CHAPTER 19 IONIC EQUILIBRIA IN AQUEOUS SYSTEMS

- 19.1 The purpose of an acid-base buffer is to maintain a relatively constant pH in a solution.
- 19.2 The weak acid component neutralizes added base and the weak base component neutralizes added acid so that the pH of the buffer solution remains relatively constant. The components of a buffer do not neutralize one another when they are a conjugate acid-base pair.
- 19.3 The presence of an ion in common between two solutes will cause any equilibrium involving either of them to shift in accordance with Le Châtelier's principle. For example, addition of NaF to a solution of HF will cause the equilibrium

 $HF(aq) + H_2O(l) \leftrightarrows H_3O^+(aq) + F^-(aq)$ to shift to the left, away from the excess of F^- the common ion.

19.4 a) **Buffer C** has equal, high concentrations of both HA and A^- . It has the highest buffering capacity. b) **All** of the buffers have the same pH range. The practical buffer range of pH = pKa ± 1, and is independent of concentration.

c) Buffer B has the greatest amount of weak base and can therefore neutralize the greatest amount of added acid.

- 19.5 A buffer is a mixture of a weak acid and its conjugate base (or weak base and its conjugate acid). The pH of a buffer changes only slightly with added H_3O^+ because the added H_3O^+ reacts with the base of the buffer. The net result is that the concentration of H_3O^+ does not change much from the original concentration, keeping the pH nearly constant.
- 19.6 A buffer with a high capacity has a great resistance to pH change. A high buffer capacity results when the weak acid and weak base are both present at high concentration. Addition of 0.01 mol of HCl to a high-capacity buffer will cause a smaller change in pH than with a low-capacity buffer, since the ratio [HA]/[A⁻] will change less.
- 19.7 Only (c) has an affect on the buffer capacity. In theory, **any** conjugate pair (of any pK_a) can be used to make a high capacity buffer. With proper choice of components, it can be at any pH. The buffer range changes along with the buffer capacity, but does not determine it. A high-capacity buffer will result when comparable quantities (i.e., buffer-component ratio < 10:1) of weak acid and weak base are dissolved so that their concentrations are relatively high.
- 19.8 The buffer component ratio refers to the ratio of concentrations of the acid and base that make up the buffer. When this ratio is equal to 1, the buffer resists changes in pH with added acid to the same extent that it resists changes in pH with added base. The buffer range extends equally in both the acidic and basic direction. When the ratio shifts with higher [base] than [acid], the buffer is more effective at neutralizing added acid than base so the range extends further in the acidic than basic direction. The opposite is true for a buffer where [acid] > [base]. Buffers with a ratio equal to 1 have the greatest buffer range. The more the buffer component ratio deviates from 1, the smaller the buffer range.
- 19.9 pK_a (formic) = 3.74; pK_a (acetic) = 4.74. Formic acid would be the buffer choice, since its pK_a is closer to the desired pH of 3.5. If acetic acid were used, the buffer component ratio would be far from 1:1 and the buffer's effectiveness would be lower. The NaOH serves to partially neutralize the acid and produce its conjugate base.

19.10 The buffer components are propanoic acid and propanoate ion. The sodium ions are spectator ions and are ignored because they are not involved in the buffer. The reaction table that describes this buffer is:

Concentration (M)	CH ₃ CH ₂ COC	$OH(aq) + H_2O(aq)$	$(l) \leftrightarrows$	$CH_3CH_2COO^-(aq)$	+ $H_3O^+(aq)$
Initial	0.15		0.35	0	
Change	-x		+x	+x	
Equilibrium	0.15 - x	—	0.35 + x	x	

Assume that x is negligible with respect to both 0.15 and 0.35 since both concentrations are much larger than K_a .

$$K_{a} = \frac{\left[H_{3}O^{+}\right]\left[CH_{3}CH_{2}COO^{-}\right]}{\left[CH_{3}CH_{2}COOH\right]} = \frac{\left[x\right]\left[0.35 + x\right]}{\left[0.15 - x\right]} = \frac{\left[x\right]\left[0.35\right]}{\left[0.15\right]} = 1.3 \times 10^{-5}$$
$$[H_{3}O^{+}] = K_{a} \frac{\left[CH_{3}CH_{2}COOH\right]}{\left[CH_{3}CH_{2}COO^{-}\right]} = (1.3 \times 10^{-5})\left(\frac{0.15}{0.35}\right) = 5.57143 \times 10^{-6} = 5.6 \times 10^{-6} M$$

Check assumption: percent error = $(5.6 \times 10^{-6}/0.15)100\% = 0.0037\%$. The assumption is valid. pH = $-\log [H_3O^+] = -\log (5.57143 \times 10^{-6}) = 5.2540 = 5.25$

Another solution path to find pH is using the Henderson–Hasselbalch equation:

$$pH = pK_{a} + \log\left(\frac{[base]}{[acid]}\right) \qquad pK_{a} = -\log(1.3 \times 10^{-5}) = 4.886$$
$$pH = 4.886 + \log\left(\frac{[CH_{3}CH_{2}COO^{-}]}{[CH_{3}CH_{2}COOH]}\right) = 4.886 + \log\left(\frac{[0.35]}{[0.15]}\right)$$
$$pH = 5.25398 = 5.25$$

19.11 CA = C₆H₅COOH CB = C₆H₅COO⁻ Neglect Na⁺. Assume + x and - x are negligible.

$$K_{a} = \frac{\left[H_{3}O^{+}\right]\left[CB\right]}{\left[CA\right]} = \frac{\left[x\right]\left[0.28 + x\right]}{\left[0.33 - x\right]} = \frac{\left[x\right]\left[0.28\right]}{\left[0.33\right]} = 6.3 \times 10^{-5}$$

$$[H_{3}O^{+}] = K_{a} \frac{\left[CA\right]}{\left[CA\right]} = (6.3 \times 10^{-5}) (0.33/0.28) = 7.425 \times 10^{-5} = 7.4 \times 10^{-5} M$$
Check assumption: percent error = (7.425 x 10^{-5}/0.28)100% = 0.026%. The assumption is val

Check assumption: percent error = $(7.425 \text{ x } 10^{-5}/0.28)100\% = 0.026\%$. The assumption is valid. pH = $-\log [H_3O^+] = -\log (7.425 \text{ x } 10^{-5}) = 4.1293 = 4.13$

19.12 The buffer components are phenol, C₆H₅OH, and phenolate ion, C₆H₅O⁻. The sodium ions are ignored because they are not involved in the buffer. Calculate K_a from p K_a and set up the problem with a reaction table. $K = 10^{-pK_a} = 10^{-10.00} = 1.0 \times 10^{-10}$

$$\begin{array}{cccc} K_{a} = 10^{-1} & a = 10^{-1} & a$$

Assume that x is negligible with respect to both 1.0 and 1.2 because both concentrations are much larger than K_a .

$$K_{a} = \frac{\left[H_{3}O^{+} \right] \left[C_{6}H_{5}O^{-} \right]}{\left[C_{6}H_{5}OH \right]} = \frac{\left[x \right] \left[1.3 + x \right]}{\left[1.2 - x \right]} = \frac{\left[x \right] \left[1.3 \right]}{\left[1.2 \right]} = 1.0 \times 10^{-10}$$
$$[H_{3}O^{+}] = K_{a} \frac{\left[C_{6}H_{5}OH \right]}{\left[C_{6}H_{5}O^{-} \right]} = \left(1.0 \times 10^{-10} \right) \left(\frac{1.2}{1.3} \right) = 9.23077 \times 10^{-11} M$$

Check assumption: percent error = $(9.23077 \times 10^{-11}/1.2)100\% = 7.7 \times 10^{-9}\%$. The assumption is valid. pH = $-\log (9.23077 \times 10^{-11}) = 10.03476 = 10.03$

Verify the pH using the Henderson-Hasselbalch equation:

$$pH = pK_{a} + \log\left(\frac{[base]}{[acid]}\right)$$

$$pH = 10.00 + \log\left(\frac{[C_{6}H_{5}O^{-}]}{[C_{6}H_{5}OH]}\right) = 10.00 + \log\left(\frac{[1.3]}{[1.2]}\right)$$

$$pH = 10.03$$

19.13 $K_{a} = 10^{-pK_{a}} = 10^{-9.24} = 5.7543993 \text{ x } 10^{-10} \text{ (unrounded)}$ $CA = H_{3}BO_{3} \quad CB = H_{2}BO_{3}^{-} \quad \text{Neglect Na}^{+}. \text{ Assume } + x \text{ and } - x \text{ are negligible.}$ $K_{a} = \frac{\left[H_{3}O^{+}\right]\left[CB\right]}{\left[CA\right]} = \frac{\left[x\right]\left[0.82 + x\right]}{\left[0.12 - x\right]} = \frac{\left[x\right]\left[0.82\right]}{\left[0.12\right]} = 5.7543993 \text{ x } 10^{-10} \text{ (unrounded)}$ $\left[H_{3}O^{+}\right] = K_{a} \frac{\left[CA\right]}{\left[CA\right]} = (5.7543993 \text{ x } 10^{-10}) (0.12/0.82) = 8.4210722 \text{ x } 10^{-11} M \text{ (unrounded)}$ Check assumption: percent error = $(8.4210722 \text{ x } 10^{-11}/0.12)100\% = 7.0 \text{ x } 10^{-8}\%$. The assumption is valid. $pH = -\log [H_{3}O^{+}] = -\log (8.4210722 \text{ x } 10^{-11}) = 10.07463261 = 10.07$ Verify the pH using the Henderson-Hasselbalch equation.

19.14 The buffer components are phenol, NH_3 , and ammonium ion, NH_4^+ . The chloride ions are ignored because they are not involved in the buffer. Calculate K_b from pK_b and set up the problem with a reaction table.

$K_{\rm b} = 10^{-{\rm p}K_{\rm b}} = 10^{-4.75} = 1$.7782794 x	10^{-5}	(unrounded)			
Concentration (M)	$NH_3(aq)$	+	$H_2O(l)$	₽	$NH_4+(aq)$	+	$OH^{-}(aq)$
Initial	0.25				0.15		0
Change	<i>x</i>				$+\chi$		$+\chi$
Equilibrium	0.25 - x				0.15 + x		x

Assume that x is negligible with respect to both 0.25 and 0.15 because both concentrations are much larger than $K_{\rm b}$.

$$K_{b} = \frac{10^{-p_{K_{b}}} = 10^{-4.75} = 1.7782794 \text{ x } 10^{-5} \text{ (unrounded)}}{\left[\text{NH}_{4}^{+}\right]\left[\text{OH}^{-}\right]} = \frac{\left[0.15 + x\right]\left[\text{OH}^{-}\right]}{\left[0.25 - x\right]} = \frac{\left[0.15\right]\left[\text{OH}^{-}\right]}{\left[0.25\right]} = 1.7782794 \text{ x } 10^{-5} \text{ (unrounded)}}$$
$$[\text{OH}^{-}] = K_{b} \frac{\left[\text{NH}_{3}^{-}\right]}{\left[\text{NH}_{4}^{+}\right]} = \left(1.7782794 \text{ x } 10^{-5}\right)\left(\frac{0.25}{0.15}\right) = 2.963799 \text{ x } 10^{-5} M \text{ (unrounded)}$$

Check assumption: percent error = $(2.963799 \times 10^{-5}/0.25)100\% = 0.012\%$. The assumption is valid. pOH = $-\log [OH^-] = -\log (2.963799 \times 10^{-5}) = 4.52815$ (unrounded)

$$14.00 = pH + pOH$$

pH = 14.00 - pOH = 14.00 - 4.52815 = 9.4718 = 9.47

Verify the pH using the Henderson-Hasselbalch equation. To do this, you must find the pK_a of the acid NH₄⁺: $14 = pK_a + pK_b$ $pK_a = 14 - pK_b = 14 - 4.75 = 9.25$

$$pH = pK_{a} + \log\left(\frac{[base]}{[acid]}\right)$$

$$pH = 9.25 + \log\left(\frac{[NH_{3}]}{[NH_{4}^{+}]}\right) = 9.25 + \log\left(\frac{[0.25]}{[0.15]}\right)$$

$$pH = 9.47$$

19.15 $K_b = 10^{-pK_b} = 10^{-3.35} = 4.4668359 \ge 10^{-4} \text{ (unrounded)}$ $CB = CH_3NH_2$ $CA = CH_3NH_3^+$ Neglect $C\Gamma$. Assume + x and - x are negligible. $K_b = \frac{[CA][OH^-]}{[CB]} = \frac{[0.60 + x][OH^-]}{[0.50 - x]} = \frac{[0.60][OH^-]}{[0.50]} = 4.4668359 \ge 10^{-4}$ $[OH^-] = K_b \frac{[CB]}{[CA]} = (4.4668359 \ge 10^{-4}) (0.50/0.60) = 3.7223632 \ge 10^{-4} M \text{ (unrounded)}$ Check assumption: percent error = $(3.7223632 \ge 10^{-4}/0.50)100\% = 0.074\%$. The assumption is valid. $pOH = -\log [OH^-] = -\log (3.7223632 \ge 10^{-4}) = 3.429181246 \text{ (unrounded)}$

pH = 14.00 - pOH = 14.00 - 3.429181246 = 10.57081875 = **10.57**

19.16 Given the pH and K_a of an acid, the buffer-component ratio can be calculated from the Henderson-Hasselbalch equation.

$$pK_{a} = -\log K_{a} = -\log (1.3 \times 10^{-5}) = 4.8860566 \text{ (unrounded)}$$

$$pH = pK_{a} + \log \left(\frac{[\text{base}]}{[\text{acid}]}\right)$$

$$5.44 = 4.8860566 + \log \left(\frac{[\text{Pr}^{-}]}{[\text{HPr}]}\right)$$

$$0.5539434 = \log \left(\frac{[\text{Pr}^{-}]}{[\text{HPr}]}\right)$$
Raise each side to 10^{\times} .
$$\frac{[\text{Pr}^{-}]}{[\text{HPr}]} = 3.5805 = 3.6$$

19.17 Given the pH and K_a of an acid, the buffer-component ratio can be calculated from the Henderson-Hasselbalch equation.

$$pK_{a} = -\log K_{a} = -\log (7.1 \times 10^{-4}) = 3.148741651 \text{ (unrounded)}$$

$$pH = pK_{a} + \log \left(\frac{[\text{base}]}{[\text{acid}]}\right)$$

$$2.95 = 3.14874165 + \log \left(\frac{[\text{NO}_{2}^{-}]}{[\text{HNO}_{2}]}\right)$$

$$-0.19874165 = \log \left(\frac{[\text{NO}_{2}^{-}]}{[\text{HNO}_{2}]}\right)$$
Raise each side to 10^{x}

$$\frac{[\text{NO}_{2}^{-}]}{[\text{HNO}_{2}]} = 0.632788 = 0.63$$

19.18 Determine the pK_a of the acid from the concentrations of the conjugate acid and base, and the pH of the solution. This requires the Henderson-Hasselbalch equation.

$$pH = pK_{a} + \log\left(\frac{[base]}{[acid]}\right)$$

$$3.35 = pK_{a} + \log\left(\frac{[A^{-}]}{[HA]}\right) = pK_{a} + \log\left(\frac{[0.1500]}{[0.2000]}\right)$$

$$3.35 = pK_{a} - 0.1249387$$

$$pK_{a} = 3.474939 = 3.47$$
Determine the moles of conjugate acid (HA) and conjugate base (A⁻) using (M)(V) = moles
Moles HA = (0.5000 L) (0.2000 mol HA/L) = 0.1000 mol HA
Moles A⁻ = (0.5000 L) (0.1500 mol A⁻/L) = 0.07500 mol A⁻
The reaction is:
HA(aq) + NaOH(aq) \rightarrow Na⁺(aq) + A⁻(aq) + H_2O(l)
Initial: 0.1000 mol 0.0015 mol 0.07500 mol
Change: -0.0015 mol -0.0015 mol +0.0015 mol
Final: 0.0985 mol 0 mol 0.0755 mol

NaOH is the limiting reagent. The addition of 0.0015 mol NaOH produces an additional 0.0015 mol A^- and consumes 0.0015 mol of HA.

Then

$$[A^{-}] = \frac{0.0765 \text{ mol } A^{-}}{0.5000 \text{ L}} = 0.153 \text{ } M \text{ } A^{-}$$
$$[HA] = \frac{0.0985 \text{ mol } HA}{0.5000 \text{ L}} = 0.197 \text{ } M \text{ } HA$$

$$pH = pK_a + \log\left(\frac{[A^-]}{[HA]}\right)$$
$$pH = 3.474938737 + \log\left(\frac{[0.153]}{[0.197]}\right) = 3.365163942 = 3.37$$

19.19 Determine the pK_a of the acid from the concentrations of the conjugate acid and base and the pH of the solution. This requires the Henderson-Hasselbalch equation.

 $pH = pK_a + log\left(\frac{[base]}{[acid]}\right)$ $8.88 = pK_a + \log\left(\frac{[B]}{[BH^+]}\right) = pK_a + \log\left(\frac{[0.40]}{[0.25]}\right)$ $8.88 = pK_a + 0.20411998$ $pK_a = 8.67588 = 8.68$ Determine the moles of conjugate acid (BH⁺) and conjugate base (B) using (M)(V) = moles. Moles $BH^+ = (0.25 \text{ L}) (0.25 \text{ mol BH}^+/\text{L}) = 0.0625 \text{ mol BH}^+$ Moles B = (0.25 L) (0.40 mol B/L) = 0.10 mol BThe reaction is: B(aq)+ $HCl(aq) \rightarrow BH^{+}(aq) + Cl^{-}(aq) + H_2O(l)$ Initial: 0.10 mol 0.0020 mol 0.0625 mol -0.0020 mol +0.0020 mol Change: -0.0020 mol 0.0645 mol Final: 0.098 mol 0 mol HCl is the limiting reagent. The addition of 0.0020 mol HCl produces an additional 0.0020 mol BH^+ and consumes 0.0020 mol of B. Then

$$[B] = \frac{0.098 \text{ mol } B}{0.25 \text{ L}} = 0.392 M \text{ B}$$
$$[BH^+] = \frac{0.0645 \text{ mol } BH^+}{0.25 \text{ L}} = 0.258 M \text{ BH}^+$$
$$pH = pK_a + \log\left(\frac{[B]}{[BH^+]}\right)$$
$$pH = 8.67588 + \log\left(\frac{[0.392]}{[0.258]}\right) = 8.857546361 = 8.86$$

 $19.20 \qquad a) The hydrochloric acid will react with the sodium acetate, NaC_2H_3O_2, to form acetic acid, HC_2H_3O_2:$

 $HCl + NaC_2H_3O_2 \rightarrow HC_2H_3O_2 + NaCl$ Calculate the number of moles of HCl and $NaC_2H_3O_2$. All of the HCl will be consumed to form $HC_2H_3O_2$, and the number of moles of $C_2H_3O_2^-$ will decrease.

$$\begin{array}{l} \mbox{Initial moles } \mbox{HCl} = \left(\frac{0.452 \mbox{ mol HCl}}{L} \right) \left(\frac{10^{-3} \mbox{L}}{1 \mbox{ mL}} \right) (204 \mbox{ mL}) = 0.092208 \mbox{ mol HCl (unrounded)} \\ \mbox{Initial moles } \mbox{NaC}_2\mbox{H}_3\mbox{O}_2 = \left(\frac{0.400 \mbox{ mol NaC}_2\mbox{H}_3\mbox{O}_2}{L} \right) (0.500 \mbox{ L}) = 0.200 \mbox{ mol NaC}_2\mbox{H}_3\mbox{O}_2 \\ \mbox{HCl} \mbox{ + } \mbox{NaC}_2\mbox{H}_3\mbox{O}_2 \mbox{ - } \mbox{H}_2\mbox{H}_3\mbox{O}_2 \mbox{ + } \mbox{NaC}_2\mbox{H}_3\mbox{O}_2 \\ \mbox{HCl} \mbox{ + } \mbox{NaC}_2\mbox{H}_3\mbox{O}_2 \mbox{ - } \mbox{H}_2\mbox{H}_3\mbox{O}_2 \mbox{ + } \mbox{NaC}_2\mbox{H}_3\mbox{O}_2 \mbox{ mol NaC}_2\mbox{H}_3\mbox{O}_2 \mbox{ mol NaC}_2\mbox{H}_3\mbox{O}_2 \\ \mbox{Initial: } \mbox{0.092208 mol } \mbox{mol -} \mbox{0.092208 mol } \mbox{mol } \mbox{mol NaC}_2\mbox{H}_3\mbox{O}_2 \mbox{ mol NaC}_2\mbox{H}_3\mbox{O}_2 \mbox{ mol NaC}_2\mbox{H}_3\mbox{O}_2 \mbox{ mol } \mbox{mol NaC}_2\mbox{H}_3\mbox{O}_2 \mbox{mol NaC}_2\mbox{H}_3 \mbox{O}_2 \mbox{mol NaC}_2\mbox{H}_3 \mbox{O}_2 \mbox{mol NaC}_2\mbox{H}_3 \mbox{mol NaC}_2\mbox{H}_3 \mbox{O}_2 \mbox{mol NaC}_2\mbox{mol NaC}_2\mbox{H}_3 \mbox{O}_2 \mbox{mol NaC}_2\mbox{H}_3 \mbox{O}_2 \mbox{mol NaC}_2 \mbox{mol NaC}_2\mbox{mol NaC}_2 \mbox{mol NaC}_2\mbox{mol NaC}_2 \mbox{mol NaC}_2\mbox{mol NaC}_2 \mbox{mol NaC}_2 \mbox{mol NaC}_2 \mbox{mol NaC}_2 \mbox{mol NaC}_2 \mbox{mol NaC}_2 \mbox{mol NaC}_2 \mb$$

Total volume = $0.500 \text{ L} + (204 \text{ mL}) (10^{-3} \text{ L/1 mL}) = 0.704 \text{ L}$

$$[HC_{2}H_{3}O_{2}] = \frac{0.092208 \text{ mol}}{0.704 \text{ L}} = 0.1309773 M \text{ (unrounded)}$$
$$[C_{2}H_{3}O_{2}^{-}] = \frac{0.107792 \text{ mol}}{0.704 \text{ L}} = 0.1531136 M \text{ (unrounded)}$$
$$pK_{a} = -\log K_{a} = -\log (1.8 \text{ x } 10^{-5}) = 4.744727495$$
$$pH = pK_{a} + \log \left(\frac{[C_{2}H_{3}O_{2}^{-}]}{[HC_{2}H_{3}O_{2}]}\right)$$
$$pH = 4.744727495 + \log \left(\frac{[0.1531136]}{[0.1309773]}\right) = 4.812545 = 4.81$$

b) The addition of base would increase the pH, so the new pH is (4.81 + 0.15) = 4.96. The new $[C_2H_3O_2^-]/[HC_2H_3O_2]$ ratio is calculated using the Henderson-Hasselbalch equation.

$$pH = pK_{a} + \log\left(\frac{[C_{2}H_{3}O_{2}^{-}]}{[HC_{2}H_{3}O_{2}]}\right)$$

$$4.96 = 4.744727495 + \log\left(\frac{[C_{2}H_{3}O_{2}^{-}]}{[HC_{2}H_{3}O_{2}]}\right)$$

$$0.215272505 = \log\left(\frac{[C_{2}H_{3}O_{2}^{-}]}{[HC_{2}H_{3}O_{2}]}\right)$$

$$\frac{[C_{2}H_{3}O_{2}^{-}]}{[HC_{2}H_{3}O_{2}]} = 1.64162 \text{ (unrounded)}$$

From part (a), we know that $[HC_2H_3O_2] + [C_2H_3O_2^-] = (0.1309773 M + 0.1531136 M) = 0.2840909 M$. Although the *ratio* of $[C_2H_3O_2^-]$ to $[HC_2H_3O_2]$ can change when acid or base is added, the *absolute amount* does not change unless acetic acid or an acetate salt is added.

Given that $[C_2H_3O_2^-]/[HC_2H_3O_2] = 1.64162$ and $[HC_2H_3O_2] + [C_2H_3O_2^-] = 0.2840909 M$, solve for $[C_2H_3O_2^-]$ and substitute into the second equation.

 $[C_2H_3O_2^-] = 1.64162 [HC_2H_3O_2] \text{ and } [HC_2H_3O_2] + 1.64162 [HC_2H_3O_2] = 0.2840909 M$ $[HC_2H_3O_2] = 0.1075441 M \text{ and } [C_2H_3O_2^-] = 0.176547 M$

 $\begin{array}{l} \mbox{Moles of $C_2H_3O_2^-$ needed} = (0.176547 \mbox{ mol $C_2H_3O_2^-$/L$)} \ (0.500 \mbox{ L}) = 0.0882735 \mbox{ mol (unrounded)} \\ \mbox{Moles of $C_2H_3O_2^-$ initially} = (0.1531136 \mbox{ mol $C_2H_3O_2^-$/L$)} \ (0.500 \mbox{ L}) = 0.0765568 \mbox{ mol (unrounded)} \\ \mbox{This would require the addition of $(0.0882735 \mbox{ mol $-0.0765568 \mbox{ mol $c_2H_3O_2^-$}$)} = 0.0117167 \mbox{ mol $C_2H_3O_2^-$} \ (unrounded) \\ \mbox{The KOH added reacts with $HC_2H_3O_2$ to produce additional $C_2H_3O_2^-$:} \end{array}$

HC₂H₃O₂ + KOH → C₂H₃O₂⁻ + K⁺ + H₂O(*l*) To produce 0.0117167 mol C₂H₃O₂⁻ would require the addition of 0.0117167 mol KOH. (56.11 g KOH)

Mass KOH =
$$(0.0117167 \text{ mol KOH}) \left(\frac{56.11 \text{ g KOH}}{1 \text{ mol KOH}} \right) = 0.657424 = 0.66 \text{ g KOH}$$

19.21 a) The sodium hydroxide will react with the sodium bicarbonate, NaHCO₃, to form carbonate ion, CO_3^{2-} : NaOH + NaHCO₃ \rightarrow 2 Na⁺ + CO₃²⁻ + H₂O

Calculate the number of moles of NaOH and NaHCO₃. All of the NaOH will be consumed to form CO_3^{2-} , and the number of moles of NaHCO₃ will decrease. The HCO₃⁻ is the important part of NaHCO₃.

