand and the the partial pressure of water
vapor will drop, along with the total pressure. In Problem 1.16 we saw that the pressure
of the atmosphere decreases with height approximately as an exponential function,

P(z) = P(0) - g~/ ®5km),

At our estimated height, therefore, the pressure will have dropped by a factor of e!-14/85 =
0.87, and therefore the partial pressure of water vapor will be only 0.87 - 0.016 bar
0.014 bar. This pressure is equal to the equilibrium vapor pressure at 11.8°C, and to cool
to this temperature, the air must rise 1.35 km. Of course, by the time the air has risen to
this height, its pressure will have dropped somewhat further, but not enough to affect the
answer by much. I'll just round the answer upward and say that the cloud probably starts
to form at about 1.4 km.

Problem 5.45. (Wet adiabatic lapse rate.)

(a) T do this part of the problem two ways, the first a bit sloppy and the second more
careful. First, consider the “system” to be a rising (and expanding) mass of air, not
including the water vapor or water droplets mixed with the air. The work dome by
this system is mainly due to its expansion, so W = —PdV. The “heat” that enters
the system is mainly due to the condensation of water vapor, so @ = —Ldn,, (note
that when n.,, the number of moles of water vapor, decreases, “heat” is given up by
the water to the air). Therefore the first law tells us

U =Q+ W =-Ldn, — PdV.

T M X g T T B e e

Problem 5.45

'Il‘lhe energy of the system is U = énRT, where f = 5 for nearly all the molecules in
the air, so

-Z-anT = —Ldn, — PdV.

Now the only problem is to rewrite the last term in terms of dT" and dP. From the
ideal gas law and the product rule for derivatives, note that

PdV +VdP=nRdT.

Therefore our result is
5
fanT =—Ldn, +VdP-nRdT,

where the V' in the second-to-last term can be expressed as nRT/P. Solving for dT
then yields

2T 2 L

d'=-=dP->— .

7P Tk
F‘or a somewhat more rigorous derivation, let us now treat the entire rising air mass,
including the water vapor and water droplets, as the “system.” For this system, @ =0
so the first law tells us simply

dU = —-PdV.
Now rewrite this relation in terms of enthalpy. Since H = U + PV,

dH =dU + PdV + V dP or dH =V dP,

for our adiabatic process. The enthalpy of the system is the sum of the enthalpy of
the H,O (vapor plus liquid) and the enthalpy of the “dry” air (all the other gases).
For the dry air,

Hiyue=U+PV = gnRT +PV = %nRT,

so dHy, = InRdT. (This n includes only the dry air, not the water vapor.) The
enthalpy of the H,0 can also change because of its “heat capacity,” but the dominant
contribution to its change in enthalpy comes from condensation; in fact, the precise

definition of L is the enthalpy change per mole due to the phase transformation.
Therefore

dHy,0 ~ Ldn,,

where the ~ symbol indicates that I've omitted the small terms that come from the

change in temperature of the vapor and the liquid. Plugging in these two contributions
to dH, we have

%anT + Ldn, =V dP.

Again we can write V = nRT/P, where n technically includes the water vapor but is
approximately equal to n for the dry air alone. Therefore, to a good approximation,

7 nRT
5nRAT = "= dP — Ldn,,
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(b)

(c

~—

which can be solved to yield the same result for dT as before. This time, though, the
approximations being made are more explicit: I'm assuming that the H,O makes up
only a small percentage of the entire air mass.

Because the air and the water vapor are both approximately ideal gases, the ratio
n.,/n should be the same as P,/ P, the ratio of the vapor pressure to the 1fota.1 pressure.
(Again I'm assuming that the water vapor makes up only a small fra,;ctu?n of the air,
so P is approximately the same as the partial pressure of the “dry” air.) In other

words, P
v

P
Notice that n, depends on temperature, through P,. To differentiate with respect
to z, we can use the chain rule for partial derivatives:

dn, _ 6nwdT+3&£
dz 0T dz ' OP dz i
n dP, dT -1
=Fdl iz +nP(5)

n L dT nP, i.g

TPTVd: Prdz’
In the last step I've used the Clausius-Clapeyron relation, so the V' in the first term
represents the volume of one mole of water vapor, which is RT/P,. Therefore we have

dn, nPLdl _nP,dP
dz  PRT?dz P? dz’

Ty =

Dividing the result of part (a) by dz and inserting the result of part (b), we have

dr _2TdP 21 nPuLg_@g)
dz  7Pdz TnR\PRT?dz P? dz/’

2 PL2N\dT _2 Z+ LP,,>g1i
(H?PRzTZ = I\PTERP) &
But from Problem 1.16(b) we know that pressure decreases with altitude according

to dP/dz = —MgP/RT, where M is the mass of a mole of air. Inserting this relation
gives

2 PI? \dT _ 2(MgP Z+LPU)=_(gﬂ><1+LPU>’
(1+7PR2T2 Z = 1\rRr J\P T RP? TR RTP

and solving for dT'/dz gives our final result,

or

P L

aT (2Mg) Y+ E5T

== GE)T 2R LY
1+7TP’(RT>

(d)

Problem 5.46

This formula should be quite accurate as long as the water vapor and water droplets
make up only a small percentage of the mass of the system.
As shown in Problem 1.40, the prefactor evaluates to 9.8 K/km. At 1 bar and 25°C,
the ratio P,/P is 0.032 (see page 167), while L/RT = (43,990 J)/(8.31 J/K)(298 K) =
17.8. Therefore the correction factor is
1+(0.032)(178) 14056
1+ (2/7)(0.032)(17.8)2  1+2.85

implying that the lapse rate is only 4.0 K/km for saturated air under these conditions.
At 1 bar and 0°C, on the other hand, P,/P is only 0.0061, while L/RT is slightly
higher, 19.8. The correction factor is therefore

1+(0.0061)(19.8)  1+0.12
1+ (2/7)(0.0061)(19.8)2 ~ 1 +0.69

implying that the lapse rate is 6.5 K/km. Whereas the dry adiabatic lapse rate is
independent of temperature and pressure, the wet lapse rate decreases with increasing
temperature; that is, saturated air tends to convect more readily when it is warmer.
Why is this? Mostly because the amount of water vapor in saturated air is so much
greater for warm air, and the rate at which droplets must form (and give up energy)
is therefore much greater if the air is warm. At lower pressures (higher altitudes), the
correction terms in both the numerator and the denominator increase by the same
percentage, but term in the denominator is larger to begin with and therefore has a
larger effect, yielding a lapse rate that is somewhat lower still. Regardless of the initial
temperature and pressure, when a rising air mass reaches the dew point and a cloud
begins to form, the air mass becomes even more unstable to convection and tends to
rise more quickly. This tendency is greater if the temperature is still relatively high
when the dew point is reached, as it would be on a humid summer day. The result is
often towering cumulonimbus clouds and thunderstorms.

=041,

= 0.66,

Problem 5.46. (Nucleation of cloud droplets.)

(a)

(b)

For any pure system we can write the Gibbs free energy as G = Nu. For a liquid
droplet surrounded by vapor, the total Gibbs free energy would be simply the sum of
contributions from the two subsystems:

G= Nypy + Nypyy = Ny + (.N —_ Nl)#u =Np, + ]Vl(#l — ,U.,,),

where the subscript ! is for liquid and v is for vapor. If v, is the volume per molecule
in the liquid, then N is the ratio of the total volume of the liquid to v;. Assuming a
spherical droplet, we therefore have

473
G=Nup, + 3—111(#[ — ).

The Gibbs free energy of the droplet’s surface is simply the surface area times the

surface tension, o. So if we include this contribution, the total Gibbs free energy is

4 3

G =Ny, + %(M — ly) + dro.
(3
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()

The r dependence of G comes from the second and third terms in thte precedin'g
expression. The third term is always positive and is quadratic in r, so its g.re?ph is
an upward-opening parabola. The second term is cubic in r, but can be positive or
negative depending on which is larger, g; or p,. If g > p,, indicating that molet.:ules
would tend to diffuse from the liquid to the vapor (even neglecting surface tension),
then this term is also positive so the graph of G looks like that shown below, left. The
only equilibrium point is the minimum at 7 = 0, so the tendency of G to de‘crease will
cause any water droplet to evaporate and disappear. On the other hand, if p, > pi,

Problem 5.47
so the Kelvin equation becomes

_ 1.08 nm

= ———— or

— (1.08nm)/r.:.
"= To(RE) RE=e

The critical radius goes to zero as the relative humidity goes to infinity, and goes to infinity
as the relative humidity goes to 100% (from above). A plot of 7, vs. relative humidity is

shown at right.

We know from expe-
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; rience that the relative humidity in our 1o
then the cubic term is negative so the graph of G vs. r looks like that shown ?elow, atmosphere is never much greater than .
) right. Now there is a nontrivial equilibrium radius r., where G reaches a maximum. 100%; therefore, according to this analy-
This equilibrium is unstable, however. Droplets smaller than r, will evaporate, while sis, droplets smaller than about 10 nm in -~ 6
droplets larger than r, will grow until the vapor becomes depleted of water molecules radius should never be stable. But a 10- E
and u, is no longer greater than u;. nm droplet contains more than 10° mole- © 4
cules, so it could never form spontaneous
¢4 Bo <t ¢ b > pu out of a random density ﬂucri):uation. Wz 2
are forced to conclude that clouds droplets
in our atmosphere must nucleate through 100% 200% 300% 400% 500%
some other process. Relative humidity
Problem 5.47. (Phase diagrams of magnetic systems.)
> — py (i (a) In analogy with the derivation on pages 172-173, imagine a magnetic system that is
just at the boundary between two phases. Under these conditions, let the (magnetic)
(d) To find the critical radius, set the derivative of G equal to zero: Gibbs free energy be G, if the system is in phase 1, and G, if the system is in phase 2.
dc 42 Because neither phase is more stable than the other, G; = G,. Now consider an
0= - =" £ (1o — 1) + 8770 infinitesimal change in conditions (T and %) such that the system remains on the
Te ! phase boundary. Because the two phases must remain equally stable, the changes in
Solving for r. gives their Gibbs free energies must be equal: dG; = dG,. But by the thermodynamic
o= ﬁ“l_. identity for G, this implies
Mo — Hy

Now the chemical potential of the vapor can be written in terms of its partial pressure —8,dT — poMy dH = =53 dT ~ oM, dH.
P using equation 5.40:

oy = p + kT In(P/P°), Rearranging the terms in this equation gives

where © refers to any convenient reference pressure. If we take the reference pressure

. po{Ms — My)dH = —(S; — 8,) dT,
to be the nominal vapor pressure, that is, the pressure of vapor that would be in

- equilibrium with a flat surface of the liquid, then P/P° is just the relative humidity i or i 55— S,
(which I'll call RH) and p is equal to yu;. The difference p, — p; can therefore be == ATAL
written as kT In(RH), and our expression for the critical radius becomes : Ho(M> 1
% %w 2V, This is the analogue of the Clausius-Clapeyron relation for a magnetic system.
. V) 1
Te = TR (II%H) or RH = exp(—kTT > = exp (_RTT ), (b) The phase boundary for the up- and down-magnetized phases in Figure 5.14 is hori-

zontal, so according to the result of part (a), the difference in entropy between the two
phases should be zero. This makes sense, because of the symmetry of the situation;
there’s no reason why one phase or the other should have more entropy.

Let phase 1 be the normal phase and phase 2 be the superconducting phase. By
the definition of ¥, the condition that B = 0 ipside a superconductor implies that

where V; is the volume of one mole of the liquid. (This result is known as'the Kelvin
equation.) For water at 20°C,
20V, _ 2(0.073 J/m?)(18 x 10~° m?)
RT = (8.315 J/K)(293 K)

~

=1.08x 10™° m = 1.08 nm, (c
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H = —M,/V or M = —V'H. Assuming that M, is negligible in comparison, the result
of part (a) then becomes

dH _ S — S
dT ~ pVH'’
or
dH
Sy =5 = #OV'HE~

Looking at Figure 5.14, we see that the slope of the phase boundary (dH/dT) is
everywhere negative, except at 7' = 0 where the slope is zero. This indicates that the
entropy of the superconducting phase (S;) is less than the entropy of the normal phase
(S,) along the entire phase boundary except at the two ends. At the T = 0 end, both
phases presumably have zero entropy, in accord with the third law of thermodynamics.
At the H = 0 end we must also have S, = Sy, but here it's because neither phase is
magnetized at all.

Problem 5.48. From the van der Waals equation (5.52) we can differentiate to obtain

oP NkT  2aN* &P __2NkT _ 6aN?
SW_nNbE Vi

WS TW_NeE ! VB Ve
At the critical point, both of these expressions should equal zero, so

NkT. _ 2aN? 2NET. _ 6aN? 1)
Wo-NoE - V2 (A CER

Dividing the first of these equations by the second gives

%(K—Nb):%vc, or  V.=3Nb.

To obtain the critical temperature, plug this result into the first equation in (1):

NkT. 2aN? NET, _ 2aN? 8
v o sy

(BNb— Nb)2 ~ (3Nb)? AN

%)
o |

Finally, to obtain the critical pressure, plug both these results back into the van der Waals
equation itself:

P = NkT. aN? _8Na/2Tb  aN* _ i_l)a _1la
©“V.—Nb VZ  2Nb N2z~ \27 9 2752

Problem 5.51

Problem 5.49. Rather than punching all the formulas on my calculator, I set up a small
spreadsheet to compute the critical constants:

Critical Constants

a (J-m73) [b (m"3) |IT ¢ (K)[P_c (Pa)|V_c/n (m"3)
N_2 4.0E-49|6.0E-29 143) 4.1E+06 0.000108
H20 1.6E-48|6.0E-29 573| 1.6E+07 0.000108
He 1.0E-50|/1.0E-28 21.5]/ 3.7E+086 0.000018

For the a and b values T used the numbers given on page 181, except that I guessed that the
b value for He would be several times smaller than that of Ny and H,O. The final column
shows V. /n, the volume per mole; the volume per molecule would be simply 3b. As it turns
out, these @ and b values predict critical constants for N; and H,O that are all within a
factor of 2 of the correct values. My guessed b value for He, however, turned out to be
much too low. To remedy this, and to improve the other numbers as well, I adjusted all
the a and b values until the critical temperatures and pressures came out to the correct
experimental values:

Critical Constants

a (J-mA3)|b (m*3) [T c (K)|P_c (Pa)|V_c/n (mA3
N_2 3.8E-4916.4E-29 126{ 3.4E+06| 0.0001152
H20 1.5E-48|5.1E-29 647| 2.2E+07| 0.0000918
He 9.4E-51|3.9E-29 5.2| 2.3E+05| 0.0000702

I was surprised that I needed to use a b value for He that was not much lower than that for
the other molecules. Please note, though, that even these a and b values are in no sense
“exact”; for instance, they predict V, values that are significantly higher than measured,
as indicated in the following problem.

Problem 5.50. Using the results of Problem 5.48, we have for a van der Waals fluid at
the critical point

PV, la 3Nb 27b 3
NiT. - %R N 8a 3 0%

This is indeed significantly higher than the experimental values quoted in the problem.

Problem 5.51. Substituting T = tT,, P = pP,, and V = vV, into the van der Waals
equation gives
NktT, aN?
wW,—Nb w2V’
Plugging in the results of Problem 5.48, we then obtain
la Nt 8a aN?  a 8t 3
P o7® T 3Nw—Nb 275  ONZR? 2‘7?(&;-1 _ﬁ)’

chz

that is,
- 8 3
P=3 =1 v
The constants a and b have conveniently disappeared. This means that when we use
reduced variables, our calculations apply to all van der Waals fluids, regardless of their a
and b values.
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Problem 5.52. To plot p(v) (in reduced variables) for ¢ = 0.95, I gave the following
instructions to Mathematica:
plv_] := (8%.95)/(3*v - 1) = 3/v"2
Plotip[vl,{v,.5,3},PlotRange->{{0,3},{.6,1}}]

This produced the plot shown below, left. I added the horizontal line by hand, adjusting it
vertically until the enclosed loops appeared to have equal areas. By this method, I estimate
the pressure of the phase transition to be at p = 0.81. To plot the Gibbs free energy, let
me first express it in terms of reduced variables. Starting from equation 5.56,

G Nbt 2aN?
=- - - T
NeT, = "HRNby - Nb) + o~ Wmev, T AT
t 2aN? 27b
=~ — 1) (V) + oo — Fang, 5 + D)
9
=~ - —_* _Zic
tin@v -1+ g7~ g + oD

where in the last step I've absorbed the term —tIn(Nb) into the new constant C(T). To
plot G/NKET vs. p, I used the following instructions:

glv ]l := -(.98)Log[3v-1] + .95/(3v-1) - 9/(4v)
ParametricPlot [{p[v],glvi},{v,.65,2.25}]

This produced the plot shown below, right, on which we again see that the transition is at
p =081

G/NkT.
P
~2.42
0.9r -2.44 :
t
0.8 """~/ ~2.46 i
il
1
0.7 ~2.48 E
1
. 1
0.6 "2.50 g% 0.80 0.85 0.9
v P

It’s a bit more satisfying, though hardly necessary, to actually calculate the transition
pressure. To do so, I first defined a Mathematica function for the antiderivative of p(v):

pIntlv_] := (8/3)*.95%Log[3*v ~ 1] + 3/v

I then defined a function to compute the difference between the areas of the two enclosed
loops, for any value of p0, the pressure at which the horizontal line is drawn:

AreaDiff [p0_,viguess_,v2guess_] := (
vi=FindRoot [p[v]==p0,{v,viguess}]I[[1,2]];
v2=FindRoot [p[v]==p0,{v,v2guess}] [[1,21];
pInt [v2]-pInt [v1i]-pO*(v2-v1))

Problem 5.54

In order to find the volumes v1 and v2 where the pressure equals the given value p0, the
FindRoot function requires approximate starting points, called viguess and v2guess. The
final line of the function computes the integral of p(v) from v1 to v2, then subtracts off the
area of the rectangle under the horizontal line, to obtain the difference between the areas
of the enclosed loops. To find the value of pO that makes this difference equal to zero now
requires just a single instruction:

FindRoot [AreaDiff [p0,.7,2]==0, {p0, .8, .82}]

The returned value of p0 was 0.8119.

Problem 5.53. This problem is just like the previous one, but with the temperature (in
units of T¢.) changed to 0.8. It’s also necessary to change the ranges of variables covered by
the plots. Here is the Mathematica code that I used to plot p(v) and G/NkT, vs. p:

plv.] := (8%.8)/(3%v - 1) - 3/v"2
Plot({p[vl,{v,.5,6},PlotRange~>{{0,6},{-.4,1}}]
glv ] := -(.8)Log[3v-1] + .8/(3v-1) - 9/(4v)
ParametricPlot[{p[v],g[v]},{v,.5,8}]

And here are the plots:

G/NET,
P
-2.3
0.8
0.6 -2.4
0.4}. _
0.2 /
-2.6
-0.
-0.4 -0.2 0.z 0.4 0.6 0.8
P

From either plot, we can see that the transition pressure is at approximately p = 0.38. To
calculate the transition pressure more precisely, I used the same AreaDiff function as in
the previous problem, but with a new temperature in the definition of pInt and different
starting points for the FindRoot functions:

plntlv_] := (8/3)%.8%Log[3*v - 1] + 3/v
FindRoot [(AreaDiff [p0,.5,5]==0 ,{p0, .35, .4}]

The p0 value returned was 0.3834.

Problem 5.54. Since F = G — PV for any system, we can start with equation 5.56 for
the Gibbs free energy, then subtract off PV, using the van der Waals equation to express
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Pintermsof V:
(NET)(Nb) _ 2aN?

- — - — PV T
F=—-NkTln(V - Nb) + v — NG v +¢(T) 2
(NKT)(Nb) _2aN® NkTV  aN> .
= —NKTI(V - Nb) + - vt v D
N2
= —~NKTIn(V ~ Nb) = NKT - S +<(T)

2

= —NKTIn(V - Nb) — % +C(T),
where in the last step I've absorbed the term —NkT into the constant C(T). Now divide
by NkT, and put the expression in terms of the dimensionless variables v = V/V, and
t = T/T., where V. = 3Nb and kT, = 8a/27b:

F aN?
NiT. = —¢ ln(va — Nb) - m + C(T)
aN? 27b
- —1)- VB or
= —tIn(3v — 1) ~ tIn(Nb) ~ e+ O(T)

= —tln(3v~1) - 8% +5(8),

where again I've absorbed terms that don’t depend on v into the final constant term. To
plot this function (without the constant term) I used the Mathematica instruction
Plot[-.8%Log[3v-1] - 9/(8v), {v,.4 ,6}]

Here’s the graph, on which I’ve added dots at points corresponding to the liquid and gas
at the vapor pressure:

1 2 3 4 5 [
Now suppose the system consists of a combination of two different states represented by
the dots: it is part liquid and part gas. Let z be the fraction (by mass) of liquid, so the
fraction of gas is 1—z. The total volume of the system is then

V=zli+(1-2)V, =V, —z(V; - W)

ol

Problem 5.55
and the total free energy is
F=zR+ (1-z)F,=F, —z(F, - F).
Combining these two equations to eliminate z, we obtain

g W=V) o
F=F, W= Vl)(Fg F).

This equation for F(V) describes a straight line going through the points (V;, Fi) and
(Vg, Fy); it is drawn as a dashed line in the preceding plot. Notice that this straight line
lies below the original curve representing the free energy of a homogeneous state of uniform
density. Since a system at constant T and V tends to minimize its free energy, the stable
states at volumes between V; and V, are those represented by the dashed line, not the solid
curve. Notice also that at the points where the line meets the curve at each end, it is
tangent to the curve, indicating that this is the lowest possible straight line that can be
drawn between any two points on the curve, lying entirely below it. In fact, had we not
known the trapsition volumes V; and Vj, we could have found them by drawing the lowest
possible such straight line and then looking at where it meets the curve at a tangent. This
process is just another way of doing the so-called Maxwell construction.

Problem 5.55. (Critical behavior of a van der Waals fluid.)
(a) In reduced variables, the van der Waals equation is

p=8t(3w - 1)t - 3v72

We want to expand this in a Taylor series about the point v = 1, keeping terms
through third order. We therefore need the first, second, and third derivatives of p
with respect to v:

% 2
—_— - - - 6 -3,
5 24t(3v — 1)~ 4 607
d*p -3 —4,
ek 144¢(3v - 1) 18v™%
&p -4 -5
ﬁ = —1296t(3v - 1) + T2v7°.
Our series expansion is therefore
8p 18% . 18% 3
p(v) = p(1) + 5= 1(“ “V+555 1(“ “D)+ 5o 1(”— 2)

=(4t—3) -6t —1)(v—1) +9(¢ —1)(v —1)* — (9% — 8)(v — 1)%.

If you find this calculation tedious, you can instead do it all with a single instruction
to Mathematica:
Series[8t/(3v-1) - 3/v°2, {v,1,3}]

Now imagine plotting this formula for p as a function of v, with ¢ held fixed at a
value that is very close to 1. When (v — 1) is as small as (¢ — 1) or smaller, the term
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(b)

(<)

linear in (v — 1) will be much larger than the quadratic or the cubic term, so the
graph will be approximately linear. When (v — 1)? becomes comparable to (£ — 1), the
cubic term becomes comparable in size to the linear term, while the quadratic term
remains smaller than either. Therefore, to plot the isotherm and perform the Maxwell
construction, we need to keep the cubic term (which produces the “loops™) but we can
neglect the quadratic term. We can, however, set ¢ = 1 in the cubic term, to obtain
the expression
p=(4~3)—6(t—1)(v-1)-3(v-1)%

The plot at right shows the approxi-

p
mate van der Waals isotherm for ¢t = 0.9964
0.999, with the dashed curve including
the entire Taylor expansion computed 0.9962
in part (a) and the solid curve omit- v
ting the term quadratic in (v~ 1). As o. .95 .1
t gets even closer to 1, the two curves \—o- 9958
become indistinguishable over the range
of v values relevant to performing the 0.9956
Maxwell construction. Notice that the

solid curve is antisymmetric about the point v — 1. This means that the horizontal,
constant-pressure line that results in equal areas enclosed by the two “loops” should
run directly through the point of symmetry, » = 1. In other words, the pressure of the
phase transition is exactly the same as the pressure predicted by the van der Waals
equation at the (unphysical) point v = 1. This pressure is simply p = 4t — 3. The
slope of the phase boundary in the p-t plane is therefore dp/dt = 4, in the limit where
t — 1, that is, at the critical point.

The volumes of the liquid and gas at the transition pressure are just the values of v
at the transition pressure found in part (b). That pressure is 4t — 3, so set

4 -3 =4 -3 -6(t—1)(v—1)— (9t —8)(v —1)*
= 0=6(t—1)+3(9t—8)(v-1)2

Since we're interested in the limit ¢ — 1, we can set ¢t = 1 in the last term and solve

for (v — 1) to obtain
v—1=22v1-t

The two solutions correspond to the volumes of the liquid (—) and the gas (+) at the
transition pressure. The difference between the two volumes is

vo—v=(1+2/1—1) - (1-2v/1—1) =4v1~1t.

This difference is proportional to (T — T.)'/?, so the van der Waals model predicts
that the exponent 8 is equal to 1/2.

(d) By the Clausius-Clapeyron relation, the latent heat is

dP d 3 d
L=T(, - V‘)ﬁ = P.V.(v,~ v,)diz = gNch(v57 - U')FI;"

where in the last step I've used the result

Problem 5.55

of Problem 5.50. Plugging in the results of NkT.

parts (b) and (c), this expression becomes

in the limit ¢ — 1. This equation describes
a parabola opening to the left, decreasing to 1
zero as t — 1 (as expected).

(e)

1)

L

3
m—§‘4vl'—t'4=6\/1—t,

— t

0.2 0.4 0.6 0.8 1
Setting ¢ = 1, our Taylor-expanded van der Waals equation becomes

p=1-3(w-1)>%

In conventional notation, this says that at T' = T, the quantity P — P, is proportional
to (V — V,)%. Therefore the critical exponent § is equal to 3 (in the van der Waals
model).

In terms of reduced variables, the isothermal compressibility is

o _L1fovy 1[0
T Pw\dp/), P\3dp),

where the approximation is accurate near the critical point. So we need to compute
the partial derivative (8v/0p),, or equivalently, its reciprocal, (8p/dv),, which is just
the slope of the isotherm plotted in the p-v plane. From the result of part (a) we have,
to a good approximation,

(g_z)t =-6(t—1)~ g('u —1)%

The tricky part is deciding where to evaluate this expression. When ¢ approaches 1
from above, there is only one volume for a given pressure, so we can just set v =1 to
obtain (Op/dv), = —6(t — 1). The compressibility is therefore

1 1 T

B -6(t—1) 6P.(T-T.)
which diverges as 1/(T -~ T.), indicating that v = 1. When ¢ < 1, however, there are

three volumes for any given pressure and temperature, of which only two are physical,
and for these, v — 1 & *2+/1 — ¢. In this case we have

9p\ _ 9 _
(E)t =6(1~1) = 5 -4(1—t) = —12(1 1),
for either the liquid or the gas. The compressibility is therefore

1 1 T.

K= -

(T — T, from above),

K=

(T — T. from below),

TP C12(1-%) 12P(T.-T)

which again diverges as 1/(T — T.) (though with a different coefficient), indicating
that 4" = 1.
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The bracketed expression, for our initial conditions, is

(1.38 x 10~ J/K)(300 K) /2m(9.1 x 10~ kg)(2.18 x 10~18 J))”2 607
10° Pa (6.63 x 10-3 J.5)2 '
so we need to solve the transcendental equation

1

5 = (6272)¢%/%7/.

To do so, I used the FindRoot function of Mathematica:

6 Boltzmann Statistics

Problem 6.1. To make the table and graphs I modified the spreadsheet from Problem 2.10.
I changed N4 to 1 and guoea) to 500, then deleted all but the first 21 rows of the table (up

t0 g4 = 20) and added a column for the logarithm of the total multiplicity. Here are the
first few rows of the spreadsheet:

FindRoot [.5==6272*t"1.5+Exp[-1/t],{t,1}]

The value returned was ¢t = 0.1514, corresponding to T = (0.1514) /k = 23,900 K or

about 24,000 K. Notice that 50% ionization occurs when kT, and hence the typical

kinet.ic. energy of the ators, is much_ !ess than the ioniza.tio?l energy I - TlJnder thesz N—e\_ 1Omega ry Nq—_BB— B?nc;ga_B Omgg.t':lo_t?c: ta-I ﬁ:()gmega_t)
condxt1on§, t.he w‘/ast majority of coH151on§ be?ween atoms will not be violent enoug 0 1] 500] 2E+115] 1.85E+115] 265.41374
to cause ionization. Apparently, recombm_atlon of an electron and a proton is alsof 1 1] 499] 2E+115| 1.55E+115| 265 23309
unh]fcel)'r, due to all the space between particles, that is, due to the larger entropy o 2 1 498 1E+115]| 1.29E+115] 265.0521
the jonized state. 3 1] 497| 1E+115]1.08E+115| 264.87079
(c) According to Le Chatelier’s principle (page 212), increasing the total pressure should 4 1] 496/ 9E+114/ 8.07E+114| 264.68914

inhibit ionization, since there is less pressure when there are fewer free particles. And
indeed, the quantity o is inversely proportional to P, and the ionization fraction

Here are graphs of the total multiplicity and its logarithm vs. ga:

decreases when a decreases. I
(d) To plot the jonization fraction, I used the Mathematica instructions 2E+115 % 2661
= 2E4115 | & 26547,
alpha = 6272%t~1.5%Exp[-1/t]; o 1 & 26 fea,
Plot[-(alpha/2)+Sqrt{(alpha/2) "2+alpha] ,{t,0, .4},PlotRange->411] B 1E+115 | £ 26: e, .
- o n
. : . 1 M = u,
This produced the following graph: ; 5E+114 | =R ., .
1 01 1 t 261+ t —
] 0 20 |\ 0 10 20
< 0.8
2 q_A 1 q_A
Q
I - |
5 Notice that the shape of the first graph closely resembles a decaying exponential function,
5 0.4 and the linearity of the second graph verifies that the shape is exponential to a good
= approximation. This is exactly what we should expect, because this system consists of a
S 0.2 . . . . .
= small system (A) in thermal contact with a much larger reservoir (B). In the approximation
where the reservoir is infinitely larger than the small system, the Boltzmann distribution
0.1 0.2 0.3 0.4 should apply so the probability of the small system containing g4 units of energy should be
t=kT/I proportional to an exponential function of —g4. The multiplicity of the combined system

Notice that most of the ionization occurs over a rather narrow range of tempera~
tures, between t values of about 0.1 and 0.2. At lower temperatures, the ionizaton is
exponentially suppressed. At ¢t = 0.5, the ionization is essentially complete.

