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“I do not know what I may appear to the world; but to myself I seem
to have been only like a boy playing on the seashore, and diverting
myself in now and then finding a smoother pebble or a prettier shell
than ordinary, whilst the great ocean of truth lay all undiscovered
before me.”

This statement by Isaac Newton shortly before his death in 1727 eloquently
reflects the sentiments of all mature scientists from the ancient past to the present.



To Myra
“She openeth her mouth with wisdom; and in her tongue is the law of
kindness. ...”



Preface

Since earlier editions of this text, it remains the case that physics continues to
evolve in esoteric and pragmatic directions. In the present edition, a new chapter
addressing quantum computing has been added that well represents this theme,
as quantum computing is founded on basic elements of quantum mechanics but
is thought to represent a new concept for computers. Components of this chapter
include: Binary Numbers; Logic Gates; Turing Machine and Complexity Classes;
Qubits and Quantum Logic Gates. The chapter concludes with a description of
Grover’s algorithm, which comes into play in the ‘search problem.’

Twenty seven problems are included in this new chapter, many of which, in
the spirit of earlier editions, carry solutions. Some of the topics included in these
problems are: Classical and quantum logic gates, Boolian relations, Factoring
problems and Euclid’s algorithm. There are a total of 870 problems in this edition.

A new appendix is included in this edition that describes the Harmonic Oscilla-
tor in Spherical Coordinates and a number of inserts are included in the appendix
on Physical Constants and Equivalence Relations.

A total of nine new problems has been added to previous chapters that address
in part: Properties of the commutator, reduced form of the square of angular mo-
mentum, paralle] relations for the cubical quantum box, quantum confinement.

A number of corrections have been made throughout the text, mostly due to
input from students and teachers throughout the world, whose suggestions I take
pleasure in acknowledging.

I take this opportunity to express my deep gratitude to the many individuals
throughout the world who have communicated with me regarding typos and sug-
gestions for this text. More locally, in addition to all other colleagues who have
contributed to the success of this book, the following individuals have proved to be
of invaluable assistance in preparation of this new edition: Toby Berger, Bradley
Minch, Rajit Manohar, Eric Sakk, Ian Rippke, Brian E. Moritti, James Snyder,
Andy Martwick, and Igor Devetak. My special thanks goes to David Mermin for
his expert assistance in the preparation of the new chapter.

It is my pleasure also to declare again my appreciation to the many individuals
who have taught from prior editions of this work and the many who have learned
from it. I trust that these kind individuals will find this new edition equally re-
warding.

Ithaca, 2002 R.L. Liboff
Y asen



Piping down the valleys wild,
Piping songs of pleasant glee,
On a cloud I saw a child,
And he laughing said to me;

“Pipe a song about a Lamb!”
So I piped with merry chear.
“Piper, pipe that song again;”
So I piped; he wept to hear.

“Drop thy pipe, thy happy pipe;
Sing thy songs of happy chear;”
So I sung the same again,

While he wept with joy to hear.

“Piper, sit thee down and write
In a book, that all may read.”
So he vanish’d from my sight,
And I pluck’d a hollow reed,

And I made a rural pen,
And I stain’d the water clear,
And I wrote my happy songs
Every child may joy to hear.

Introduction to Songs of Innocence
—William Blake (1757-1827)
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1.1 |

Review of Concepts of
Classical Mechanics

1.1 Generalized or “Good” Coordinates

1.2  Energy, the Hamiltonian, and Angular Momentum

1.3 The State of a System

1.4 Properties of the One-Dimensional Potential Function

This is a preparatory chapter in which we review fundamental concepts of clas-
sical mechanics important to the development and understanding of quantum
mechanics. Hamilton’s equations are introduced and the relevance of cyclic co-
ordinates and constants of the motion is noted. In discussing the state of a system,
we briefly encounter our first distinction between classical and quantum descrip-
tions. The notions of forbidden domains and turning points relevant to classical
motion, which find application in quantum mechanics as well, are also described.
The experimental motivation and historical background of quantum mechanics
are described in Chapter 2.

GENERALIZED OR “GOOD” COORDINATES

Our discussion begins with the concept of generalized or good coordinates.

