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Preface to the Second Edition

Over the decade and a half since I wrote the first edition, nothing has altered my
belief in the soundness of the overall approach taken here. This is based on the
response of teachers, students, and my own occasional rereading of the book. I was
generally quite happy with the book, although there were portions where I felt I
could have done better and portions which bothered me by their absence. I welcome
this opportunity to rectify all that.

Apart from small improvements scattered over the text, there are three major
changes. First, I have rewritten a big chunk of the mathematical introduction in
Chapter 1. Next, I have added a discussion of time-reversal invariance. I don’t know
how it got left out the first time—I wish I could go back and change it. The most
important change concerns the inclusion of Chaper 21, “Path Integrals: Part I1.”
The first edition already revealed my partiality for this subject by having a chapter
devoted to it, which was quite unusual in those days. In this one, I have cast off all
restraint and gone all out to discuss many kinds of path integrals and their uses.
Whereas in Chapter 8 the path integral recipe was simply given, here I start by
deriving it. I derive the configuration space integral (the usual Feynman integral),
phase space integral, and (oscillator) coherent state integral. I discuss two applica-
tions: the derivation and application of the Berry phase and a study of the lowest
Landau level with an eye on the quantum Hall effect. The relevance of these topics
is unquestionable. This is followed by a section of imaginary time path integrals—
its description of tunneling, instantons, and symmetry breaking, and its relation to
classical and quantum statistical mechanics. An introduction is given to the transfer
matrix. Then I discuss spin coherent state path integrals and path integrals for
fermions. These were thought to be topics too advanced for a book like this, but I
believe this is no longer true. These concepts are extensively used and it seemed a
good idea to provide the students who had the wisdom to buy this book with a head
start.

How are instructors to deal with this extra chapter given the time constraints?
I suggest omitting some material from the earlier chapters. (No one I know, myself
included, covers the whole book while teaching any fixed group of students.) A
realistic option is for the instructor to teach part of Chapter 21 and assign the rest
as reading material, as topics for a take-home exams, term papers, etc. To ignore it,
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I think, would be to lose a wonderful opportunity to expose the student to ideas
that are central to many current research topics and to deny them the attendant
excitement. Since the aim of this chapter is to guide students toward more frontline
topics, it is more concise than the rest of the book. Students are also expected to
consult the references given at the end of the chapter.

Over the years, I have received some very useful feedback and I thank all those
students and teachers who took the time to do so. I thank Howard Haber for a
discussion of the Born approximation; Harsh Mathur and Ady Stern for discussions
of the Berry phase; Alan Chodos, Steve Girvin, Ilya Gruzberg, Martin Gutzwiller,
Ganpathy Murthy, Charlie Sommerfeld, and Senthil Todari for many useful com-
ments on Chapter 21. I thank Amelia McNamara of Plenum for urging me to write
this edition and Plenum for its years of friendly and warm cooperation. Finally, I
thank my wife Uma for shielding me as usual from real life so I could work on this
edition, and my battery of kids (revised and expanded since the previous edition)
for continually charging me up.

R. Shankar
New Haven, Connecticut



Preface to the First Edition

Publish and perish—Giordano Bruno

Given the number of books that already exist on the subject of quantum mechanics,
one would think that the public needs one more as much as it does, say, the latest
version of the Table of Integers. But this does not deter me (as it didn’t my predeces-
sors) from trying to circulate my own version of how it ought to be taught. The
approach to be presented here (to be described in a moment) was first tried on a
group of Harvard undergraduates in the summer of *76, once again in the summer
of ’77, and more recently at Yale on undergraduates (*77-’78) and graduates (’78-
’79) taking a year-long course on the subject. In all cases the results were very
satisfactory in the sense that the students seemed to have learned the subject well
and to have enjoyed the presentation. It is, in fact, their enthusiastic response and
encouragement that convinced me of the soundness of my approach and impelled
me to write this book.

The basic idea is to develop the subject from its postulates, after addressing
some indispensable preliminaries. Now, most people would agree that the best way
to teach any subject that has reached the point of development where it can be
reduced to a few postulates is to start with the latter, for it is this approach that
gives students the fullest understanding of the foundations of the theory and how it
is to be used. But they would also argue that whereas this is all right in the case of
special relativity or mechanics, a typical student about to learn quantum mechanics
seldom has any familiarity with the mathematical language in which the postulates
are stated. I agree with these people that this problem is real, but I differ in my belief
that it should and can be overcome. This book is an attempt at doing just this.

It begins with a rather lengthy chapter in which the relevant mathematics of
vector spaces developed from simple ideas on vectors and matrices the student is
assumed to know. The level of rigor is what I think is needed to make a practicing
quantum mechanic out of the student. This chapter, which typically takes six to
eight lecture hours, is filled with examples from physics to keep students from getting
too fidgety while they wait for the “real physics.” Since the math introduced has to
be taught sooner or later, I prefer sooner to later, for this way the students, when
they get to it, can give quantum theory their fullest attention without having to
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battle with the mathematical theorems at the same time. Also, by segregating the
mathematical theorems from the physical postulates, any possible confusion as to
which is which is nipped in the bud.

This chapter is followed by one on classical mechanics, where the Lagrangian
and Hamiltonian formalisms are developed in some depth. It is for the instructor to
decide how much of this to cover; the more students know of these matters, the
better they will understand the connection between classical and quantum mechanics.
Chapter 3 is devoted to a brief study of idealized experiments that betray the
inadequacy of classical mechanics and give a glimpse of quantum mechanics.

Having trained and motivated the students I now give them the postulates of
quantum mechanics of a single particle in one dimension. I use the word “postulate”
here to mean “‘that which cannot be deduced from pure mathematical or logical
reasoning, and given which one can formulate and solve quantum mechanical prob-
lems and interpret the results.” This is not the sense in which the true axiomatist
would use the word. For instance, where the true axiomatist would just postulate
that the dynamical variables are given by Hilbert space operators, I would add the
operator identifications, i.e., specify the operators that represent coordinate and
momentum (from which others can be built). Likewise, I would not stop with the
statement that there is a Hamiltonian operator that governs the time evolution
through the equation i#%d|y)/0t=H|w); I would say the H is obtained from the
classical Hamiltonian by substituting for x and p the corresponding operators. While
the more general axioms have the virtue of surviving as we progress to systems of
more degrees of freedom, with or without classical counterparts, students given just
these will not know how to calculate anything such as the spectrum of the oscillator.
Now one can, of course, try to “derive” these operator assignments, but to do so
one would have to appeal to ideas of a postulatory nature themselves. (The same
goes for “deriving” the Schrodinger equation.) As we go along, these postulates are
generalized to more degrees of freedom and it is for pedagogical reasons that these
generalizations are postponed. Perhaps when students are finished with this book,
they can free themselves from the specific operator assignments and think of quantum
mechanics as a general mathematical formalism obeying certain postulates (in the
strict sense of the term).

The postulates in Chapter 4 are followed by a lengthy discussion of the same,
with many examples from fictitious Hilbert spaces of three dimensions. Nonetheless,
students will find it hard. It is only as they go along and see these postulates used
over and over again in the rest of the book, in the setting up of problems and the
interpretation of the results, that they will catch on to how the game is played. It is
hoped they will be able to do it on their own when they graduate. I think that any
attempt to soften this initial blow will be counterproductive in the long run.

Chapter 5 deals with standard problems in one dimension. It is worth mentioning
that the scattering off a step potential is treated using a wave packet approach. If
the subject seems too hard at this stage, the instructor may decide to return to it
after Chapter 7 (oscillator), when students have gained more experience. But I think
that sooner or later students must get acquainted with this treatment of scattering.

The classical limit is the subject of the next chapter. The harmonic oscillator is
discussed in detail in the next. It is the first realistic problem and the instructor may
be eager to get to it as soon as possible. If the instructor wants, he or she can discuss
the classical limit after discussing the oscillator.



We next discuss the path integral formulation due to Feynman. Given the intui-
tive understanding it provides, and its elegance (not to mention its ability to give
the full propagator in just a few minutes in a class of problems), its omission from
so many books is hard to understand. While it is admittedly hard to actually evaluate
a path integral (one example is provided here), the notion of expressing the propag-
ator as a sum over amplitudes from various paths is rather simple. The importance
of this point of view is becoming clearer day by day to workers in statistical mechanics
and field theory. I think every effort should be made to include at least the first three
(and possibly five) sections of this chapter in the course.

The content of the remaining chapters is standard, in the first approximation.
The style is of course peculiar to this author, as are the specific topics. For instance,
an entire chapter (11) is devoted to symmetries and their consequences. The chapter
on the hydrogen atom also contains a section on how to make numerical estimates
starting with a few mnemonics. Chapter 15, on addition of angular momenta, also
contains a section on how to understand the “accidental” degeneracies in the spectra
of hydrogen and the isotropic oscillator. The quantization of the radiation field is
discussed in Chapter 18, on time-dependent perturbation theory. Finally the treat-
ment of the Dirac equation in the last chapter (20) is intended to show that several
things such as electron spin, its magnetic moment, the spin-orbit interaction, etc.
which were introduced in an ad hoc fashion in earlier chapters, emerge as a coherent
whole from the Dirac equation, and also to give students a glimpse of what lies
ahead. This chapter also explains how Feynman resolves the problem of negative-
energy solutions (in a way that applies to bosons and fermions).

For Whom Is this Book Intended?

In writing it, I addressed students who are trying to learn the subject by them-
selves; that is to say, I made it as self-contained as possible, included a lot of exercises
and answers to most of them, and discussed several tricky points that trouble students
when they learn the subject. But I am aware that in practice it is most likely to be
used as a class text. There is enough material here for a full year graduate course.
It is, however, quite easy so adapt it to a year-long undergraduate course. Several
sections that may be omitted without loss of continuity are indicated. The sequence
of topics may also be changed, as stated earlier in this preface. I thought it best to
let the instructor skim through the book and chart the course for his or her class,
given their level of preparation and objectives. Of course the book will not be particu-
larly useful if the instructor is not sympathetic to the broad philosophy espoused
here, namely, that first comes the mathematical training and then the development
of the subject from the postulates. To instructors who feel that this approach is all
right in principle but will not work in practice, I reiterate that it has been found to
work in practice, not just by me but also by teachers elsewhere.

The book may be used by nonphysicists as well. (I have found that it goes well
with chemistry majors in my classes.) Although I wrote it for students with no familiar-
ity with the subject, any previous exposure can only be advantageous.

Finally, I invite instructors and students alike to communicate to me any sugges-
tions for improvement, whether they be pedagogical or in reference to errors or
misprints.

xi
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Prelude

Our description of the physical world is dynamic in nature and undergoes frequent
change. At any given time, we summarize our knowledge of natural phenomena by
means of certain laws. These laws adequately describe the phenomenon studied up
to that time, to an accuracy then attainable. As time passes, we enlarge the domain
of observation and improve the accuracy of measurement. As we do so, we constantly
check to see if the laws continue to be valid. Those laws that do remain valid gain
in stature, and those that do not must be abandoned in favor of new ones that do.

In this changing picture, the laws of classical mechanics formulated by Galileo,
Newton, and later by Euler, Lagrange, Hamilton, Jacobi, and others, remained
unaltered for almost three centuries. The expanding domain of classical physics met
its first obstacles around the beginning of this century. The obstruction came on two
fronts: at large velocities and small (atomic) scales. The problem of large velocities
was successfully solved by Einstein, who gave us his relativistic mechanics, while the
founders of quantum mechanics—Bohr, Heisenberg, Schrédinger, Dirac, Born, and
others—solved the problem of small-scale physics. The union of relativity and quan-
tum mechanics, needed for the description of phenomena involving simultaneously
large velocities and small scales, turns out to be very difficult. Although much pro-
gress has been made in this subject, called quantum field theory, there remain many
open questions to this date. We shall concentrate here on just the small-scale problem,
that is to say, on non-relativistic quantum mechanics.

The passage from classical to quantum mechanics has several features that are
common to all such transitions in which an old theory gives way to a new one:

(1) There is a domain D, of phenomena described by the new theory and a sub-
domain D, wherein the old theory is reliable (to a given accuracy).

(2) Within the subdomain D, either theory may be used to make quantitative pre-
dictions. It might often be more expedient to employ the old theory.

(3) In addition to numerical accuracy, the new theory often brings about radical
conceptual changes. Being of a qualitative nature, these will have a bearing on
all of D,.

