Fryst

Birzeit University <u>Chemistry Department</u> <u>Chemistry 141</u>

First Hour Exam

1st Sem. 2012-2013

Time: 70 min.

Student Name: Rahar Rimawi

Student No: 1120125

Instructor Name: Dr. Hijazi Abu Ali

Section No:----

Important note: There are (21) equally graded questions, please answer all of them.

E	D	C	В	A	0
					1
					2
					3
	. // =				4
, ,					5
					6
		,			7
					8
					9
					10
					11
		, , , , , , , , , , , , , , , , , , , ,			12
					13
					14
		······	10000	, , , , , , , , , , , , , , , , , , , ,	15
					16
					17
			**************************************		18
	· prest.				19
					20
					21

GOOD LUCK

Student Name: Rohaf Rimawi Student No: 1120125
Please read each question carefully before you answer, and choose the best correct answer
1. Which one is a physical property of sodium? A) Its surface turns black when first exposed to air. B) It is a solid at 25 °C and changes to a liquid when heated to 98 °C. C) When placed in water it sizzles and a gas is formed. D) When placed in contact with chlorine it forms a compound that melts at 801 °C. E) Sodium is never found as the pure metal in nature.
2. During the swing of a frictionless pendulum, what energy form(s) remain constant? A) kinetic energy only B) potential energy only C) both kinetic energy and potential energy D) kinetic plus potential energy E) None of these forms remains constant.
3. Which of the following represents the largest volume?
A) 10,000 μL B) 1000 pL C) 100 mL D) 10 nL E) 10 cm ³ (ο-1) (ο-1) 4. Isopropyl alcohol boils at 180.7 °F. What is the boiling point in kelvins? A) 387.6 K B) 323.6 K C) 355.6 K D) 190.8 K E) -190.8 K
5. Express 96342 m using 2 significant figures.
A) $9.60 \times 10^4 \text{ m}$ B) $9.6 \times 10^4 \text{ m}$ C) $9.60 \times 10^{-4} \text{ m}$ D) $9.6 \times 10^{-4} \text{ m}$ E) $96000 \cdot \text{m}$
6. Choose the response that includes all the items listed below that are pure substances. i. orange juice ii. steam iii. ocean water iv. oxygen v. vegetable soup
A) i, iii, v (B) ii, iv C) i, iii, iv D) iv only E) all of them are pure
7. Which of the following ions occurs commonly?
A) P^{3+} B) Br^{7+} C) O^{6+} D) Ca^{2+} E) K^{-}
8. The correct name of MnSO ₄ is:
A) manganese disulfate B) manganese(II) sulfate C) manganese(IV) sulfate D) manganese sulfate E) manganese(I) sulfate
9. What is the formula for lead(II) oxide?
(A) PbO B) PbO ₂ C) Pb ₂ O D) PbO ₄ E) Pb ₂ O ₃

	10. What is the name	of the acid for	med wher	n HClO4 li	quid is dis	solved in	water?	
	A) hydrochlorid D) chlorous acid			chloric acid Irochlorate		C) chloric	acid	
. •	11. Determine the mo	lecular mass o	f iron(III)) bromide !	hexahydra	ite. Febra		
	(A) 403.65 g	B) 355.54	g	C) 317.61	g	D) 313.	57 g	E) 295.5
	12. Rutherford's expe	riment with al	pha parti	cle scatteri	ing by gold	d foil estal	blished tl	nat:
	A) protons are TB) electrons have C) electrons have D) atoms are made E) protons are 1	ve a negative chate a positive chate of protons,	narge. arge. neutrons,	and electro		Y	115	
1	3. A phosphide ion h	as: e s			1			
	A) 10 p and 13 e	e B) 12 p	and 15 e	C) 15	p and 15	: (D)	15 p and	18 e
	E) 18 p and 21 e				p and 15		TO P and	
1	E) 18 p and 21 e			INIIN			(U5	\
1	4. Calculate the numl		ı 38.7 g of	INIIN		lloride.	E)0.186	
	4. Calculate the numl	ber of moles in B) 3.55 mol	1 38.7 g of C) 0.5	phosphore 83 mol	us pentach D) 0.282	oloride.	0.5	
	4. Calculate the number A) 5.38 mol	ber of moles in B) 3.55 mol ber of chromiu Cr atoms Cr atoms	C) 0.59	phosphore 83 mol	us pentach D) 0.282 of K ₂ Cr ₂ O	oloride.	0.5	
. 1	 4. Calculate the number A) 5.38 mol 5. Calculate the number A) 9.490 x 10²⁵ (C) 1.124 x 10²⁴ (c) 	ber of moles in B) 3.55 mol ber of chromiu Cr atoms Cr atoms Cr atoms	C) 0.55 m atoms B) 2.248 x D) 3.227 x	phosphore 83 mol in 78.82 g x 10 ²⁴ Cr at x 10 ²³ Cr at	us pentach D) 0.282 of K ₂ Cr ₂ C oms	oloride.	0.5	
. 1	A) 5.38 mol 5. Calculate the number of the	ber of moles in B) 3.55 mol ber of chromiu Cr atoms Cr atoms Cr atoms in grams of 3.	C) 0.58 m atoms B) 2.248 x D) 3.227 x	phosphore 83 mol in 78.82 g x 10 ²⁴ Cr at x 10 ²³ Cr at	of SO ₃ .	mol (0.5	mol
1	A) 5.38 mol 5. Calculate the numb A) 9.490 x 10 ²⁵ C) 1.124 x 10 ²⁴ E) 1.613 x 10 ²³ 6. Calculate the mass	ber of moles in B) 3.55 mol ber of chromiu Cr atoms Cr atoms Cr atoms in grams of 3. B) 2.91 x10 erephthalic aci	C) 0.53 Im atoms B) 2.248 × D) 3.227 × 65 x 10 ²⁰ I	phosphore 83 mol in 78.82 g x 10 ²⁴ Cr at x 10 ²³ Cr at molecules of	us pentach D) 0.282 of K ₂ Cr ₂ O oms oms of SO ₃ .	mol (20.6 g	E) 0.186 E) 165	mol 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1	A) 5.38 mol 5. Calculate the number of the	ber of moles in B) 3.55 mol ber of chromiu Cr atoms Cr atoms in grams of 3. B) 2.91 x10 erephthalic aci O. If its molar	C) 0.52 1m atoms B) 2.248 × D) 3.227 × 65 x 10 ²⁰ 1 10 ²² g C) id was subtemass is because of the control of the contr	phosphore 83 mol in 78.82 g x 10 ²⁴ Cr at x 10 ²³ Cr at molecules of	us pentach D) 0.282 of K ₂ Cr ₂ O oms oms of SO ₃ .	nol (mol (20.6 g analysis g/mol, wh	E) 0.186 E) 165	mol 50 g ced 1.471 nolecular
1	A) 5.38 mol 5. Calculate the number of the second	ber of moles in B) 3.55 mol ber of chromiu Cr atoms Cr atoms Cr atoms in grams of 3. B) 2.91 x10 erephthalic aci C. If its molar B) C ₆ H ₈ O ₅	1 38.7 g of C) 0.52 Im atoms B) 2.248 x D) 3.227 x 65 x 10 ²⁰ 1 O'2 g C) Color col	phosphore 83 mol in 78.82 g x 10 ²⁴ Cr at x 10 ²³ Cr at molecules 4.85 x 10 pjected to coetween 15 7H ₁₂ O ₄	of K ₂ Cr ₂ Cooms of SO ₃ . 2 g D) combustion 8 and 167	nol (mol (mol (mol (mol (mol (mol (mol (m	E) 0.186 E) 169 it produ nat is its r E) C ₈ H	mol 50 g ced 1.471 nolecular

©Student Name:	0	Student No:
19. Aluminum reacts with oxygen to produce alum	iinum	m oxide.
$4Al(s) + 3O_2(g) \rightarrow 2Al_2O_3(s)$ A mixture of 82.49 g of aluminum ($\mathcal{M} = 26.98$ g allowed to react. Identify the limiting reactant present in the vessel when the reaction is complete.	มทด ก	defermine the mass of the average
 A) Oxygen is the limiting reactant; 19.81 g of B) Oxygen is the limiting reactant; 35.16 g of C) Aluminum is the limiting reactant; 16.70 g D) Aluminum is the limiting reactant; 35.16 g E) Aluminum is the limiting reactant; 44.24 g 	alumi of ox	ninum remain. Kygen remain. Kygen remain
20. What will be the <u>final</u> volume of a solution prep hydroxide to a concentration of 2.40 M?	ared	l by diluting 25 mL of 8.25 M sodium
A) 330 mL B) 210 mL C) 86 mL		D) 60 mL E) 7.3 mL UN = 02 N 25 x 8.5 = 0
21. Which of the following is a true statement.		25x 8.5-
A) A mole of one substance has the same number (B) The experimental yield for a reaction is based of the concentration of a solution is an extensive an intensive property. (D) To prepare 1.00 L of 3.00 M NaCl, weigh 175.2 water.	on the prope	e results obtained in the laboratory. perty, but the amount of solute in a solution is

Avogadro's number = 6.022×10^{23}

GOOD LUCK

BIRZEIT UNIVERSITY Department of Chemistry CHEM 141 First Hour Exam First Semester 2009/2010

Name, ID #: Salam. M. Runsiych., 1090641 Discussion Section: 1....

THE DURATION OF THE EXAM IS 75 MINUTES

Instructors:

Dr. Talal Shahwan (Lecture 1, D5, D6)

Dr. Jack Mustaklem (Lecture 2, D2)

Dr. Zaki A. Hasan (D3, D4, D7)

Dr. Hani Awad (D1)

	Q#	a	b	C	d	е	Q# 12	a	b	C	d	e
	1		\			1 1	(S)			V	·	
	2			/			13					
-	3				/					B		
	4.						15 16	\	A			<u> </u>
	5						16	\			3	- Indiana Anna Anna Anna Anna Anna Anna Anna
-	6						17					
	1				/		18					
A	8		\				19					
	9			/			20		/			
	10						Bonus Q					WAT
				·								

BIRZEIT UNIVERSITY CHEMISTRY DEPARTMENT CHEM. 141 -1" HOUR EXAM

22

Spring 2011/2012

TIME: 70 Min

.....Student No.