A bead (idealized to a point particle) constrained to move on a straight rigid
wire has one degree of freedom (Fig. 1.1). This means that only one variable (or
parameter) is needed to uniquely specify the location of the bead in space. For the
problem under discussion, the variable may be displacement from an arbitrary but
specified origin along the wire.

A particle constrained to move on a flat plane has two degrees of freedom. Two
independent variables suffice to uniquely determine the location of the particle in
space. With respect to an arbitrary, but specified origin in the plane, such variables

FIGURE 1.1 A bead constrained to move on a straight wire has one degree of freedom.

3
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y v

® (x, )

(a) (b)

FIGURE 1.2 A particle constrained to move in a plane has two degrees of freedom.
Examples of coordinates are (x, y) or (r, 8).

FIGURE 1.3 Two beads on a wire have two degrees of freedom. The coordinates x| and
x7 denote displacements of particles 1 and 2, respectively.

might be the Cartesian coordinates (x, y) or the polar coordinates (r, 8) of the
particle (Fig. 1.2).

Two beads constrained to move on the same straight rigid wire have two de-
grees of freedom. A set of appropriate coordinates are the displacements of the
individual particles (x1, x2) (Fig. 1.3).

A rigid rod (or dumbbell) constrained to move in a plane has three degrees
of freedom. Appropriate coordinates are the location of its center (x, y) and the
angular displacement of the rod from the horizontal, 6 (Fig. 1.4).

Independent coordinates that serve to uniquely determine the orientation and
location of a system in physical space are called generalized or canonical or good
coordinates. A system with N generalized coordinates has N degrees of freedom.

FIGURE 1.4 A rigid dumbbell in a plane has three degrees of freedom. A good set of
coordinates are (x, y), the location of the center, and 6, the inclination of the rod with the
horizontal.
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The orientation and location of a system with, say, three degrees of freedom are
not specified until all three generalized coordinates are specified. The fact that
good coordinates may be specified independently of one another means that, given
the values of all but one of the coordinates, the last coordinate remains arbitrary.
Having specified (x, y) for a point particle in 3-space, one is still free to choose z
independently of the assigned values of x and y.

PROBLEMS

11

1.2

13

For each of the following systems, specify the number of degrees of freedom and a set
of good coordinates.

(a) A bead constrained to move on a closed circular hoop that is fixed in space.
(b) A bead constrained to move on a helix of constant pitch and constant radius.
(c) A particle on a right circular cylinder.

(d) A pair of scissors on a plane.

(e) Arigid rod in 3-space.

(f) A rigid cross in 3-space.

(g) A linear spring in 3-space.

(h) Any rigid body with one point fixed.

(i) A hydrogen atom.

(j) A lithium atom.

(k) A compound pendulum (two pendulums attached end to end).

Show that a particle constrained to move on a curve of any shape has one degree of
freedom.

Answer
A curve is a one-dimensional locus and may be generated by the parameterized equa-
tions

x =x(n), y=ym, z=zm

Once the independent variable 7 (e.g., length along the curve) is given, x, y, and z are
specified.

Show that a particle constrained to move on a surface of arbitrary shape has two de-
grees of freedom.

Answer
A surface is a two-dimensional locus. It is generated by the equation

u(x,y,z)=0

Any two of the three variables x, y, z determine the third. For instance, we may solve
for z in the equation above to obtain the more familiar equation for a surface (height z
at the point x, y).

z=2z(x,y)

In this case, x and y may serve as generalized coordinates.
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1.4 How many degrees of freedom does a classical gas composed of 1023 point particles
have?

ENERGY, THE HAMILTONIAN, AND ANGULAR MOMENTUM

These three elements of classical mechanics have been singled out because they
have direct counterparts in quantum mechanics. Furthermore, as in classical me-
chanics, their role in quantum mechanics is very important.