For example, in the case of relativity, D, and D, represent (macroscopic)
phenomena involving small and arbitrary velocities, respectively, the latter, of course,

xiii



Xiv
PRELUDE

being bounded by the velocity of light. In addition to giving better numerical pre-
dictions for high-velocity phenomena, relativity theory also outlaws several cherished
notions of the Newtonian scheme, such as absolute time, absolute length, unlimited
velocities for particles, etc.

In a similar manner, quantum mechanics brings with it not only improved
numerical predictions for the microscopic world, but also conceptual changes that
rock the very foundations of classical thought.

This book introduces you to this subject, starting from its postulates. Between
you and the postulates there stand three chapters wherein you will find a summary
of the mathematical ideas appearing in the statement of the postulates, a review of
classical mechanics, and a brief description of the empirical basis for the quantum
theory. In the rest of the book, the postulates are invoked to formulate and solve a
variety of quantum mechanical problems. It is hoped that, by the time you get to
the end of the book, you will be able to do the same yourself.

Note to the Student

Do as many exercises as you can, especially the ones marked * or whose results
carry equation numbers. The answer to each exercise is given either with the exercise
or at the end of the book.

The first chapter is very important. Do not rush through it. Even if you know
the math, read it to get acquainted with the notation.

I am not saying it is an easy subject. But I hope this book makes it seem
reasonable.

Good luck.
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Mathematical Introduction

The aim of this book is to provide you with an introduction to quantum mechanics,
starting from its axioms. It is the aim of this chapter to equip you with the necessary
mathematical machinery. All the math you will need is developed here, starting from
some basic ideas on vectors and matrices that you are assumed to know. Numerous
examples and exercises related to classical mechanics are given, both to provide some
relief from the math and to demonstrate the wide applicability of the ideas developed
here. The effort you put into this chapter will be well worth your while: not only
will it prepare you for this course, but it will also unify many ideas you may have
learned piecemeal. To really learn this chapter, you must, as with any other chapter,
work out the problems.

1.1. Linear Vector Spaces: Basics

In this section you will be introduced to linear vector spaces. You are surely
familiar with the arrows from elementary physics encoding the magnitude and
direction of velocity, force, displacement, torque, etc. You know how to add them
and multiply them by scalars and the rules obeyed by these operations. For example,
you know that scalar multiplication is associative: the multiple of a sum of two
vectors is the sum of the multiples. What we want to do is abstract from this simple
case a set of basic features or axioms, and say that any set of objects obeying the same
forms a linear vector space. The cleverness lies in deciding which of the properties to
keep in the generalization. If you keep too many, there will be no other examples;
if you keep too few, there will be no interesting results to develop from the axioms.

The following is the list of properties the mathematicians have wisely chosen as
requisite for a vector space. As you read them, please compare them to the world
of arrows and make sure that these are indeed properties possessed by these familiar
vectors. But note also that conspicuously missing are the requirements that every
vector have a magnitude and direction, which was the first and most salient feature
drilled into our heads when we first heard about them. So you might think that
dropping this requirement, the baby has been thrown out with the bath water.
However, you will have ample time to appreciate the wisdom behind this choice as
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you go along and see a great unification and synthesis of diverse ideas under the
heading of vector spaces. You will see examples of vector spaces that involve entities
that you cannot intuitively perceive as having either a magnitude or a direction.
While you should be duly impressed with all this, remember that it does not hurt at
all to think of these generalizations in terms of arrows and to use the intuition to
prove theorems or at the very least anticipate them.

Definition 1. A linear vector space N is a collection of objects |1),
12>, ..., VD, ...,|W),..., called vectors, for which there exists

1. A definite rule for forming the vector sum, denoted |V )+ | W)
2. A definite rule for multiplication by scalars a, b, . . ., denoted a| V') with the
following features:

o The result of these operations is another element of the space, a feature called
closure: |VY+|WHeV.

e Scalar multiplication is distributive in the wvectors: a(|V)+|W))=
alVy >+aW).

e Scalar multiplication is distributive in the scalars: (a+b)|V)y=a|lV)+b|V .

e Scalar multiplication is associative: a(b|V))=ab|V .

e Addition is commutative: |V)Y+|W)=|W>+|V>.

e Addition is associative: |VY+(W)H+|ZY)=(V>+|W))+|Z).

e There exist a null vector |0 obeying [V >+|0>=]|V>.

e For every vector | V) there exists an inverse under addition, |—V >, such that
[V>+1=V>=10).

There is a good way to remember all of these; do what comes naturally.

Definition 2. The numbers q, b, . .. are called the field over which the vector
space is defined.

If the field consists of all real numbers, we have a real vector space, if they are
complex, we have a complex vector space. The vectors themselves are neither real or
complex; the adjective applies only to the scalars.

Let us note that the above axioms imply

e |0) is unique, i.e., if |0’> has all the properties of |0}, then |0)>=0">.
e 0| V>=]0).

o |[=V)=—|V).

e |—V) is the unique additive inverse of | V).

The proofs are left as to the following exercise. You don’t have to know the proofs,
but you do have to know the statements.

Exercise 1.1.1. Verify these claims. For the first consider |0> +|0") and use the advertised
properties of the two null vectors in turn. For the second start with [0>=(0+1)| V> +|—V).
For the third, begin with [V)+(—|V>)=0|V>=|0>. For the last, let |W) also satisfy
|V>+|W)»=|0). Since |0) is unique, this means | V') +|W>=|V > +|—V ). Take it from here.



V:
Figure 1.1. The rule for vector addition. Note that it obeys axioms
(i)—(ii). v

Exercise 1.1.2. Consider the set of all entities of the form (a, b, ¢) where the entries are
real numbers. Addition and scalar multiplication are defined as follows:

(a,b,c)+(d e, f)=(a,+d, b+e,ct+f)
a(a, b, ¢)=(aa, ab, ac).

Write down the null vector and inverse of (a, b, ¢). Show that vectors of the form (a, b, 1) do
not form a vector space.

Observe that we are using a new symbol | V) to denote a generic vector. This
object is called ket ¥ and this nomenclature is due to Dirac whose notation will be
discussed at some length later. We do not purposely use the symbol ¥ to denote the
vectors as the first step in weaning you away from the limited concept of the vector
as an arrow. You are however not discouraged from associating with | V) the arrow-
like object till you have seen enough vectors that are not arrows and are ready to
drop the crutch.

You were asked to verify that the set of arrows qualified as a vector space as
you read the axioms. Here are some of the key ideas you should have gone over.
The vector space consists of arrows, typical ones being ¥ and V’. The rule for
addition is familiar: take the tail of the second arrow, put it on the tip of the first,
and so on as in Fig. 1.1.

Scalar multiplication by a corresponds to stretching the vector by a factor a.
This is a real vector space since stretching by a complex number makes no sense. (If
ais negative, we interpret it as changing the direction of the arrow as well as rescaling
it by |a|.) Since these operations acting on arrows give more arrows, we have closure.
Addition and scalar multiplication clearly have all the desired associative and distri-
butive features. The null vector is the arrow of zero length, while the inverse of a
vector is the vector reversed in direction.

So the set of all arrows qualifies as a vector space. But we cannot tamper with
it. For example, the set of all arrows with positive z-components do not form a
vector space: there is no inverse.

Note that so far, no reference has been made to magnitude or direction. The
point is that while the arrows have these qualities, members of a vector space need
not. This statement is pointless unless I can give you examples, so here are two.

Consider the set of all 2 x 2 matrices. We know how to add them and multiply
them by scalars (multiply all four matrix elements by that scalar). The corresponding
rules obey closure, associativity, and distributive requirements. The null matrix has
all zeros in it and the inverse under addition of a matrix is the matrix with all elements
negated. You must agree that here we have a genuine vector space consisting of
things which don’t have an obvious length or direction associated with them. When
we want to highlight the fact that the matrix M is an element of a vector space, we
may want to refer to it as, say, ket number 4 or: |4).
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As a second example, consider all functions f(x) defined in an interval 0 <x < L.
We define scalar multiplication by a simply as af(x) and addition as pointwise
addition: the sum of two functions f and g has the value f(x) + g(x) at the point x.
The null function is zero everywhere and the additive inverse of f'is —f.

Exercise 1.1.3. Do functions that vanish at the end points x=0 and x=L form a vector
space? How about periodic functions obeying f(0)=f(L)? How about functions that obey
£(0)=4? If the functions do not qualify, list the things that go wrong.

The next concept is that of linear independence of a set of vectors [1),]2) ... |n).
First consider a linear relation of the form

n

> ailiy=10) (1.L.1)

i=1

We may assume without loss of generality that the left-hand side does not
contain any multiple of |0), for if it did, it could be shifted to the right, and combined
with the |0) there to give |0) once more. (We are using the fact that any multiple
of |0> equals |0).)

Definition 3. The set of vectors is said to be linearly independent if the only such
linear relation as Eq. (1.1.1) is the trivial one with all a;=0. If the set of vectors
is not linearly independent, we say they are linearly dependent.

Equation (1.1.1) tells us that it is not possible to write any member of the
linearly independent set in terms of the others. On the other hand, if the set of
vectors is linearly dependent, such a relation will exist, and it must contain at least
two nonzero coefficients. Let us say a; #0. Then we could write

n

3= 3 i (1.12)

i=1,%3 43

thereby expressing |3) in terms of the others.

As a concrete example, consider two nonparallel vectors |1) and |2) in a plane.
These form a linearly independent set. There is no way to write one as a multiple of
the other, or equivalently, no way to combine them to get the null vector. On the
other hand, if the vectors are parallel, we can clearly write one as a multiple of the
other or equivalently play them against each other to get 0.

Notice I said 0 and not |0). This is, strictly speaking, incorrect since a set of
vectors can only add up to a vector and not a number. It is, however, common to
represent the null vector by 0.

Suppose we bring in a third vector |3) also in the plane. If it is parallel to either
of the first two, we already have a linearly dependent set. So let us suppose it is not.
But even now the three of them are linearly dependent. This is because we can write
one of them, say |3), as a linear combination of the other two. To find the combina-
tion, draw a line from the tail of |3) in the direction of |1). Next draw a line
antiparallel to |2) from the tip of |3). These lines will intersect since | 1) and |2) are



not parallel by assumption. The intersection point P will determine how much of
|1) and |2) we want: we go from the tail of |3) to P using the appropriate multiple
of |1 and go from P to the tip of |3) using the appropriate multiple of |2).

Exercise 1.1.4. Consider three elements from the vector space of real 2 X 2 matrices:

fo 1 1 _[-2 -1
”>_[o 0] |2>_[0 1] 13 [0 —2]

Are they linearly independent? Support your answer with details. (Notice we are calling
these matrices vectors and using kets to represent them to emphasize their role as elements
of a vector space.

Exercise 1.1.5. Show that the following row vectors are linearly dependent: (1, 1,0),
(1,0, 1), and (3, 2, 1). Show the opposite for (1, 1, 0), (1,0, 1), and (0, 1, 1).

Definition 4. A vector space has dimension n if it can accommodate a maximum
of n linearly independent vectors. It will be denoted by V”(R) if the field is real
and by V*(C) if the field is complex.-

In view of the earlier discussions, the plane is two-dimensional and the set of
all arrows not limited to the plane define a three-dimensional vector space. How
about 2 x 2 matrices? They form a four-dimensional vector space. Here is a proof.
The following vectors are linearly independent :

10 o 1 fo o oo
|1>_[o 0] |2>_[o o] |3>_[1 0} 14> [o 1]

since it is impossible to form linear combinations of any three of them to give the
fourth any three of them will have a zero in the one place where the fourth does
not. So the space is at least four-dimensional. Could it be bigger? No, since any
arbitrary 2 X 2 matrix can be written in terms of them:

[“ b}=a|l>+bl2>+c|3>+d|4>
c d

If the scalars a, b, ¢, d are real, we have a real four-dimensional space, if they
are complex we have a complex four-dimensional space.

Theorem 1. Any vector | V) in an n-dimensional space can be written as a
linearly combination of » linearly independent vectors 1) ... |n).

The proof is as follows: if there were a vector | V') for which this were not
possible, it would join the given set of vectors and form a set of n+1 linearly
independent vectors, which is not possible in an n-dimensional space by definition.
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Definition 5. A set of n linearly independent vectors in an n-dimensional space
is called a basis.

Thus we can write, on the strength of the above

V=3 ulid (1.13)

1

where the vectors |i) form a basis.