Initial moles NaOH =
$$\left(\frac{0.10 \text{ mol NaOH}}{L}\right) \left(\frac{10^{-3} \text{ L}}{1 \text{ mL}}\right) (10.7 \text{ mL}) = 0.00107 \text{ mol NaOH} \text{ (unrounded)}$$

Initial moles HCO₃⁻ = $\left(\frac{0.050 \text{ mol NaHCO}_3}{L}\right) \left(\frac{1 \text{ mol HCO}_3^-}{1 \text{ mol NaHCO}_3}\right) \left(\frac{10^{-3} \text{ L}}{1 \text{ mL}}\right) (50.0 \text{ mL})$
= 0.0025 mol HCO₃⁻

	NaOH +	$NaHCO_3 \rightarrow$	$2 \text{ Na}^+ + \text{CO}_3^{2-} + \text{H}_2\text{O}_3$
Initial:	0.00107 mol	0.0025 mol	0 mol
Change:	-0.00107 mol	-0.00107 mol	+0.00107 mol
Final:	0 mol	0.00143 mol	0.000107 mol

Total volume = $(50.0 \text{ mL} + 10.7 \text{ mL}) (10^{-3} \text{L/1 mL}) = 0.0607 \text{ L}$

$$[HCO_{3}^{-}] = \frac{0.00143 \text{ mor}}{0.0607 \text{ L}} = 0.023558484 M \text{ (unrounded)}$$
$$[CO_{3}^{2-}] = \frac{0.00107 \text{ mol}}{0.0607 \text{ L}} = 0.017627677 M \text{ (unrounded)}$$

$$pK_{a} = -\log K_{a} = -\log (4.7 \times 10^{-11}) = 10.32790214$$

$$pH = pK_{a} + \log \left(\frac{[CO_{3}^{2-}]}{[HCO_{3}^{-}]}\right)$$

$$pH = 10.32790214 + \log \left(\frac{[0.017627677]}{[0.023558484]}\right) = 10.2019 = 10.2019$$

b) The addition of acid would decrease the pH, so the new pH is (10.20 - 0.07) = 10.13The new $[CO_3^{2-}]/[HCO_3^{-}]$ ratio is calculated using the Henderson-Hasselbalch equation.

$$pH = pK_{a} + \log\left(\frac{[CO_{3}^{2}]}{[HCO_{3}]}\right)$$

10.13 = 10.32790214 + $\log\left(\frac{[CO_{3}^{2}]}{[HCO_{3}]}\right)$
-0.19790214 = $\log\left(\frac{[CO_{3}^{2}]}{[HCO_{3}]}\right)$
 $\frac{[CO_{3}^{2}]}{[HCO_{3}]} = 0.63401$ (unrounded)

From part (a), we know that $[HCO_3^-] + [CO_3^{2-}] = (0.023558484 M + 0.017627677 M) = 0.041185254 M$. Although the *ratio* of $[CO_3^{2-}]$ to $[HCO_3^-]$ can change when acid or base is added, the *absolute amount* does not change unless acetic acid or an acetate salt is added.

Given that $[CO_3^{2-}]/[HCO_3^{-}] = 0.63401$ and $[HCO_3^{-}] + [CO_3^{2-}] = 0.041185254 M$, solve for $[CO_3^{2-}]$ and substitute into the second equation.

 $\begin{bmatrix} CO_3^{2^-} \end{bmatrix} = 0.63401 \ [HCO_3^-] \text{ and } \ [HCO_3^-] + 0.63401 \ [HCO_3^-] = 0.041185254 M \\ \ [HCO_3^-] = 0.025205019 M \text{ and } \ [CO_3^{2^-}] = 0.015980234 M (unrounded) \\ \text{Moles of } HCO_3^- \text{ needed} = (0.025205019 \text{ mol } HCO_3^-/L) (10^{-3}L/1 \text{ mL}) (25.0 \text{ mL}) \\ = 0.0006301255 \text{ mol } (unrounded) \\ \text{Moles of } HCO_3^- \text{ initially} = (0.023558484 \text{ mol } HCO_3^-/L) (10^{-3}L/1 \text{ mL}) (25.0 \text{ mL}) \\ = 0.000588962 \text{ mol } (unrounded) \\ \text{This would require the addition of } (0.0006301255 \text{ mol} - 0.000588962 \text{ mol}) \\ = 0.0000411635 \text{ mol } HCO_3^- (unrounded) \\ \text{The } HCl \text{ added reacts with } CO_3^{2^-} \text{ to produce additional } HCO_3^-: \\ CO_3^{2^-} + HCl \rightarrow HCO_3^- + Cl^- \\ \text{To produce } 0.0000411635 \text{ mol } HCO_3^- \text{ would require the addition of } 0.0000411635 \text{ mol } HCL. \\ \end{bmatrix}$

Mass HCl =
$$(0.0000411635 \text{ mol HCl}) \left(\frac{36.46 \text{ g HCl}}{1 \text{ mol HCl}} \right) = 0.0015008 = 0.0015 \text{ g HCl}$$

- 19.22 Select conjugate pairs with K_a values close to the desired [H₃O⁺].
 a) For pH ≈ 4.5, [H₃O⁺] = 10^{-4.5} = 3.2 x 10⁻⁵ M. Some good selections are the HOOC(CH₂)₄COOH/HOOC(CH₂)₄COOH⁻ conjugate pair with K_a equal to 3.8 x 10⁻⁵ or C₆H₅CH₂COOH/C₆H₅CH₂COO⁻ conjugate pair with K_a equal to 4.9 x 10⁻⁵. From the base list, the C₆H₅NH₂/C₆H₅NH₃⁺ conjugate pair comes close with K_a = 1.0 x 10⁻¹⁴/4.0 x 10⁻¹⁰ = 2.5 x 10⁻⁵.
 b) For pH ≈ 7.0, [H₃O⁺] = 10^{-7.0} = 1.0 x 10⁻⁷ M. Two choices are the H₂PO₄⁻/HPO₄²⁻ conjugate pair with K_a of 6.3 x 10⁻⁸ and the H₂AsO₄⁻/HAsO₄²⁻ conjugate pair with K_a of 1.1 x 10⁻⁷.
- 19.23 Select conjugate pairs that have K_a or K_b values close to the desired $[H_3O^+]$ or $[OH^-]$. a) For $[H_3O^+] \approx 1 \ge 10^{-9} M$, the HOBr/OBr⁻ conjugate pair comes close with K_a equal to 2.3 $\ge 10^{-9}$. From the base list, $K_b = 1.0 \ge 10^{-14}/1 \ge 10^{-9} = 1 \ge 10^{-5}$, the NH₃/NH₄⁺ conjugate pair comes close with $K_b = 1.76 \ge 10^{-5}$. b) For $[OH^-] \approx 3 \ge 10^{-5} M$, the NH₃/NH₄⁺ conjugate pair comes close; also, it is possible to choose $K_a = 1.0 \ge 10^{-14}/3 \ge 10^{-5} = 3.3 \ge 10^{-10}$, the C₆H₅OH/C₆H₅O⁻ comes close with $K_a = 1.0 \ge 10^{-10}$.
- 19.24 The value of the K_a from the appendix: $K_a = 2.9 \times 10^{-8}$ $pK_a = -\log 2.9 \times 10^{-8} = 7.5376$ (unrounded) Use the Henderson-Hasselbalch equation to determine the pH.

$$pH = pKa + log\left(\frac{[ClO^{-}]}{[HClO]}\right)$$

a) $pH = 7.5376 + log\left(\frac{[0.100]}{[0.100]}\right) = 7.5376 = 7.54b) $pH = 7.5376 + log\left(\frac{[0.150]}{[0.100]}\right) = 7.71369 = 7.71c) $pH = 7.5376 + log\left(\frac{[0.100]}{[0.150]}\right) = 7.3615 = 7.36d) The reaction is NaOH + HClO \rightarrow Na⁺ + ClO⁻ + H₂O
The original moles of HClO and OCl⁻ are both = (0.100 mol/L) (L) = 0.100 mol
NaOH + HClO \rightarrow Na⁺ + ClO⁻ + H₂O
Initial: 0.0050 mol 0.100 mol 0.100 mol
Change: -0.0050 mol -0.0050 mol +0.0050 mol
Final: 0 mol 0.095 mol 0.105 mol$$$

pH =
$$7.5376 + \log\left(\frac{[0.105]}{[0.095]}\right) = 7.5811 = 7.58$$

19.25 The value of the K_a from the appendix: $K_a = 6.3 \times 10^{-8}$ (we are using K_{a2} since we are dealing with the equilibrium in which the second hydrogen ion is being lost). Determine the pK_a using $pK_a = -\log 6.3 \times 10^{-8} = 7.200659451$ (unrounded) Use the Henderson-Hasselbalch equation:

$$pH = pK_a + \log\left(\frac{[HPO_4^{2^-}]}{[H_2PO_4^{-}]}\right)$$

$$7.40 = 7.200659451 + \log\left(\frac{[HPO_4^{2^-}]}{[H_2PO_4^{-}]}\right)$$

$$0.19934055 = \log\left(\frac{[HPO_4^{2^-}]}{[H_2PO_4^{-}]}\right)$$

$$\frac{[HPO_4^{2^-}]}{[H_2PO_4^{-}]} = 1.582486 = 1.6$$

- 19.26 You need to know the p K_a value for the indicator. (Its transition range is approximately $pK_a \pm 1$.) If the indicator is a diprotic acid, it will have two transition ranges.
- To see a distinct color in a mixture of two colors, you need one color to be about 10 times the intensity of the 19.27 other. For this to take place, the concentration ratio [HIn]/[In⁻] needs to be greater than 10:1 or less than 1:10. This will occur when $pH = pK_a - 1$ or $pH = pK_a + 1$, respectively, giving a transition range of about two units.
- 19.28 This is because the concentration of indicator is very small.
- 19.29 The equivalence point in a titration is the point at which the number of moles of OH equals the number of moles of H_3O^+ (be sure to account for stoichiometric ratios, e.g., 1 mol of $Ca(OH)_2$ produces 2 moles of OH⁻). The endpoint is the point at which the added indicator changes color. If an appropriate indicator is selected, the endpoint is close to the equivalence point, but not normally the same. Using an indicator that changes color at a pH after the equivalence point means the equivalence point is reached first. However, if an indicator is selected that changes color at a pH before the equivalence point, then the endpoint is reached first.
- 19.30 At the equivalence point, the slope of the titration curve is its maximum value.
- 19.31 a) The initial pH is lowest for flask solution of the strong acid, followed by the weak acid and then the weak base. In other words, strong acid-strong base < weak acid-strong base < strong acid-weak base. b) At the equivalence point, the moles of H_3O^+ equal the moles of OH^- , regardless of the type of titration. However, the strong acid-strong base equivalence point occurs at pH = 7.00 because the resulting cation-anion combination does not react with water. An example is the reaction NaOH + HCl \rightarrow H₂O + NaCl. Neither Na⁺ nor Cl⁻ ions dissociate in water. The weak acid-strong base equivalence point occurs at pH > 7, because the anion of the weak acid is weakly

basic, whereas the cation of the strong base does not react with water. An example is the reaction HCOOH + $NaOH \rightarrow HCOO^- + H_2O + Na^+$. The conjugate base, $HCOO^-$, reacts with water according to this reaction: $HCOO^- + H_2O \rightarrow HCOOH + OH^-$.

The strong acid-weak base equivalence point occurs at pH < 7, because the anion of the strong acid does not react with water, whereas the cation of the weak base is weakly acidic. An example is the reaction $HCl + NH_3 \rightarrow$ $NH_4^+ + Cl^-$. The conjugate acid, NH_4^+ , dissociates slightly in water: $NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+$. In rank order of pH of equivalence point, strong acid-weak base < strong acid-strong base < weak acid-strong base.

- 19.32 In the buffer region, comparable amounts of weak acid and its conjugate base are present. At the equivalence point, the predominant species is the conjugate base. In a strong acid-weak base titration, the weak base and its conjugate acid are the predominant species present.
- 19.33 At the very center of the buffer region of a weak acid-strong base titration, the concentration of the weak acid and its conjugate base are equal, which means that at this point the pH of the solution equals the pK_a of the weak acid.
- 19.34 a) The reactions are:

OH⁻(<i>aq</i>)	+	$H_3PO_4(aq) \rightarrow$	$H_2PO_4(aq) +$	$H_2O(l)$	$K_{al} = 7.2 \text{ x } 10^{-3}$
OH⁻(<i>aq</i>)	+	$\mathrm{H}_{2}\mathrm{PO}_{4}^{-}(aq) \rightarrow$	$HPO_4^{2-}(aq) +$	$H_2O(l)$	$K_{a2} = 6.3 \text{ x } 10^{-8}$

The correct order is **C**, **B**, **D**, **A**. Scene C shows the solution before the addition of any NaOH. Scene B is halfway to the first equivalence point; Scene D is halfway to the second equivalence point and Scene A is at end of the titration.

b) Scene B is the second scene in the correct order. This is halfway towards the first equivalence point when there are equal amounts of the acid and conjugate base, which constitutes a buffer.

$$pH = pKa + log\left(\frac{[H_2PO_4^-]}{[H_3PO_4]}\right)$$

Determine the p K_a using p $K_a = -\log 7.2 \ge 10^{-3} = 2.142668$

pH = 2.1426675 + log
$$\left(\frac{[3]}{[3]}\right)$$
 = 2.1426675 = **2.14**

c) 10.00 mL of NaOH is required to reach the first half-equivalence point. Therefore, an additional 10.00 mL of NaOH is required to reach the first equivalence point, for a total of 20 mL for the first equivalence point. An additional 20.00 mL of NaOH will be required to reach the second equivalence point where only HPO_4^{2-} remains. A total of **40.00 mL** of NaOH is required to reach Scene A.

- 19.35 Indicators have a pH range that is approximated by $pK_a \pm 1$. The pK_a of cresol red is $-\log (3.5 \times 10^{-9}) = 8.5$, so the indicator changes color over an approximate range of **7.5 to 9.5**.
- 19.36 Indicators have a pH range that is approximated by $pK_a \pm 1$. The pK_a of ethyl red is $-\log (3.8 \times 10^{-6}) = 5.42$, so the indicator changes color over an approximate range of **4.4 to 6.4**.
- 19.37 Choose an indicator that changes color at a pH close to the pH of the equivalence point.a) The equivalence point for a strong acid-strong base titration occurs at pH = 7.0. Bromthymol blue is an indicator that changes color around pH 7.

b) The equivalence point for a weak acid-strong base is above pH 7. Estimate the pH at equivalence point from equilibrium calculations.

At the equivalence point, all of the HCOOH and NaOH have been consumed; the solution is $0.050 M \text{ HCOO}^-$. (The volume doubles because equal volumes of base and acid are required to reach the equivalence point. When the volume doubles, the concentration is halved.) The weak base HCOO⁻ undergoes a base reaction: Concentration. M COOH⁻(aa) + H₂O(l) \leftrightarrows \equiv COOH(aa) + OH⁻(aa)

Concentration, *M* COOH (*aq*) + H₂O(*t*) + COOH(*aq*) + OH (*aq*)
Initial: 0.050 M 0 0
Change: -x +x +x
Equilibrium: 0.050 - x x x x
The *K*_a for HCOOH is 1.8 x 10⁻⁴, so *K*_b = 1.0 x 10⁻¹⁴/1.8 x 10⁻⁴ = 5.5556 x 10⁻¹¹ (unrounded)

$$K_{b} = \frac{[\text{HCOOH}][\text{OH}^{-}]}{[\text{HCOO}^{-}]} = \frac{[x][x]}{[0.050 - x]} = \frac{[x][x]}{[0.050]} = 5.5556 \text{ x } 10^{-11}$$
[OH⁻] = x = 1.666673 x 10⁻⁶ *M*
pOH = -log (1.666673 x 10⁻⁶) = 5.7781496 (unrounded)
pH = 14.00 - pOH = 14.00 - 5.7781496 = 8.2218504 = 8.22

Choose thymol blue or phenolphthalein.

19.38 a) Determine the K_a (of the conjugate acid) from the K_b reported in the Appendix for CH₃NH₂. $K_a = K_w/K_b = (1.0 \times 10^{-14})/(4.4 \times 10^{-4}) = 2.2727 \times 10^{-11}$ (unrounded) An acid-base titration of two components of equal concentration and at a 1:1 ratio gives a solution of the conjugates with half the concentration. In this case, the concentration of CH₃NH₃⁺ = 0.050 *M*.

$$K_{a} = \frac{\left[H_{3}O^{+}\right]\left[CH_{3}NH_{2}\right]}{\left[CH_{3}NH_{3}^{+}\right]} = \frac{x^{2}}{0.050 - x} = \frac{x^{2}}{0.050} = 2.2727 \times 10^{-11}$$
$$x = [H_{3}O^{+}] = 1.0659971 \times 10^{-6} M \text{ (unrounded)}$$
$$pH = -\log [H_{3}O^{+}] = -\log (1.0659971 \times 10^{-6}) = 5.97224 = 5.97$$

Either methyl red or alizarin is acceptable.

b) This is a strong acid-strong base titration; thus, the equivalence point is at pH = 7.00. The best choice would be **bromthymol blue**; alizarin might be acceptable.

19.39 The reaction occurring in the titration is the neutralization of H_3O^+ (from HCl) by OH⁻ (from NaOH):

 $HCl(aq) + NaOH(aq) \rightarrow H_2O(l) + NaCl(aq)$ or, omitting spectator ions:

$$H_3O^+(aq) + OH^-(aq) \rightarrow 2 H_2O(l)$$

For the titration of a strong acid with a strong base, the pH before the equivalence point depends on the excess concentration of acid and the pH after the equivalence point depends on the excess concentration of base. At the equivalence point, there is not an excess of either acid or base so the pH is 7.0. The equivalence point occurs when 40.00 mL of base has been added. Use (M)(V) to determine the number of moles.

The initial number of moles of HCl = $(0.1000 \text{ mol HCl} / \text{L}) (10^{-3} \text{ L} / 1 \text{ mL}) (40.00 \text{ mL}) = 4.000 \text{ x} 10^{-3} \text{ mol HCl}$ a) At 0 mL of base added, the concentration of hydronium ion equals the original concentration of HCl. pH = $-\log (0.1000 M) = 1.0000$

 $p_{11} = -\log(0.1000 M) = 1.0000$

b) Determine the moles of NaOH added: Moles of NaOH = $(0.1000 \text{ mol NaOH} / \text{L}) (10^{-3} \text{ L} / 1 \text{ mL}) (25.00 \text{ mL}) = 2.500 \text{ x} 10^{-3} \text{ mol NaOH}$ HCl(aa) +NaOH(aq) $H_2O(l)$ + NaCl(aq) $4.000 \text{ x} 10^{-3} \text{ mol}$ $2.500 \times 10^{-3} \text{ mol}$ Initial: 0 $2.500 \times 10^{-3} \text{ mol}$ $-2.500 \text{ x } 10^{-3} \text{ mol}$ $+2.500 \text{ x } 10^{-3} \text{ mol}$ Change: $1.500 \ge 10^{-3} \mod 10^{-3}$ 0 $2.500 \times 10^{-3} \text{ mol}$ Final: The volume of the solution at this point is $[(40.00 + 25.00) \text{ mL}] (10^{-3} \text{ L} / 1 \text{ mL}) = 0.06500 \text{ L}$ The molarity of the excess HCl is $(1.500 \times 10^{-3} \text{ mol HCl}) / (0.06500 \text{ L}) = 0.02307 M (unrounded)$ pH = -log(0.02307) = 1.6368(Note that the NaCl product is a neutral salt that does not affect the pH.) c) Determine the moles of NaOH added: Moles of NaOH = $(0.1000 \text{ mol NaOH} / \text{L}) (10^{-3} \text{ L} / 1 \text{ mL}) (39.00 \text{ mL}) = 3.900 \text{ x} 10^{-3} \text{ mol NaOH}$ NaOH(aq) NaCl(aq) HCl(aq)+ $H_2O(l) +$ \rightarrow $4.000 \times 10^{-3} \text{ mol}$ 4.900 x 10⁻³ mol Initial: 0 $-3.900 \text{ x } 10^{-3} \text{ mol}$ $-3.900 \text{ x } 10^{-3} \text{ mol}$ +3.900 x 10⁻³ mol Change: $1.000 \ge 10^{-4} \mod 10^{-4}$ 3.900 x 10⁻³ mol Final: 0 The volume of the solution at this point is $[(40.00 + 39.00) \text{ mL}] (10^{-3} \text{ L/1 mL}) = 0.07900 \text{ L}$ The molarity of the excess HCl is $(1.00 \times 10^{-4} \text{ mol HCl})/(0.07900 \text{ L}) = 0.0012658 M$ (unrounded) pH = -log (0.0012658) = 2.898d) Determine the moles of NaOH added: Moles of NaOH = $(0.1000 \text{ mol NaOH}/\text{L}) (10^{-3} \text{ L}/1 \text{ mL}) (39.90 \text{ mL}) = 3.990 \text{ x} 10^{-3} \text{ mol NaOH}$ NaOH(aq) HCl(aq) + \rightarrow $H_2O(l)$ + NaCl(*aq*) Initial: $4.000 \text{ x} 10^{-3} \text{ mol}$ 3.990 x 10⁻³ mol 0 -3.990 x 10⁻³ mol $-3.990 \text{ x } 10^{-3} \text{ mol}$ +3.990 x 10⁻³ mol Change: $1.000 \ge 10^{-5} \mod 10^{-5}$ $3.990 \times 10^{-3} \text{ mol}$ Final: 0 The volume of the solution at this point is $[(40.00 + 39.90) \text{ mL}] (10^{-3} \text{ L/1 mL}) = 0.07990 \text{ L}$ The molarity of the excess HCl is $(1.0 \times 10^{-5} \text{ mol HCl})/(0.07990 \text{ L}) = 0.000125156 M (unrounded)$ pH = -log (0.000125156) = 3.903e) Determine the moles of NaOH added: Moles of NaOH = $(0.1000 \text{ mol NaOH/L}) (10^{-3} \text{ L/1 mL}) (40.00 \text{ mL}) = 4.000 \text{ x} 10^{-3} \text{ mol NaOH}$ NaOH(aq) HCl(aq) + \rightarrow $H_2O(l)$ + NaCl(*aq*) $4.000 \times 10^{-3} \text{ mol}$ $4.000 \times 10^{-3} \text{ mol}$ Initial: 0 $-4.000 \times 10^{-3} \text{ mol}$ $-4.000 \text{ x } 10^{-3} \text{ mol}$ Change: +4.000 x 10⁻³ mol 4.000 x 10⁻³ mol Final: 0 0 The NaOH will react with an equal amount of the acid and 0.0 mol HCl will remain. This is the equivalence point of a strong acid-strong base titration, thus, the pH is **7.00**. Only the neutral salt NaCl is in solution at the

equivalence point.

f) The NaOH is now in excess. It will be necessary to calculate the excess base after reacting with the HCl. The excess strong base will give the pOH, which can be converted to the pH.

Determine the moles of NaOH added:

Moles of NaOH = (0.1000 mol NaOH/L) (10^{-3} L/1 mL) (40.10 mL) = $4.010 \times 10^{-3} \text{ mol NaOH}$ The HCl will react with an equal amount of the base, and 1.0×10^{-5} mol NaOH will remain.

$HCl(ag) \rightarrow NgOH(ag) \rightarrow HO(l) \rightarrow NgCl(ag)$	
Initial: $4\ 000\ \text{x}\ 10^{-3}\ \text{mol}$ $4\ 010\ \text{x}\ 10^{-3}\ \text{mol}$ $ 0$	
Change: $-4000 \times 10^{-3} \text{ mol}$	³ mol
Einal: 0 1 000 x 10^{-5} mol 4 000 x 10^{-5}	$\frac{101}{3}$ mol
The volume of the solution at this point is $[(40.00 + 40.10) \text{ mL}] (10^{-3} \text{ L/1 mL}) = 0.08010 \text{ L}$	mor
The molarity of the excess NaOH is $(1.0 \times 10^{-5} \text{ mol NaOH})/(0.08010 \text{ L}) = 0.00012484 M (m$	nrounded)
$nOH = -\log(0.00012484) = 3.9036$ (unrounded)	in ounded)
pH = 14.00 - pOH = 14.00 - 3.9036 = 10.09637 = 10.10	
g) Determine the moles of NaOH added:	
Moles of NaOH = $(0.1000 \text{ mol NaOH/L}) (10^{-3} \text{ L/1 mL}) (50.00 \text{ mL}) = 5.000 \text{ x} 10^{-3}$	mol NaOH
The HCl will react with an equal amount of the base, and 1.000×10^{-3} mol NaOH v	will remain.
$HCl(aq)$ + $NaOH(aq) \rightarrow H_2O(l)$ + $NaCl(aq)$	
Initial: $4.000 \times 10^{-3} \text{ mol}$ $5.000 \times 10^{-3} \text{ mol}$ — 0	
<u>Change: $-4.000 \ge 10^{-3} \mod -4.000 \ge 10^{-3} = 10^{-3} \boxdot -4.000 \ge 10^{-3} = 10^{-3} \boxdot -4.000 \ge 10^{-3} = 1$</u>	³ mol
Final:0 $1.000 \ge 10^{-3} \mod$ $4.000 \ge 10^{-3} \mod$	³ mol
The volume of the solution at this point is $[(40.00 + 50.00) \text{ mL}] (10^{-3} \text{ L/1 mL}) = 0.09000 \text{ L}$	
The molarity of the excess NaOH is $(1.000 \times 10^{-3} \text{ mol NaOH})/(0.09000 \text{ L}) = 0.011111 M (u$	nrounded)
pOH = -log (0.011111) = 1.95424 (unrounded)	
pH = 14.00 - pOH = 14.00 - 1.95424 = 12.04576 = 12.05	
The reaction occurring in the titration is the neutralization of OH (from KOH) by H_3O (from KOH) by H_3O	m HBr):
$HBr(aq) + KOH(aq) \rightarrow H_2O(l) + KBr(aq)$	
$H_3O(aq) + OH(aq) \rightarrow 2 H_2O(l)$	1 (1
For the titration of a strong base with a strong acid, the pH before the equivalence point dep	ends on the excess
concentration of base and the pH after the equivalence point depends on the excess concentr	ation of acid. At the
equivalence point, there is not an excess of either acid or base so pH is 7.0. The equivalence	point occurs when
50.00 mL of actual has been added. The initial number of moles of KOU = $(0.1000 \text{ mol KOU/L})(10^{-3} \text{ L/1 mL})(20.00 \text{ mL})$	
$= 2.000 \text{ x} 10^{-3} \text{ mol KOH} = (0.1000 \text{ mol KOH/L})(10 \text{ L/1 mL})(50.00 \text{ mL})$	
- 3.000 x 10 min KOII a) At 0 mL of acid added, the concentration of hydroxide ion equals the original concentration	on of KOH
$pOH = -\log(0.1000 M) = 1.0000$	JI OI KOII.
nH = 14.00 - nOH = 14.00 - 1.0000 = 13.00	
b) Determine the moles of HBr added	
Moles of HBr = $(0.1000 \text{ mol HBr/L}) (10^{-3} \text{ L/1 mL}) (15.00 \text{ mL}) = 1.500 \text{ x} 10^{-3} \text{ mol}$	HBr
The HBr will react with an equal amount of the base, and 1.500×10^{-3} mol KOH w	ill remain.
The volume of the solution at this point is $[(30.00 + 15.00) \text{ mL}](10^{-3} \text{ L/1 mL}) = 0.10 \text{ mL}$	04500 L
The molarity of the excess KOH is $(1.500 \times 10^{-3} \text{ mol KOH})/(0.04500 \text{ L}) = 0.03333$	M (unrounded)
pOH = -log(0.03333) = 1.4772	
pH = 14.00 - pOH = 14.00 - 1.4772 = 12.5228 = 12.52	
c) Determine the moles of HBr added:	
Moles of HBr = $(0.1000 \text{ mol HBr/L}) (10^{-3} \text{ L/1 mL}) (29.00 \text{ mL}) = 2.900 \text{ x} 10^{-3} \text{ mol}$	HBr
The HBr will react with an equal amount of the base, and 1.00×10^{-4} mol KOH will	l remain.
The volume of the solution at this point is $[(30.00 + 29.00) \text{ mL}](10^{-3} \text{ L/1 mL}) = 0.10 \text{ mL}$	05900 L
The molarity of the excess KOH is $(1.00 \times 10^{-4} \text{ mol KOH})/(0.05900 \text{ L}) = 0.001694$	9 M (unrounded)
pOH = -log(0.0016949) = 2.7708559	
pH = 14.00 - pOH = 14.00 - 2.7708559 = 11.2291441 = 11.23	
d) Determine the moles of HBr added: (2 - 3) = (2 - 3)	UD
Moles of HBr = $(0.1000 \text{ mol HBr/L})(10^{-5} \text{ L/1 mL})(29.90 \text{ mL}) = 2.990 \text{ x} 10^{-5} \text{ mol}$	HBr .
The HBr will react with an equal amount of the base, and 1.0×10^{-5} mol KOH will The exclusion of the exclusion of this molecular (100 - 00 - 11) (10 ⁻³ L (1 - 1)) = 0.000000000000000000000000000000000	remain.
I ne volume of the solution at this point is $[(30.00 + 29.90) \text{ mL}](10^{\circ} \text{ L/1 mL}) = 0.001660$	U599UL
The motarity of the excess KOH is $(1.0 \times 10^{-1} \text{ mot KOH})/(0.05990 \text{ L}) = 0.0001669$	44 M (unrounded)
pUH = -10g (0.000100944) = 3.7774208	
pn - 14.00 - p0n - 14.00 - 3.7774208 = 10.2223732 = 10.2	

19.40

e) Determine the moles of HBr added:

Moles of HBr = $(0.1000 \text{ mol HBr/L}) (10^{-3} \text{ L/1 mL}) (30.00 \text{ mL}) = 3.000 \text{ x} 10^{-3} \text{ mol HBr}$ The HBr will react with an equal amount of the base and 0.0 mol KOH will remain. This is the equivalence point of a strong acid–strong base titrations; thus, the pH is **7.00**.

f) The HBr is now in excess. It will be necessary to calculate the excess base after reacting with the HCl. The excess strong acid will give the pH.