INSTRUCTOR'S NAME:

Dr. Oraib Sayrafi

Dr. Talal Shahwan

(6,7,8)

Discussion:

Dr. Hani Awad (4)
Dr. Zaki Hasan (2,5)
Mr. Adi Qamhiyeh (1,3)

Question	а	b	С		
1 1				d	е
2	······································				
2 3	***************************************				*>==
4		1 7/1/20			
5		THE			
6	-				
7					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
8	***************************************				
9					
10					
11					·····
12					
13					
14					
15					
16					
17	**************************************				
18					
19					
20	*				
21			Face		
22					
23					
24					
25					

Avogadro's number = 6.022×10^{23} .

	1. A broad	d generaliz	ration that sun	nmarizes ai	nd organizes c	iala is ca	IICG
	С	. the scien . a scientif . an empir		d.	a scientific la a hypothesis		
	2. Which	one of the	following is ar	n extensive	property of m	atter?	
·	. c	i. density :. electrical ; mass	conductivity	b. d.	specific grav melting poin	-	• • • • • • • • • • • • • • • • • • •
	3. The tw	o major ty	pes of pure su	ubstances a	are		
		c. elements	nds and eleme and mixtures and elements	;		ounds and es and so	l solutions lutions
	4. An exa	ample of a	chemical com	npound is			
		a. orange j d. granite	uice	, (B)	brass table salt	C.	bronze
	5. The re	lative num	ber of atoms o	of each elei	ment in a parti	cular com	npound
	b.is th c. is t d. is d e. can	the same a definite an inot be det	s the density ra as the weight r d constant ermined expe	rimentally		, I (
	6. The ato there	omic weigh in a 4.55 g	nt of aluminum sample of alu	is 26.982 ı ıminum?	ı. How many	aluminun	n atoms are
Inole 0.169	-, 6,02 ×10 -, 6,02 ×10 -, 7? 1,017 ×10	c. 2.	02×10^{23} 74×10^{24} 01×10^{23}	b. d.	1.32×10^{23} 3.57×10^{24}		
	•				•		

	7.	The kilo is a. unit of mass b. a unit employed a decimal multip d. a unit of speed e. a volume unit er	oller in the mo	etric system	enforcemei	nt agency)
	8,	Which one of the follow hydrate?	ving compou	nds is correctly	/ described	as a
		(a) CoCl₂·6H₂Oc. NaOH		HC₂H₃O₂ CaH₂	e	. C ₆ H ₁₂ O ₆
	9.	The melting point of a	antimony wa elvins this ter	s listed in one nperature wou	handbook a ld be	as 1167.3
C=3(3607= K = 3	116: 16:	7.3 - 32) (a. 357.6 K) 273 d. 894.2 K 7 - 273	b. e.	496.8 K 903.9 K	SITY	583.7 K
c k	10.	The SI prefixes mega	and nano re	present, respe	ectively:	
0 - 7777 ie - 6 - 2	13	a. 10 ⁹ and 10 ⁻⁶ b. 10 ⁻⁶ and 10 ⁹ © 10 ⁶ and 10 ⁻⁹ d. 10 ⁶ and 10 ⁹ e. 10 ⁻⁶ and 10 ⁻⁹			201	
	11.	When a student evalu	ates the exp	ression,		1
		18/1		082057 x 293.30	243.3 -654	
	th	e result should be expre	essed as		1.70	
		a. 1.69 d. 1.6987	(b). 1.70 e. 1.698	70	C.	1.699

	The number, 0.00306	600, is properly expr	essed in scientific	notation
, X	≪ a. 3.0600 x 10 ⁻² ≪c. 0.306 x 10 ⁻² _e. 3.0600 x 10 ⁻³	ω <u>b</u> » , d.	0.30600 x 10 ⁻² 3.06 x 10 ⁻³	
k 5 0 27 .6% 1.90	A well characterized of The assay values are Determine the empir	e: potassium, 49.41	10%; sulfur, 20.26	
K 2 S O 5	$G_1 K_2 S_1 O_3$ d. $K_2 S_2 O_3$	b. K_2SO_4 e. $K_3S_2O_8$	c. ł	<2S2O4
7.14.	alianciala. The mon	f a hydrocarbon, uposis apparatus, yieldecent, by weight, of comparatus, b. 19.47 % e. 42.16 %	ed 6.484 grams of	carbon is:
C H	In a quantitative and contains carbon and 4.098 g of H ₂ O in a contains the empirity	hydrogen only) sam combustion analysis	nple yielded 8.008 apparatus.	
2.18 .455 2.182 .455 a.	CH ₃ b. CH ₄	c. C ₂ H ₃	$\bigcirc C_2H_5$ \in	э. С ₃ Н ₈
16. ga	A compound has a ave a value of 150.13 ormula? a $C_5H_{10}O_5$ c. $C_{11}H_2O$ e. $C_9H_{10}O_2$	b. (${ m CH_2O}$. An indepe What is the correct ${ m C_6H_{12}O_6}$ ${ m C_6H_6O_8}$	ndent analysis et molecular

9 () () ()	l	~~~	Ч
17 - 90	,3218		7、

A company	•	
17. Given a chemical reaction, C ₄ l If 0.3218 moles of C ₄ H ₈ are allowed would be the theoretical yield of	ved to react with 2 000 moles of 0.	, what
a. 1.333 moles c. 0.6436 moles	b. 1.609 moles Cyty C	

18. Thermal decomposition of KClO₃(s) yields KCl(s) and O₂(g). When 4.289 grams of KClO₃ (0.03500 moles) undergo this reaction, how many grams of oxygen are produced?

a. 1.120 grams c. 2.240 grams

e. 2.574 moles

1, 2

e. 4.288 grams

b. 0.5601 grams

(d) 1.680 grams $\frac{2}{1.680}$

6,2

19. In a chemical reaction, 3C₂H₀O + PCl₃ → 3C₂H₀Cl + H₃PO₃, when the reaction was carried out, the actual yield of C₂H₀Cl was calculated 97.3 % of the theoretical value. If the theoretical yield should have been 2.04 moles, how many grams of C₂H₀Cl were actually obtained?

a. 123 grams a. 123 grams a. 123 grams e. 138 grams

6. 128 gramsd. 135 grams

20. 66.7 mL of 18.0 molar sulfuric acid solution was dissolved in enough water to make 500 mL of solution. The molarity of the diluted mixture is

, 6667 X18. = .5 x41 (ā. 2.40 molar

c. 36.0 molar

e. 0.00741 molar

b. 0.135 molar

d. 9.00 molar

21. When the expression, 412.272 + 0.00031 - 1.00797 + 0.000024 + 12.8 is evaluated, the result should be expressed as

a. 424

b. 424.0

(c.)424.1

d.424.06

e. 424.064364

$$AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO_3(aq)$$

a. 1.08 g

6) 1.43 g

c. 1.70 g

d. 3.13 g.

- e. 62.6 g
- 23. When 25.0 mL of sulfuric acid solution was completely neutralized in a titration with 0.050 molar NaOH solution, it took 18.3 mL of the NaOH(aq) to complete the job. The reaction is:

$$2$$
NaOH(aq) + H₂SO₄(aq) → Na₂SO₄(aq) + 2 H₂O(I) What was the molarity of the sulfuric acid solution?

a. 0.0100

b. 0.0148

(0)0.0183

d. 0.0325

- e. 0.0366
- 24. A sample of $(N_2H_5)_2C_3H_4O_4$ contains 1.084 x 10^{24} carbon atoms. How many moles of hydrogen atoms are there in the same sample? Avogadro's number = 6.022×10^{23} .
 - a. 4.200 moles
 - b. 4.725 moles
 - c. 7.000 moles
 - (d) 8.400 moles
 - e. 2.400 moles
- 25. An empty volumetric flask, weighing 60.42 grams, when filled with water it weighed 309.60 g. After emptying the water and drying the flask, it was filled with ethylene glycol. It now weighed 338.72 grams. What is the specific gravity of the ethylene glycol?
 - a. 0.8048
- b. 0.9140
- c. 1.094
- **(d)** 1.1169

-> 1,084x1024

e. 1.2424

					Peric	ds							
	7			<u> </u>	4		ω	N		 +			
	Fr 223.0197		85,4678 55	공생	39.0983 [×]	19	Na Saint	6.941	ω.	1.00794	-] 5	- >	
	Ra 226.0254	137.327 88	87.62 56	လု မ	Ca 40.078	20		Be 9.01218		₹	<u>-</u>	•	
	TAG.	198 Od5	88.90585	√₩,	Sc. 44.95591	. 2	Ö						
	Unq 261.11	178,49	91.224	7.6	Ti 47.88	- 1	Š				•		
	Unp 282.114	Ta 180.9479	92.90638 73	£ =	50.9415	3 6	į.	•					٠,
	263.18 263.18	183.85	95.94 74		C/r 51,9961		j	0					
	Uns 262.12	Re 186.207	98.9072 75	1 43	Mn > 54,9380	≦E	٥			4			
		Os 1902		4.5	55.847 55.847	1							
		lr 192.22	102.90550	2 45	27 Co 58.93320	}	\leq						4.
		195:08	106.42	46	58 Z. 28								
		Au 196.96654	Ag 107.8682	47	<u>ξ</u> 2%					,			
		Hg 200.59	1	48	# N 3	Ī							
•		81 TI 204.3833	114.82	49	Ga Ga	Al 26.98154	13	Ω					
	٠.	Pb 2072	Sn .	50	Ge Se	28.0855	12.011	0.9	IVA				
		83 B) 208.98037	Sb 121.75	74.92159	As	30.97376	14.00674	Zγ	VA				
		84 Po 208,9824		78.96	φ Q2	32.086 S	15.9994	0	VIA				
		85 At 209.9871	126.90447	79.904	죠 %	35.4527	18.99840	Πφ	VIIA				
		86 Pn 222,0176	131.29	83.80	₹%	39.948		₹ 5	4.00260	2	gases 0	Noble	
												•	

^a Atomic masses are the 1985 values given in the Table of Atomic Masses and Atomic Numbers (opposite) but rounded, where appropriate to the fifth decimal place.