Consider that a particle of mass m in the potential field V (x, y, z) moves on
the trajectory

x =x(t)
y=y@® (L.1)
z=12z()

At any instant ¢, the energy of the particle is

1 1 5 .
E = Emvz +V@&,y,2) = —2-m(x2 +32 42+ V@, y,2) (12

The velocity of the particle is v. Dots denote time derivatives. The force on the
particle F is the negative gradient of the potential.

d 0 d
= _ - _ -V —v il .
F vv (ex Py + ey 3 + e, 32 V) (1.3)

The three unit vectors (ey, €y, €;) lie along the three Cartesian axes.
Here are two examples of potential. The energy of a particle in the gravitational
force field,

F=-emg =-Vmgz
is
E= %m(x2+y2+22)+mgz (1.4)
The particle is at the height z above sea level. For this example,
V=mgz

An electron charge g and mass m, between capacitor plates that are maintained
at the potential difference ®¢ and separated by the distance d (Fig. 1.5), has po-
tential

_ 9%

V—TZ



1.2 Energy, the Hamiltonian, and Angular Momentum 7
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FIGURE 1.5 Electron in a uniform capacitor field.

The displacement of the electron from the bottom plate is z. The electron’s energy
is
I . . . @
E=_m@+ 32+ + 12 (15)
2 d
In both examples above, the system (particle) has three degrees of freedom.
The Cartesian coordinates (x, y, z) of the particle are by no means the only

“good” coordinates for these cases. For instance, in the last example, we may
express the energy of the electron in spherical coordinates (Fig. 1.6):

1 . . ®
E = 5m(? +10% + r’§? sin? 0) + q—d—or cos 6 (1.6)

In cylindrical coordinates (Fig. 1.7) the energy is

1 . . . [o%y
E = sm(p +p*? + 25+ 12 (1.7)
Az=rcosb
»(r. 8, 9)
|
|
|
8 i
: y=rsinfsin¢
N G
PR i
NG ! J/
= rsinf cos ¢ S~o Capacitor plate
(a) (b)

FIGURE 1.6 Spherical coordinates.
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(p.z,¢)

y=psing¢

Capacitor plate
(a) (b)
FIGURE 1.7 Cylindrical coordinates.

The hydrogen atom has six degrees of freedom. If (x1, y;, z1) are the coordi-
nates of the proton and (x2, y2, z2) are the coordinates of the electron, the energy
of the hydrogen atom appears as

. . . 1. . :
E= EM(X12 +yi2+a?)+ Em(mz + 327 +22%)

1.
7 (1.8)

- V1 —x2)2 + (31 — y2)? + (21 — 22)?

(Fig. 1.8). The mass of the proton is M and that of the electron is m. In all the
cases above, the energy is a constant of the motion. A constant of the motion is a

(x4, 7. 2)

M

(xpyy.2p)

\/(xl_ x2)2 +(y _}’2)2 +(z, _22)2

y

RY

FIGURE 1.8 The hydrogen atom has six degrees of freedom. The Cartesian coordinates
of the proton and electron serve as good generalized coordinates.



1.2 Energy, the Hamiltonian, and Angular Momentum 9

dynamical function that is constant as the system unfolds in time. For each of these
cases, whatever E is initially, it maintains that value, no matter how complicated
the subsequent motion is. Constants of the motion are extremely useful in classical
mechanics and often serve to facilitate calculation of the trajectory.

A system that in no way interacts with any other object in the universe is called
an isolated system. The total energy, linear momentum, and angular momentum
of an isolated system are constant. Let us recall the definition of linear and angular
momentum for a particle. A particle of mass m moving with velocity v has linear
momentum

p = mv (1.9)
The angular momentum of this particle, measured about a specific origin, is
L=rxp (1.10)

where r is the radius vector from the origin to the particle (Fig. 1.9).

If there is no component of force on a particle in a given (constant) direction,
the component of momentum in that direction is constant. For example, for a
particle in a gravitational field that is in the z direction, p, and p, are constant.

If there is no component of torque N in a given direction, the component of
angular momentum in that direction is constant. This follows directly from New-
ton’s second law of angular momentum.

dL
N =

== (1.11)

For a particle in a gravitational field that is in the minus z direction, the torque on
the particle is

N=rxF=-rxemg

b L=rxp

Particle’s
orbit

FIGURE 1.9 Angular momentum of a particle with momentum p about the origin O.
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g

rXF

Mg

X

FIGURE 1.10 The torque r x F has no component in the z direction.