M e AR 2 TEREITE)TR Bl

is proportional to the probability of the small system having g4 units of energy, so the
multiplicity graph should also be a decaying exponential. According to the Boltzmann
distribution, the slope of the graph of In§) should be —e/kT, where € is the size of an
energy unit and T is the temperature of the reservoir. But according to our definition of
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temperature, the reservoir temperature is given by
1 _ 353 _ _aSB _ _Ea(anB)
Tg 8Ug 08U, € 0q1
The final partial derivative is the slope of the second graph above, so indeed, that slope is
—¢/kT, in accord with the Boltzmann distribution.

Problem 6.2. If a particular energy level has n degenerate states, then the probability
of the system being in that level is just n times the probability of being in any one of the
states:

P(E) = nP(s) =n- %e_E/"T.
If we write n as €™ = e5/* (defining S = klan), then this becomes

1 1
P(E) = %eS/ke—E/kT — 26-(&'-75)/1:7' - _Z_e—p/k:r_

Problem 6.3. For this two-state system,
Z=e+e /T =14/,

where € = 2 eV is the energy of the excited state. Thus Z varies between 1 (in the limit
T — 0) and 2 (in the limit T' — oc). To plot the partition function vs. temperature it's
convenient to define the dimensionless variable ¢ = kT'/¢, so Z = 1 + e~*/*. The value of
t at T = 300 K is about 1/80 = .013, while the value of ¢ at T = 300,000 K is about 13.
(Recall that at 300 K, kT = .026 eV = 1/40 eV.) Here, then, is a plot of Z vs. ¢ for values
of t up to 13:

2

0 2 4 6 8§ 10 12 KL/e

Plugging in the particular temperatures given yields the following values:

T=300K: Z=1+eV%®=1422x10"%

T=3000K: Z=1+e*1=1.00043
T=30,000K: Z=1+e¥3=146
T=300,000K: Z=1+eY®=103

Notice that the approach to 1 at low temperature is much more dramatic than the approach
to 2 at high temperature.

Problem 6.6

Problem 6.4. Since the ground state of this system has energy 0, it contributes exactly
e® = 1 to the partition function. The remaining states contribute in proportion to their
Boltzmann factors, which are just the heights of the gray bars in the graph. With a ruler I
measured the total height of the nine gray bars to be 13.0 cm. The height of the first bar
is 4.4 cm, so relative to the height of the first bar, the total of all of them is 13/4.4 = 2.95,
or about 3. Therefore Z = 3, and the probability of the ground state is 1/Z ~ 1/3.

Problem 6.5. (A three-state toy model.)
(a) At 300 K, kT = 0.026 eV, as computed on page 13. Therefore the partition function
for this system is
7 = (7005/0026) 4 g0 1. o=(0.05/0.0%) — .84 + 1+ 0.15 = 7.99.

(b) Numbering the states 1, 2, and 3 in the order listed, the probabilities are
6.84 1 0.15

(c) Measuring the energies now relative to the ground state, we have

P

Z = e + ¢~ (0:08/0.026) | —(0.10/0.026) _ 1 4 (.15 4+ 0.02 = 1.17.
And the probabilities are

1 0.15 0.02
= —— = 0.86; =—=013; =— =0.02.
117 =% P=iy7 P P 2
So even though the partition function changes, the probabilities are unchanged, as
they must be because nature can’t possibly care what we use as our zero-point for
measuring energy.

Py

Problem 6.6. Let E; be the ground-state energy and F, the energy of the first excited
(n = 2) level. The probability of being in any one of the first excited states is

e=E/kT  o=Ea/kT
7 o E/kT
In the last expression I've included only the first term in Z, since it's so much larger than
all the other terms, even at 10,000 K. Since there are four such states, the total probability
of having energy F, is four times as large:

P(s2) =

P(Ez) — 46—(E:—E;)/kT - 46—(10.2eV)/kT.

At T = 300 K we have kT = .026 eV, so
'P(Eg) = 4g—10-2/.026 _ 4 ,—395 1010510(45_“5) = 100810 4)-395(log;p &) — 1~171,
In other words, you’ll never find a hydrogen atom in its first excited level when it’s in

equilibrium with a reservoir at room temperature. At 9500 K, on the other hand, kT =
.819 eV, s0

P(EZ) = 46—10'2/'862 = 46—12.5 =16x 10—5.

At this temperature, about one atom in 64,000 is in its first excited level.
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Problem 6.7. Taking spin degeneracy into account, the ratio of probabilities for the two
lowest energy levels would be

P(By) _ 8- BT EmopT
P(E) 2-e BT € ’

the same as if we neglected the spin degeneracy.

Problem 6.8. The probability of an atom being ionized is not simply the Boltzmann
factor e~7/*T, with I being the ionization energy. Instead, to compute the probability
using Boltzmann factors, we would have to multiply by the degeneracy of the ionized state,
which is practically infinite. This makes the computation ambiguous, but at least it's fair
to say that the “infinite” degeneracy will make ionized states much more probable than
we might guess by their Boltzmann factors alone. In fact, the probability of ionization
depends not only on the temperature and the ionization energy, but also on the density of
free electrons in the environment, as shown in Section 5.6.

Problem 6.9. (Partition function for a hydrogen atom.)

(a) 'l take the ground-state energy (E;) to be zero, so that the excited-state energies
are E; = 10.2 eV, E; = 12.1 eV, and so on up to Eyx = 13.6 eV. Also note that kT
at T = 5800 K is 0.50 eV. Including only the first three levels, the partition function

would be
Z = e~ BV/KT | fo—Br/kT | go~Ea/kT

-20.4 —24.2

= eO + de -+ Qe
=1+ (5.6x107°) + (2.8 x 10719)
= 1.0000000059.

(b) Since there are n® states with energy E,, the full partition function is

o0
= an e—E“/kT'

n=1

(This sum includes only bound states, not ionized states; let’s say that it’s not an
atom if it’s ionized.) All of the E,’s are less than E,, = 13.6 eV, so we can safely
conclude that

o0 o
Z> an e~ Ew/kT _ o=Eea/kT z n? = co.
n=1 n=1

Even though the Boltzmann factor e~#=/5T might be tiny (for example, at T' = 5800 K
it is only 1.5 x 107!2), the sum diverges because there are infinitely many states with
Boltzmann factors at least this large.

(c) If we keep the PdV term in equation 6.3, then the Boltzmann factor acquires an
addition PV term in the exponent:

—(E+PV)/kT
b

New Boltzmann factor = e
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where V is the .volu.me of the system and P is the pressure of the reservoir. For a
hyirogen atom in its ground state, V = (1 A, so at atmospheric pressure, PV =~
-(10 Pa}(107*° m®) = 10~% J ~ 106 eV. For the n = 10 state, however th:e radius
is 100 times 'larger so the volume is a million times larger, t7hat is P’V ~ 1eV
?;t atmos”pherlc pressure. (I don’t know off-hand what the pressure ;s at the sun’s
surface,” where the density of atoms is probably lower than in our atmosphere but
the temperature is much higher. At any reasonable pressure, though, there will be
some not-too-large n at which PV =~ 1 eV.) At 5800 K, a PV term of 1 :eV reduces the
Boltzmann factor by a factor of e=2 = 0.14, so this term is not negligible. And as n
grows, the PV terms cause the Boltzmann factors to decrease exponentia.lly: Therefore
the ,correct partition function will be dominated by the first few energy levels. At the
sun’s temperature, this means that Z will be very close to 1, as shown in pa.r-t (a).

Problem 6.10. (Vibrational excitations of H,0.)
(a) The partition function for this vibrating atom is

Z = e M/MT |y o=3h/UT o o—shi/uT ||
At 300 K, '
hf _ (4.136 x 1015 6V - 5)(4.8 x 1013 s™1)
kT (8617 x 10~° eV/K) (300 K)

so the partition function is approximately

=7.68,

Z =g 48 om1152  om1920 |
=0.0215+ (9.9 x 107°) + (4.6 x 10~9) + ...
= 0.0215.

The probabilities of the lowest two excited states are therefore

_ 9.9 x10°

Py _46x10°°

m = 000046, Pz = W =2.1x 10_7.

The probability of the ground state is very nearly 1; more precisely,

Po =1 —0.00046 = 0.99954,

(b) At 700 K, the ratio hf /kT is smaller b
. , y a factor of 3/7, =
partition function is /150 RIJKT = 825 sad the

— o—1624 ; 4873 , __8 -
T = +e e8I nar

= 0.1971 + 0.0077 + 0.0003 + 0.00001 + - - -

= 0.2051.
The probabilities are therefore
0.1971 0.0077
Po=——— =0.961, == - 00003
0.2051 Pr=Ga0s1 =008, Pi= 0.2051 — %001
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Problem 6.11. For the parameters given,

pB _ (103 x 1077 eV/T)(0.63 T)

o — = - _G-
KT = (862x 10~ oV /K)(E00 K) ~ 2oL ¥ 10

I'll call this quantity z. The Boltzmann factors for the states m = —3/2, —1/2, 1/2, and
3/2 are then

e~ /% = (.9999962, e~/ = 0.9999987, &*/2 = 1.0000013, €°%/2 = 1.0000038.
The partition function is almost exactly 4, so the probabilities of the four states are just

the Boltzmann factors divided by 4:
P(-2) = 0.24999906, P(—31) = 0.24999969, P(1)=0.25000031, P(}) = 0.25000094.

If the magnetic field is now reversed, we might expect the quantity z to change sign.
However, if the reversal is very sudden, the nuclei will not have time to realign themselves
during the reversal, so the probabilities of the four states will remain unchanged. This
means that z is unchanged, and to account for this, we can simply say that the temperature
also changes sign: z = uB/kT remains unchanged when both B and T change sign.

Problem 6.12. If the molecules are in equilibrium with a reservoir of temperature T, then
the probability of a molecule being in any one of the excited states, relative to the ground

state, should be
e~Ei/kT
e (Bi-Eo)/kT
e—Eo/kT :

We are given that this relative probability is approximately 1/10. Therefore,

B, —-E 1
———— =Iln— =-2303
T IDIO 2.303,
or
4.7x107% eV

(2.303)(8.62 x 10— eV/K)

The uncertainty in the data, however, is somewhat large. We now know that the tempera-
ture is closer to 2.7 K, and that the “reservoir” is the cosmic background radiation, a gas
of photons that fills the entire observable universe (see Section 7.4).

Problem 6.13. The ratio of probabilities under these conditions should be

P(n) _ emmn/kT —(Am)/RT _ (2.3 x 107 kg)(3 x 10° m/s)?\ _
Plp)  emee/iT ¢ = &P (' 13 x10% 3K aon k) ) = 086

In other words, there should be 86 neutrons for every 100 protons. That makes 186 particles
total, so the fraction of protons should be 100/186 = 0.54, and the fraction of neutrons
should be 86/186 = 0.46.
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Problem 6.14. Following the hint, let the system be a single air molecule, with state s,
at'sea level and state s, at a height z. Let’s also suppose that the two states differ only in
this respect; in particular, their energies differ only by the potential energy mgz. Then the
relative probability of these two states is

~E(s2)/kT .
Plsy) _ enBealk e~ (Blo2)=B@))/AT _ ,-mgz/kT

P(s1) eBGOAT =

In other wo.rds, for any given molecular velocity and internal state, a molecule is less likely -
to be at height z than at sea level by a factor e=™9%/*T_ Byt the available velocities and
internal states are exactly the same to molecules at any height, so this result tells us that

in an isothermal atmosphere, the number of molecules per unit volume at height z is less
than at sea level by the same factor:

p(z) = p(0) - T,
This is the same result derived in Problems 1.16 and 3.37.

Problem 6.15. (Weberium.)
(a)

ol 4(0 eV) +3(1 eV) + 2(4 €V) + 1(6 €V) _3eV48eV+6eV
10 - 10

=1.7eV.

(b) Each probability is just the number of atoms with that energy, divided by the total
number of atoms:

4 3
POV) = PleV)=1,  Plae) P(6 eV) = %.

2
=5
(o)

F=ZE(3)P(3)=(OeV)-%+(1eV)-1—?:)+(4eV)-%+(6eV)-1—10

3 8 6
+10e +10 eV+10 eV =1.7¢eV,

Problem 6.16. Starting from the definition of Z s
8z 8 17}
= = —BE(s) _ —BE(s —BE(s
o = ap 2 = L = B
Now just multiply by —1 /Z, cancel the minus signs, and move the Z inside the sum:

_loz 1 re e PEC)
Z 8 - 7;(_E(S))e A ()=¥E(5) 7

=Y E(s)P(s) = E.
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Problem 6.17. (Standard deviations of the energy.)

(a) The average energy of the five atoms is 3 eV, so the deviations from the average, in
order from low energy to high, are —3 eV, ~3 eV, 1eV,1 eV, and 4 eV.

(b) The squares of the deviations, in eV?, are 9, 9, 1, 1, and 16, respectively. The average

f these numbers i
of these numbers is 049+141416 36 _
3 ===
The standard deviation is the square root of this number, about 2.7. Since the magni-
tudes of the deviations vary from 1 to 4, the number 2.7 does indeed give a reasonable
measure of the typical size of the deviations.

7.2.

(c) — 1 1 e 1 PR =2
ot =BEy =5 (AE) = D (E-E) =) (Bl -2EE+F)

1 2 o= 1 =2 1 = e =2
= NZEi —ZENZE,-+E NZ:Q) =FE?-2EE+E
=E-F.
(d) The squares of the energies in our toy model are 0, 0, 16, 16, and 49 eV2. The average

of these numbers is 16.2 eV2. The square of the average energy, meanwhile, is (3 eV)?
= 9 eV2. Therefore,

EZ-_FE =162eV2—0eVi="72eV?
exactly the same as our computation of o% in part (b).

Problem 6.18. Let’s just compute the second derivative of Z with respect to 5:

82z o2 _BE(s 0 —BE(s 2 _pE(s
¥ 6—,822’:‘;’ BE(s) ;%[—E(s)e PEE)] = E[E(s)] e—PE(s)
o e=BE(s)

=7y [E(s)] 57— =2 E".

Now I'll rearrange this identity and use the result of Problem 6.16 twice:

— 108 /0z2 190 — 1/0E,_ =0Z 8E
2= = = —=—— = —— — — = —— 2
E"zaﬂ(ae) 735 ZF) Z(aﬁZ+Eaﬁ> a;a+(E)‘
In other words,
—_ - 6E 8T oE
2 _ 2=——=—-————.
B2 - (B) ag b8 8T

But 8T/88 = (68/8T)™ = (—1/kT?)~' = —kT?, while §E/5T is just the heat capacity
at constant volume, Cy. Therefore,

0% =F2— (E)? = kT*Cy,

Or og = ICT‘\/Cv/k

Problem 6.20

Problem 6.19. For a system of N harmonic oscillators-in the high-temperature limit, the
average energy is NkT and the heat capacity is Nk. Therefore,

op = kT/Nk/k = kTVN.
Dividing by E = NkT gives
og kKTVN 1

E NkT ~ JN
So relative to the average energy, the typical energy fluctuations are smaller by a factor
of VN. For N = 1, that's a typical fluctuation of 100%. For N = 104, that’s a typical
fluctuation of one part in 100. And for N = 102, that’s a typical fluctuation of one part
in 10%°, quite impossible to measure. For a large system, therefore, we can generally ignore
energy fluctuations and just write E (or U), omitting the

Problem 6.20. (Average energy of a harmonic oscillator.)

@ 1+ 2 + 2?4
1-z/14+0x+0z2+ 023 +---
11—z
T + 0z
z— z°

z2 4+ 0z°

For the series to converge the terms need to keep getting smaller and smaller. This
happens when |z] < 1.

(b) Taking the ground state energy to be zero, the partition function for a. single oscillator
is
Z=etefpePhy. ..

=1l+e Pt (e PP (e )P +...

_ 1
T 1—efe?
by the result of part (a).
© 197 a
F=———=— _ =B _ p—Bey-1
Zog - "1 pa(1-e™

= —(1 = e)(=1)(1 &) (e )
ceP ¢

T l-eBe oPe_1’

(d) The total energy of N identical, independent oscillators is just N times the average
energy of one oscillator: :

— Ne
U= = .
NE ]

This is the same result as in Problem 3.25(c).
(e) (See solution to Problem 3.25.) ‘
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Problem 6.21. With 16 terms in the partition function, working this problem by hand
would take forever, yet it can be done in only a few lines with Mathematica. In the following
I'll show only my instructions and the graphical output, suppressing the long expressions
generated by Mathematica for the partition function, average energy, and heat capacity.
First I told Mathematica to calculate the partition function in terms of ¢ and S, keeping
terms through n = 15:

z = Sum[Exp[-eps*(1.03*n~-.03*n~2)*betal ,{n,0,15}]
To get the average energy, differentiate with respect to 8 and multiply by —-1/Z:
energy = -(1/z)*D{z,beta] /. beta->1/(k*T)

In this instruction I've also substituted 1/kT for 8 in the resulting expression. Now differ-
entiate with respect to T to get the heat capacity:

heatcap = D[energy,T] /. T->t*eps/k

To facilitate plotting, I'’ve substituted the dimensionless variable ¢t = kT/e. Finally, plot
Clkvs. t:
Plot[heatcap/k,{t,0,3}]

To check how the result depends on the number of energy levels included in the partition
sum, I repeated the calculation, changing the maximum n in the first instruction to 12 and
then to 10. The plot below shows all the results, as well as the heat capacity of a harmonic
oscillator with evenly spaced energy levels.

1.2 Tmax = 15
1
0.8
Clk 4 Harmonic P = 12
0.4 Nmax = 10
0.2
kT /e

0.5 1 1.5 2 2.5 3
The divergence of the three curves from each other as nmay changes indicates that we would
need to keep still more terms in the sum to predict the heat capacity above £ ~ 1. For
this system, however, there are hardly any more discrete levels beyond n = 15, because the
molecule dissociates; therefore, ¢ = 1 must be about the highest temperature at which the
bond remains unbroken. Even below ¢ = 1, however, we see that all three curves shoot well
above the heat capacity of a harmonic oscillator. We therefore have a robust prediction,
independent of npay: The heat capacity of this type of anharmonic oscillator is larger than
that of a harmonic oscillator at values of kt/e between about 0.5 and 1. Looking at the
vibrational portion of Figure 1.13, we see that indeed, the vibrational heat capacity shoots

Problem 6.22

right up to R, with no sign of leveling off before the molecules dissociate. (The upper
portion of the graph is dashed to indicate that rather high pressures would be needed to
keo.ep the molecules from dissociating even at somewhat lower temperatures. By the way,
this upper portion of the graph was calculated theoretically in the paper of Woolley, et al.,
using a model similar to the one used here (but more sophisticated in the way it treated
molecular rotation). There doesn’t seem to be any good experimental data on the heat
capacity of hydrogen at such high temperatures.)

Problem 6.22. (An n-state paramagnet.)
(a) First the induction proof. For n = 0, the formula gives

1+z!
l+z

which is indeed the sum of all powers of z up to z°. Now, assuming that the formula

works for n — 1, the sum of all the powers of up to z" is

7

(I4+z4+---+2" Y4z = +z°
l1—-z
_l-z (1-z)z”
T1-z " i-z
_ 1—17"+$"—.’l!n+1 1_$n+1
= 1-z TT1oz

completing the induction step of the proof.
Alternatively, we can write the finite sum as a difference of infinite sums:
I+z4-+a"=(l+z+ )= (" 42724 ..)
=Q+z+--) -2 l+z+-)
=(1+z+-- )1~z

= (f=5)a-a,

l—=2z

wheze)in the last step I've evaluated the infinite sum using the result of Problem
6.20(a).

(b) The aliowed energies of a single particle are
E=j,B, (j-1)4,B, ... —j§,B,
so the partition function is
Z = g i08uB | ~(-VB8.B | | . | ,+if6.B
= eI 4 g=G-Vb .. ghib
=e—jb[1+eb+e2b+___+e2jb]
=e®l+et (") +--+ (e"¥].

(b= 6,B)
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(¢)

The sum in brackets can be evaluated using the result of part (a); a few more manip-
ulations then put the answer in terms of sinh functions:

1 (b)%+h  gmib gt =42

= it = —
Z=e 1—et 1—eb e—b/2
eb+d) _ U+H)  sinh[b(j + )]
e—bl2 __ gb/2 - sinh%

There are several ways to compute the magnetization. One method is to notice that for
any particular state, the z component of the particle’s magnetic moment is equal to its
energy divided by — B; the same relation must hold between the average magnetization
and the average energy. Now according to equation 6.25, the average energy of one
magnetic particle is

1oz _ 140z
ZOB ZdB b
sinh%

=— 5
sinh[b(j + %)]( wB)

= ~6,B|(j + 1) coth(b(j + )] ~ } coth 3].

E=

(4 + §) sinh § coshfb(j + )] — § sinh[b(j + })] cosh &
(sinh 3)°

The average z component of the magnetic moment of this particle is given by this
expression times —1/B, so the total magnetization (in the z direction) of a system of
N such particles is

M = N3, [(j + 1) coth[b(j + 1)] — 1 coth g].
This formula is known as the Brillouin function. To plot it for j = £, 1, £, and 2, I

gave the following instructions to Mathematica:

brillj_,b.] := (j+.5)/Tanh[b(j+.5)] - .5/Tanh[b/2]
Plot{{bril(.5,b],bril{1,b],bril{1.5,b],bril(2,b]},{b,0,5%,
PlotPoints->100,Frame->True,PlotRange->{{0,5},{0,2.1}}]1;

Here is the plot:

b=4,B/kT

Problem 6.22

(d) As T — 0, the parameter b goes to infinity, so both coth functions go to 1 and the

magnetization becomes
M = No,[(5 +§) — 3] = Né,j.
In other words, all N of the particles are in the lowest-energy state (with p, = 76,),

as expected. Notice that the graph above confirms this behavior, and also shows that
M approaches its asymptotic value more quickly when j is large.

(e) Whenz « 1,

coshz _e"+e™ (I+z+322+32%)+(1—z+ 3% - 2%
sinhz e’—e"~(1+z+%z2+%z3)—(1—z+—;z2—éz“‘)
2+ z? 1 z? z3\-1 ] z2y’ z?
- R e )0+ 3) 20450
2z + 313 :z:(+2) 1+6) a:(l+2 1 6
1 2?2 z? 1 =z
H=|l+—=———)==+=.
z(+2 6) :1:+3

Therefore, as T — oo and b — 0, the magnetization is approximately

MzNép[(j.g._l_)( 1 +b(j+é)) 1(1+b/2):|

cothz =

2/\b(G+ 1) 3 /2T 3
1 by 152 1 b
*N‘sﬂ[z*a(”a)‘rﬂ
N&b[/. 1y 1
=73 [(“'E) _Z]
_ N&Bj(j+1)
- 3kT )

This is proportional to 1/T, in accord with Curie’s law.

(£) For the special case j = 3, the magnetization becomes

M = N§, [coth b — ! coth(b/2)].

You'd think it would be easy to reduce this to the simple tanh function derived in the
text, but I could think of nothing to do short of a brute-force reduction to exponential
functions:
M eb + e—b 1 eb/2 + e—b/?
N§, PP WY R
_ 2(eb/2 - e—b/z)(eb + e—b) _ (eb/z + e—b/Z)(eb - e"b)
2(eb — eb)(et/Z — e-b/7)
163/ _ 3eb/2 4 3e=b/2 _ g=3b/2 1 (eb/2 — e=b/2)3
2 eW/2 b2 — gb2 4 g—3/2 (/2 — e=*12)2(eb/2 1 g~ b/Z)
le

b2 gmb2 b
22y etz 2 t“hi‘

Setting d, = 2y and b = 84, B = 2BuB, we see that this expressioﬁ does indeed agree
with equations 3.32 and 6.28.
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Problem 6.23. For the numbers given,

kT (8.62 x 1075 eV/K)(300 K)
e .00024 eV

This is the approximate value of Z., according to equation 6.31. To compute the “ex-
act” partition function you need to include terms in the sum up to about § = 30. The
Mathematica instruction Sum[(2j+1)Exp{-j(j+1)/107.8]1,{j,0,30}] returns 108.1, and
increasing the upper limit affects only the second decimal place, so it seems that the approx-
imate formula is too low by about 0.3. (You can also carry out the sum with a calculator
or a computer spreadsheet program.)

=107.8.

Problem 6.24. The two atoms in an oxygen molecule are identical, and at room temper-
ature, kT >> €, so we can use equation 6.33:

kT 0.026 eV

Zro = 5 = 2(0.00018 6V)

Problem 6.25. Because of the symmetry of the CO; molecule, a 180° rotation has no
effect on its state, and therefore we should divide its rotational partition function by 2 just
as for a diatomic molecule with identical atoms:

kT 0.026 eV

_ e = 265.
2 2(0.000049 eV)

Loy =

Problem 6.26. Writing out the first two terms (j = 0 and j = 1) explicitly, the partition
function is
Z=1+43"%4....

The remaining terms can be neglected in the limit T — 0 (or § — o). To compute the
average energy I'll just sum the two lowest energies, weighted by their probabilities:

1 —-Beii+1) . 9¢ . g—2P¢
- i i e +3-2-¢€ _age
E= Y BG)- 04 ) g - S8
s

In the last step I've neglected the second term in the denominator, since this term gives a
correction that becomes negligible in the limit 8 — oo. (If the first term in the numerator
were nonzero I couldn’t get away with this.) Finally, the heat capacity per molecule is

_ a0 sepkr _ o —aepr(_2€ Iy _ 2€\? _oesir
= Ge?ﬁe kT — e/ (——k—) (_ﬁ) = 3k(k—j;) e 2/kT
In the last expression I've extracted the degeneracy factor of 3. The rest of the result is
the standard form for the heat capacity of a two-state system.

The plot on the following page shows the high- and low-temperature limiting expres-
sions for the heat capacity as solid curves. The dotted line would have been my guess at
an interpolation, had I not worked Problem 6.28.

sl
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Clk

0.8
0.6
0.4
0.2

0.5 1 1.5 2 2.5 3
kT /e

Problem 6.27. To calculate and plot the exact rotational partition function, I used the
Mathematica instruction

Plot [Sum[(2j+1)Exp[-j(j+1)/¢],{j,0,20}], {t,.001,5}]

Here t represents k7'/e. The upper limit of 20 is the sum turned out to be more than
necessary to get an accurate plot up to t = 5; I checked this by changing the upper limit
and verifying that the plot was unaffected. The plot is shown as the solid line below. The
dashed line represents the approximate formula, which appears to be less by about 1 /3
in the Hmit of large t. The reason why the approximation is too low is apparent from
Figure 6.7: The approximate formula, which represents the area under the solid curve in
the figure, omits the left-hand half of the very first bar in the graph, and the extra area
that it takes in, represented by white triangular spaces, is not enough to compensate.

Zrot

S kT /e

1 2 3 4

Problem 6.28. This problem is ideally suited for a symbolic algebra program such as
Mathematica. To sum the partition function I gave the instruction

z = Sum{(2j+1)Exp[-j(j+1)*b*eps],{j,0,6}]

where b represents 8 and eps represents €. Then to get the average energy I used equation
6.25:

energy = —(1/2)*D[z,b] /. b->1/(k*T)
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The capital D is the instruction to take the derivative, while the symbois following /. say to
evaluate the result “at the point” 8 = 1/kT. To get the heat capacity I then differentiated
with respect to temperature:

heatcap = D[energy,T] /. T->t*eps/k

I've also substituted the dimensionless variable ¢t = kT /¢, for the sake of plotting. I won’t
copy the resulting expression, which would fill half a page. The important thing is the plot,
which I generated by typing

Plot [heatcap/k, {t,.0001,3}, PlotRange->{{0,3},{0,1.2}}, Frame->True];

Here it is:

0.5 1 1.5 2 2.5 3
kT/e
Notice that the heat capacity over-shoots its asymptotic value by about 10% before leveling
off at high temperature.

To check whether I've included enough terms in the partition function, I increased
the “6” in the first line of the calculation to 7 and saw that the graph was unchanged.
Alternatively, the instruction

Table[(2j+1)Exp[-j(3+1)/31,{j,0,7}] //N

generates a table of the numerical values of the terms in the pa:tition function, for kT'/e = 3
(the highest temperature shown on the graph), through j = 7. The (rounded) values of the
terms are

1, 1.54, 0.68, 0.13, 0.011, 5.0 x 1074, 1.1 x 1075, 1.2 x 10”7,
showing that the j = 7 term contributes negligibly to the sum.

Problem 6.29. From the graph plotted in the previous problem, we see that the rotational
heat capacity falls off steeply when kT'/¢ is between about 0.3 and 0.6; the heat capacity
is at about half its asymptotic value when kT/e = 0.4. For HD, that translates to a
temperature of

T= = " 7 =96 K.

e e e e S Ee

Problem 6.30
Problem 6.30. (Parahydrogen and orthohydrogen.)