15 EL 3

of the
Ö
0 0 0
Todio

, Y	\	\	. }			
. (18) . (18) . He	10 Ne 20.18	18 Ar 39.95	36 Kr 83.80	54 Xe 431.3	88 H	2007. 12 16 have
X(E)	6 H 6	-17 GT 35.45	35 79 79 90	£ 62	85 At (210)	As of late 2007, elements 112 through 116 have
6A (16)	# 0 C	32 07 32 07	34 Se 69.85	es e	Po Po (2003)	<u> </u>
5.A (15)	7 14.01	9097 3097	As 71.02	2 8 2	3.00 BB	715
4A (14)	9 0 5	# 15 B	985	1 2 3 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	Pip	\$14 (289)
3. (13)	m S	At. 26,98	88	E	E E	er (2)
		(12)	Z 29	200	70 000	E (587)
D76		(1.1) (1.1)	38 to	Ag 107.9	Au 197.0	Rg 2.2
KZL		(10)	56.69 48	Pd 105.4	# 45 E	D3 53
٠.		8 (6)	S 66 9	## (0.2.5)	# 150 .2	Mt
A GAN		(8)	6 G 3	Flu 101.1	ö § 9	HS.
		1 S	Min 24 24 24 24 24 24 24 24 24 24 24 24 24	(98) 72	186.3 E	ä
of Arthur		8 (9) _d 2	5000	95.94 74	103.0	88 / L
	·	(2)	10		8 2 E	93
8,	, <u> </u>	· (4)		(1.1 (1.1 (1.1 (1.1 (1.1 (1.1 (1.1 (1.1	: E E	
			200 2		138.9	18
1		4.0	8 B &	,,,,, ,,,,,,,,,		******
E 3 0 0 E -	ε H 44 3	1 0 X			9 5 1	
· · · · · · · · · · · · · · · · · · ·		٠٠٠	, v	ပ	. 1	1

\$150000000	14 7.75 7 194 7	~~~	
	_ 0		
	J P	2	<u></u>
i 🏻			
1	. 0	č.	
1 15	-01-0	<u> 20</u>	Z (
1		888	
1 6 4	- 0	101	3 00
1 00 1		9	
,			
, 100 #	6	© (
	9	<u> </u>	90
	- I		
19.0	64.9	o V	1
-	₩	11	Œ.
	io l		
99 6	8	: ::	to.
			#
	op		
92		ă	7
4.0		Œ	
\$ B	oσ	ō	c.
0 3		F	
6 11 6	- 0	Į.	
88 G	1	d	
		Д. g	
			# -
- E ⊈	122	Ω,	#
E			
0		0	Ĭ
© Ž.Į	83	3 %)
		. VI	[
_ 1		<u></u>	
10 T A	á.	ĽŊ	
			, .
B 8 9	0.4	. 0	
- O ∓	Ō.	- 1	
de		[•
ig	S		
	, i		
ar	· ·	-	
	~4,		
9	. ^	\neg	

BirZeit University

Chemistry Department Chemistry 143

First Hour Exam

2nd Sem. 2014/2015

Instructors:

Dr. Hani Awad (D4)

Dr. Adel Hidmi (D7)

Dr. Amjad Altaweel (D1+D10)

Dr. Mohammad Qneibi (D8)

Dr. Ismael Bedran (D3)

Mr. Adi Qamhieh (D2,D9, D5)

Ms. Salam Maloul (D6)

Student Name: Manage Typila Ro

• Student No: 1142724.

• Section No:

GOOD LUCK

Student number 1142724

1	А	B	С	. D	E
2	A	В	С	(D)	
3	<u> </u>	В	С	0	Ë
4	Α	В	©	D	E
5	A	В	. C		E
6	А	В	Se	O	E
7	А	В ,	С		E
8	Α		С	. D	E
9	Α	В	С	(D)	E
10	A	В	(C)	D	F.
11	Α	B	C	D	E
12	(A)	В	C .	. D	E
13	Α	В	: C	D	E
14	A	В	С		E
15	Α	B	С	D	E
16	(A)	В	С	D	E
17		В	С	D	E
18	Α	В	С	D	E
19 .	A	В	0	D	E
20	А	В	(C)	D	E
21	А	В	(C)	D	E
22	A	В	С	, D	E

1. Which one of the following represents a <i>chemical</i> change A) boiling water to form steam	ge?
/B) turning hair yellow with bleach	
C. melting butter D. mixing powdered charcoal and oxygen at room temperates.	atura
Equiting a har of sodium metal into pieces with a knife	attiv
X	
2. How many significant figures does the result of the followard A) 1 B) 2 C) 3 D) 4	owing sum contain? 8.5201 + 1. <u>93</u> E) 5
A) 1	
3. Rutherford's experiment with alpha particle scattering by A) protons are not evenly distributed throughout an atom. B) electrons have a negative charge.	y gold foil established that
C) electrons have a positive charge. D) atoms are made of protons, neutrons, and electrons.	
E) protons are 1840 times heavier than electrons.	1/200
4. Give the number of protons (p), electrons (e), and neutro	ons (n) in one atom of chlorine-37.
A) 37 p, 37 e, 17 n B) 17 p, 17 e, 37 n D) 37 p, 17 e, 20 n E) 17 p, 37 e, 17 n	C) 7 p, 17 e, 20 n
5. How many silicon atoms are there in 1.00 g of silicon?	C) 0.57 · 10 ²³ · 1 · · · · · ·
A) 1 atom B) 0.0356 atoms D) 2.14×10^{22} atoms E) 1.75×10^{25} atoms	C) 2.57×10^{23} atoms
	2.20.16./
6. What is the percent CsCl by mass in a 0.711 M(mole/L) 1.091 g/mL?	CsCl solution that has a density of
A) 3.87×10^{-4} % B) 3.87×10^{-1} % C) 11.0 %	D) 1.1% E) 6.5 × 10 ⁻² % 3 ref Soly
7. The name of HClO ₂ is	3 of Solubra
A) hydrochloric acid B) chloroform C) hydrochloric acid B) chloroform	drogen dioxychloride
D) chlorous acid E) chloric acid	
8. The stock system name for CrSO ₃ is:	
A) chromium sulfide B) chromium(II) sulfite	C) chromium(II) sulfate ×
D) chromium(III) sulfite E) chromium sulfur oxide	
9. Write and balance the equation for the combustion of fe	errocene, C ₁₀ H ₁₀ Fe, in oxygen to
give iron(III) oxide, carbon dioxide, and water. A) $C_{10}H_{10}Fe(s) + O_2(g) \rightarrow 2 Fe_2O_3(s) + 10 CO_2(g) + 5 H_2(g)$	O(g)
B) $C_{10}H_{10}Fe(s) + 13 O_2(g) \rightarrow FeO(s) + 10 CO_2(g) + 5 H_2O(s)$	O(g)
C) $2 C_{10}H_{10}Fe(s) + 26 O_2(g) \rightarrow Fe_2O_3(s) + 20 CO_2(g) + 10$	0 H ₂ O(g)
$(D) 4 C_{10}H_{10}Fe(s) + 53 O_2(g) \rightarrow 2 Fe_2O_3(s) + 40 CO_2(g) +$	20 H ₂ O(g))

٦	determine Definite P	d to contain 2.0 roportions, how	0 g of calcium much calciun	and 1.90 g of	fluorine	e of the compound c. According to the ple of this compo	e Law of
	A) 2.71 g	ns 2.85 g of fluo B) 4.50 g	rine? C) 4.00 g	D) 6.00 g		E) 3.00 g	
	water at a t	221 grams of wat temperature of 57 the mass of the se B) 67.0 g	0°C the final	temperature of	is mixe f the resu	d with an unknown	n mass of .1 °C.
د	20. Calcula enthalpies of	ate the standard r	molar enthalpy	of formation o	of FeCl ₂ (s) using the follow	ing standard
	1/2 Cl ₂ (g) -	+ $\operatorname{FeCl}_2(s) \rightarrow \operatorname{Cl}_2(g) \rightarrow \operatorname{FeCl}_3$	FeCl ₃ (s)	$\Delta H^{\circ} = -57.7$ $\Delta H^{\circ} = -399.$		57,7+	
		/mol , B) -2		C) -341.8 kJ		D) -457.2 kJ/mo	1
	22.An exoth (A) B) C)	warm up: \become acidic. expand.		undings to D) E)	decreas release	e its temperature.	6
		3				8	

xceller Birzeit University---Chemistry Department

Chem. 141

1". Sern.2013/2014

Time: 80 Minutes

1st Hr. Exam

instructors: Dr. Zaki Hassan (Sections 1 and 2)

Dr. Abdullatif Abuhijleh (Sections 3 and 4)

Dr. Mazen Hamed (Sections 5 and 6)

Student name

Student No.

Student Section

Circle the correct answer

1. What is the formula for lithium nitrite?

A) LINO₃

B) Li₂NO₃

D) Li2NO2

LINO

2). Select the net ionic equation for the reaction between lithium hydroxide and hydrobromic acid.

 $LiOH(aq) + HBr(gq) \rightarrow H_2O(I) + LiBr(aq)$

- $H^{\dagger}(aq) + OH^{\dagger}(aq) \rightarrow H_2O(I)$
 - $\operatorname{Li}^{+}(aq) + \operatorname{OH}^{-}(aq) + \operatorname{H}^{+}(aq) + \operatorname{Br}^{-}(aq) \longrightarrow \operatorname{H}_{2}\operatorname{O}(I) + \operatorname{LiBr}(aq)$
- $Li^{+}(aq) + Br^{-}(aq) \rightarrow LiBr(aq)$
- $HBr(aq) \rightarrow H^{\dagger}(aq) + Br(aq)$ D)
- E) $LiOH(aq) \rightarrow Li^{\dagger}(aq) + OH^{\dagger}(aq)$

3. Which of the following is the empirical formula for hexane, Cob/14?

A) CH_{2.3}

B) C₁₂H₂₈

C) C_{0.43}H

LiOH

4. Lithium hydroxide is used in alkaline batteries. Calculate the molarity of a solution prepared by dissolving 1.495 moles of LiOH in enough water to give a final volume of 750. mL.

	1.99	Μ
--	------	---

B)_1:12 M

C) 0.00199 M

D) 1.50 M

E) 0.502 M

5. Predict the product(s) for the following reaction.

A) $K(s) + H_2(g) + SO_3(g)$

D) $K_2S(aq) + H_2O(I)$

B) K₂SO₄(aq) + H₂O(I)

E) No reaction occurs.

C) KSO₄(aq) + H₂O(l)

Vin (1 in) = (2.54) cm

6. Given that 1 inch = 2.54 cm, 1 cm^3 is equal to

A) 0.155 in³

B) 6.45 in³

C) 0.394 in³

(D) 0.0810 in 3

16.4 in³

7. Silicon has three naturally occurring isotopes, ²⁸Si, ²⁹Si, and ³⁰Si. Use the following data to calculate the atomic mass of silicon.