Definition 6. The coefficients of expansion v; of a vector in terms of a linearly
independent basis (|i)) are called the components of the vector in that basis.

Theorem 2. The expansion in Eq. (1.1.1) is unique.

Suppose the expansion is not unique. We must then have a second expansion:

n

V=3 vili> (1.1.4)

i=1

Subtracting Eq. (1.1.4) from Eq. (1.1.3) (i.e., multiplying the second by the
scalar —1 and adding the two equations) we get

10> =2 (vi—v))li) (1.1.5)

which implies that
v;=U] (1.1.6)

since the basis vectors are linearly independent and only a trivial linear relation
between them can exist. Note that given a basis the components are unique, but if
we change the basis, the components will change. We refer to | V') as the vector in
the abstract, having an existence of its own and satisfying various relations involving
other vectors. When we choose a basis the vectors assume concrete forms in terms
of their components and the relation between vectors is satisfied by the components.
Imagine for example three arrows in the plane, 4, B, C satisfying A + B= C according
to the laws for adding arrows. So far no basis has been chosen and we do not need
a basis to make the statement that the vectors from a closed triangle. Now we choose
a basis and write each vector in terms of the components. The components will
satisfy C;=4,;+ B;, i=1, 2. If we choose a different basis, the components will change
in numerical value, but the relation between them expressing the equality of C to
the sum of the other two will still hold between the new set of components.



In the case of nonarrow vectors, adding them in terms of components proceeds
as in the elementary case thanks to the axioms. If

[V>=Y v;li) and (1.1.7)
[W>=Y w;|i) then (1.1.8)

|V>+|W>=Z(vi+w,~)|i> (1.1.9)

where we have used the axioms to carry out the regrouping of terms. Here is the
conclusion:

To add two vectors, add their components.

There is no reference to taking the tail of one and putting it on the tip of the
other, etc., since in general the vectors have no head or tail. Of course, if we are
dealing with arrows, we can add them either using the tail and tip routine or by
simply adding their components in a basis.

In the same way, we have:

alVy=ay v]i>=Y av,]i) (1.1.10)

In other words,

To multiply a vector by a scalar, multiply all its components by the scalar.

1.2. Inner Product Spaces

The matrix and function examples must have convinced you that we can have
a vector space with no preassigned definition of length or direction for the elements.
However, we can make up quantities that have the same properties that the lengths
and angles do in the case of arrows. The first step is to define a sensible analog of
the dot product, for in the case of arrows, from the dot product

A-B=|A4||B] cos 6 (1.2.1)

we can read off the length of say A as \/|[A| - |A] and the cosine of the angle between
two vectors as 4 - B/| 4|| B|. Now you might rightfully object: how can you use the dot
product to define the length and angles, if the dot product itself requires knowledge of
the lengths and angles? The answer is this. Recall that the dot product has a second
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Figure 1.2. Geometrical proof that the dot product obeys axiom (iii)
for an inner product. The axiom requires that the projections obey
P k + Pj = P Jk -

equivalent expression in terms of the components:
A-B=A4.B,+A,B,+ A.B. (1.2.2)

Our goal is to define a similar formula for the general case where we do have the
notion of components in a basis. To this end we recall the main features of the above
dot product:

1. % l:?=B A (symmetry)
2. 4420 0 iff A=0 (positive semidefiniteness)
3. A-(bB+cC)=bA- B+cA- C (linearity)

The linearity of the dot product is illustrated in Fig. 1.2.

We want to invent a generalization called the inner product or scalar product
between any two vectors | V) and |W). We denote it by the symbol (V| W). It is
once again a number (generally complex) dependent on the two vectors. We demand
that it obey the following axioms:

o (VIWY=(W|V)>* (skew-symmetry)
o (V|V>=>0 0 iff | V>=10) (positive semidefiniteness)
o (V|(@W>+bZ))={V]|aW+bZ)=alV|W)>+b{V|Z) (linearity in ket)

Definition 7. A vector space with an inner product is called an inner product
space.

Notice that we have not yet given an explicit rule for actually evaluating the
scalar product, we are merely demanding that any rule we come up with must have
these properties. With a view to finding such a rule, let us familiarize ourselves with
the axioms. The first differs from the corresponding one for the dot product and
makes the inner product sensitive to the order of the two factors, with the two
choices leading to complex conjugates. In a real vector space this axioms states the
symmetry of the dot product under exchange of the two vectors. For the present,
let us note that this axiom ensures that (V|V} is real.

The second axiom says that (V| ) is not just real but also positive semidefinite,
vanishing only if the vector itself does. If we are going to define the length of the
vector as the square root of its inner product with itself (as in the dot product) this
quantity had better be real and positive for all nonzero vectors.



The last axiom expresses the linearity of the inner product when a linear super-
position a| W) +b|Z)=|aW+bZ) appears as the second vector in the scalar prod-
uct. We have discussed its validity for the arrows case (Fig. 1.2).

What if the first factor in the product is a linear superposition, i.e., what is
{aW+bZ|V »? This is determined by the first axiom:

aW+bZ|Vy=(V|aW+bZ)* by BI
=(@VI|W+bV|Z))*
=a*(V|WY*+b*(V|Z)*
=a*(W|Vy+b*(Z|V) (1.2.3)

which expresses the antilinearity of the inner product with respect to the first factor
in the inner product. In other words, the inner product of a linear superposition
with another vector is the corresponding superposition of inner products if the super-
position occurs in the second factor, while it is the superposition with all coefficients
conjugated if the superposition occurs in the first factor. This asymmetry, unfamiliar
in real vector spaces, is here to stay and you will get used to it as you go along.

Let us continue with inner products. Even though we are trying to shed the
restricted notion of a vector as an arrow and seeking a corresponding generalization
of the dot product, we still use some of the same terminology.

Definition 8. We say that two vectors are orthogonal or perpendicular if their
inner product vanishes.

Definition 9. We will refer to /<V|V ) =|V| as the norm or length of the vector.
A normalized vector has unit norm.

Definition 10. A set of basis vectors all of unit norm, which are pairwise ortho-
gonal will be called an orthonormal basis.

We will also frequently refer to the inner or scalar product as the dot product.
We are now ready to obtain a concrete formula for the inner product in terms
of the components. Given | V) and | W)

Vo>=xI1i

W=7
j
we follow the axioms obeyed by the inner product to obtain:

VI =L L v wiilj> (1.2.4)

To go any further we have to know <i|j), the inner product between basis vectors.
That depends on the details of the basis vectors and all we know for sure is that
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they are linearly independent. This situation exists for arrows as well. Consider a
two-dimensional problem where the basis vectors are two linearly independent but
nonperpendicular vectors. If we write all vectors in terms of this basis, the dot
product of any two of them will likewise be a double sum with four terms (determined
by the four possible dot products between the basis vectors) as well as the vector
components. However, if we use an orthonormal basis such as i, j, only diagonal
terms like ¢i| i) will survive and we will get the familiar result 4- B=4,B,+ 4, B,
depending only on the components.
For the more general nonarrow case, we invoke Theorem 3.

Theorem 3 (Gram-Schmidt). Given a linearly independent basis we can form
linear combinations of the basis vectors to obtain an orthonormal basis.

Postponing the proof for a moment, let us assume that the procedure has been
implemented and that the current basis is orthonormal:

i)l fori=j
e {0 for i #j

8

where & is called the Kronecker deita symbol. Feeding this into Eq. (1.2.4) we find
the double sum collapses to a single one due to the Kronecker delta, to give

VW)=Y viwi (1.2.5)

This is the form of the inner product we will use from now on.

You can now appreciate the first axiom; but for the complex conjugation of
the components of the first vector, (V| V) would not even be real, not to mention
positive. But now it is given by

VY=Y |v1*20 (1.2.6)

and vanishes only for the null vector. This makes it sensible to refer to {(V|V) as
the length or norm squared of a vector.

Consider Eq. (1.2.5). Since the vector | V') is uniquely specified by its compo-
nents in a given basis, we may, in this basis, write it as a column vector:

(5}
(%)
[V>=| ¢ | in this basis (1.2.7)



Likewise

1)
|[WH-| - in this basis (1.2.8)

Wn

The inner product (V| W) is given by the matrix product of the transpose conjugate
of the column vector representing | ¥)> with the column vector representing | W) :

wi
w2

VIWy=[ovf,0%,..., 08| : (1.2.9)

Wn

1.3. Dual Spaces and the Dirac Notation

There is a technical point here. The inner product is a number we are trying to
generate from two kets | V') and | W), which are both represented by column vectors
in some basis. Now there is no way to make a number out of two columns by direct
matrix multiplication, but there is a way to make a number by matrix multiplication
of a row times a column. Qur trick for producing a number out of two columns has
been to associate a unique row vector with one column (its transpose conjugate)
and form its matrix product with the column representing the other. This has the
feature that the answer depends on which of the two vectors we are going to convert
to the row, the two choices (V| W) and {W|V}) leading to answers related by
complex conjugation as per axiom 1(A).

But one can also take the following alternate view. Column vectors are concrete
manifestations of an abstract vector | V') or ket in a basis. We can also work back-
ward and go from the column vectors to the abstract kets. But then it is similarly
possible to work backward and associate with each row vector an abstract object
{W|, called bra-W. Now we can name the bras as we want but let us do the following.
Associated with every ket | V) is a column vector. Let us take its adjoint, or transpose
conjugate, and form a row vector. The abstract bra associated with this will bear
the same label, i.e., it be called {(V'|. Thus there are two vector spaces, the space of
kets and a dual space of bras, with a ket for every bra and vice versa (the components
being related by the adjoint operation). Inner products are really defined only
between bras and kets and hence from elements of two distinct but related vector
spaces. There is a basis of vectors |i) for expanding kets and a similar basis <i| for
expanding bras. The basis ket |) is represented in the basis we are using by a column
vector with all zeros except for a 1 in the ith row, while the basis bra {i| is a row
vector with all zeros except for a 1 in the ith column.

11
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All this may be summarized as follows:

U
(%]
VYo | i |l o, .. 0]l V] (1.3.1)

Un

where < means “within a basis.”

There is, however, nothing wrong with the first viewpoint of associating a scalar
product with a pair of columns or kets (making no reference to another dual space)
and living with the asymmetry between the first and second vector in the inner
product (which one to transpose conjugate?). If you found the above discussion
heavy going, you can temporarily ignore it. The only thing you must remember is
that in the case of a general nonarrow vector space:

e Vectors can still be assigned components in some orthonormal basis, just as with
arrows, but these may be complex.

e The inner product of any two vectors is given in terms of these components by
Eq. (1.2.5). This product obeys all the axioms.

1.3.1. Expansion of Vectors in an Orthonormal Basis

Suppose we wish to expand a vector | V') in an orthonormal basis. To find the
components that go into the expansion we proceed as follows. We take the dot
product of both sides of the assumed expansion with | j): (or {j| if you are a purist)

V=% vli) (1.3.2)

JIvy=y vi@ (1.3.3)
i 50

=y (1.3.4)

i.e., the find the jth component of a vector we take the dot product with the jth unit
vector, exactly as with arrows. Using this result we may write

[VO=21D<1V> (1.3.5)

Let us make sure the basis vectors look as they should. If we set |V >=|;) in Eq.
(1.3.5), we find the correct answer: the ith component of the jth basis vector is 6.
Thus for example the column representing basis vector number 4 will have a 1 in
the 4th row and zero everywhere else. The abstract relation

V>=X vli) (1.3.6)



becomes in this basis

v 1 0 0
vy 0 1 0

=y | [+o| 0]+ 0, (1.3.7)
Uy 0 0 1

1.3.2. Adjoint Operation

We have seen that we may pass from the column representing a ket to the
row representing the corresponding bra by the adjoint operation, i.e., transpose
conjugation. Let us now ask: if (V| is the bra corresponding to the ket | V) what
bra corresponds to a| V') where a is some scalar? By going to any basis it is readily
found that

anv,
av,
alVy—| o |—=[a*vf, a*vk, ..., a*vf] — (V]a* (1.3.8)

av,

It is customary to write a| V') as |aV') and the corresponding bra as {aV|. What
we have found is that

(aV|={V]|a* (1.3.9)

Since the relation between bras and kets is linear we can say that if we have an
equation among kets such as

alVy=bWh+c|lZ)+--- (1.3.10)
this implies another one among the corresponding bras:
Va*={W|b*+{Z|c*+- - - (1.3.11)

The two equations above are said to be adjoints of each other. Just as any equation
involving complex numbers implies another obtained by taking the complex conju-
gates of both sides, an equation between (bras) kets implies another one between
(kets) bras. If you think in a basis, you will see that this follows simply from the
fact that if two columns are equal, so are their transpose conjugates.