Determine the moles of HBr added:

Moles of HBr = (0.1000 mol HBr/L) $(10^{-3} \text{ L/1 mL}) (30.10 \text{ mL}) = 3.010 \text{ x} 10^{-3} \text{ mol HBr}$ The HBr will react with an equal amount of the base, and $1.0 \text{ x} 10^{-5}$ mol HBr will remain. The volume of the solution at this point is $[(30.00 + 30.10) \text{ mL}] (10^{-3} \text{ L/1 mL}) = 0.06010 \text{ L}$ The molarity of the excess HBr is $(1.0 \text{ x} 10^{-5} \text{ mol HBr})/(0.06010 \text{ L}) = 0.000166389 M (unrounded)$ pH = -log (0.000166389) = 3.778874 = 3.8

g) Determine the moles of HBr added:

Moles of HBr = (0.1000 mol HBr/L) (10^{-3} L/1 mL) (40.00 mL) = 4.000×10^{-3} mol HBr The HBr will react with an equal amount of the base, and 1.000×10^{-3} mol HBr will remain. The volume of the solution at this point is [(30.00 + 40.00) mL] (10^{-3} L/1 mL) = 0.07000 L The molarity of the excess HBr is (1.000×10^{-3} mol HBr)/((0.07000 L) = 0.0142857 M (unrounded) pH = $-\log (0.0142857) = 1.845098 = 1.85$

19.41 This is a titration between a weak acid and a strong base. The pH before addition of the base is dependent on the K_a of the acid (labeled HBut). Prior to reaching the equivalence point, the added base reacts with the acid to form butanoate ion (labeled But⁻). The equivalence point occurs when 20.00 mL of base is added to the acid because at this point, moles acid = moles base. Addition of base beyond the equivalence point is simply the addition of excess OH⁻.

The initial number of moles of HBut = (M)(V) =(0.1000 mol HBut/L) (10^{-3} L/1 mL) (20.00 mL) = 2.000 x 10^{-3} mol HBut a) At 0 mL of base added, the concentration of $[H_3O^+]$ is dependent on the dissociation of butanoic acid: H_3O^+ + Hbut + H₂O ⇇ But⁻ 0.100 M Initial: 0 Change: -*x* Equilibrium: 0.100 - x $K_{\rm a} = \frac{\left[{\rm H}_{3}{\rm O}^{+}\right] \left[{\rm But}^{-}\right]}{\left[{\rm HBut}\right]} = \frac{x^{2}}{0.1000 - x} = \frac{x^{2}}{0.1000} = 1.54 \text{ x } 10^{-5}$ $x = [H_3O^+] = 1.2409673 \times 10^{-3} M$ (unrounded) $pH = -log [H_3O^+] = -log (1.2409673 \times 10^{-3}) = 2.9062 = 2.91$ b) Determine the moles of NaOH added: Moles of NaOH = $(0.1000 \text{ mol NaOH/L}) (10^{-3} \text{ L/1 mL}) (10.00 \text{ mL}) = 1.000 \text{ x} 10^{-3} \text{ mol NaOH}$ The NaOH will react with an equal amount of the acid, and 1.000×10^{-3} mol HBut will remain. An equal number of moles of But⁻ will form. HBut(aq) NaOH(aq) \rightarrow H₂O(l) + $But^{-}(aq)$ $Na^{+}(aq)$ $\begin{array}{c} 2.000 \text{ x } 10^{-3} \text{ mol} \\ -1.000 \text{ x } 10^{-3} \text{ mol} \\ \end{array} \begin{array}{c} 1.000 \text{ x } 10^{-3} \text{ mol} \\ -1.000 \text{ x } 10^{-3} \text{ mol} \\ \end{array}$ 0 Initial: $+1.000 \text{ x } 10^{-3} \text{ mol}$ Change: $1.000 \ge 10^{-3} \text{ mol}$ Final: 0 $1.000 \ge 10^{-3} \mod 10^{-3}$ The volume of the solution at this point is $[(20.00 + 10.00) \text{ mL}] (10^{-3} \text{ L/1 mL}) = 0.03000 \text{ L}$ The molarity of the excess HBut is $(1.000 \times 10^{-3} \text{ mol HBut})/(0.03000 \text{ L}) = 0.03333 M$ (unrounded) The molarity of the But⁻ formed is $(1.000 \times 10^{-3} \text{ mol But}^{-})/(0.03000 \text{ L}) = 0.03333 M (unrounded)$ Using a reaction table for the equilibrium reaction of HBut: HBut +H₂O ⇆ $H_{3}O^{+}$ + But⁻ 0.03333 M 0.03333 M Initial:

Change: $-x$	$+\chi$
Equilibrium: $0.03333 - x$	0.03333 + x

 $K_{a} = \frac{\left[H_{3}O^{+}\right]\left[But^{-}\right]}{\left[HBut\right]} = \frac{x(0.0333 + x)}{0.03333 - x} = \frac{x(0.03333)}{0.03333} = 1.54 \times 10^{-5}$ $x = [H_{3}O^{+}] = 1.54 \times 10^{-5} M \text{ (unrounded)}$ $pH = -\log [H_{3}O^{+}] = -\log (1.54 \times 10^{-5}) = 4.812479 = 4.81$

c) Determine the moles of NaOH added:

Moles of NaOH = $(0.1000 \text{ mol NaOH/L}) (10^{-3} \text{ L/1 mL}) (15.00 \text{ mL}) = 1.500 \text{ x } 10^{-3} \text{ mol NaOH}$ The NaOH will react with an equal amount of the acid, and $5.00 \text{ x } 10^{-4} \text{ mol HBut will remain}$, and $1.500 \text{ x } 10^{-3} \text{ moles of But}$ will form.

Initial: Change: $1.500 \ge 10^{-3} \mod 10^{-3}$ $5.000 \ge 10^{-4} \mod 10^{-4}$ 0 Final: The volume of the solution at this point is $[(20.00 + 15.00) \text{ mL}] (10^{-3} \text{ L/1 mL}) = 0.03500 \text{ L}$ The molarity of the excess HBut is $(5.00 \times 10^{-4} \text{ mol HBut})/(0.03500 \text{ L}) = 0.0142857 M (unrounded)$ The molarity of the But⁻ formed is (1.500 x 10^{-3} mol But⁻) (0.03500 L) = 0.0428571 *M* (unrounded) Using a reaction table for the equilibrium reaction of HBut: \Rightarrow H₃O⁺ + HBut + H_2O But⁻ 0.0142857 M 0.0428571 M Initial:
 Change:
 -x +x

 Equilibrium:
 0.0142857 - x
 0.0428571 + x
 $K_{\rm a} = \frac{\left[{\rm H}_{3}{\rm O}^{+}\right]\left[{\rm But}^{-}\right]}{\left[{\rm HBut}\right]} = \frac{x(0.0428571 + x)}{0.0142857 - x} = \frac{x(0.0428571)}{0.0142857} = 1.54 \times 10^{-5}$ $x = [H_3O^+] = 5.1333 \times 10^{-6} M$ (unrounded) $pH = -log[H_3O^+] = -log(5.1333 \times 10^{-6}) = 5.2896 = 5.29$ d) Determine the moles of NaOH added: Moles of NaOH = $(0.1000 \text{ mol NaOH/L}) (10^{-3} \text{ L/1 mL}) (19.00 \text{ mL}) = 1.900 \text{ x} 10^{-3} \text{ mol NaOH}$ The NaOH will react with an equal amount of the acid, and 1.00×10^{-4} mol HBut will remain, and $1.900 \ge 10^{-3}$ moles of But⁻ will form. $But^{-}(aq) +$ $Na^+(aq)$ $\begin{array}{c} 0 & - \\ +1.900 \text{ x } 10^{-3} \text{ mol} & - \end{array}$ Initial: Change: $1.000 \ge 10^{-4} \mod 10^{-4}$ $1.900 \ge 10^{-3} \mod 10^{-3}$ 0 Final: The volume of the solution at this point is $[(20.00 + 19.00) \text{ mL}] (10^{-3} \text{ L/1 mL}) = 0.03900 \text{ L}$ The molarity of the excess HBut is $(1.00 \times 10^{-4} \text{ mol HBut})/(0.03900 \text{ L}) = 0.0025641 M (unrounded)$ The molarity of the But⁻ formed is $(1.900 \times 10^{-3} \text{ mol But})/(0.03900 \text{ L}) = 0.0487179 M (unrounded)$ Using a reaction table for the equilibrium reaction of HBut: HBut + H_2O \leftrightarrows H_3O^+ + But⁻ Initial: 0.0025641 M 0.0487179 M Change: -x+xEquilibrium: 0.0025641 - x0.0487179 + x

 $K_{a} = \frac{\left[H_{3}O^{+}\right]\left[But^{-}\right]}{\left[HBut\right]} = \frac{x(0.0487179 + x)}{0.0025641 - x} = \frac{x(0.0487179)}{0.0025641} = 1.54 \times 10^{-5}$ $x = [H_{3}O^{+}] = 8.1052631 \times 10^{-7} M \text{ (unrounded)}$ $pH = -\log [H_{3}O^{+}] = -\log (8.1052631 \times 10^{-7}) = 6.09123 = 6.09$ e) Determine the moles of NaOH added:

Moles of NaOH = $(0.1000 \text{ mol NaOH/L}) (10^{-3} \text{ L/1 mL}) (19.95 \text{ mL}) = 1.995 \text{ x } 10^{-3} \text{ mol NaOH}$ The NaOH will react with an equal amount of the acid, and 5 x 10^{-6} mol HBut will remain, and $1.995 \text{ x } 10^{-3}$ moles of But⁻ will form.