The radius vector from the origin to the particle is r (Fig. 1.10). Since e, x r has
no component in the z direction (e; - e; x r = 0), it follows that

L; = xpy — ypx = constant (1.12)

Since py and py are also constants, this equation tells us that the projected orbit
in the xy plane is a straight line (Fig. 1.11).

FIGURE 1.11 The projected motion in the xy plane is a straight line. Its equation is
given by the constant z component of angular momentum: L, = Xpy — YPx.
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Hamilton’s Equation

The constants of motion for more complicated systems are not so easily found.
However, there is a formalism that treats this problem directly. It is Hamilto-
nian mechanics. Consider the energy expression for an electron between capaci-
tor plates (1.5). Rewriting this expression in terms of the linear momentum p (as
opposed to velocity) gives

o
qdoz
(1.13)

... 1
E(x, Y.z, X, va) g H('x’ Y»> 2, Px» Py, pZ) = E(sz'*'l’yz'fpzz)‘*‘

The energy, written in this manner, as a function of coordinates and momenta is
called the Hamiltonian, H. One speaks of p, as being the moment conjugate to
Xx; py is the momentum conjugate to y; and so on.

The equations of motion (i.e., the equations that replace Newton’s second law)
in Hamiltonian theory are (for a point particle moving in three-dimensional space)

oH . oH .
FraniR R e
oH . oH .
g = —Dy a =Yy (1.14)
oH . oH |
= — =2z

z - "
Cyclic Coordinates

For the Hamiltonian (1.13) corresponding to an electron between capacitor plates,
one obtains

dH 0H

ox = ay =0 (1.15)

The Hamiltonian does not contain x or y. When coordinates are missing from

the Hamiltonian, they are called cyclic or ignorable. The momentum conjugate to
a cyclic coordinate is a constant of the motion. This important property follows
directly from Hamilton’s equations, (1.14). For example, for the case at hand, we
see that 3 H/dx = O implies that p, = 0, so p, is constant; similarly for p,.
(Note that there is no component of force in the x or y directions.) The remaining
four Hamilton’s equations give

5. — 4%
4 d ’
The last three equations return the definitions of momenta in terms of velocities.

The first equation is the z component of Newton’s second law. (For an electron,
q = —|q|. Itis attracted to the positive plate.)

Dx = mX, py =my, p; =mz2 (1.16)
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Consider next the Hamiltonian for this same electron but expressed in terms of
spherical coordinates. We must transform E as given by (1.5) to an expression in-
volving r, 8, ¢, and the momenta conjugate to these coordinates. The momentum
conjugate to r is the component of linear momentum in the direction of r. If e, is
a unit vector in the r direction, then

r-p

p,=—7—=e,-p=mer-v=mi' (1.17)

The momentum conjugate to the angular displacement 6 is the component of an-
gular momentum corresponding to a displacement in 6 (with r and ¢ fixed). The
moment arm for this motion is r. The velocity is r6. It follows that

po = mr(rf) = mr*é (1.18)
(Fig. 1.12).
The momentum conjugate to ¢ is the angular momentum corresponding to a

displacement in ¢ (with r and 0 fixed). The moment arm for this motion is r sin 8.
The velocity is r¢ sin 8 (Fig. 1.13). The angular momentum of this motion is

pp = mripsin’o (1.19)

Since such motion is confined to a plane normal to the z axis, py is the z compo-
nent of angular momentum. This was previously denoted as L, in (1.12).

x

FIGURE 1.12 Motion of a particle in spherical coordinates with r and ¢ fixed: vy = rf,
pg = rmvg = mr26. The moment arm is r.
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er
\‘
'] r
Y S e
"l},a y
¢

x

FIGURE 1.13 Motion of a particle with r and 6 fixed: vy = r sin 6¢. The moment arm
isrsinf, py = (rsin@)mvy = mr2é sin? 6.

In terms of these coordinates and momenta, the energy expression (1.6) be-
comes

2 2

2
o
H(r597¢’ Dr, Do, P¢)= %"' Po p¢ +q OrCOSG (1.20)

2mr2  2mr2sin? @ d

Hamilton’s equations for a point particle, in spherical coordinates, become

dH . oH .
P P
OH . 0H .
% —D¢ Do (1.21)
oH . oH
E R "

From the form of the Hamiltonian (1.20) we see that ¢ is a cyclic coordinate. That
is,
0H
¢
It follows that pgy, as given by (1.19), is constant. Thus, the component of angu-

lar momentum in the z direction is conserved. The torque on the particle has no
component in this direction.