<u>Isotope</u>	Isotopic Mass (amu)	Abundance %
²⁸ Si	27.976927	92.23
²⁹ Si	28.976495	4.67
³⁰ Si	29.973770	3.10

A) 28.7260 amu

D) 28.9757 amu

B) 27.9801 amu

E) 29.2252 amu

(c) 28,0855 amu

8.	Acetic ac	id boils at	244.2°F. Wha	t is its boil	ing poir	nt in de	egrees Celsius	?		
	A) 153.4°	,C	B) 382.0°C		G)11	.7.9°C	D) 103.7		É) 167.7°C	
9.	What is	the correc	t name for N	1gF₂?	"Marker"					
	A) .	monom	agnesium difl	uoride						
	B)	magnes	ium(III) fluorio	de						
	C)	magnes	um difluoride							
		magnesi	um fluoride							
	E)	none of	these choices	is correct.				, (
							- 1/3			
10.	The sugar	, sucrose,	has the molec	cular formu	ıla C ₁₂ H	₂₂ O ₁₁ .	What is the %	of carbo	on in sucrose, b	Υ
	mass?	3/2	72[TI	(12)(1	1)4 22	+(11)(16)			
	(A)42.	1%	B) 52.8 %	C) 41.4	%	D) 33	.3 %	E)	26.7 %	
7.	The appro	priate nui	mber of signifi	gent figure	es in the	resul	t of 15.234 - 1	5.208 is:	146	
	A) 1		B) 2	[]3		D) 4	0.026	E)	5	
	c									
12.	Which on	e of the fo	llowing comb	inations o	f name	s and 1	formulas is inc	correct?		
		Natioos s	odium carbon	ate		D)	H₃PO₄ phosp	horic ac	cid	
	B) 1	HCI hydro	chloric acid			E)	HNO₃ nitric	acid		
	C) }	OH pota	ssium hydroxi	de						

17. Which	of the following correctly expresses 0.00	0007913	g in scientific notation?
A)	$7.913 \times 10^{-5} \mathrm{g}$		D) 7.913 × 10 ⁶ g
B)	$7.913 \times 10^{-9} \mathrm{g}$		(E) 7.913 × 10 ⁻⁵ g
C)	$7.913 \times 10^{5} \mathrm{g}$		L
18. Which	of the following is a non-metal?		
A)	calcium, Ca, Z = 20	D)	lithium, Li, $Z=3$
В)	sodium, Na, Z = 11	E)	lead, Pb , Z = 82
(c)	bromine, Br, Z = 35		1.4.4
	Fe Br3.	6H2 0	1/2/5 /
19. Determ	nine the molecular mass of iron (III) bron		hydrate.
A)	317.61 amu	(O))	403.65 amu
В)	295.56 amu	E)	313.57 amu
C)	355.54 amu		
20. Calculate	the oxidation number of the chlorine in	ı perchlor	ic acid, HClO ₄ , a strong oxidizing agent.
A) -1			of these is the correct oxidation number.
21. Identify t	he reducing agent in the following redox	reaction.	0 /
Hg ^{.2+} ($aq) + C\mu(s) \rightarrow Cu_{I}^{2+}(aq) + Hg(I)$		
	$g^{2+}(aq)$ and $Cu^{2+}(aq)$ B) $Cu^{2+}(aq)$	C) Hg	(1) D) $Hg^{2+}(aq)$ (E) $eu(s)$
22. Lead(II)	sulfide (PbS) reacts with hydrogen per	oxide to fo	orm lead(II) sulfate and water. How
many gra	ams of hydrogen peroxide are needed to	react cor	mpletely with 265 g of lead(II) sulfide?,
A) 37		D) 12	PbS 23 g E) 50.3 g 207+37
& Pb	s +1+1,02 - 1 Pbs01 mol Pbs - 3 4 mo th	1 4	E) 50.3 g 207+37 = 239 = 239 = 1,108 7 m
,	mol Pbs - 9 4 mo the	U2	
((1000)	1 Ha O.	2

5150.8--

23. The spectator ions for the reaction of an aqueous solutions of lead nitrate, $Pb(NO_3)_2$, with sodium chromate, Na₂CrO₄, to form a precipitate of lead chromate are :

$$Pb(NO_3)_2(aq) + Na_2CrO_4(aq) \rightarrow PbCrO_4(s) + 2 NaNO_3(aq)$$

- A) CrO_4^{2} -(aq) and $Na^+(aq)$
- B) Na⁺ (aq) and Pb²⁺(aq)
- C) $Pb^{2+}(aq)$ and $NO_3^{-}(aq)$
- D) $Pb^{2+}(aq)$ and $CrO_4^{2-}(aq)$
- (E) Na+ (aq) and NO3 (aq)

- 24. Calculate the number of oxygen atoms in 29.34 g of sodium sulfate, NazSO4. = 1429 lm
- A) 2.409×10^{24} O atoms
- B) 1.166×10^{25} O atoms
- E) 2.115×10^{24} O atoms

- C) 4.976 × 10²³ O atoms
 - 25. Balance the following equation for the combustion of benzene:

 $C_6H_6(J) + O_2(g) \rightarrow H_2O(g) + CO_2(g)$

2 GH6 +80, 3H20 +602

- $2C_{6}H_{6}(I) + 15O_{2}(g) \rightarrow 6H_{2}O(g) + 12CO_{2}(g)$
- $2C_6H_6(I) + 9O_2(g) \rightarrow 6H_2O(g) + 12CO_2(g)$
- $C_6H_6(I) + 9O_2(g) \rightarrow 6H_2O(g) + 6CO_2(g)$
- D) $C_6H_6(I) + 9O_2(g) \rightarrow 3H_2O(g) + 6CO_2(g)$
- E) $C_6H_6(I) + 15O_2(g) \rightarrow 3H_2O(g) + 6CO_2(g)$

26. Identify the limiting reactant and determine the mass of the excess reactant remaining when
7.00 g of chloring gas reacts with 5.00 g of notaccium to form notaccium to
A) Chlorine is the limiting reactant; 2.70 g of potassium remain. B) Chlorine is the limiting reactant 4.64 of 5.00 for the limiting reactant.
B) Chlorine is the limiting reactant: 4.64 g of potassium remain.
Of Detaction in the limiting reactant: 4,64 g or potassium remain.
Potassium is the limiting reactant; 2.47 g of chlorine remain.
D) Potassium is the limiting reactant; 7.23 g of chlorine remain. $C \iota_{2}$
E) No limiting reagent: the reactants are present in the correct stoichiometric ratio.
cl2 +2k - 2KC1
2 2 KCI
0.198
2 - St - Old mot K - How mut Kill
0.394
2 k 2 k [
GOOD LUCK O.128 -> ??
=0,128 mol kel
Is is the limiting.
2k - 31Cl2
0.128
=0.064 mol KC/2
· 图

Birzeit University Chemistry Department Chemistry 141

First Exam

1st Sem. 2012-2013

	Student Name: Student No.:		 Section
E	D _s C B	A 21	E D

E	D	(В	4	
					21
					22
					23
					24
					25
					26

E	D	C	В	A	
					1
					2
					3
					4
					5
					6
					- 7
					ક
					9
					10
**************************************					1
**************************************					12
					13
					14
					15
					16
****					17
·····					18
					19
	***************************************	<u> </u>			2.0

18 VIIIA	8 111 20 100 8 111 20 100	18 (20 %)	202.38 202.38 30.78	21.23		118 () Umd
	17 VIIA 9235 9	35 45s	55.72904	2.26.90	35 (210)	117 () 丁亚 欧
1 100	16 VIA 8 15,999	5.32,065	8 9 9 8 7 9 8 7 9	freedow freedow	1502) 1502)	ff 6, [291]
riodni.c	≶ // (4.90t)	20.97	2201	2.175	05 05 05 05 05 05 05 05 05 05 05 05 05 0	TES () THE UNITED AND A SECOND AND A SECOND A
http://www.periodni.com	MA 15	% Disc. 11-	72.84 Ge	T	2	
MANAGAMAN SOOR	A MILA 14	18 s	8	, 5	F. 1) (14 (267) 1 (M)
	E 49		***	25 11.82 25 11.82	16	(Cin Unit
, 2000cma		C C C C C C C C C C C C C C C C C C C		49 11243 CB	80.202.59	(12) (285) (13) (13) (13) (13) (13) (13) (13) (13)
2022 2	gens element ns element as 25 °C; 101	Fe - scilid Te - synthetic Te - synthetic	29 53.546	28.0	6 5	(f. 280)
Normetal	Chelcogens element Helogens element Noble gas STANDARD STATE (25 °C; 101 kPa)	2	28 58 693	Sign begge	8	0 (281) [1
Semimetal	STANDA	148 - 90s 148 - 11quid 16	2 62 83 93 93 93 93 93 93 93 93 93 93 93 93 93	102.91 14.33 100018	(92.22) Th	109 (276) 11 Mill
Section of the sectio	Alkali metal Alkaline earth metal Transition metals	6	5 Bd5 7 G	7	\$8 \$8 800.00	
Metai	Alkali metal Alkaline earth me Transition metals Lanthanide	Addition (%) Addition (%)	න සුන ය සින	(90) 444 for (1)	9 S	23 708
Sunsan [.596 F5 54:0	10	Titles	
C SVW	GROUP CAS	6 VB	6 J H	7.0 95.00 VED	483.84 東打 UMSSTER	15 288 (166 (27)
RELATIVE ATOMIC MASS (1)	W Control	ELEMIENT NAME	23 50 942 \$7 85 850 118	11 92 906 NB MORELLY	7.3 190.95 508 508 508 10.05	(1)5 (260) [[]][]] Duffering
RELATIV	GROUP IUPAC 13 IC NUMBER — ST SYMBOL —	DANCE	2 4 7 80 7 8 8 8	7.91,224 Z.Y Recollete	CO Venes Company Compa	R. (257)
	GROUP IUPA ATOMIC NUMBER SYMBOL	9	5.00m	86.906 4	a-Lit	Ar-Lr Ar-Lr Acimile
	© 00122	6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2000 2000 2000 2000	87.62 Sr Pressua	25 25 25 25 25 25 25 25 25 25 25 25 25 2	
A Solo	241 4 BER			8 5	lead ((f) E
GROUP I M I Noors I H	2 3	ε. 3 % 2	4 3	2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
SERIOD	1			٧,	φ.	7

(1) Pure Appl. Cham., 81, No. 11, 2131-2156 (2009) Relative stomic masses are expressed with five significant figures. For elements that have no stable modicies, the value enclosed in brackets indicates the mess number of the three such elements (Ph. Pa and U) do have a langest-lived isotope of the element However characteristic terrestrial isotopic composition, and for these an atomic weight is tabulated.