Here is the rule for taking the adjoint:
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To take the adjoint of a linear equation relating kets (bras), replace every ket
(bra) by its bra (ket) and complex conjugate all coefficients.

We can extend this rule as follows. Suppose we have an expansion for a vector:

[Vy=3 vli) (1.3.12)

1

in terms of basis vectors. The adjoint is

V=g ot

Recalling that v;= (i| V') and v} =(V|i), it follows that the adjoint of

~ |V>=§ [V (1.3.13)
is

V=¥ <Plixil (1.3.14)

13
from which comes the rule:

To take the adjoint of an equation involving bras and kets and coefficients,
reverse the order of all factors, exchanging bras and kets and complex conjugating
all coefficients.

Gram-Schmidt Theorem

Let us now take up the Gram-Schmidt procedure for converting a linearly
independent basis into an orthonormal one. The basic idea can be seen by a simple
example. Imagine the two-dimensional space of arrows in a plane. Let us take two
nonparallel vectors, which qualify as a basis. To get an orthonormal basis out of
these, we do the following:

e Rescale the first by its own length, so it becomes a unit vector. This will be the
first basis vector.

e Subtract from the second vector its projection along the first, leaving behind only
the part perpendicular to the first. (Such a part will remain since by assumption
the vectors are nonparallel.)

® Rescale the left over piece by its own length. We now have the second basis vector:
it is orthogonal to the first and of unit length.

This simple example tells the whole story behind this procedure, which will now
be discussed in general terms in the Dirac notation.



Let |I), |IT),... be a linearly independent basis. The first vector of the
orthonormal basis will be

|1>=% where |I|=./{|I)
Clearly

Ay _

1
1?

A=

As for the second vector in the basis, consider

127 =I5 = | 15<1|T)

which is | II') minus the part pointing along the first unit vector. (Think of the arrow
example as you read on.) Not surprisingly it is orthogonal to the latter:

K125 =T = U1K, =0

We now divide |2") by its norm to get |2) which will be orthogonal to the first and
normalized to unity. Finally, consider

13 =T — |15 T — |25 2| IT)

which is orthogonal to both |1) and |2). Dividing by its norm we get |3), the third
member of the orthogonal basis. There is nothing new with the generation of the
rest of the basis.

Where did we use the linear independence of the original basis? What if we had
started with a linearly dependent basis? Then at some point a vector like |2') or |3')
would have vanished, putting a stop to the whole procedure. On the other hand,
linear independence will assure us that such a thing will never happen since it amounts
to having a nontrivial linear combination of linearly independent vectors that adds
up the null vector. (Go back to the equations for |2') or |3') and satisfy yourself
that these are linear combinations of the old basis vectors.)

_ Exercise 1.3.1. Form an orthogonal basis in two dimensions starting with 4 = 3i+4j and
B=2i—-6j. Can you generate another orthonormal basis starting with these two vectors? If
so, produce another.
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Exercise 1.3.2. Show how to go from the basis

3 0 0
[I>=]0 [1Iy=|1 |IIy=]2
0 2 5
to the orthonormal basis

1 0 0
|1>=|:0] |2>=|:1/\/§] |111>=[—2/\/§]
0 2/5 1//5
When we first learn about dimensionality, we associate it with the number of

perpendicular directions. In this chapter we defined in terms of the maximum number
of linearly independent vectors. The following theorem connects the two definitions.

Theorem 4. The dimensionality of a space equals #, , the maximum number of
mutually orthogonal vectors in it.

To show this, first note that any mutually orthogonal set is also linearly indepen-
dent. Suppose we had a linear combination of orthogonal vectors adding up to
zero. By taking the dot product of both sides with any one member and using the
orthogonality we can show that the coefficient multiplying that vector had to vanish.
This can clearly be done for all the coefficients, showing the linear combination is
trivial. ‘

Now n, can only be equal to, greater than or lesser than n, the dimensionality
of the space. The Gram-Schmidt procedure eliminates the last case by explicit con-
struction, while the linear independence of the perpendicular vectors rules out the
penultimate option.

Schwarz and Triangle Inequalities

Two powerful theorems apply to any inner product space obeying our axioms:
Theorem 5. The Schwarz Inequality

[KVIWSI<IVIIW] (1.3.15)
Theorem 6. The Triangle Inequality
[V+W|<|V|+|W| (1.3.16)

The proof of the first will be provided so you can get used to working with bras
and kets. The second will be left as an exercise.



Before proving anything, note that the results are obviously true for arrows:
the Schwarz inequality says that the dot product of two vectors cannot exceed the
product of their lengths and the triangle inequality says that the length of a sum
cannot exceed the sum of the lengths. This is an example which illustrates the merits
of thinking of abstract vectors as arrows and guessing what properties they might
share with arrows. The proof will of course have to rely on just the axioms.

To prove the Schwarz inequality, consider axiom 1(i) applied to

— iy Y
1Z>=\V> WP |W> (1.3.17)
We get
WV WV
21Z)=(V——"L W V"L W
(Z1Z)=[ WP | W >
=<V|V>_<W|V><Z/IW>_<WIV> <2WIV>
W) 4
+<W|V>*<W|V><W|W>
|t
>0 (1.3.18)

where we have used the antilinearity of the inner product with respect to the bra.
Using

WV =VIW)
we find

WIVHVIWS

VIVH> L7k

(1.3.19)

Cross-multiplying by | W|* and taking square .roots, the result follows.

Exercise 1.3.3. When will this inequality be satisfied? Does this agree with you experience
with arrows?

Exercise 1.3.4. Prove the triangle inequality starting with |+ W|%. You must use
Re(V| W) <|<{V|W})| and the Schwarz inequality. Show that the final inequality becomes an
equality only if | V') =a| W) where a is a real positive scalar.

1.4. Subspaces

Definition 11. Given a vector space V, a subset of its elements that form a
vector space among themselves] is called a subspace. We will denote a particular
subspace i of dimensionality n; by V7.

} Vector addition and scalar multiplication are defined the same way in the subspace as in V.
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Example 1.4.1. In the space V*(R), the following are some example of sub-
spaces: (a) all vectors along the x axis, the space V,!; (b) all vectors along the y
axis, the space V,'; (c) all vectors in the x—y plane, the space V?2,. Notice that all
subspaces contain the null vector and that each vector is accompanied by its inverse
to fulfill axioms for a vector space. Thus the set of all vectors along the positive x
axis alone do not form a vector space. O

Definition 12. Given two subspaces V' and V¥, we define their sum
Vi@ V;7= Vi* as the set containing (1) all elements of Vi, (2) all elements of
V¥, (3) all possible linear combinations of the above. But for the elements (3),
closure would be lost.

Example 1.4.2. If, for example, V., @V, contained only vectors along the x and
y axes, we could, be adding two elements, one from each direction, generate one
along neither. On the other hand, if we also included all linear combinations, we
would get the correct answer, V@V, =V}, O

Exercise 1.4.1.* In a space V", prove that the set of all vectors {|V'\),|V3i),...},
orthogonal to any | V> #0), form a subspace V"',

Exercise 1.4.2. Suppose V7' and V3* are two subspaces such that any element of V, is
orthogonal to any element of V,. Show that the dimensionality of V,®V, is n, +n,. (Hint:
Theorem 6.)

1.5. Linear Operators

An operator Q is an instruction for transforming any given vector | V') into
another, | V'). The action of the operator is represented as follows:

QVy=V"> (1.5.1)

One says that the operator Q has transformed the ket | V) into the ket | V). We
will restrict our attention throughout to operators Q that do not take us out of the
vector space, i.e., if | V') is an element of a space V, sois |V')=Q| V).

Operators can also act on bras:

V1Q=<V" (1.5.2)

We will only be concerned with linear operators, i.e., ones that obey the following
rules:

Qa|V)y=aQ|V;) (1.5.3a)
Q{a|Vy+ BV} =aQ| Vi) + BV, (1.5.3b)
ViaQ=<{V;|Qa (1.5.4a)

KVila+<Vj| B)Q=alVi|Q+ BV;1Q (1.5.4b)



Figure 1.3. Action of the operator R(izi). Note that
R[|2)+13>1=R|2) + R|3) as expected of a linear operator. (We
will often refer to R(37i) as R if no confusion is likely.)

Example 1.5.1. The simplest operator is the identity operator, I, which carries
the instruction:

I—Leave the vector alone!

Thus,

IV>=|V) forallkets|V) (1.5.5)
and

{V|I=LV| forallbras (V| (1.5.6)
We next pass on to a more interesting operator on V>(R):

R(3mi) > Rotate vector by 37 about the unit vector i

[More generally, R(0) stands for a rotation by an angle 6 =|0| about the axis parallel
to the unit vector 6 =0/6.] Let us consider the action of this operator on the three

unit vectors i, j, and k, which in our notation will be denoted by |1), |2), and |3)
(see Fig. 1.3). From the figure it is clear that

RE )| 1>=]1) (1.5.7a)
RG#D|12)=13) (1.5.7b)
RGD)|3>=—]2) (1.5.7¢)

Clearly R(37i) is linear. For instance, it is clear from the same figure that
R[|2>+|3>]=R|2)+R|3). O

The nice feature of linear operators is that once their action on the basis vectors
is known, their action on any vector in the space is determined. If

Qliy=1i")
for a basis [1), |2), ..., |n) in V", then for any | V) =Y v;|i)

QVY=Y Quliy=Y 0,Q]i>=Y vi]i’» (1.5.8)
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This is the case in the example Q= R(37i). If
[Vy=u01)+ 12> +15|3)
is any vector, then
R VYy=v,R|1)>+0,R|2) +v3R|3)=01| 1) +v,|3) —v3]2)

The product of two operators stands for the instruction that the instructions
corresponding to the two operators be carried out in sequence

AQIVy=AQIV)=A|QV) (1.5.9)

where |[QV) is the ket obtained by the action of Q on | V). The order of the operators
in a product is very important: in general,

QA—AQ=[Q, A]

called the commutator of Q and A isn’t zero. For example R(37i) and R(37j) do
not commute, i.e., their commutator is nonzero.
Two useful identities involving commutators are

[Q, A0]=A[Q, 0]+[Q, A]6 (1.5.10)
[AQ, 0]=A[Q, 0] +[A, 0]Q (1.5.11)

Notice that apart from the emphasis on ordering, these rules resemble the chain rule
in calculus for the derivative of a product.
The inverse of Q, denoted by Q' satisfies}

QQ'=Q7'Q=1 (1.5.12)

Not every operator has an inverse. The condition for the existence of the inverse is
given in Appendix A.l. The operator R(37i) has an inverse: it is R(—37i). The
inverse of a product of operators is the product of the inverses in reverse:

Q@A) '=A"'Q7! (1.5.13)
for only then do we have

(QA)QA) '=(QANAT'Q H=QAAT'Q'=QQ =T

1.6. Matrix Elements of Linear Operators

We are now accustomed to the idea of an abstract vector being represented in
a basis by an n-tuple of numbers, called its components, in terms of which all vector

1 In V*(C) with n finite, Q'Q=17< QQ ™' =1. Prove this using the ideas introduced toward the end of
Theorem A.1.1., Appendix A.l.



operations can be carried out. We shall now see that in the same manner a linear
operator can be represented in a basis by a set of n* numbers, written as an nxn
matrix, and called its matrix elements in that basis. Although the matrix elements,
just like the vector components, are basis dependent, they facilitate the computation
of all basis-independent quantities, by rendering the abstract operator more tangible.

Our starting point is the observation made earlier, that the action of a linear
operator is fully specified by its action on the basis vectors. If the basis vectors suffer
a change

Qliy=1i"

(where |i") is known), then any vector in this space undergoes a change that is readily
calculable:

QYy=QYuld=3 vQd>=Y vili’>

When we say |i’) is known, we mean that its components in the original basis
Gl =L1Qli>=Q; (1.6.1)
are known. The n* numbers, Q;, are the matrix elements of Q in this basis. If
QVy=1v"

then the components of the transformed ket | V") are expressable in terms of the Q;
and the components of | V'):

J

o= il V'Y=l V>=<i|9(z v,~|f>)
=¥ <101

=z Qijvj (1.6.2)
J

Equation (1.6.2) can be cast in matrix form:

v A1QI1y 192y -+ L1Qny7[ v
va|_| 2D . v (1.6.3)

vn] <nlQIT) e {n|Qn) || vn
A mnemonic: the elements of the first column are simply the components of the first

transformed basis vector |1') =Q|1) in the given basis. Likewise, the elements of the
jth column represent the image of the jth basis vector after Q acts on it.
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Convince yourself that the same matrix Q; acting to the left on the row vector
corresponding to any {v’| gives the row vector corresponding to {v"| ={v'|Q.