(a) ;[‘he proced}u.'e here is the same as in Problem 6.28, but we keep only the even-j terms
in the pa‘ri.:ltlon function. To be safe I'll go up to ; = 8. Here is the sequence of
Mathematica instructions for computing Z, E, and C, then plotting C:

zEven = Sum[(2j+1)Exp[-j(j+1)*b*eps],{j,0,8,2}];

eEven = -(1/zEven)*D[zEven,b] /. b->1/(k+T);

cEven = D{eEven,T] /. T->t*eps/k;

Plot[cEven/k,{t,.0001,5} »PlotRange->{{0,5},{0,1.6}},Frame~->True] ;

In the first line, the list { 3,0,8,2} says to include j values from 0 through 8 in steps

of 2.
(b) The procedure here is exactly the same except we sum over odd values of j. Here’s
the code:
2044 = Sum[(2j+1)Exp[-j(j+1)*bxeps],{j,1,7,2}];
e0dd = -(1/20dd)*D (z0dd,b] /. b->1/(k*T);
c0dd = D[e0dd,T] /. T->txeps/k; :

Plot{cOdd/k,{t,.0001,5},PlotRange->{{0,5},{0,1.6}},Frame->True] ;

Here are the plots for both para- and orthohydrogen, shown together for comparison:
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Notice that both graphs rise from zero at temperatures considerably higher than for
a molecule of distingnishable atoms (as shown in Problem 6.28). This is because the
gap between the lowest and next-lowest energy levels is significantly larger when only
half of the levels are accessible.

(c) For a “mixture” of 1/4 parahydrogen and 3/4 orthohydrogen we can just add the
separate heat capacities, weighted by these fractions:

cNormal = .25#cEven + .75%c0dd;
Plot[cNormal/k,{t,.0001 »5},PlotRange->{{0,5},{0,1.2}},Frame->True] ;

The plot (see the following page) lacks the interesting “bump,” but still rises from
Zero at rather high temperatures:
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(d)

(e)

Clk
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The heat capacity reaches half its asymptotic value at kT /e = 1.67, as you can see
from the graph or calculate by typing FindRoot [cNormal/k==.5, {t,1.5,2}]. For
€ = 0.0076 eV, this point occurs at T' = 1.67¢/k = 150 K, in agreement with the
data plotted in Figure 1.13. Note that if the hydrogen atoms were distinguishable, we
would predict for this graph not only a rise from zero at lower temperature, but also
a slight “bump” as shown in the solution to Problem 6.28.

For a molecule that is truly in equilibrium, we should resum the partition function,
weighting the odd-j terms threefold to account for the spin degeneracy. We can then
recalculate the energy and the heat capacity as before:

2Equil = zEven + 3+%20dd;

eEquil = -(1/zEquil)*D[zEquil,b] /. b->1/(k*T);

cEquil = D[eEquil,T] /. T->t*eps/k;
Plot[cEquil/k,{t,.0001,5},PlotRange->{{0,5},{0,2.2}} ,Frame->True] ;

Clk 2
1.5 Equilibrium hydrogen
1
0.5
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kT /e

This time the heat capacity contains a huge peak at the temperature where the
ninefold-degenerate j = 1 level first becomes accessible; there is then a broad val-
ley due to the fact that the j = 2 level is only fivefold-degenerate. And, of course, the
initial rise occurs at much lower temperature because the first excited state is only 2
above the ground state.

For “normal” deuterium we can compute the heat capacity in the same way as for
normal hydrogen, but with the weighting factors 2/3 for the even-j heat capacity and

Problem 6.32
1/3 for the-odd-j heat capacity:

cNormD = (2/3)*cEven + (1/3)%c0dd;
Plot [cNormD/k,{t,.0001 ,5},PlotRange->{{0,5},{0,1. 2}},Frame->True] ;

C/k

Normal deuterium

2 3 4 5
kT/e

With the even-j states weighted more heavily than for normal hydrogen, the graph
does have a bump this time.

Problem 631 If state g has energy clq|, then the Boltzmann factor for this state is e—#cld!
and the partition function is the sum of all these Boltzmann factors:

1
= = e Bolal — ~felg)
Z Eq e " E., e Ag.

In the limit Ag — 0 the sum becomes an integral:

1 [ 1 ™ 2/ 1
7= */ e~ Belgl dq =9. _/ e Pedgn— 2 (= \o—Beq
Ag /., Aq /, 1= Aq ( ﬂc)e o Beiq

(Since the integral is symmetric under ¢ — —q, I've written it as twice the integral over

only positive ¢ values. This trick gets rid of the absolute value bars.) The average energy
is therefore
162z B

w__102 _B, _ _]__
E=-755 =&l CH7) = 5 =HT.

o 2

=CcpL

Problem 6.32. (A model of thermal expansion.)

(a) Let the “system” be the particle’s position and the associated potential energy, not
including the particle’s velocity (and kinetic energy) or any internal state. (As long
as the position of the particle does not put any constraints on its other degrees of
freedom, we can separate it out as a “system” in this way. To see how the separation
works in detail, see Section 6.6.) First pretend that the points z are discretely spaced
like the g values in Figure 6.8. Then the average value of z is ’

e—Bu(=)

T=) zP(z)=) =z o
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where u(z) is the energy of the system, entirely potential energy in this case. Similarly,
the partition function is
2= e,

Plugging this into the expression for T and taking the continuum limit, we have

3, e fu@ . [re P dx
S e @ [emmdg

T =

ey

The linear term in the expansion is zero because z, is, by definition, a local mini-
mum, and at any local extremum, a smooth function must have a horizontal tangent:
du/dz|., = 0. With this simplification, let me write the expansion as

u(z) = w(zo) + a(z — 20)* + b(z — o),

where the coefficients a and b can be computed by taking the second and third deriva-
tives of u(z). If we neglect the cubic term and try to truncate the expansion after the
quadratic term, then the numerator of equation 1 is

/JJ e~ Bluzo) talz—z0)’} g0 e—Bu(Ie)/I g—Pale—z0)* 3o — E-Bu(zu)/(y + ) eha® gy

where y = £ — o and the final integral runs over all y values from —oo to 0. The
2 . . . -

term ye~”*¥ is an odd function and therefore integrates to zero. Meanwhile, the

denominator of equation 1 is

/ e~ Blu(zo)+ale—20)?] gp o g—Bu(za) / -Balz—20)? g  g—Bu(zo) / eV gy

which cancels everything but the factor of z, in the numerator, leaving us with simply
T = z, (in this approximation).
Keeping the cubic term in the expansion of u(z), let us approximate the Boltzmann

factor as
eBuE) = gmPlulzatay’+iv’] oy g-Pulzo) g=Fev’ [1 _ ghy3],

where y = z — zo. Equation 1 then becomes

oAU [(y +30) P [1 — Bbyfldy _ [lmo — Byt dy

£ S T e B [ e (1 - Byl dy Tefady

where I've dropped I've dropped all terms containing odd powers of y, since these are
odd functions that integrate to zero. At this point we need the integrals

= —fa? g [T R =i_ T
/_me dy ,/ﬁa, /_my e dy 4ﬂ2a2,/ﬁa,

~—

Problem 6.32

derived in Appendix B (or easily looked up in tables or evaluated by computer). The
average position is therefore

_ 34 V/Ba’ 3 b 3b

\/W —IO_Z,B_ﬁ='T°—Za_2kT'

If we t.hjnk of T as the measured length of an object, then the linear thermal expansion
coefficient of that object is

T =1zxq

_1ox  3b &
TZTOT T dafzg
When z < 2o, the (zo/z)'? term dominates,

so the Lennard-Jones potential is positive u(e)
and goes to +c0 as £ — 0. When = >z,
on the other hand, the (z,/z)¢ term domi-
nates so the Lennard-Jones function is nega-
tive, and goes to zero as £ — oo, In between,
there must be a place where u(z) = 0, and
there must also be a local minimum. Shown
at right is a computer-generated plot of u(z),
copied from Figure 8.1. To find the location i 2f°

of the minimum, set the derivative equal to z
Z€T0:

(o3

—Ug+

du
0= T = Yo [zi2(-12)z~13 ~ 25(-6)z7") = 12u0zyz ™" [—(zo/2)® +1).
The solution is at = = z,, as expected. At this point, the value of u(z) is
u(Zo) = up [1 - 2] = —up.

To compute the Taylor expansion, we need the second and third derivatives of u(x):

du
TE [(-12)(—18)zi?z~14 ~ 2(-6)(=T)z5z~%];

1

d
T = Wl(-12)(=13)(~14)al?s — 2(~6)(~7) (-8)a8a~].

The Taylor coefficients are therefore

_1d% 1 36uo

=350 . = 5;5(12)(13 -7 = pe ;

b= _l_d"’u _ Ly 252
~%a|, 5;3(-12)[(13)(14) = (NE) =~ =

Plugging into the result of part (c), we find for the thermal expansion coefficient
a=_§i£=_§<_252uo 23 \'k _ 7 k _ 126x10° eV/K
4a? z, 4 z3 36uy) 7, 48ug g ’

For argon (uq = 0.010 eV), this formula predicts o = 0.0013 K. That’s too high by
almost a factor of 2, but at least it’s of the right order of magnitude.
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Problem 6.33. The mass of an oxygen molecule is 32 u, so for oxygen at 300 K,

[fT _ [(138x 10~ J/K)(300 K) _
™ \/ P66 X107 kg 2o/

The most likely speed, vpayx, is just this times V2, or 395 m/s. To get the rms speed, we
instead multiply by v/3 to get 484 m/s. And to get the average speed, we multiply by

+/8/m to get 446 m/s.

Problem 6.34. Let me define the constant vy = /2kT/m for T = 300 K. The mass of a
nitrogen molecule is 28 u, so

[2E(300K)  [2(1.38 x 10-% J/K)(300 K)
vo m \/ 28(1.66 x 10-% kg) 2 m/s

The Maxwell speed distribution can then be written

4 VP 4y
’D(U)=ﬁ;o§t 3/2 p—v*/ oz’
where ¢ is the temperature in units of 300 K. To plot this function for t =1 and t =2, 1
gave Mathematica the following instructions:

v0 = 422;

maxwell[t_,v_.] := 2.257*(v"2/v0"3)*t~(~1.5)*Exp[-v"2/(v0~2%t)]

Plot [{maxwell[1,v] ,maxwell[2,vl}, {v,0,1700}]

Here's the plot:
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Notice that the area under each curve is equal to 1. Therefore, as the location of the peak
moves to the right (in proportion to v/T), its height must decrease.

Problem 6.35. The most likely speed is the point where the derivative of the Maxwell
distribution is equal to 0:
dD d 2 2 mu 2 mu? 2
0= — __( 2 ,—~my /ZkT) — —mv? /2kT _ 2(_) —mu” /2kT =9 (1 _ ) —mu /2I=T‘
70 (xdv v“e 2ve v T e ] SET e
This expression is equal to zero at v = 0 and at v = co, but those are the minima of the
function. The maximum is at the nontrivial solution, v? = 2kT'/m or v = /2kT/m.

Problem 6.38

Problem 6.36. As explained in the text, the average speed can be computed as a sum
over all speeds, weighted by their probabilities. Therefore,

o0 3/2 .
v= v P(v)dy =/ =(_™_ 3_—mu?/2kT
; o)t = ["P(w)do (mc:r) . /0 e "

This integral can be lopked up in table;s, or evaluated on a computer. To do it by hand
you can start with the integral of ve=*** (from 0 to infinity) and differentiate with respect
to a. By whatever method, the answer is .

__( m )3/2 12kT\* 2 (%T\'*  [%kT
V= —— A - | —— = — =
2xkT 2\ m Vel m ) wm

Problem 6.37. In analogy with equation 6.51, imagine first that the v values are discretely
spaced, then take the continuum limit:

— o0 3/2 =y
2= Z v*D(v) dv — /0. v D(v)dv = % (%) / vt e UT gy
- o

4 3/2 s op 572 oo -
() () oeran 2 e
™ m o Vrm J, )

The integral over = is worked out in Appendix B, Problem B.2; or you can look it up in a
table or ask a computer. The answer is 3/7/8, so finally we have

—_ 8kT 3yF _ 3T

vTm 8 m’

in agreement with equation 6.41 and the equipartition theorem.

Problem 6.38. We want to integrate the Maxwell distributi
on from % h =
300 m/s, for N, molecules at T = 300 K: o tetow

300m/s 3/2 300 m/s z
P(v) dy = m 2 —motyuT 5 _ 4 e —z?
/; (v) dv <___27rkT) 41r/; ve d'u—ﬁ/(; e dz.

In the last step I've changed variables to z = vy/m/2kT. The upper limit of the integral
then becomes

(28)(1.66 x 10~%7 kg)
2(1.38 x 10-= J/K)(300 K)

=.711.

Ty = (300 m/s)‘/

Now I'm ready to do the integral numerically. I typed the instruction
(4/Pi".5)*NIntegrate {x"2+Exp [-x~2],{x,0, .711}]

into Mathematica and it gave me .201. So the fraction of molecul i
.201. th
300 m/s is just over 20%. 65 IR Speeds less than
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Problem 6.39. (Escape of molecules from the upper atmosphere.)

(a) For a nitrogen molecule at 1000 K, the most probable speed is

_ [2¥T _ [2RT _ [2(8.315 J/K)(1000K)
“‘““‘VT‘VT‘\/ 0.028 kg =771 m/s.

(Here M is the mass of a mole of nitrogen molecules.) The escape speed, 11,000 m/s,
exceeds V. by a factor of 11,000/771 = 14.3. Following the example in the text on
pages 245-246, we can simply plug in this number for £, in the integral

4 o0
\/7_l' Tmin

to obtain the probability of a molecule moving faster than escape speed. I used Math-
ematica to do the integral numerically and got the answer 2.5 x 10-88. (Alternatively,
you could use the asymptotic expansion derived in Problem B.5.) The age of the earth
is of order 107 seconds, so even if a molecule has a trillion (10'2) chances to escape
per second over the lifetime of the earth, its chance of escaping by now would be less
than one in 10%8,

(b) For a hydrogen molecule, M is only 0.002 kg, s0 Umax is larger by a factor of Vid =
3.7, that is, Upmax = 2880 m/s. Escape speed exceeds this number by a factor of
11,000/2880 = 3.81 = Zp;,. Evaluating the integral numerically once again, I find that
the probability of a hydrogen molecule moving faster than escape speed-is 2.2 x 1078.
This is small but not at all negligible. Over the lifetime of the earth we would expect
almost every hydrogen molecule to reach the uppermost atmosphere, achieve this
speed, and hence escape. For helium, the mass is twice as great as for hydrogen so
Umax = 2030 m/s, ZTrmin = 5.39, and the probability evaluates to 1.5 x 10712, Again,
this is large enough that every atom should have had plenty of chances to escape by
now.

2

e % dz

(c) Consider a nitrogen molecule in the moon’s (former) atmosphere. Assuming a tem-
perature of 1000 K as in earth’s upper atmosphere, the most probable speed is again
771 m/s, but the escape speed of 2400 m/s exceeds this by a factor of only 3.1, and
therefore our integral for the probability evaluates to 2.3 x 10™4. Nitrogen on the
moon should therefore escape even faster than hydrogen on earth. Presumably this
happened long long ago, leaving the moon with no atmosphere today.

Problem 6.40. The easiest way to ensure energy and momentum conservation is to start in
the center-of-mass frame, where (assuming equal masses) the molecules are initially moving
directly toward each other with equal speeds, and end up moving directly away from each
other with the same equal speeds. I'll take these speeds to equal 1 in some arbitrary unit
system. The outgoing direction can be at any angle with respect to the incoming direction;
after some experimentation I found that a 45° angle can give the desired result. The first
illustration on the following page shows the collision in the center-of-mass frame.

Problem 6.41 193

Before: After:

— - ——— S,

a1 = (1,0) % = (~1,0) S

s
,

s =G5 =)

of reference that moves along with particle 1
'after the collision, particle 2 is moving southwest with speed 2.
his frame can be found by adding a southwest unit-length vector
M frame. The results are shown in the figure below.

Now let’s view this collision from the frame
after the collision. Then,
The initial velocities in t
to the velocities in the C

Before: After:
5y = 1 1 Uy =
= (1=~ 3) =00
,/
PPt /l
“” ,I
‘_—” ¥4

’l
',/ Uy = (_\/is "‘/5)
’I
As you can see, pa_rl'zlcle 1 is initially the slower of the two, and yet it comes to a complete
stop after the collision. Particle 2 is initially faster, yet it speeds up after the collision
t

gaining energy from particle 1. (It is a simple matter to check directly that energy and
momenturm are conserved in the new frame of reference.)

B= iy -3

Prot?lem 6.41. In a two-dimensional “flatland”, the probability of a molecule havin

velocity vector  is still proportional to the Boltzmann factor, e=™v*/2tT_ Byt the velocitfr
vectors. now l.ive in a two-dimensional plane, and those with magnitude v have their tips
on a circle with radius v. So the number of velocity vectors corresponding to speed v is

Prop n the circumfer ircl .
now ‘oportional to erence of a circ e, 27V V‘/lth thi
y S new geometrlcal factor,

'P('u) =C . 2nrv- e—mv2/2lcT.
To find the normalization constant, set the integral over all v equal to 1:
- / 2rCve ™ /AT gy = 95 C (2kT) /wz e.-‘”2 dz = 2xC E 1
0 m 0 m 2°

So C = m/2rkT and the final result for the speed distribution is

m N
= | —— —muv® /2kT
P) (27rkT> Zmue :
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This distribution function dies exponentially as v — oo, just as in three dimensions; as
v — 0, however, it is linear rather than parabolic. Here’s a plot:

P(v)

o/\/KT]m

1 2 3 4

The most likely velocity vector is zero, just as in three dimensions, because its Boltzmann
factor is the largest (e® = 1). But the most likely speed is nonzero. To find it, set dP/dv = 0:

0= % o @=™V /2T _ (v) (_Z’-_;)e_m#/m _ (1 _ TZ_;;)e—m-uz/2kT.

The solution is ¥max = 1/kT/m, which looks right from the plot.

Problem 6.42. (F and S for 2 harmonic oscillator.)
(a) The Helmholtz free energy of a single harmonic oscillator is

Fy = —kTInZ; = —kTn(1 — e™#)~! = kTIn(1 — &%),
so since F' is an extensive quantity, the Helmholtz free energy for N oscillators is
F = NkTin(l —e™%).

(b) To find the entropy just differentiate with respect to T

—_— OF — —fe  p—Bey-1__—f¢ (dﬁ
S= (aT)N——Nkln(l—-e ) = NET(1 - ™) e~
_ _—Be e/kT
=-Nkn(l-e¢ )+Nkeﬁ€_1.

Problem 6.43. (Alternative definition of entropy.)

(a) For an isolated system, P(s) = 0 unless s is an accessible state, so we can restrict the
sum to accessible states which gives

The number of terms in the sum is just 2, so this expression reduces to the familiar
one, S =kInQ. :

g

Problem 6.45

(b) For a system in thermal contact with a reservoir at temperature T, we can write

I P(s) = In(e7*#)/Z) = —BE(s) ~ln Z = —(~E(s) + F),

1
P
by equation 6.56. Therefore the alternative definition of entropy reduces to

e PE@ 1 e—BE() R

1 -Es T
S=—-k) —— (-~ e E F
"7 kT( E(s)+F)~TE’:E(s)_—_—z:—:—__’

which is equivalent to the original definition of F, that is, F=E-TS.

Problem 6.44. For N indistinguishable, noninteracting molecules that can exchange
places with each other,
1

zy,
SO
F=~kTInZ = kT[Nl Z - In V|
=—kT[NlnZ -~ NIaN +N] = —NkT[In% +1].

Therefore the chemical potential is

- (9F _ Z a VA
p (BN)T,V_ kT[].n-ﬁ+1]—NkTW(—lnN)z—lenﬁ.

Problem 6.45. The free energy is given by equation 6.90,
F= —NkT[an —InN ~Invg+ 1] + Fint.

Before diﬁere:n;iating with respect to T to get the entropy, note that vg = (h2/2rmkT)¥?,
s0 ~lnvg = 5InT plus 2 temperature-independent constant. Therefore the entropy is

oF 31 oF
S=—-(2=) =Nk[(V/Nvg)+1] + NkT. 3L _ OFim
(aT)V,N [a(V/Nva) +1] + NAT - 5o - =
v\ 5] oF
=Nkln - el int
[ (N'uq)+2] aT

The chemical potential is

oF 1 OF
={Z) = —kT[m(V/N oL Ofm
Iz (3N)T,v [n(V/Nug) +1] + NkT - 5 + o~

= —~kTIn(V/Nvg) ~ kT In Zy = —kT m(@),
N'UQ

where in the second line I've used the definition Fp=~-NkTnZ,.
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Problem 6.46. As an “ordinary” gas, consider nitrogen at room temperature and atmo-
spheric pressure. The quantum length is

e P _ 6.63 x 10-3 J.s
®T VZrmkT  /2m(28)(1.66 x 10-2 u)(1.38 x 10-2 J/K)(300 K)

=191x10"% m,

and therefore the quantum volume is 6.91 x 1073 m®. The volume per particle, however,
is much larger:

V T _ (1.38x 10-% J/K)(300 K)

N P 105 Pa

So the ratio V/Nvg works out to a fairly large number, about 6 x 10%. The internal
partition function, Z, is always greater than 1, and is typically a few hundred for a small
molecule like N,. Therefore the argument of either logarithm is a number much larger
than 1, implying that the logarithm itself is always positive under ordinary conditions.
To make the logarithm negative we would have to make vg much larger (by lowering the
temperature or using lower-mass particles) and/or make V//N much smaller (by lowering
the temperature and/or raising the pressure). Gases for which V/Nwvg < 1 do exist, as
discussed at length in Chapter 7, but these are not considered “ordinary” gases.

=414 x 1072 m?.

Problem 6.47. A degree of freedom freezes out when kT is less than or comparable to

- the spacing between the lowest energy levels. In a one-dimensional box, the energy levels

are B, = h®n?/8mlL? so for nitrogen in a 1-cm box, the spacing between the two lowest
levels is

3 (6.63 x 1073 J-s)?

8 (28)(1.66 x 10~ kg)(0.01 m)?

E,—-E = =35x107%J=22x10""¢V.

The freeze-out temperature would therefore be approximately

roBamB _ _2x1070eV

k  86x10-°eV/K

or less than 3 femtokelvins. That’s much colder than they’ve reached even in Lounasmaa’s
lab in Helsinki, so in all realistic situations we can assume that the translational motion of
molecules in macroscopic boxes is nowhere near freezing out and therefore can be treated
“classically” by converting the partition sum into an integral.

=26x%x 107¥ K,

Problem 6.48. (S and p for a diatomic gas.)
(a) For a collection of N rotating diatomic molecules, the internal contribution to the free
energy is
Ent = _NkT]-n(ZEZrot)a
where (at ordinary temperatures) Z,o is kT'/¢ for a molecule conposed of two different

atoms, or kT'/2¢ for a molecule composed of identical atoms. Either way, Z, is simply
a constant times T, so

a-Fint.
orT

= —NEIn(Z.Zs) ~ NET g = ~Nk[In(Z. Zoo) +1].

Problem 6.49
Therefore, according to equation 6.92,
v 5 VZ.Z 7
S =Nk[1n<——) + —} + Nk[In(Z.Zor) + 1] = Nk|In| 5220t ) 4 =
Nug) t3 [8(Z.Z) +1] BN ) T2
The rotational partition function for oxygen at room temperature is

BT _ (86175 eV/K)(208K) _

Dot = ~— = =
T % 2(.00018 eV) ’

while the quantum volume is

UQ=( h )3=< 6.63x107% J.5 3
rmkT /27(32)(1.66 x 10-27 kg)(1.38 x 10-% J/K)(298 K))
=(1.79x 107" m)* =5.73 x 1073 3

and the average volume per particle (at atmospheric pressure) is

V KT (1.38 x 10-% J/K)(208 K) %
NTFT 1.01 x 105 N/m? =407 1077 m”.

From these numbers we can compute the logarithm

VZuZr (4.07 x 102 m3)(3)(71)
Inf Loelmt) _ =
“( Nug ) ! ( 5.73 x 105 m? ) =214

Thus the entropy under these conditions is
8 = Nk[21.14 + 3.50] = (24.6)nR = 205 J/K,

precisely in agreement with the measured value (to the number of significant figures
used in the calculation).

(b) The chemical potential is —kT times the same logarithm:

p=—(8.62x 107° eV/K)(298 K)(21.1) = —0.54 eV.

Problem 6.49. As shown in Section 6.2, the rotational energy of a diatomic molecule
at room temperature is kT, corresponding to two degrees of freedom. Therefore the total
thermal energy of a mole of N, is

5
2
The enthalpy is just U + PV = U + nRT, so it's larger by

3 5 5
U= 5NkT + NAT = 5 NKT = nRT = (1 mol)(8.31 J/mol - K)(208 K) = 6190 J.

nRT = (1 mol)(8.31 J/mol - K)(298 K) = 2480 J, that is,

H =8670 J.
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To compute the remaining quantities we need the internal partition function, which in this
case is purely rotational:

KT (8.617 x 10~° eV/K)(298 K) _ 51
ine = B = = 2(.00025 V) :

‘We also need the quantum volume,
6.63x10°% J-s

3
3 3 )
v ( 21rka) - (\/ms)(me X 10-7 kg)(L.38 x 10-2 J/K)(298 K)
= (1.91 x 107! m)® = 6.98 x 107 m?,

and the average volume per particle,

V _kT _ (1.38 x 102 J/K)(298 K) _ 407 x 10- P
1.01 x 10 N/m?

N~ P

From these numbers we can compute the logarithm

VZin\ _ (407 x107% m3)(51)> —195
1”( Nug ) B h‘( 6.98 x 103 m?

The Helmholtz free energy is therefore

F=-nRT [m (V—ZJ) + 1] = —(2480 J)[19.5 + 1] = —50.8 kJ,
N’UQ

while the Gibbs free energy is
G=F+ PV =—508kJ+2480 J = ~48.3 kJ.

The easiest way to get the entropy is from the definition F=U-TS:
U-F _ {6190 J) — (—50,800 ) =191 J/K
T 208 K

(in agreement with the measured value tabulated on page 405). And the easiest way to get
the chemical potential is from G = Nu:
_ G _ —483KkJ

F=N " 6s0mx108

S =

=8.03 x 1072 J = -.501 eV.

Problem 6.50. To get the Gibbs free energy, just add PV = NET to equation 6.90 for
the Helmholtz free energy:

VZ t VZint

= =-— —_ 1 +NkT=—NkT1n(——— .

G=F+PV NkT[ln( qu) + ] Noo

Notice that the 1 term inside the square brackets conveniently cancels, leaving us wit.h

an expression identical to equation 6.93 for p, but with an extra factor of N (to make it

extensive). Therefore, G = Nyu.

Problem 6.53

Problem 6.51. Because the translational kinetic energy does not depend onr position, the
integrand is independent of r and therefore the d*r integral simply gives a factor of V,
the volume of the box. The momentum integrals can be evaluated either in rectangular or
spherical coordinates. I'll use rectangular coordinates; then

B PR B PP
E"—Zm_2m 2m+2m’

and the exponential of —E,./kT can be factored to give

Ty = Ks/dp /dpy /dp g—P2/2mkT ,—p} /2mkT ok /2mkT
T h £ z .

But these are just ordinary Gaussian integrals, for which the general formula is

[ = [
a
In our case each integral gives v'w - 2mkT, so
v a2_ ¥
Zyw = F(27rka) =%’

in agreement with equation 6.82.

Problem 6.52. As in the nonrelativistic case, the allowed wavelengths (in one dimension)
ate A\, = 2L/n, and therefore the allowed momenta are p, = h/A\. = hn/2L. Now,
bowever, the relation between energy and momentum is £ = pc, so the allowed energies
are E, = hen/2L. Therefore the single-particle partition function is

Tyy= 2: e~ En/AT _ Z —hen/2LAT
n n

When L is macroscopic the number of terms in the sum that are significant is very large,
s0 we can convert the sum to an integral to obtain

 _2LkT
" he

Zld — /-m e—h.cn/2LkT dn = __2LkT e—hcn/ZLkT
o he

0

As expected, the partition function is directly proportional to L and increases with increas-
ing temperature.

Problem 6.53. As shown in Section 5.6, the equilibrium condition for a chemical reaction
is the same as the reaction equation, with the name of each species replaced by its chemical
potential and « replaced by =. Therefore, if the dissociation of hydrogen is at equilibrium,
we must have py, = 2uy. Treating each species as an ideal gas, the chemical potentials are
given by equation 6.93, almost. This formula assumes that each molecule has energy zero
when it is at rest, whereas the energy of an H, molecule at rest is actually less than that of
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Problem 7.8. (A toy 10-state system.)

(a) For a single particle, Z = Z; = Q; = 10, the number of states available to the particle
(each with energy zero). )

(b) For two distinguishable particles, Z = ZZ = 100, since each particle independently
has ten states available. .

(c) For two identical bosons there are 10 ways to put both i'n the same single-particle
state, plus (10)(9)/2 = 45 ways to put them into different single-particle states, so the
total number of system states is 10+45=>55.

(d) For two identical fermions, the 10 system states with bot-h particles in the same single-
particle state are not allowed, so there are only 45 possible system states.

(e) According to equation 7.16, the number of states of this system would be
1, 100
=Z{=— =50.
=3

As always, this result interpolates between the correct answer for bosons and the
correct answer for fermions. In this case the formula isn’t too far off, since the system
is not very dense; the fraction of system states for which both particles are in the same
single-particle state is fairly small.

(f) For distinguishable particles, 10 (out of 100) of the system states have both particles
in the same state, so the probability is 10/100 = 1/10. For identical bosons ther.e are
still 10 such system states, but only 55 system states in total, so the probability is
higher, 10/55 = 10%. For identical fermions you can’t have two particles in the same
single-particle state, so the probability is zero.

Problem 7.9. The mass of an N, molecule is about 28 atomic mass units, so its quantum
volume at room temperature is

RE\¥? (6.63 x 10-34 J.5)? )3’ :
ve= (27rka> = (2#(28)(1.66 x 1077 kg)(1.38 x 10-2 J/K)(300 K)

=6.9x 107 m® = (1.9 x 107! m)*.