ANTHANIDE

[29] (252) [106 (257) [101 (259)] [102 (259) [103 (262) Treeting 50 (16.91) 58 (19.12) 59 (14.91) 60 (14.24) 60 (14.5) 62 (25.36) 63 (51.56) (14.15) 65 (150.35) 60 (12.35) 63 (157.26) 69 (158.53) 78 (77.05) THERETON SYTTERBURE Fin | Ivid | No MILLER MENDELSONS INDEEDING MG 666 907 (5359) (6359) 89 (227) [80 232,04] 91 231,041 31 238.03 [83 (237)] 94 (244) [83 (252)] 86 (217) [97 (247) [83 (251) IBIK SAPPLING COPONING SARO MINING TERRIDO AVIND Statement Americal In JOSES STEERES CC manage ANTHAKO RE CTINIDE . ≪,

Copyright © 2012 Eni Generald

Birzeit University---Chemistry Department

1 st Hr. Exam	<u>Chem. 141</u>	1". Sem.201	.4/2015
		26/10/201	.4
<u>Time: 80 Minutes</u>	<u>Ins</u>	structors: Dr. Adil Alhidmeh	(section 1)
	20	Mr.Adi Qamhieh((section 2)
		Dr. Zaki Hassan (S	Section 3)
	20	Dr.Abdullatif Abu	ıhijleh (Sections 4)
Student name - Shore	oug Odeh	Student No.	1110564
		Student Section	7
BIR	ZEIT U	MIVERS	3)
Circle the correct answe	<u> </u>		
1. Express 96,342 m us	ing 2 significant figure	s.	016
9.60 x 10 ⁴ m 9.6 x 10 ⁴ m C) 9.60 x 10 ⁻⁴ m		D) 9.6 x10 ⁻⁴ m E) 96,000. m	q.6x10
time stars (am ²)		that 1 inch = 2.54 cm, expres 0. cm ² D) 69.57 cm ²	
3. The number 6.0448, 1 (A) 6.045 (C) 6.044 (E) non of the above	counded to 3 decimal p B) 6.05 D) 0.60448 x 1 answers		

4.	Acetone bo	ils at 56.1°C. W	hat is the b	oiling poi	nt in degrees	Fahrenheit?	
	A) 159°F	B) 133°F	C) 1	01°F	D) 69.0°F	E) 43.4°F	
5.	Bromine 81,	he only nonmet \$^{81}_{35} Br. Select mass number,	the combin	ation which			the isotope number, neutron
(A)35, 46, 81 C) 81, 46, 35 E) 35, 81, 11		B) 35, 8 D) 46,				9
6.	Which of the	following com	pounds is i	onic?	2	D > <	
	A) PF3 E	3) CS ₂ C)	CH₄ I	O) SO2	B) MgCl2	464	~ \
7.	Which of the	following give	s the formu	ıla and the	bonding for	sodium oxide	?
	B) NaO,	ionic compound covalent compo , covalent comp	ound			c compound ic compound	
8.	The compoun	nd, NaH ₂ PO ₄ , is	present in	many bak	ing powders.	What is its na	ime?
	B) sodiu	n biphosphate n hydrogen pho n dihydrogen pl		J-1PO ₄ E)		drophosphate Lydride phospl	
9.	What is the fo	ormula for Fe(I	II) oxide?				
	A) FeO	B) Fe ₂ O	C) FeO ₃	D) Fe ₂	Os Fe	₂ Ω3	
10.	What is the n	ame of PCl ₃					
. *	A) phosphor B) phosphor C) phosphor			osphorus chlorophos	trichloride sphide		
11.	What is the m	olecular mass o	of ammoniu	ım sulfate'	?		•
	A) 63.07 as B) 114.10 a C) 118.13 a	mu	D) 1	128.11 am 32.13 am			
					•		

- 12. Calculate the number of moles in 17.8 g of the anti-acid magnesium hydroxide, Mg(OH)₂.

 A) 3.28 mol B) 2.32 mol C) 0.205 mol D) 0.431 mol E) 0.200 mol
- 13. Calculate the mass of lead in 139 g of lead (II) nitrate, Pb(NO₃)₂.

 A) 107 g B) 90.8 g C) 87.0 g D) 83.4 g E) 62.6 g
- 14. Balance the following equation:

$$C_8H_{18}O_3(l) + O_2(g) \rightarrow H_2O(g) + CO_2(g)$$

A)
$$C_8H_{18}O_3(l) + 8O_2(g) \rightarrow 9H_2O(g) + 8CO_2(g)$$

$$(B)$$
 $C_8H_{18}O_3(l) + 11O_2(g) \rightarrow 9H_2O(g) + 8CO_2(g)$

C)
$$2C_8H_{18}O_3(i) + 22O_2(g) \rightarrow 9H_2O(g) + 16CO_2(g)$$

D)
$$C_8H_{18}O_3(l) + 13O_2(g) \rightarrow 18H_2O(g) + 8CO_2(g)$$

E)
$$2C_8H_{18}O_3(l) + 17O_2(g) \rightarrow 18H_2O(g) + 16CO_2(g)$$

15. Ammonia will react with fluorine to produce dinitrogen tetrafluoride and hydrogen fluoride

$$2NH_3(g) + 5F_2(g) \rightarrow N_2F_4(g) + 6HF(g)$$

How many moles of NH₃ are needed to react completely with 13.6 mol of F₂?

- A) 34.0 mol
- B) 27.2 mol
- C) 6.80 mol
- D) 5.44 mol
- E) 2.27 mol
- 16. Aluminum reacts with oxygen to produce aluminum oxide:

$$4\mathrm{Al}(s) + 3\mathrm{O}_2(g) \ \ \longrightarrow .2\mathrm{Al}_2\mathrm{O}_3(s)$$

A mixture of 82.49 g of aluminum ($\mathcal{M}=26.98$ g/mol) and 117.65 g of oxygen ($\mathcal{M}=32.00$ g/mol) is allowed to react. Identify the limiting reactant and determine the mass of the excess reactant present in the vessel when the reaction is complete.

- A) Oxygen is the limiting reactant; 19.81 g of aluminum remain.
- B) Oxygen is the limiting reactant; 35.16 g of aluminum remain.
- C) Aluminum is the limiting reactant; 16.70 g of oxygen remain.
- D) Aluminum is the limiting reactant; 35.16 g of oxygen remain.
- (E) Aluminum is the limiting reactant; 44.24 g of oxygen remain.

		Na ₂ CO ₃ is:	alssolved II	i Suilic	em water to m	ake 250 IIIL OI SUIC	itivii, t
(A) 0.0	985 M	B) 10.4 M	C) 0.205	5 M	D) 0.0246 M	E) 0.141 M	
18. In the	following	reaction, what i	ons, if any, a	are spec	ctator ions?		·
Pb	o(NO ₃) ₂ (aq	q) + 2NaCl(aq)	→ PbCl ₂ (s) + 2	$NaNO_3(aq)$		
B) Na	(aq), Cl (a (aq), NO3 (aq), NO3	(aq)	•	•	q), Cl ⁻ (aq) are no spectato	or ions.	,
10 Colont	the compa	ant of anodysta	for the fell	····	anation		
		set of products q) + HNO3(aq)		owing i	eaction.	14	
B) Ba(,	V2(s) + H2 s) + H2(g) NO3)2(aq)	+ NO2(g)) + NO2(g) + Hetion occurs.	[20(1)	
		ries use 3.0 <i>M</i> neutralize 225				w much 1.20 <i>M</i> N	aOH
	H ₂ SO ₄ 0	(aq) + 2NaOH $(a$	$(q) \longrightarrow 2 \mathbb{I}_2$	O(l) + 1	$Na_2SO_4(aq)$		
(A) 1.1	L]	3) 0.28 L	(0.56 L	D)	0.90 L	E) 0.045 L	
21. Select t sulfate.		tate that forms	when aqueor	ıs lead((II) nitrate reac	ts with aqueous soc	dium
A) 1	VaNO3	B) Na2NC)3 C	Pb ₂ SC	04 (D))Pb3	SO ₄ E) P	bS

GOOD LUCK

Birzeit University Chemistry Department Chemistry 141

First Hour Exam

1st Sem. 2012-2013

Time: 70 min.

Student No: 1120125

Student Name: Rahaf Rimawi Instructor Name: Dr. Hijazi Abu Ali

Section No:----

Important note: There are (21) equally graded questions, please answer all of them.