0=—ps (1.22)
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Again the momentum derivatives of H in (1.20) return the definitions of mo-
menta in terms of velocities. For example, from (1.20),

0H .  po
—=0=— 1.23
opg mr? (1.23)
which is (1.18). Hamilton’s equation for p, is
OH _ . _ p* | p* 4%
T Y L — sin® 0 a (124

The first two terms on the right-hand side of this equation are the components of
centripetal force in the radial direction, due to 6 and ¢ displacements, respectively.
The last term is the component of electric force —e,q®¢/d in the radial direction.
Hamilton’s equation for pyg is

oH . p¢2 cosf gqdo
L — pp = + rsinf 1.25
0 T mZente | d (1.23)

The right-hand side is a component of torque. It contains the centripetal force
factor due to the ¢ motion ( p¢2 /mr?sin® 0) and a moment arm factor, r cos 6. At
any instant of time this component of torque is normal to the plane swept out by
r due to 6 motion alone.

A very instructive example concerns the motion of a free particle. A free par-
ticle is one that does not interact with any other particle or field. It is free of all
interactions and is an isolated system. A particle moving by itself in an otherwise
empty universe is a free particle. In Cartesian coordinates the Hamiltonian for a
free particle is

1 5, 1 2 2
H=_—p*=— .
2mP m (px” + Py + p;°) (1.26)
All coordinates (x, y, z) are cyclic. Therefore, the three components of momenta
are constant and may be equated to their respective initial values at time ¢ = 0.

px = px(0)
Py = py(0) (1.27)
p. = p.(0)

Combining these with the remaining three Hamilton’s equations gives

mx = px(0)
my = py(0) (1.28)
mz = p;(0)
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These are simply integrated to obtain

x(r)—"‘( )¢ +x(0)

y()
y(t) = ——t+ y(0) (1.29)
2(t) = "z()t+ ©)

which are parametric equations for a straight line.
Let us calculate the y component of angular momentum of the (free) particle.

pz(0) ] Px( )

Ly =2IPx —Xp; = [Z(O) + —=—=t| px(0) — [ ) + :I p.(0) (1.30)

Canceling terms, we obtain
Ly =2(0)px(0) — x(0)p,(0) = L,(0) (1.31)
and similarly for L, and L,. It follows that
L =(L,, Ly, L;) = constant (1.32)

for a free particle.

Investigating the dynamics of a free particle in Cartesian coordinates has given
us immediate and extensive results. We know that p and L are both constant. The
orbit is rectilinear.

We may also consider the dynamics of a free particle in spherical coordinates.
The Hamiltonian is

Pr2 P02 P¢2

H=12"
2m  2mr?  2mr2sin6

(1.33)

Only ¢ is cyclic, and we immediately conclude that py (or equivalently, L) is
constant. However, p, and py are not constant. From Hamilton’s equations, we
obtain

pe® Py”

3 3 qin2

mr

mr> sin” 6 (1.34)
. pg?cosf
b= ——=—
mr2sin3 @
These centripetal terms were interpreted above. In this manner we find that the
rectilinear, constant-velocity motion of a free particle, when cast in a spherical
coordinate frame, involves accelerations in the » and 6 components of motion.
These accelerations arise from an inappropriate choice of coordinates. In simple
language: Fitting a straight line to spherical coordinates gives peculiar results.
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A comparison of the Hamiltonian for a free particle in Cartesian, spherical, and
cylindrical coordinates is shown in Table 1.1.

Canonical Coordinates and Momenta

While the reader may feel some familiarity with the components of linear momen-
tum (px, py, p;) and angular momentum (py, py), it is clear that these intuitive
notions are exhausted for a system with, say, 17 degrees of freedom. If we call the
seventeenth coordinate g7, what is the momentum p;7 conjugate to q;7? There is
a formal procedure for determining the momentum conjugate to a given general-
ized coordinate. For example, it gives pg = mr2 as the momentum conjugate to
0 for a particle in spherical coordinates. This procedure is described in any book
on graduate mechanics.!