Example 1.6.1. Combining our mnemonic with the fact that the operator R(37i)
has the following effect on the basis vectors:

RG#i)1)=]1>
R 7i)|2>=|3)
RGi)|3>=—]2)

we can write down the matrix that represents it in the [1), [2), |3) basis:

0
RG7i) & 0 -1 (1.6.4)
1

S O =

For instance, the —1 in the third column tells us that R rotates |3) into —|2). One
may also ignore the mnemonic altogether and simply use the definition R;= (i|R|j)
to compute the matrix. Od

Exercise 1.6.1. An operator Q is given by the matrix
01
00
1 0

Let us now consider certain specific operators and see how they appear in matrix
form.
(1) The Identity Operator 1.

S = O

What is its action?

Iy=il|j>=<ilj> =8y (1.6.5)

Thus 7 is represented by a diagonal matrix with 1’s along the diagonal. You should
verify that our mnemonic gives the same result.

(2) The Projection Operators. Let us first get acquainted with projection opera-
tors. Consider the expansion of an arbitrary ket | V) in a basis:

V=3 1DV

1



In terms of the objects |i){i|, which are linear operators, and which, by definition,
act on | V') to give |i)<i| V'), we may write the above as

|V>=(_i |i><i|)| 2 (166)

i=1

Since Eq. (1.6.6) is true for all | '), the object in the brackets must be identified
with the identity (operator)

=3 |ixil= 5 P, (1.6.7)
i=1 i

i=1

The object P;=|i){i| is called the projection operator for the ket |i>. Equation (1.6.7),

which is called the completeness relation, expresses the identity as a sum over projec-

tion operators and will be invaluable to us. (If you think that any time spent on the

identity, which seems to do nothing, is a waste of time, just wait and see.)
Consider

P V=10 Vy=|v; (1.6.8)

Clearly P, is linear. Notice that whatever | V') is, ;| V) is a multiple of |i) with
a coefficient (v;) which is the component of | V) along |i). Since P; projects out the
component of any ket | ) along the direction |i), it is called a projection operator.
The completeness relation, Eq. (1.6.7), says that the sum of the projections of a
vector along all the n directions equals the vector itself. Projection operators can
also act on bras in the same way:

VIP= Vi< = vf <] (1.6.9)
Pojection operators corresponding to the basis vectors obey
PR, =iy<ilj><j1 = 8, P, (1.6.10)

This equation tells us that (1) once P; projects out the part of | V') along |i), further
applications of P; make no difference; and (2) the subsequent application of P,(j#1i)
will result in zero, since a vector entirely along |i) cannot have a projection along a
perpendicular direction |j).
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y
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Figure 1.4. P, and P, are polarizers placed in the way of a beam traveling along the z axis. The action

of the polarizers on the electric field E obeys the law of combination of projection operators:
P.P,=65,P;.

The following example from optics may throw some light on the discussion.
Consider a beam of light traveling along the z axis and polarized in the x — y plane
at an angle 6 with respect to the y axis (see Fig. 1.4). If a polarizer P,, that only
admits light polarized along the y axis, is placed in the way, the projection E cos 0
along the y axis is transmitted. An additional polarizer P, placed in the way has no
further effect on the beam. We may equate the action of the polarizer to that of a
projection operator P, that acts on the electric field vector E. If P, is followed by a
polarizer P, the beam is completely blocked. Thus the polarizers obey the equation
P;P;= 6, P; expected of projection operators.

Let us next turn to the matrix elements of P;. There are two approaches. The
first one, somewhat indirect, gives us a feeling for what kind of an object |i){i| is.
We know

| <

and

(il < (0,0,...,1,0,0,...,0)



so that
[0] [0 0]
0
: 0
liXi]l e |1](0,0,...,1,0,...,0)= | 1 (1.6.11)
0 0
| 0] | 0 0

by the rules of matrix multiplication. Whereas (V|V’)=(1xn matrix) X
(nx 1 matrix) = (1 x 1 matrix) is a scalar, | V' )<{V’'| = (n X 1 matrix) X (1 X n matrix) =
(n X n matrix) is an operator. The inner product {V|V'’) represents a bra and ket
which have found each other, while |V >{V’|, sometimes called the outer product,
has the two factors looking the other way for a bra or a ket to dot with.

The more direct approach to the matrix elements gives

(P)wa= <kli)<i| 1) = 61 6u= Oxi S (1.6.12)

which is of course identical to Eq. (1.6.11). The same result also follows from mne-
monic. Each projection operator has only one nonvanishing matrix element, a 1 at
the ith element on the diagonal. The completeness relation, Eq. (1.6.7), says that
when all the P; are added, the diagonal fills out to give the identity. If we form the
sum over just some of the projection operators, we get the operator which projects
a given vector into the subspace spanned by just the corresponding basis vectors.

Matrices Corresponding to Products of Operators

Consider next the matrices representing a product of operators. These are related
to the matrices representing the individual operators by the application of Eq. (1.6.7):

(QA);=iQA|j> = GIQIALJ)

=2 QU KIAL =% Qi A (1.6.13)
k k

Thus the matrix representing the product of operators is the product of the matrices
representing the factors.

The Adjoint of an Operator
Recall that given a ket a|V ) =|aV’) the corresponding bra is

(aV|=<(V|a* (and not<{V|a)
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In the same way, given a ket

QVy=|QV)
the corresponding bra is

Qv =<v|Q (1.6.14)
which defines the operator Q'. One may state this equation in words: if Q turns a
ket | V) to | V'), then Q' turns the bra (V| into <(¥’|. Just as @ and a*, | V') and

V| are related but distinct objects, so are Q and Q'. The relation between Q, and
Q' called the adjoint of Q or “omega dagger,” is best seen in a basis:

(@)= <i1Q"j> = <Qil j>
= Qi *={jI1Qliy*
sO
Q=0 (1.6.15)
In other words, the matrix representing Q' is the transpose conjugate of the matrix
representing Q. (Recall that the row vector representing (V| is the transpose conju-
gate of the column vector representing | V). In a given basis, the adjoint operation is

the same as taking the transpose conjugate.)
The adjoint of a product is the product of the adjoints in reverse:

QA =ATQf (1.6.16)
To prove this we consider (<QAV|. First we treat QA as one operator and get
(QAV|=(QA) V=V (QA)
Next we treat (AV') as just another vector, and write
CQAV|=(QAV)| =(AV|Q'
We next pull out A, pushing Q' further out:
AVIQ =V |A'Q

Comparing this result with the one obtained a few lines above, we get the desired
result.
Consider now an equation consisting of kets, scalars, and operators, such as

all V1> = azl V2> + a3| V3>< V4| V5> + a4QA| V6> (16178)
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In the last term we can replace (QA V| by
VA QA) =<V ATQT
so that finally we have the adjoint of Eq. (1.6.17a):
Vilat = Valaf + V3| VK Vilaf + Vel A'Qak (1.6.17b)

The final rule for taking the adjoint of the most general equation we will ever
encounter is this:

When a product of operators, bras, kets, and explicit numerical coefficients is
encountered, reverse the order of all factors and make the substitutions Q«QF,
e (], aea*

(Of course, there is no real need to reverse the location of the scalars a except in
the interest of uniformity.)

Hermitian, Anti-Hermitian, and Unitary Operators

We now turn our attention to certain special classes of operators that will play
a major role in quantum mechanics.

Definition 13. An operator Q is Hermitian if Q'=Q.
Definition 14. An operator Q is anti-Hermitian if Q"= —Q.

The adjoint is to an operator what the complex conjugate is to numbers. Hermitian
and anti-Hermitian operators are like pure real and pure imaginary numbers. Just
as every number may be decomposed into a sum of pure real and pure imaginary
parts,

a+a* a—a*
= +
2 2

a

we can decompose every operator into its Hermitian and anti-Hermitian parts:

_Q+Q*+Q—QT
2 2

9) (1.6.18)

Exercise 1.6.2.* Given Q and A are Hermitian what can you say about (1) QA; (2)
QA+AQ; (3) [Q, Al; and (4) i[Q, A]?
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Definition 15. An operator U is unitary if
uut=1 (1.6.19)

This equation tells us that U and U' are inverses of each other. Consequently,
from Eq. (1.5.12),

vu=1 (1.6.20)

Following the analogy between operators and numbers, unitary operators are
like complex numbers of unit modulus, u=¢€". Just as u*u=1,so0is U'U=1I.

Exercise 1.6.3.* Show that a product of unitary operators is unitary.
p ry

Theorem 7. Unitary operators preserve the inner product between the vectors

they act on.
Proof. Let
[Vi>=UlVi)
and
[Vay=U|V2)
Then

Vol Vi) =<UV|UVy)
=V UUI VY=Vl ) (1.6.21)

(QE.D.))

Unitary operators are the generalizations of rotation operators from V>(R) to
V"(C), for just like rotation operators in three dimensions, they preserve the lengths
of vectors and their dot products. In fact, on a real vector space, the unitarity
condition becomes U~'= U” (T means transpose), which defines an orthogonal or
rotation matrix. [R(37i) is an example.]

Theorem 8. If one treats the columns of an 7 X n unitary matrix as components
of n vectors, these vectors are orthonormal. In the same way, the rows may be
interpreted as components of # orthonormal vectors.

Proof 1. According to our mnemonic, the jth column of the matrix representing
U is the image of the jth basis vector after U acts on it. Since U preserves inner
products, the rotated set of vectors is also orthonormal. Consider next the rows. We
now use the fact that U' is also a rotation. (How else can it neutralize U to give
U'U=17) Since the rows of U are the columns of U" (but for an overall complex



conjugation which does not affect the question of orthonormality), the result we
already have for the columns of a unitary matrix tells us the rows of U are
orthonormal.
Proof 2. Since U'U=1,
8= <ill|jy=<i|U'U|j
=Y | U"kY<K U
k

=Y UkU,=Y UiUy (1.6.22)
k k

which proves the theorem for the columns. A similar result for the rows follows if
we start with the equation UU'=1. Q.E.D.
Note that U'U=1T and UU"' =1 are not independent conditions.

Exercise 1.6.4.* It is assumed that you know (1) what a determinant is, (2) that det Q7 =
det Q (T denotes transpose), (3) that the determinant of a product of matrices is the product
of the determinants. [If you do not, verify these properties for a two-dimensional case

(.

with det Q= (a6 — f7).] Prove that the determinant of a unitary matrix is a complex number
of unit modulus.

Exercise 1.6.5.* Verify that R(z 7i) is unitary (orthogonal) by examining its matrix.

Exercise 1.6.6. Verify that the following matrices are unitary:

L[l i] 1[1+i 1—1}
220 1 201—-i 1+i
Verify that the determinant is of the form e in each case. Are any of the above matrices
Hermitian?
1.7. Active and Passive Transformations
Suppose we subject all the vectors | V) in a space to a unitary transformation
|[V>=U|V> (1.7.1)

Under this transformation, the matrix elements of any operator  are modified as
follows:

VNQV YUV IQUVY=(V'|UQU|V) (1.7.2)
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It is clear that the same change would be effected if we left the vectors alone and
subjected all operators to the change

Q-U'QU (1.7.3)

The first case is called an active transformation and the second a passive transforma-
tion. The present nomenclature is in reference to the vectors: they are affected in an
active transformation and left alone in the passive case. The situation is exactly the
opposite from the point of view of the operators.

Later we will see that the physics in quantum theory lies in the matrix elements
of operators, and that active and passive transformations provide us with two equiva-
lent ways of describing the same physical transformation.

Exercise 1.7.1.* The trace of a matrix is defined to be the sum of its diagonal matrix
elements

TI'Q=Z Q,','

Show that

(1) Tr(QA)=Tr(AQ)

(2) Tr(QAB)=Tr(A6Q)=TR(OQA) (The permutations are cyclic).

(3) The trace of an operator is unaffected by a unitary change of basis |i)— U|i). [Equiva-
lently, show Tr Q=Tr(U'QU).]