(Since atoms are about 107'° meters wide, this is substantially smaller than the physical
volume of the nitrogen molecule.) Now we can use Boltzmann statistics whenever Z; > N,
that is, V >> Nuvg. But at standard temperature and pressure,

V kT (1.38 x 10-2 J/K)(300 K)
N~ P T 1% Pa

This is greater than the quantum volume by a factor of about 6 milli.on, s0 Boltzmann
statistics should be very accurate. On the other hand, Boltzmann statistics ?vould bre:.lzc
down when vg & V/N. Holding V/N fixed (i.e., fixed density), this would require that T%/
be lower by a factor of 6 million or that T" be lower by a factor of about 30,009. Tha.t’s
1/100 K. In other words, quantum statistics is irrelevant to an ordinary gas at this density
provided that the temperature is higher than .01 K.

=4.1x 1072 m3.

Problem 7.10

Problem 7.10. (A five-particle system with evenly spaced energy levels.)

(a) If the particles are distinguishable, then all five will settle into the lowest energy level.
The same will happen if they are indistinguishable bosons. If they are indistinguishable
fermions, however, then only one may occupy each level so each of the five lowest levels
will contain one particle. The occupancies of the five lowest levels are therefore:

Distinguishable or Bosons
50000

Fermions
11111

(b) If the particles are distinguishable or bosons, then the system’s first excited state
has one of the five particles promoted to the second-lowest level. For distinguishable
particles, there are five different ways to do this (choose any one of the five particles
to promote), while for identical bosons there is only one way (it’s meaningless to ask
which particle has been promoted). For the system of fermions, the first excited state
has the highest-energy particle promoted from the fifth state to the sixth (again adding
just one unit of energy), and again there is only one way to do this. Graphically,

Distinguishable or Bosons
410000

Fermions
111101

{c) To add another unit of energy to the systems of bosons or distinguishable particles,
we can either promote a second particle to the second-lowest level (leaving three in
the lowest level) or leave four in the lowest level and promote the fifth up two levels.
For bosons, there is only one way to do either of these things, but for distingnishable
particles there are ten ways (5 choose 2) of doing the first and five of doing the second,
for a total degeneracy of 15. Meanwhile, for the fermionic system there are two ways
of putting in two units of energy, as illustrated below:

Distinguishable or Bosous Fermions
3200000 1110110
4010000 1111001

To add yet another unit of energy there are basically three choices for each system,
which I'll simply illustrate:

Distinguishable or Bosons Fermions
23000000 11011100
31100000 11101010
40010000 11110001

Again there is a large degeneracy for the system of distinguishable particles: 10 for
the first arrangement (5 choose 3), 20 for the second (5 choices for the highest-energy
particle and 4 for the next-highest), and 5 for the third for a total of 35.

(d) The probability for the system to be in any particular state is proportional to the Boltz-
mann factor for that state, e=%/*7 (where £ is the total energy of all the particles)

For any given E value, this quantity is the same for either system (and furthermore
the allowed F values are the same). But the probability, say, of finding the system
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with three units of energy is also proportional to the degeneracy, which is 3 for the
bosonic system but 35 for the system of distinguishable particles. This means that at
low temperatures we are much more likely to find a few units of energy in the system of
distinguishable particles than in the system of bosons. Put another way, the ground
state of the bosonic system is much more probable (relative to collection of all the
low-energy excited states) than we might otherwise guess.

Problem 7.11. The probability of a state being occupied is given by the Fermi-Dirac dis-

tribution function,
are:

AT T At room temperature, kT' = .026 eV, so the probabilities

(a) For e —p = ~1 eV, probability = e-l—/.olzaﬁ =(1+2x107") =1 -2x10"" ~ 1.
(b) For € — p = —.01 eV, probability = e—.m/.lT_H = % = .59.

(c) For e — u =0, probability = %ﬁ-l = % = 50.

(d) For e — p = +.01 eV, probability = e+-°1/+"’5+1 = 217 = 41.

(e) For € — = +1 eV, probability = L -1 oy

et1/026 1 1~ 5 x 1018

Problem 7.12. According to the Fermi-Dirac distribution, the probability of state B being
occupied is ' ) 1

P(B occupied) = s -a/AT 11 e/FT 11’

since €g = p + . The probability of state A being unoccupied is

elea—m)/kT 1
e—z/kT 1

= e—z/kT+1 - 1+e:/kT1

e—:/kT +1-1

T e T 1 e/ 11

P(A unoccupied)

where I've used the fact that €4 = u — z. This is exactly the same formula, so the two
probabilities are equal as expected.

Problem 7.13. The average occupancy of a state is given by the Bose-Einstein distribution
function, '

1 e
e—1 1—e=

The probability of a state being occupied by exactly n particles is

n=

where = = (¢ — p)/kT.

Pln) = - = ()1 - ).

Thus we can compute everything we need from the quantity == = ¢~{~#)/*T where in this
case kT = .026 eV.

Problem 7.14
(a) Fore—p=.001eV, z = .001/.026 = .038 and e~= = .962, so

.962
1-.962

P(2) = (.962)%(1 ~ .962) = .035,

=

=255  P(0)=1-.962=.038, P(1)=(.962)(1 - .962) = .036,

P(3) = (.962)*(1 — .962) = .054.

(b) Fore—p=.016V, z= .01/.026 = .38 and ¢~ = .681, so

.681
1~ .681

P(2) = (.681)%(1 — .681) = .148,

n=

=213,  P(0)=1-.681=.319, P(1)=(681)(1~.681) =217,

P(3) = (.681)3(1 — .681) = .101.

(c) Fore—u=.1¢V,z= -1/.026 = 3.8 and e~= = .0214, so

A= 024 0218;
1-.0214 ’

P(2) = (.0214)P(1) ~ .00045,

P(0) =1~ .0214= 979, P(1) = (.0214)P(0) = .021,

P(3) = (.0214)P(2) = .000010.
(d) Fore—p=1eV,2=1/026=38 and e~* = 2 x 10-77, 5o

_2x 107V
- 1

P)=@2x 107)P(0) =2x 107V, P(2) = (2 x 107)P(1) = 4 x 1073,
P(3) = (2x1071)P(2) = 8 x 16~

S

=2x107'7; PO)=1-2x10"Y ~1,

Problem 7.14. From Figure 7.7, we see that the three di

rob stribution functions more or less
coincide when ¢ —

i is at least a few times greater than kT. Under these conditions,

Tigg ele~w)/kT +1 1 4 e~ (e=u)/kT ( T
—_ = = =1 —(e=n)/k
Tiep €M —] - 1 g—(emper 127 HIRT,

where the last approximation is valid because (€ — u)/kT > 1. If this ratio is to be within
1% of 1, then e~(<=¥/¥T must be less than 1/200, and therefore it must be the case that

£ E S m200
> =523.

(Six}ce th.e E.Soltm'na.fm distribution lies between the Fermi-Dirac and Bose-Einstein distri-
butions, it lies within 1% of both of them whenever they lie within 1% of each other.) At

any Femperz-atu.re, this inequality will be satisfied for sufficiently large ¢. Often, however
this inequality is satisfied for all e. For an ordinary gas of particles in ;

levels measured in the usual way (as in Section 6.7), e cannot be negative, while —p/kT

a box, with energy
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is equal to In(V Zy/Nvg). The inequality above is therefore satisfied for all energy levels
provided that

VZim kTZ‘mt
N—’UQ > 200 or P’UQ

For nitrogen at room temperature and atmospheric pressure, the left-hand side of this
inequality is

(1.38 x 10~ J/K)(300 K)(50) (21r(28)(1.66 x 107%" kg)(1.38 x 10~2 J/K)(300 K))S/ 2

10° Pa (6.63 x 10-% J5)°
= 3.0 x 108,

> 200.

so the inequality is easily satisfied. At 200 K, colder than anywhere on earth, this expression
would be less by a factor of only (3/2)7/2 = 4.1, so the inequality would still be easily met.
Even for a gas like hydrogen or helium, with Z,, = 1 and a mass that is less by an
order of magnitude, this expression would evaluate to more than 200. So for ordinary
gases under atmospheric conditions, the three distribution functions are always essentially
indistinguishable.

Problem 7.15. For a system of particles obeying the Boltzmann distribution, the total
number of particles should be

N= Zﬁaolczmnn = Z g (e mi/RT o gu/kT Ze“’/"T.
s

all s s

But the sum in the last expression is just the single-particle partition function, Z;, and

therefore,

= oh/kT = = z1
Zl = é€ or m kTIn A kTIn N

(I prefer to write —In(Z, /N rather than In(N/Z,), since Z; 3> N whenever the Boltzmann
distribution applies.)

Problem 7.16. (Fermionic system with evenly-spaced levels.)
(a) Here are the diagrams for ¢ =4, 5, and 6:

g=4 g=>5 g==6
Q00QQO0 Q0QOO0 ®@000000Q
00000 [ JeXoRoXe] Qe000Q000Q
€000 O0 Ce®C00 CCe8eO000
CeQ00Q coceeQ QoQCeee
cQeeoO QQQOe 0Q0QCe00
= 00006 QoeoQe [oNoX JeRo} Nel
W oe0ee [oX NoX Nel [off NoX ReNoX ]
Y e0O0ee [ JeRoX X 1 [ JoloX NeX XN ]
n eeece [ X X JeXe] 000000
0008080 00000 0000060
[ E XXX (XXX X [ I XX XXX ]
[N X N X J (X K N X | o000 OOQS

(b) For g = 6 there are 11 states in total. Counting black dots in each row from bottom
to top, I therefore find that the probabilities of the levels being occupied are
E 0 9 8 7 6 5 4 3 2 1 1
11’ 117 117 117 117 117 117 117 117 11° 117 11°

Problem 7.16

Qf' course, this list should be preceded by a long list of 11 /11, and followed by a long
list of 0/11. The following plot includes dots for three such levels on each end:

3

5 10 15 25 /"

(c) The chemical potential, u, should be the symmetry point at which the occupancy is
exactly 1/2. This would be the vertical midpoint of the dot diagrams, or 9.51 with the
artibrary zero-point used in the graph in part (b). Given this value, I then adjusted the
temperature and plotted the Fermi-Dirac distribution on the same graph, as shown,
until I got a good match at kT = 2.17). Alternatively, you could just note from Figure
7.7 that the F-D distribution equals about 1/4 when ¢ — u is slightly greater than &7
Our list of probabilities reaches the value 1/4 when € — p = 2.57, so kT must be about

27.

(d) Infundamental units, the entropy is just the natural logarithm of the number of system
states. Here is a table:

q Q S/k
0 1 0
1 1 0
2 2 0.69
3 3 1.10
4 5 1.61
5 7 1.95
6 11 2.40
And here’s a graph: ’
S/k .
2 -
1.5 ¢
1 .
0.5 '

1 2 3 4 S 6‘1=U/"7

Calculating the slope from the last two points on the graph, I obtain T = AU/AS =
n/0.45k = 2.2n/k, in rough agreement with the estimate of part (c).
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Problem 7.17. (Bosonic system with evenly-spaced levels.)

(a) The illustration below shows all system states up to ¢ = 6, with each column represent-
ing a separate system state, and each row representing a single-particle excited state.
The number in each space is the number of particles in that single-particle state, which
for bosons is unlimited. The lowest-energy single-particle state (the ground state) is
not shown; it contains N particles when ¢ = 0, and N minus the total number of
particles in excited states when g > 0.

g=0 g=1 q=2 g=3 g=4
0 0 00 000 00000
T 0 0 00 000 00000
0 0 00 000 00000
g o0 0 00 000 10000
3 0 0 00 100 01000
g 0 0 10 010 00210
0 1 02 013 01024
g=3 g=6
0000000 00000000000
0000000 10000000000
1000000 010000600000
0100000 00110000000
0011000 00002110000
0010210 00100103210
0102135 01020130246

(b) Adding the numbers across each row in the ¢ = 6 diagram and dividing by 11, we
obtain the average occupancy of each level when ¢ = 6. From the lowest level to the
highest, the results are

198 4 2 1 1
117 117 117 117 117 117

The average occupancy of the ground state is much larger: N — (35/11). Here’s a plot
of the average occupancy vs. the energy of the level, taking the lowest level to have
energy zero:

0,0,0,...

1.75
1.5
1.25
n 1
0.75
0.5
0.25

. 2 r 6 8 €/n

(c) The chemical potential y is the energy at which the occupancy would be infinite.
Assuming that N is large, this is essentially at ¢ = 0, the ground-state energy. To
find the best-fit temperature, I plotted the Bose-Einstein distribution on the graph

Problem 7.19 215

above, a.t.:ljusting T until the fit was good. The plot reproduced here is for T = 2.29/k.
:Alternatlvely, you could just note from Figure 7.7 that at € = #+ kT, the occupancy
is about 0.6; from our data this point appears to be slightly above ¢ = 2n.

(d) In fundamental units, the entropy is j i
Y is just the natural logarithm of the
states. Here is a table: ¢ ¢ nomber of system

q Q S/k
0 1 0
1 1 0 _
2 2 0.69
3 3 1.10
4 5 161
5 7 1.95
6 11 2.40
And here’s a graph:
S/k .
2 .
1.5 *
1 .
0.5 )

I 2 3 ¢ 5 ¢9=Unm
(Notice that these values are exactly the same as for the fermionic system treated in
the Previous problem.) Calculating the slope from the last two points on the graph, I
obtain T' = AU/AS = 5/0.45k = 2.2n/k, in agreement with the estimate of part (c’).

Problem 7.18. If up to two particles of a gi
. glven type can occupy a state of
the grand partition function is PY enerey & thea

Z = eO + e—(s—y)/kT + e—2(e—p)/kT =1l4+e*4 6_2:

’

where z = (e — 41) /kT. Therefore the average number of particles in the state is

i 162 1 8 ~z —2z
ix—e——— = - - Y —z -2z __ € =+ 26
Z oz 1+e—=+e‘2’6m(1+e te )—1+e‘=+e—2z'

Not the prettiest formula, so perhaps it's fortunate that no such particles exist.

Problem .7.19. The density of copper (which I looked up in an introductory physics
texi:.book) is 8.93 g/cm®, and the atomic mass (which I got off a periodic table) is 63.5 g/mol.
Let’s consider a chunk of copper containing one mole of atoms. Then the mass is 63.5

and the volume is o e

_mass _ 635g =7 6 3
density = 8.93 g/cm3 AL 107
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Assuming that each atom contributes one conduction electron, the number of conduction
electrons per unit volume is

N 6.02 x 1022

VT 8.47 x 10°® m3,
. —° m

and therefore the Fermi energy is

h2 (3 N)’/“ (6.63 x 10-34 J . 5)?
€p = — =

3 2/3
3NN ___.__(_ .8.47 x 10% m*‘*)
8m\rV 8(9.11 x 10-3 kg) \x

=113x 1078 J =7.05eV.
The Fermi temperature is just this divided by Boltzmann'’s constant,

er____T05eV g5 00K

Tr = = Smx107eV/K

This is 270 times greater than room temperature, so yes, room temperature is sufﬁciently
low for this electron gas to be considered degenerate. The degeneracy pressure for this

system is

P= EEEF = (.4)(8.47 x 102 m™3)(1.13 x 1078 J) = 3.8 x 10'° N/m? = 3.8 x 10° atm,

5V
while the contribution of the degeneracy pressure to the bulk modulus is
B= 1—9(3% = gp = 6.4 x 10" N/m? = 6.4 x 10° atm.

Problem 7.20. To determine whether either approximation is valid, let’s calculate the
Fermi temperature for the electron gas at the center of the sun:

T _ €& h? (3N 2/3_
Y AC A A
=9.1x10° K.

(6.63 x 10—34 J-s)2 (3(1032 m—a))2/3
9.1 x 10-31 kg)(1.38 x 10-2 J/K) T

This is quite close to the actual temperature, of order 107 K. Since T is neither much
greater than nor much less than 7%, neither approximation would be very accurate:. We
can’t treat the gas as degenerate (T' ~ 0), nor can we treat it as an ordinary “classical”
ideal gas (T > Tf).

Problem 7.21. We need to modify the derivation of the Fermi energy to account for the
fact that each spatial wavefunction can hold four nucleons. Looking over pages 274-274,
there are no modifications through equation 7.37. Equation 7.38, however, picks up an
extra factor of 2: s

2mn3 3N )

N = 2 max O  Tmax = (

3 o
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Therefore the Fermi energy is

o= W (3NN B2 3NN
P 8mIz\2r ) T 8m\2nvV) -

Plugging in the numbers for nuclear matter gives

. - (6.63 x 107 J-5)* ('3(0.18 x 10% m~3)
F "~ 8(1.67 x 10~ kg) 2

2/3
) =6.4x 10712 J = 40 MeV.

The Fermi temperature is just this divided by Boltzmann's constant:

T = CF _ 4% 107 eV
F7k T 862x107eV/K

This is hotter than the center of any ordinary star. Therefore, to the extent that such a
small system can be treated using thermodynamics at all, it should be an excellent approx-
imation to treat a nucleus as a degenerate, T' = 0 Fermi gas, in virtually all circumstances.

(Exceptions would include heavy ion collisions, supernova explosions, and the very early
universe. )

=4.6 x 101! K.

Problem 7.22. (Relativistic Fermi gas at T = 0.)

(a) The allowed wavelengths are the same as for a nonrelativistic particle: If the length
of the box in the z direction is L, then the allowed wavelengths in the z direction
are A = 2L/n,, and similarly for Ay and A,. The momenta are also the same:
Pz = hn; /2L, and similarly for p, and p,. But now the energy is

he hen
e=po=cyfml+p+pi= 57 ol eni tnz= 1,
where n = ,/nZ +n2 + nZ. Each of the n’s can be any positive integer, so we can
visualize the single-particle states as a lattice of points in the first octant of n-space.
As in the nonrelativistic case, the energy of a state depends only on its distance from
the origin, so at T = 0 we simply fill up an eighth-sphere, working our way outward
to some maximum radius ngmay. The total number of electrons is just the volume of
this eighth-sphere times 2 (since there are two spin states for each set of n’s)

N=2.2 43 _ T

8 : Eﬂ.nmax = Enmax'

Solving for npmax gives nmax = (3N/ m)%/3. The chemical potential or Fermi energy is
just the energy of the last state filled, that is, the energy corresponding to n = ng .

—ep = )_hcnmu_hc g\f_ l/s_hc 3N\
w=er=cm) === =07\7) =3\7

(b) The total energy is the sum of the energies of all the occupied states:

U=2ZZZ€(17.),

n: [y A,
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where the factor of 2 is for the two spin orientations. As in the nonrelativistic case,
convert this sum to an integral in spherical coordinates, being sure to include the

“measure” n?sin §:
/2 /2 Tmax h
U=2/ qu/ d95in9/ dnn?. 2
[+] 0 0 2L

The angular integrals give 7 /2 (the surface area of a unit-radius eighth-sphere), leaving
us with

Tl max
he 3

U=7r~ﬂO n*dn

whe 1,  whe(3N\Y® 3Nhc/3N\"* 3
= —_— - =N = — = —_— =_N5F1
2L 4 ™= 8L 8 \7xV 1

T
where ep is given by the result of part (a). Thus the average energy is 3/4 of the
maximum energy, as compared to 3/5 in the nonrelativistic case.

Problem 7.23. (White dwarf stars.)

(a) We want to make something with units of energy (newton-meters) out of M (kg), R
(m), and G (N-m?/kg?). It's convenient to express all the units as I just have, taking
the three basic units to be newtons, kilograms, and meters; none of these three can be
written in terms of the other two. How to do it? Well, to get N in the numerator we
need exactly one power of G. But then, to cancel the kg? in the denominator we need
two powers of M. And, since G has m? in the numerator and we want just meters,
we need to divide by one power of R. Finally, we should put in a minus sign since
gravity is attractive: We would have to add energy to disassemble the sphere, moving
the parts infinitely far apart where they have zero potential energy.

Just for fun, let me now derive the exact formula for the potential energy of a sphere
of uniform density p. Imagine assembling the sphere by bringing in concentric shells
of mass, one at a time, from infinite distance. Suppose, further, that we already have
a sphere of radius r and mass m = 4wr®p/3. We now bring in the next shell, whose
thickness is dr and whose mass is therefore dm = 4wr?dr - p. The potential energy
of this shell once it arrives is dU = —~Gmdm/r. Summing over all such shells and
converting the sum to an integral, we obtain for the total potential energy

R
Upraw = /dU = [C = _G/ l(‘l’"sp) (47r%p) dr
r o T 3
_ _167T2Gp2 /-R g — __161!'2Gp2 . R_5 _ _161r2GR5 ( M )2
3 Jo 3 5 15 \4nR°
_3GeMm?
T 5 R

where I've substituted p = 3M/4wR® in the second-to-last step. So the numerical
coefficient in the energy formula, for the (probably unrealistic) case of a uniform-
density sphere, is 3/5.

iy

Problem 7.23

(b) According to equations 7.42 and 7.39, the total energy of a degenerate electron gas is

2 2/3
Ulinetic = gNeF = EN h <3N> 1

5 8m. v
where N is the number of electrons. If the star contains one proton (mass m,) and
one neutron (mass ~ m,) for each electron, then N = M/2m,. Plugging in 4mR? for

the volume then gives
3 (MNP0 N ey M
40m, \ 2m, 4r2R3 ) VT mem*R2

(c) The gravitational energy of the star is proportional to —1/R, while the kinetic energy

of the electrons is proportional to +1/R?. Here’s a sketch of these functions and their
sum:

Ukinetic =

To find the minimum in the total energy, set the derivative equal to zero:

_d{ o f\_a 26 1 28
O—dR("ﬁ*ﬁ)—ﬁ‘ﬁ-ﬁf(“‘f)-

The equilibrium radius is therefore at
28  2(0.0088)R2M3/3 /m, md/3 2
_ 26 _ %0.0088) /mems” _ 002e)—Po L
a (3/5)GM? Gm.ma/® M3
Notice that a white dwarf star with a larger mass has a smaller equilibrium radius.
This does make sense, because adding mass creates more gravitational attraction,

allowing the gravitational energy to decrease more then the kinetic energy increases
as the star contracts. :

(d) For a one-solar-mass white dwarf,

(0.029)(6.63 x 10 J . 5)2
(6.67 x 10~ N - m?/kg?)(9.11 x 10-31 kg){1.67 x 10~ kg)5/3(2 x 10% kg)i/?
=7.2x10° m = 7200 km.

R=
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This is just slightly larger than the earth. (For comparison, the sun’s radius is more
than 100 times the earth’s.) The density is the mass divided by the volume:
M 2 x 10% kg

= = =1.3 x 10° kg/m®.
P TE T Ta@ax i mp o} 10 e/

This is 1.3 million times the density of water.
(e) The Fermi energy is

B2 /3NN R /oM \¥P1
EF=8_m€<1r_V'> =8-m_e(87r2m,,) R?
(6.63x107% J . 5)? ( 92 x 10® kg) \** 1
WA

T 8(9.11 x 10—31 kg) \872(1.67 x 10~%" kg 7.2 x 108 m)?
=31x1071" J=19x10°eV.

So the Fermi temperature is
Ty = ep/k=2.3x 10° K.

This is more than a hundred times hotter than the center of the sun. It seems unlikely
that the actual temperature of a white dwarf star would be anywhere near this high. In
other words, the thermal energy of the electrons is almost certainly much smaller than
the kinetic energy they have even at T = 0. For the purposes of the energy calculations
in this problem, therefore, simply neglecting the thermal energy and setting T’ =0 is
probably an excellent approximation.

(f) If the electrons are ultra-relativistic, we can use the formulas derived in the previous
problem for the Fermi energy and the total kinetic energy:

3 3 he(3N\*
ZNGF‘ZNT(W)

3
8

M\ 3\ M\¥31
= hc(z—mp> (W> —(0.091)hc(m—p) 5

The important feature of this formula is that it is proportional to 1/R, not 1/R2.
‘When we add the gravitational potential energy, which is proportional to —1/R, we
get a total energy function with no stable minimum. Instead, depending on which
coefficient is larger, the total energy is simply proportional to either +1/R or —1/R.
Therefore the “star” will either expand to infinite radius or collapse to zero radius.

(g) First note that the coefficient of the gravitational energy is proportional to M2, while
that of the kinetic energy is proportional to only M*/3, so the star will collapse rather
than expand if its mass is sufficiently large. The crossover from expansion to collapse
‘occurs when the coefficients are equal, that is, when

Ukinetic =

(0.091)hc(M )4/3 = chz,

My
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or
5heyd/e |
M= [(0'091)56] g = 34X 107 kg,

tha.t.; is, a little under twice the sun’s mass. However, the star won’t be relativistic to
begin with unless the average kinetic energy of the electrons is comparable to their
rest energy, mc? = 5 x 10° eV. For the sun’s mass, the average electron energy (0.6¢;)
is only 1.2 x 10° &V, too low by a factor of about 4.4. This indicates that a one-sola.i—
mass white dwarf is probably stable, but it’s still close enough to being relativistic
that we 'shouldn’t expect the nonrelativistic approximation to be terribly accurate.
Meanwhile, looking back at part (e), we see that the Fermi energy is proportional to
(M/R®)*/® o (M?)?/3 = M43, Therefore, to increase the Fermi energy by a factor of
4.4, we’d have to increase the mass by only a factor of about 3. Conclusion: A white
dwarf star with a mass greater than about three times the sun’s mass will be relativistic
and hence unstable, collapsing to zero radius {unless it first converts into some other
form of matter). (Note: The best modern calculations, which take into account both
the exact relativistic energy-momentum relation and the variation of density within
the star, put the critical mass for a white dwarf at only 1.4 solar masses.)

Problem 7.24. In a neutron star, the kinetic energy comes from the neutrons, and the

number of these is simply N = M/m,,, where M is the total mass and m, is the mass of a
neutron. Therefore we can write the kinetic energy as

2 2/3 5/3
Ukinanic = gNGF = -3-N . h_<3N) 3h2 (M) ( 9 )2/3.

5 8m, \ 7V = 40m, \ m, 472 R
Adding the (negative) gravitational potential energy, we have for the total energy
B

—_ — «
U= Upotential + Ukinetic = _E + ﬁ’
where o = (3/5)GM? and § = (0.028)h2M5/3 JmES. As with a white dwarf star, the

equilibrium radius is the one that minimizes the total energy. Setti d -
solving for R gives gy etiing U/dR = 0 and

2 . 2
r=®_ (0.003){0093)R7_
a - G’mf./a M1/3
-Her.e again, the n_equ.ilibrium radius decreases with increasing mass, due to the greater grav-
ltational attraction. For a one-solar-mass neutron star this model predicts,

R< (0.093)(6.63 x 1034 J.5)2
(6.67 x 10-1 Nem?/kg?)(1.67 x 10-2 kg)/3(2 x 109 kg)i/3 — 12 ki,

about the size of a large city. The density would be
M 2 x 10% kg

p= RS 3x(12,300 m)3

=26 x 10" kg/m?,
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or more than 10 times the density of water. Not surprisingly, this is comparable to the
density of an atomic nucleus. The Fermi energy is

p? /3N\Y® R MNP 1
GO
(6.63 x 107 J . 5)? (9(2 x 10% kg) )2’3 1
(

= B(1.67 x 10~ kg)5/ 4’ 12,300 m)?
=901x10"1 J=57x10" eV,

so the Fermi temperature is
Tr = ep/k = 6.6 x 101 K.

This is even higher than for a white dwarf star, so the actual temperature of a neutron
star is almost certainly much lower than Tp. Like a white dwarf, a neutron star sllnoul.d
become unstable when the neutrons become relativistic, that is, when their average kinetic
energy becomes comparable to their rest energy, mc2 = 940 MeV. For a one-solar-mass
neutron star, the average kinetic energy is only 0.6ep = 34 MeV, too small by about a
factor of 28. But the Fermi energy is proportional to the mass to the 4/3 power, so the
critical mass should be larger than the sun’s mass by a factor of about 2?3/ 4.= 12. (The
experts, however, put the critical mass at only about 3 solar masses, taking into account
both density variations and the full relativistic equation of state.)

Problem 7.25. According to equation 7.48, the electronic heat capacity of a mole of
copper should be

KT _ 7 (862 x 10~ eV/K)(300 K) b (0.018)R = 0.15 J/K.

VE D e 2 7.05 eV

For comparison, the heat capacity of lattice vibrations (assuming these are not frozen out)
should be roughly 3R =25 J/K, 166 times greater. So at room temperature, the electrons
contribute less than 1% of the total heat capacity of copper.

Problem 7.26. (Liquid helium-3 as a degenerate Fermi gas.)
(a) The Fermi energy of a “gas” of 3He atoms with the given density is

B2 (3N\Y®  (6.63 x 1073 J5)? ( 3(6.02 x 10%8) )2/3
%(W) = 8(3)(1.66 x 10-77 kg) \ (37 x 105 m’)
=69x1072® J=43x 107" eV.

€p =

The Fermi temperature is therefore

—4
TF=E—F 43x107% eV ~50K.

& 862x10° J/K
That’s only 2 little higher than the boiling point, 3.2 K.

. ' _,,,.lt

Problem 7.27

(b) As predicted by equation 7.48, the heat capacity should be

2 2

Lv _mk_ ™ kL

NET 2  2T%
So although the linear temperature dependence agrees with experiment, the predicted
coefficient is too small by almost a factor of 3.

(c) Using the experimental value of the heat capacity coefficient, the entropy of liquid 3He
is

T CV , . T , »
S=/0 - dT' = (28K )Nk[; dT" = (2.8 K1) N&T,

exactly equal to the heat capacity due to the linear temperature dependence. The en-
tropy of the solid, meanwhile, should be k1n 2¥ = NkIn 2, since each nucleus has two
possible spin orientations. This constant value should apply down to very low (mil-
likelvin or lower) temperatures, when the nuclear spins finally align and the entropy
freezes out. Here is a sketch of both entropy functions:

° Solid /

Nkln2

Liquid
s — T
0.25 K
The intersection point where the entropies are equal should be at approximately
Nkn2= (28 K-YNKT, or T=—22 —025K.
’ 28 K-

According to the Clausius-Clapeyron relation, the slope of the solid-liquid phase
boundary on a graph of P vs. T should be proportional to the entropy difference,
Sliquia — Ssona- Our analysis therefore predicts that the slope should be positive at
temperatures greater than about 0.25 K, and negative at lower temperatures. The ex-
perimental phase diagram (Figure 5.13) shows just this behavior, with the transition
from positive to negative slope at about 0.3 K, just slightly higher than our prediction.
The discrepancy could be because of lattice vibrations giving the solid some additional
entropy, and/or the entropy of the liquid no longer being quite linear at relatively high
temperatures. At very low temperature, where the entropy of the solid also goes to
zero, the phase boundary becomes horizontal.