The coordinates of a system with N degrees of freedom, (g1, 2,43, . -- , gN),
and conjugate momenta (p1, p2, p3, ... , pn) are also called canonical coordi-
nates and momenta. A set of coordinates and momenta are canonical if with the
Hamiltonian, H(qy, ... ,4qN, P1,--- » PN, t), Hamilton’s equations

oH oH
— =—p, — =q, ¢d=1,...,N) 1.35
aq1 b ap 1 (1.35)

are entirely consistent with Newton’s laws of motion. We have seen this to be the
case for all the problems considered above. (Time-dependent Hamiltonians are
considered in Chapter 13.)

Other important functions and concepts of classical mechanics include the La-
grangian, action integral, and Hamilton’s principle. These topics are discussed in
Section 7.11, which addresses the Feynman path integral.

PROBLEMS
1.5 Show that the z component of angular momentum for a point particle
Ly =xpy — ypx
when expressed in spherical coordinates, becomes
L; =py = mr243 sin% @
(Hint: Recall the transformation equations

z=rcosf
y = rsinf sin¢

x =rsinfcos¢.)

1See, for example, H. Goldstein, Classical Mechanics, 3d ed., Addison-Wesley, Reading, Mass., 2001.
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TABLE 1.1 Hamiltonian of a free particle in three coordinate frames

Cartesian Spherical Cylindrical
Coordinates Coordinates Coordinates
Frames z
(X, ¥, 2) (p, 2, ¢)
y
x :
Hamiltonian H(x, Y, 2, Px» Py, Pz) H(r, 6,¢, DPr, P9, P¢) H(pv Z, ¢’ Pp> Pz» P¢)
1 2 2
= —(px2+py2 +pH) A2 L2, P _ 1 2, a2 P
2m m pro+ r2 po” + Sil’l2 P m Pp + pz + p2
L2
_ - 2, =
Momenta Dx = mXx pr = mr Pp =mp
py =my po =mr2f pz =mi_
pz =mi py = mrlsin® 6 Py =mp2d
Cyclic X, 9,2 ¢ z, ¢
coordinates
Constant Px, Py, Pz Py =1L, Pz> P¢
momenta
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1.6 (a) Calculate py, pg, and py as explicit functions of time for the following motion

1.7

1.8

1.9

110

111

of a particle.
Y = Yo, =20, x = vpt

(b) For what type of free-particle orbit are the following conditions obeyed?
@ i’r =0
(2) po=0
3) pp=0
@ pr=po=py=0
(c) Describe an experiment to measure pr, at a given instant, for the motion of
part (a).

Show that the energy of a free particle may be written
L
2m  2mr?
where L = r x p. [Hint: use the vector relation
L’=@xp’=r’p’—@-p?
together with the definition p, = (r - p)/r.]
Show that angular momentum of a free particle obeys the relation
14
L2 = sz + Ly2 + LZZ = P02 + s_in¢20
(Hint: Employ the results of Problem 1.7.)

A particle of mass m in the environment of a force field with components
F, = Kz, Fx =0, Fy=0

with K constant.

(a) Write down the Hamiltonian of the particle in Cartesian coordinates. What are
the constants of motion?

(b) Use the fact that the Hamiltonian itself is also constant to obtain the orbit.
(c¢) What is the Hamiltonian in cylindrical coordinates? What are the constants of
motion?

Suppose that one calculates the Hamiltonian for a given system and finds a coordinate
missing. What can be said about the symmetry of the system?

A particle of mass m is attracted to the origin by the force
F = —Kr

Write the Hamiltonian for this system in spherical and Cartesian coordinates. What
are the cyclic coordinates in each of these frames? [Hint: The potential for this force,
V(r),is givenby F = —Kr = —VV (r).]
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1.12 A “spherical pendulum” consists of a particle of mass m attached to one end of a
weightless rod of length a. The other end of the rod is fixed in space (the origin).
The rod is free to rotate about this point. If at any instant the angular velocity of the
particle about the origin is w, its energy is

1 1
E = Emasz = 510)2
(The motion of inertia is I.) What is the Hamiltonian of this system in spherical
coordinates? (Hint: Recall the relation L = Iw.) What is the Hamiltonian of the

pendulum in a gravity field? (Let g denote the acceleration of gravity.)