E	D	C	В	A	Q
					1
			-		2
ala.	77-15-				3
					4
					5
					6
		,			7
	7.7				8
					9
					10
					11
		•			12
					13
					14
					15
					16
					17
					18
					19
					20
					21

GOOD LUCK

Student Name: Rahat Rimawi Student No: 1120125
Please read each question carefully before you answer, and choose the best correct answer
1. Which one is a physical property of sodium?
A) Its surface turns black when first exposed to air.
B) It is a solid at 25 °C and changes to a liquid when heated to 98 °C.
C) When placed in water it sizzles and a gas is formed.
D) When placed in contact with chlorine it forms a compound that melts at 801 °C.
E) Sodium is never found as the pure metal in nature.
2. During the swing of a frictionless pendulum, what energy form(s) remain constant? A) kinetic energy only B) potential energy only
C) both kinetic energy and potential energy
D)kinetic plus potential energy
E) None of these forms remains constant.
3. Which of the following represents the largest volume?
3. Which of the following represents the largest volume?
A) 10,000 µL B) 1000 pL C) 100 mL D) 10 nL E) 10 cm ³
4. Isopropyl alcohol boils at 180.7 °F. What is the boiling point in kelvins?
A) 387.6 K B) 323.6 K C) 355.6 K D) 190.8 K E) -190.8 K
5. Express 96342 m using 2 significant figures.
A) $9.60 \times 10^4 \text{ m}$ (B) $9.6 \times 10^4 \text{ m}$ C) $9.60 \times 10^{-4} \text{ m}$ D) $9.6 \times 10^{-4} \text{ m}$ E) $96000 \cdot \text{m}$
6. Choose the response that includes all the items listed below that are pure substances. i. orange juice ii. steam iii. ocean water iv. oxygen v. vegetable soup
A) i, iii, v (B) ii, iv C) i, iii, iv D) iv only E) all of them are pure
7. Which of the following ions occurs commonly?
A) P^{3+} B) Br^{7+} C) O^{6+} D) Ca^{2+} E) K^{-}
8. The correct name of MnSO ₄ is:
A) manganese disulfate B) manganese(II) sulfate C) manganese(IV) sulfate D) manganese sulfate E) manganese(I) sulfate
9. What is the formula for lead(II) oxide?
(A) PbO B) PbO ₂ C) Pb ₂ O D) PbO ₄ E) Pb ₂ O ₃

Student Name: Roha Pinawi Student No: 1130125
10. What is the name of the acid formed when HClO4 liquid is dissolved in water?
A) hydrochloric acid B) perchloric acid C) chloric acid D) chlorous acid E) hydrochlorate acid
11. Determine the molecular mass of iron(III) bromide hexahydrate.
(A) 403.65 g B) 355.54 g C) 317.61 g D) 313.57 g E) 295.56 g
12. Rutherford's experiment with alpha particle scattering by gold foil established that:
A) protons are not evenly distributed throughout an atom. B) electrons have a negative charge. C) electrons have a positive charge. D) atoms are made of protons, neutrons, and electrons. E) protons are 1840 times heavier than electrons.
A) 10 p and 13 e B) 12 p and 15 e C) 15 p and 15 e D) 15 p and 18 e E) 18 p and 21 e
14. Calculate the number of moles in 38.7 g of phosphorus pentachloride.
A) 5.38 mol B) 3.55 mol C) 0.583 mol D) 0.282 mol E) 0.186 mol
15. Calculate the number of chromium atoms in 78.82 g of K ₂ Cr ₂ O ₇ . A) 9.490 x 10 ²⁵ Cr atoms B) 2.248 x 10 ²⁴ Cr atoms C) 1.124 x 10 ²⁴ Cr atoms E) 1.613 x 10 ²³ Cr atoms
16. Calculate the mass in grams of 3.65×10^{20} molecules of SO_3 .
A) 6.06×10^{-4} g B) 2.91×10^{-2} g C) 4.85×10^{-2} g D) 20.6 g E) 1650 g l7. When 0.6943 g of terephthalic acid was subjected to combustion analysis it produced 1.471 g CO ₂ and 0.226 g H ₂ O. If its molar mass is between 158 and 167 g/mol, what is its molecular formula?
A) $C_4H_6O_7$ B) $C_6H_8O_5$ C) $C_7H_{12}O_4$ D) $C_4H_3O_2$ E) $C_8H_6O_4$
18. Lead(II) sulfide reacts with hydrogen peroxide to form lead(II) sulfate and water. How many grams of hydrogen peroxide are needed to react completely with 265 g of lead(II) sulfide?
(A) 151 g B) 123 g C) 50.3 g D) 37.7 g E) 9.41 g

Student Name:		Student N	o:	,
19. Aluminum reacts with oxygen to produce aluminum oxide. 4Al(s) + 3O₂(g) → 2Al₂O₃(s) A mixture of 82.49 g of aluminum (M = 26.98 g/mol) and 117.65 g of oxygen (M= 32.00 g/mol allowed to react. Identify the limiting reactant and determine the mass of the excess reactant present in the vessel when the reaction is complete. XA) Oxygen is the limiting reactant; 19.81 g of aluminum remain. XB) Oxygen is the limiting reactant; 35.16 g of aluminum remain. C) Aluminum is the limiting reactant; 16.70 g of oxygen remain. D) Aluminum is the limiting reactant; 35.16 g of oxygen remain. E) Aluminum is the limiting reactant; 44.24 g of oxygen remain.	ener de com rocker e			
A mixture of 82,49 g of all allowed to react. Identify	uminum ($\mathcal{M}=26.98~\mathrm{g/s}$	ld determine the	g of oxygen (M mass of the exc	= 32.00 g/mol) is cess reactant
C) Aluminum is the limiting C) Aluminum is the limiting D) Aluminum is the limiting E)	ig reactant; 35.16 g of al iting reactant; 16.70 g of iting reactant; 35.16 g of iting reactant; 44.24 g of time of a solution prepa	uminum remain. f oxygen remain. f oxygen remain. oxygen remain.	25 mL of 8.25 M	<i>I</i> sodium
hydroxide to a concentrat	ion of 2.40 M?		4	W. W.
A) 330 mL B) 210	mL (C)86 mL	D) 60 mL	E) 7.3 mL	01/4/= 05
21. Which of the following is a	true statement.		VTIS	25x85=02h
A) A mole of one substance (B) The experimental yield to the concentration of a san intensive property. (D) To prepare 1.00 L of 3.0 water	olution is an extensive p	the results obtain roperty, but the a	ned in the labora mount of solute	tory. in a solution is

Avogadro's number = 6.022×10^{23}

water.

GOOD LUCK

BIRZEIT UNIVERSITY Department of Chemistry CHEM 141 First Hour Exam First Semester 2009/2010

Name, ID #: .Sa.lam. M. Gansiych., 1090641 Discussion Section: ...1.....

THE DURATION OF THE EXAM IS 75 MINUTES

Instructors:

Dr. Talal Shahwan (Lecture 1, D5, D6)

Dr. Jack Mustaklem (Lecture 2, D2)

Dr. Zaki A. Hasan (D3, D4, D7)

Dr. Hani Awad (D1)

	Q#	а	b	C	d	е	Q#	a	b	C	d	е
~	1		\				12			V		
	2						13	~		·		
	3				\		14		/	B		
	4.		/				15	-\/	A			
	5		/				16	/			3	
	6.					/	17	/				
1	7				<u> </u>		18					\checkmark
	8		✓				19					
	9			✓ <			20		/			
	10						Bonus Q					W
Photograph of the State of the												

BIRZEIT UNIVERSITY CHEMISTRY DEPARTMENT CHEM. 141 -1st HOUR EXAM

22

Spring 2011/2012

TIME: 70 Min

INSTRUCTOR'S NAME:

Dr. Oraib Sayrafi

Dr. Talal Shahwan

(6,7,8)

Discussion:

Dr. Hani Awad (4)

Dr.Zaki Hasan (2,5)

Mr. Adi Qamhiyeh(1,3)

Question	a	b	С	d	
1				<u> </u>	е
2					
2 3					
4		7111			
5		1-47/			
6					
7					
		· · · · · · · · · · · · · · · · · · ·			
8 9					
10		···			
11					
12					
13				_	
14					
15					
16					
17					· · · · · · · · · · · · · · · · · · ·
18					
19					
		_>			
20					
21					
22					
23					
24					
25					

Avogadro's number = 6.022×10^{23} .

	1. A	broad gener	alization that sum	marizes ai	nd organizes da	ta is call	eu
		c. a scie	ientific method ntific theory pirical fact	d.	a scientific law a hypothesis		
-	2. V	/hich one of	the following is an	extensive	property of mat	ter?	
		a. densi c. electr e mass	ical conductivity	b. d.	specific gravity melting point		
	3. T	he two majo	r types of pure su	bstances a	are		
		c. eleme	ounds and elemer ents and mixtures ons and elements		b. compoui d. mixtures		solutions lutions
	4. <i>F</i>	∖n example o	of a chemical com	pound is			\
		a. orang d. grani		<i>₽</i>	brass table salt	C.	bronze
	6. T	n. is always b.is the same f. is the san d. is definite e. cannot be he atomic we	e as the density rance as the weight rance and constant determined exper	tio atio imentally is 26.982		16	
	1	there in a 4.5	55 g sample of alu	minum?			
	-3, 6.00 -3, 1? 1.017:	υ. γ ₃ e.	1.02×10^{23} 2.74×10^{24} 8.01×10^{23}	b. d.	1.32×10^{23} 3.57×10^{24}		

	7.	The kilo is a. unit of mass b. a unit employed a decimal multip d. a unit of speed e. a volume unit er	olier in the mo	etric system	enforcemen	t agency)
	8.	Which one of the follow hydrate?	ving compou	nds is correctly	described :	as a 🖫 🔑
		(āે: CoCl₂·6H₂O c. NaOH		HC ₂ H ₃ O ₂ CaH ₂	e.	C ₆ H ₁₂ O ₆
	9.	The melting point of a	antimony wa elvins this ter	s listed in one nperature wou	handbook a ld be	s 1167.3
	-K-+	7.3 – 32) (a. 357.6 K ²⁷³ d. 894.2 K _{7 – 2} 73	b. e.	496.8 K 903.9 K	c.	583.7 K
>	10.	6	and nano re	present, respe	ctively:	
7.7	13	a. 10 ⁹ and 10 ⁻⁶ b. 10 ⁻⁶ and 10 ⁹ ② 10 ⁶ and 10 ⁻⁹ d. 10 ⁶ and 10 ⁹ e. 10 ⁻⁶ and 10 ⁻⁹		1 2	201	6
	11.	When a student evalu	0.04616 x 0.	nession, 082057 x 293.30 0.654	243.3	-tr/6
	th	e result should be expre	essed as		1.70	
		a. 1.69 d. 1.6987	(a) 1.70 e. 1.698	70	c. 1	.699

	 4 a. 3.0600 x 10⁻² ★ c. 0.306 x 10⁻² ▶ e. 3.0600 x 10⁻³ 	(b) 0. d. 3.	30600 x 10 ⁻² 06 x 10 ⁻³	· 一餐買
13. k 5 0 22 .63 1.6	The assay values ar Determine the empire	e: potassium, 49.410		
k250;	d. K ₂ S ₂ O ₃	e. $K_3S_2O_8$ of a hydrocarbon, upor		4.
fiel "	combustion analy dioxide. The per		l 6.484 grams of carbor bon in the hydrocarbor c. 71.35 %	
15	d. 40.16 % In a quantitative and	e. 42.16 % alysis study, 2.644 gra	ms of a hydrocarbon (v	
C H 2.18 485	. #. 4.098 g of H₂O in a d	combustion analysis a ical formula of the hyd	lrocarbon.	
0.182 .455 1 2.5 1 5		n empirical formula Cl	H₂O. An independent a	analysis
5.12	formula? (a) $C_5H_{10}O_5$ (b) $C_9H_{10}O_2$	b. C ₆	$H_{12}O_6$ H_6O_8	culai

