Spectrophotometric Determination of an Equilibrium Constant

INSTRUCTOR RESOURCES

The CCLI Initiative

Computers in Chemistry Laboratory Instruction

Learning Objective

• to determine the equilibrium constant governing the formation of $Fe(SCN)^{2+}$ from iron(III) and thiocyanic acid by using the *MicroLAB* Colorimeter to measure the concentration of $Fe(SCN)^{2+}$.

Procedure Overview

- colorimetric measurements for the absorbance of four different solutions of a complex ion, $[Fe(SCN)^{2+}]$, are made using the *MicroLAB* Interface.
- the equilibrium constant for the formation of the complex is determined.

Report Sheet

Data Table

Complete the table while performing each trial.

	Col. A	Col. B	Col. C	Col. D	Col. E	Col. F	Col. G
Tria	Volume	Volume	Volume	Conc.	Conc.	Abs.	Conc.
1	(H+)	(HSCN)	$({\rm Fe}^{3+})$	[HSCN]	[Fe ³⁺]		$[Fe(SCN)^{2+}]$
1							
2							
3							
4							

Stock $[H^+]$ (c1) Stock [HSCN] $c_2 =$ Stock [Fe $^{3+}$] c3

Provide a sample calculation used to determine the initial concentrations of [HSCN] and [Fe³⁺].

Calculations

1. Complete the "Table of Equations" with the missing equations.

=

=

TABLE OF EQUATIONS

Temperature

CALCULATIONS	H^+	HSCN	Fe ³⁺	Fe(SCN ²⁺
Initial Concentration	c1 ⁺	c2	c3	0
Initial Volume	V1	V2	V3	0
Initial Moles		c2V2		0
Equilibrium Moles		c2V2 - cV		cV
Equilibrium Volume	V	V	V	V
Equilibrium	(c1V1/V+c	(c2V2 / V) -		с
Concentration		с		

Name _____ Section ____ Date _____

SPECTROPHOTOMETRIC DETERMINATION OF AN EQUILIBRIUM CONSTANT

Report Sheet (page 2)

2. Provide the equations used to calculate the absorbance (from I and I_o), equilibrium concentrations and equilibrium constant.

Abs

=

=

 $[Fe(SCN)2+]_{eq} =$

 $[H+]_{eq}$ =

[HSCN]_{eq}

[Fe3+]_{eq} =

Κ =

3. List your K values and calculate the average K and the standard deviation for your four trials.

K1	K2	К3	K4	Kave	Std. Dev.

Questions/Problems

1. What effect does a dirty vial (caused by fingerprints, water spots, or lint) have on the absorbance reading for a Fe(SCN)²⁺ solution? Does this error cause the reported K to be too high or too low? Explain.

Compare the K values obtained for the different trials. Assuming a constant temperature, 2. how would you expect the K values to compare?

- 3. Compare the absorbance values of your four samples. Do the values of absorbance suggest the presence of a limiting reagent in the initial solution? Explain your answer.
- 4. Discuss your absorbance values in relation to the concentrations of Fe(SCN)2+. Can you find a relationship? Explain.

Questions/Problems (page 2)

5. A mixture of 2.0 ml of 2.0 *M* HCl, 5.0 ml of 0.0033 *M* HSCN and 3.0 ml of 0.0033 *M* Fe^{3+} gave a transmission current of 55 mA (It). A blank solution gave a transmission current of 82 mA (Io). The calibration equation for the colorimeter used in the experiment was

(Absorbance) = $1400 [Fe(SCN)^{2+}] + 0.011$

Using this equation and the Table of Equations, calculate the equilibrium concentrations of $Fe(SCN)^{2+}$, H+, HSCN and Fe^{3+} and then use these concentrations to calculate K.

Tips and Traps

Calibration of the MicroLAB Colorimeter

1. Students should be instructed that the solutions of the complex are stable for a limited time; depending on the concentration. The half life, $t_{1/2}$, is approximately 1.5 hours, so they should proceed as quickly as prudent. The calibration procedure is described in the **BACKGROUND**. Known concentrations of the complex are obtained by reacting a large excess of $[Fe^{3+}]$ with HSCN. The following amounts are recommended.

-	-	-			
2.0 M	0.0033 M	0.20 M	Water	Total	
HCl (V2)	HSCN(V2)	Fe^{3+} (V3)		Volume	
ml	ml	ml ml		ml	
Column A	Column B	Column C			
0 (Blank)	0	2	8	10	
2	1	2	5	10	
2	2	2	4	10	
2	3	2	3	10	
2	4	2	2	10	

2. The*MicroLAB* Hand Entered Spreadsheet is used to set up the calculations as follows:

Columns:	Item	Column	Item
Α	Vol H ⁺ (v1)	В	Vol HSCN (v2)
С	Vol Fe ³⁺ (v3)	D	Calc [HSCN]
E	Calc [Fe ³⁺]	F	Absorbance (from colorimeter)
G	Equil [Fe(SCN) ²⁺]	Н	Calc Keq.
Average	Keq.		
Std. Dev			

3. plot a linear regression graph.