1.3 B THE STATE OF A SYSTEM

To know the values of the generalized coordinates of a system at a given instant
is to know the location and orientation of the system at that instant. In classical
physics we can ask for more information about the system at any given instant.
We may ask for its motion as well. The location, orientation, and motion of the
system at a given instant specify the state of the system at that instant. For a point
particle in 3-space, the classical state I" is given by the six quantities (Fig. 1.14)

=(x,y,2,%y,2) (1.36)

In terms of momenta,

F = (xv yv Z, an Py, pZ) (1~37)

More generally, the state of a system is a minimal aggregate of information about
the system which is maximally informative. A set of good coordinates and their
corresponding time derivatives (generalized velocities) or corresponding mo-
menta (canonical momenta) always serves as such a minimal aggregate which
is maximally informative and serves to specify the state of a system in classical
physics.

<

A

x

FIGURE 1.14 The classical state of a free particle is given by six scalar quantities
(x’ Ys 2 Px» Pyv pZ)'
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The state of the system composed of two point particles moving in a plane is
given by the eight parameters

F = (-xla Y1, X2, Y2, leypyl, sz’ p)’Z) (1'38)

Just as the set of generalized coordinates one assigns to a given system is not
unique, neither is the description of the state I'. For instance, the state of a point
particle moving in a plane in Cartesian representation is

I'=(x, Y, Dx, Py) (1.39)

In polar representation it is

F = (rs 95 pr, Pe) (140)

All representations of the state of a given system in classical mechanics contain
an equal number of variables. If we think of I" as a vector, then for a system
with N degrees of freedom, I" is 2N -dimensional. In classical mechanics change
of representation is effected by a change from one set of canonical coordinates
and momenta (q, p) to another valid set of canonical coordinates and momenta

@, p).
F(ql"~- ,QN,Pla--- va)_) F(qi,'~~ ’q&’p,17~~' 9p;V)

One form of canonical transformation results simply from a change in coordi-
nates. For example, the transformation from Cartesian to polar coordinates for a
particle moving in a plane effects the following change in representation:

F(xa ys pxs py) - F(rv 97 pra PG)

Representations in Quantum Mechanics

Next, we turn briefly to the form these concepts take in quantum mechanics. The
specification of parameters that determines the state of a system in quantum me-
chanics is more subtle than in classical mechanics. As will emerge in the course
of development of this text, in quantum mechanics one is not free to simultane-
ously specify certain sets of variables relating to a system. For example, while the
classical state of a free particle moving in the x direction is given by the values
of its position x, and momentum py, in quantum mechanics such simultaneous
specification cannot be made. Thus, if the position x of the particle is measured
at a given instant, the particle is left in a state wherein the particle’s momentum
is maximally uncertain. If on the other hand the momentum p, is measured, the
particle is left in a state in which its position is maximally uncertain. Suppose it
is known that the particle has a specific value of momentum. One may then ask if
there are any other variables whose values may be ascertained without destroying
the established value of momentum. For a free particle one may further specify
the energy E; that is, in quantum mechanics it is possible for the particle to be
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in a state such that measurement of momentum definitely finds the value p, and
measurement of energy definitely finds the value E. Suppose there are no further
observable properties of the free particle that may be specified simultaneously
with those two variables. Consequently, values of p, and E comprise the most
informative statement one can make about the particle and these values may be
taken to comprise the state of the system of the particle

I'=T(px, E)

As remarked above, if the particle is in this state, it is certain that measurement of
momentum finds p, and measurement of energy finds E. Such values of p, and
E are sometimes called good quantum numbers. As with their classical counter-
part, good quantum numbers are an independent set of parameters which may be
simultaneously specified and which are maximally informative.

For some problems in quantum mechanics it will prove convenient to give the
state in terms of the Cartesian components of angular momentum: L, Ly, and
L,. We will find that specifying the value of L,, say, induces an uncertainty in
the accompanying components of L, and L, so that, for example, it is impossi-
ble to simultaneously specify L, and L, for a given system. One may, however,
simultaneously specify L, together with the square of the magnitude of the total
momentum, L2. For a particle moving in a spherically symmetric environment,
one may also simultaneously specify the energy of the particle. This is the most
informative? statement one can make about such a particle, and the values of en-
ergy, L? and L,, comprise a quantum state of the system.