The number, 0.0030600, is properly expressed in scientific notation

		1.	1	2210 - 1	
ega Tomore	11	Given a chemical reaction, C_4H_8 f 0.3218 moles of C_4H_8 are allowed would be the theoretical yield of	ed to react v	with 2 000 males of O.	what
		a. 1.333 moles c. 0.6436 moles e. 2.574 moles	b. 1.609	moles Cytle Comoles 1. 6	
N Š	18.	Thermal decomposition of KClO 4.289 grams of KClO ₃ (0.03500 how many grams of oxygen are	moles) und	dergo this reaction,	
		a. 1.120 grams c. 2.240 grams e. 4.288 grams	b. 0.560 分1.680	Of grams $ \begin{array}{ccc} 2 & 3 \\ \text{grams} & 3 \\ \text{grams} & 3 \\ \text{grams} & 3 \end{array} $	
4 1923 X	9	In a chemical reaction, $3C_2H_6O + the reaction was carried out, the above of the theoretical value. If the control of the co$	actual yield the theoretic	of C₂H₅Cl was calculat cal yield should have be	ed
is a color	a23 -	a. 123 grams 132 grams e. 138 grams	©. d.	128 grams 135 grams	
667		66.7 mL of 18.0 molar sulfuric acter to make 500 mL of solution. T			•
, 6667 - X18. ((*)	= .5 ?	c. 36.0 molar e. 0.00741 molar	d	0.135 molar 9.00 molar 9.01.2 64 4/1.264 5.00797 + 0.000024 + 1	í
	21.	When the expression, 412.272 + is evaluated, the result should be			2.8

b. 424.0

a. 424

(c)424.1

d.424.06

e.

424.064364

$$AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO_3(aq)$$

a. 1.08 g

6) 1.43 g

c. 1.70 g

d. 3.13 g.

- e. 62.6 g
- 23. When 25.0 mL of sulfuric acid solution was completely neutralized in a titration with 0.050 molar NaOH solution, it took 18.3 mL of the NaOH(aq) to complete the job. The reaction is:

 \triangle NaOH(aq) + H₂SO₄(aq) → Na₂SO₄(aq) + \bigcirc H₂O(I) What was the molarity of the sulfuric acid solution?

a. 0.0100

b. 0.0148

© 0.0183

d. 0.0325

- e. 0.0366
- 24. A sample of $(N_2H_5)_2C_3H_4O_4$ contains 1.084 x 10^{24} carbon atoms. How many moles of hydrogen atoms are there in the same sample? Avogadro's number = 6.022×10^{23} .
 - a. 4.200 moles
 - b. 4.725 moles
 - c. 7.000 moles
 - @'8.400 moles
 - e. 2.400 moles
- 25. An empty volumetric flask, weighing 60.42 grams, when filled with water it weighed 309.60 g. After emptying the water and drying the flask, it was filled with ethylene glycol. It now weighed 338.72 grams. What is the specific gravity of the ethylene glycol?
 - a: 0.8048
- b. 0.9140
- c. 1.094
- **(d)** 1.1169
- e. 1.2424

			Oi	4	ω	<i>\</i>	, .	-			E
	Fr 223.0197		37 Rb 85.4678	39.0983	Na 22.98977	6,941	1.00794	I -	IA.		7 Oldo
	Ra 226.0254	8 BB	i	20 Ca 40.078	Mg 24.3050	Be 9.01218	4 IIA	·······················	•		ABLE O
-		8 4 6 7 6 10 5 1	88.90585	SC 44.95591	夁					•	ERIODIC TABLE OF THE ELEMENTS®
	261.33 261.33	72 Hf 178.49	i —	722 Ti 47.88	IVB						EVIENT
	Unp 262.114	73 Ta 180,9479	92.90638	23 V 50.94115	B ·						S
	Unh 263.118	74 W 183.85	42 Mo 95,94	24 Cr 61.9961	¥⊞						
	107 Uns 262,12	75 Re 186.207	43 Tc 98.9072	26 Mn 54,9380	VIIB	3/1	46.		1		
		76 Os 190.2	101.07	26 Fe 55.847				91			
		77 r 192.22	45 Rh 102.90550	27 Co 58.93320	}≦		S		Y	A Property	٠.
		78 P 1 195:08		58.69						建碳 恋	s. 4
	7	79 Au 196.96654	47 Ag 107.8682	22.22		4					
		#g Hg 200.55	48 Cd 112.411		<u></u>			V			
		81 	49 In 114.82	31 Ga	26.98154	10.811 B	IIIA				
	·		·	Ge SS	% 2.2.2 2.3.2 3.2	12.011	IVA				
		7	51 Sb 121.75	33 AS		7 N 14.00674	VA				
		Po 208,982	78.96 52 Te 127.60		တ န	8 O 15.9994	VIA				
		85 At 209.9871	79.904° 53 126.90447	35.4527 Br	Ω⇒	9 F 18.99840	VIIA		아 사람	ÇÇÎ x	ž
	C-C-10 13 0	86 Rn Rn	83.80 Xe	39.948	A ₁₈		2 He 4.00260	0	Noble gases		
	•				L				•		

Periods

^a Atomic masses are the 1985 values given in the Table of Atomic Masses and Atomic Numbers (opposite) but rounded, where appropriate to the fifth decimal place.

Periodic Table of the Elements

1	<u>'</u>	\	_\	7.		•		
(18)	£§ :	Ne Zūra	18 Ar 39.98	8 3	983.80	0 C X C	# # E E	9 2007, 1112 116 have
	4. (t.)	F 19:00	7 D 25	98	8 8	126.9	3 A (2)	As of late 2007, elements 112, through 116 harmon 116 harmon 116 harmon 101 heer name
	A (16)	0.9	S 22 07	26 g	9 6			E 5
	5A (15)	Z 14.0 €	15 90.97	As		82 8	0 80 0 80	71.5 288.5
;	\$ [] 4	o 5	28.08 28.08	88		78 B	£	114 269)
9	(13) (13)	no 🔆 🤉		8		6	E i	254)
		1	·	2 2 3			99 S	
		. ÷,						B (4)
		.a .d	· (<u>e</u>) 8	N 69 8		4	170 170	
			88 (6)	0 E	45 FF			5 88
				0 0 0	# # B	_		S 2
	- ,4			5 7 7 7		19 2 P	61	
3.3.1			96		THE .		<u> </u>	700
The state of the s	.* . •	5. E	3087	#5 55	NB		105	- i
		44	(4)	47.88			2 5 5 E	$\equiv i$
	11		© 50 S			6 3	X	
্ বু ন্ত	- m =	PMG F	3 3		St. 52	6 G	4	
A (1) = H	- I.G	 	±1			65 68 68 68 68		
	CA CB	თ [.]	4	2000 (2000 SO	က က	φ 4 O O	10 Hz	

69 70 74	Tm Yb Lb (663 1730 4750 (71 62 103	
! 60		
	b _e \$E	
	2 5 5 %	ŝ
	6 6 8 6 8 8	Ċ
98	18 85	
	*	N.
8 £	18 La H	ì
		*
2 Q	6 8 5	
		8
0 1	2 8 4 3	
	¥	
[©] Ö	F. 34	
- E	0 00 0.5	ľ
ε <u>σ</u>	S d d	
g y 5	1 3 D 8	
8 à 9	5 8 5	
887	868	
δ		
mid	88	
mthe		
<u>"</u>	A A	•
m		

BirZeit University

Chemistry Department Chemistry 143

First Hour Exam

2nd Sem. 2014/2015

	<u>Instructors:</u>	
	Dr. Hani Awad	(D4)
	Dr. Adel Hidmi	(D7)
	Dr. Amjad Altaweel	(D1+D10)
	Dr. Mohammad Qneibi	(D8)
	Dr. Ismael Bedran	(D3)
	Mr. Adi Qamhieh	(D2,D9,D5)
Γ	Ms. Salam Maloul	(D6)

Student Name: 10 3 Figure 75

• Student No: 1142724.

Section No:

GOOD LUCK

1 A B C D 2 A B C	E
1	1
3 A B C D	E
4 A B C D	E
5 A B C D	E
6 A B C D	E
7 A B C D1	E
8 A B C D	E
9 A B C D	E
10 B C D	E
11 A B C D	E
12 A B C D	E
13 A B C D	E
14 A B C	E
15 A B C D	E
16 A B C D	E
17 A B C D	E
18 A B C D	E
19 . A B C D	E
20 A B C D	E.
21 A B C D	E
22 A B C D	

1. Which one of the following represents a chemical change? A) boiling water to form steam B) turning hair yellow with bleach C. melting butter D. mixing powdered charcoal and oxygen at room temperature E. cutting a bar of sodium metal into pieces with a knife
 2. How many significant figures does the result of the following sum contain? 8.5201 + 1.93 A) 1 B) 2 C) 3 D) 4 E) 5
 3. Rutherford's experiment with alpha particle scattering by gold foil established that A) protons are not evenly distributed throughout an atom. B) electrons have a negative charge. ★C) electrons have a positive charge. D) atoms are made of protons, neutrons, and electrons. ★ E) protons are 1840 times heavier than electrons.
4. Give the number of protons (p), electrons (e), and neutrons (n) in one atom of chlorine-37. A) 37 p, 37 e, 17 n B) 17 p, 17 e, 37 n C) 7 p, 17 e, 20 n E) 17 p, 37 e, 17 n
 5. How many silicon atoms are there in 1.00 g of silicon? A) 1 atom B) 0.0356 atoms C) 2.57×10^{23} atoms E) 1.75×10^{25} atoms
6. What is the percent CsCl by mass in a 0.711 M(mole/L) CsCl solution that has a density of 1.091 g/mL? A) 3.87×10^{-4} % B) 3.87×10^{-1} % C) 11.0 % D) 1.1 % E) 6.5×10^{-2} % Figure 1.5 dubits
The name of HClO ₂ is A) hydrochloric acid B) chloroform C) hydrogen dioxychloride E) chloric acid
8. The stock system name for CrSO ₃ is: (A) chromium sulfide (B) chromium(II) sulfite (C) chromium(II) sulfate (D) chromium(III) sulfite (E) chromium sulfur oxide
Write and balance the equation for the combustion of ferrocene, $C_{10}H_{10}Fe$, in oxygen to give iron(III) oxide, carbon dioxide, and water. A) $C_{10}H_{10}Fe(s) + O_2(g) \rightarrow 2 \text{ Fe}_2O_3(s) + 10 \text{ CO}_2(g) + 5 \text{ H}_2O(g)$ B) $C_{10}H_{10}Fe(s) + 13 \text{ O}_2(g) \rightarrow \text{FeO}(s) + 10 \text{ CO}_2(g) + 5 \text{ H}_2O(g)$ C) $2 \text{ C}_{10}H_{10}Fe(s) + 26 \text{ O}_2(g) \rightarrow \text{Fe}_2O_3(s) + 20 \text{ CO}_2(g) + 10 \text{ H}_2O(g)$ D) $4 \text{ C}_{10}H_{10}Fe(s) + 53 \text{ O}_2(g) \rightarrow 2 \text{ Fe}_2O_3(s) + 40 \text{ CO}_2(g) + 20 \text{ H}_2O(g)$