Problem 7.27. (Heat capacity of a Fermi system with evenly spaced levels.)

(a) Referring to the dot diagrams of Problem 7.16, imagine starting with ¢ = 0 and then
constructing a state for higher g by displacing one or more solid dots upward. The
total number of upward steps taken by the dots must be g, the total number of units
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(b)

(c)

of energy. This can be accomplished by moving one dot up ¢ steps, or two dots up a
number of steps that sum to g, or three dots up a number of steps that sum to q, and
so on. In all cases, each successive dot can be moved upward by no more steps than
its predecessor. The total number of ways of giving the system g units of energy is
therefore just the number of ways of writing nonincreasing lists of integers that add
up to g, that is, the number of unrestricted partitions, p(q).

The partitions of 7 are:

7,641, 5+2 5+1+1,4+3, 4+2+1, 4+1+1+1,3+3+1, 3+2+2,
34+2+41+1,3+1+1+1+1,242+2+1, 24+2+1+1+1,
24+1+1+1+1+1, 1+1+14+1+1+1+1.

That's 15 total, so p(7) = 15. The partitions of 8 are

8, T+1,6+2 6+1+1,5+3, 5+2+1, 5+1+1+1, 4+4, 4+3+1,
44242 4+2+1+1, 44+1+1+1+1, 3+3+2, 3+3+1+1, 3+2+2+1,
3+2+1+1+41, 3+14+14+1+1+1,2+2+2+2, 242+2+1+1,
242+14+14+141, 2+1+1+1+14+141,14+1+14+14+1+1+14+1.

That’s 22 total, so p(8) = 22.

Mathematica has a built-in function PartitionsP for computing unrestricted parti-
tions, so I just made a table with the instruction

mult = Table[PartitionsP[ql,{q,0,100}]

Here’s what it returned:

{1,1,2,3,5,7,11,15,22,30,42,56,77,101,135,176, 231,297,385, 490,627,792, 1002,
1255,1575,1958,2436,3010,3718,4565,5604,6842,8349,10143, 12310, 14883,17977,
21637,26015,31185,37338,44583,53174,63261,75175,89134, 105558, 124754, 147273,
173525,204226,239943,281589,329931,386155,451276 526823, 614154, 715220,
831820,966467,1121505,1300156, 1505499, 1741630,2012568 , 2323520, 2679689,
3087735,3554345,4087968,4697205, 5392783, 6185689, 7089500, 8118264 ,9289091,
10619863, 12132164,13848650, 15796476, 18004327, 20506255, 23338469, 26543660,
30167357,34262962,38887673,44108109,49995925,56634173,64112359,72533807,
82010177,92669720,104651419,118114304, 133230930, 150198136, 169229875,
190569292}

To compute the entropy, temperature, and heat capacity, I would have preferred to
copy this output into a spreadsheet and proceed as in Problem 3.24. But copying the
output into a spreadsheet proved to be so awkward that I instead just finished the
calculation in Mathematica:

entropy = Loglmult] //N ‘

temp = Table[2/(entropy[[i+1]]-entropy[[i~111),{i,2,100}]
‘heatcap = Table[2/(temp[[i+1]]-temp[[i~111),{1,2,98}]
ListPlot[Table[{temp[[i]],heatcap([i-1]11},{i,2,98}]]

(d)
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The //N tells Mathematica to work with approximate numerical values rather than
exact formulas. The temperature and heat capacity are computed by the centered-
difference method used in Problem 3.24, with the index ranges carefully chosen to use
all the data available and no more. Here’s the plot of heat capacity vs. temperature:

25
20
ok 1°

10

5

As expected, the heat capacity is linear in T, aside from irregularities associated with
the small size of the system.

For ¢ = 10, the Ramanujan-Hardy formula gives

eV /3
p(10) = T\/'a— =481,
about 15% higher than the exact value p(10) = 42. For ¢ = 100, the RH formula gives
emV/20/3
p(100) =~ 0 = 1.99 x 108,

about 5% higher than the exact value p(100) = 190560292. So the accuracy does
improve with increasing g, although this formula is not nearly as accurate as, say,

Stirling’s approximation. Working with the RH formula, we have for the entropy of
this system

S
% =l =lnp(q) = 7/2¢/3 - ln(4v3 ).
Since ¢ = U/n, we can compute the temperature as follows:
1 _0S _dg8S kd k[ « 1
T U " e v VAR - mAg) = 1]

With the abbreviations t = kT'/n and s = /3, this equation becomes

7t
s2— —s+t=0.

_ s
Cemsam T T

The solutions to this quadratic equation are
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The plus sign gives the physically relevant solution, since the minus sign would give
a value of s that actually decreases with increasing ¢. Squaring this expression then

gives
w22 24 24 w2 w22 24
= — R _—_— | = — = —_—t ] - —
1= (1 oty 1r2t) iz T o

w22 wit? 12 w22
NN § AP UL R PRI
't 12( w2t ) 5 +

In the second line I've approximated the square root under the assumption that ¢ > 1,
which is true whenever the RH formula applies in the first place. The energy U is just

gm, so the heat capacity is

dU _ dq it _ (7T
o) (2R

The predicted heat capacity is linear in T, as expected, but offset downward by a
constant term. This prediction is plotted as the solid line in the graph above. As you
can see, it agrees beautifully with the exact numerical calculation as t becomes large.

Why is the heat capacity of this system independent of N7 This may seem like quite
a paradox, since heat capacity must be extensive. However, this model system has no
explicitly specified volume, so the notion of an extensive vs. intensive quantity is not
really meaningful. In real systems, the spacing between energy levels would decrease
with increasing volume. So if you like, you can imagine that there is a hidden volume
dependence in the constant 5. In formula 7.48 for the heat capacity of a Fermi gas in
a three-dimensional box, the factor of NV really comes from the energy level spacing
as well; see equations 7.51 and 7.54.

Problem 7.28. (Two-dimensional Fermi gas)
(a) In two dimensions, the allowed energy levels are

h2
= 8mlI?
At T = 0, fermions settle into the lowest unfilled levels, so in two-dimensional n-space,
they fill a quarter-circle with radius ng,,.. The Fermi energy is the highest filled level,
ex = h?nZ, /8mA. But the total number of fermions in the system is N = 2-wn2 /4,
assuming that the fermions have spin 1/2 and hence two allowed states for each spatial
wavefunction. Solving for n2,, and plugging into the formula for e gives
_ h* (2N\ _ KN
= 8ma T 4rmA’

To compute the total energy, we add up the energies of all filled states and convert
the sum to an integral over a quarter-circle in polar coordinates:

€ (n2 +nl).

T

Tmax  h2p32 whini.,

Tlnax /2
U=2ZZE(E)=2/O dn/a d¢ne(ﬁ)=7r/o ng—dn = =,

Nz Ty

(b)

(c)

Problem 7.28
But nZ,, = 2N/x so this is just

wh® (2N\®  R2N?2
32md T) =
The average energy is just U /N = e /2.

To find the density of states, we need to change variables to ¢ in ej i

.for the total energy or the integral for the tota.lgnumber of pa.l‘teic]it;s(.ﬂtski‘fxz: Eﬁeﬂf&i‘r y
integral appears just above, I'll work with it. For the variable change from n tog}e’
we need to know that € = h%n%/8mA, which implies de = (h*n/4mA)dn, or ndn =
(4mA/h?)de. Therefore the energy integral (at T = 0) is , T

0= [ () e

We interpret this integral of the sum of all the i i
i energies (¢) multiplied by the b
of states per unit energy (g9(e)de). Therefore, for this system, P ¢ e

o) = 4rmA E
S
which is indeed a constant, independent of .

The ﬂll{stration below is an adaptation of Figure 7.14 to this two-dimensional system
The solid curve shows the number of particles present, per unit energy; as T' increases‘
the slope of the fall-off becomes shallower. But because g(e) is cénsta.nt for thi.;
system (a.nd. because of the symmetry of the Fermi-Dirac distribution about the oint
€= u.), the .hghtly shaded areas are equal and therefore &, the point where 7, —pl /2
Temains at its zero-temperature value, ez. Or almost: At sufficiently high temFDer;tures,
(5T ~ &), the.Fermj-Dirac distribution will become significantly less than 1 atl;) negative
values 9f €. Since g(e) = 0 at negative ¢ (there are no negative-energy states), the
upper lightly-shaded area will then be smaller than the lower one unless I decre’ases
AF temperatures much greater than €p/k, the fall-off in the Fermi-Dirac distribution.
will l?e so spread out that u will have to become negative in order to preserve the
equality of the two lightly shaded aress. In summary: When kT < €p, i remains

almost exactly equal to e;. Wh i
: ) P en kT >> ¢ becomes negativ i
increasing temperature. i Bofive and decreases with

U:

(at T =0).

K= ¢ép

(d) At nonzero temperature, the integral for the total number of particles is

N = [“a(men(e)de = g |z

ele~u)/kT 1 de,
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since g is a constant. Changing variables to £ = (¢ — )/kT, this integral becomes

o0 1
N =gkT —dz.
g —ukr €+ 1
The integrand is a composite function involving ¢7; if it were multiplied by the deriva-
tive of e* (which is also e®), we could integrate it easily with another substitution.
But we can almost put it into this form by multiplying numerator and denominator
by e=:

oo —z

N =gkT
g _“/le-[’E—x

Now just substitute y = e~* and dy = —e~%dz:

Q 1 0
= - ———dy = —gkT In(1 +
N gkT \/e.F/kT 1+y v 7 ( 9 en/xT

= —ngIn( > = gkT'In(1 4 ¢*/*T).

1
1 4 epr/kT
Solving for u as a function of N then gives
uw=kT ln(eN/ng _ 1) =kT ln(eep/lcT _ 1)'

When kT < e, the exponential e*/*T is very large, and the 1 is negligible in com-
parison, so the right-hand side is approximately kT - ex/kT = €z, as predicted above.
When kT > ¢, on the other hand, the exponential is only slightly larger than 1, so
the argument of the logarithm is less than 1 and therefore the chemical potential is
negative as expected.

(e

~—

When kT > e, the exponential can be expanded in a power series: 1+ ep/kT +:--.
The 1 cancels, leaving us with

- € A drmkT - A2
,u~lenﬁ—-len(N = a5z )-

This is the two-dimensional analogue of equation 6.93 for the chemical potential of an
ordinary (“classical”) ideal gas, with Z;,, = 2 because the electron has two internal
spin states.

Problem 7.29. The energy integral is

U =/ € g(€) Tigp (€) de =g0/ €2 7igp (€) de.
o o

As in equation 7.57, we now integrate by parts:

2 e g 2 [ g
0= 2o (e + 300 [ (-T2 e

Problem 7.30
The boundary term vanishes at both limits, leaving us with

2 hadih | e* 2 e e*
U= — 52 e = 2 / 52
59 ), FTe+17 5%/ v &

where = = (¢~ u)/kT and I've used equation 7.58 for drigp, /de. Now, because the integrand
is negligible when |z| > 1, and because kT < K, we can extend the lower limit of the
integral down to —co. We can also expand the function €52 in a Taylor series about u:

5 15
/2=y 4 E(E — W F(6 — L
5 15
= K+ S (@k T + (kT VuM2 4.
When we plug this into the energy integral, the first term gives simply 2gou5/? (see equation

7.62), while the second term gives zero because it is an odd function. To integrate the third
term we can again use equation 7.64; therefore,

2

2 2 15 T 2 w2
Ua Sgou®? + 24, . 22 2,12 T _ 4 52 T 2,1/2
590K + g0 5 (kT)p 3 = 590K + T 9o(kT)p
3. 4% 3x%  (kT)?
5 (2 8 €&

where in the last line I've used the fact that go = gN /ei’/ ? and set i1 = ep in the second
term, since that term is already small and the difference between 1 and ep would give an

even smaller correction. Now all that remains is to plug in equation 7.66 for . According
to that equation,

2 975/2 2 2 2 2
52 /2|1 = T (RIV™  a[ 8 w2 KTV 5] Sn? kT
pomcr [1 12(eF) ¢ 173 12(GF) =6 |l 24(5F) :

Plugging this into the previous equation gives

1

3 3. 5nf/kT\: 3n® (KT)2 3 2 (kT)?
U= -= (= — =_ —N—=
5NeF SNGF o (51-‘) 3 N p. 5N€F+ 4N o

as claimed in equation 7.68.

Problem 7.30. If we carry the expansion in equation 7.60 to higher orders, we find terms
proportional to (¢ ~ u)?, (¢ — )%, and so on, where € — i = zkT. When integrated as
in equation 7.61, however, all terms with odd powers of z vanish by symmetry; thus the
next nonzero term would be proportional to (kT)*. The next approximation made was in
replacing p~Y/2 with e;"/? in equation 7.65. To be more accurate bere, we would have to
include the quadratic correction in equation 7.66, which implies

2 271—1/2 2 9
~y2 g 12y T (RT o —~1/2 (kT
BT R {1 12(6F) F 1+24(6F) '
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Plugging this into the quadratic term in equation 7.65, we find that the next correction is
again proportional to T%. Thus, the “.--” in the first line of equation 7.66 represents terms
beginning with (kT'/e;)*. When we apply the binomial expansion to obtain the second
line of that equation, we get a quartic contribution from the new quartic term raised to
the first power, and also a quartic contribution from the old quadratic term raised to the
second power. There is no cubic term, however, so the next correction to 4 is quartic in
temperature.

In the energy integral, the expansion of ¢5/? again gives terms proportional to 72, T%,
and so on, but again the terms with odd powers of T also contain odd powers of z, so they
integrate to zero. We are left with an expression for U containing terms proportional to
152, (kT)?p'/2, and (kT)*x~3/2. In the last Each power of x can be written as a series in
(kT'/eg), but since that series contains only even powers of T', no odd powers can arise in
the formula for U. The next correction to the energy is therefore proportional to (kTeg)*.

Now let me calculate the next correction explicitly. The first step is to expand €¥/2 to
fourth order. To do this I used the Mathematica instruction

Normal[Series[eps~(3/2),{eps,mu,4}]] /. eps-mu —> x*kT

which also converts the truncated series into a “normal” polynomial and substitutes zkT
for (€ — p). The quartic term in the expansion came out to 3(kT)%z*/128u%2. Next we

need the integral
/oo I4ez 77..4
— —  _dzx= _
) oo (€% +1)2 15
which can be evaluated by the same method as in Problem B.21. Equation 7.65 therefore
becomes

)3/2+1r2 (kT2 | 7mt N (kT
8 62-/2#1/2 640 E-;;/2“5/2'

N=N (ﬁ

€F

The 4 in the final term can simply be set equal to e, since the correction would be sixth

order in T. In the second term, we can plug in the formula for i to second order, already

calculated in equation 7.66. Solving for u/e; and expanding everything out in powers of

kT /ep requires a few more steps. I did them by hand and then checked the answer with
the Mathematica instruction

muSeries = Normal[Series[(1 - (Pi~2/8)t~2/(1-Pi~2%t~2/12)"~(1/2)

- (7#Pi"4/640)t~4)"(2/3),{t,0,4}]]
where t is an abbreviation for kT'/ez. The formula returned, in ordinary notation, was
B ﬁ(ﬂ)z_ =Y.
€p 12\ ep 80\ ep
To carry out the energy integral, I similarly expanded ¢%/2:

Normal [Series[eps~(5/2),{eps,mu,4}]] /. eps-mu -> x*kT

Again the cubic term integrates to zero. The quartic term is —5(kT)%z*/128u%?, which
gets integrated as in the previous problem to give for the energy
7t (kT)*

2 . Al
Uv==2 /2 4 2 2,12 _
= sgD,u + 4 gﬂ(kT) Y 96090 1372 "

- Problem 7.31
In order to do the rest of the algebra with Mathematica, T typed in this expression:

energy = (2/5)g0*mu~(5/2) + (Pi~2/4)g0*kT 2%mu~(1/2) -
(7+P174/960) g0*kT"4/mu" (3/2)

In the next four steps I plugged in the explicit formula for go, plugged in the previously
calculated series for u, substituted ¥T'/ep for t, and expanded everything in a series to
fourth order in kT

energyl = energy /. g0 -> (3/2)(n/eF~(3/2))
energy2 = emergyl /. mu -> muSeries*eF
energy3 = energy2 /. t —> kT/eF

energy4 = Normal [Series[energy3,{kT,0,4}1]

The final instruction returned the desired expression for U to fourth order in kT /ep:

(T 3nt (RT)*

€p 80 =4

3 w2
U=:Ne+ TN

Notice that the fourth-order correction to the energy is negative. The corresponding correc-
tion to the heat capacity would also be negative, and cubic in temperature, so a plot of Cy
vs. T should become concave-down as T becomes comparable to €. (See Problem 7.32.)

Problem 7.31. We saw in Problem 7.28 that the density of states of this two-dimensional
system is a constant, N/ep. Therefore the energy integral is

N o0
U= —/ €Tipp (€) de.
€F Jo

Unlike the integral for N, this integral cannot be done analytically. So let’s integrate by
parts as in equation 7.57:

Net_

= ;5“?13(5)

w——q/midﬁpbdc.
o €rJo 2 de

The boundary term vanishes at both limits, leaving us with

U=—£/ €2dﬁFDde=£ _i_gdz,
2ep Jo de 2ep J_ppir (€2 +1)2

where in the last expression I've changed variables to x = (e—p)/4T and inserted expression
7.58 for dnpp/de. So far this expression is exact. But when kT < €5, We can extend the
lower limit of the integral down to —co as in the three-dimensional case. Since € contains
only integer powers of z, no Taylor expansion is necessary; we have simply

N [ =
= G FEII_)Z [1? + 2ukTz + (kT)’z"|dz.
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Evaluating the integrals exactly as on page 284, this becomes
N2

72 (kT)? _Neg w2  (KT)
=" 4+ — ~—= + —N——.
U= 2¢p *3 N € 2 6 €

The heat capacity is therefore

au TNET
Cv= (ﬁ) =3
v €

which is linear in T as expected. Here, however, there are no correctigns to the linear pe-
havior that are proportional to higher powers of T'; the corrections are instead ix;/)’?:rr'lentlal,
just as the deviation of p from € is exponentially suppressed ’by‘a _factor of e FIR

Now consider the high temperature limit, kT > ¢p. In this limit, as shown in Problem
7.28(e), p ~ kT In(eg/kT), which is negative. Since el#/FT >» 1 for. all €, we can neglect
the 1 in the denominator of the Fermi-Dirac distribution and write simply

N

— 2 — NkT
kT(kT) NET,

{= ]
U= y ooe e /AT e = E—Ei/ e~ T de =
er Jo er kT Jo

as we would expect for an ordinary ideal gas in two dimensions, according to the equipar-
tition theorem.

Problem 7.32. (Numerical treatment of a Fermi gas.) .
(a) Making the substitutions t = kT /eg, ¢ = pfep, and T = €fep in equation 7.53, 1
obtained the integral
8 [~ vz dz

=3}, &

{Here I've used equation 7.51 for g(e), and canceled the N's on both sides.) Setting
t =1 and ¢ = 0, this condition becomes simply

1=§/°° vz dz.
2 Jo 1

e +

To evaluate the right-hand side I typed
1.5%NIntegrate [Sqrt [x1/(Exp[x]+1),{x,0,Inf inity}]

into Mathematica and got the result 1.017. So p is not exactly zero when kT = ep,
but it’s close. To reduce the value of the integral slightly we would want to ‘make
the denominator of the integrand larger, which we can do by making c (or p) slightly
negative.

(b) First I defined a Mathematica function to compute the integral for any values of ¢
and t:

fermiN{c_,t_] := 1.S+NIntegrate[Sqrt[x]/(Expl(x-c) /t1+1) ,{x,0,Infinity}H

()
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Then, for example, to find the actual value of ¢ when ¢ = 1, I typed simply:
FindRoot [1 == ferxmilN(c,1], {c,-1,0}]

{The numbers —1 and 0 specify a range of c values to use as initial trials in searching
for a solution. The precise numbers used are not critical.) Although Mathematica
complained with a warning message at this instruction, the answer it gave was quite
reasonable: ¢ = —0.0215. After this success, I got ambitious and asked for a table of
solutions at 20 different ¢ values:

mutable = Table[{t,FindRoot[1 == fermiN[c,t],{c,~1,0}1([1,2]1%},{¢t,.1,2,.1}]

(Some of the details in this instruction are important only because I wanted to plot
the table without retyping it. What it actually produces is a list of ordered pairs
(t,c). The “[[1,2]]” after the FindRoot function strips off some unwanted stuff that
would have interfered with plotting.) This time I got several warning messages but
still plausible results, so I plotted it with the instruction ListPlot [mutable], which
produced the following graph:

Bfep
1t e o

0.5 .

-0.8 .

-1 .
-1.5 *

-2 .
-2.5 .

In principle, the energy calculation is actually easier than the p calculation, but getting
the previously calculated p values into the Mathematica formula can be a bit tricky.
I did it by defining an “interpolating function”:

mu = Interpolation[mutable]

The function muft] can now be used to calculate pu (actually ¢ = p/ep) at any tem-
perature. (Figure 7.16 was generated by typing Plot [mu[t],{t,0,2}].) As for the
energy integral itself, with the same set of substitutions it becomes

U 3 [° %2
_— —/ —_— dI,
Nep 2 J, e@alt41

which I programmed by typing

energy{t_] := 1.5#NIntegrate(x"1.5/(Expl(x-mu[t])/t]1+1),{x,0,Infinity}]
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: . . : the total number of electrons. To calculate the number of electrons within any energy
th t t . . . - f
To plot it I gave the instruction range we would integrate the function g(e)7pp(€). Now in this simple model, g(¢) is
Plot [energy[t],{t,.01,2},PlotRange->{411,{0,3.2}}]; . symmetrical about the point € = ep. Furthermore, as shown in Problem 7.12, the
B Fermi-Dirac distribution is symmetrical about the point € = y, in the sense that the
This produced the following graph: X probability of a state at € being occupied is equal to the probability of a state at p—€
being unoccupied. In order for the calculated number of conduction electrons to equal
3 . the number of valence holes, the produce g(¢)7pp(€) must also have this property, but
: this will happen only if the symmetry points 4 and e, coincide.
2.5 (b) The number of electrons in the conduction band is the integral of the density of states
U 2 : times the Fermi-Dirac distribution:
Nep 1.5 : N.= ./5 g(e)Tpp(e) de = go/s Ve— D P VI de.
- <
If the width of the gap is much greater than kT, then the exponent in the Fermi-Dirac
0.5 ; distribution is large over the whole range of integration and we can neglect the +1
KT /ex : in comparison to the exponential. The integral then simplifies considerably; we can
0.5 1 1.5 2 evaluate it explicitly by changing variables to z = (e — ¢.)/kT:
Notice that U/Nep goes to 3/5 at T = 0, as expected. To obtain the heat capacity I : -
numerically differentiated the energy function and then plotted the result: B N. = go / fe— . e~ s VKT ge
€e
heatcap{t_] := (emergy[t+.01] - emergy[t-.01})/.02 oo
= fe — ~(¢—€c)/kT o~ (ec—er) /KT
Plot[heatcap(t],{t,.02,1.99}; : = o /E €T kee € de
(Not very elegant, but it does the job.) Note that this “heat capaci.ty’-’ funr.:tion really E = goe~ (=R VAT (L T)3/2 / Ve dz
calculates C/Nk, since the energy function is really U/Nep and t is in units of ep /k. A

Here's the plot: The integral over z can be done by the methods of Appendix A, or looked up in tables

or evaluated by computer; it is simply +/7/2. Plugging in the explicit value of go (from
1.4 equation 7.51) then gives
1.2
m(8m)3/? a2 VT 2V
= MO o pey32 YT —(eemer) /KT . 2V -ae/2%T
1 Ne= =S VD" gre v © ’
C
NE 0.8 where vg is the quantum volume defined in equation 7.18 and Ae is the width of the
0.6 gap, 2 (e — €5)-
0.4 (¢) At room temperature, kT = 0.026 eV so the exponential factor is
0.2 1.11 eV
—8e/2T _ — =213 __ -10
e —exp<———> =e = 5.4 x 107",
G o 15 5 kT/ep 2(0.026 eV)
At temperatures much less than ep/k, the heat capacity is approximately linear in T, Meanwhile, the quantum volume is
as derived in the text. A temperatures much greater than ep/k, the heat capacity 6.63 x 10-34 J .52 3/2
approaches %N k, the value for an ordinary “monatomic” ideal gas. B 0= (6.63 x -s) =80 x 10~ m®.
¥ 2m(9.11 x 10-3! kg)(1.38 x 10-23 J/K)(300 K)

Problem 7.33. (Simple model of a pure semiconductor.)

(a) At nonzero temperature there will be some electrons in the conduction band and some : N 40
“holes” (unfilled states) in the valence band. But the numbers of conduction electrons b | . _ 2(54x 10719 — 1.3 x 10 m-2.
and valence holes must be exactly equal, since raising the temperature can’t change i

Therefore the number of conduction electrons per unit volume should be roughly

V ~ 8.0x10-% 3
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(d)

(e)

For comparison, the density of conduction electrons in copper is about 8.5 x 10?8
per cubic meter, as calculated in Problem 7.19. So copper should conduct electricity
roughly a million million times better than (pure) silicon.

A pure semiconductor will conduct much better at higher temperature because there
are so many more electrons in the conduction band. For example, suppose we raise the
temperature of our silicon from 300 K to 350 K. The quantum volume then decreases
by a factor of {350/300)%/2 = 1.26, which isn’t very significant. On the other hand,
the exponential factor is now

1.1l eV
2(8.62 x 10° eV/K)(350 K)

e A/%T — exp (_ ) =e ?1=10x107,

greater than its value at 300 K by a factor of 19. The number of conduction electrons
is therefore more than 20 times larger than at 300 K. (An ordinary metal, on the other
hand, has a fixed number of conduction electrons so its conductivity depends only on
how readily these electrons can move around. At high temperatures, collisions occur
more frequently, so the conductivity is lower. This effect is also present in silicon, but
is swamped by the enormously greater number of conduction electrons.)

To get an insulator (with essentially no conduction electrons), we would want the
gap to be significantly wider than the 1.11 eV gap in silicon. Doubling this value
should pretty much do it, since this would square the exponential factor computed
above, multiplying the number of conduction electrons by another factor of 5 x 10~1°
to yield only 7 million per cubic meter. For a 3-eV gap, the exponential factor (at
room temperature) is

3eV

—Ae/2kT _ _
¢ =P ( 2(0.026 eV)

> = e—57.7 =0 x 10—-26

S50

Ne  209x107%)
VS E0x10 B 2R

negligible indeed.

Problem 7.34. (Semiconductor: asymmetry of the density of states.)

(a) Suppose that go, < go.. Then, if u were to remain constant as the temperature

increases from zero, the symmetry of the Fermi-Dirac distribution would imply that
the number of electrons added to the conduction band is less than the number removed
from the valence band. To prevent such nonsense, . must decrease with temperature.
Similarly, if gg, > goc, the chemical potential would have to increase with temperature.

(b) The number of electrons in the conduction band is the integral of the density of states

times the Fermi-Dirac distribution:

de~go,:/ Ve —e e emrIET 4o

N.= / (&) Fep(€) de = goe | 2

e(E—#)/kT + 1

(c

~—

(d)

(e)

Problem 7.34

where the last approximation is valid provided that ¥T" < ¢, — . Changing variables
to = = (¢ — e.)/kT, this expression becomes

N.= QOC(kT)alze_(“—“V"T/ ﬁe-z dz = ggOC(kT)a/ze—(ec—u)/kr.
[

(The integral over z is evaluated in Problem B.8. It can also be looked up in tables
or done by computer.)

'_I‘he probability of 2 state being unoccupied is 1 —7pp(€), so the total number of holes
15
No= [ 6(6) [1 = (@) de = g [ va= [1

€y /
s 1+ e(#—c)/LT de = gO'u/ Ve, —ee T de

where the last approximation is valid provided that kT < u — €,. Changing variables
to z = (e, — €)/kT, this expression becomes

1
T elemIAT 1] de

N, = QOHe—(#—eu)/kT

€y V)
Ve, —eete=a/kT go go,,e‘("““’)/"T/ VzkT e (—kT)dz

—co oo

= go.,(kT)3/2e'(“"")/"T/ VTe *dr = ggou(kT)Sﬂe—(“_‘")/kT.
o

Since every electron excited to the conduction band leaves behind a hole in the valence

band, the resuits of parts (b) and (c) must be equal at any temperature. Canceling
the common factors then gives

go,;e"(‘°_“)/kT = go.,e—("_“’)/"T,

ot kT
oo _ €T (evremriiT
Gou el m/RT :

Solving for u, we find

2 2 Goe

This formula verifies that at T = 0, the chemical potential is still in the exact middle
of the band gap. As T increases, u either increases or decreases, depending on whether
Jou is greater or less than gq,, respectively.

For silicon, the logarithm is equal to In(0.44/1.09) = —0.91. So at room temperature,
the shift in g is

kT _ 0. 026 eV

- (-091) = (0.91) = —0.012 eV.

This is quite small compared to the band gap of 1.1 eV, so the approximations made
above are valid.