I =(E,L* L, (1.41)

The values of E, L2, and L, are then good quantum numbers. That is, they are an
independent set of parameters which may be simultaneously specified and which
are maximally informative.

Just as change in representation, as discussed above, plays an important role in
classical physics, so does its counterpart in quantum mechanics. A representation
in quantum mechanics relates to the observables that one can precisely specify in
a given state. In transforming to a new representation, new observables are speci-
fied in the state. For a free point particle moving in 3-space, in one representation
the three components of linear momentum py, py, and p, are specified while
in another representation the energy p?/2m, the square of the angular momen-
tum L2, and any component of angular momentum, say L, are specified. In this
change of representation,

T(px, Py, p2) = T(E, L% L,) (1.42)

When treating the problem of the angular momentum of two particles (L; and
L,, respectively) in one representation, (L3, L,?, L, , L;,) are specified while

2More precisely, I includes the parity of the system. This is a purely quantum mechanical notion and
will be discussed more fully in Chapter 6.
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in another representation (L12, L,?, L2, L) are specified. Here we are writing L
for the total angular momentum of the system L. = Lj + L. In this change of
representation,

T(L1%, Ly?, Ly, Lyy) — T(L12, L%, L2, L) (1.43)

Finally, in this very brief introductory description, we turn to the concept of
the change of the quantum state in time. In classical mechanics, Newton’s laws of
motion determine the change of the state of the system in time. In quantum me-
chanics, the evolution in time of the state of the system is incorporated in the wave
(or state) function and its equation of motion, the Schrodinger equation. Through
the wavefunction, one may calculate (expected) values of observable properties
of the system, including the time development of the state of the system.

These concepts of the quantum state—its evolution in time and change in
representation—comprise principal themes in quantum mechanics. Their under-
standing and application are important and are fully developed later in the text.

PROBLEMS

1.13 Write down a set of variables that may be used to prescribe the classical state for
each of the 11 systems in problem 1.1.

Answer (partial)
(e) Arigidrod in 3-space: Since the system has five degrees of freedom, the classical
state of the system is given by 10 parameters. For example,

={x,y,2,0,6,%,3,%06,¢)

[Note: The quantum state is less informative. For example, such a state is pre-
scribed by five variables (x, y, z, 0, ¢). Another specification of the quantum
state is given by five momenta (px, py, p;, Py, py). However, simultaneous
specification of, say, x and py is not possible in quantum mechanics.]

1.14 (a) Use Hamilton’s equations for a system with N degrees of freedom to show that
H is constant in time if H does not contain the time explicitly. [Hint: Write

dH _OH | §(9H, OH N,
ar ~ o T = \aq? T o)

(b) Construct a simple system for which H is an explicit function of the time.

1.15 For a system with N degrees of freedom, the Poisson bracket of two dynamical func-
tions A and B is defined as

N (aA 3B 9B BA)
dq; dp;  0qy dp;

1=1
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(a) Use Hamilton’s equations to show that the total time rate of change of a dynam-
ical function A may be written

dA  9A
—=—+{AH
dt at 1 }

where H is the Hamiltonian of the system.

(b) Prove the following: (1) If a(q, p) does not contain the time explicitly and
{A,H} = 0, then A is a constant of the motion. (2) If A contains the time
explicitly, it is constant if A /9t = {H, A}.

(c) For a free particle moving in one dimension, show that

t
A=x-E
m
satisfies the equation
A (A H)
ar ’

so that it is a constant of the motion. What does this constant correspond to
physically?

1.16 How many degrees of freedom does the compound pendulum depicted in Fig. 1.15
have? Choose a set of generalized coordinates (be certain they are independent).
What is the Hamiltonian for this system in terms of the coordinates you have chosen?
What are the immediate constants of motion?

F=-e,mg

FIGURE 1.15 Compound pendulum composed of two masses connected by weightless
rods of length a. The motion is in the plane of the paper. (See Problem 1.16.)

1.17 How many constants of the motion does a system with N degrees of freedom have?

Answer
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