	2 .000 A 10 III01	1.))) A 10 III	51				
Change:	-1.995 x 10 ⁻³ mol	$-1.995 \text{ x } 10^{-3} \text{ mc}$	ol —		+1.995 x	10^{-3} r	nol —
Final:	$5.000 \ge 10^{-6} \mod 10^{-6}$	0			1.995 x	10^{-3} r	nol
The volume	of the solution at thi	s point is $[(20.00 + 1)]$	9 95) mL1 (10^{-3} I	/1 mL):	= 0.03995	L	-
The molarity	of the excess HBut	is $(5 \times 10^{-6} \text{ mol HBu})$	$(10^{-1})/(0^{-1})$	0.00012	5156 <i>M</i> (u	nround	ded)
The molarity	of the But ⁻ formed	is $(1.995 \times 10^{-3} \text{ mol I})$	But ⁻)/(0.03995 I.)	0.00012	9130 M (u 99374 M (u	inroun	ded)
Using a react	tion table for the equ	ilibrium reaction of l	HBut	, 0.012		intoun	ucu)
Using a read	HBut +		$H_{2}\Omega^{+} + B_{11}$	t ⁻			
Initial	0 000125156 M	$\Pi_2 \cup \neg$		100374 A	Л		
Change:	-r		0.04 +r	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Equilibrium:	$\frac{-x}{0.000125156 - x}$		0.04	99374 +	x		
	$\left[H_{3}O^{+} \right] \left[But^{-} \right]$	x(0.0499374 + x)	x(0.0499374))	c.		
<i>K</i> _a =	$\frac{[]}{[HBut]} =$	$=\frac{1}{0.000125156-x}$	$=\frac{0.000125156}{0.000125156}$	- = 1.54	$x 10^{-5}$		
	$x = [H_3O^+] = 3$	$.859637 \ge 10^{-8} M$ (un	rounded)				
	$pH = -log [H_2]$	$D^+] = -\log(3.859637)$	$(x \ 10^{-8}) = 7.41342$	5 = 7.41			
f) Determine	the moles of NaOH	added:	. ,				
, = Mol	les of NaOH = (0.10)	00 mol NaOH/L) (10	$^{-3}$ L/1 mL) (20.00	0 mL =	2.000 x 10	$)^{-3}$ mo	l NaOH
The	NaOH will react wi	ith an equal amount of	of the acid and 0	mol HR	ut will rem	ain a	nd
2.00	$0 \ge 10^{-3}$ moles of B	ut will form This is	the equivalence i	oint		, u	
2.00	HBut(aa)	+ NaOH (aa)	\rightarrow H ₂ O(<i>I</i>)	+	$\operatorname{But}^{-}(aa)$	+	$Na^+(a)$
Initial	$2000 \text{ x}10^{-3} \text{ mol}$	$2000 \times 10^{-3} \text{ me}$	$\gamma \Pi_2 O(l)$		$\int \frac{du}{dt} \left(\frac{du}{dt} \right)$		1 tu (uy
Change:	$-2.000 \times 10^{-3} \text{ mol}$	$-2.000 \times 10^{-3} \text{ mc}$			+2000 v	10^{-3} r	nol
<u>Einal</u> :	0	<u>2.000 X 10 IIIC</u>)1		$\frac{12.000 \text{ x}}{2.000 \text{ x}}$	$\frac{10^{-3}}{10^{-3}}$ m	
	0	0			2.000 A	10 11	101
The K_b of Bu The volume	t^{-} is now important. of the solution at thi	s point is $[(20.00 + 200)]$	$(0.00) \text{ mL} (10^{-3} \text{ L})$	L/1 mL)	= 0.04000	L	(F
The K_b of Bu The volume The molarity K_b = Using a react	tt ⁻ is now important. of the solution at thi of the But ⁻ formed = $K_w / K_a = (1.0 \text{ x } 10 tion table for the equ$	s point is $[(20.00 + 20)]$ is $(2.000 \times 10^{-3} \text{ mol I})^{-14}$ / $(1.54 \times 10^{-5}) = 0$ iilibrium reaction of I	0.00) mL] (10 ⁻³ L But ⁻)/(0.04000 L) 6.4935 x 10 ⁻¹⁰ (u But ⁻ :	L/1 mL) = 0.050 nrounded	= 0.04000 000 <i>M</i> (unr d)	L ounde	d)
The K_b of Bu The volume The molarity K_b = Using a react	tt ⁻ is now important. of the solution at thi of the But ⁻ formed = $K_w / K_a = (1.0 \text{ x } 10 tion table for the equBut- +$	s point is $[(20.00 + 20)^{-14}] (1.54 \times 10^{-5}) = 0$ iilibrium reaction of I H ₂ O \leftrightarrows H	0.00) mL] (10 ⁻³ L But ⁻)/(0.04000 L) 6.4935 x 10 ⁻¹⁰ (u But ⁻ : IBut + OH ⁻	L/1 mL) = 0.050 nrounded	= 0.04000 000 <i>M</i> (unr d)	L ounde	d)
The K_b of Bu The volume The molarity K_b = Using a react Initial:	tt ⁻ is now important. of the solution at thi of the But ⁻ formed $= K_w / K_a = (1.0 \times 10)$ tion table for the equ But ⁻ + 0.05000 M	s point is $[(20.00 + 20)^{-14}] (1.54 \times 10^{-5}) = 0$ iilibrium reaction of I H ₂ O \leftrightarrows H	0.00) mL] (10 ⁻³ L But ⁻)/(0.04000 L) 6.4935 x 10 ⁻¹⁰ (ur But ⁻ : IBut + OH ⁻ 0 0	L/1 mL) = 0.050	= 0.04000 000 <i>M</i> (unr d)	L ounde	d)
The K_b of Bu The volume The molarity K_b = Using a react Initial: Change:	tt ⁻ is now important. of the solution at thi of the But ⁻ formed $= K_w / K_a = (1.0 \times 10)$ tion table for the equ But ⁻ + 0.05000 M -x	s point is $[(20.00 + 20)^{-14}] (1.54 \times 10^{-5}) = 0$ iilibrium reaction of 1 H ₂ O \leftrightarrows H	$\begin{array}{l} 0.00) \text{ mL}] (10^{-3} \text{ L} \\ \text{But})/(0.04000 \text{ L}) \\ 6.4935 \text{ x} 10^{-10} (\text{un} \\ \text{But}^-: \\ \text{IBut} + \text{OH}^- \\ 0 & 0 \\ \text{x} & +x \end{array}$	L/1 mL) = 0.050	= 0.04000 000 <i>M</i> (unr d)	L ounde	d)
The K_b of Bu The volume The molarity K_b = Using a react Initial: <u>Change:</u> Equilibrium:	tt ⁻ is now important. of the solution at thi of the But ⁻ formed $= K_w / K_a = (1.0 \times 10)$ tion table for the equ But ⁻ + 0.05000 M -x 0.05000 - x	s point is $[(20.00 + 20)]$ is $(2.000 \times 10^{-3} \text{ mol I})^{-14}$ / $(1.54 \times 10^{-5}) = 0$ nilibrium reaction of I H ₂ O \leftrightarrows H ₂ +2	$\begin{array}{c} 0.00) \text{ mL}] (10^{-3} \text{ L} \\ \text{But}^{-})/(0.04000 \text{ L}) \\ 6.4935 \text{ x} 10^{-10} (\text{un} \\ \text{But}^{-}: \\ \text{IBut} + \text{OH}^{-} \\ 0 & 0 \\ x & +x \\ x & x \end{array}$	L/1 mL) = 0.050 nrounded	= 0.04000 000 <i>M</i> (unr d)	L ounde	d)
The K_b of Bu The volume The molarity K_b = Using a react Initial: <u>Change:</u> Equilibrium: K_b =	tt ⁻ is now important. of the solution at thi of the But ⁻ formed = $K_w / K_a = (1.0 \times 10)$ tion table for the equ But ⁻ + 0.05000 M -x 0.05000 - x = $\frac{[\text{HBut}][\text{OH}^-]}{[\text{OH}^-]} =$	s point is $[(20.00 + 20)]$ is $(2.000 \times 10^{-3} \text{ mol I})^{-14}$ $(1.54 \times 10^{-5}) = 0$ ilibrium reaction of I H ₂ O \Leftrightarrow H $(x) = (x)^{-14}$	$\begin{array}{l} 0.00) \text{ mL} \left[(10^{-3} \text{ L} \\ \text{But}^{-} \right) / (0.04000 \text{ L}) \\ 6.4935 \text{ x} 10^{-10} \text{ (un But}^{-10} \\ \text{But}^{-1} \\ \text{IBut}^{-1} + \text{ OH}^{-10} \\ 0 & 0 \\ \frac{x}{x} + \frac{x}{x} \\ \frac{x}{x} \\ \frac{[x][x]}{x} = 6.493 \\ \end{array}$	L/1 mL) = 0.050 nrounded	= 0.04000 000 M (unr d)	L rounde	d)
The K_b of Bu The volume The molarity K_b = Using a react Initial: <u>Change:</u> Equilibrium: K_b =	tt ⁻ is now important. of the solution at thi of the But ⁻ formed = $K_w / K_a = (1.0 \times 10)$ tion table for the equ But ⁻ + 0.05000 M -x 0.05000 - x = $\frac{[HBut][OH^-]}{[But^-]} =$	s point is $[(20.00 + 20)]$ is $(2.000 \times 10^{-3} \text{ mol I})^{-14}$ / $(1.54 \times 10^{-5}) = 0$ ilibrium reaction of I H ₂ O \Leftrightarrow H $\frac{[x][x]}{[0.05000 - x]} = \frac{[0.05000 - x]}{[0.05000 - x]}$	$\begin{array}{l} 0.00) \text{ mL} \left[(10^{-3} \text{ L} \\ \text{But} \right] / (0.04000 \text{ L}) \\ 6.4935 \text{ x} 10^{-10} \text{ (un But} \\ \text{But} \\ \text{HBut} \\ + \text{ OH}^{-} \\ 0 \\ 0 \\ \frac{x + x}{x} \\ \frac{x}{x} \\ \frac{[x][x]}{x} \\ 0.5000 \end{bmatrix} = 6.4935 \end{array}$	L/1 mL) = 0.050 nrounded	= 0.04000 000 M (unr d)	L rounde	d)
The K_b of Bu The volume The molarity K_b = Using a react Initial: <u>Change:</u> Equilibrium: K_b =	tt ⁻ is now important. of the solution at thi of the But ⁻ formed = $K_w / K_a = (1.0 \times 10)$ tion table for the equ But ⁻ + 0.05000 M -x 0.05000 - x = $\frac{[HBut][OH^-]}{[But^-]} =$	s point is $[(20.00 + 24)]$ is $(2.000 \times 10^{-3} \text{ mol I})^{-14}$ / $(1.54 \times 10^{-5}) = 0$ number in the second secon	$\begin{array}{l} 0.00) \text{ mL} \left[(10^{-3} \text{ L} \\ \text{But} \right] / (0.04000 \text{ L}) \\ 6.4935 \text{ x} 10^{-10} \text{ (un But} \\ \text{But} \\ \text{IBut} \\ \text{HBut} \\ + \text{OH}^{-} \\ 0 \\ 0 \\ \frac{x}{x} \\ \frac{+x}{x} \\ \frac{x}{x} \\ \frac{[x][x]}{[x]} \\ 0.5000 \end{bmatrix} = 6.4935 \end{array}$	L/1 mL) = 0.050 nrounded	= 0.04000 000 <i>M</i> (unr d)	L ounde	d)
The K_b of Bu The volume The molarity K_b = Using a react Initial: <u>Change:</u> Equilibrium: K_b = [OF pOI	tt ⁻ is now important. of the solution at thi of the But ⁻ formed = $K_w / K_a = (1.0 \times 10)$ tion table for the equ But ⁻ + 0.05000 M -x 0.05000 - x = $\frac{[HBut][OH^-]}{[But^-]} =$ T] = x = 5.6980259 H = -log (5.6980259)	s point is $[(20.00 + 24)]$ is $(2.000 \times 10^{-3} \text{ mol I})^{-14}$ / $(1.54 \times 10^{-5}) = 0$ ilibrium reaction of I H ₂ O \Leftrightarrow H $\frac{[x][x]}{[0.05000 - x]} = \frac{[}{[0.05000 - x]]}$	$\begin{array}{l} 0.00) \text{ mL} \left[(10^{-3} \text{ L} \\ \text{But}^{-})/(0.04000 \text{ L}) \\ 6.4935 \text{ x} 10^{-10} \text{ (un} \\ \text{But}^{-}: \\ \text{IBut}^{-} + \text{ OH}^{-} \\ 0 & 0 \\ \frac{x}{x} + \frac{x}{x} \\ \frac{x}{x} \\ \frac{[x][x]}{.05000]} = 6.4933 \\ \hline 75 \text{ (unrounded)} \end{array}$	L/1 mL) = 0.050 nrounded	= 0.04000 000 <i>M</i> (unr d)	L ounde	d)
The K_b of Bu The volume The molarity K_b = Using a react Initial: <u>Change</u> : Equilibrium: K_b = [OF pOI pH	tr is now important. of the solution at thi of the But ⁻ formed = $K_w / K_a = (1.0 \times 10)$ tion table for the equ But ⁻ + 0.05000 M -x 0.05000 - x = $\frac{[HBut][OH^-]}{[But^-]} =$ Tr] = $x = 5.6980259$ H = -log (5.6980259) = 14.00 - pOH = 14	s point is $[(20.00 + 20)]$ is $(2.000 \times 10^{-3} \text{ mol I})^{-14}$ / $(1.54 \times 10^{-5}) = 0$ ilibrium reaction of I H ₂ O \Rightarrow H $\frac{[x][x]}{[0.05000 - x]} = \frac{[}{[0.05000 - x]]}$ x $10^{-6} M$ x 10^{-6}) = 5.24427555 .00 - 5.244275575 =	$\begin{array}{l} 0.00) \text{ mL} \left(10^{-3} \text{ L} \right) \\ \text{But} \right) / (0.04000 \text{ L}) \\ 6.4935 \text{ x} 10^{-10} \text{ (un But}^{-10} (un b$	L/1 mL) = 0.050 nrounded 5 x 10^{-10} 3.76	= 0.04000 000 <i>M</i> (unr d)	L counde	d)
The K_b of Bu The volume The molarity K_b = Using a react Initial: Change: Equilibrium: K_b = [OF pOF pH g) After the e	It is now important. of the solution at thi of the But formed = $K_w / K_a = (1.0 \times 10)$ tion table for the equ But + 0.05000 M -x 0.05000 - x = $\frac{[HBut][OH^-]}{[But^-]} =$ T] = x = 5.6980259 = 14.00 - pOH = 14 equivalence point the solution of the solution	s point is $[(20.00 + 20)]$ is $(2.000 \times 10^{-3} \text{ mol I})^{-14}$ / $(1.54 \times 10^{-5}) = 0$ ilibrium reaction of I H ₂ O \leftrightarrows H $\frac{[x][x]}{[0.05000 - x]} = \frac{[0.05000 - x]}{[0.05000 - x]} = \frac{[0.05000 - x]}{[0.05000 - 5.244275575]}$ is a strong base of the second strong strong base of the second strong base of the second strong strong strong base of the second strong stron	$\begin{array}{l} 0.00) \text{ mL} \left[(10^{-3} \text{ L} \\ \text{But}^{-}) / (0.04000 \text{ L}) \\ 6.4935 \text{ x} 10^{-10} \text{ (un} \\ \text{But}^{-}: \\ \text{IBut} + \text{OH}^{-} \\ 0 & 0 \\ \frac{x}{x} + \frac{x}{x} \\ \frac{x}{x} \\ \frac{[x][x]}{.05000]} = 6.4933 \\ \hline 75 \text{ (unrounded)} \\ 8.755724425 = 8 \\ \text{is the primary fac} \end{array}$	L/1 mL) = 0.0500 mrounded 5 x 10^{-10} 3.76	= 0.04000 $M (unr d)$	L ounde	d)
The K_b of Bu The volume The molarity K_b = Using a react Initial: Change: Equilibrium: K_b = [OF pOI pH g) After the o	tt ⁻ is now important. of the solution at thi of the But ⁻ formed = $K_w / K_a = (1.0 \times 10)$ tion table for the equ But ⁻ + 0.05000 M -x 0.05000 - x = $\frac{[HBut][OH^-]}{[But^-]} =$ T] = x = 5.6980259 H = -log (5.6980259) H = -log (5.6980259) H = -log (5.6980259) H = -log (5.6980259)	s point is $[(20.00 + 20)]$ is $(2.000 \times 10^{-3} \text{ mol I})^{-14}$ $(1.54 \times 10^{-5}) = 0^{-14}$ $H_2O \qquad \Rightarrow \qquad H_2O$ $\frac{[x][x]}{[0.05000 - x]} = [0, -10, -10, -10, -10, -10, -10, -10, -1$	$\begin{array}{l} 0.00) \text{ mL} \left[(10^{-3} \text{ L} \\ \text{But}^{-}) / (0.04000 \text{ L}) \\ 6.4935 \text{ x } 10^{-10} \text{ (un But}^{-10} \\ \text{But}^{-1} \\ \text{IBut} + \text{OH}^{-10} \\ 0 & 0 \\ \frac{x}{x} + \frac{x}{x} \\ \frac{x}{x} \\ \frac{[x][x]}{.05000]} = 6.4933 \\ \hline \begin{array}{l} 75 \text{ (unrounded)} \\ 8.755724425 = 8 \\ \text{is the primary face} \end{array}$	L/1 mL) = 0.050 nrounded 5 x 10^{-10} 3.76 etor influ	= 0.04000 000 M (unr d)	L ounde	d)
The K_b of Bu The volume The molarity K_b = Using a react Initial: Change: Equilibrium: K_b = [OF pOI pH g) After the o Det Mo	tt ⁻ is now important. of the solution at thi of the But ⁻ formed = $K_w / K_a = (1.0 \times 10)$ tion table for the equ But ⁻ + 0.05000 M -x 0.05000 - x = $\frac{[HBut][OH^-]}{[But^-]} =$ T] = x = 5.6980259 H = -log (5.6980259) H = -log (5.6980259) H = -log (5.6980259) = 14.00 - pOH = 14 equivalence point, the ermine the moles of les of NaOH = (0.10)	s point is $[(20.00 + 20)]$ is $(2.000 \times 10^{-3} \text{ mol I})^{-14}$ / $(1.54 \times 10^{-5}) = 0$ ilibrium reaction of I H ₂ O \leftrightarrows H $\frac{[x][x]}{[0.05000 - x]} = [0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1$	$\begin{array}{l} 0.00) \text{ mL} \left[(10^{-3} \text{ L} \\ \text{But}^{-})/(0.04000 \text{ L}) \\ 6.4935 \text{ x } 10^{-10} \text{ (un} \\ \text{But}^{-}: \\ \text{IBut}^{-} + \text{OH}^{-} \\ 0 & 0 \\ \frac{x}{x} + \frac{x}{x} \\ \frac{[x][x]}{x} \\ \frac{[x][x]}{.05000]} = 6.4933 \\ \hline 75 \text{ (unrounded)} \\ 8.755724425 = 8 \\ \text{is the primary fac} \\ \hline 7^{-3} \text{ L/1 mL} (200) \\ \hline \end{array}$	L/1 mL) = 0.0500 mrounded 5 x 10 ⁻¹⁰ 6.76 ctor influ 5 mL) =	= 0.04000 000 M (unr d) uencing the 2.005×10^{-10}	L ounde e pH.	d) 1 NaOH
The K_b of Bu The volume The molarity K_b = Using a react Initial: Change: Equilibrium: K_b = [OF pOI pH g) After the o Det Mol The	tt ⁻ is now important. of the solution at thi of the But ⁻ formed = $K_w / K_a = (1.0 \times 10)$ tion table for the equ But ⁻ + 0.05000 M -x 0.05000 - x = $\frac{[HBut][OH^-]}{[But^-]} =$ T] = x = 5.6980259 = 14.00 - pOH = 14 equivalence point, the ermine the moles of les of NaOH = (0.10) NaOH will react with	s point is $[(20.00 + 20)^{-14}]$ is $(2.000 \times 10^{-3} \text{ mol I})^{-14}$ $(1.54 \times 10^{-5}) = 0^{-14}$ ilibrium reaction of I H ₂ O \Leftrightarrow H $\frac{[x][x]}{[0.05000 - x]} = \frac{[0^{-14}]}{[0^{-14}]}$ $x 10^{-6} M$ $x 10^{-6} M$ $x 10^{-6} = 5.24427555$ $x 10^{-6} = 5.244275575 =$ ne excess strong base NaOH added: $x = 10^{-14} M$ $x = 10^{-6} M$ $x = 10^{-$	$\begin{array}{l} 0.00) \text{ mL} \left[(10^{-3} \text{ L} \\ \text{But} \right] / (0.04000 \text{ L}) \\ 6.4935 \text{ x } 10^{-10} \text{ (un} \\ \text{But} \\ \text{But} \\ \text{HBut} \\ + \\ \text{OH} \\ 0 \\ 0 \\ \frac{x}{x} \\ \frac{x}{$	2/1 mL = 0.050 arounded 5 x 10^{-10} 3.76 etor influ 5 mL) = HBut w	= 0.04000 000 <i>M</i> (unr d) uencing the 2.005 x 10 ill remain	L Founde e pH.) ⁻³ mo and 5	d) 1 NaOH x 10 ⁻⁶ m
The K_b of Bu The volume The molarity K_b = Using a react Initial: <u>Change:</u> Equilibrium: K_b = [OF pOF pH g) After the of Det Mol The	tt ⁻ is now important. of the solution at thi of the But ⁻ formed = $K_w / K_a = (1.0 \times 10)$ tion table for the equ But ⁻ + 0.05000 M -x 0.05000 - x = $\frac{[HBut][OH^-]}{[But^-]} =$ T] = x = 5.6980259 H = -log (5.6980259 = 14.00 - pOH = 14 equivalence point, the ermine the moles of les of NaOH = (0.10) NaOH will react with DH will be in excess	s point is $[(20.00 + 20)]$ is $(2.000 \times 10^{-3} \text{ mol I})^{-14}$ / $(1.54 \times 10^{-5}) = 0$ ilibrium reaction of I H ₂ O \Leftrightarrow H $\frac{[x][x]}{[0.05000 - x]} = [0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1$	$\begin{array}{l} 0.00) \text{ mL} \left[(10^{-3} \text{ L} \\ \text{But}^{-}) / (0.04000 \text{ L}) \\ 6.4935 \text{ x} 10^{-10} \text{ (urburk)} \\ \text{But}^{-} \\ \text{HBut} + \text{OH}^{-} \\ 0 & 0 \\ \frac{x}{x} + \frac{x}{x} \\ \frac{x}$	L/1 mL) = 0.050 arounded 5×10^{-10} 3.76 ctor influ 5 mL) = HBut wat μ^{-} produ	= 0.04000 000 <i>M</i> (unr d) 2.005 x 10 ill remain, uced, but th	L ounde e pH.) ⁻³ mo and 5 nis we	d) l NaOH x 10 ⁻⁶ m ak base w
The K_b of Bu The volume The molarity K_b = Using a react Initial: <u>Change:</u> Equilibrium: K_b = [OF pOI pH g) After the of Det Moi The Na(a affe	the is now important. of the solution at this of the But ⁻ formed = $K_w / K_a = (1.0 \times 10)$ tion table for the eques But ⁻ + 0.05000 M -x 0.05000 - x = $\frac{[HBut][OH^-]}{[But^-]} =$ H = -log (5.6980259) H = -log (5.6980259) = 14.00 - pOH = 14 equivalence point, the ermine the moles of les of NaOH = (0.10) NaOH will react with OH will be in excess ct the pH compared	s point is $[(20.00 + 24)]$ is $(2.000 \times 10^{-3} \text{ mol I})^{-14}$ / $(1.54 \times 10^{-5}) = 0$ ilibrium reaction of I H ₂ O \Rightarrow H $\frac{[x][x]}{[0.05000 - x]} = \frac{[}{[0.05000 - x]]}$ x $10^{-6} M$ x $10^{-6} M = 5.244275575 = 10$ ne excess strong base NaOH added: 100 mol NaOH/L) (100 ith an equal amount of . There will be 2.0000 to the excess strong I	$\begin{array}{l} 0.00) \text{ mL} \left[(10^{-3} \text{ L} \\ \text{But}^{-}) / (0.04000 \text{ L}) \\ 6.4935 \text{ x} 10^{-10} \text{ (un} \\ \text{But}^{-} \\ \text{HBut} + \text{OH}^{-} \\ 0 & 0 \\ \frac{x}{x} + \frac{x}{x} \\ \frac{x}{x} \\ \frac{[x][x]}{x} \\ 0.5000] = 6.4933 \\ \hline 75 \text{ (unrounded)} \\ 8.755724425 = 8 \\ \text{is the primary face} \\ 8.755724425 = 8 \\ \text{is the primary face} \\ 10^{-3} \text{ L/1 mL} \text{ (20.02)} \\ 10^{-3} \text{ mol of Bubbase, NaOH.} \end{array}$	L/1 mL) = 0.050 nrounded 5 x 10 ⁻¹⁰ 6.76 ctor influ 5 mL) = HBut wat produ	= 0.04000 000 <i>M</i> (unr d) uencing the 2.005 x 10 ill remain, uced, but th	L ounde e pH. D ⁻³ mo and 5 nis wea	d) 1 NaOH x 10 ⁻⁶ m ak base w
The K_b of Bu The volume The molarity K_b = Using a react Initial: <u>Change:</u> Equilibrium: K_b = [OF pOF pH g) After the of Det Moi The NaC affe	the is now important. of the solution at this of the But ⁻ formed $= K_w / K_a = (1.0 \times 10)$ tion table for the eques But ⁻ + 0.05000 M $= \frac{WBut^{-}}{UBut^{-}} =$ $= \frac{[HBut][OH^{-}]}{[But^{-}]} =$ = 1200 (5.6980259) = 14.00 - pOH = 14 Equivalence point, the equivalence point, the ermine the moles of les of NaOH = (0.10) NaOH will react with DH will be in excess of the pH compared HBut(aa)	s point is $[(20.00 + 24)]$ is $(2.000 \times 10^{-3} \text{ mol I})^{-14} / (1.54 \times 10^{-5}) = 0$ ilibrium reaction of I H ₂ O \Rightarrow H $\frac{[x][x]}{[0.05000 - x]} = \frac{[}{[0.05000 - x]]}^{-16}$ x $10^{-6} M$ x $10^{-6} M = 5.244275575 = 100$ ne excess strong base NaOH added: 100 mol NaOH/L) (100 ith an equal amount of . There will be 2.0000 to the excess strong B + NaOH(aa)	0.00) mL] (10 ⁻³ L But ⁻)/(0.04000 L) 6.4935 x 10 ⁻¹⁰ (ur But ⁻ : HBut + OH ⁻ 0 0 $\frac{x + x}{x}$ $\frac{[x][x]}{x}$ = 6.4935 75 (unrounded) 8.755724425 = 8 is the primary fac 0 ⁻³ L/1 mL) (20.05 of the acid, 0 mol 0 x 10 ⁻³ mol of Bubase, NaOH. → H ₂ O(1)	L/1 mL) = 0.050 mrounded 5 x 10^{-10} 6.76 etor influ 5 mL) = HBut we ut ⁻ produ +	= 0.04000 = 0.04000 M (unr) d) = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.04000 = 0.040000 = 0.040000 = 0.040000 = 0.040000 = 0.040000 = 0.040000 = 0.0400000 = 0.04000000 = 0.04000000000 = 0.040000000000000000000000000000000000	L ounde e pH. $)^{-3} mo$ and 5 his wea +	d) l NaOH x 10 ⁻⁶ m ak base w Na ⁺ (a)
The K_b of Bu The volume The molarity K_b = Using a react Initial: <u>Change:</u> Equilibrium: K_b = [OF pOI pH g) After the of Moi The NaC affe	the is now important. of the solution at this of the But ⁻ formed $= K_w / K_a = (1.0 \times 10)$ tion table for the eques But ⁻ + 0.05000 M $= \frac{WBut^{-}}{UBut^{-}} =$ $= \frac{[HBut][OH^{-}]}{[But^{-}]} =$ T = x = 5.6980259 T = -log (5.6980259) T = -log (5.6	s point is $[(20.00 + 24)$ is $(2.000 \times 10^{-3} \text{ mol I})^{-14}$ / $(1.54 \times 10^{-5}) = 0$ ilibrium reaction of I H ₂ O \Rightarrow H $\frac{x}{10^{-6}M} = \frac{1}{1000} \begin{bmatrix} x \cdot 10^{-6}M \\ -x \cdot 10^{-6}M \\ -x \cdot 10^{-6} \end{bmatrix} = 5.244275575 = 1000 \text{ mol NaOH} = 10000 \text{ mol NaOH} = 100000000000000000000000000000000000$	0.00) mL] (10 ⁻³ L But ⁻)/(0.04000 L) 6.4935 x 10 ⁻¹⁰ (ur But ⁻ : HBut + OH ⁻ 0 0 x +x x x [x][x] (urrounded) 8.755724425 = 8 is the primary fac 0 ⁻³ L/1 mL) (20.02 of the acid, 0 mol 0 x 10 ⁻³ mol of Bu base, NaOH. → H ₂ O(l)	L/1 mL) = 0.050 mrounded 5 x 10^{-10} 6.76 etor influ 5 mL) = HBut with the second	= 0.04000 $= 0.04000$ $M (unr)$ $d)$ $= 0.000 M (unr)$ $= 0.000 M (unr)$ $= 0.000 M (unr)$ $= 0.000 M (unr)$	L ounde e pH.) ⁻³ mo and 5 nis wea +	d) l NaOH x 10 ^{−6} m ak base w Na ⁺ (<i>aq</i>
The K_b of Bu The volume The molarity K_b = Using a react Initial: <u>Change</u> : Equilibrium: K_b = [OF pOI g) After the 6 Det Moi The NaC affe Initial: Change:	the is now important. of the solution at this of the But ⁻ formed $= K_w / K_a = (1.0 \times 10)$ tion table for the eques But ⁻ + 0.05000 M $= \frac{WBut^{-}}{UBut^{-}} =$ $= \frac{[HBut][OH^{-}]}{[But^{-}]} =$ T] = x = 5.6980259 = 14.00 - pOH = 14 equivalence point, the ermine the moles of les of NaOH = (0.10) NaOH will react with DH will be in excess of the pH compared HBut(aq) 2.000 x 10^{-3} mol $= 2.000 \times 10^{-3}$ mol	s point is $[(20.00 + 24)$ is $(2.000 \times 10^{-3} \text{ mol I})^{-14} / (1.54 \times 10^{-5}) = 0$ illibrium reaction of I H ₂ O \Rightarrow H $\frac{x}{10^{-6}} = \frac{1}{10000000000000000000000000000000000$	$\begin{array}{c} 0.00) \text{ mL} \left[(10^{-3} \text{ L} \\ \text{But}^{-})/(0.04000 \text{ L}) \\ 6.4935 \text{ x } 10^{-10} \text{ (un} \\ \text{But}^{-} \\ \text{IBut} + \text{OH}^{-} \\ 0 & 0 \\ \frac{x}{x} + \frac{x}{x} \\ $	L/1 mL) = 0.050 mrounded 5 x 10^{-10} 6.76 etor influ 5 mL) = HBut with tr produt +	= 0.04000 = 0.04000 M (unr) d) $= 2.005 \times 10$ $= 1000 \times 1$	L counde e pH. $)^{-3}$ mo and 5 his wea + 0^{-3} mo	d) l NaOH x 10^{-6} m ak base w Na ⁺ (aq
The K_b of Bu The volume The molarity K_b = Using a react Initial: Change: Equilibrium: K_b = [OF pOF pH g) After the 6 Det Mol The NaC affe Initial: <u>Change:</u> Equilibrium: K_b =	the is now important. of the solution at this of the But ⁻ formed = $K_w / K_a = (1.0 \times 10)$ the form the equination of the equinati	s point is $[(20.00 + 24)$ is $(2.000 \times 10^{-3} \text{ mol I})^{-14} / (1.54 \times 10^{-5}) = 0$ ilibrium reaction of I H ₂ O \Rightarrow H $\frac{[x][x]}{[0.05000 - x]} = \frac{[}{[0.05000 - x]]}^{-16}$ x 10^{-6} M x 10^{-6} = 5.244275575 = ne excess strong base NaOH added: 00 mol NaOH/L) (100 ith an equal amount of . There will be 2.0000 to the excess strong be + NaOH(aq) 2.005 x 10^{-3} mo -2.000×10^{-5} mo	$\begin{array}{c} 0.00) \text{ mL} \left[(10^{-3} \text{ L} \\ \text{But}^{-})/(0.04000 \text{ L}) \\ 6.4935 \text{ x } 10^{-10} \text{ (un} \\ \text{But}^{-}: \\ \text{IBut} + \text{OH}^{-} \\ 0 & 0 \\ x & +x \\ x $	L/1 mL) = 0.050 nrounded 5 x 10 ⁻¹⁰ 5 x 10 ⁻¹⁰ 5 mL) = HBut wi at produ	= 0.04000 000 <i>M</i> (unr d) uencing the 2.005 x 10 ill remain, uced, but th But ⁻ (<i>aq</i>) 0 +2.000 x 1 2.000 x 1	L rounde e pH. $0^{-3} mo$ and 5 his wea + $0^{-3} mo$ $0^{-3} mo$	d) l NaOH x 10 ⁻⁶ m ak base w Na ⁺ (<i>aq</i> <u></u>
The K_b of Bu The volume The molarity K_b = Using a react Initial: Change: Equilibrium: K_b = [OF pOI pH g) After the o Det Mol The NaC affe Initial: Change: Final: The volume	the is now important. of the solution at this of the But ⁻ formed $= K_w / K_a = (1.0 \times 10)$ the form the equence of the	s point is $[(20.00 + 24)$ is $(2.000 \times 10^{-3} \text{ mol I})^{-14}$ / $(1.54 \times 10^{-5}) = 0$ ilibrium reaction of I H ₂ O \Rightarrow H $\frac{x}{x}$ $\frac{[x][x]}{[0.05000 - x]} = \frac{[}{[0.05000 - x]]}^{-10}$ $x 10^{-6} M$ $x 10^{-6} M$ $x 10^{-6} = 5.244275575 =$ he excess strong base NaOH added: 100 mol NaOH/L) (100 ith an equal amount of x There will be 2.0000 to the excess strong B + NaOH(aq) 2.005×10^{-3} motors 5.000×10^{-6} motors $x 10^{-6}$ motors $x 10^{-6} M$	$\begin{array}{c} 0.00) \text{ mL} \left[(10^{-3} \text{ L} \\ \text{But}^{-}) / (0.04000 \text{ L}) \\ 6.4935 \text{ x } 10^{-10} \text{ (un} \\ \text{But}^{-}: \\ \text{IBut}^{+} & \text{OH}^{-} \\ 0 & 0 \\ \frac{x}{x} + \frac{x}{x} \\ \frac{x}{x} \\ \frac{[x][x]}{.05000]} = 6.4933 \\ \hline 75 \text{ (unrounded)} \\ 8.755724425 = 8 \\ \text{is the primary fac} \\ \frac{x}{.055724425} = 8 \\ \text{is the primary fac} \\ \frac{x}{.055724425} = 8 \\ \text{is the primary fac} \\ \frac{x}{.055724425} = 8 \\ \text{is the primary fac} \\ \frac{x}{.05000} \\ \frac{x}{.000} \\ \frac{x}{.000} \\ \frac{x}{.0000} \\ \frac{x}{.0000} \\ \frac{x}{.00000} \\ \frac{x}{.0000} \\ \frac{x}{.00000} \\ \frac{x}{.00000} \\ \frac{x}{.000000} \\ \frac{x}{.000000} \\ \frac{x}{.0000000} \\ \frac{x}{.000000000} \\ \frac{x}{.00000000000000000000000000000000000$	2/1 mL = 0.050 nrounded 5 x 10 ⁻¹⁰ 5 x 10 ⁻¹⁰ 5 mL) = HBut w at produ +	= 0.04000 000 <i>M</i> (unr d) uencing the 2.005 x 10 ill remain, uced, but th But ⁻ (<i>aq</i>) 0 +2.000 x 1 2.000 x 1 = 0.04005	L counde pH. p^{-3} mo and 5 nis wea + $\frac{0^{-3} \text{ mo}}{1}$	d) I NaOH x 10 ⁻⁶ m ak base w Na ⁺ (<i>aq</i> bl —
The K_b of Bu The volume The molarity $K_b =$ Using a react Initial: Change: Equilibrium: $K_b =$ [OF pOI pH g) After the of Det Moi The Na(0) affer Initial: Change: Final: The volume The molarity	It is now important. of the solution at thi of the But formed = $K_w / K_a = (1.0 \times 10)$ tion table for the equ But + 0.05000 M -x 0.05000 - x = $\frac{[HBut][OH^-]}{[But^-]} =$ T] = $x = 5.6980259$ = 14.00 - pOH = 14 equivalence point, the ermine the moles of less of NaOH = (0.10) NaOH will react with DH will be in excess ct the pH compared HBut(aq) 2.000 x 10^-3 mol 0 of the solution at this of the excess OH^- i	s point is $[(20.00 + 24)$ is $(2.000 \times 10^{-3} \text{ mol I})^{-14}$ / $(1.54 \times 10^{-5}) = 0$ ilibrium reaction of I H ₂ O \Rightarrow H $\frac{x_1}{x_1} = \frac{1}{1000} \frac{1}{10000} \frac{1}{10000} \frac{1}{100000} \frac{1}{1000000} \frac{1}{100000000} \frac{1}{10000000000000000000000000000000000$	0.00) mL] (10^{-3} L) But ⁻)/ (0.04000 L) 6.4935 x 10^{-10} (un But ⁻ : HBut + OH ⁻ 0 0 x +x x x [x][x] 0.5000] = 6.4935 75 (unrounded) 8.755724425 = 8 is the primary factor of the acid, 0 mol 0 x 10^{-3} mol of Bubase, NaOH. \rightarrow H ₂ O(l) of	2/1 mL = 0.050 arounded 5 x 10 ⁻¹⁰ 5 x 10 ⁻¹⁰ 5 mL) = HBut with tr produ + 2484×1	= 0.04000 000 <i>M</i> (unr d) uencing the 2.005 x 10 ill remain, uced, but th But ⁻ (<i>aq</i>) 0 +2.000 x 1 2.000 x 1 = 0.04005 0 ⁻⁴ <i>M</i> (unr	L rounde pH. p^{-3} mo and 5 nis wea + 0^{-3} mc L Counde	d) l NaOH x 10 ⁻⁶ m ak base w Na ⁺ (<i>aq</i> bl bl bl bl bl bl bl bl
The K_b of Bu The volume The molarity $K_b =$ Using a react Initial: Change: Equilibrium: $K_b =$ [OF pOI pH g) After the of Det Moi The Na(affe) Initial: Change: Final: The volume The molarity	the is now important. The solution at this of the solution at this of the But ⁻ formed $= K_w / K_a = (1.0 \times 10)$ the the But ⁻ formed $= K_w / K_a = (1.0 \times 10)$ the solution table for the equivalence of the solution $= \frac{[HBut][OH^-]}{[But^-]} =$ $= \frac{[HBut][OH^-]}{[But^-]} =$ $= \frac{[HBut][OH^-]}{[But^-]} =$ $= 1-\log (5.6980259)$ = 14.00 - pOH = 14 Equivalence point, the ermine the moles of les of NaOH = (0.10) NaOH will react with the order of the solution at this of the solution at this of the solution at this of the excess OH ⁻ in the other of the solution at this of the solution at this of the excess OH ⁻ in the other of the solution at this of the excess OH ⁻ in the other of the solution at this of the excess OH ⁻ in the other	s point is $[(20.00 + 24)$ is $(2.000 \times 10^{-3} \text{ mol I})^{-14}$ / $(1.54 \times 10^{-5}) = 0$ ilibrium reaction of I H ₂ O \Leftrightarrow H $\frac{[x][x]}{[0.05000 - x]} = \frac{[0, -1]{(0, -1)}}{[0, -1]{(0, -1)}}$ x $10^{-6} M$ x $10^{-6} M$ x $10^{-6} = 5.24427555$.00 - 5.244275575 = he excess strong base NaOH added: .00 mol NaOH/L (10) ith an equal amount of . There will be 2.0000 to the excess strong B + NaOH(aq) 2.005 x 10^{-3} mot $5.000 \times 10^{-6} \text{ mot}$ s point is $[(20.00 + 24)]$ s $(5 \times 10^{-6} \text{ mol OH}^{-1})$, $2484 \times 10^{-4} = 3.902$	0.00) mL] (10^{-3} L) But ⁻) (0.04000 L) 6.4935 x 10^{-10} (un But ⁻ : HBut + OH ⁻ 0 0 $\frac{x + x}{x}$ $\frac{x}{x} = \frac{x}{x}$ $\frac{[x][x]}{.05000]} = 6.4935$ 75 (unrounded) 8.755724425 = 8 is the primary factor $r^{-3} \text{ L/1 mL}$ (20.00 of the acid, 0 mol 0 x 10^{-3} mol of But base, NaOH. $\rightarrow \text{ H}_2\text{O}(l)$ bl $-$ bl 0.05) mL] (10^{-3} L (0.04005 L) = 1.2	2/1 mL = 0.050 for a non-decomposition 5×10^{-10} 3.76 etor influ 5 mL = HBut wight 10^{-10} $10^{$	= 0.04000 000 <i>M</i> (unr d) uencing the 2.005 x 10 ill remain, ueed, but th But ⁻ (<i>aq</i>) 0 +2.000 x 1 2.000 x 1 = 0.04005 10 ⁻⁴ <i>M</i> (unr	L rounde pH. p^{-3} mo and 5 nis wea + 0^{-3} mc L rounde	d) 1 NaOH x 10 ⁻⁶ m ak base w Na ⁺ (<i>aq</i> bl

19-15

h) Determine the moles of NaOH added:

Moles of NaOH = $(0.1000 \text{ mol NaOH/L}) (10^{-3} \text{ L/1 mL}) (25.00 \text{ mL}) = 2.500 \text{ x } 10^{-3} \text{ mol NaOH}$ The NaOH will react with an equal amount of the acid, 0 mol HBut will remain, and 5.00 x 10^{-4} moles of NaOH will be in excess.

	HBut(aq)	+ $NaOH(aq)$	\rightarrow H ₂ O(<i>l</i>)	+	But ⁻ (aq)	+	Na ⁺	(aq)
Initial:	$2.000 \text{ x } 10^{-3} \text{ mol}$	2.500 x 10 ⁻³ mol			0			—
Change:	$-2.000 \text{ x } 10^{-3} \text{ mol}$	$-2.000 \ge 10^{-3} \mod 10^{-3}$			+2.000	x 10 ⁻³	mol	
Final:	0	5.000 x 10 ⁻⁴ mol			2.000 2	x 10 ⁻³	mol	
The volum	e of the solution at thi	s point is $[(20.00 + 25.0)]$	$(0) \text{ mL} (10^{-3} \text{ L})$	(1 mL)	= 0.04500	L		

The molarity of the excess OH^- is (5.00 x 10⁻⁴ mol OH^-)/(0.04500 L) = 1.1111 x 10⁻² M (unrounded) p $OH = -\log (1.1111 x 10^{-2}) = 1.9542$ (unrounded)

pH = 14.00 - pOH = 14.00 - 1.9542 = 12.0458 = 12.05

19.42 This is a titration between a weak base and a strong acid. The pH before addition of the acid is dependent on the K_b of the base ((CH₃CH₂)₃N)). Prior to reaching the equivalence point, the added acid reacts with base to form (CH₃CH₂)₃NH⁺ ion. The equivalence point occurs when 20.00 mL of acid is added to the base because at this point, moles acid = moles base. Addition of acid beyond the equivalence point is simply the addition of excess H₃O⁺.