HOERORN PO FaT S 18
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(b) The conduction electrons can be treated as an ordinary ideal gas as long as the 1 in the

Problem 7.35. (Doped semiconductors.)
denominator of the Fermi-Dirac distribution is negligible compared to the exponential

(a) We saw in Problem 7.33 that for pure silicon at room temperature, the number of

electrons excited from the valence band into the conduction band is on the order of
106 per cubic meter, or 101° per cubic centimeter. On the other hand, in Problem
7.5 we saw that for silicon doped with 10*7 phosphorus atoms per cubic ¢entimeter,
nearly every P atom contributes an electron to the conduction band (at room temper-
ature). Therefore, it should be a good approximation to entirely neglect the electrons
excited from the valence band, as in Problem 7.5. Under this assumption, the chemical
potential is as calculated in Problem 7.5(b):

2V 2V
=- = kTl ,
# len(chQ> n(-’CNdUQ)

where the energy zero-point is taken to be €. (the bottom of the conduction band).
Here N, is the number of conduction electrons, equal to the number of donor impurities
(N,) times the dimensionless fraction = that was calculated in Problem 7 .5(d):

el/t kT
= 515(\/1 +4y — 1),

o) t=-—1,

where I is the donor ionization energy, 0.044 V. The number 0.0036, calculated for

silicon doped with 107 phosphorus atoms per cm®, also comes up in the formula for p:
Nd'UQ _ 0.0036

v $3/2
Therefore we can write the formula for z as

3/2
JERS sk
I (0.0036)z
To plot this function, I used the following Mathematica code, which produced the
graph below:

y = (0.0036)

y[t_] := 0.0036 * Exp[1/t] / t"1.5
x[t_] := (Sqrtli+dy[t]] - 1) / (2yltD
Plot [-t*Log[2*%t~1.5/(0.0036+x[t])],{t,0,1}]

(c)

function, e“~#/*T for all € in the conduction band. This is the same as saying that
€—u > kT for all € in the conduction band, so a sufficient condition is ¢, — x> k7. In
the limit T — 0 this condition definitely holds, since e, — p goes to a nonzero constant,
I/2, in this limit. Note also that e, — u is at least this large at any temperature;
furthermore, from the graph in part (a) we see that €. — p is at least four times
greater than kT over the entire range of temperatures plotted. This range includes
room temperature, at which k7" = 0.026 eV so kT'/I = 0.026/0.044 = 0.59; at this
temperature, ¢, — p is slightly greater than 31, about 5 times greater than kT'. Since
e’ ~ 150, approximating the Fermi-Dirac distribution by the Boltzmann distribution
within the conduction band should be accurate to about the 1% level.

At temperatures around room temperature or lower, the number of valence electrons
excited to the conduction band will be quite negligible compared to the number from
donor ions, as discussed in part (a). (Actually, the number is even less than in a pure
semiconductor, since the chemical potential is considerably higher in this case, imply-
ing that occupancies in the valence band are even closer to 1.) At higher temperatures,
though, the number of conduction electrons from donor impurities saturates at 1017
per ¢cm®, while the number excited from the valence band continues to rise. At what
temperature will this number equal 107 per cm?? To make a crude estimate, let’s go
back to the simplified model of a pure semiconductor used in Problem 7.33. There
we calculated that at room temperature, pure silicon contains about 10'° conduction
electrons per em®. If we double the temperature to 600 K, the exponential factor
increases to
e~ 8/%*T = 9.3 x 1075,

about 40,000 times greater than at 300 K. The quantum volume also decreases by
a factor of 2%/2 = 2.8, the combined effect is to increase the density of conduction
electrons by only a factor of about 10°. At 900 K, however, the exponential factor
increases to 8.1 x 10~*, greater than at 300 K by a factor of 1.5 x 10°. Factor in the
decrease in the quantum volume, (900/300)%2 = 5.2, and we obtain an increase in the
number of conduction electrons by a factor of nearly 107, as desired. Of course, all
this assumes that the chemical potential is at the midpoint between the valence and

03 0 Z G 08 T kT/I conduction bands. In a doped semiconductor, as we've just seen, the chemical potential
1 . is considerably higher at relatively low temperatures. But for our phosphorus-in-silicon
example, a temperature of 900 K implies kT/I = 1.76, at which the chemical potential
-2 should drop below ¢, by more than 12 times the ionization energy (extrapolating from
p -3 the graph in part (a)). That puts u pretty near the center of the band gap, as needed.
u
-4
Problem 7.36. {Magnetization of a degenerate Fermi gas.)
-5 .
(a) In the paramagnetic systems studied in Chapters 3 and 6, every elementary dipole was
-6 free to flip its spin from up to down—there were no restrictions from states already

Notice that at T = 0, p = —I/2, halfway between the bottom of the conduction band
and the energy of the electrons bound to the donor jons. As the temperature increases,
the chemical potential drops, just as for an ordinary ideal gas.

being occupied. But in a degenerate Fermi gas, most electrons can’t flip from one
spin alignment to the other, because the state with opposite spin alignment is already
occupied by another electron. Only near the Fermi energy are there a significant
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number of unoccupied states, so only a small fraction the electrons are free to flip
their spins. Therefore, the magnetization should be relatively small, compared to
other paramagnets at the same temperature.

(b) When there is no magnetic field, the density of states is

x(Em) _ 3N
2p° T 2dl/*

g(E) = gO\/Ea

where go =

This formula includes all states with either spin alignment; half of the states at any
energy come from each spin alignment. Adding a magnetic field B shifts the energies
of half the states (those with positive y., and hence negative 2-spin, thanks to the
electron’s negative charge) down by § = upB, and shifts the energies of the other half
of the states up by 4. Thus, the density of states is now

g(e) = g2—ox/e+5+g—2°-\/€—5,

where it is understood that the € values in each term are restricted to those that yield
real roots. A clever way to interpret this formula graphically is to turn Figure 7.13 on
its side, and plot one term to the left and the other to the right:

\

€

(c) As the magnetic field is turned on (at T = 0}, the number of electrons that flip from one
spin alignment to the other is equal to the area of either of the lightly shaded regions
in the illustration above. Approximating these areas as rectangles, this number is
8 - £90/%. The number of up-dipoles increases by this amount, while the number of
down-dipoles decreases by this amount, so the total magnetization is

3NuiB
€

1
M=ua(Nr—N1)=ua-2-5-§go¢6_=#%Bgo\/e_=2—F—

It is interesting to compare this formula to equation 3.35 for an ordinary paramagnet in
the regime where Curie's law applies. Aside from the factor of 3/2, the formulas differ
only in the replacement of kT by €. Since ¢ is normally much larger than kT, the
present system has a magnetization much less than that of an ordinary paramagnet.

Problem 7.36

(d) At nonzero T, we can compute the numbers of up- and down-dipoles by integrat-

ir}g t.he corresponding portion of the density of states, multiplied by the Fermi-Dirac
distribution. Therefore the magnetization is

_ oog _ ©o
M_,uB(NT—Nl)=pB[/_6 EOVG"‘J"FD(G)dE_/E —922 e-—éﬁFD(E)de}.

To evaluate either integral, we can use the Sommerfeld expansion as on pages 283-284
of the text. For instance, the first integral is

Vetrim d:E/m vaf_dPepY, (2 [T €

in the first step I've integrated by parts and in the second step I've changed
\ a.bles to £ = (¢ — u)/kT and extended the lower limit of the integral down to
nity. The next step js to expand (¢ + 6)¥2 in a power series about € — u

3 3
O 4 e = W)+ O+ e = )+ )V
as zkT and plugging into the integral above gives (approximately)
3 3 :
Iy [(u + 02 + SohT(u + 6)/° + 3 (@D (u+ 8)™ ZJ dz
2 3/2 x? 2 —1/2
= 3|+ 9%+ TOT 0],

_where I've evaluated the integrals as in equations 7.62 through 7.64. The other integral
is the same except that § is replaced by ~§, so the magnetization is approximately

_ Bego 2 7 2
M= 2 55— G 574 o4 572~ ey ol
Since § is much smaller than H, We can now use the binomial expansion as follows:
Jyp )
26 =2 (12 Y m pr(1 £ 70
(pE0) =p < #) 7 ( p )
where p is either 3/2 or —1 /2. Applying this approximation to each term gives

_ % 36 36\ 2 § 5
M= [;ﬁ/z(l +oo -l )+ T (1- = )]

2u 2 2 2
_ #BYo| a2 Eé _ 7T_2 2,-12 8] _ 1/2 w2 (kT)?
3 [# P (kT)Yp ” = ppdgo [p'/? — CYE ]

Now recall tha'ut the chemical potential is given, to order (kT/ep)?, by equation 7.66
{plus a correction proportional to (6, ep)?, which we assume to be small in comparison).
In the second term of our formula for M » We can simply plug in g = ¢, since the
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correction would be proportional to (kT/ep)4, which we assume to negligible. In the
first term, though, we must carefully plug in the corrected formula for x and use the
binomial expansion once again: )

2 o\ /2 2 (kT2

= a7 (KT _ ™ (kT)?
M—#B&go |:€F (1 12(55‘)) 24 ei<1=/2
2 2 2 (kT')?

- ye () 7 KTNY 7 (RT)
_#Btsgo[ép (1 24(51?)) 24

2 2 2 2 kT 2
- yal, _m (kT 3NugB|, = (kT
= Hadgocs [1 12 e,,)] e | 12(€F) .

(In the final step I've used the definitions of § and go.) The prefactor is the same
zero-temperature result obtained much more easily in part (c). The correction term
shows that as the temperature increases, the magnetization decreases (as one would
expect), but only slightly as long as kT < €.

Problem 7.37. To find the maximum of the Planck function z3/(e* — 1), you could just
plug in numbers until it becomes clear that z = 2.82 gives a larger value than any other z.
Or you could use a Mathematica instruction such as

FindMinimum[-x~3/ (Exp[x]-1),{x,3}]

which returns the value 2.82144. The sophisticated method is to set the derivative of the
function equal to zero:

d z? 3z%(e” - 1) —x®e 2P T 1Y oo
°=E(e:—1>= -1 =@ D=l

The solutions = 0 and z = co give the minima of the function. We want the maximum,
which is at the nontrivial solution where

3e” — 3 =ze”, or e T=1-—.

But this is a transcendental equation, so we again must resort to numerical methods, such
as the Mathematica instruction

FindRoot [Exp[-x]==1~(x/3),{x,3}]
which again returns 2.82144.

Problem 7.38. At T = 3000 K, kT = 0.26 eV, while at T = 6000 K, kT = 0.52 V.
To plot the Planck spectrum vs. photon energy at each of these temperatures, I used the
Mathematica instruction

Plot[{e~3/(Exple/.26]-1),e~3/(Exple/.52]-1)},{e,0,6}]

Problem 7.39

in which I've ignored the overall constant in equation 7.84 since the vertical axis of the
graph is so tricky to interpret anyway. Here’s the resulting plot:

6000 K

3000 K

1 2 3 1 5 %€ (V)

Note that doubling the temperature shifts the peak in the spectrum to the right, to a
photon energy exactly twice as large. Much more dramatic, though, is the height of the
spectrum: Doubling the temperature increases the total area under the graph by a factor
of 2* = 16, as predicted by equation 7.85 or 7.86.

Problem 7.39. The relation A = hc/e implies € = he/X and de = —(he/A?)d). Therefore,
equation 7.83 becomes

A 81yt [0 LN =1/
7= e /O s 4 = ~ s (1) /m i A = (o) /0 er—g A

The function whose integral gives the energy density within any desired wavelength range
is therefore
8mhe/AS
(= ehe/kTx _ 1°

To plot this function it’s easiest to change variables again to the dimensionless variable
€= (kT/hc)X:

V" (he)?

To plot the integrand I said Plot [(1/e11°5)/(Exp[1/el1]-1),{ell,0,1.4}] to Mathe-
matica, and it produced the following:

de

elft—1""

U 8x(kT)* /°° 1/65

20
15
1/65
a7t 1 10
5
£=(kT/hc))

0.2 0.4 0.6 0.8 1 1.2 1.4
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Although this curve may look superficially similar to Figure 7.19, it differs significantly: It
goes to zero exponentially as £ — 0, and falls off in proportion to 1/¢* as £ — co. Notice also
that the peak of the curve is at approximately ¢ = 0.2; to locate it more precisely I used the
Mathematica instruction FindMinimum[-(1/e11°5)/(Exp[1/el11]-1),{ell,.2}], which
returned the value £ = 0.201405. Therefore, as a function of wavelength, the Planck
spectrum peaks at the value A = (0.2014)(hc/kT) = he/(4.97kT). This is not the same
point where the spectrum peaks as a function of photon energy (or frequency); it is lower
in wavelength (or higher in energy) by a factor of 4.97/2.82 = 1.76. How can this be?
The difference occurs because both this spectrum and the one plotted in Figure 7.19 are
functions whose purpose in life is to be integrated. Either formula will give the same answer
when you integrate it appropriately between any two points. However, one gives the energy
density per unit photon energy, while the other gives the energy density per unit wavelength,
and the units of photon energy and wavelength depend on each other in a nonlinear way.
For instance, a one-unit photon energy range, say a range of 1 eV, corresponds to a larger
range of wavelengths if it’s from 2 eV to 3 eV than if it’s from 200 eV to 201 eV. Therefore,
when we convert the photon-energy spectrum to the wavelength spectrum, we shift the
curve upward at short wavelengths (where a unit of wavelength includes a relatively large
range of photon energies) and downward at long wavelengths (where a unit of wavelength
includes a relatively small range of photon energies).

Problem 7.40. Notice that equation 7.83 can be written

> 8V e?\_
U =/0 G(W)npl(e) de.
This is in the form of an integral of € times g(e) times the appropriate distribution function,

provided that we identify
_ 8V

g(e) = The®

as the density of states—the number of single-particle states per unit energy. This formula
is quadratic in €, so its graph is a parabola opening upward:

9(e)4
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Problem 7.41. (Einstein A and B coefficients.)

(a) The number of atoms in state 1 can increase due to spontaneous decay from state 2,
and incFease due to stimulated emission from state 2, and decrease due to stimulated
absorption up to state 2. The rate of each of these processes is equal to the probability
for any one atom undergoing the process (as expressed in terms of the definitions of 4,
B, and B’) times the number of atoms currently in the required initial state. Therefore

the total rate is
le

dt
where u(f) is evaluated at the required frequency, f = e/h.
In equilibrium, dV; /dt = 0 and N, /Ny is given by a simple ratio of Boltzmann factors,

= AN, + B'Nyu(f) = BNyu(f),

(b

~—

N,  e-Els)/iT

Ny _ —e/kt _ _—hf/kT
Ny~ e~EGu/AT =e€ :

=€

;[‘1813 function u(f) is obtained by changing variables from ¢ to f = €/h in equation

_ 8rh Fi
)= T3 eI _1°

u(f

(The extra factor of k in the numerator comes from de = h - df.) Plugging all of these

expressions into the result of part (a) and canceling the common factor of Ny, we
obtain
3
0= Ae—M/*T ¢ ~hf/kT _ py8TH f
e + (Be B)_c3 I T

Pulling the A term to the left-hand side and multiplying through by —e/ T gives

_ hI/KT n  87h fe

Nt{w t.his equation must hold for all temperatures T, but the coefficients themselves,
being intrinsic properties of the atom, cannot possibly depend on temperature. There-
fore, since the left-hand side is independent of temperature, the temperature depen-
dence on the right-hand side must cancel out. The only way this can happen is if
B’ = B. We then have simply

8th  f? 3
Th__f1___ o 8mhf

A=B(M/T _1y.

& ehf/kT 1 3’
which is Einstein’s relation between the rates of spontaneous and stimulated emission.

Problem 7.42. (Electromagnetic radiation in a kiln.)
(a) The total energy of the radiation in a cubic meter of space at 1500 K is

po 8 (KDY 8r® [(1.38 x 10-2 J/K)(1500 K)]*

(1 m®) =0.0038 J.

"~ 15 (he)® " T 15 [(6.63 % 103 J - 5)(3 x 10° m/s)|F
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(b) A graph of the spectrum should look like Figure 7.19, but with the horizontal axis
representing € (in eV). At T = 1500 K, the product kT is 0.129 eV, so the spec-
trum (plotted as a function of photon energy) peaks at € = (2.82)(0.129 V) =
0.36 eV. Here’s a computer-drawn plot, which I generated by typing the instruction
Plot [eps~3/(Exp[eps/.129]-1),{eps,0, 2}] into Mathematica:

€ (eV)
0.5 1 1.5 2
(I didn’t bother to label the vertical scale because it isn’t easy to interpret. The total
area under the graph, though, represents the total energy density, 0.0038 J /m3.)

The photon energies at the (nominal) limits of the visible spectrum are € = he/A =
(1240 €V - nm)/ A, which evaluates to 1.77 ¢V at 700 nm and 3.1 eV at 400 nm. The
corresponding values of z = ¢/kT are 13.73 and 24.0. The fraction of all the energy
in this range can be computed as

240 3 4y /‘ ©g3dz 15 240 g3 dx
/1.3.7 ee~1/ Jo -1 7 Jlag €~1
At this point you could do the integral numerically. Alternatively, since z > 1 over

the entire range of integration, we can approximate the integrand by neglecting the 1
in the denominator to obtain

(c

~

15 [0 15 24.0
= [ wtemdn=—[-e (e 327 + 60+ 6)] = 00054,
L 13.7

m Jiar
So only about 1/20th of 1% of the energy is in the visible part of the spectrum.

Problem 7.43. (Photons at the surface of the sun.)
(a) The total energy of the radiation in a cubic meter of space at 5800 Kis

_ 8% (kT)', . 8% [(1.38 x 10~ J/K)(5800 K)|*

L G T 1 m®) = 0.855 J.
15 (RS 15 [(6.63 x 10-% J 5)(3 x 10° m/op L =)

{b) To sketch the graph you can just copy Figure 7.13, but recalibrate the horizontal
axis. Note that at 5800 K, kT = 0.50 eV, so £ = 1 corresponds to ¢ = 0.50 eV.
Alternatively, you can just replot the graph with ¢ as the horizontal axis. Idid
so using the Mathematica instruction Plot[eps~3/(Exp [eps/.51-1),{eps,0,6}],
which produced the graph on the following page.

(©

Problem 7.44

: € (eV)
1 2 3 4 5 6
To locate the visible portion of the spectrum, note that the red end is at 700 nm
which corresponds to a photon energy of € = he/A = 1.77 eV, while the violet end is
at 400 nm which corresponds to a photon energy of 3.1 eV. I’ve shaded this region in
the graph.

Since ¥T = 0.50 eV, the limits of the visible range are at z = 1.77/0.5 = 3.54 and
z = 3.1/0.5 = 6.2. Therefore the fraction of energy in the visible range is

6.2 3 oo 3 6.2 3
/ s / —do= e T dr.
sse€”—1 o €—1 m Jasee® —1

I evaluated the integral numerically with the Mathematica instruction

(15/Pi~4)*NIntegrate [x~3/(Exp[x]-1),{x,3.54,6.2}]

which returned the number 0.36831. So about 37% of the sun’s energy is within the
visible range.

Problem 7.44. (Number of photons in a photon gas.)

(2)

To compute the number of photons, we can simply sum the Planck distribution over
all “modes,” including a factor of 2 to count the two polarization states for each wave

shape:
= 1
N= 2222"’?1(6) =2 Z ghen/2LkT _ 1°
(Except for the absence of a factor of ¢, this is the same as equation 7.81.) The steps
from here on are the same as in the text: Convert the sum to an integral, and carry
out the integral in spherical coordinates where the measure includes a factor of n? and
the angular integrals give a factor of 4m/8. Then change variables to z = hen/2LkT":

o0 n2

4m 2LET\3 [ 2?
N=2.—- A ehm/ZLkT._ldn_Tr( he )/o. ez_ld:z:

e (2] [

I evaluated the integral numerically with Mathematica:

NIntegrate[x~2/(Exp{x]-1),{x,0,Infinity}]
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It replied with the answer 2.404.
(b) Combining this result with equation 7.89, I find for the entropy per photon

5 _ (32n%/45)V(kT/hc)®k _ 327%/45
N = 2404 -8V (kT/hc)® ~ 2.404 8w
So in fundamental units, the entropy per photon is 3.6.

(¢) At room temperature,

k = 3.60k.

N KTV (8.62 x 10-5 &V/K)(300 K)
v =2404-8n(0) = 60'4((4.14 10715 oV -5)(3 x 10° m/s

(This may seem large, but it’s tiny compared to the number of air molecules per cubic
meter under atmospheric conditions.) At 1500 K the temperature is 5 times as high
so we can simply multiply by 5° to obtain N/V = 6.8 x 10® m3. And for 2.73 K
we can multiply by (2.73/300)? to obtain 4.1 x 108 m~2. That’s slightly under half a
billion photons per cubic meter filling the entire observable universe—huge compared
to the average density of ordinary matter.

3
)) =5.5x 10" m3.

Problem 7.45. To evaluate (8U/3V)s y, we need a formula for U in terms of V' and S; we
need to eliminate 7', and holding S fixed is the same as holding N fixed. Let me abbreviate
a = 8x%k*/15(hc)3, so

U=aVT* and S = %aVTg’.

Solving the second equation for T and plugging into the first gives

35 \¥*  /3s\*?
= - ={ = V)13,
U aV(4aV) ( 1 ) (aV)

Now we can compute

au 1/35\"° _acreas _1U 1
P“'(a_v)s“E(T) oT VT =3y =T

At 1500 K, the energy density is 0.0038 J/m®, as computed in Problem 7.42(a). The
pressure is therefore 1/3 of this, or 0.0013 Pa. For comparison, the pressure of the air
inside an ordinary kiln is the same as outside, approximately 1 atm (if the kiln is at sea
level) or 10° Pa, greater by a factor of almost 108. On the other hand, at the center of
the sun the temperature is greater by a factor of 104, so the radiation pressure should be
greater by a factor of (104)4, that is, about 1.3 x 10*® Pa. For comparison, the ionized
hydrogen would have a pressure of roughly

RT
P = = = 2(10° mol/kg) (10° kg/m®)(8.3 J/molK)(L5 x 107 K) = 2.5 x 10 Pa,
where the factor of 2 accounts for the two particles (electron and proton) per ionized atom.
This is still greater than the radiation pressure, but “only” by a factor of about 2000. My
understanding is that there are some stars in which the radiation pressure is actually larger

than the gas pressure.

Problem 7.46

Problem 7.46. (Free energy of a photon gas.)
(a) From equations 7.86 and 7.89, we have

5
F=U-15=CCD", . __32’“5V(H>3k

15 (hc)? 45 he
- 8 (kT (1-3)- _E (TS 1
15 (he)? 3= "B (e’ =3

(b) Differentiating this result with respect to T' gives

(c)

(d

~

(_62’) _ 32x kT v
8T/, 45 (ko) ’
which is indeed equal to —S, by equation 7.89.

By equation 5.22 and the result of part (a),

p=_(£) _ 8 (kT)* _1U
OV /)rn 45 (he)® 3V

in agreement with the result of the previous problem.
For any pa.f'ticula.r mode with energy ¢, the partition function is Z = (1—e*/*T)=1 a5
calculated in equation 7.70. Therefore the free energy of this mode is F = —kT'In é =

kT_ln(l —e~/¥T). To get the total free energy, we sum this expression over all modes
as in equation 7.81: ’

F=2 Z kTIn(1 — e=/*T) = 2T . g/ n2In(l ~ e~/*T) dn,
o

Tz Ty, Ty

In the last expression I've converted the sum to an integral in spherical coordinates
over the first octant of n-space, and carried out the angular integrals to obtain 7/2,

the area of an eighth of a unit sphere. Changing variables to z = ¢/kT = hen/2LET
then gives

_ 2LKT\3 [ . kT)* [
F—nkT(Tc)/o 2?In(l—e )da:=87rV£(?))a [ #in(1 - ) as.

To put this integral into a more familiar form inte is, i
. , grate by parts; that is, integrate
the z* to obtain 7°/3, and differentiate the logarithm: &
kT)* [:1:3 0 .3 -z
Fasay{FDN 20 s T
(o) | 7 ) h 31— %
The boundary term vanishes at both limits, so we're left with

87V [° g3 1
F=-—" —_ = —=
3 ), =—1 dz 3U,

oo
0

by comparison with equation 7.85. This is the same resuit obtained in part (a).
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Problem 7.47. Assuming thermal equilibrium, we can compute the fraction of hydrogen
atoms that are ionized using the Saha equation, derived in Section 5.6 and in Problem 7.3:

NoNe V. _ipr
Pt ¢ ,
NH ‘UQ

where I is the ionization energy, vg is the electron’s quantum volume, and .NH is the
nurcber of un-ionized hydrogen atoms. In our case the number of free electrons is equal to
the number of free protons: N, = N,. Therefore the Saha equation simplifies to
2
No _V oipr 1

= —e

N H vQ

Meanwhile, we are to assume that the total number of ionized and un-ionized hydrogen
atoms is equal to some fixed fraction n times the number of thermal photons:

KT\
N, +Ng =1N, = nbV(E) , )

where b is an abbreviation for the numerical factor 8w - 2.404 computed in Problem 7.44.
What we want to compute is the fraction of atoms that are ionized, that is,

M 3
=y ®

Combining these three equations to obtain f as a function of temperature is now just a

matter of algebra. From equations 2 and 3 we have

N, = fnbV(%)a and Ng=(1-— f)m;V(%)a.

Plugging these expressions into equation 1 and canceling the Vs, we obtain

2 3
! "’b(%) =Ll o aftef-o1=0,

1-~ f vg
where KT \32
= b kT)3v SI/AT b( ) SH/kT
a=n(h—c @ = 1\ 2rme
is a convenient abbreviation. Solving the quadratic equation gives
-14+V1+4a
f=—a

where I've discarded the other root because it is negative and therefore unphysical. To plot
this formula, it’s convenient to introduce the dimensionless variable t = kT'/I. Then

I 3/2 _
a= nb( 2m02) 3261/t = (5.27 x 10~ ")t/ 2eM",

Problem 7.48

where I've plugged in the numerical values J = 13.8 eV and mc? = 511,000 eV. To plot f
as a function of ¢ for n = 10~9, I used the following Mathematica code:

eta = 10°-9;
alpha = eta*(5.27%10"-7)*(t~1.5)*Exp[1/t];
Plot[(Sqrt [1+4+*alphal-1)/ (2«alpha),{t,0,.04}, PlotRange->Al1]

(The upper limit on the ¢ range corresponds to T = (0.04)I/k = 6300 K.) I also repeated
the calculation for n = 10-2 and 1 = 10~°. The results are shown in the plot below:

1
n=10"10
T 0.8
S
2 0.6
S 7=10"°
% 0.4 n=10"8
&
I
« 0.2
t=kT/I
0.01 0.02 0.03 0.04

First note that the atoms go from completely ionized to completely un-ionized over a very
narrow range of temperatures, and that the temperature of the transition is relatively in-
sensitive to the value of . A larger value of 7) means that the atoms are closer together
at a given temperature, so there is a greater tendency for them not to be ionized. Fur-
thermore, the transition temperature is considerably lower than I/k, basically due to the
greater entropy of the ionized state. The temperature at which essentially all the hydrogen
is un-ionized is roughly (0.02)I/k ~ 3000 K. This is roughly the temperature at which the
universe first became transparent. However, this calculation assumes thermal equilibrium,
and it turns out that the universe was expanding and cooling too quickly for neutral hy-
drogen to form at the rate required for equilibrium; see Peebles (1993). More sophisticated
calculations show that there was still a small amount of ionized plasma left at tempera-
tures below 3000 K, but not enough to keep the universe opaque to photons. [Note: The
formula for f predicts that when ¢t > 1, f decreases and goes to zero as ¢ — oco. This
is because we’re assuming that the density of hydrogen is proportional to the density of
photons, which is extremely high at high temperatures, and the Saha equation says that
the atoms prefer not to be ionized at such high density. However, the ¢ value at which the
lonization fraction would drop significantly below 1 is of order 10, that is, kT ~ 10 ¢V,
This temperature is so high that the conditions would be extremely different from those
assumed in this problem.]

Problem 7.48. (The cosmic neutrino background.)

(a) According to equation 5.102, the condition for equilibrium is the same as the reaction
equation, but with the name of each species replaced by its chemical potential. So,
for the reaction v + & «» 2, the equilibrium condition would be

Hy + s = 24,
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(b)

(c)

(@)
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But the chemical potential for the photons is zero as discussed on page 290, while the
chemical potentials of the neutrinos and antineutrinos are equal to each other if they
are equally abundant. Therefore we must have p, = p; = 0.

The probability of any single-particle state being occupied by a neutrino should be
given by the Fermi-Dirac distribution, with x = 0 as shown in part (a). To find the
total energy of all such particles in a box, we multiply by € = hen/2L (assuming
massless neutrinos) and sum over states just as for photons:

U=3'2'ZZZ;PL_¢"/2:/=TT'

Here the factor of 3 counts the three neutrino species, and the factor of 2 counts the
neutrinos and antineutrinos. Now convert the triple sum to an integral in spherical
coordinates, evaluate the angular integrals to obtain 47/8, and change variables to
z = hen/2LkT as a.lways-

* (hen/2L)n 2LN\? < g8

U=é- '8_ A e(hm/zikfr)+ dn= 3"(%) (kT)4/° ]

As shown in Appendix B (equation B.36), this integral (with a + in the denominator)
is equal to 7/8 times the integral we did for the photon gas (which had a — in the
denominator). Therefore,

U _ 24x(kT)* 7 m _ Tod(kT)

VT TheF 857 5
This is exactly 21/8 times the energy density of photons at the same temperature.

The number of neutrinos is given by the same calculation, but without the extra factor
of € in the numerator:

b n? 2LkTN\3 [® 2?
N—37l'/0 m—ldn—&r( e >‘/°‘ ez—+—1d:z:
This integral is 3/4 times the corresponding integral for photons (evaluated in Problem
7.44), so

dz

At T =1.95 K, this evaluates to

_ (8.62x 10-5 éV/K)(1.95K) \° _ -
V- (135'9)((4.14 % 10-15 eV . 5)(3 x 108 m/s)) =34x10°m

just slightly less than the present density of photons in the universe.

For a single species of neutrino and antineutrino, the present number density would be
1/3 of the number just calculated, or 1.1 x 10® per cubic meter. The average density of
ordinary matter in the universe, on the other hand, is only about one proton per cubic
meter, or, multiplying by ¢? to get the energy equivalent, about 1 GeV or 10° €V per
cubic meter. To equal this energy density, the neutrinos would need an energy (mc?) of
only about 10 eV each, since there are roughly 10° of them. This is comparable to the
present experimental upper limit on the mass of the electron neutrino, but much less
than the experimental limits on the masses of the other two species. (By contrast, the
lightest particle that is known to be massive is the electron, with mc®> = 5 x 10° eV.)