Exercise 1.7.2. Show that the determinant of a matrix is unaffected by a unitary change
of basis. [Equivalently show det Q=det(U'QU).]

1.8. The Eigenvalue Problem
Consider some linear operator  acting on an arbitrary nonzero ket |V ):
QVy=V' (1.8.1)

Unless the operator happens to be a trivial one, such as the identity or its multiple,
the ket will suffer a nontrivial change, i.e., | V') will not be simply related to | V).
So much for an arbitrary ket. Each operator, however, has certain kets of its own,
called its eigenkets, on which its action is simply that of rescaling:

QV>=a|V) (1.8.2)

Equation (1.8.2) is an eigenvalue equation: | V') is an eigenket of Q with eigenvalue
. In this chapter we will see how, given an operator 2, one can systematically
determine all its eigenvalues and eigenvectors. How such an equation enters physics
will be illustrated by a few examples from mechanics at the end of this section, and
once we get to quantum mechanics proper, it will be eigen, eigen, eigen all the way.



Example 1.8.1. To illustrate how easy the eigenvalue problem really is, we will
begin with a case that will be completely solved: the case Q=1. Since

1N\Vy=\v>
for all | V), we conclude that
(1) the only eigenvalue of Iis 1;
(2) all vectors are its eigenvectors with this eigenvalue. O

Example 1.8.2. After this unqualified success, we are encouraged to take on a

slightly more difficult case: Q =[P, the projection operator associated with a normail-
ized ket | V'>. Clearly

(1) any ket a| V'), parallel to | V') is an eigenket with eigenvalue 1:
PvlaV>=IV)V]eV)=alV)|V’=1"|aV>
(2) any ket |V, ), perpendicular to | V), is an eigenket with eigenvalue 0:
PylVio=IVXVIVL)=0=0[V.)

(3) kets that are neither, i.e., kets of the form a|V)+B|V,.), are simply not
eigenkets:

Py(alV>+BIV.LY)=laV)#y(alV)+BIVLD)

Since every ket in the space falls into one of the above classes, we have found
all the eigenvalues and eigenvectors. O

Example 1.8.3. Consider now the operator R(37i). We already know that it
has one eigenket, the basis vector |1) along the x axis:

RGai)1)=]1)

Are there others? Of course, any vector a|1) along the x axis is also unaffected by
the x rotation. This is a general feature of the eigenvalue equation and reflects the
linearity of the operator:

if
QVy=o|V)
then

Qa|Vy=aQ|V)>=ao|V) =wa|V)
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for any multiple a. Since the eigenvalue equation fixes the eigenvector only up to
an overall scale factor, we will not treat the multiples of an eigenvector as distinct
eigenvectors. With this understanding in mind, let us ask if R(>7i) has any eigenvec-
tors besides |1). Our intuition says no, for any vector not along the x axis necessarily
gets rotated by R(;7i) and cannot possibly transform into a multiple of itself. Since
every vector is either parallel to |1) or isn’t, we have fully solved the eigenvalue
problem.

The trouble with this conclusion is that it is wrong! R(37i) has two other
eigenvectors besides |1). But our intuition is not to be blamed, for these vectors are
in V3(C) and not V3(R). It is clear from this example that we need a reliable and
systematic method for solving the eigenvalue problem in V"(C). We now turn our
attention to this very question. O

The Characteristic Equation and the Solution to the Eigenvalue Problem
We begin by rewriting Eq. (1.8.2) as
Q-ah|V>=10) (1.8.3)
Operating both sides with (Q— wI)~', assuming it exists, we get
[Vy=(Q-wl)”'|0) (1.8.4)

Now, any finite operator (an operator with finite matrix elements) acting on the null
vector can only give us a null vector. It therefore seems that in asking for a nonzero
eigenvector | V'), we are trying to get something for nothing out of Eq. (1.8.4). This
is impossible. It follows that our assumption that the operator (Q— wl)" exists (as
a finite operator) is false. So we ask when this situation will obtain. Basic matrix
theory tells us (see Appendix A.l) that the inverse of any matrix M is given by

_,_cofactor M"

. 1.8.5
det M ( )

Now the cofactor of M is finite if M is. Thus what we need is the vanishing of the
determinant. The condition for nonzero eigenvectors is therefore

det(Q—wl)=0 (1.8.6)

This equation will determine the eigenvalues . To find them, we project Eq. (1.8.3)
onto a basis. Dotting both sides with a basis bra {i|, we get

Gd1Q—wl|V)=0



and upon introducing the representation of the identity [Eq. (1.6.7)], to the left of
V>, we get the following image of Eq. (1.8.3):

Y (Q— 0dy)v;=0 (1.8.7)
i
Setting the determinant to zero will give us an expression of the form
i @™ =0 (1.8.8)
m=0
Equation (1.8.8) is called the characteristic equation and

P (w)= i @™ (1.8.9)

m=0

is called the characteristic polynomial. Although the polynomial is being determined
in a particular basis, the eigenvalues, which are its roots, are basis independent, for
they are defined by the abstract Eq. (1.8.3), which makes no reference to any basis.

Now, a fundamental result in analysis is that every nth-order polynomial has »
roots, not necessarily distinct and not necessarily real. Thus every operator in V"(C)
has n eigenvalues. Once the eigenvalues are known, the eigenvectors may be found,
at least for Hermitian and unitary operators, using a procedure illustrated by the
following example. [Operators on V*(C) that are not of the above variety may not
have n eigenvectors—see Exercise 1.8.4. Theorems 10 and 12 establish that Hermitian
and unitary operators on V"(C) will have n eigenvectors.]

Example 1.8.4. Let us use the general techniques developed above to find all
the eigenvectors and eigenvalues of R(;7i). Recall that the matrix representing it is

1 0 O
RGri)—|0 0 -1
01 0
Therefore the characteristic equation is
l-w 0 0
det(R—o0l)=| 0 - -1|=0
0 1 -

ie.,

(1-0)(@*+1)=0 (1.8.10)
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with roots @ =1, +i. We know that @ =1 corresponds to |1). Let us see this come
out of the formalism. Feeding @ =1 into Eq. (1.8.7) we find that the components
X1, X2, and x5 of the corresponding eigenvector must obey the equations

1—-1 0 0] x; 0 0=0
0 0—1 =1{fx2|=]0 _)—X2—X3=0}—’X2=x3=0
0 1 0—1]| x; 0 X,—x3=0

Thus any vector of the form
X1
x|y 0
0

is acceptable, as expected. It is conventional to use the freedom in scale to normalize
the eigenvectors. Thus in this case a choice is

lo=1y=|1)=

S O =

I say a choice, and not the choice, since the vector may be multiplied by a number
of modulus unity without changing the norm. There is no universally accepted con-
vention for eliminating this freedom, except perhaps to choose the vector with real
components when possible.

Note that of the three simultaneous equations above, the first is not a real
equation. In general, there will be only (n—1) LI equations. This is the reason the
norm of the vector is not fixed and, as shown in Appendix A.l, the reason the
determinant vanishes.

Consider next the equations corresponding to @ =i. The components of the
eigenvector obey the equations

(1-i)x,=0 (ie., x;=0)
—ix,—x3=0 (i.e., x;=1ix3)
X, —ix3=0 (i.e., x,=1ix3)
Notice once again that we have only »n—1 useful equations. A properly normalized

solution to the above is

I(D=i>‘—>§l—/2



A similar procedure yields the third eigenvector:

0

Ia)=—i><—>ﬁ —i tl
1

In the above example we have introduced a popular convention: labeling the
eigenvectors by the eigenvalue. For instance, the ket corresponding to @ = w; is
labeled |w = ;) or simply |@;>. This notation presumes that to each ; there is just
one vector labeled by it. Though this is not always the case, only a slight change in
this notation will be needed to cover the general case.

The phenomenon of a single eigenvalue representing more than one eigenvector
is called degeneracy and corresponds to repeated roots for the characteristic poly-
nomial. In the face of degeneracy, we need to modify not just the labeling, but also
the procedure used in the example above for finding the eigenvectors. Imagine that
instead of R(37i) we were dealing with another operator Q on V*(R) with roots @,
and w,= ;. It appears as if we can get two eigenvectors, by the method described
above, one for each distinct @. How do we get a third? Or is there no third? These
equations will be answered in all generality shortly when we examine the question
of degeneracy in detail. We now turn our attention to two central theorems on
Hermitian operators. These play a vital role in quantum mechanics.

Theorem 9. The eigenvalues of a Hermitian operator are real.
Proof. Let
Qo)=owlw)
Dot both sides with (w]:
{o|Qo)=0olw|w) (1.8.11)
Take the adjoint to get
(0|Q0)=0*(o]o)
Since Q=Q', this becomes
(w|Qo)=0*{(0|w)
Subtracting from Eq. (1.8.11)
0=(0w—0*){o|v)

o=0* Q.E.D.
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Theorem 10. To every Hermitian operator €, there exists (at least) a basis
consisting of its orthonormal eigenvectors. It is diagonal in this eigenbasis and
has its eigenvalues as its diagonal entries.

Proof. Let us start with the characteristic equation. It must have at least one
root, call it @, . Corresponding to @, there must exist at least one nonzero eigenvector
|@,). [If not, Theorem (A.1.1) would imply that (Q— w,[/) is invertible.] Consider
the subspace V7' of all vectors orthogonal to |, ). Let us choose as our basis the
vector |®;) (normalized to wunity) and any n—1 orthonormal vectors
{(Vi, Vii,..., V171" in Vi7" In this basis Q has the following form:

@ 000 0 0
0
Qo 0 (1.8.12)

0

The first column is just the image of |@;) after Q has acted on it. Given the
first column, the first row follows from the Hermiticity of Q.
The characteristic equation now takes the form

(0, — w) - (determinant of boxed submatrix) =0

n—1

(01— 0) ¥ ™= (0;—0)P" (0)=0
0

Now the polynomial P”~' must also generate one root, @,, and a normalized
eigenvector |@,). Define the subspace \/”[13 of vectors in V7! orthogonal to |w»)
(and automatically to |, ) and repeat the same procedure as before. Finally, the
matrix Q becomes, in the basis |0;), |©,), ..., |®,),

o, 0 0 - 0
0 w, O 0
Qo]0 0 ws 0
0 0 O 0,

Since every |w;» was chosen from a space that was orthogonal to the previous
ones, |@1), |@2), ..., |w;—1); the basis of eigenvectors is orthonormal. (Notice that
nowhere did we have to assume that the eigenvalues were all distinct.) Q.E.D.

[The analogy between real numbers and Hermitian operators is further strength-
ened by the fact that in a certain basis (of eigenvectors) the Hermitian operator can
be represented by a matrix with all real elements.]

In stating Theorem 10, it was indicated that there might exist more than one
basis of eigenvectors that diagonalized . This happens if there is any degeneracy.
Suppose @, =w,= . Then we have two orthonormal vectors obeying



Qo) =olo)
Q|o2) = 0|0y
It follows that
Qlalw) + Blwy]=awlw) + folw) =wla|w)+ fla:)]

for any a and B. Since the vectors |@;) and |w,) are orthogonal (and hence LI),
we find that there is a whole two-dimensional subspace spanned by |®,) and |®>),
the elements of which are eigenvectors of Q with eigenvalue @. One refers to this
space as an eigenspace of Q with eigenvalue ®. Besides the vectors |@;) and |w>),
there exists an infinity of orthonormal pairs |w!), |@3), obtained by a rigid rotation
of |w;), |@,), from which we may select any pair in forming the eigenbasis of Q.
In general, if an eigenvalue occurs m; times, that is, if the characteristic equation has
m; of its roots equal to some @;, there will be an eigenspace Vg, from which we may
choose any m; orthonormal vectors to form the basis referred to in Theorem 10.

In the absence of degeneracy, we can prove Theorem 9 and 10 very easily. Let
us begin with two eigenvectors:

Qo) =00 (1.8.13a)
Qlw,)=0;|v,) (1.8.13b)
Dotting the first with {(w;| and the second with {w;|, we get
(0;|Q0:)=0n;|o:) (1.8.14a)
(0|Qoy=0;{wilo;) (1.8.14b)
Taking the adjoint of the last equation and using the Hermitian nature of Q, we get
(0;|Q0)=o0/{o|0)
Subtracting this equation from Eq. (1.8.14a), we get
0=(0,—0f){o|l0;) (1.8.15)
If i=j, we get, since {0;|w;) #0,

0= oF (1.8.16)
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If i#j, we get
(oilw;)=0 (1.8.17)

since ®;— 0} =w;— »;#0 by assumption. That the proof of orthogonality breaks
down for w,;= w; is not surprising, for two vectors labeled by a degenerated eigenvalue
could be any two members of the degenerate space which need not necessarily be
orthogonal. The modification of this proof in this case of degeneracy calls for argu-
ments that are essentially the ones used in proving Theorem 10. The advantage in
the way Theorem 10 was proved first is that it suffers no modification in the degener-
ate case.