The initial number of moles of $(CH_3CH_2)_3N = (0.1000 \text{ mol} (CH_3CH_2)_3N)/L) (10^{-3} L/1 \text{ mL}) (20.00 \text{ mL})$ = 2.000 x 10⁻³ mol $(CH_3CH_2)_3N$

a) Since no acid has been added, only the weak base (K_b) is important.

$$K_{\rm b} = \frac{\left[(CH_3CH_2)_3 \, \mathrm{NH}^+ \right] \left[\mathrm{OH}^- \right]}{\left[(CH_3CH_2)_3 \, \mathrm{N} \right]} = \frac{[x][x]}{[0.1000 - x]} = \frac{[x][x]}{[0.1000]} = 5.2 \, \mathrm{x} \, 10^{-4}$$

 $[OH^{-}] = x = 7.2111 \text{ x } 10^{-3} M$ pOH = $-\log (7.2111 \text{ x } 10^{-3}) = 2.141998 \text{ (unrounded)}$

pH = 14.00 - pOH = 14.00 - 2.141998 = 11.8580 = 11.86

b) Determine the moles of HCl added:

Moles of HCl = $(0.1000 \text{ mol HCl/L}) (10^{-3} \text{ L/1 mL}) (10.00 \text{ mL}) = 1.000 \text{ x } 10^{-3} \text{ mol HCl}$ The HCl will react with an equal amount of the base, and $1.000 \text{ x } 10^{-3} \text{ mol (CH}_3\text{CH}_2)_3\text{N}$ will remain; an equal number of moles of $(\text{CH}_3\text{CH}_2)_3\text{NH}^+$ will form.

The volume of the solution at this point is $[(20.00 + 10.00) \text{ mL}] (10^{-3} \text{ L/1 mL}) = 0.03000 \text{ L}$

The molarity of the excess $(CH_3CH_2)_3N$ is $(1.000 \times 10^{-3} \text{ mol} (CH_3CH_2)_3N)/(0.03000 \text{ L})$ = 0.03333 *M* (unrounded)

The molarity of the $(CH_3CH_2)_3NH^+$ formed is $(1.000 \times 10^{-3} \text{ mol} (CH_3CH_2)_3NH^+)/(0.03000 \text{ L})$ = 0.03333 *M* (unrounded)

$$K_{\rm b} = \frac{\left[\left({\rm CH}_{3} {\rm CH}_{2} \right)_{3} {\rm NH}^{+} \right] \left[{\rm OH}^{-} \right]}{\left[\left({\rm CH}_{3} {\rm CH}_{2} \right)_{3} {\rm N} \right]} = \frac{\left[x \right] \left[0.0333 + x \right]}{\left[0.03333 - x \right]} = \frac{\left[x \right] \left[0.03333 \right]}{\left[0.03333 \right]} = 5.2 \, {\rm x} \, 10^{-4}$$

 $[OH^{-}] = x = 5.2 \times 10^{-4} M$

 $pOH = -log (5.2 \times 10^{-4}) = 3.283997$ (unrounded)

pH = 14.00 - pOH = 14.00 - 3.283997 = 10.7160 = **10.72**

c) Determine the moles of HCl added:

Moles of HCl = $(0.1000 \text{ mol HCl/L}) (10^{-3} \text{ L/1 mL}) (15.00 \text{ mL}) = 1.500 \text{ x } 10^{-3} \text{ mol HCl}$ The HCl will react with an equal amount of the base, and $5.00 \text{ x } 10^{-4} \text{ mol (CH}_3\text{CH}_2)_3\text{N}$ will remain; and $1.500 \text{ x } 10^{-3} \text{ moles of (CH}_3\text{CH}_2)_3\text{NH}^+$ will form.

The volume of the solution at this point is $[(20.00 + 15.00) \text{ mL}] (10^{-3} \text{ L/1 mL}) = 0.03500 \text{ L}$ The molarity of the excess $(CH_3CH_2)_3N$ is $(5.00 \times 10^{-4} \text{ mol} (CH_3CH_2)_3N)/(0.03500 \text{ L})$ = 0.0142857 *M* (unrounded)

The molarity of the $(CH_3CH_2)_3NH^+$ formed is $(1.500 \times 10^{-3} \text{ mol} (CH_3CH_2)_3NH^+)/(0.03500 \text{ L})$ = 0.0428571 *M* (unrounded)

$$K_{\rm b} = \frac{\left[\left(\rm CH_3CH_2\right)_3 \rm NH^+\right]\left[\rm OH^-\right]}{\left[\left(\rm CH_3CH_2\right)_3 \rm N\right]} = \frac{\left[x\right]\left[0.0428571+x\right]}{\left[0.0142857-x\right]} = \frac{\left[x\right]\left[0.0428571\right]}{\left[0.0142857\right]} = 5.2 \text{ x } 10^{-4}$$

 $[OH^{-}] = x = 1.7333 \times 10^{-4} M$

 $pOH = -log (1.7333 \times 10^{-4}) = 3.761126 (unrounded)$

pH = 14.00 - pOH = 14.00 - 3.761126 = 10.23887 = 10.24

d) Determine the moles of HCl added:

Moles of HCl = $(0.1000 \text{ mol HCl/L}) (10^{-3} \text{ L/1 mL}) (19.00 \text{ mL}) = 1.900 \text{ x } 10^{-3} \text{ mol HCl}$ The HCl will react with an equal amount of the base, and $1.00 \text{ x } 10^{-4} \text{ mol } (CH_3CH_2)_3N$ will remain; and $1.900 \text{ x } 10^{-3} \text{ moles of } (CH_3CH_2)_3NH^+$ will form.

The volume of the solution at this point is $[(20.00 + 19.00) \text{ mL}] (10^{-3} \text{ L/1 mL}) = 0.03900 \text{ L}$

The molarity of the excess $(CH_3CH_2)_3N$ is $(1.00 \times 10^{-4} \text{ mol} (CH_3CH_2)_3N)/(0.03900 \text{ L})$ = 0.002564102 *M* (unrounded)

The molarity of the $(CH_3CH_2)_3NH^+$ formed is $(1.900 \times 10^{-3} \text{ mol} (CH_3CH_2)_3NH^+)/(0.03900 \text{ L})$ = 0.0487179 *M* (unrounded)

$$K_{\rm b} = \frac{\left[\left(\mathrm{CH}_{3}\mathrm{CH}_{2}\right)_{3}\mathrm{NH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\left(\mathrm{CH}_{3}\mathrm{CH}_{2}\right)_{3}\mathrm{N}\right]} = \frac{\left[x\right]\left[0.0487179 + x\right]}{\left[0.002564102 - x\right]} = \frac{\left[x\right]\left[0.0487179\right]}{\left[0.002564102\right]} = 5.2 \text{ x } 10^{-4}$$

 $[OH^{-}] = x = 2.73684 \times 10^{-5} M$

 $pOH = -log (2.73684 \times 10^{-5}) = 4.56275$ (unrounded)

pH = 14.00 - pOH = 14.00 - 4.56275 = 9.43725 = **9.44**

e) Determine the moles of HCl added:

Moles of HCl = $(0.1000 \text{ mol HCl/L}) (10^{-3} \text{ L/1 mL}) (19.95 \text{ mL}) = 1.995 \text{ x} 10^{-3} \text{ mol HCl}$ The HCl will react with an equal amount of the base, and 5 x $10^{-6} \text{ mol (CH}_3\text{CH}_2)_3\text{N}$ will remain; and $1.995 \text{ x} 10^{-3} \text{ moles of (CH}_3\text{CH}_2)_3\text{NH}^+$ will form.

The volume of the solution at this point is $[(20.00 + 19.95) \text{ mL}] (10^{-3} \text{ L/1 mL}) = 0.03995 \text{ L}$ The molarity of the excess $(CH_3CH_2)_3N$ is $(5 \times 10^{-6} \text{ mol} (CH_3CH_2)_3N)/(0.03995 \text{ L})$

= 0.000125156 M (unrounded)

The molarity of the $(CH_3CH_2)_3NH^+$ formed is $(1.995 \times 10^{-3} \text{ mol} (CH_3CH_2)_3NH^+)/(0.03995 \text{ L})$ = 0.0499374 *M* (unrounded)

$$K_{\rm b} = \frac{\left\lfloor \left({\rm CH}_{3} {\rm CH}_{2} \right)_{3} {\rm NH}^{+} \right\rfloor \left\lfloor {\rm OH}^{-} \right\rfloor}{\left[\left({\rm CH}_{3} {\rm CH}_{2} \right)_{3} {\rm N} \right]} = \frac{\left[x \right] \left[0.0499374 + x \right]}{\left[0.000125156 - x \right]} = \frac{\left[x \right] \left[0.0499374 \right]}{\left[0.000125156 \right]} = 5.2 {\rm x} \ 10^{-4}$$

 $[OH^{-}] = x = 1.303254 \text{ x } 10^{-6} M$

 $pOH = -log (1.303254 \times 10^{-6}) = 5.88497$ (unrounded)

pH = 14.00 - pOH = 14.00 - 5.88497 = 8.11503 = 8.1

f) Determine the moles of HCl added:

Moles of HCl = $(0.1000 \text{ mol HCl/L}) (10^{-3} \text{ L/1 mL}) (20.00 \text{ mL}) = 2.000 \text{ x} 10^{-3} \text{ mol HCl}$ The HCl will react with an equal amount of the base, and 0 mol (CH₃CH₂)₃N will remain; and 2.000 x 10⁻³ moles of (CH₃CH₂)₃NH⁺ will form. This is the equivalence point. The volume of the solution at this point is [(20.00 + 20.00) mL] (10⁻³ L/1 mL) = 0.04000 L

The molarity of the $(CH_3CH_2)_3NH^+$ formed is $(2.000 \times 10^{-3} \text{ mol} (CH_3CH_2)_3NH^+)/(0.04000 \text{ L})$ = 0.05000 *M*

$$K_{\rm a} = K_{\rm w}/K_{\rm b} = (1.0 \text{ x } 10^{-14})/(5.2 \text{ x } 10^{-4}) = 1.923 \text{ x } 10^{-11} \text{ (unrounded)}$$

$$K_{a} = \frac{\left[H_{3}O^{+}\right]\left[\left(CH_{3}CH_{2}\right)_{3}N\right]}{\left[\left(CH_{3}CH_{2}\right)_{3}NH^{+}\right]} = \frac{\left[x\right]\left[x\right]}{\left[0.05000 - x\right]} = \frac{\left[x\right]\left[x\right]}{\left[0.05000\right]} = 1.923 \times 10^{-11}$$
$$x = \left[H_{3}O^{+}\right] = 9.8056 \times 10^{-7} M \text{ (unrounded)}$$

 $pH = -log [H_3O^+] = -log (9.8056 \times 10^{-7}) = 6.0085 = 6.01$

g) After the equivalence point, the excess strong acid is the primary factor influencing the pH. Determine the moles of HCl added:

Moles of HCl = $(0.1000 \text{ mol HCl/L}) (10^{-3} \text{ L/1 mL}) (20.05 \text{ mL}) = 2.005 \text{ x } 10^{-3} \text{ mol HCl}$ The HCl will react with an equal amount of the base, and 0 mol (CH₃CH₂)₃N will remain, and 5 x 10⁻⁶ moles of HCl will be in excess.

The volume of the solution at this point is $[(20.00 + 20.05) \text{ mL}] (10^{-3} \text{ L/1 mL}) = 0.04005 \text{ L}$ The molarity of the excess H_3O^+ is $(5 \times 10^{-6} \text{ mol H}_3\text{O}^+)/(0.04005 \text{ L}) = 1.2484 \times 10^{-4} M$ (unrounded) $\text{pH} = -\log (1.2484 \times 10^{-4}) = 3.9036 = 3.90$ h) Determine the moles of HCl added:

Moles of HCl = $(0.1000 \text{ mol HCl/L}) (10^{-3} \text{ L/1 mL}) (25.00 \text{ mL}) = 2.500 \text{ x} 10^{-3} \text{ mol HCl}$ The HCl will react with an equal amount of the base, and 0 mol (CH₃CH₂)₃N will remain, and 5.00×10^{-4} mol of HCl will be in excess.

The volume of the solution at this point is $[(20.00 + 25.00) \text{ mL}] (10^{-3} \text{ L/1 mL}) = 0.04500 \text{ L}$ The molarity of the excess H_3O^+ is $(5.00 \times 10^{-4} \text{ mol } H_3O^+)/(0.04500 \text{ L}) = 1.1111 \times 10^{-2} M$ (unrounded) $pH = -log (1.1111 \times 10^{-2}) = 1.9542 = 1.95$

19.43 a) The balanced chemical equation is:

> $NaOH(aq) + CH_3COOH(aq) \rightarrow Na^+(aq) + CH_3COO^-(aq) + H_2O(l)$ The sodium ions on the product side are written as separate species because they have no effect on the pH of the solution. Calculate the volume of NaOH needed:

Volume =

$$\left(\frac{0.0520 \text{ mol } \text{CH}_3\text{COOH}}{\text{L}}\right) \left(\frac{10^{-3} \text{ L}}{1 \text{ mL}}\right) (42.2 \text{ mL}) \left(\frac{1 \text{ mol } \text{NaOH}}{1 \text{ mol } \text{CH}_3\text{COOH}}\right) \left(\frac{\text{L}}{0.0372 \text{ mol } \text{NaOH}}\right) \left(\frac{1 \text{ mL}}{10^{-3} \text{ L}}\right)$$
$$= 58.989247 = 59.0 \text{ mL } \text{NaOH}$$

Determine the moles of CH₃COOH present:

Moles =
$$\left(\frac{0.0520 \text{ mol CH}_3\text{COOH}}{\text{L}}\right) \left(\frac{10^{-3} \text{ L}}{1 \text{ mL}}\right) (42.2 \text{ mL})$$

 $= 0.0021944 \text{ mol CH}_3\text{COOH} (unrounded)$

At the equivalence point, 0.0021944 mol NaOH will be added so the moles acid = moles base. The NaOH will react with an equal amount of the acid, 0 mol CH₃COOH will remain, and 0.0021944 moles of CH₃COO⁻ will be formed.

	CH ₃ COOH(aq)	+ $NaOH(aq)$	\rightarrow	$H_2O(l)$	+	$CH_3COO^-(aq)$	+	$Na^+(aq)$
Initial:	0.0021944 mol	0.0021944 mol				0		
Change:	-0.0021944 mol	-0.0021944 mol				+0.0021944 m	ol	
Final:	0	0				0.0021944 m	ol	

Determine the liters of solution present at the equivalence point: Volume = $[(42.0 + 58.989247) \text{ mL}] (10^{-3} \text{ L/1 mL}) = 0.100989 \text{ L} (unrounded)$

Concentration of CH₃COO⁻ at equivalence point:

Molarity = $(0.0021944 \text{ mol CH}_3\text{COO}^-)/(0.100989 \text{ L}) = 0.021729 M$ (unrounded) Calculate K_b for CH₃COO⁻: K_b for CH₃COO⁻: K_a CH₃COOH = 1.8 x 10⁻⁵ $K_b = K_w/K_a = (1.0 x 10^{-14})/(1.8 x 10^{-5}) = 5.556 x 10^{-10}$ (unrounded)

Using a reaction table for the equilibrium reaction of CH₃COO⁻

o o nig a reaction					-,	
	CH ₃ COO ⁻	+	H_2O	₽	CH ₃ COOH +	OH-
Initial:	0.021729 M				0	0
Change:	- <i>x</i>				$+\chi$	$+\chi$
Equilibrium:	0.021729 - x				x	x

Determine the hydroxide ion concentration from the $K_{\rm b}$, and then determine the pH from the pOH.

$$K_{\rm b} = \frac{\left[{\rm CH}_{3}{\rm COOH}\right]\left[{\rm OH}^{-}\right]}{\left[{\rm CH}_{3}{\rm COO}^{-}\right]} = \frac{\left[x\right]\left[x\right]}{\left[0.021729 - x\right]} = \frac{\left[x\right]\left[x\right]}{\left[0.021729\right]} = 5.556 \text{ x } 10^{-10}$$

 $[OH^{-}] = x = 3.4745693 \times 10^{-6} M$ (unrounded)

 $pOH = -log (3.4745693 \times 10^{-6}) = 5.459099012$ (unrounded)

pH = 14.00 - pOH = 14.00 - 5.459099012 = 8.54090 = 8.54

b) The balanced chemical equation is:

 $Na(aq) + HNO_2(aq) \rightarrow Na(aq) + NO_2^{-}(aq) + H_2O(l)$

The sodium ions on the product side are written as separate species because they have no effect on the pH of the solution. Calculate the volume of NaOH needed:

$$Volume = \left(\frac{0.0390 \text{ mol } \text{HNO}_2}{\text{L}}\right) \left(\frac{10^{-3} \text{ L}}{1 \text{ mL}}\right) (23.4 \text{ mL}) \left(\frac{1 \text{ mol } \text{NaOH}}{1 \text{ mol } \text{HNO}_2}\right) \left(\frac{\text{L}}{0.0372 \text{ mol } \text{NaOH}}\right) \left(\frac{1 \text{ mL}}{10^{-3} \text{ L}}\right) = 24.532 = 24.5 \text{ mL } \text{NaOH}$$

Determine the moles of HNO₂ present:

Moles =
$$\left(\frac{0.0390 \text{ mol HNO}_2}{L}\right) \left(\frac{10^{-3} \text{ L}}{1 \text{ mL}}\right) (23.4 \text{ mL})$$

= 0.0009126 mol HNO₂

At the equivalence point, 0.0009126 mol NaOH will be added so the moles acid = moles base. The NaOH will react with an equal amount of the acid, 0 mol HNO₂ will remain, and 0.0009126 moles of NO₂⁻ will be formed.

	$HNO_2(aq)$	+	$NaOH(aq) \rightarrow$	$H_2O(l)$	+	$NO_2(aq)$	+	$Na^+(aq)$
Initial:	0.0009126 mol		0.0009126 mol			0		
Change:	-0.0009126 mol		-0.0009126 mol			+0.0009126 m	nol	
Final:	0		0			0.0009126m	ol	

Determine the liters of solution present at the equivalence point:

Volume = $[(23.4 + 24.532) \text{ mL}] (10^{-3} \text{ L/1 mL}) = 0.047932 \text{ L} (unrounded)$ Concentration of NO_2^- at equivalence point:

Molarity = $(0.0009126 \text{ mol } NO_2^{-})/(0.047932 \text{ L}) = 0.0190395 M$ (unrounded) e $K_{\rm b}$ for NO₂⁻: $K_{\rm a}$ HNO₂ = 7.1 x 10⁻⁴ $K_{\rm b} = K_{\rm w}/K_{\rm a} = (1.0 \text{ x } 10^{-14})/(7.1 \text{ x } 10^{-4}) = 1.40845 \text{ x } 10^{-11} \text{ (unrounded)}$ Calculate $K_{\rm b}$ for NO₂⁻:

Using a reaction table for the equilibrium reaction of NO_2^{-} :

	NO_{2}^{-} +	H_2O	ţ	HNO_2 +	OH-
Initial:	0.0190395 M			0	0
Change:	- <i>x</i>			$+\chi$	+x
Equilibrium:	0.0190395 - x			x	x

Determine the hydroxide ion concentration from the $K_{\rm b}$, and then determine the pH from the pOH.

$$K_{b} = \frac{[\text{HNO}_{2}][\text{OH}^{-}]}{[\text{NO}_{2}^{-}]} = \frac{[x][x]}{[0.0190395 - x]} = \frac{[x][x]}{[0.0190395]} = 1.40845 \text{ x } 10^{-11}$$

[OH⁻] = x = 5.178431 x 10⁻⁷ M (unrounded)
pOH = -log (5.178431 x 10⁻⁷) = 6.285802 (unrounded)
pH = 14.00 - pOH = 14.00 - 6.285802 = 7.714198 = **7.71**

19.44 a) The balanced chemical equation is:

 $HCl(aq) + NH_3(aq) \rightarrow NH_4^+(aq) + Cl^-(aq)$

The chloride ions on the product side are written as separate species because they have no effect on the pH of the solution. Calculate the volume of HCl needed:

Volume =

$$\left(\frac{0.234 \text{ mol } \text{NH}_3}{\text{L}}\right)\left(\frac{10^{-3} \text{ L}}{1 \text{ mL}}\right)(55.5 \text{ mL})\left(\frac{1 \text{ mol } \text{HCl}}{1 \text{ mol } \text{NH}_3}\right)\left(\frac{\text{L}}{0.135 \text{ mol } \text{HCl}}\right)\left(\frac{1 \text{ mL}}{10^{-3} \text{ L}}\right)$$

= 96.2 mL HCl

Determine the moles of NH₃ present:

$$Moles = \left(\frac{0.234 \text{ mol } NH_3}{L}\right) \left(\frac{10^{-3} \text{ L}}{1 \text{ mL}}\right) (55.5 \text{ mL})$$

 $= 0.012987 \text{ mol NH}_3 \text{ (unrounded)}$

At the equivalence point, 0.012987 mol HCl will be added so the moles acid = moles base. The HCl will react with an equal amount of the base, 0 mol NH₃ will remain, and 0.012987 moles of NH₄⁺ will be formed.

	HCl(aq)	+	$NH_3(aq) \rightarrow$	$NH_4^+(aq)$ +	- Cl ⁻ (ag	q)
Initial:	0.012987 mol		0.012987 mol	0	_	
Change:	-0.012987 mol		-0.012987 mol	+0.012987 1	mol –	
Final:	0		0	0.012987 r	nol	

Determine the liters of solution present at the equivalence point:

Volume = $[(55.5 + 96.2) \text{ mL}] (10^{-3} \text{ L/1 mL}) = 0.1517 \text{ L}$

Concentration of NH₄⁺ at equivalence point:

Molarity = $(0.012987 \text{ mol NH}_4^+)/(0.1517 \text{ L}) = 0.0856098 M$ (unrounded) Calculate K_a for NH₄⁺: K_b NH₃ = 1.76 x 10⁻⁵ $K_a = K_w/K_b = (1.0 \text{ x } 10^{-14})/(1.76 \text{ x } 10^{-5}) = 5.6818 \text{ x } 10^{-10}$ (unrounded) Using a reaction table for the equilibrium reaction of NH₄⁺.

Using a reaction	in table for t	ne equi	nonum	action	$M M \Pi_4$.	
	$\mathrm{NH_4}^+$	+	H_2O	₽	NH3 +	· H ₃ O ⁺
Initial:	0.085609	8 M			0	0
Change:	<i>x</i>				+x	$+\chi$
Equilibrium:	0.085609	8-x			x	x
D.4	1			C	Z 1 41.	

Determine the hydrogen ion concentration from the K_a , and then determine the pH.

$$K_{a} = \frac{\left\lfloor H_{3}O^{+} \right\rfloor \left\lfloor NH_{3} \right\rfloor}{\left\lfloor NH_{4}^{+} \right\rfloor} = \frac{\left[x\right] \left[x\right]}{\left[0.0856098 - x\right]} = \frac{\left[x\right] \left[x\right]}{\left[0.0856098\right]} = 5.6818 \times 10^{-10}$$
$$x = \left[H_{3}O^{+}\right] = 6.974366 \times 10^{-6} M \text{ (unrounded)}$$
$$pH = -\log \left[H_{3}O^{+}\right] = -\log (6.974366 \times 10^{-6}) = 5.1565 = 5.16$$
b) The balanced chemical equation is:

 $HCl(aq) + CH_3NH_2(aq) \rightarrow CH_3NH_3^+(aq) + Cl^-(aq)$

The chloride ions on the product side are written as separate species because they have no effect on the pH of the solution. Calculate the volume of HCl needed:

Volume =

$$\left(\frac{1.11 \text{ mol } \text{CH}_3 \text{NH}_2}{\text{L}}\right) \left(\frac{10^{-3} \text{ L}}{1 \text{ mL}}\right) (17.8 \text{ mL}) \left(\frac{1 \text{ mol } \text{HCl}}{1 \text{ mol } \text{CH}_3 \text{NH}_2}\right) \left(\frac{\text{L}}{0.135 \text{ mol } \text{HCl}}\right) \left(\frac{1 \text{ mL}}{10^{-3} \text{ L}}\right)$$

= 146.3556 = **146 mL HCl**

Determine the moles of CH₃NH₂ present:

$$Moles = \left(\frac{1.11 \text{ mol } CH_3 NH_2}{L}\right) \left(\frac{10^{-3} L}{1 \text{ mL}}\right) (17.8 \text{ mL})$$

$$= 0.019758 \text{ mol CH}_3\text{NH}_2 \text{ (unrounded)}$$

At the equivalence point, 0.019758 mol HCl will be added so the moles acid = moles base. The HCl will react with an equal amount of the base, 0 mol CH₃NH₂ will remain, and 0.019758 moles of $CH_3NH_3^+$ will be formed.

	HCl(aq)	+	$CH_3NH_2(aq)$	\rightarrow	$CH_3NH_3^+(aq)$	+	$Cl^{-}(aq)$
Initial:	0.019758 mol		0.019758 mol		0		_
Change:	– 0.019758 mol		-0.019758 mol		+0.019758 mol		_
Final:	0		0		0.019758 mol		

Determine the liters of solution present at the equivalence point:

Volume = $[(17.8 + 146.3556) \text{ mL}] (10^{-3} \text{ L/1 mL}) = 0.1641556 \text{ L} (unrounded)$ Concentration of CH₃NH₃⁺ at equivalence point:

Molarity = $(0.019758 \text{ mol CH}_3\text{NH}_3^+)/(0.161556 \text{ L}) = 0.122298 M$ (unrounded) Calculate K_a for CH₃NH₃⁺: K_b CH₃NH₂ = 4.4 x 10⁻⁴ $K_a = K_w/K_b = (1.0 \text{ x } 10^{-14})/(4.4 \text{ x } 10^{-4}) = 2.2727 \text{ x } 10^{-11} \text{ (unrounded)}$

Using a reaction table for the equilibrium reaction of CH₃NH₃⁺:

-	CH ₃ NH ₃ ⁺	+	H_2O	与	CH ₃ NH ₂	$+$ H_3O^+
Initial:	0.122298 M				0	0
Change:	- <i>x</i>				$+\chi$	+x
Equilibrium:	0.122298 - x				x	x

Determine the hydrogen ion concentration from the K_a , and then determine the pH.

$$K_{a} = \frac{\left[H_{3}O^{+}\right]\left[CH_{3}NH_{2}\right]}{\left[CH_{3}NH_{3}^{+}\right]} = \frac{\left[x\right]\left[x\right]}{\left[0.122298 - x\right]} = \frac{\left[x\right]\left[x\right]}{\left[0.122298\right]} = 2.2727 \times 10^{-11}$$
$$x = \left[H_{3}O^{+}\right] = 1.66717 \times 10^{-6} M \text{ (unrounded)}$$
$$pH = -\log\left[H_{3}O^{+}\right] = -\log\left(1.66717 \times 10^{-6}\right) = 5.778019 = 5.78$$

19.45 $M_2X(s) \leftrightarrows 2M^+(aq) + X^{2-}(aq)$ $K_{sp} = [M^+]^2[X^{2-}], \text{ assuming } M_2X \text{ is a strong electrolyte.}$ $S = \text{molar solubility} = 5 \times 10^{-5} M$ $[M^+] = 2 S = 1 \times 10^{-4} M$ $[X^{2-}] = S = 5 \times 10^{-5} M$

The actual K_{sp} is lower than the calculated value because the assumption that M₂X is a strong electrolyte (i.e., exists as M⁺ + X²⁻) is in error to some degree. There would be some (probably significant) amount of ion pairing to form MX⁻(*aq*), M₂X(*aq*), etc., which reduces the effective concentrations of the ions.