(135.9) (%)3

Problem 7.49

Problem 7.49. (Electrons and positrons in the early universe.)

(2

(b)

(c)

The probability of any single-particle state being occupied by an electron or positron
should be given by the Fermi-Dirac distribution, with g = 0 as for neutrinos (see
part (a) of the previous problem) and with

e = V/(pc)? + (mc?)? = /(hen/2L)? + (mc?)?

instead of the ultra-relativistic relation given in equation 7.79. The total energy of the
ete~ radiation should therefore be

€
U=2-2- )" P e

Tz Ry Tix

/ n2y/(hen/2L)? + (mc?)? d
eV (hen/2L)2 4 (mc?)3 /kT +1 ™

where the two factors of 2 count the electrons and positrons, each with two polarization

states. In the second expression I've converted the triple sum to an integral in spherical

coordinates and evaluated the angular integrals to obtain /2, the area of a unit eighth-

sphere. Changing variables to £ = hen/2LkT, we then obtain

3 roo,2 2 2)2
U= 27‘_(2LkT) 2?2/ (zkT)? + (mc?) o =
cn o eVEHmARTE | q

167V (kT4
(hc)3 ‘J’( )7

where
w(T) = z2 /2% + z*/z% + (me?/kT)? < z2\/z? + (1/1)2 i
o eVErmaARTR Ly S~ v B
and I've used the abbreviation ¢ = kT'/mc® in the last expression.

When kT <« mc? that is, t < 1, the exponential factor in the denominator is always
large, over the entire range of z. Therefore the function u(T) is exponentially sup-
pressed, going to zero as T — 0. (To make this argument more rigorous, you could
divide the integral into two pieces, one from 0 to 1/t and the other from 1/¢ to oco.
Then show that each piece is bounded above by an expression that goes to zero as
t — 0. Alternatively, you can just look at the plot of u(T) in part (d).) This behavior
is exactly what we should expect: When kT < mnc?, the creation of electron-positron
pairs in collisions is extremely unlikely, so the number of them in equilibrium should
be exponentially suppressed relative to the number of photons or neutrinos.

In the limit ¢ — oo, the 1/¢ terms can be neglected so we have simply

g3 7 7
T—v —d == — & 9.
uT) /0. 1T =g 556

the same integral evaluated in part (b) of the previous problem. Therefore, in this
limit,
U . 16n(kT)* 7 7%  14x°(RT)*
v (he)® 8 15 15(hc)®

This is just 2/3 the energy density of the neutrino radiation (at any given temperature),
with the factor 2/3 accounting for the four different species and polarization states
rather than six.
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(d) To plot u(T) I used the Mathematica instructions

ult.] := NIntegratel
x"2%Sqrt [x°2+t°-2]/ (Exp[Sqrt [x~2+t~-2]1]+1) ,{x,0 ,Infinity}]
Plot[ultl,{t,0,3}] :

which produced the following plot:

t= kT/‘rrLc2

0.5 1 1.5 2 2.5 3
(The Plot instruction generated several error messages, because the exponential func-
tion overflows at small ¢ values. Nevertheless, the plotted curve correctly shows that
u(t) is essentially zero below ¢t = 0.1.) I added the dashed line to the plot, to show the
asymptotic value calculated in part (c).

(e) As in Problem 7.46(d), consider first just a single “mode” (or single-particle state),
which can be occupied either by zero particles (with energy zero) or one particle (with
energy €). The partition function of this mode is Z = 1 + e~/ ¥ and the free energy
is F=-kTInZ = —kT'In(1 + e~*/*T). To obtain the total free energy, we sum this
expression over all modes:

F=4 3 (-KD)a(l+ &) = a7 7 /o n?In(1 + e~/T) dn

Rz Ry, Ny

= 2D (L) [t 4 o7 - -~ s,

where

o0 o0
)= / 2 In(1+ e~ dz = / z? ln(l +eV ’z"'(l/"z) dz.
0 0
As T — 0, the exponential factor becores very small for all z, so we can expand
the Jogarithm: In(1 + e~</*7) = e~/*T, This exponential factor therefore suppresses
the entire expression for f (T), so the free energy, like the energy, vanishes when the
temperature is too low to create electron-positron pairs. In the other limit, where
t>> 1, we can neglect the 1/¢ term in the exponent to obtain simply

o o0 .3 -z
F(T —-»/ 2% In(1 +e~%) d =-/ r -
(T) A ( )dz A 31+e_=d:v
1 5 17 = 1

Problem 7.50

(In the second step I've integrated by parts and dropped the boundary term which
vanishes at both limits.) To plot f(T) I used the Mathematica instructions

£{t_] := NIntegrate[x"2*Logl[i+Exp[-Sqrtix~2+t~-2]1]1,{x,0,Infinity}]
Plot [£[t],{t,0,3}]
which (after a long list of nonfatal error messages) produced the following:

1.8944 = o m oo mcemmmamo oo
1.75

1.5

t = kT /mc?
0.5 1 1.5 2 2.5 3

(f) From the definition F = U — T'S, we have simply

_U-F 1 167I'V(kT)“u 16wV (kT)* _ 167V (kT)? .
S= T ~ T ( (hc)3 (T)+ (hC)3 f(T)> _(hc)3 ( (T)+f(T))k

When T <« mc?, this expression goes exponentially to zero along with w(T) and f(T’).
In the high-temperature limit, it goes to :

ET\® 7 =t 1 56n5 [ kT’
KON 7 5 Do B8 (BT
S—’lﬁ"v(hc> s ra)h="% (hc)k

Problem 7.50. (Cooling of radiation in the early universe.)

(a) The total entropy of the electrons, positrons, and photons would be given by the sum
of equation 7.89 and the result of Problem 7.49(e):

kT\? 32r% [ kT\?
Sz +S-1 = 167rv<z;) (u(T) + f(T))k + —Tﬁ_v<—h:) k

= 167V (%)3k [u(T) + (T + 24%4]

Because this radiation is in internal equilibrium throughout the expansion process, it

is expanding adiabatically and quasistatically, and therefore its total entropy should
be conserved as it cools. This implies

3 2nt
VT [u(T) + f(T)+ E] = constant.
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(b) Although we didn’t compute the neutrino entropy explicitly in Problem 7.48, it isn’
necessary to do so; we know that it will be some numerical factor times V (kT /hc)%k, in
analogy with the photon entropy and the high-energy electron-positron entropy. Since
the neutrinos don’t interact with the other particles during the time period of interest,
this entropy (along with the number of neutrinos, which is directly proportional)
should be conserved as the universe expands and cools. This implies

VT: = constant.

Dividing the final relation of part (a) by this equation cancels the factors of V' to give

(13) )+ 1) + 5| = consae

In the high-temperature limit, this equation becomes

7l 1 27t m[7 4 2 w7 1174
= 3 - —_ === - = — = 2 = ——.
constazt = (1) [8-15(1+3)+ 45] 15 [8 3+3] 5 {2+ ] 90

(c) When T « mc?, both »(T) and f(T') go to zero exponentially, so we have simply

T\? 27r“_111r“ 1_ 11 1/3_1401
T,)] a5 " e * 71,7 \7; T4

Given the present photon temperature of 2.728 K, this implies a neutrino temperature
of (2.728 K)/1.401 = 1.95 K.
(d) To plot the ratio T/T, as a function of T, I simply used the Mathematica instruction

Plot[((11Pi~4/90)/(ul[t]+£ [t]1+(2Pi"4/45)))~(1/3),{t,0,3}]

(which in turn uses the functions u[t] and £[t] defined in the previous problem).
After no fewer than 20 nonfatal error messages, it plotted the following:

1.4

t = kT/mc?
0.5 1 1.5 2 2.5 3
This graph is most naturally read from right to left: As the temperature of the elec-
trons, positrons, and photons dropped, the annihilation of the electrons and positrons
raised the temperature of the photons in comparison to that of the neutrinos, with
the ratio ending at the value 1.401 calculated in part (c).

SRS ISR N A A L ST O AR AT T M E TS IS

Problem 7.51

Problem 7.51. (Radiation from an incandescent light.)
(a) The power radiated is ec AT, so the area is

_ power _ 100 W
ecT* ~ (1/3)(5.67 x 10-8 W/m®-K4)(3000 K)4

=6.6 x 1075 m® = 66 mm®.

So if you spread the filament’s surface out into a square, it would measure about 8 mm
across.

(b) The spectrum (plotted vs. photon energy) peaks at = = 2.82, where = e/kT. So the
peak is at
€ = (2.82)(8.62 x 107° eV/K)(3000 K) = 0.73 V.
A photon of this energy has a wavelength of

_ hc _ 1230 eV-im

A e 0.73eV

= 1700 nm = 1.7 pym,

in the infrared.

At 3000 K, kT = 0.26 eV. So to plot the spectrum as a function of photon energy in eV,
I gave Mathematica the instruction Plot [eps~3/(Exp [eps/.26]-1), {eps,0,3.5}].
It produced the following graph:

(c

~—

visible i € (&V)

0. 1 1.5 2 2.5 3 3.5
To locate the visible range, note that the red end of the spectrum, at 700 nm, cor-
responds to a photon energy of € = he/X = 1.77 eV, while the violet end (400 nm)
corresponds to a photon energy of 3.1 eV. I've shaded this region in the plot. Notice
that it’s not a particularly large fraction of the whole spectrum, and that the filament
gives off much more energy at the red end of the spectrum than at the violet end.
(d) To integrate the Planck spectrum, it's easiest to work in terms of the dimensionless
variable z = €/kT = hc/MkT. At the red end of the visible spectrum, z = 1.77/0.26 =
6.8, while at the violet end, £ = 3.1/0.26 = 11.9. The fraction of energy between
these wavelengths is equal to the integral of z3/(e” — 1) over this range, divided by
the integral over all z:

fraci:ion—‘/.u'9 a dz /-w z? d:z:—l5 /11-9 z? dz
6s €= ~1 o e—1 T w fog e2—1

I evaluated this expression numerically with the Mathematica instruction

(15/Pi~4)*NIntegrate [x~3/ (Exp[x]-1),{x,6.8,11.9}]

257
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(e)

€9

and it returned the value 0.083, indicating that only about 8% of the light is in the
visible range. Comparing the shaded portion of the graph to the full area under the
curve, this seems about right.

To increase the efficiency (that is, the fraction of energy in the visible range), we
would want to increase the temperature of the filament. This would move the peak
in the spectrum to the right (higher photon energies), so the shaded region would fall
nearer the peak rather than in the high-energy tail of the spectrum. Unfortunately, the
temperature can’t be raised much above 3000 K because the tungsten would rapidly
deteriorate as its melting temperature, 3695 K, is approached.

To estimate the temperature at which the efficiency would be highest, note that what-
ever the temperature, the values of z = ¢/kT for visible wavelengths range from some
value z, at the red end of the spectrum up to %z, at the violet end. I therefore defined
the following Mathematica function to compute the efficiency for any given z,:

eff[xr_] := (15/Pi~4)*NIntegrate[x~3/(Exp[x]-1),{x,xr,T*xr/4}]
To find the z, that maximizes this function, I used the instruction
FindMinimum[-eff [xr],{xr,2,3}]

(where the numbers 2 and 3 are suggested starting points for the search). The z,
value returned was 2.92, corresponding to a temperature of
€ 1.77 eV

T=%= (8.62 x 10-5 eV/K)(2.92)

= 7030 K.

The efficiency at this temperature is about 39%. By the way, note that even at this
temperature, the peak in the blackbody spectrum lies slightly outside the visible range,
in the very near infrared (at z = 2.82). Raising the temperature further would put the
peak in the visible range, but would also broaden the spectrum, lowering the fraction
of energy in the visible range.

Problem 7.52. (Power radiated by the human body.)
(a) Taking T =310K, A=2m?, and e = 1, I obtain for the power radiated by my body

Power = geAT* = (5.67 x 107® W/(m* - K*))(2 m?)(310 K)* = 1050 W ~ 1 kW.

This is the rate at which I would lose energy if I were naked in empty space.

(b) At this rate, the energy that I would lose in one day would be

3600 s 1 keal '
w =9, 7 = 0 .
(1050 )(2411:)( 1hr) 9.0 x 10 J<4186J) 20, 000 kcal

That's ten times the number of calories that an average person consumes in a day
(2bout 2000). The discrepancy is due to the fact that [ am not naked in empty space:
Most of the energy that I radiate is replaced by energy radiated (or conducted) back
to me by my clothes and other surroundings.

Problem 7.53

(¢) On a per-kilogram basis, my radiation rate is

1006 W 14 W/
» 75 ke = / 23}
whereas the sun’s is
3.9x10% W
= 0.0002 W /kg,

2 x 109 kg

.abou.t 70,000 times less (and 7000 times less than my rate of fuel consumption). How -
is this possible? Although the sun is bright, it is also very massive. And although it
generates energy by nuclear fusion, the reactions in its core actually proceed extremely
slowly—giving it a ten-billion-year lifetime. I, on the other hand, have to replenish
my (chemical) fuel supply on a daily basis. ’

Problem 7.53. (Hawking radiation from black holes.)
(2) We calculated in Problem 3.7 that the temperature of a one-solar-mass black hole is

(b

o

(c)

6 x 1078 K. For a blackbody at this temperature, the peak in the radiation spectrum
(pl9tted as a function of photon energy) would be at ¢ = (2.82)kT = 1.5 x 10711 eV,
This corresponds to a wavelength of A = he/e = 84 km. More generally, the peak
would be at a wavelength of ’

__he ke 16mGM 2CM
Q8ET ~ 282 ha - (BO—5—

The quantity ZQM /c? is just the “radius” of the black hole, that is, the quantity that
you could plug into the formula 4772 to obtain the surface area. Thus, for any black

ho!e, the typical wavelength emitted is about 28 times the “radius,” or 14 times the
“diameter.” ’

The total power radiated should be given by Stefan’s law:

power — o AT (27rsk“ ) (167rG2M2) RS\ hcb
15h3c2 ct 161r2kGM> ~ (30, 720)78 G2 M2

For thflfun’s mass (2 x 10% kg), this expression evaluates to 9 x 10-31 watts, or
6 X 107" eV/s. Since the typical photon radiated has an energy of 1.5 x 107! eV,
this means that such a black hole would emit a (very feeble) photon only about once
every two or three seconds.

The power radiated is the same as the rate at which the black hole’s energy (Mc?)
decreases, so the rate of decrease is given by the differential equation

d(Me 6
(——) =—gAT" = __ _he
dt (30, 720)m8G2 M2
That is,
a _ _H h hc® 15
at M2 Where H= W =4.0 x 10" kg /s.
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(We could refer to H as Hawking’s constant.) This is a separable differential equation,
which we can integrate to obtain the lifetime 7 of the black hole:

0 T M3
/ M2dM=—H/ d = -5~ =-Hr,
M o
that is, 7 = M?/3H.
(d) For M; =2 x 10 kg, the lifetime should be
30 1.)3
(2x 107 ke)’ __ 7 x 107 s.

7= 3(4.0 x 105 kgi/s)

That’s 2 x 1057 years, or more than 1057 times the age of the known universe. Black
holes that form by stellar collapse should have initial masses at least this large, so
there’s no hope of observing such black holes disappearing any time soon.

(e) The age of the known universe is about 15 bi]_lion years or 5 x 1017 seconds. The initial
mass of a black hole with this lifetime would be

M; = (3HT)® = [3(4 x 10° kg®/s)(5 x 107 5)] " = 1.8 x 10" ke,

smaller than the sun’s mass by a factor of about 10*®. The “radius” of such a black

hole would be
2GM

2

=26x107% m,

and therefore the radiation it emits (initially) would peak at a wavelength of about
28 times this, or 7 femtometers. That’s comparable to the size of an atomic nucleus.
At photon with this wavelength has an energy of ¢ = he/\ = 170 MeV. That’s a very
hard gamma ray, a hundred times more energetic than gamma rays emitted in nuclear
reactions, though not as energetic as those produced at today’s particle accelerators.
As the black hole evaporates and loses mass, its temperature increases and the gamma
rays emitted become even more energetic. However, a black hole that can emit MeV
gamma rays can probably also emit electron-positron pairs and perhaps other species
of massive particles. This would increase its rate of evaporation and decrease its
lifetime. Therefore, to have lasted the age of the universe, a black hole probably
would have needed an initial mass somewhat greater than I've calculated.

Problem 7.54. (Stellar surface temperatures and sizes.) Stefan’s law, in conventional
units, reads L = 0 AT* = 4rcR?*T*%, where L is the star’s luminosity and R is its radius.
For convenience, though, we could measure L, R, and T in units of the sun’s values. In
these units, the constant 4w¢ must be equal to 1, because the sun’s temperature and radius
(both 1) must yield the sun’s luminosity (1). Solving the equation for R then gives simply
R = /L/T%. Note also that the energy at which a blackbody spectrum peaks is directly
proportional to the temperature (e = (2.82)kT), so the ratio of a star’s temperature to that
of the sun is the same as the ratio of the peak photon energies. As calculated on page 305,
the sun’s spectrum peaks at a photon energy of 1.41 eV.
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Problem 7.55

(a) The surface temperature of Sirius A is (2.4 eV)/(1.41 eV) = 1.70, in unit’s of the sun’s
temperature. Therefore the radius of Sirius A should be

I 24
R= _—= ——
VT =y oy = 16

%n u1.1its of the sun’s radius. So even though Sirius A is somewhat hotter than the sun
it still has to be bigger in order to be 24 times as luminous. 7

(b) The surface temperature of Sirius B is (7 eV)/(1.41 eV) = 4.96, nearly five times the
sun’s temperature. Therefore the radius of Sirius B should be

' L 0.03
R= ,/__ =, =
7 @00 0.007,

less than 1% of the sun’s radius, and just slightly smaller than the earth’s radius. This
result is in rough agreement with that of Problem 7.23(d), where we calculated that
a one-solar-mass white dwarf should have a radius just slightly larger than earth’s.
(From the orbital motion of Sirius A and B, astronomers have determined that the
mass of Sirius B is almost exactly equal to that of our sun.)

(c) The surface temperature of Betelgeuse is (0.8 eV)/(1.41 eV) = 0.57, in units of the
sun’s temperature. Therefore the radius of Betelgeuse should be

T [10,000
R= —_ = =
VTE = ary =30

That’s larger than the radius of earth’s orbit, and nearly as large as the orbit of
Mars. “Supergiant” is certainly an appropriate term. As for “red,” the spectrum of
Betelgeuse is certainly redder than the sun’s, due to its lower temperature of 3300 K
which makes its spectrum peak well into the infrared and fall off considerably at the
blue end of the visible range. But this temperature is still slightly hotter than the
filament of an incandescent bulb, so the color of Betelgeuse shouldn’t be any redder
than that of incandescent light: “yellow-orange” would be a more accurate description.

Problem 7.55. The situation with two “blankets” is
shown in the illustration at right. Because the whole
earth (including the atmosphere) must be in equilibrium,
the upper blanket must send one unit of (infrared) en-
ergy upward for each unit of energy absorbed from the 33 g

sun. The temperature of the upper blanket is therefore

_ (D030 W/m?) | 3 3 3 %g
T= (4-5.67x 10-¢ W/mZ-K“) =35 K, v

assuming that 30% of the sun’s light is reflected. But the upper blanket must send as much
energy downward as it sends upward, so its total emission (for each unit of sunlight) is two
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units. Equilibrium therefore requires that it also absorb two units of (infrared) radiation,
and these two units must come from the lower blanket. Since the lower blanket is radiating
twice as much energy upward as the upper blanket, its temperature must be greater by a
factor of 2174, i.e., 303 K. Furthermore, the lower blanket must also send as much energy
down as it sends up—in this case, two units. Since it emits a total of four units of energy,
it must also absorb four units, of which one comes from the upper blanket. The other three
must come from the ground; as a check, note that the ground is absorbing two units from
the lower blanket and one from the sun, so it must emit three units. In order for the ground
to emit three times as much energy upward as the upper blanket, its temperature must be
greater by a factor of 3V/4;

Terouna = 34 - Ty = 3/4(255 K) = 336 K = 62°C.
This would indeed be a catastrophe for life as we know it.

Problem 7.56. (Greenhouse effect on Venus.)

(a) If you're twice as close to a light source, you absorb four times as much energy (per
square meter), because the light spreads out in two directions as it travels. More
generally, the brightness of a source viewed from a distance r is proportional to 1/7%.
The solar constant on Venus is therefore greater than on earth by a factor of 1/(0.7)2 =
2.04. Multiplying by 1370 W/m? gives 2800 W/m? for the solar constant on Venus.
Repeating the calculation in equation 7.102 for this value, we obtain an equilibrium

2800 W/m?

temperature of
1/4
To= (4 5.67x 10-# W/m2~K) = 33K,

assuming that none of the sunlight is reflected and that there is no greenhouse effect.

(b) If the clouds reflect 77% of incoming sunlight, then only 23% is absorbed, so we
should multiply the solar constant by 0.23 in the preceding calculation. With this
modification, the resuit is 231 K. Brrrr!

(c¢) Consider a time period in which one unit of sunlight is absorbed. The planet as a whole
(including the atmosphere) must also emit one unit of energy, and it must be emitted
by the uppermost atmospheric blanket. This implies that the uppermost blanket is
at 231 K, as calculated in part (b). But the blanket also sends a unit of energy down
to the next blanket. Since it emits two units total, it must also absorb two units, and
these must come from the next blanket down. The second blanket therefore sends
twice as much energy upward as the first, so it must be hotter by a factor of 2'/4.
Meanwhile, the second blanket also sends two units of energy downward to the third.
Since the second blanket is emitting four units total, and receiving one unit from the
first blanket, it must receive three more from the third blanket. The third blanket
must therefore send three units of energy upward, which implies that it is hotter than
the first blanket by a factor of 3*/¢. Continuing downward, we might guess that the
fourth blanket is hotter than the first by a factor of 4*/4. To check this, note that the
third blanket sends three units of energy downward, so it emits six units total, but it
receives two units from the second blanket, so it must receive four more units from the

Problem 7.57

fourth blanket. We could prove by induction that the nth blanket must emit n units
of energy upward and therefore must be hotter than the first by a factor of n'/4; I'll
skip the proof and take the theorem as established by the first four cases. Thus, the
70th blanket is hotter than the first by a factor of {70)*/4, and the ground (finally) is
hotter by a factor of (71)*/4 = 2.90. Multiplying by 231 K, we therefore predict that
the ground temperature should be about 670 K. Ouch!

Problem 7.57. When we change variables from n to  in equation 7.109, the combination
n® dn becomes (2LkT/hc,) 3 dz:

o3 [=he,  n® P /’m he, (2LkT)‘ 7
1)

2 Jo L ghesn2LAT _ ] T 73 2L he, 17

CSm(2LN? . fre g
_T(E) (kT)/D s )

Here Tpay is as defined in equation 7.111, so it can be written Tp/T, where

1/3
T he, (6N) .

Tamk\ 7w

If we cube both sides of this relation, we obtain
qa_ 1 (he 6N 2L\’ _6N 1
o\ 7 hc,) T r BT3 @

Making this substitution into equation 1 gives

36N 1 Tmax .3 4 [ Toae 3
(kT)“/ T dz = INKT / T dz
0 [}

T2 T BT e 1 T3 -1
which is equation 7.112.
To compute the heat capacity, go back to equation 7.109 and differentiate with respect

to T
0= o3 [ d
T2 o ZLW(m)dn
_3r / "mex he, (hegn/2LKT?)ehesn/2LkT 3
O A oL (ehean/2LKT _1)2 dn

_ 3w (he, 2 1 [rme g4 gho,n/aLkT
T2\ /o {@emrmiT — 1y o

Changing variables to z = he,n/2LkT, this expression becomes

3 (he,\? 1 (2LET\® [om= gtes 37 /2L \° Tmar 4 oz
or= () () [ 2 (e
2 \2L) ET2\_ he, o (er—1)2 dz 2 \ ke, KT o (e2—1)2 da.
Finally, we can again use equation 2 to write this in terms of Th:

36N 1 To/T T4 e* T 3 o Tp/T 4,z
= k“T‘*/ —dz:gNk(—>/ _zte
A (e= —1)2 To) Jo =17 dz.

Cy =2 _
VT2 Tr BT
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The cube root of 5/4n* is 0.234, so this is the same as

Cv _ T 3_< T )3
Nk~ \(0230)T, /) ~ \464K/’

in almost perfect agreement with the measured behavior.

Problem 7.62. When T > Tp, the x values integrated over in equation 7.112 are all much
less than 1, so we can expand the exponential in a power series:
I3 N IS L 1.3
=1 (l+z+iz?+1z9) -1 z+is2+lz?
~ ot [1 = (b + §2?) + DDz + 327

~z[1— a4+ %zz] =z - 128+ Lot

= 21+ Jo + 22?)

Integrating this expression from 0 to 7p /T, we obtain

o S (Y - () (2

1,7 1 1 /7
= 9Nk [g(r—n) “3t aﬁ(‘f)]-
To obtain the heat capacity, differentiate:

ou 1 Tp | _ 1 /Tp\2
v =53 _9NkTD[ﬁ—O— %‘T‘z] —3Nk[1 '26(?) ]
Assuming that this formula is reasonably accurate down to T = Tp, it predicts that the
heat capacity is 5% below its asymptotic value at T = Tp, and 1.25% below its asymptotic
value at T' = 2Tp.

Problem 7.63. For a two-dimensional material, the average energy in each wave mode
will still be given by the Planck distribution, but to compute the total thermal energy we
carry out only a double sum over modes:

U=Zzeem~+1’

nz Ny

where € = hf = hc,/A = heen/2L = (he,/2L)\/n2 +nZ. The numerical factor in front
of the sum is 1, assuming that each mode has only one possible polarization (compare
equation 7.106). If the material is in the shape of a square and there are N atoms, then
each sum goes from 1 to v/N, the number of modes along each direction. In other words,
the sum is over a square region in n-space with area N (see the illustration on the following
page). Assuming that N is large, we can replace the sum by a double integral over the

same region:
vN vN €
U= ‘/0 dn, ./0‘ dTLy m

Problem 7.63

The analogue of Debye’s approximation in two dimensions is 47y

to replace this square region with a quarter-circle with the

same area. To find the radius n,,, of the circle, note that the I
1 g . . .

Area IS (M., Setting this equal to NV gives nua, = /ZN/7. :

We can now easily convert the integral to polar coordinates

(where the measure is (dn)(n do)):

max /2 € T Rmax
o o e/FfT— 1~ 2 J, /T _1 dn. il
’ \/lv Tmax

To make the remaining integral more explicit, we now change variables to z = e/kT =
he,n/2LkT. The upper limit on the integral is then

z = hcsnrnax _ hC, 4N _ TD
T oLET  2LkTV & T T

where the last equality defines the two-dimensional version of the Debye temperature Tp,
and the energy integral itself becomes ’

U= g(fl_’:f(kz")s /0 TD/T:_”’Z_dz - 1( \/"‘1\’—/’r)2(k:r)3 /0 RGP

Cs er—1 2 kTD et —1

| .

2NETS (To/T g2
= / dz.
[+]

Vi et —1
This is the desired expression for the thermal energy.

Whefn T. < Tp, we can replace the upper limit on the integral by co (since the
exponential kills off _the integrand at large z anyway). In this case the integral over z
cam'lot be expressed in terms of 7—see Appendix B—but it can be evaluated numerically
to give 2.404. So the energy at low temperature is

2NETS
U=
T2

D

(2.404), (T < Tp)

which implies that the heat capacity is

8U 6NkT?
C, = = T3(2'404)' (T < Tp)

In this case t%1e low-temperature heat capacity is proportional to T?, as opposed to T3 for a
Fh.ree-dlmensmna.l solid. Meanwhile, in the high-temperature limit, the z in the integrand
is always very small so we can expand e* & 1 + z to obtain

do < 2NET® 1 /(T5N?
1+e—17 " 73 '3\7) =NV,  (T>Tp)

U ns ANKT? /TD/T 72
3 Jo

in agreement with the equipartition theorem. The heat capacity in this limit is simply Nk.
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To obtain the heat capacity at intermediate temperatures, it’s easiest to differentiate
the energy integral before changing variables to z:

U [t g ne dn = g e ne(e/kTZ)es/kT
Ca=gz=3 (;kal' =3/ T (e/FT Z 12

aT 2}, oT 2

T 2LKT\? [Z== g3¢= T 4N(T>2 /=m-x z3e”
=— .k | — —  _dr=—-k— = —dz
T2 k ( he, ) /0. (e=—1)? T=3 m \Tp/) Jo (e5—1)?

_ ONKT? /’m“ zle”
TR S (-1

To plot C/Nk vs. T/Tp, I gave Mathematica the instruction

dz.

Plot[2*t~2*NIntegrate [x~3*Exp[x]/(Exp[x]-1)~2,{x,0,1/t}]1,{t,0,1}]

and it produced the following graph:
1.0

T/To
0.2 0.4 0.6 0.8 1

Although this graph looks similar to that for a three-dimensional solid (Figure 7..29), here
the low-temperature behavior is quadratic (rising more suddenly) instead of cubic.

Problem 7.64. (Spin waves in a ferromagnet.)
(a) The total number of magnons at temperature T should be given by the Planck distri-
bution, summed over all modes:

1
N = Z e /FT _ 1’

Tz iy s

where ¢ = p*/2m*, p = /A = hn/2L, and n = \/nZ + n2 + nZ. If we convert the sum
to an integral in spherical coordinates, the angular integrals give a factor of 7/2 (as

always), leaving us with
T o0 TL2 d
Nm =3 /0 por e

where I've used oo as the upper limit because this whole picture applies only at
relatively low temperatures. Now change variables to z = ¢/kT:

p? hn? 8m*L*kTx 2m*L2kT 1
z= =——, n=4/—", dn =4/ —5——=dz.
kT . SmL2kT 72 R

LD b B En NS m.-rmmmmmmn\:mn ERHIRHS

1
|
|

Problem 7.64

This variable change puts the expression for N, into the form

T (8m L*kT\ [om*I2RT [* /5 2mkT\¥/% poo
Nm =35 = m \/5
2( h2 ) 7z A ez_ld:z:-_27rV( e ) e=—1dz'

0

According to Mathematica, the integral is equal to 2.315.