Degeneracy

We now address the question of degeneracy as promised earlier. Now, our
general analysis of Theorem 10 showed us that in the face of degeneracy, we have
not one, but an infinity of orthonormal eigenbases. Let us see through an example
how this variety manifests itself when we look for eigenvectors and how it is to be
handled.

Example 1.8.5. Consider an operator Q with matrix elements

1 0 1
Qo]0 2 0
1 01
in some basis. The characteristic equation is
(©—-2)’w=0
ie.,
w=0,2,2

The vector corresponding to @ =0 is found by the usual means to be

1
1

7
S

lo=0> <

The case w=2 leads to the following equations for the components of the
eigenvector:

—X1+X3=0
0=0

X1 —X2=0



Now we have just one equation, instead of the two (rn— 1) we have grown accustomed
to! This is a reflection of the degeneracy. For every extra appearance (besides the
first) a root makes, it takes away one equation. Thus degeneracy permits us extra
degrees of freedom besides the usual one (of normalization). The conditions

X1 = X3
x, arbitrary

define an ensemble of vectors that are perpendicular to the first, |0 =0}, i.e., lie in
a plane perpendicular to | =0). This is in agreement with our expectation that a
twofold degeneracy should lead to a two-dimensional eigenspace. The freedom in x,
(or more precisely, the ratio x,/x3;) corresponds to the freedom of orientation in this
plane. Let us arbitrarily choose x, =1, to get a normalized eigenvector corresponding
tow=2:

1 1
1

The third vector is now chosen to lie in this plane and to be orthogonal to the second
(being in this plane automatically makes it perpendicular to the first |0 =0)):

1

1
|w =2, second one) < 8—,-/—2- -2
1

Clearly each distinct choice of the ratio, x,/x3, gives us a distinct doublet of orthonor-
mal eigenvectors with eigenvalue 2. O

Notice that in the face of degeneracy, |®;) no longer refers to a single ket but
to a generic element of the eigenspace V.. To refer to a particular element, we must
use the symbol |w;, @), where a labels the ket within the eigenspace. A natural
choice of the label a will be discussed shortly.

We now consider the analogs of Theorems 9 and 10 for unitary operators.

Theorem 11. The eigenvalues of a unitary operator are complex numbers of
unit modulus.

Theorem 12. The eigenvectors of a unitary operator are mutually orthogonal.
(We assume there is no degeneracy.)
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Proof of Both Theorems (assuming no degeneracy). Let
Uluy = uilu;p (1.8.18a)
and
Uluw) =u;lu;) (1.8.18b)

If we take the adjoint of the second equation and dot each side with the corresponding
side of the first equation, we get

Q| UTU sy = e Cuy | iy
so that
(1 —wu?)wluy =0 (1.8.19)
If i=j, we get, since {u;|u;» #0,
uul = (1.8.20a)
while if i#j,
Cuiluy =0 (1.8.20b)

since |u;) #|u; y=>u; #u=uuf #uuF=>u;uf #1. (Q.E.D.)

If Uis degenerate, we can carry out an analysis parallel to that for the Hermitian
operator Q, with just one difference. Whereas in Eq. (1.8.12), the zeros of the first
row followed from the zeros of the first column and Q'=Q, here they follow from
the requirement that the sum of the modulus squared of the elements in each row
adds up to 1. Since |u4] =1, all the other elements in the first row must vanish.

Diagonalization of Hermitian Matrices

Consider a Hermitian operator Q on V*(C) represented as a matrix in some
orthonormal basis |1),...,|D,...,|n). If we trade this basis for the eigenbasis
|0, ...,|®),...,|0,), the matrix representing Q will become diagonal. Now the
operator U inducing the change of basis

|w:)=Uli) (1.8.21)

is clearly unitary, for it “rotates” one orthonormal basis into another. (If you wish
you may apply our mnemonic to U and verify its unitary nature: its columns contain
the components of the eigenvectors |w;) that are orthonormal.) This result is often
summarized by the statement:

Every Hermitian matrix on V"(C) may be diagonalized by a unitary change of
basis.



We may restate this result in terms of passive transformations as follows:

If Q is a Hermitian matrix, there exists a unitary matrix U (built out of the
eigenvectors of Q) such that U'QU is diagonal.

Thus the problem of finding a basis that diagonalizes Q is equivalent to solving
its eigenvalue problem.

Exercise 1.8.1. (1) Find the eigenvalues and normalized eigenvectors of the matrix
1 31
Q=0 2 0
01 4
(2) Is the matrix Hermitian? Are the eigenvectors orthogonal?

Exercise 1.8.2.* Consider the matrix

[=I -
(=R

(1) Is it Hermitian?
(2) Find its eigenvalues and eigenvectors.
(3) Verify that U'QU is diagonal, U being the matrix of eigenvectors of Q.

Exercise 1.8.3.* Consider the Hermitian matrix

. 2 0 0
Q=5 0o 3 -1
0o -1 3

(1) Show that 0,=w,=1; w3=2.
(2) Show that | =2} is any vector of the form

1
(2a2)l/2 a
—a

(3) Show that the @ =1 eigenspace contains all vectors of the form

b
1

B+
c

either by feeding @ =1 into the equations or by requiring that the @ =1 eigenspace be ortho-
gonal to |w =2).
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Exercise 1.8.4. An arbitrary n X n matrix need not have n eigenvectors. Consider as an

examp]c
Q—'l ! I
(]) Show that W —02—3.

(2) By feeding in this value show we get only one eigenvector of the form

1 [+a]
Qd*)'"?*L—a

We cannot find another one that is LI.

Exercise 1.8.5.* Consider the matrix

Q=[ Cf)Se sine]
—sin @ cos @

(1) Show that it is unitary.

(2) Show that its eigenvalues are ¢’ and ¢~*.
(3) Find the corresponding eigenvectors; show that they are orthogonal.

(4) Verify that U'QU= (diagonal matrix), where U is the matrix of eigenvectors of Q.

Exercise 1.8.6.* (1) We have seen that the determinant of a matrix is unchanged under
a unitary change of basis. Argue now that

det Q= product of eigenvalues of Q=[] o,

i=1

for a Hermitian or unitary Q.
(2) Using the invariance of the trace under the same transformation, show that

TrQ=Y o,

i=1

Exercise 1.8.7. By using the results on the trace and determinant from the last problem,
show that the eigenvalues of the matrix

are 3 and —1. Verify this by explicit computation. Note that the Hermitian nature of the
matrix is an essential ingredient.



Exercise 1.8.8.* Consider Hermitian matrices M', M?, M> M* that obey
M M+ M'M'=26%1, ij=1,...,4
(1) Show that the eigenvalues of M* are + 1. (Hint: go to the eigenbasis of M’, and use
the equation for i=j.)
(2) By considering the relation
MM/=—-M'M’ fori#j

show that M’ are traceless. [Hint: Tr(4CB) =Tr(CBA).]
(3) Show that they cannot be odd-dimensional matrices.

Exercise 1.8.9. A collection of masses m, , located at r, and rotating with angular velocity
o around a common axis has an angular momentum

1=Y ma(re X v,)

where v, =@ Xr, is the velocity of m,. By using the identity
Ax(BxC)=B(A-C)-C(A-B)
show that each Cartesian component /; of 1 is given by

L=y Mo,
j

where

Ml'!'=z ma[r§,5,~,~— (ra)i(ra)j]

or in Dirac notation
|1>=M|w)

(1) Will the angular momentum and angular velocity always be parallel?

(2) Show that the moment of inertia matrix M, is Hermitian.

(3) Argue now that there exist three directions for « such that I and « will be parallel.
How are these directions to be found?

(4) Consider the moment of inertia matrix of a sphere. Due to the complete symmetry
of the sphere, it is clear that every direction is its eigendirection for rotation. What does this
say about the three eigenvalues of the matrix M?

Simultaneous Diagonalization of Two Hermitian Operators
Let us consider next the question of simultaneously diagonalizing two Hermitian
operators.

Theorem 13. If Q and A are two commuting Hermitian operators, there exists
(at least) a basis of common eigenvectors that diagonalizes them both.
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Proof. Consider first the case where at least one of the operators is nondegener-
ate, i.e., to a given eigenvalue, there is just one eigenvector, up to a scale. Let us
assume Q is nondegenerate. Consider any one of its eigenvectors:

Qo) =00

AQlw)=w;Alw;)

Since [A, Q] =0,

QAlw;)=w;Al0:;) (1.8.22)

i.e., A/w;) is an eigenvector of Q with eigenvalue ®;. Since this vector is unique up
to a scale,

Alw)=Ao;) (1.8.23)

Thus |w,) is also an eigenvector of A with eigenvalue A;. Since every eigenvector of
Q is an eigenvector of A, it is evident that the basis |@,;> will diagonalize both
operators. Since Q is nondegenerate, there is only one basis with this property.

What if both operators are degenerate? By ordering the basis vectors such that
the elements of each eigenspace are adjacent, we can get one of them, say €, into
the form (Theorem 10)

Qo

(A

Om

Now this basis is not unique: in every eigenspace Vi =V[" corresponding to the
eigenvalue o;, there exists an infinity of bases. Let us arbitrarily pick in V7 a set
|w;, @) where the additional label a runs from 1 to m;.

How does A appear in the basis? Although we made no special efforts to get A
into a simple form, it already has a simple form by virtue of the fact that it commutes
with Q. Let us start by mimicking the proof in the nondegenerate case:

QA|w;, a)=AQ|w;, a)=w;Alo;, a)
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Now, since vectors from different eigenspaces are orthogonal [Eq. (1.8.15)],
<wj’ ﬂlAle, a>=0

if|@;, @) and |@;, B are basis vectors such that @;# ®;. Consequently, in this basis,

0
Ao

0

which is called a block diagonal matrix for obvious reasons. The block diagonal form
of A reflects the fact that when A acts on some element |w;, @) of the eigenspace
Vi*, it turns it into another element of V{”. Within each subspace i, A is given by
a matrix A;, which appears as a block in the equation above. Consider a matrix A;
in V. It is Hermitian since A is. It can obviously be diagonalized by trading the
basis |@;, 1), |@;,2), ..., |w;, m) in V]" that we started with, for the eigenbasis of
A;. Let us make such a change of basis in each eigenspace, thereby rendering A
diagonal. Meanwhile what of Q? It remains diagonal of course, since it is indifferent
to the choice of orthonormal basis in each degenerate eigenspace. If the eigenvalues

of A;are AP A2, ..., A then we end up with
F Ml)
A2
Ao Afm) ,
A
)W(cmk)J
o) -
(O]
Qe (O]
2
| o

Q.E.D.
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If A is not degenerate within any given subspace, A% # A", for any k, I, and i, the
basis we end up with is unique: the freedom Q gave us in each eigenspace is fully
eliminated by A. The elements of this basis may be named uniquely by the pair of
indices w and 4 as |w, A), with A playing the role of the extra label a. If A is
degenerate within an eigenspace of Q, if say A{"=A(?, there is a two-dimensional
eigenspace from which we can choose any two orthonormal vectors for the common
basis. It is then necessary to bring in a third operator I', that commutes with both
Q and A, and which will be nondegenerate in this subspace. In general, one can
always find, for finite n, a set of operators {Q, A, T, ...} that commute with each
other and that nail down a unique, common, eigenbasis, the elements of which may
be labeled unambiguously as |, 4, 7, . .. ). In our study of quantum mechanics it
will be assumed that such a complete set of commuting operators exists if n is infinite.

Exercise 1.8.10.* By considering the commutator, show that the following Hermitian
matrices may be simultaneously diagonalized. Find the eigenvectors common to both and
verify that under a unitary transformation to this basis, both matrices are diagonalized.

1 0 1 2 1 1
Q=0 0 0| , A=]|1 0 -1
1 0 1 1 -1 2

Since Q is degenerate and A is not, you must be prudent in deciding which matrix dictates
the choice of basis.