19.46 Fluoride ion in BaF₂ is the conjugate base of the weak acid HF. The base hydrolysis reaction of fluoride ion $F^{-}(aq) + H_2O(l) \implies HF(aq) + OH^{-}(aq)$

therefore is influenced by the pH of the solution. As the pH increases, $[OH^-]$ increases and the equilibrium shifts to the left to decrease $[OH^-]$ and increase the $[F^-]$. As the pH decreases, $[OH^-]$ decreases and the equilibrium shifts to the right to increase $[OH^-]$ and decrease $[F^-]$. The changes in $[F^-]$ influence the solubility of BaF₂. Chloride ion is the conjugate base of a strong acid so it does not react with water. Thus, its concentration is not influenced by pH, and solubility of BaCl₂ does not change with pH.

19.47 Consider the reaction $AB(s) \leftrightarrows A^+(aq) + B^-(aq)$, where $Q_{sp} = [A^+][B^-]$. If $Q_{sp} > K_{sp}$, then there are more ions dissolved than expected at equilibrium, and the equilibrium shifts to the left and the compound AB precipitates. The excess ions precipitate as solid from the solution.

19.48 a) $\operatorname{Ag_2CO_3(s)} \rightleftharpoons 2 \operatorname{Ag^+}(aq) + \operatorname{CO_3^{2-}}(aq)$ Ion-product expression: $K_{sp} = [\operatorname{Ag^+}]^2[\operatorname{CO_3^{2-}}]$ b) $\operatorname{BaF_2(s)} \leftrightarrows \operatorname{Ba^{2+}}(aq) + 2 \operatorname{F^-}(aq)$ Ion-product expression: $K_{sp} = [\operatorname{Ba^{2+}}][\operatorname{F^-}]^2$ c) $\operatorname{CuS}(s) + \operatorname{H_2O}(l) \leftrightarrows \operatorname{Cu^{2+}}(aq) + \operatorname{HS^-}(aq) + \operatorname{OH^-}(aq)$ Ion-product expression: $K_{sp} = [\operatorname{Cu^{2+}}][\operatorname{HS^-}][\operatorname{OH^-}]$

19.49 a)
$$\operatorname{Fe}(OH)_3(s) \leftrightarrows \operatorname{Fe}^{3+}(aq) + 3 \operatorname{OH}^-(aq)$$

Ion-product expression: $K_{sp} = [\operatorname{Fe}^{3+}] [\operatorname{OH}^-]^3$
b) $\operatorname{Ba}_3(\operatorname{PO}_4)_2(s) \leftrightarrows 3 \operatorname{Ba}^{2+}(aq) + 2 \operatorname{PO}_4^{3-}(aq)$
Ion-product expression: $K_{sp} = [\operatorname{Ba}^{2+}]^3 [\operatorname{PO}_4^{3-}]^2$
c) $\operatorname{SnS}(s) + \operatorname{H}_2O(l) \leftrightarrows \operatorname{Sn}^{2+}(aq) + \operatorname{HS}^-(aq) + \operatorname{OH}^-(aq)$
Ion-product expression: $K_{sp} = [\operatorname{Sn}^{2+}][\operatorname{HS}^-][\operatorname{OH}^-]$

19.50	19.50 Write a reaction table, where S is the molar solubility of Ag_2CO_3 :					
	Concentration (M)	$Ag_2CO_3(s)$	$\Rightarrow 2 \operatorname{Ag}^{+}(aq)$	+ $CO_3^{2-}(aq)$		
	Initial	—	0	0		
	Change		+2 S	+S		
	Equilibrium	—	2 S	S		
	$S = [Ag_2CO_3] = 0.032$	$M \text{ so } [Ag^+] = 2 \text{ S}$	= 0.064 M and	$[\mathrm{CO}_3^{2-}] = \mathrm{S} = 0.032 M$		
	$K_{\rm sp} = [{\rm Ag}^+]^2 [{\rm CO}_3^{2-}] =$	$(0.064)^2(0.032) =$	1.31072 x 10 ⁻⁴	$= 1.3 \times 10^{-4}$		

19.51 Write a reaction table, where S is the molar solubility of ZnC_2O_4 : Concentration (M) $ZnC_2O_4(s) \rightleftharpoons Zn^{2+}(aq) + C_2O_4^{2-}(aq)$ Initial --- 0 0 <u>Change --- +S +S</u> Equilibrium --- S S S = $[ZnC_2O_4] = 7.9 \times 10^{-3} M$ so $[Zn^{2+}] = [C_2O_4^{2-}] = S = 7.9 \times 10^{-3} M$ $K_{sp} = [Zn^{2+}][C_2O_4^{2-}] = (7.9 \times 10^{-3}) (7.9 \times 10^{-3}) = 6.241 \times 10^{-5} = 6.2 \times 10^{-4}$ 19.52 The equation and ion-product expression for silver dichromate, Ag₂Cr₂O₇, is: $Ag_2Cr_2O_7(s) \leftrightarrows 2 Ag^+(aq) + Cr_2O_7^{2-}(aq) \qquad K_{sp} = [Ag^+]^2[Cr_2O_7^{2-}]$

The solubility of $Ag_2Cr_2O_7$, converted from g / 100 mL to M is:

Molar solubility = S =
$$\left(\frac{8.3 \text{ x } 10^{-3} \text{ g } \text{ Ag}_2 \text{Cr}_2 \text{O}_7}{100 \text{ mL}}\right) \left(\frac{1 \text{ mL}}{10^{-3} \text{ L}}\right) \left(\frac{1 \text{ mol } \text{ Ag}_2 \text{Cr}_2 \text{O}_7}{431.8 \text{ g } \text{ Ag}_2 \text{Cr}_2 \text{O}_7}\right) = 0.00019221861 M \text{ (unrounded)}$$

Since 1 mole of Ag₂Cr₂O₇ dissociates to form 2 moles of Ag⁺, the concentration of Ag⁺ is 2 S = 2(0.00019221861 *M*) = 0.00038443723 *M* (unrounded). The concentration of Cr₂O₇²⁻ is S = 0.00019221861 *M* because 1 mole of Ag₂Cr₂O₇ dissociates to form 1 mole of Cr₂O₇²⁻. $K_{sp} = [Ag^+]^2[Cr_2O_7^{2-}] = (2 S)^2(S) = (0.00038443723)^2(0.00019221861) = 2.8408 \times 10^{-11} = 2.8 \times 10^{-11}$.

19.53 The equation and ion-product expression for calcium sulfate, CaSO₄, is: CaSO₄(s) \leftrightarrows Ca²⁺(aq) + SO₄²⁻(aq) $K_{sp} = [Ca^{2+}][SO_4^{2-}]$ The solubility of CaSO₄, converted from g / 100 mL to M is:

Molar solubility = S =
$$\left(\frac{0.209 \text{ g CaSO}_4}{100 \text{ mL}}\right) \left(\frac{1 \text{ mL}}{10^{-3} \text{ L}}\right) \left(\frac{1 \text{ mol CaSO}_4}{136.15 \text{ g CaSO}_4}\right) = 0.015350716 M \text{ (unrounded)}$$

Since 1 mole of CaSO₄ dissociates to form 1 mole of Ca²⁺, the concentration of Ca²⁺ is S = 0.015350716 *M* (unrounded). The concentration of SO₄²⁻ is S = 0.015350716 *M* because 1 mole of CaSO₄ dissociates to form 1 mole of SO₄²⁻.

$$K_{\rm sp} = [{\rm Ca}^{2^+}][{\rm SO}_4^{2^-}] = ({\rm S}) ({\rm S}) = (0.015350716) (0.015350716) = 2.35644 \times 10^{-4} = 2.36 \times 10^{-4}$$

19.54 The equation and ion-product expression for SrCO₃ is: $SrCO_3(s) \leftrightarrows Sr^{2+}(aq) + CO_3^{2-}(aq)$ $K_{sp} = [Sr^{2+}][CO_3^{2-}]$ a) The solubility, S, in pure water equals $[Sr^{2+}]$ and $[CO_3^{2-}]$ Write a reaction table, where S is the molar solubility of SrCO₃: $CO_3^{2-}(aq)$ $SrCO_3(s) \leftrightarrows$ $Sr^{2+}(aq) +$ Concentration (M) 0 0 Initial Change +S+SEquilibrium $K_{\rm sp} = 5.4 \text{ x } 10^{-10} = [\text{Sr}^{2+}][\text{CO}_3^{2-}] = [\text{S}][\text{S}] = \text{S}^2$ $S = 2.32379 \times 10^{-5} = 2.3 \times 10^{-5} M$ b) In 0.13 M Sr(NO₃)₂, the initial concentration of Sr²⁺ is 0.13 M. Equilibrium $[Sr^{2+}] = 0.13 + S$ and equilibrium $[CO_3^{2-}] = S$ where S is the solubility of SrCO₃. Concentration (M) $SrCO_3(s) \leftrightarrows$ $Sr^{2+}(aq) +$ $CO_3^{2-}(aq)$ 0.13 Initial 0 +SChange 0.13 + SEquilibrium $K_{\rm sp} = 5.4 \text{ x } 10^{-10} = [\text{Sr}^{2+}][\text{CO}_3^{2-}] = (0.13 + \text{S})\text{S}$ This calculation may be simplified by assuming S is small and setting (0.13 + S) = (0.13). $K_{\rm sp} = 5.4 \text{ x} 10^{-10} = (0.13)\text{S}$ S = 4.1538 x 10⁻⁹ = **4.2 x 10⁻⁹ M** 19.55 The equation and ion-product expression for SrCO₃ is: $K_{\rm sp} = [{\rm Ba}^{2+}][{\rm CrO_4}^{2-}]$ $BaCrO_4(s) \leftrightarrows Ba^{2+}(aq) + CrO_4^{2-}(aq)$ a) The solubility, S, in pure water equals $[Ba^{2+}]$ and $[CrO_4^{2-}]$ $K_{sp} = 2.1 \times 10^{-10} = [Ba^{2+}][CrO_4^{2-}] = S^2$ $S = 1.4491 \times 10^{-5} = 1.4 \times 10^{-5} M$ b) In 0.13 *M* Na₂CrO₄, the initial concentration of CrO_4^{2-} is 1.5 x 10⁻³ *M*. Equilibrium $[Ba^{2+}] = S$ and equilibrium $[CrO_4^{2-}] = 1.5 \times 10^{-3} + S$ where S is the solubility of BaCrO₄. $K_{sp} = 2.1 \times 10^{-10} = [Ba^{2+}][CrO_4^{2-}] = S(1.5 \times 10^{-3} + S)$ Assume S is small so $(1.5 \times 10^{-3} + S) = (1.5 \times 10^{-3})$ $K_{sp} = 2.1 \times 10^{-10} = S(1.5 \times 10^{-3})$ $S = 1.4 \times 10^{-7} M$

The equilibrium is: $Ca(IO_3)_2(s) \leftrightarrows Ca^{2+}(aq) + 2 IO_3^{-}(aq)$. From the Appendix, $K_{sp}(Ca(IO_3)_2) = 7.1 \times 10^{-7}$. 19.56 a) Write a reaction table that reflects an initial concentration of $Ca^{2+} = 0.060 M$. In this case, Ca^{2+} is the common ion.

Concentration (M)	$Ca(IO_3)_2(s)$	$rac{}{}$ Ca ²⁺ (<i>aq</i>)	+ $2 IO_3(aq)$
Initial		0.060	0
Change		+S	+2S
Equilibrium		0.060 + S	2S

Assume that $0.060 + S \approx 0.060$ because the amount of compound that dissolves will be negligible in comparison to 0.060 M.

 $K_{\rm sp} = [{\rm Ca}^{2^+}][{\rm IO}_3^-]^2 = (0.060) (2{\rm S})^2 = 7.1 \text{ x } 10^{-7} \text{ S} = 1.71998 \text{ x } 10^{-3} = 1.7 \text{ x } 10^{-3} M$

Check assumption: $(1.71998 \times 10^{-3} M)/(0.060 M) \times 100\% = 2.9\% < 5\%$, so the assumption is good. S represents both the molar solubility of Ca^{2+} and $Ca(IO_3)_2$, so the molar solubility of $Ca(IO_3)_2$ is 1.7 x 10⁻³ M. b) In this case,

Concentration (M)	$Ca(IO_3)_2(s)$	\Rightarrow Ca ²⁺ (aq)	+ $2 IO_3(aq)$
Initial		0	0.060
Change		+S	+2S
Equilibrium		S	0.060 + 2S

The equilibrium concentration of Ca^{2+} is S, and the IO_3^- concentration is 0.060 + 2S. The iodate ion is the common ion in this problem.

Assume that $0.060 + 2S \approx 0.060$ $K_{\rm sp} = [{\rm Ca}^{2+}][{\rm IO}_3^-]^2 = ({\rm S}) (0.060)^2 = 7.1 \times 10^{-7}$ S = 1.97222 x 10⁻⁴ = 2.0 x 10⁻⁴ M

Check assumption: $(1.97222 \times 10^{-4} M)/(0.060 M) \times 100\% = 0.3\% < 5\%$, so the assumption is good. S represents both the molar solubility of Ca²⁺ and Ca(IO₃)₂, so the molar solubility of Ca(IO₃)₂ is **2.0 x 10⁻⁴ M**.

The equilibrium is: $Ag_2SO_4(s) \rightleftharpoons 2Ag^+(aq) + SO_4^{2-}(aq)$. From the Appendix, $K_{sp}(Ag_2SO_4) = 1.5 \times 10^{-5}$. 19.57 a) Write a reaction table that reflects an initial concentration of $Ag^+ = 0.22 M$. In this case, Ag^+ is the common ion.

Concentration (M)	$Ag_2SO_4(s)$	\Rightarrow 2 Ag ⁺ (aq)	+ $SO_4^{2-}(aq)$
Initial		0.22	0
Change		+2S	+S
Equilibrium		0.22 + 2S	S

Assume that $0.22 + 2S \approx 0.22$ because the amount of compound that dissolves will be negligible in comparison to 0.22 M.

$$K_{\rm sp} = [{\rm Ag}^+]^2 [{\rm SO}_4^{2-}] = (0.22)^2 ({\rm S}) = 1.5 \text{ x } 10^{-5}$$

S = 3.099175 x 10⁻⁴ = 3.1 x 10⁻⁴

Check assumption: $(3.099175 \times 10^{-4} M)/(0.22 M) \times 100\% = 1.4\% < 5\%$, so the assumption is good. S represents both the molar solubility of SO_4^{2-} and $Ag_2SO_4(s)$, so the molar solubility of $Ag_2SO_4(s)$ is **3.1 x 10⁻⁴ M**.

b) In this case,

Concentration (M)	$Ag_2SO_4(s)$	\Rightarrow 2 Ag ⁺ (aq)	+ $SO_4^{2-}(aq)$
Initial		0	0.22
Change		+2S	+S
Equilibrium		2S	0.22 + S

The equilibrium concentration of Ag^+ is 2S, and the SO_4^{2-} concentration is 0.22 + S. The sulfate ion is the common ion in this problem.

Assume that $0.22 + S \approx 0.22$. $K_{sp} = [Ag^+]^2 [SO_4^{2-}] = (2S)^2 (0.22) = 1.5 \text{ x } 10^{-5}$ $S = 4.1286 \text{ x } 10^{-3} = 4.1 \text{ x } 10^{-3}$

Check assumption: $(4.1286 \times 10^{-3} M)/(0.22 M) \times 100\% = 1.9\% < 5\%$, so the assumption is good. S represents the molar solubility of Ag_2SO_4 , so the molar solubility of Ag_2SO_4 is 4.1 x 10⁻³ M.

- The larger the K_{sp} , the larger the molar solubility if the number of ions are equal. a) **Mg(OH)**₂ with $K_{sp} = 6.3 \times 10^{-10}$ has higher molar solubility than Ni(OH)₂ with $K_{sp} = 6 \times 10^{-16}$. b) **PbS** with $K_{sp} = 3 \times 10^{-25}$ has higher molar solubility than CuS with $K_{sp} = 8 \times 10^{-34}$. c) **Ag₂SO₄** with $K_{sp} = 1.5 \times 10^{-5}$ has higher molar solubility than MgF₂ with $K_{sp} = 7.4 \times 10^{-9}$. 19.58
- 19.59 The larger the K_{sp} , the larger the molar solubility if the number of ions are equal. a) **SrSO**₄ with $K_{sp} = 3.2 \times 10^{-7}$ has higher molar solubility than BaCrO₄ with $K_{sp} = 2.1 \times 10^{-10}$. b) **CaCO**₃ with $K_{sp} = 3.3 \times 10^{-9}$ has higher molar solubility than CuCO₃ with $K_{sp} = 3 \times 10^{-12}$. c) **Ba(IO**₃)₂ with $K_{sp} = 1.5 \times 10^{-9}$ has higher molar solubility than Ag₂CrO₄ with $K_{sp} = 2.6 \times 10^{-12}$.
- 19.60 a) AgCl(s) \leftrightarrows Ag⁺(aq) + Cl⁻(aq) The chloride ion is the anion of a strong acid, so it does not react with H_3O^+ . The solubility is not affected by pH. b) SrCO₃(s) \leftrightarrows Sr²⁺(aq) + CO₃²⁻(aq) The strontium ion is the cation of a strong base, so pH will not affect its solubility. The carbonate ion is the conjugate base of a weak acid and will act as a base: $\text{CO}_3^{2-}(aq) + \text{H}_2\text{O}(l) \leftrightarrows \text{HCO}_3^{-}(aq) + \text{OH}^{-}(aq)$ and $HCO_3^{-}(aq) + H_2O(l) \leftrightarrows H_2CO_3(aq) + OH^{-}(aq)$

The H₂CO₃ will decompose to CO₂(g) and H₂O(l). The gas will escape and further shift the equilibrium. Changes in pH will change the $[CO_3^{2-}]$, so the solubility of SrCO₃ will increase with decreasing pH. Solubility increases with addition of H_3O^+ (decreasing pH).

19.61 a) $\operatorname{CuBr}(s) \leftrightarrows \operatorname{Cu}^+(aq) + \operatorname{Br}^-(aq)$

The bromide ion is the anion of a strong acid, so it does not react with H_3O^+ . At high pH the copper ion may precipitate.

 $Cu^+(aq) + OH^-(aq) \leftrightarrows CuOH(s)$

b) $Ca_3(PO_4)_2(s) \leftrightarrows 3 Ca^{2+}(aq) + 2 PO_4^{3-}(aq)$

The calcium ion is the cation of a strong base so pH will not affect its solubility.

 PO_4^{3-} is the anion of a weak acid, so the following equilibria would be present. $PO_4^{3-}(aq) + n H_2O(l) \leftrightarrows H_nPO_4^{(3-n)-}(aq) + n OH^-(aq) (n = 1,2,3)$

Since these involve OH⁻, the solubility will change with changing pH. Solubility increases with addition of H_3O^+ (decreasing pH).

The ion-product expression for Cu(OH)₂ is $K_{sp} = [Cu^{2+}][OH^{-}]^2$ and, from Appendix C, K_{sp} equals 2.2 x 10⁻²⁰. To decide if a precipitate will form, calculate Q_{sp} with the given quantities and compare it to K_{sp} . 19.62

$$[Cu^{2+}] = \left(\frac{1.0 \text{ x } 10^{-3} \text{ mol } Cu(NO_3)_2}{L}\right) \left(\frac{1 \text{ mol } Cu^{2+}}{1 \text{ mol } Cu(NO_3)_2}\right) = 1.0 \text{ x } 10^{-3} M \text{ Cu}^{2+}$$
$$[OH^-] = \left(\frac{0.075 \text{ g } \text{ KOH}}{1.0 \text{ L}}\right) \left(\frac{1 \text{ mol } \text{ KOH}}{56.11 \text{ g } \text{ KOH}}\right) \left(\frac{1 \text{ mol } \text{ OH}^-}{1 \text{ mol } \text{ KOH}}\right) = 1.33666 \text{ x } 10^{-3} M \text{ OH}^- \text{ (unrounded)}$$

 $Q_{\rm sp} = [{\rm Cu}^{2+}][{\rm OH}^{-}]^2 = (1.0 \times 10^{-3}) (1.33666 \times 10^{-3})^2 = 1.7866599 \times 10^{-9}$ (unrounded) $Q_{\rm sp}$ is greater than $K_{\rm sp} (1.8 \times 10^{-9} > 2.2 \times 10^{-20})$, so **Cu(OH)₂ will precipitate**.

The ion-product expression for PbCl₂ is $K_{sp} = [Pb^{2+}][Cl^{-}]^2$ and, from the Appendix, K_{sp} equals 1.7 x 10⁻⁵. To decide if a precipitate will form, calculate Q_{sp} with the given quantities and compare it to K_{sp} . 19.63

$$[Pb^{2+}] = \left(\frac{0.12 \text{ mol Pb}(NO_3)_2}{L}\right) \left(\frac{1 \text{ mol Pb}^{2+}}{1 \text{ mol Pb}(NO_3)_2}\right) = 0.12 M Pb^{2+}$$

$$[Cl^-] = \left(\frac{3.5 \text{ mg NaCl}}{0.250 \text{ L}}\right) \left(\frac{10^{-3} \text{ g}}{1 \text{ mg}}\right) \left(\frac{1 \text{ mol NaCl}}{58.45 \text{ g NaCl}}\right) \left(\frac{1 \text{ mol Cl}^-}{1 \text{ mol NaCl}}\right) = 2.3952 \text{ x } 10^{-4} M \text{ Cl}^- \text{ (unrounded)}$$

$$Q_{\text{sp}} = [Pb^{2+}][Cl^-]^2 = (0.12) (2.3952 \text{ x } 10^{-4})^2 = 6.8843796 \text{ x } 10^{-9} \text{ (unrounded)}$$

$$Q_{\text{sp}} \text{ is greater than } K_{\text{sp}} (6.9 \text{ x } 10^{-9} < 1.7 \text{ x } 10^{-5}), \text{ so PbCl}_2 \text{ will not precipitate.}$$

19.64 Original moles of
$$Ca^{2+} = \left(\frac{9.7 \times 10^{-5} \text{ g } Ca^{2+}}{\text{mL}}\right) (104 \text{ mL}) \left(\frac{1 \text{ mol } Ca^{2+}}{40.08 \text{ g } Ca^{2+}}\right) = 2.5170 \times 10^{-4} \text{ mol } Ca^{2+}$$

Moles of $C_2O_4^{2-}$ added = $\left(\frac{0.1550 \text{ mol } \text{Na}_2C_2O_4}{\text{L}}\right) \left(\frac{10^{-3} \text{ L}}{1 \text{ mL}}\right) (100.0 \text{ mL}) \left(\frac{1 \text{mol} C_2O_4^{2-}}{1 \text{ mol} \text{Na}_2C_2O_4}\right) = 0.01550 \text{ mol } C_2O_4^{2-}$

The Ca²⁺ is limiting leaving 0 *M*, and after the reactions there will be (0.01550 - 0.010088) mol of C₂O₄²⁻ remaining.

$$[C_{2}O_{4}^{2-}] = \left(\frac{(0.01550 - 0.00025170) \text{ mol } C_{2}O_{4}^{2-}}{(104 + 100.0) \text{ mL}}\right) \left(\frac{1 \text{ mL}}{10^{-3} \text{ L}}\right) = 0.0747466 M C_{2}O_{4}^{2-} \text{ (unrounded)}$$

$$\begin{array}{c} \text{Concentration } (M) & \text{CaC}_{2}O_{4} \cdot \text{H}_{2}O(s) \leftrightarrows \text{Ca}^{2+}(aq) + C_{2}O_{4}^{2-}(aq) + \text{H}_{2}O(l) \\ \text{Initial} & - & 0 & 0.0747466 & - \\ \hline \text{Change} & - & +\text{S} & +\text{S} & - \\ \hline \text{Equilibrium} & - & \text{S} & 0.0747466 + \text{S} & - \end{array}$$

Assume that $0.0747466 + S \approx 0.0747466$ because the amount of compound that dissolves will be negligible in comparison to 0.0747466 M. The K_{sp} from the Appendix is: 2.3×10^{-9} $K_{sp} = [C_{9}^{2+1}][C_{9}O_{2}^{2-1}] = (S) (0.0747466) = 2.3 \times 10^{-9}$

$$K_{\rm sp} = [Ca^{2^{-1}}][C_2O_4^{2^{-2}}] = (S) (0.0747466) = 2.3 \text{ x } 1$$

S = 3.07706 x 10⁻⁸ = 3.1 x 10⁻⁸

Check assumption: $(3.07706 \times 10^{-8} M)/(0.0747466 M) \times 100\% = 0.00004\% < 5\%$, so the assumption is good. S represents both the molar solubility of Ca²⁺ and CaC₂O₄•H₂O(*s*), so the concentration of Ca²⁺ is **3.1 x 10⁻⁸ M**.