(b) If the total magnetization at T — 0is 2up N, and each magnon reduces this value by
2pp, then the fractional reduction in magnetization is

2usN,, N, . /2 3/2
e Nm _ N _ 27r(2.315)7V‘f (2’” kT) = (T) ,

2usN - N B2 T,
where
T N)m 1 (0.0839)h2 / N'\*/3
° T Imrk\V (2-7m-2315)23 ~ T ok (V) :

For iron, we're given m* = 1.24 x 10-2° kg. The ratio N/V can be calculated from

the density and the atomic mass, or we can look up V/Navo on page 404. So for iron,
we can predict

T, = (0.0839)(6.63 x 1034 J.5)2 ( 6.02 x 10%

2/3
(124 x 10 kg){(1.38 x 10-% 3/K) \ 711 x 109 m3) THNK

So the temperature has to be pretty high before the magnetization decreases by a
substantial fraction.

(c) To calculate the heat capacity, we should first caleulate the energy:

_ € T [ en? 2m* kT \*> > g3/2
v= 3 m=§/o gm—_id’n:%rV( ) (kT)/ dz.
0

2 z _
Rzyniy,ne h e 1

Mathematica says that this integral equals 1.783, so

2m g\ mek\¥/?
U= 27r(1.783)Vk<7) T2 = (31.69)Vk(ﬁ—) T2,
Differentiating with respect to T gives the heat capacity:

E‘L—L?E—(amgﬂl m kTN 1 T\Y?
Nk~ NkoT ~— % )57\7( h2) =<ﬁ) ’

RPN\ 2 N\ ro0s4n
T = —1| 2L - X _
! m'k (V) (5(31.69)) (0.0839)% = (0.646)To.

For iron, therefore, T, = 2680 K, which implies that the magnon contribution to
the heat capacity is quite small (compared to N k) at room temperature and below.
However, at sufficiently low temperatures, the magnon contribution will be greater

where
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than the phonon contribution, which is proportional to T® (see equation 7.115). The
temperature at which these two contributions are equal is given by

TN 1200/ TY 5 \23T3 (470 K)?
(ﬁ) - T(T_p) C o T=() 7 = (00260 T =227K.

Thus, at temperatures of a few kelvin, the magnon contribution to the heat capacity
should be measurable.
(d) For a similar system in two dimensions, the number of magnons at temperature T'
should be . -
™ n
No=3 e T 1 '2'/0 PO
N,y
where I’ve converted the sum into an integral in polar coordinates and carried out the
angular integral (over a quarter-circle). But now, changing variables to = (which is
proportional to n?) gives the integral

< 1
Nmm-/ dzx.
o e*—1

Near z = 0, we can expand e* ~ 1+ z + - - - and cancel the 1 to see that the integrand
is proportional to 1/z. Therefore, the integral diverges at its lower limit; this implies
that the number of long-wavelength magnons is infinite. The only obvious way out of
this contradiction is to suppose that the material doesn’t magnetize in the first place,
and this turns out to be true.

Problem 7.65. To evaluate the integral I used the Mathematica instruction

NIntegrate[Sqrt[x]/(Exp[x]-1),{x,0,Infinity}]
and it returned 2.31516, confirming the value quoted in the text.

Problem 7.66. (Bose-Einstein condensation of rubidium-87.)
(a) For a rubidium-87 atom in a cube-shaped box of with 10~ m, the ground-state energy
® B pyppgpn 3 (663x10% Jop
8ml? 8 (87)(1.66 x 10-2" kg)(10-5 m)?
=114x 1072 J=71x 1071 eV.
This is a tiny energy indeed.
(b) According to equation 7.126, the condensation temperature is
h2
2rmL?
where the coefficient 0.224 comes from comparing this expression to the previous one.
If there are 10,000 atoms in our box, then the kT, is greater than ¢ by a factor of

(0.224)(10,000)%/3 = 104 ~ 100, that is, kT, =7.4x 102 eV or 7. = 8.6 x 10~% K.
This is in rough agreement with the value 10~7 K quoted on page 319.

€ =

KT, = (0.527)( VN = (0.224)N %,

Problem 7.66

(¢} At T =0.9T., the number of atoms in the ground state is

(d)

No = [1 -~ (%)3/2] N =[1-(0.9)*%N = (0.146)N.

For N = 10,000, this is 1460. Therefore, by equation 7.120,

KT _ (0.9)(7.4 x 1072 V)
N, ~ 1460

=4.6 x 10715 ¢V.

€~ p=

That is, the chemical potential lies below the ground-state energy by about (0.065)¢,.
The energy of the first excited states is

h? 6h2
Sl (22417413 = = 2ep,

€ = = —
8mlL?

so the expected number of particles in any one of these states is

1 1 1

N = = = =
V7 ee—m/FT Z 1 T g(1.068)ea/kT — 1~ eloes/(09)dod) — 1 87,

and the number of particles in all three of these states is about 260. This less than
the number of particles in the ground state by a factor of 5.6—significant, but not
enormous.

If instead there are 10° atoms, then
kT, = (0.224)N*3¢y = 2240 ¢, = 1.6 x 10-1° &V,

or T, = 1.85 x 10~ K, higher than before by a factor of 10023 = 21.5. The fraction
of atoms in the ground state at T = 0.97%, is the same as before, 14.6%, but now the
absolute number is 100 times larger, 1.46 x 10°. This implies

KT _ (0.9)(1.6 x 10~ eV)
No 146,000

€@—p= =0.8x 10718 ¢V,

which i_s only 1.4% as large as ¢, itself. Under these conditions, the expected number
of particles in any one of the first excited states is

= 1 1 1
T ela=w)/kT 1] T o(0M)e/AT _ 1 PR YTEY G o7 e 1990,

WA

so the number in all three of these states is about 5960. This is less than the number
in the ground state by a factor of 24.5. Apparently, the ratio Ny/N, grows as N
increases and the ratio T'/T, is held fixed. This means that the range of temperatures
(below T,) over which 3N, is reasonably close to N, gets narrower, relative to T, as N
increases. If we define “close” to mean within a factor of 10, then this range includes
0.9T, when N = 10¢, but not when N = 108.
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Problem 7.67. For the numbers given, equation 7.126 predicts a condensation tempera-

ture of
_ (0.527)h% [N\ (0.527)(6.63 x 10~3¢ J.5)? L8 x 167 m-3\2/8
L=k (V) = 2n(1.67 x 10-% kg)(1.38 x 10-2 7Ry 8 )

=51x10"° K =51 pK,
almost exactly equal to the measured value.
Problem 7.68. The number density of liquid helium is

N 0.145 g/cm® 3 28 3
2228/ 036 mol/cm® = 2.18 x 10% atoms/m®.
V = 400 g/mol mol/cm /

Equation 7.126 therefore predicts a condensation temperature of

_ {0-52T)R% /N3 (0.527)(6.63 x 103 J-5)? 918 x 10% m-32/3
T 2mmk (V) ~ 2m(4)(1.66 x 102" kg)(1.38 x 10~ J/K)( ) m™)
=3.13K.

That’s about 44% higher than the measured superfluid transition temperature—pretty
close, considering that the helium is actually a liquid, not 2 noninteracting gas.

Problem 7.69. (Chemical potential of a Bose gas when T > T..)
(a) With the substitutions T = tT,, u = ckT,, and € = zkT,, the exponent (¢ — p)/kT

becomes €e—p kT, ~ kT, _z—c¢
KT wT. Tt
Meanwhile,
2 /2wm\3/2 2 72mmkT.\3/2
= — - — d
g(e) de ﬁ( ) VVIkTL(KT.) do ﬁ< ) Viads
2 N
—7’1?2.612‘/5‘1””

where the last step follows from the definition of T, equation 7.126. Therefore, equa-
tion 7.122 is equivalent to

2 N VI 2.315 = vE e

T /m2612 J; e o ) e —1 %%

(b) To evaluate the integral for ¢t = 2 and ¢ = —0.8, I gave Mathematica the instruction
NIntegrate[Sqrt[x]/(Exp[(x+.8)/2]-1),{x,0,Infinity}]

which returned the answer 2.3516, too large by about 1.6%.

Problem 7.70

(c) For the integral in part (b) to yield the correct result, the value of ¢ would have to be
slightly more negative. By manual trial and error, I found that ¢ = —0.821 gives the
correct answer (to four significant figures). It’s easier, though, to have Mathematica
do the trial and error, using the FindRoot function:

FindRoot [2.315==NIntegrate [Sqrt [x]/(Exp{(x-c)/2]~1),
{x,0,Infinity}], {c,-.8,-.9}]

This instruction returned the value ¢ = -0.820792. (The values —.8 and —.9 tell
Mathematica where to begin the search.) Repeating this instruction for other values
of ¢ is now a simple matter, although for smaller ¢ values, you get bad results unless
you specify better starting points such as —.1 and —.2. The following instruction
generates a table of all the desired ¢ values:

muTable =
Table[{t,FindRoot[2.315==NIntegrate [Sqrt [x]/ (Exp[(x-c)/t]-1),
{x,0,Infinity}], {c,-.1,-.2}10[1,211}, {%,1.2,3,.2}]

(The symbols [[1,2]] are needed to strip off the unwanted braces and “c—" inserted
by the FindRoot function.) To make the plots prettier, I added on the known value
at t = 1 with the instruction muTable = Prepend[muTable,{1,0}]. With or with-
out this addition, the instruction ListPlot[muTable] will then generate a plot of
the points calculated. But to get a smooth plot, I instead defined an “interpolating
function” and plotted that:

mulnterp = Interpolation[muTable];
Plot[muInterp[t],{t,1,3}]

Here is the plot:

1.5 2 2.5 3
t=T/T.

-0.5
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~
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Problem 7.70. (Heat capacity of a Bose gas.)

(a) To compute the total energy, we add up the average energies in all single-particle
states, which means inserting an extra factor of ¢ into equation 7.121 or 7.122:

€ i 1
U= Eu: /AT _1 /0 €g(e) =/ T _q de
al E

2 (2rmnN\3/2 [ €32
= F( B2 ) v /0 ey g
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(b) For T < T. we can set p = 0, then substitute = = ¢/kT and evaluate the integral:

()

(d)

2 /2wm\3/2 sz [ 22 2 /2wm\3/2 5/2

= —| — = —_=|— -1.783.

U ﬁ( ) ) /0 A ﬁ( o) vy 1183

(I did the integral with Mathematica.) Differentiating with respect to T gives the heat
capacity,

2mm

h2

_oU _5 2 /2mmN\3/? 32, _
Oy = 37 = 5(1.783)ﬁ(——h2 ) V(T2 k = (5.031)(

3/2
) V(kT)*2 k.
Using equation 7.126 for the condensation temperature, this result can be rewritten

as
Cv _5081(T\" _ o _1:)3’2
Nk~ 2612\T.)] ~— T.)

This is a concave-up function of T, as shown in Figure 7.37. The overall constant
seems to agree as well, since the figure shows that Cy/Nk is just less than 2 when
T=T.

In the high-temperature limit, this system should behave as an ordinary monatomic
ideal gas, with three degrees of freedom per atom. So by the equipartition theorem,
its heat capacity should be $Nk.

Going back to the original integral in part (), let’s change to dimensionless variables
as in Problem 7.69(a):

2 /2mm 32 z3/?

3/2 oo oo
= = 5/2 —_ = —_
U= ﬁ( ) VT /0 e 4 = (0L432)NAT. /; e 4

where I've again used the definition of 7%, equation 7.126. To compute U/NkT, I
defined the following Mathematica function:

ult_] := .432«NIntegrate[x"1.5/(Exp[(x-mulnterp[t])/t]l-1),{x,0,Infinity}]

Here muInterp[t] is the interpolating function for ¢ = p/kT defined in the Problem
7.69(c). In principle, it’s now easy to differentiate this function to obtain the heat
capacity. In practice, though, the numerical differentiation tends to be awkward and
can compound the numerical inaccuracies that are present in the function muInterp.
Here’s a sequence of instructions that produces reasonably good results:

Utable = Table[{t,u[t]},{t,1.2,3,.2}]

Utable = Prepend[Utable,{1,.7703}]

Uinterp = Interpolation[Utable]

heatcap{t_] := (Uinterp[t+.01]-Uinterp[t-.01])/.02
Plot[heatcap[t],{t,1.01,2.99},PlotRange~>{1.5,2}]

By generating a table of energy values at only the u values that were calculated
explicitly, I've avoided the inaccuracies in the interpolating function for u. I then
added to the- table the energy at ¢t = 1, which is easy to calculate by setting ¢ = 0.

Next, I defined a new interpolating function to compute the energy at intermediate
values, and defined a heat capacity function which differentiates this energy function
numerically. Since the energy function really computes U/NKT., differentiating with
Tespect to ¢ = T'/T, actually gives Cy/Nk. Here’s the plot produced by the final

instruction:
1.9
1.8

.7

Cv/Nk
=

1.6

1.5 1.5 2 2.5 3t=T/T.

The only significant differences between this plot and Figure 7.37 are the scale of the
axes and the fact that 7.37 also shows the behavior for T < T.. However, to produce
Figure 7.37, I computed the “exact” values of #and U at intervals of 0.1(T/T.), for

increased accuracy.

Problem 7.71. When you know the heat capacity all the way down to T' = 0, you can
calculate the entropy of a system from equation 3.21. In our case, using the result of

Problem 7.70(b),

Ty by
5(Ty) =/ %Z dT = M/ e gp - (1.926)NEK 292,
o 0

o7 3

In other words, for any T below T.,

T\¥?
S=1 —
284(T) N,

e

- Note also from Problem 7.70(b) that the energy (for T < T.) can be written

2 1783 ( T\*? T\¥/2
= as\T NkT=(0.770)<,1—,> NET.

The Helmholtz free energy is therefore

T 3/2
F=U-T5=-(0514) (7) NkT.

To compute the pressure, we need to write this expression in terms of V, T, and N. Note

from equation 7.126 that

- V (2amkn\3/2
T3 = (2.612)~—
= = o ()"
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so we have

2emkT
2

2rnmkT
h2

F=—(0.514) (2.612)%( )meT = (1.343)%( )mNIcT,

which implies

oF 2nmkT \3/2
P= _(5‘7)” = (1343) (T )T

Indeed, this expression is independent of volume (and of N). Apparently, once we are below
the condensation temperature, reducing the volume (at fixed T') simply causes more atoms
to join the condensate, while the pressure is due entirely to the atoms that are in excited
states. (Notice from the preceding calculations that the energy and entropy, and hence the
free energy and pressure, are computed entirely as integrals over the excited-state energies,
completely neglecting the condensate.)

Problem 7.72. In a two-dimensional box with constant g, equation 7.122 becomes

i 1
N = g‘/o‘ _____e(e—u)/kT 1 df.

Suppose, now, that there is a range of temperatures at which  is essentially equal to zero.
Then the integral becomes
L=
1
/; es/¥T — 1 dE,

which diverges at its lower limit. (To see this, expand the exponential in a Taylor series
to obtain 1 + €/kT - ---. Cancel the 1's and you find that the integrand is proportional
to 1/e, which is not integrable.) In other words, if u were zero, we would have an infinite
number of particles in the low-lying excited states. With only a finite number of particles
to go around, the integral must remain finite and therefore 4 must be negative. This
implies that, at any T that’s high enough to allow converting the sum to an integral, the
population of the ground state won’t be much greater than the population of the low-lying
excited states (because y isn’t that much closer to the former than to the latter). At very
low temperatures, of course, all the particles will settle into the ground state, but this
doesn’t happen until T becomes comparable to the spacing between the low-lying energy
levels (when we can no longer approximate the sum as an integral). As the temperature
of this system is lowered, the particles just gradually move into lower-energy states in a
continuous way, with no abrupt transition. In order to get an abrupt transition, the integral
for N must converge at its lower limit when u = 0; this happens only when g(¢) goes to
zero as € — 0.

Problem 7.73. (Bose-Einstein condensation in a harmonic trap.)

(a) For n > 1, the degeneracy of level n is approximately n?/2. The spacing between
levels is hf, so the density of states, which is the number of states per unit energy,
would be n2/2hf = 2/2(hf)*.

g R N R TR N o SR g
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(b} To find the condensation temperature of this system, we just evaluate the integral

(7.122) for the total number of particles, using our new density-of-states function and
with u set equal to zero:

o 1 1 w2 1/kT\ = z?
N= = Y =z
'/0. g(f)eE/kT_lde 2(hf)3_/0. ef/kT-lde 2<hf) /o e‘—-ldz'

The integral is the same one evaluated in Problem 7.44(a); it is approximately equal
to 2.404. As in equation 7.125, this formula for N cannot possibly be true at more
than one temperature. That temperature (above which i becomes negative and below
which the extra particles settle into the ground state) is the condensation temperature:

_hf( N\
T=‘T(1.202) :

{c) The potential energy of the “spring” is k.o, where k, is the spring constant and a
is the displacement from the center of the well. Since the frequency of oscillation is
f=+/ks/m/2%, we can write k, = (2r f)*m. At temperature T., the average particle
energy is of order kT and so the amplitude of oscillation can be found by setting the
spring potential energy equal to kT:

l(27rf)2ma,2 = kT, or f= _1_1 /?Eﬁ ~ VU3 /k_T”_’
2 2ra¥ m m

where V' is the volume contained within the oscillation amplitude and I've dropped
all small numerical factors in the last step. Using this expression to eliminate f in the
formula for 7., we obtain (again neglecting small numerical factors)

herya kT, 1/3 2_h2ch N\??
T. kV ‘/mN , or (kT.)* = - (V) .

Canceling a factor of kT, now gives a formula identical to equation 7.126, aside from
the numerical factors.

Problem 7.74. (BEC in a harmonic trap: exact numerical treatment.)

(a) As stated in the previous problem, the degeneracy of level n is (n + 1)(n + 2)/2.
Therefore equation 7.121 becomes

=+ D(r+2) 1
N= X_; 2 e/ T 1
where € = nhf. Substituting g = chf and T' = thf, the exponent in the denominator
becomes simply (n — ¢)/t, so

= n+n+2) 1
N= Z 2 elr-a/t — 1"

n=0
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(b) To calculate this sum for any values of ¢ and ¢, I first defined a Mathematica function

to calculate the occupancy of any level as a function of n, ¢, and £. Then I defined a
function to calculate the total number of particles: :

ocefn_,c_,t_] (1/2) (n+1) (@+2) / (Exp[(n-c) /£]1-1)
theSum{c_,t_] := Sum[occ[n,c,t],{n,0,300}]

Notice that the sum is over all levels up to n = 300. To test this function for the num-
bers given, I gave the instruction theSum[-10.536, 15], which returned the number
2000.01, close enough to the desired value of V. I tried changing the last decimal place
in the value of ¢, and found that —10.537 gives 1999.86 while —10.535 gives 2000.15.
I also checked that increasing the number of terms in the sum doesn’t affect any of
the digits shown in these results.

(c) To plot the occupancy as a function of =, I gave the instruction

ListPlot[Table[{n,occ[n,-10.536,151},{n,0,175}]1]

which produced the first graph shown below. Notice that the occupancy peaks at
n = 2, that is, at € ~ 2kT. At this temperature, the expected number of particles in
the ground state is just under 1, as you can check by typing occ [0,-10.536,15].

(d) As the temperature is reduced, we expect the chemical potential to increase (become

less negative). It’s not hard to find the correct value of ¢ by trial and error, testing
various values until theSum returns 2000 as desired. I did this and obtained ¢ =
—7.3205 at t = 14. Alternatively, you can let the computer do the trial-and-error by
using the FindRoot instruction:

FindRoot [theSum[c,14]==2000,{c,-10,-5}]

This instruction returned the value ¢ = —7.32048. (The numbers —10 and —5 tell the
computer what values of ¢ to try first. It's best if the actual value of c lies between these
two numbers.) To plot the occupancy as a function of energy, I used another ListPlot
command with the new values of ¢ and c. At this temperature, the occupancy of the
ground state is still quite small, slighly less than 1.5.

50 Occupancy 50 50

40 40 40 ’\\

30| 30} § 301 5 t=13

20} f 20|! 20|
10}

10f 10f
T50 56 100 150

50 100 150

Y oot=11
% Np=1055
150 50 100 150 50 100 150

Problem 7.75

(e) Using the same methods as in part (d), I found the ¢ values listed in the table below.

At each temperature I've also listed the occupancy of the ground state. Occupancy
graphs for ¢ = 13, 12, 11, and 10 are shown above.

t=kT/hf c=p/hf  No

15.0 -10.536 0.98
14.0 —7.3205 1.46
13.0 —-4.3898 2.49
12.0 —-1.8177 6.11
11.6 —0.9328 11.9
11.4 -0.5471 20.3
11.2 -0.2478 4.7
11.0 —0.1038 105.5
10.0 —-0.0187 534.4

9.0 —0.0099 907.6

8.0 —0.0066 1212

Down to a temperature of about 11.5, the behavior of this system is quite smooth and
predictable, with the energy distribution of the particles moving gradually downward
and the chemical potential moving gradually upward as ¢ decreases. But at around
t = 11.3, the chemical potential is close enough to zero that the population of the
ground state becomes significantly larger than that of any other state; the occupancy
plot acquires a “spike” at n = 0 which grows very rapidly as ¢ is reduced further.
At t = 10, more than a quarter of the particles are in the ground state, despite the
fact that the rest of the particle distribution doesn’t look much different from before.
At ¢t = 8, more than half of the particles are in the ground state. The condensation
temperature would be the temperature at which the population of the ground state
becomes a significant fraction of the total number of particles. For a system of only
2000 particles, this transition temperature is not precisely defined, but if I had to pick
a number, I'd put it at about ¢ = 11.3. For comparison, Problem 7.73(b) predicts

kT: 2000 \/*
F = (m) =11.85.

However, this formula was derived in the thermodynamic limit where N is very large.
Although the transition temperature of our relatively small system is not precisely
defined, the abrupt change in behavior as t is reduced from 12 to 11 is still quite
dramatic, as you can see from the table and graphs.

Problem 7.75. (Corrections from quantum statistics to ideal gas behavior.)
(a) If we multiply and divide the Bose-Einstein distribution by e~ (<~#¥¢T we get

e~ (e—n)/kT

EBE(e) = = = e—(e—u)/kr[l + e (eRIRT _],

where in the second expression I've applied the binomial expansion to the denominator.
In the high-temperature limit, the occupancies of all states should be much less than 1,
20 the exponential factor e~¢~#)/*T should be much less than 1, which implies that
the expansion converges quickly.

27¢
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(b) The total number of particles in all states must be N, so

oo 00
N =/ o(innl®) dezgo/ Ve [em MRy e=2ewNT] ge,
0 : 0

where gq is an abbreviation for the constants in equation 7.123, and I've truncated the
series after the second term. The first term is

gge“/"T/ Vee ' de= 2gge“/"T(kT)3/2/ te ™ dz = 4905“/”(1‘711)3/2,
A 0

where I've changed variables to £ = \/€/kT to abtain the same integral as in equations
6.49 and B.8. Similarly, the second term is

goe®/*T / " e eI Ge — g0 /T (KT / ot e gp = VT g T (T,
0 4 2v8
Therefore,

_ VT /KT 3/2 1 rl| 2rmkT \3/2 u/kT 1 u/kT
N = 5 9oe (RT)*?|1 - ——ﬁe = (T) Ve 1+ \/ge

v 1 ‘
- w/kT u/kT
v ¢ [1 M \/ge ] ' 2

where I've substituted the constants in equation 7.123 for go. Rearranging this equa-
tion gives
v 1
e—u/kT =—|1+ _ep./kT:| i
Nug \/g

If we ignore the second term in the brackets, we obtain the “classical” result p =
—kTIn(V/Nvg). The second term gives the first quantum correction to this result,
which we assume to be small. Since it is already small, though, we can substitute the
classical value of u in this term to obtain

1 Ny Nuv 1 Nv
—u/kT 4 Q w/RT — 21V g Q
¢ Nug {1+¢§ v ]’ o ° v [1 ]

Solving for p then gives

v
= _len[vaq(l + \I/v;;)] ~ —kTm(qu) _ k%v;@,

where I've expanded the logarithm of 1+ Nvg/+/8V in the last expression. Note that
the first term is the familiar result for a classical ideal gas.

(¢) In Problem 5.23(c) we showed that & = —PV, while in Problem 7.7 we showed that
® = —kTIlnZ. Combining these results gives P = (kT/V)InZ. For a system of
nouninteracting particles in a box, we can treat each wave mode (or single-particle
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state) as an independent subsystem and factor the grand partition function as we did
for the ordinary partition function in equation 6.69:

Ziotal = 2122y = HZ’”

where. n labels the various wave modes. Teking the logarithm of both sides of this
equation gives

DZuu=lZ+InZ+hZ+ =Y Iz,

d . . . .

(d) "I‘ixe sum over nis reall}f a triple SUIn OVer 7, 1y, and n,. Converting this triple sum
Into an integral in spherical coordinates over the positive octant of n-space, we obtain
/2 for the angular integrals which leaves

an:I/ 72 In 2, dn.
2 Js

Meanwhile, using equation 7.24 for the grand partition function of a single mode,

1
=t (m) = —In(1 - eC0/T),

Working again in the approximation where this exponential term is much less than 1,

We can use the second-order Taylor expansion of the logarithm, lo(l + z) ~ = — 122
to obtain ’ :

InZ, = g~ (=n)/kT %e—Z(E—#)/kT + ...,

Therefore the logarithm of the total grand partition function is a.pproiimately

[~ -]
nZ = g/o n? [e—(e-p)/kT + %e—z(s—u)/kT]
_ T kT h 2, —e/kT 1 /kT *°
=3e n’e dn + Ee“ / nle=2¢/kT dn:l.
0 [}
Now change variables again to z = Ve/kT = n\/R2 JBm3kT:

2 3/2 o0 bt
InZ = g(—Smﬁsz) en/kT [/ 2%~ do + %e“/"T/ z2¢72%" d:z:]
. 0 0
2
=TI (——SmLz kT)a/ze#/kT ,:ﬁ + le#/kTﬁ_l_
2\ & 2 4 V8

2rmkT\*/? '
- ( ”Z;k_ ) Veb/ T [1 + Leu/kT} = Y [1 + 1 e“/"TJ.
2v8 vq 2v/8

For the first factor of e*/*T, we can substitute the result of part (b). The second term
in brackets, however, is already small compared to 1 so there we can just plug in the
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(e)

€9

lowest-order result, e#/*T = Nu,,/V. Multiplying everything out and keeping only the
two largest terms, we obtain

1nz=KN”Q[1 1N”"H1+LN”‘?}=N[1 N”Q].

wu V[ AV 2v8 V N
To get the pressure, we just multiply by &T/V:
N&T N‘UQ
P=—[1- .
v [ 4\/§VJ

Comparison to the second-order virial expansion,

PV =NkT<1 + %)

gives for the second virial coefficient

2 3/2
B(T)=_M=_ﬂ(h_) .
032 a/Z\2rmkT

For helium-4 atoms, this evaluates to

23 o o1-1 -3 2
B(T) = _6.02 x 10% mol ( (6.63 x 10734 J-5)

3/2
—3/2
4/2 2m(4)(1.66 x 10-27 kg)(1.38 x 10-23 J/K)) T
= —(7.07 x 107° m®>K*2/mol) - T=¥% = —(70.7 co® K*?/mol) - T~3/2.

So at T =1 K, we predict B(T) = —70.7 cm®/mol, while at 2 K, we predict B(T) =
~25.0 cm®/mol. Experimental values of B(T") for helium are given in Figure 8.2. The
lowest-temperature point is for 2 K, with B(T) = ~174 cm3/mol. Thus, quantum
statistics makes a measurable contribution to B(T") for helium at low temperatures,
although it is not the dominant effect, as discussed in Section 8.1. A plot of the
predicted contribution to B(T') is shown below.

For spin-1/2 fermions, we must make two modifications to the preceding caleulation.
First, we must change just about every minus sign to plus and vice-versa; second, we
must take the two possible spin orientations into account. Starting with the distribu-
tion function in part (a), the — in the denominator becomes +, so the relative sign
between the first two terms in the expansion becomes —. This relative sign change
carries all the way through part (b). Meanwhile, the extra factor of 2 shows up in the
density of states, so equation (1) becomes

=Wl L]
() V8
The remaining equations of part (b) are similarly modified; in particular,

eu/kT=NﬂQ 1 LN’UQ
v /B 2V |
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Part (c) is the same as before. In part (d), the sum over n picks up an extra factor
of 2, which carries through to the integral for In Z. Furthermore, the single-mode
grand partition function is now Z, = 1 4 e~(<~#/*¥T by equation 7.21. This change
converts the relative + sign in the next several lines to a —. Eventually we obtain

iz = Y eunt [1 - Le“/”].
vQ 28
The overall factor of 2 cancels when we plug in our formula for e#/*T, but we still get
an extra factor of 1/2 in the correction term:

1 N’UQ][ 1 N'UQ] [ 1 N‘UQ]
mMZ=N|1l+ =—>||1-—==F|=N|1+ —=—=]|.
[ VB2 | T 2BV ToB e
Thus, the correction term is only half as large as in the spin-0 case (for a given m

and T'), and is positive instead of negative. This also goes for the correction to the
pressure, and for the second virial coefficient,

Nm_+ﬂ<h_2>”2
82 82 \2rmkT ]

Since a helium-3 atom has 3/4 the mass of a helium-4 atom, we predict that the mag-
nitude of the virial coefficient for helium-3 should be (1/2)(4/3)%? = 0.77 times that
for helium-4, for instance, 54.4 cm3/mol at 1 K. The plot below shows the predictions
for both isotopes as a function of temperature.

B(T) =+
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