Example 1.8.6. We will now discuss, in some detail, the complete solution to a
problem in mechanics. It is important that you understand this example thoroughly,
for it not only illustrates the use of the mathematical techniques developed in this
chapter but also contains the main features of the central problem in quantum
mechanics.

The mechanical system in question is depicted in Fig. 1.5. The two masses m
are coupled to each other and the walls by springs of force constant k. If x; and x,
measure the displacements of the masses from their equilibrium points, these coordi-
nates obey the following equations, derived through an elementary application of
Newton’s laws:

2k k
Xj=——xi+—x; (1.8.24a)
m m
.k 2k
Xog=— X1 —— X2 (1824b)
m m
vy m e m v Figure 1.5. The coupled mass problem. All masses are
m, all spring constants are k, and the displacements of

Lex, Lexp the masses from equilibrium are x, and x,.



The problem is to find x;(#) and x,(¢) given the initial-value data, which in this
case consist of the initial positions and velocities. If we restrict ourselves to the case
of zero initial velocities, our problem is to find x;(¢) and x»(¢), given x,(0) and x,(0).

In what follows, we will formulate the problem in the language of linear vector
spaces and solve it using the machinery developed in this chapter. As a first step, we
rewrite Eq. (1.8.24) in matrix form:

. Q. O
[’f‘]=[ . "’] [x‘] (1.8.252)
X2 Q1 Qo ]lx:

where the elements of the Hermitian matrix Q; are
Q“=sz=—2k/m, Q|2=Qz|=k/m (1825b)
We now view x; and x, as components of an abstract vector | x), and Q; as the matrix
elements of a Hermitian operator Q. Since the vector |x) has two real components, it
is an element of V*(R), and Q is a Hermitian operator on V*(R). The abstract form

of Eq. (1.8.25a) is

|%(2)>=Qlx(1)) (1.8.26)

Equation (1.8.25a) is obtained by projecting Eq. (1.8.26) on the basis vectors [1),
[2), which have the following physical significance:

o [1] - [ﬁrst mass dlsplacec? by umty] (1.8.27a)
0 second mass undisplaced
25 o [0] - [ first mass 'undlsplaced ‘ ] (1.8.27b)
1 second mass displaced by unity

An arbitrary state, in which the masses are displaced by x; and x,, is given in this

basis by
x| |1 0
[xz]_[o]x'+[1]x2 (1.8.28)

The abstract counterpart of the above equation is
[xD>=]1>x1+|2>x, (1.8.29)

It is in this |1), |2) basis that Q is represented by the matrix appearing in Eq.
(1.8.25), with elements —2k/m, k/m, etc.

The basis |1), |2) is very desirable physically, for the components of |x) in this
basis (x; and x,) have the simple interpretation as displacements of the masses.
However, from the standpoint of finding a mathematical solution to the initial-value
problem, it is not so desirable, for the components x; and x, obey the coupled
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differential equations (1.8.24a) and (1.8.24b). The coupling is mediated by the off-
diagonal matrix elements Q,,=Q,, =k/m.

Having identified the problem with the [1), |2) basis, we can now see how to
get around it: we must switch to a basis in which Q is diagonal. The components of
|x) in this basis will then obey uncoupled differential equation which may be readily
solved. Having found the solution, we can return to the physically preferable |1),
|2> basis. This, then, is our broad strategy and we now turn to the details.

From our study of Hermitian operators we know that the basis that diagonalizes
Q is the basis of its normalized eigenvectors. Let |I) and |II) be its eigenvectors
defined by

QI =—of|I) (1.8.302)
QI = —w}|II) (1.8.30b)

We are departing here from our usual notation: the eigenvalue of Q is written as
— o” rather than as o in anticipation of the fact that Q has eigenvalues of the form
— w?, with o real. We are also using the symbols |I> and |II} to denote what should
be called | — ) and | —f) in our convention.

It is a simple exercise (which you should perform) to solve the eigenvalue prob-
lem of Q in the |[1), |2) basis (in which the matrix elements of Q are known) and
to obtain

1/2
k 1|1

172
3k 1 1
a)"=<;) , |H>HF|:—1:| (1.8.31b)

If we now expand the vector |x(¢)) in this new basis as
[x(2)> = [1xi(£) + [ IDxn(?) (1.8.32)

[in analogy with Eq. (1.8.29)], the components x; and x;; will evolve as follows:

MR
)2']1 0 _wgl Xn

2
=[ @ x‘] (1.8.33)

2
—OnXn

We obtain this equation by rewriting Eq. (1.8.24) in the |I), |II) basis in which Q
has its eigenvalues as the diagonal entries, and in which |x) has components x; and



xi. Alternately we can apply the operator

d2
2;5_

to both sides of the expansion of Eq. (1.8.32), and get
10> = I (% + wix;) + [T Gy + of x11) (1.8.34)

Since |I)> and |II) are orthogonal, each coefficient is zero.
The solution to the decoupled equations

fitoix=0 i=LII (1.8.35)
subject to the condition of vanishing initial velocities, is
x(t)=x/0) cos wit, i=L1I (1.8.36)

As anticipated, the components of | x) in the |I), |II) basis obey decoupled equations
that can be readily solved. Feeding Eq. (1.8.36) into Eq. (1.8.32) we get

[x(8)> =|1>x1(0) cos w; ¢+ |II>x;(0) cos wy ¢ (1.8.37a)
=|IX<I|x(0))> cos w;t+|II){TI|x(0)) cos oy ¢ (1.8.37b)

Equation (1.8.37) provides the explicit solution to the initial-value problem. It corre-
sponds to the following algorithm for finding |x(#)) given |x(0)).

Step (1). Solve the eigenvalue problem of Q.

Step (2). Find the coefficients x;(0)=<I|x(0)> and x;(0)=<II|x(0)> in the
expansion

12(0)) = 15x:(0) +[1I>x1:(0)

Step (3). Append to each coefficient x;(0) (i=1, II) a time dependence cos w;?
to get the coefficients in the expansion of | x(¢)).

Let me now illustrate this algorithm by solving the following (general) initial-
value problem: Find the future state of the system given that at =0 the masses are
displaced by x;(0) and x,(0).

Step (1). We can ignore this step since the eigenvalue problem has been solved
[Eq. (1.8.31)].
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Step (2).
200 = QX)) = (1, -1)[16231]4(_0)27‘&
Step (3).
x1(0) + x5(0) x1(0) — x5(0)

[x(5)>=|I) oz cos oyt + |11 gz cos ¢

The explicit solution above can be made even more explicit by projecting | x(¢))» onto
the |1), |2) basis to find x,(¢) and x»(¢), the displacements of the masses. We get
(feeding in the explicit formulas for @; and o)

x1(8) = 1|x(6))
1/2 12
=<1II>£'(O)—£—;5xi®cos[<£> t]+<1|11>’_"(L21_/2’_‘3@COS[<3k) t]

m
1/2 1/2
=1 [x1(0) + x,(0)] cos {(5"—) t] +l [x1(0) — x,(0)] cos [(%) t] (1.8.38a)
2 m 2 m

using the fact that
A=<y =1,2"*

It can likewise be shown that

1/2 1/2
x5(1) =% [x1(0) + x,(0)] cos [(2) t] —% [x1(0) — x2(0)] cos [(%) t] (1.8.38b)

We can rewrite Eq. (1.8.38) in matrix form as

cos[(k/m)"*t)+cos[(3k/m)' 1] cos[(k/m)'*t)—cos[(3k/m)"/*]

x] 2 2
[xz(t)] | cos[(k/m)" /%] —cos[(3k/m)"/*1] cos[(k/m)/*1] +cos[(3k/m)/*1]
2 2

L
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The Propagator

There are two remarkable features in Eq. (1.8.39):

(1) The final-state vector is obtained from the initial-state vector upon multiplication
by a matrix.

(2) This matrix is independent of the initial state. We call this matrix the propagator.
Finding the propagator is tantamount to finding the complete solution to the
problem, for given any other initial state with displacements %,(0) and X,(0), we
get X,(#) and X,(¢) by applying the same matrix to the initial-state vector.

We may view Eq. (1.8.39) as the image in the |1), |2) basis of the abstract
relation

1x(2)> = U(1)x(0)) (1.8.40)

By comparing this equation with Eq. (1.8.37b), we find the abstract representation
of U:

U(t) =|I>{T| cos wit+|II)>I| cos wy ¢ (1.8.41a)
11
=Y |i)<i| cos w;t (1.8.41b)

i=1

You may easily convince yourself that if we take the matrix elements of this operator
in the |1), |2) basis, we regain the matrix appearing in Eq. (1.8.39). For example

Un=11U]1)

1/2 12
=<1|{II><I| COSKE) t]+|H><III cos[(ﬁ) t]}|1>
m m
12 1/2
=<1"><I“>°°S[(5) t]+<l|n><n|1>cos[(§'-‘) t]
" m
172 1/2
el ]
2 m m

Notice that U(f) [Eq. (1.8.41)] is determined completely by the eigenvectors
and eigenvalues of Q. We may then restate our earlier algorithm as follows. To solve
the equation

%) =Qx)
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(1) Solve the eigenvalue problem of Q.
(2) Construct the propagator U in terms of the eigenvalues and eigenvectors.

(3) [x(2)>=U(D)]x(0)>.

The Normal Modes

There are two initial states |x(0)> for which the time evolution is particularly
simple. Not surprisingly, these are the eigenkets |I> and |II). Suppose we have
|x(0)>=|I). Then the state at time ¢ is

[1(6)>=U)II)
= (|I)<I} cos @t + [II>1} cos wy t)|ID
=|I) cos w1 ? (1.8.42)

Thus the system starting off in |I) is only modified by an overall factor cos w;t. A
similar remark holds with I-II. These two modes of vibration, in which all (two)
components of a vector oscillate in step are called normal modes.

The physics of the normal modes is clear in the |1), [2) basis. In this basis

1
|I>H?72[1]

and corresponds to a state in which both masses are displaced by equal amounts.
The middle spring is then a mere spectator and each mass oscillates with a frequency
1= (k/m)"? in response to the end spring nearest to it. Consequently

_1 cos[(k/m)‘”z]]
1) = =57 [cos[(k/m)'/zt]

On the other hand, if we start with

1[0
g ]

the masses are displaced by equal and opposite amounts. In this case the middle
spring is distorted by twice the displacement of each mass. If the masses are adjusted
by A and —A, respectively, each mass feels a restoring force of 3kA (2kA from the
middle spring and kA from the end spring nearest to it). Since the effective force
constant is k.= 3kA/A =3k, the vibrational frequency is (3k/m)"/*> and

_ 1 [ cos [(3k/m)‘/2t]]
07 = =57 [—cos [(3k/m)'"*1]

If the system starts off in a linear combination of |I) and |II) it evolves into
the corresponding linear combination of the normal modes |1(¢)> and [II(¢)). This



is the content of the propagator equation

|x(2)> = U(1)|x(0)>
=|I)<{1|x(0)) cos wrt+|IIXII} x(0)) cos @t
=1(t) > - <I|x(0) > + |TI(#) ><II| x(0) >

Another way to see the simple evolution of the initial states [I) and |II) is to
determine the matrix representing U in the |I), |II) basis:

U«—»[C““"’ 0 ] (1.8.43)
LIT

0 cos Wiyt
basis

You should verify this result by taking the appropriate matrix elements of U(f) in
Eq. (1.8.41b). Since each column above is the image of the corresponding basis
vectors (|I) or |II)) after the action of U(f), (which is to say, after time evolution),
we see that the initial states [I> and |II) evolve simply in time.

The central problem in quantum mechanics is very similar to the simple example
that we have just discussed. The state of the system is described in quantum theory
by a ket |y ) which obeys the Schrodinger equation

iily)=Hly)

where 7 is a constant related to Planck’s constant 4 by i=h/2x, and H is a Hermitian
operator called the Hamiltonian. The problem is to find |w(¢)) given |y(0)). [Since
the equation is first order in ¢, no assumptions need be made about | y(0)), which
is determined by the Schrodinger equation to be (—i/A)H|y(0)).]

In most cases, H is a time-independent operator and the algorithm one follows
in solving this initial-value problem is completely analogous to the one we have just
seen:

Step (1). Solve the eigenvalue problem of H.

Step (2). Find the propagator U(t) in terms of the eigenvectors and eigenvalues
of H.

Step (3). |y (1)>=U(n)|y(0)).

You must of course wait till Chapter 4 to find out the physical interpretation
of |y), the actual form of the operator H, and the precise relation between U(t)
and the eigenvalues and eigenvectors of H. O
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