19.65 The metal ion can act as a Lewis acid and bond to one or more negatively charged ligands. If the total negative charge of the ligands exceeds the positive charge on the metal ion, the complex will be negative.

$$19.66 \quad Cd(H_{2}O)_{4}^{2+}(aq) + \Gamma(aq) \leftrightarrows CdI(H_{2}O)_{3}^{+}(aq) + H_{2}O(l) \qquad K_{\Pi} = \frac{\left[CdI(H_{2}O)_{3}^{++}\right]}{\left[Cd(H_{2}O)_{4}^{2+}\right]\left[\Gamma\right]}$$

$$CdI(H_{2}O)_{3}^{+}(aq) + \Gamma(aq) \leftrightarrows CdI_{2}(H_{2}O)_{2}(aq) + H_{2}O(l) \qquad K_{\Pi} = \frac{\left[CdI_{2}(H_{2}O)_{2}\right]}{\left[CdI(H_{2}O)_{3}^{++}\right]\left[\Gamma\right]}$$

$$CdI_{2}(H_{2}O)_{2}(aq) + \Gamma(aq) \leftrightarrows CdI_{3}(H_{2}O)^{-}(aq) + H_{2}O(l) \qquad K_{\Pi} = \frac{\left[CdI_{3}(H_{2}O)^{-}\right]}{\left[CdI_{2}(H_{2}O)_{2}\right]\left[\Gamma\right]}$$

$$CdI_{3}(H_{2}O)^{-}(aq) + \Gamma(aq) \leftrightarrows CdI_{4}^{2-}(aq) + H_{2}O(l) \qquad K_{\Pi} = \frac{\left[CdI_{4}^{2-}\right]}{\left[CdI_{3}(H_{2}O)^{-}\right]\left[\Gamma\right]}$$

$$Overall: Cd(H_{2}O)^{2+}_{4}(aq) + 4\Gamma(aq) \leftrightarrows CdI_{4}^{2-}(aq) + 4H_{2}O(l) \qquad K_{\Gamma} = \frac{\left[CdI_{4}^{2-}\right]}{\left[CdI_{4}(H_{2}O)_{4}^{2+}\right]\left[\Gamma\right]^{4}}$$

$$K_{\Gamma} = \frac{\left[CdI(H_{2}O)_{4}^{2+}\right]\left[\Gamma\right]}{\left[Cd(H_{2}O)_{4}^{2+}\right]\left[\Gamma\right]} \times \frac{\left[CdI_{4}^{2-}\right]}{\left[CdI(H_{2}O)_{3}^{+}\right]\left[\Gamma\right]} \times \frac{\left[CdI_{4}^{2-}\right]}{\left[CdI_{3}(H_{2}O)^{-}\right]\left[\Gamma\right]} \times \frac{\left[CdI_{4}^{2-}\right]}{\left[CdI_{3}(H_{2}O)^{-}\right]\left[\Gamma\right]} \times \frac{\left[CdI_{4}^{2-}\right]}{\left[CdI_{3}(H_{2}O)^{-}\right]\left[\Gamma\right]} \times \frac{\left[CdI_{4}^{2-}\right]}{\left[CdI_{4}(H_{2}O)_{4}^{2+}\right]\left[\Gamma\right]} \times \frac{\left[CdI_{4}^{2-}\right]}{\left[CdI_{4}(H_{2}O)_{4}^{2+}\right]\left[\Gamma\right]} \times \frac{\left[CdI_{4}^{2-}\right]}{\left[CdI_{3}(H_{2}O)^{-}\right]\left[\Gamma\right]} \times \frac{\left[CdI_{4}^{2-}\right]}{\left[CdI_{3}(H_{2}O)^{-}\right]\left[\Gamma\right]} \times \frac{\left[CdI_{4}^{2-}\right]}{\left[CdI_{4}(H_{2}O)_{4}^{2+}\right]\left[\Gamma\right]} \times \frac{\left[CdI_{4}^{2-}\right]}{\left[CdI_{4}(H_{2}O)_{4}^{2+}\right]\left[\Gamma\right]}} \times \frac{\left[CdI_{4}^{2-}\right]}{\left[CdI_{4}(H_{2}O)_{4}^{2+}\right]\left[\Gamma\right]} \times \frac{\left[CdI_{4}^{2-}\right]}{\left[CdI_{4}(H_{2}O)_{4}^{2+}\right]\left[\Gamma\right]}} \times \frac{\left[CdI_{4}^{2-}\right]}{\left[CdI_{4}(H_{2}O)_{4}^{2+}\right]\left[\Gamma\right]}} \times \frac{\left[CdI_{4}^{2-}\right]}{\left[CdI_{4}(H_{2}O)_{4}^{2+}\right]\left[\Gamma\right]}} \times \frac{\left[CdI_{4}^{2-}\right]}{\left[CdI_{4}(H_{2}O)_{4}^{2+}\right]\left[\Gamma\right]}}$$

19.67 In the context of this equilibrium only, the increased solubility with added OH⁻ appears to be a violation of Le Châtelier's Principle. Adding OH⁻ should cause the equilibrium to shift towards the left, decreasing the solubility of PbS. Before accepting this conclusion, other possible equilibria must be considered. Lead is a metal ion and hydroxide ion is a ligand, so it is possible that a complex ion forms between the lead ion and hydroxide ion: $\frac{Pb^{2+}(x_{1}) + x_{2}OU(-x_{2})}{Pb^{2+}(x_{2}) + x_{2}OU(-x_{2})} = \frac{Pb^{2+}(x_{2})}{Pb^{2+}(x_{2})}$

 $Pb^{2+}(aq) + n OH^{-}(aq) \cong Pb(OH)_n^{2-n}(aq)$ This decreases the concentration of Pb²⁺, shifting the solubility equilibrium to the right to dissolve more PbS.

19.68 In many cases, a hydrated metal complex (e.g., $Hg(H_2O)_4^{2+}$) will exchange ligands when placed in a solution of another ligand (e.g., CN^-):

 $Hg(H_2O)_4^{2+}(aq) + 4 CN^{-}(aq) \leftrightarrows Hg(CN)_4^{2-}(aq) + 4 H_2O(l)$

Note that both sides of the equation have the same "overall" charge of -2. The mercury complex changes from +2 to -2 because water is a neutral *molecular* ligand, whereas cyanide is an *ionic* ligand.

19.69
$$\operatorname{Zn}(\operatorname{H}_2\operatorname{O})_4^{2^+}(aq) + 4 \operatorname{CN}^-(aq) \leftrightarrows \operatorname{Zn}(\operatorname{CN})_4^{2^-}(aq) + 4 \operatorname{H}_2\operatorname{O}(l)$$

19.70 The two water ligands are replaced by two thiosulfate ion ligands. The +1 charge from the silver ion plus -4 charge from the two thiosulfate ions gives a net charge on the complex ion of -3. $Ag(H_2O)_2^+(aq) + 2 S_2O_3^{-2}(aq) \Rightarrow Ag(S_2O_3)_2^{-3}(aq) + 2 H_2O(l)$

19.71
$$Al(H_2O)_6^{3+}(aq) + 6 F(aq) \leftrightarrows AlF_6^{3-}(aq) + 6 H_2O(l)$$

19.72 Write the ion-product equilibrium reaction and the complex-ion equilibrium reaction. Sum the two reactions to yield an overall reaction; multiply the two constants to obtain $K_{overall}$. Write a reaction table where $S = [AgI]_{dissolved} = [Ag(NH_3)_2^+]$.

Solubility-product: $\operatorname{AgI}(s) \leftrightarrows \operatorname{Ag}^+(aq) + I^-(aq)$ Complex-ion: $\operatorname{Ag}^+(aq) + 2 \operatorname{NH}_3(aq) \leftrightarrows \operatorname{Ag}(\operatorname{NH}_3)_2^+(aq)$

Assume that $2.5 - 2S \approx 2.5$ because K_{overall} is so small.

$$K_{\text{overall}} = \frac{\left\lfloor \text{Ag}(\text{NH}_3)_2^{-1} \right\rfloor \left\lfloor \text{I}^{-1} \right\rfloor}{\left[\text{NH}_3 \right]^2} = \frac{\left[\text{S} \right] \left[\text{S} \right]}{\left[2.5 - \text{S} \right]^2} = \frac{\left[\text{S} \right] \left[\text{S} \right]}{\left[2.5 \right]^2} = 1.411 \text{ x } 10^{-9}$$

S = 9.3908 x 10⁻⁵ = **9.4 x 10**⁻⁵ *M*

19.73 Solubility-Product: $Cr(OH)_3(s) \leftrightarrows Cr^{3+}(aq) + 3OH^-(aq)K_{sp} = 6.3 \times 10^{-31}$ <u>Complex-Ion</u> $Cr^{3+}(aq) + 4OH^-(aq) \leftrightarrows Cr(OH)_4^-(aq) \qquad K_f = 8.0 \times 10^{29}$ Overall: $Cr(OH)_3(s) + OH^-(aq) \leftrightarrows Cr(OH)_4^-(aq) \qquad K = K_{sp}K_f = 0.504$ (unrounded) At pH 13.0, the pOH is 1.0 and $[OH^-] = 10^{-1.0} = 0.1 M$.

$$K_{\text{overall}} = \frac{\left\lfloor \text{Cr}\left(\text{OH}\right)_{4}^{-} \right\rfloor}{\left\lfloor \text{OH}^{-} \right\rfloor} = \frac{\left[\text{S}\right]}{\left[0.1\right]} = 0.504$$
$$\text{S} = \left[\text{Cr}\left(\text{OH}\right)_{4}^{-}\right] = 0.0504 = 0.05 M$$

19.74 $pK_a = -\log K_a = -\log 6.3 \times 10^{-8} = 7.200659$ (unrounded). The K_a comes from Appendix C; it is K_{a2} for phosphoric acid.

$$pH = pK_{a} + \log\left(\frac{[HPO_{4}^{2-}]}{[H_{2}PO_{4}^{-}]}\right)$$

$$7.00 = 7.200659 + \log\left(\frac{[HPO_{4}^{2-}]}{[H_{2}PO_{4}^{-}]}\right)$$

$$-0.200659 = \log\left(\frac{[HPO_{4}^{2-}]}{[H_{2}PO_{4}^{-}]}\right)$$

$$\frac{[HPO_{4}^{2-}]}{[H_{2}PO_{4}^{-}]} = 0.63000 \text{ (unrounded)}$$
Since they are equimolar, $\frac{V_{HPO4^{2-}}}{V_{H_{2}PO_{4}^{-}}} = 0.63000$
and $V_{HPO_{4}^{2-}} + V_{H_{2}PO_{4}^{-}} = 100$. mL
so $(0.63000)V_{H_{2}PO_{4}^{-}} + V_{H_{2}PO_{4}^{-}} = 100$. mL
 $V_{H_{2}PO_{4}^{-}} = 61 \text{ mL} \text{ and } V_{HPO_{4}^{2-}} = 39 \text{ mL}$

19.75 This is because K_a depends on temperature (like all other equilibrium constants). In this case, since the pH drops as the temperature increases, K_a must increase with temperature, indicating that the dissociation reaction is endothermic.

19.76 H₂SO₄ is a strong acid and will be completely ionized: H₂SO₄(*aq*) + 2 H₂O(*l*) \rightarrow SO₄²⁻(*aq*) + 2 H₃O⁺(*aq*) Calculate the moles of H₃O⁺(*aq*) from the H₂SO₄ in the 8.0 x 10³ lb of water and then the amount of sodium acetate trihydrate (NaC₂H₃O₂ • 3 H₂O that will be required to neutralize that amount of H₃O⁺(*aq*).

$$(8.0 \text{ x } 10^3 \text{ lb water}) \left(\frac{1 \text{ kg}}{2.205 \text{ lb}}\right) \left(\frac{1000 \text{ g}}{1 \text{ kg}}\right) = 3.628118 \text{ x } 10^6 \text{ g H}_2\text{O}$$

$$ppm = \frac{\text{mass of solute}}{\text{mass of solution}} \text{ x } 10^6$$

$$10 \text{ ppm} = \frac{\text{mass of H}_2\text{SO}_4}{3.628118 \text{ x } 10^6 \text{ g}} \text{ x } 10^6$$

$$Mass \text{ of H}_2\text{SO}_4 = 36.28118 \text{ g} \text{ M}_2\text{SO}_4 \right) \left(\frac{1 \text{ mol H}_2\text{SO}_4}{98.09 \text{ g H}_2\text{SO}_4}\right) \left(\frac{2 \text{ mol H}_3\text{O}^+}{1 \text{ mol H}_2\text{SO}_4}\right) = 0.7398 \text{ mol H}_3\text{O}^+$$

$$The reaction between H_3\text{O}^+ \text{ and the base sodium acetate is:}$$

$$H_3\text{O}^+(aq) + \text{NaC}_2\text{H}_3\text{O}_2(aq) \rightarrow \text{H}_2\text{O}(l) + \text{HC}_2\text{H}_3\text{O}_2(aq) + \text{Na}+(aq)$$

$$\text{ lb of NaC}_2\text{H}_3\text{O}_2^*\text{ 3 H}_2\text{O required to neutralize the H}_2\text{SO}_4 =$$

$$\left(0.7398 \text{ mol H}_3\text{O}^+\right) \left(\frac{1 \text{ mol NaC}_2\text{H}_3\text{O}_2 \cdot 3\text{H}_2\text{O}}{1 \text{ mol H}_3\text{O}^+}\right) \left(\frac{136.08 \text{ g NaC}_2\text{H}_3\text{O}_2 \cdot 3\text{H}_2\text{O}}{1 \text{ mol NaC}_2\text{H}_3\text{O}_2 \cdot 3\text{H}_2\text{O}}\right) \left(\frac{1 \text{ kg}}{1000 \text{ g NaC}_2\text{H}_3\text{O}_2 \cdot 3\text{H}_2\text{O}}\right) \left(\frac{2.205 \text{ lb}}{1 \text{ kg}}\right)$$

$$= 0.22198 \text{ lb NaC}_2\text{H}_3\text{O}_2 \cdot 3 \text{H}_2\text{O}$$
Now consider the acetic acid. Calculate the amount of acetic acid in 8.0 x 10^3 \text{ lb or } 3.628118 \text{ x 10^6 g H}_2\text{O}.

Mol of acetic acid =
$$(3.628118 \times 10^6 \text{ g H}_2\text{O}) \left(\frac{0.015\%}{100\%}\right) \left(\frac{1 \text{ mol HC}_2\text{H}_3\text{O}_2}{60.05 \text{ g HC}_2\text{H}_3\text{O}_2}\right) = 9.0627 \text{ mol}$$

Find the amount of $C_2H_3O_2^-$ necessary to maintain a pH of 5.

$$pH = pK_{a} + \log\left(\frac{[C_{2}H_{3}O_{2}^{-}]}{[HC_{2}H_{3}O_{2}^{-}]}\right)$$

$$5.0 = 4.7447 + \log\left(\frac{[C_{2}H_{3}O_{2}^{-}]}{[9.0627 \text{ mol}]}\right)$$

$$0.2552725 = \log\left(\frac{[C_{2}H_{3}O_{2}^{-}]}{[9.0627 \text{ mol}]}\right)$$

$$1.8 = \frac{[C_{2}H_{3}O_{2}^{-}]}{[9.0627 \text{ mol}]}$$

$$16.31286 \text{ mol of } C_{2}H_{3}O_{2}^{-} (\text{Na}C_{2}H_{3}O_{2} \cdot 3 \text{ H}_{2}\text{O}) \text{ will be required to maintain the pH}$$

$$lb \text{ of } \text{Na}C_{2}H_{3}O_{2} \cdot 3 \text{ H}_{2}\text{O required} =$$

$$(16.31286 \text{ mol } \text{CH}_{3}\text{COONa} \cdot 3\text{H}_{2}\text{O})\left(\frac{136.08 \text{ g } \text{Na}C_{2}H_{3}O_{2} \cdot 3\text{H}_{2}\text{O}}{1 \text{ mol } \text{Na}C_{2}H_{3}O_{2} \cdot 3\text{H}_{2}\text{O}}\right)\left(\frac{1 \text{ kg}}{1 \text{ kg}}\right)\left(\frac{2.205 \text{ lb}}{1 \text{ kg}}\right) = 4.89478 \text{ lb}$$

Total amount of $NaC_2H_3O_2 \cdot 3 H_2O$ required = 0.22198 lb + 4.89478 lb = 5.11676 = **5.1 lb**

19.77 The minimum urate ion concentration necessary to cause a deposit of sodium urate is determined by the K_{sp} for the salt. Convert solubility in g/100. mL to molar solubility and calculate K_{sp} . Substituting [Na⁺] and K_{sp} into the ion-product expression allows one to find [Ur⁻].

$$[\text{NaUr}] = \left(\frac{0.085 \text{ g NaUr}}{100 \text{ mL}}\right) \left(\frac{1 \text{ mL}}{10^{-3} \text{ L}}\right) \left(\frac{1 \text{ mol NaUr}}{190.10 \text{ mol NaUr}}\right) = 4.47133 \text{ x } 10^{-3} \text{ M NaUr (unrounded)}$$

$$4.47133 \text{ x } 10^{-3} \text{ M NaUr} = [\text{Na}^+] = [\text{Ur}^-]$$

$$K_{\text{sp}} = [\text{Na}^+][\text{Ur}^-] = (4.47133 \text{ x } 10^{-3}) (4.47133 \text{ x } 10^{-3}) = 1.999279 \text{ x } 10^{-5} \text{ M (unrounded)}$$
When $[\text{Na}^+] = 0.15 \text{ M}$:

$$K_{\text{sp}} = 1.999279 \text{ x } 10^{-5} \text{ M} = [0.15][\text{Ur}^-]$$

$$[\text{Ur}^-] = 1.33285 \text{ x } 10^{-4} \text{ (unrounded)}$$
The minimum urate ion concentration that will cause precipitation of sodium urate is **1.3 x } 10^{-4} \text{ M}**

- 19.78 $CdS(s) + H_2O(l) \leftrightarrows Cd^{2+}(aq) + HS^{-}(aq) + OH^{-}(aq)$ $K_{sp} = 1.0 \times 10^{-24}$ (Appendix) (The sulfide ion S²⁻ reacts in water to form HS⁻ and OH⁻) $K_{sp} = 1.0 \times 10^{-24} = [Cd^{2+}][HS^{-}][OH^{-}] = S^3$ $S = 1.0 \times 10^{-8} M$
- a) The solubility equilibrium for KCl is: KCl(s) ≒ K⁺(aq) + Cl⁻(aq) K_{sp} = [K⁺][Cl⁻] = (3.7) (3.7) = 13.69 = 14 b) Determine the total concentration of chloride ion in each beaker after the HCl has been added. This requires the moles originally present and the moles added. Original moles from the KCl:

Moles
$$K^+ = Moles Cl^- = \left(\frac{3.7 \text{ mol KCl}}{1 \text{ L}}\right) \left(\frac{10^{-3} \text{ L}}{1 \text{ mL}}\right) (100. \text{ mL}) \left(\frac{1 \text{ mol Cl}^- \text{ ion}}{1 \text{ mol KCl}}\right) = 0.37 \text{ mol Cl}^-$$

Original moles from the 6.0 *M* HCl:

Moles
$$\operatorname{Cl}^{-} = \left(\frac{6.0 \text{ mol HCl}}{1 \text{ L}}\right) \left(\frac{10^{-3} \text{ L}}{1 \text{ mL}}\right) (100. \text{ mL}) \left(\frac{1 \text{ mol Cl}^{-}}{1 \text{ mol HCl}}\right) = 0.60 \text{ mol Cl}^{-}$$

This results in (0.37 + 0.60) mol = 0.97 mol Cl⁻ Original moles from the 12 *M* HCl:

Moles
$$\operatorname{Cl}^{-} = \left(\frac{12 \operatorname{mol} \operatorname{HCl}}{1 \operatorname{L}}\right) \left(\frac{10^{-3} \operatorname{L}}{1 \operatorname{mL}}\right) (100. \operatorname{mL}) \left(\frac{1 \operatorname{mol} \operatorname{Cl}^{-}}{1 \operatorname{mol} \operatorname{HCl}}\right) = 1.2 \operatorname{mol} \operatorname{Cl}^{-}$$

This results in (0.37 + 1.2) mol = 1.57 mol Cl⁻ (unrounded) Volume of mixed solutions = $(100. \text{ mL} + 100. \text{ mL}) (10^{-3} \text{ L/1 mL}) = 0.200 \text{ L}$ After the mixing: $[K^+] = (0.37 \text{ mol } K^+)/(0.200 \text{ L}) = 1.85 M \text{ K}^+ \text{ (unrounded)}$ From 6.0 *M* HCl: $[Cl^{-}] = (0.97 \text{ mol } Cl^{-})/(0.200 \text{ L}) = 4.85 M Cl^{-} (unrounded)$ From 12 M HCl: $[Cl^{-}] = (1.57 \text{ mol } Cl^{-})/(0.200 \text{ L}) = 7.85 M Cl^{-} (unrounded)$ Determine a Q_{sp} value to see if K_{sp} is exceeded. If $Q < K_{sp}$, nothing will precipitate. From 6.0 *M* HCl $Q_{\rm sp} = [K^+][Cl^-] = (1.85) (4.85) = 8.9725 = 9.0 < 14$, so no KCl will precipitate. From 12 *M*⁺HCl $Q_{sp} = [K^+][Cl^-] = (1.85) (7.85) = 14.5225 = 15 > 14$, so KCl will precipitate. The mass of KCl that will precipitate when 12 *M* HCl is added: Equal amounts of K and Cl will precipitate. Let x be the molarity change. $K_{\rm sp} = [K^+][Cl^-] = (1.85 - x)(7.85 - x) = 13.69$ x = 0.088697657 = 0.09 This is the change i This is the change in the molarity of each of the ions. $x = 0.088697657 \text{ mol } K^{+}$ Mass KCl = $\left(\frac{0.088697657 \text{ mol } K^{+}}{L}\right) (0.200 \text{ L}) \left(\frac{1 \text{ mol } \text{KCl}}{1 \text{ mol } \text{K}^{+}}\right) \left(\frac{74.55 \text{ g } \text{KCl}}{1 \text{ mol } \text{KCl}}\right) = 1.32248 = 1 \text{ g } \text{KCl}$

19.80 Determine the solubility of MnS:

$$S = \left(\frac{4.7 \text{ x } 10^{-4} \text{ g } \text{MnS}}{100 \text{ mL}}\right) \left(\frac{1 \text{ mL}}{10^{-3} \text{ L}}\right) \left(\frac{1 \text{ mol } \text{MnS}}{87.01 \text{ g } \text{MnS}}\right) = 5.4016779 \text{ x } 10^{-5} \text{ M} \text{ (unrounded)}$$
$$MnS(s) + H_2O(l) \leftrightarrows Mn^{2+}(aq) + HS^{-}(aq) + OH^{-}(aq)$$
$$K_{sp} = [Mn^{2+}][HS^{-}][OH^{-}] = S^{3} = (5.4016779 \text{ x } 10^{-5})^{3} = 1.5761 \text{ x } 10^{-13} = 1.6 \text{ x } 10^{-13}$$

19.81 a) Use the Henderson-Hasselbalch equation. $K_{a1} = 4.5 \times 10^{-7}$ (From Appendix C) $pK_a = -\log K_a = -\log(4.5 \times 10^{-7}) = 6.34679$ (unrounded)

$$pH = pK_{a} + \log\left(\frac{[HCO_{3}^{-}]}{[H_{2}CO_{3}]}\right)$$

$$7.40 = 6.34679 + \log\left(\frac{[HCO_{3}^{-}]}{[H_{2}CO_{3}]}\right)$$

$$1.05321 = \log\left(\frac{[HCO_{3}^{-}]}{[H_{2}CO_{3}]}\right)$$

$$\frac{[HCO_{3}^{-}]}{[H_{2}CO_{3}]} = 11.3034235 \text{ (unrounded)}$$

$$\frac{[H_{2}CO_{3}]}{[HCO_{3}^{-}]} = 0.0884688 = 0.088$$

b) Use the Henderson-Hasselbalch equation.

$$pH = pK_{a} + \log\left(\frac{[HCO_{3}^{-}]}{[H_{2}CO_{3}]}\right)$$

$$7.20 = 6.34679 + \log\left(\frac{[HCO_{3}^{-}]}{[H_{2}CO_{3}]}\right)$$

$$0.85321 = \log\left(\frac{[HCO_{3}^{-}]}{[H_{2}CO_{3}]}\right)$$

 $\frac{[\text{HCO}_3^-]}{[\text{H}_2\text{CO}_3]} = 7.131978 \text{ (unrounded)}$ $\frac{[\text{H}_2\text{CO}_3^-]}{[\text{HCO}_3^-]} = 0.14021 = 0.14$

19.82 The equilibrium is:
$$Ca_5(PO_4)_3OH(s) \rightleftharpoons 5 Ca^{2+}(aq) + 3 PO_4^{3-}(aq) + OH^-(aq)$$

 $K_{sp} = 6.8 \times 10^{-37} = [Ca^{2+}]^5[PO_4^{3-}][OH^-] = (5S)^5(3S)^3(S) = 84375 S^9$
 $S = 2.7166443 \times 10^{-5} = 2.7 \times 10^{-5} M$
Solubility = (2.7166443 x 10⁻⁵ mol/L) (502.32 g/mol) = 0.013646248 = **0.014 g/L Ca_5(PO_4)_3OH**
The equilibrium is: $Ca_5(PO_4)_3F(s) \leftrightarrows 5 Ca^{2+}(aq) + 3 PO_4^{3-}(aq) + F^-(aq)$
 $K_{sp} = 1.0 \times 10^{-60} = [Ca^{2+}]^5[PO_4^{3-}][F^-] = (5S)^5(3S)^3(S) = 84375 S^9$
 $S = 6.1090861 \times 10^{-8} = 6.1 \times 10^{-8} M$
Solubility = (6.1090861 x 10⁻⁸ mol/L) (504.31 g/mol)
 $= 3.0808732 \times 10^{-5} = 3.1 \times 10^{-5} g/L Ca_5(PO_4)_3F$

- 19.83 An indicator changes color when the buffer component ratio of the two forms of the indicator changes from a value greater than 1 to a value less than 1. The pH at which the ratio equals 1 is equal to pK_a . The midpoint in the pH range of the indicator is a good estimate of the pK_a of the indicator. $pK_a = (3.4 + 4.8) / 2 = 4.1$ $K_a = 10^{-4.1} = 7.943 \times 10^{-5} = 8 \times 10^{-5}$
- 19.84 a) A spreadsheet will help you to quickly calculate $\Delta pH / \Delta V$ and average volume for each data point. At the equivalence point, the pH changes drastically when only a small amount of base is added, therefore, $\Delta pH / \Delta V$ is at a maximum at the equivalence point.

V(mL)	рН	$\frac{\Delta pH}{\Delta V}$	$V_{\text{average}}(\text{mL})$
0.00	1.00		
10.00	1.22	0.022	5.00
20.00	1.48	0.026	15.00
30.00	1.85	0.037	25.00
35.00	2.18	0.066	32.50
39.00	2.89	0.18	37.00
39.50	3.20	0.62	39.25
39.75	3.50	1.2	39.63
39.90	3.90	2.67	39.83
39.95	4.20	6	39.93
39.99	4.90	18	39.97
40.00	7.00	200	40.00
40.01	9.40	200	40.01
40.05	9.80	10	40.03
40.10	10.40	10	40.08
40.25	10.50	0.67	40.18
40.50	10.79	1.2	40.38
41.00	11.09	0.60	40.75
45.00	11.76	0.17	43.00
50.00	12.05	0.058	47.50
60.00	12.30	0.025	55.00
70.00	12.43	0.013	65.00
80.00	12.52	0.009	75.00

Maximum slope (equivalence point) is at V = 40.00 mL

19.85 a) The equilibrium is: $MCl_2(s) \leftrightarrows M^{2+}(aq) + 2 Cl^{-}(aq)$. The ion-product expression is $K_{sp} = [M^{2+}][Cl^{-}]^2$. Based on the picture, the ion concentrations are:

$$[M^{2+}] = \frac{(3 \text{ spheres})\left(\frac{1.0 \text{ x } 10^{-6} \text{ mol}}{1 \text{ sphere}}\right)}{250.0 \text{ mL}} \left(\frac{1 \text{ mL}}{10^{-3} \text{ L}}\right) = 1.2 \text{ x } 10^{-5} \text{ M}$$
$$[Cl^{-}] = \frac{(10 \text{ spheres})\left(\frac{1.0 \text{ x } 10^{-6} \text{ mol}}{1 \text{ sphere}}\right)}{250.0 \text{ mL}} \left(\frac{1 \text{ mL}}{10^{-3} \text{ L}}\right) = 4.0 \text{ x } 10^{-5} \text{ M}$$

 $K_{sp} = [M^{2+}][Cl^{-}]^2 = [1.2 \times 10^{-5}][4.0 \times 10^{-5}]^2 = 1.9 \times 10^{-14}$ b) M^{2+} is a common ion for M(NO₃)₂ and MCl₂. If M(NO₃)₂ is added to the solution, $[M^{2+}]$ is increased and, according to Le Chatalier's principle, the solubility equilibrium will shift to the left, precipitating more MCl₂. The number of Cl⁻ particles decreases, the mass of MCl₂ increases, and the K_{sp} value remains the same.