Column F:	(Abs)	y-axis
Column G:	$[Fe(SCN)^{2+}]$	x-axis

- 4. The calibration equation is quite stable and can be averaged for all the boxes used.
- 5. The calibration equation provided in the **BACKGROUND** section works well.

Sample Data (Page 2)

Calculations

1. Complete the "Table of Equations" with the missing equations.

CALCULATIONS	H^+	HSCN	Fe ³⁺	Fe(SCN ²⁺
Initial Concentration	c1 ⁺	c2	c3	0
Initial Volume	V1	V2	V3	0
Initial Moles	c1V1	c2V2	c3V3	0
Equilibrium Moles	c1V1+ eV	c2V2 - cV	c3V3-eV	cV
Equilibrium Volume	V	V	V	V
Equilibrium Concentration	(c1V1/V) + c	(c2V2 / V) - c	(c3V3/V) -c	с

2. Provide equations used to calculate the absorbance, equilibrium concentrations and equilibrium constant in the Spreadsheet.

Abs = $log(I_0/I)$ = F

 $[Fe(SCN)^{2^+}]_{eq} = (Abs - intercept)/ 2.54/\epsilon$ (Slope of calibration curve) = G

 $[H+]_{eq} = 4/10 + G = 0.4$

 $[HSCN]_{eq} = \mathbf{D} - \mathbf{G}$

 $[Fe3+]_{eq} = E - G$

K = G * (0.4 + G) / (E-G) / (D-G)

3. List your K values and calculate the average K for your four trials.

K1	K2	K3	K4	Kave	Std. Dev.
39.69	39.70	39.63	40.41	39.86	0.37

Sample Absorbance versus Concentration graph for FeSCN²⁺ solution

Suggested Answers to Questions/Problems

1. What effect does a dirty cuvette (caused by fingerprints, water spots, or lint) have on the absorbance reading for a Fe(SCN)2+ solution? Does this error cause the reported K to be too high or too low? Explain.

Less light is transmitted to the detector; this increases the absorbance reading. The reported K will be too high. A larger absorbance indicates a higher [Fe(SCN)²⁺], and also a larger K.

2. Compare the K values obtained for different trials. Assuming a constant temperature, how would you expect the K values to compare?

All the K values should be similar if the temperature does not change.

3. Compare the absorbance values of your four samples. Do the values of absorbance suggest the presence of a limiting reagent in the initial solution? Explain your answer.

Yes, the absorbance will increase if the limiting reagent increases because more $[Fe(SCN)^{2+}]$ is produced (either HSCN or Fe^{3+} may become the limiting reagent).

4. Discuss your absorbance values in relation to the concentrations of Fe(SCN)²⁺. Can you find a relationship? Explain.

The absorbance increases if $[Fe(SCN)^{2+}]$ increases, according to Beer's Law.

5. A mixture of 2.0 ml of 2.0 *M* HCl, 5.0 ml of 0.0033 *M* HSCN and 3.0 ml of 0.0033 *M* Fe^{3+} gave a transmission current of 55 mA (It). A blank solution gave a transmission current of 82 mA (Io). If the calibration equation for the colorimeter used in the experiment was

(Absorbance) =
$$1400 [Fe(SCN)^{2+} + 0.011]$$
,

Use this equation and the Table of Equations to calculate the equilibrium concentrations of $Fe(SCN)^{2+}$, H^+ , HSCN and Fe^{3+} and then use these concentrations to calculate K.

Abs = 0.17	$[HSCN] = 1.53 \ x \ 10^{-3} M$
$[Fe(SCN)^{2+}] = 1.16 \times 10^{-4} M$	$[Fe^{3+}] = 8.7 \times 10^{-4} M$
$[H^+] = 0.40 M$	K = 35 (no units)

Laboratory Preparation (per student station)

Equipment

- 250 ml beaker
- 10 ml Grad cylinder with stopper
- 4 plastic Beryl pipets
- cuvette
- wash bottle
- colorimeter box
- three, 25 or 50 ml burets
- •

Supplies

• towel

Chemicals

Exact quantities needed are listed below. A minimum 50% excess is recommended.

- 20 ml of 0.0033 M KSCN
- 20 ml of 0.0033 M Fe(NO₃)₃ in 0.010 M HCl
- 10 ml of 2.0 *M* HCl
- 10 ml of 0.2 M Fe(NO₃)₃ in 0.010 M HCl for calibration

Safety and Disposal

no special precautions necessary