19.86 Check to see if the concentration of Ca(OH)₂ exceeds the K_{sp} . $M \operatorname{Ca(OH)_2} = (6.5 \times 10^{-9} \text{ mol Ca(OH)_2})/(10.0 \text{ L}) = 6.5 \times 10^{-10} M \operatorname{Ca(OH)_2}$ Determine the concentration of a saturated calcium hydroxide solution from the K_{sp} . $\operatorname{Ca(OH)_2(s)} \leftrightarrows \operatorname{Ca^{2+}}(aq) + 2 \operatorname{OH^-}(aq)$ $K_{sp} = 6.5 \times 10^{-6} = [\operatorname{Ca^{2+}}][\operatorname{OH^-}]^2 = (S) (2S)^2 = 4S^3$ $S = \sqrt[3]{\frac{6.5 \times 10^{-6}}{4}} = 0.01175667 = 0.012 M$

Thus, the solution is less than saturated so the K_{sp} does not affect the concentration of Ca(OH)₂. $M \text{ OH}^-$ from Ca(OH)₂ = (6.5 x 10⁻¹⁰ M Ca(OH)₂) (2 mol OH⁻/1 mol Ca(OH)₂) = 1.3 x 10⁻⁹ M OH⁻ Pure water has 1 x 10⁻⁷ M OH⁻, thus the contribution from the Ca(OH)₂ is not significant. pH of pure water = **7.0**

19.87 The ion-product equilibrium reaction is:

 $\operatorname{CaF}_2(s) \leftrightarrows \operatorname{Ca}^{2+}(aq) + 2 \operatorname{F}^{-}(aq)$

 F^- is a weak base with the following equilibrium reaction:

 $F^{-}(aq) + H_2O(l) \leftrightarrows HF(aq) + OH^{-}(aq)$

(I) Pure water: There is no common ion effect and the pH is neutral.

(II) 0.01M HF: Because of the common ion effect, less CaF₂ would dissolve in this solution than in pure water. (III) 0.01M NaOH: additional OH⁻ ions shift the base equilibrium reaction to the left, producing more F⁻. The additional F⁻ shifts the ion-product equilibrium to the left so less CaF₂ would dissolve.

(IV) 0.01M HCl: H⁺ ions remove OH⁻ ions from solution so the base equilibrium reaction shifts to the right, consuming F⁻. This shifts the ion-product equilibrium to the right so that more CaF₂ dissolves in this solution than in pure water.

(V) 0.01M Ca(OH)₂: Because of the common ion effect, less CaF₂ would dissolve in this solution than in pure water. The presence of OH⁻ ions also removes H⁺ ions and decreases the ability to form HF, thus, decreasing the solubility of CaF₂. a) **0.01***M* **HCl**

b) **0.01***M* Ca(OH)₂

19.88 The equation that describes the behavior of a weak base in water is:

$$B(aq) + H_2O(l) \leftrightarrows BH^+(aq) + OH^-(aq)$$

$$K_b = \frac{\left[BH^+\right]\left[OH^-\right]}{\left[B\right]}$$

$$-\log K_b = -\log \frac{\left[BH^+\right]\left[OH^-\right]}{\left[B\right]}$$

$$-\log K_b = -\log \frac{\left[BH^+\right]}{\left[B\right]} - \log \left[OH^-\right]$$

$$pK_b = -\log \frac{\left[BH^+\right]}{\left[B\right]} + pOH$$

$$pOH = pK_b + \log \frac{\left[BH^+\right]}{\left[B\right]}$$

19.89
$$\operatorname{Hg}_2C_2O_4(s) \leftrightarrows \operatorname{Hg}_2^{2+}(aq) + C_2O_4^{2-}(aq)$$

 $K_{sp} = 1.75 \times 10^{-13} = [\operatorname{Hg}_2^{2+}][C_2O_4^{2-}] = (0.13 + S)S \approx (0.13) S$
 $S = 1.3461538 \times 10^{-12} = 1.3 \times 10^{-12} M$

19.90
$$\operatorname{CaCO}_{3}(s) \leftrightarrows \operatorname{Ca}^{2^{+}}(aq) + \operatorname{CO}_{3}^{2^{-}}(aq)$$

 $K_{sp} = 3.3 \times 10^{-9} = [\operatorname{Ca}^{2^{+}}][\operatorname{CO}_{3}^{2^{-}}] = \operatorname{S}^{2}$
 $\operatorname{S} = [\operatorname{Ca}^{2^{+}}] = 5.7445626 \times 10^{-5} = 5.7 \times 10^{-5} M$

- 19.91 Refer to Figure 19.5. Litmus paper indicates the pH is below 7. The result from thymol blue, which turns yellow at a pH above 2.5, indicates that the pH is above 2.5. Bromphenol blue is the best indicator as it is green in a fairly narrow range of 3.5 < pH < 4. Methyl red turns red below a pH of 4.3. Therefore, a reasonable estimate for the rainwater pH is **3.5 to 4**.
- 19.92 a) Combine the separate equilibria to produce the desired equilibrium. The K values are in the Appendix. 2 AgCl(s) $\Rightarrow 2 \text{-Ag}^+(aq) + 2 \text{ Cl}^-(aq)$ $\frac{2 \text{-Ag}^+(aq) + \text{CrO}_4^{2-}(aq)}{2 \text{ AgCl}(s) + \text{CrO}_4^{2-}(aq)} \Rightarrow \text{Ag}_2 \text{CrO}_4(s)$ 2 AgCl(s) $+ \text{CrO}_4^{2-}(aq) \Rightarrow \text{Ag}_2 \text{CrO}_4(s) + 2 \text{ Cl}^-(aq)$ b) Since the above reaction has such a small K, it lies far to the left as written. (1.8 x $10^{-10})^2 = 3.24 x 10^{-20}$ (unrounded) $K'' = (K_{sp})^2 = (1.8 x 10^{-10})^2 = 3.24 x 10^{-20}$ (unrounded) $K'' = 1/K_{sp} = 1/2.6 x 10^{-12} = 3.846 x 10^{11}$ (unrounded) $K = K'K'' = 1.2461 x 10^{-8} = 1.2 x 10^{-8}$

19.93 *K* values from the Appendix

$$\begin{array}{l}
H_2C_2O_4(aq) \rightleftharpoons H^+(aq) + HC_2O_4^-(aq) \\
HC_2O_4^-(aq) \leftrightarrows H^+(aq) + C_2O_4^{-2}(aq) \\
HC_2O_4^-(aq) \leftrightarrows H^+(aq) + C_2O_4^{-2}(aq) \\
HC_2O_4(aq) \leftrightarrows 2 H^+(aq) + C_2O_4^{-2}(aq) \\
K = K_{a1} K_{a2} = 3.024 \times 10^{-6} \\
(unrounded) \\
K = [H^+]^2[C_2O_4^{2^-}]/[H_2C_2O_4] \\
[C_2O_4^{2^-}] = K[H_2C_2O_4]/[H^+]^2 \\
a) At pH = 5.5 \quad [H^+] = 10^{-5.5} = 3.162 \times 10^{-6} M \text{ (unrounded)} \\
[C_2O_4^{2^-}] = K[H_2C_2O_4]/[H^+]^2 = (3.024 \times 10^{-6}) (3.0 \times 10^{-13})/(3.162 \times 10^{-6})^2 \\
[C_2O_4^{2^-}] = 9.07359 \times 10^{-8} M \text{ (unrounded)} \\
Q = [Ca^{2^+}][C_2O_4^{2^-}] \\
Q = (2.6 \times 10^{-3}) (9.07359 \times 10^{-8}) = 2.3591 \times 10^{-10} = 2.4 \times 10^{-10} < K_{sp} = \text{No precipitate}
\end{array}$$

b) At pH = 7.0 $[H^+] = 10^{-7.0} = 1 \times 10^{-7} M$ $[C_2O_4^{2-7}] = K[H_2C_2O_4]/[H^+]^2 = (3.024 \times 10^{-6}) (3.0 \times 10^{-13})/(1 \times 10^{-7})^2$ $[C_2O_4^{2-7}] = 9.072 \times 10^{-5} M \text{ (unrounded)}$ $Q = (2.6 \times 10^{-3}) (9.072 \times 10^{-5}) = 2.35872 \times 10^{-7} = 2.4 \times 10^{-7} > K_{sp} = \text{Precipitate forms}$ c) The higher pH would favor precipitation.

19.94 a) $K_a = 6.8 \ge 10^{-4} = \frac{\left[H_3O^+\right]\left[F^-\right]}{\left[HF\right]} = \frac{x^2}{0.2500 - x} \approx \frac{x^2}{0.2500}$ $x = [H_3O^+] = 0.0130384 M (unrounded)$ $pH = -log [H_3O^+] = -log (0.0130384 M) = 1.8847757 = 1.88$ b) Volume = $(35.00 \text{ mL}) \left(\frac{10^{-3} \text{ L}}{1 \text{ mL}}\right) \left(\frac{0.2500 \text{ mol HF}}{1 \text{ L}}\right) \left(\frac{1 \text{ mol NaOH}}{1 \text{ mol HF}}\right) \left(\frac{1 \text{ L}}{0.1532 \text{ mol NaOH}}\right) \left(\frac{1 \text{ mL}}{10^{-3} \text{ L}}\right)$ = 57.11488 = 57.11 mL NaOHc) Moles HF (original) = $(35.00 \text{ mL}) \left(\frac{10^{-3} \text{ L}}{1 \text{ mL}}\right) \left(\frac{0.2500 \text{ mol HF}}{1 \text{ L}}\right) \left(\frac{0.2500 \text{ mol HF}}{1 \text{ L}}\right) = 8.750 \ge 10^{-3} \text{ mol HF}$ Moles NaOH added = $\left((57.11488 - 0.50) \text{ mL}\right) \left(\frac{10^{-3} \text{ L}}{1 \text{ mL}}\right) \left(\frac{0.1532 \text{ mol NaOH}}{1 \text{ L}}\right) = 8.673 \ge 10^{-3} \text{ mol NaOH}$

Moles F⁻ formed = moles NaOH Moles HF remaining = $(8.750 \times 10^{-3} - 8.673 \times 10^{-3}) \mod = 7.7 \times 10^{-5} \mod HF$ Volume of solution = $(35.00 + 57.11488 - 0.50) (10^{-3} L/1 mL) = 0.09161 L$ [HF] = $(7.7 \times 10^{-5} \mod HF)/(0.09161 L) = 0.0008405 M$ HF [F⁻] = $(8.673 \times 10^{-3} \mod F^{-})/(0.09161 L) = 0.09467 M$ F⁻ $pK_a = -\log K_a = -\log 6.8 \times 10^{-4} = 3.1675 (unrounded)$ $pH = pK_a + \log [F^{-}]/[HF]$ $= 3.1675 + \log (0.09467)/(8.405 \times 10^{-4})$ = 5.21917 = 5.22

d) At this point there are 8.750×10^{-3} mol of F⁻ in (35.00 + 57.11488) mL of solution. The molarity of F⁻ is

$$M F^{-} = \left(\frac{8.750 \text{ x } 10^{-3} \text{ mol } F^{-}}{(35.00 + 57.11488) \text{ mL}}\right) \left(\frac{1 \text{ mL}}{10^{-3} \text{ L}}\right) = 0.09499 M F^{-} \text{ (unrounded)}$$

$$K_{b} = K_{w}/K_{a} = (1.0 \text{ x } 10^{-14})/(6.8 \text{ x } 10^{-4}) = 1.470588 \text{ x } 10^{-11} \text{ (unrounded)}$$

$$K_{b} = \frac{\left[\text{HF}\right]\left[\text{OH}^{-}\right]}{\left[\text{F}^{-}\right]} = \frac{x^{2}}{0.09499 - x} \approx \frac{x^{2}}{0.09499} = 1.470588 \text{ x } 10^{-11}$$

$$x = [\text{OH}^{-}] = 1.1819 \text{ x } 10^{-6} M \text{ (unrounded)}$$

$$[\text{H}_{3}\text{O}^{+}] = K_{w}/[\text{OH}^{-}] = (1.0 \text{ x } 10^{-14})/(1.1819 \text{ x } 10^{-6}) = 8.4609527 \text{ x } 10^{-9} M \text{ (unrounded)}$$

$$p_{H} = -\log [\text{H}_{3}\text{O}^{+}] = -\log (8.4609527 \text{ x } 10^{-9} M) = 8.07258 = 8.07$$
e) Moles NaOH excess = $(0.50 \text{ mL}) \left(\frac{10^{-3} \text{ L}}{1 \text{ mL}}\right) \left(\frac{0.1532 \text{ mol NaOH}}{1 \text{ L}}\right) = 7.66 \text{ x } 10^{-5} \text{ mol NaOH (unrounded)}$

$$Volume \text{ of solution} = (35.00 + 57.11488 + 0.50) (10^{-3} \text{ L}/1 \text{ mL}) = 0.09261 \text{ L}$$

 $[OH^-] = (7.66 \times 10^{-5} \text{ mol } \text{F}^-)/(0.09261 \text{ L}) = 8.271 \times 10^{-4} M \text{ OH}^- \text{ (unrounded)}$ The excess OH⁻ will predominate and essentially control the pH. $[H_3O^+] = K_w / [OH^-] = (1.0 \times 10^{-14})/(8.271 \times 10^{-4}) = 1.2090436 \times 10^{-11} M \text{ (unrounded)}$

$$pH = -log [H_3O^+] = -log (1.2090436 \times 10^{-11} M) = 10.917558 = 10.92$$

19.95 a) The formula is Hg_2Cl_2 which simplifies to the empirical formula HgCl.

b) The equilibrium is:
$$Hg_2Cl_2(s) \leftrightarrows Hg_2^{2+}(aq) + 2 Cl^{-}(aq)$$

 $K_{sp} = [Hg_2^{2+}][Cl^{-}]^2 = (S) (2S)^2 = 4S^3 = 1.5 \times 10^{-18}$
 $S = 7.2112478 \times 10^{-7} = 7.2 \times 10^{-7} M$
c) $[Hg_2^{2+}] = K_{sp}/[Cl^{-}]^2 = 1.5 \times 10^{-18}$

$$\left[\left(\frac{0.20 \text{ lb NaCl}}{\text{gal}}\right)\left(\frac{1 \text{ kg}}{2.205 \text{ lb}}\right)\left(\frac{10^3 \text{ g}}{1 \text{ kg}}\right)\left(\frac{1 \text{ mol NaCl}}{58.44 \text{ g NaCl}}\right)\left(\frac{1 \text{ mol Cl}^-}{1 \text{ mol NaCl}}\right)\left(\frac{1 \text{ gal}}{4 \text{ qt}}\right)\left(\frac{1.057 \text{ qt}}{1 \text{ L}}\right)\right]^2$$

= 8.9174129 x 10^{-18} = 8.9 x $10^{-18} M Hg_2^{2+}$ d) Use the value of S for a saturated solution (see part (b)).

$$Mass = \left(\frac{7.2112478 \text{ x } 10^{-7} \text{ mol } \text{Hg}_2\text{Cl}_2}{\text{L}}\right) \left(\frac{1 \text{ L}}{10^{-3} \text{ m}^3}\right) \left(\frac{10^3 \text{ m}}{1 \text{ km}}\right)^3 (4900 \text{ km}^3) \left(\frac{472.1 \text{ g } \text{Hg}_2\text{Cl}_2}{1 \text{ mol } \text{Hg}_2\text{Cl}_2}\right)$$
$$= 1.6681707 \text{ x } 10^{12} = 1.7 \text{ x } 10^{12} \text{ g } \text{Hg}_2\text{Cl}_2$$

e) Use the value determined in part (c).

$$Mass = \left(\frac{8.9174129 \text{ x } 10^{-18} \text{ mol } \text{Hg}_2^{2+}}{\text{L}}\right) \left(\frac{1 \text{ mol } \text{Hg}_2\text{Cl}_2}{1 \text{ mol } \text{Hg}_2^{2+}}\right) \left(\frac{1 \text{ L}}{10^{-3} \text{ m}^3}\right) \left(\frac{10^3 \text{ m}}{1 \text{ km}}\right)^3 (4900 \text{ km}^3) \left(\frac{472.1 \text{ g } \text{Hg}_2\text{Cl}_2}{1 \text{ mol } \text{Hg}_2\text{Cl}_2}\right) = 20.62856 = 21 \text{ g } \text{Hg}_2\text{Cl}_2$$

19.96 To find the volume of rain, first convert the inches to yards and find the volume in yd³. Then convert units to cm³ and on to L.

$$(10.0 \text{ acres}) \left(\frac{4.840 \text{ x } 10^3 \text{ yd}^2}{1 \text{ acre}}\right) \left(\frac{36 \text{ in}}{1 \text{ yd}}\right)^2 (1.00 \text{ in}) \left(\frac{2.54 \text{ cm}}{1 \text{ in}}\right)^3 \left(\frac{1 \text{ mL}}{1 \text{ cm}^3}\right) \left(\frac{10^{-3} \text{ L}}{1 \text{ mL}}\right) = 1.0279015 \text{ x } 10^6 \text{ L} \text{ (unrounded)}$$

$$a) \text{ At } p\text{H} = 4.20, [\text{H}_3\text{O}^+] = 10^{-4.20} = 6.3095734 \text{ x } 10^{-5} \text{ M} \text{ (unrounded)}$$

$$\text{ Mol } \text{H}_3\text{O}^+ = (6.3095734 \text{ x } 10^{-5} \text{ M}) (1.0279015 \text{ x } 10^6 \text{ L}) = 64.8562 = 65 \text{ mol}$$

$$b) \text{ Volume} = (10.0 \text{ acres}) \left(\frac{4.840 \text{ x } 10^3 \text{ yd}^2}{1 \text{ acre}}\right) \left(\frac{36 \text{ in}}{1 \text{ yd}}\right)^2 (10.0 \text{ ft}) \left(\frac{12 \text{ in}}{1 \text{ ft}}\right) \left(\frac{2.54 \text{ cm}}{1 \text{ in}}\right)^3 \left(\frac{1 \text{ mL}}{1 \text{ cm}^3}\right) \left(\frac{10^{-3} \text{ L}}{1 \text{ mL}}\right)$$

$$= 1.23348 \text{ x } 10^8 \text{ L} \text{ (unrounded)}$$

$$\text{ Total volume of lake after rain} = 1.23348 \text{ x } 10^8 \text{ L} + 1.0279015 \text{ x } 10^6 \text{ L} = 1.243759 \text{ x } 10^8 \text{ L} \text{ (unrounded)}$$

$$[\text{H}_3\text{O}^+] = 64.8562 \text{ mol } \text{H}_3\text{O}^+/1.243759 \text{ x } 10^8 \text{ L} = 5.214531 \text{ x } 10^{-7} \text{ M}$$

$$[H_3O^+] = 64.8562 \text{ mol } H_3O^+/1.243759 \text{ x } 10^8 \text{ L} = 5.214531 \text{ x } 10^8 \text{ L}$$

$$pH = -log(5.214531 \times 10^{-7}) = 6.2827847 = 6.28$$

c) Each mol of H_3O^+ requires one mole of HCO_3^- for neutralization.

$$\text{Mass} = (64.8562 \text{ mol } \text{H}_3\text{O}^+) \left(\frac{1 \text{ mol } \text{HCO}_3^-}{1 \text{ mol } \text{H}_3\text{O}^+}\right) \left(\frac{61.02 \text{ g } \text{HCO}_3^-}{1 \text{ mol } \text{HCO}_3^-}\right) = 3.97575 \text{ x } 10^3 = 4.0 \text{ x } 10^3 \text{ g } \text{HCO}_3^-$$

19.97 The molarity of a saturated NaCl solution must be found.

$$M \operatorname{NaCl} = \left(\frac{317 \text{ g NaCl}}{L}\right) \left(\frac{1 \text{ mol NaCl}}{58.44 \text{ g NaCl}}\right) = 5.42436687 M \operatorname{NaCl} (\text{unrounded})$$

Determine the K_{sp} from the molarity just calculated.
NaCl(s) \leftrightarrows Na⁺(aq) + Cl⁻(aq)
 $K_{sp} = [\operatorname{Na^+}][\operatorname{Cl^-}] = \operatorname{S}^2 = (5.42436687)^2 = 29.42375594 = 29.4$
Moles of Cl⁻ initially = $\left(\frac{5.4236687 \text{ mol NaCl}}{L}\right) (0.100 \text{ L}) \left(\frac{1 \text{ mol Cl}^-}{1 \text{ mol NaCl}}\right) = 0.54236687 \text{ mol Cl}^- (\text{unrounded})$

This is the same as the moles of Na^+ in the solution.

Moles of Cl⁻ added =
$$\left(\frac{7.85 \text{ mol HCl}}{L}\right) \left(\frac{10^{-3} \text{ L}}{1 \text{ mL}}\right) (25.5 \text{ mL}) \left(\frac{1 \text{ mol Cl}^-}{1 \text{ mol HCl}}\right) = 0.200175 \text{ mol Cl}^- \text{ (unrounded)}$$

0.100 L of saturated solution contains $0.542 \text{ mol each Na}^+$ and Cl^- , to which you are adding $0.2 \text{ mol of additional Cl}^-$ from HCl.

Volume of mixed solutions = $0.100 \text{ L} + (25.5 \text{ mL}) (10^{-3} \text{ L/1 mL}) = 0.1255 \text{ L}$ (unrounded) Molarity of Cl⁻ in mixture = $[(0.54236687 + 0.200175) \text{ mol Cl}^-]/(0.1255 \text{ L}) = 5.916668 M \text{ Cl}^-$ (unrounded) Molarity of Na⁺ in mixture = $(0.54236687 \text{ mol Na}^+)/(0.1255 \text{ L}) = 4.321648 M \text{ Na}^+$ (unrounded) Determine a *Q* value and compare this value to the K_{sp} to determine if precipitation will occur. $Q_{sp} = [\text{Na}^+][\text{Cl}^-] = (4.321648) (5.916668) = 25.569756 = 25.6$

Since $Q_{sp} < K_{sp}$, no NaCl will precipitate.

19.98 In both cases the equilibrium is:
$$CaCO_3(s) \leftrightarrows Ca^{2+}(aq) + CO_3^{2-}(aq)$$

 $K_{sp} = [Ca^{2+}][CO_3^{2-}] = S^2$
At 10°C
 $K_{sp} = [Ca^{2+}][CO_3^{2-}] = S^2 = 4.4 \times 10^{-9}$
 $S = 6.6332495 \times 10^{-5} = 6.6 \times 10^{-5} M \text{ CaCO}_3$
At 30°C
 $K_{sp} = [Ca^{2+}][CO_3^{2-}] = S^2 = 3.1 \times 10^{-9}$
 $S = 5.5677643 \times 10^{-5} = 5.6 \times 10^{-5} M \text{ CaCO}_3$

a) For the solution to be a buffer, both HA and A⁻ must be present in the solution. This situation occurs in A and D.
b) Box A

The amounts of HA and A^- are equal.

$$pH = pK_a + \log\left(\frac{[A^-]}{[HA]}\right) \qquad \left(\frac{[A^-]}{[HA]}\right) = 1 \text{ when the amounts of HA and } A^- \text{ are equal}$$
$$pH = pK_a + \log 1$$
$$pH = pK_a = -\log (4.5 \text{ x } 10^{-5}) = 4.346787 = 4.35$$

Box B

Only A⁻ is present at a concentration of 0.10 *M*. The K_b for A⁻ is needed.

The
$$K_b$$
 for X is included.
 $K_b = K_w / K_a = 1.0 \ge 10^{-14} / 4.5 \ge 10^{-5} = 2.222 \ge 10^{-10} \text{ (unrounded)}$
 $A^-(aq) + H_2O(l) \leftrightarrows OH^-(aq) + HA(aq)$
Initial: $0.10 M$ $0 0$
Change: $-x$ $-x$ $-x$
Equilibrium: $0.10 - x$ x x
 $K_b = \frac{[HA][OH^-]}{[A^-]} = 2.222 \ge 10^{-10}$
 $K_b = \frac{[x][x]}{[0.10 - x]} = 2.222 \ge 10^{-10}$ Assume that x is small compared to 0.10.
 $K_b = 2.222 \ge 10^{-10} = \frac{(x)(x)}{(0.10)}$

 $x = 4.7138095 \text{ x } 10^{-6} M \text{ OH}^{-}$ (unrounded)

Check assumption: $(4.7138095 \times 10^{-6}/0.10) \times 100\% = 0.005\%$ error, so the assumption is valid. $[H_3O]^+ = K_w / [OH^-] = (1.0 \times 10^{-14})/(4.7138095 \times 10^{-6}) = 2.1214264 \times 10^{-9} M H_3O^+$ $pH = -\log [H_3O^+] = -\log (2.1214264 \times 10^{-9}) = 8.67337 = 8.67$

Box C

This is a 0.10 *M* HA solution. The hydrogen ion, and hence the pH, can be determined from the K_{a} .

Concentration	HA(aq)	+	$H_2O(l)$	与	H_3O^+	$aq) + A^{-}(aq)$
Initial	0.10				0	0
Change	- <i>x</i>				+x	+x
Equilibrium	0.10 - x				x	х

(The H_3O^+ contribution from water has been neglected.)

$$K_{a} = 4.5 \times 10^{-5} = \frac{\left[H_{3}O^{+}\right]\left[A^{-}\right]}{\left[HA\right]}$$

$$K_{a} = 4.5 \times 10^{-5} = \frac{(x)(x)}{(0.10 - x)}$$
Assume that x is small compared to 0.10.
$$K_{a} = 4.5 \times 10^{-5} = \frac{(x)(x)}{(0.10)}$$

 $[H_3O^+] = x = 2.12132 \text{ x } 10^{-3} \text{ (unrounded)}$ Check assumption: $(2.12132 \times 10^{-3} / 0.10) \times 100\% = 2\%$ error, so the assumption is valid.

 $pH = -log [H_3O^+] = -log (2.12132 \times 10^{-3}) = 2.67339 = 2.67$

Box D

This is a buffer with a ratio of $[A^-] / [HA] = 5/3$. Use the Henderson-Hasselbalch equation for this buffer.

pH = pK_a + log
$$\left(\frac{[A^{-}]}{[HA]}\right)$$

pH = -log (4.5 x 10⁻⁵) + log $\left[\frac{5}{3}\right]$ = 4.568636 = **4.57**

c) The initial stage in the titration would only have HA present. The amount of HA will decrease, and the amount of A⁻ will increase until only A⁻ remains. The sequence will be: C, A, D, and B.

d) At the equivalence point, all the HA will have reacted with the added base. This occurs in scene **B**.

19.100 a) The dissolution of MX will produce equal amounts of M^{2+} and X^{2-} . The only way unequal amounts of of these ions could be present would be either if one of the ions were already present or if one of the ions were removed from the solution. Distilled water will neither add nor remove ions, thus the M^{2+} and X^{2-} must be equal; this is in box **B**.

b) Using box B; there are $4(2.5 \times 10^{-6}M) = 1.0 \times 10^{-5} M$ for each ion.

 $K_{\rm sp} = [M^{2+}][X^{2-}] = (1.0 \times 10^{-5}) (1.0 \times 10^{-5}) = 1.0 \times 10^{-10}$ c) The addition of Na₂X would increase the X²⁻. There will be more X²⁻ than M²⁺. This occurs in box **C**. d) Lowering the pH will protonate some X²⁻. This will decrease the X²⁻ concentration, thus, X²⁻ < M²⁺. This occurs in box A.