ث	determine Definite P if it conta	ed to contain 2.00 Proportions, how ins 2.85 g of fluor	g of calcium a much calcium ine?	and 1.90 g of f should anoth	luorine er sam _l	e of the compound. According to the ple of this compour	Law of
	A)-2:/1-g	B) 4.50 g	C) 4.00 g	D) 6.00 g		E) 3.00 g	
خــ	water at a water was		0 °C the final to cond sample of	emperature of		d with an unknown liting mixture is 33.	
		late the standard m of reaction:	olar enthalpy	of formation of	fFeCl ₂ (s) using the following	ng standard
	,		FeCl ₃ (s)	$\Delta \mathbf{H}^{\circ} = -57.7$		57,7+	
		$2 \operatorname{Cl}_2(g) \to \operatorname{FeCl}_3(g)$		$\Delta H^0 = -399.5$	The state of the s	D) 457.2 lat/mag1	
	A) = 31.1 K	J/mol . B) -28	4.1 KJ/IIIO1 (C) -341.8 kJ/	moi	D) -457.2 kJ/mol	
				he standard ent D)			
	22.An exot	thermic reaction ca	uses the surro	-	•		
	(A) B) C)	become acidic. expand.			decreas release	se its temperature. CO ₂ .	6
		N. C.					

Exceller

Birzeit University---Chemistry Department

1st Hr. Exam

Chem. 141

1st. Sem.2013/2014

Time: 80 Minutes

instructors:

Dr. Zaki Hassan (Sections 1 and 2)

Dr. Abdullatif Abuhijleh (Sections 3 and 4)

Dr. Mazen Hamed (Sections 5 and 6)

Student name

Student No.

Student Section --

1. What is the formula for lithium nitrite?

D) Li₂NO₂

LINO

Select the net ionic equation for the reaction between lithium hydroxide and hydrobromic acid.

(A)
$$H^{*}(aq) + OH^{*}(aq) \rightarrow H_{2}O(I)$$

- 8) $Li^{\dagger}(aq) \in OH(aq) + H^{\dagger}(aq) + Br(aq) \rightarrow H_2O(I) + LiBr(aq)$
- C) $Li^{+}(aq) + Br^{-}(aq) \rightarrow LiBr(aq)$
- $HBr(aq) \rightarrow H^{\dagger}(aq) + Br^{\dagger}(aq)$ D)
- $LiOH(aq) \rightarrow Li^{\dagger}(aq) + OH^{\dagger}(aq)$ E)

3. Which of the following is the empirical formula for hexane, C₆b₁₄?

A) CH_{2,3}

B) C₁₂H₂₈

C) C_{0,43}H

E) C₆H₁₄

LiOH

4. Lithium hydroxide is used in alkaline batteries. Calculate the molarity of a solution prepared by dissolving 1.495 moles of LiOH in enough water to give a final volume of 750. mL.

(A) 1.99 M

B) 1.12 M

C) 0.00199 M

D) 1.50 M

E) 0.502 M

5. Predict the product(s) for the following reaction.

H2SO4(aq) + KOH(aq) - K2SO4 + H2O

A) $K(s) + H_2(g) + SO_3(g)$

D) $K_2S(aq) + H_2O(i)$

B) K₂SO₄(aq) + H₂O(I)

E) No reaction occurs.

C) KSO₄(aq) + H₂O(l)

1 in = (2.54) cm

6. Given that 1 inch = 2.54 cm, 1 cm^3 is equal to

A) 0.155 in³

B) 6.45 in³

C) 0.394 in³

(D) 0.0510 in³

E) 16.4 in³

7. Silicon has three naturally occurring isotopes, ²⁸Si, ²⁹Si, and ³⁰Si. Use the following data to calculate the atomic mass of silicon.

<u>Isotope</u>	Isotopic Mass (amu)	Abundance %
²⁸ Si	27.976927	92.23
²⁹ Si	28.976495	4.67
³⁰ Si	29.973770	3.10

A) 28.7260 amu

D) 28.9757 amu

B) 27.9801 amu

E) 29.2252 amu

(C) 28,0855 amu

A) 153.4°C	B) 382.0°C	(c)11	7.9°C	D) 103.7°C	E) 167.7°
		6			
. What is the cor	rect name for MgF ₂ ?				
A) mond	omagnesium difluorid	е			oli oli ette oli e T
B) magr	nesium(III) fluoride				
C) magn	nesium difluoride				
(D) magn	esium fluoride				-11 -
E) none	of these choices is cor	rect.		146	
. The sugar, sucros	se, has the molecular	formula C ₁₂ F	22011. \	What is the % of	carbon in current
mass?	ZEIT	(13)(1	n) + S1	*(n)(e)	earbon my sucrose
	D) E0 D 0/	41 407			
(A)A2.1%	B) 52.8 % C)	41.4 %	D) 33.	3 %	E) 26.7 %
(A)42.1%	b) 52.8 % C)	41.4%	D) 33.	3 %	E) 26.7 %
A)42.1% The appropriate	number of significent			of 15.234 - 15.2	
A) 42.1% The appropriate A) 1				and the second second	
	number of significant		e result	of 15.234 - 15.2	08 is:
A) 1	number of significant	figures in th	e result D) 4	of 15.234 - 15.2 0.026	08 is: E) 5
A) 1 Which one of th	number of significant	figures in th	e result D) 4	of 15.234 - 15.2 0.026	08 is: E) 5
A) 1 Which one of th A) Namco	number of significent B 2 e following combinati	figures in th	e result D) 4	of 15.234 - 15.2 0.026 ormulas is incor	08 is: E) 5 rect? ric acid
A) 1 Which one of th A) NaMCC B) HCI hy	number of significant B 2 e following combinati s sodium carbonate	figures in th	D) 4 s and f	of 15.234 - 15.2 0.026 ormulas is incor H ₃ PO ₄ phosphol	08 is: E) 5 rect? ric acid

windi o	title following correctly expresses 0.00000	1/913 g	in scientific notation?
- A)	$7.913 \times 10^{-5} \mathrm{g}$		D) $7.913 \times 10^6 \text{g}$
В)	$7.913 \times 10^{-9} \mathrm{g}$		(E) 7.913 × 10 ⁵ g
C)	$7.913 \times 10^{5} \mathrm{g}$		
18. Which o	of the following is a non-metal?		
A)	calcium, Ca, Z = 20	D)	lithium, Li, $Z = 3$
B)	sodium, Na, Z = 11	E)	lead, Pb , Z = 82
	bromine, Br, $Z = 35$ $ \begin{array}{c} 6 & 80 \\ \hline & Br_3 & 61 \end{array} $	120	-1/2/a/C-
19. Determ	ine the molecular mass of iron (III) bromid		nydrate
A)	317.61 amu	(D)	403.65 amu
В)	295.56 amu	E)	313.57 amu
c)	355.54 amu		
20. Calculate	the oxidation number of the chlorine in pe	rchlori	c acid, HClO ₄ , a strong oxidizing agent.
A) -1	B)+7 C) ÷5 D)+4 E)	None c	f these is the correct oxidation number.
1. Identify th	ne reducing agent in the following redox re	action.	0 /
Hg ^{?+} (∂	$aq) + C\mu(s) \rightarrow Cu^{2+}(aq) + Hg(I)$		
	31.	C) Hg	1) D) $Hg^{2+}(aq)$ (E) $eu(s)$
22. Lead(II)	sulfide (PbS) reacts with hydrogen peroxid	de to fo	orm lead(II) sulfate and water. How
many gra	ms of hydrogen peroxide are needed to re	act cor	npletely with 265 g of lead(II) sulfide?,
A) 37.	.7 g B) 9.41 g G 151 g	D) 12	3 g E) 50.3 g 20.3 t 3 ?
& Pb	S + H202 - P b S 0 4 mol P bs - 3 4 mo th 0: 1 088	4	3g E) 50.3g 707+31 = 239 = 1,108 3 m ²
(mol Plos - 3 4 mo tho	2	
((1) 088	H20a	_
	= 4.435 2 mol = 4.435 2 mol		150.8-
		~	/

23. The spectator ions for the reaction of an aqueous solutions of lead nitrate, Pb(NO₃)₂, with sodium chromate, Na₂CrO₄, to form a precipitate of lead chromate are :

 $Pb(NO_3)_2(aq) + Na_2CrO_4(aq) \rightarrow PbCrO_4(s) + 2 NaNO_3(aq)$

- A) $CrO_4^{2-}(aq)$ and $Na^+(aq)$
- B) $Na^+(aq)$ and $Pb^{2+}(aq)$
- C) $Pb^{2+}(aq)$ and $NO_3^{-}(aq)$
- D) $Pb^{2+}(aq)$ and $CrO_4^2(aq)$
- E) Na+ (aq) and NO3 (aq)

24. Calculate the number of oxygen atoms in 29.34 g of sodium sulfate, Na₂SO₄. = 1429 lm

A) 2.409×10^{24} O atoms

B) 1.166×10^{25} O atoms

E) 2.215×10^{24} O atoms

- (2) 4.976 × 10²³ (2) atoms
 - 25. Balance the following equation for the combustion of benzene:

 $C_6H_6(I)+O_2(g)\to H_2O(g)+CO_2(g)$

 $2C_{6}H_{6}(I) + 15O_{2}(g) \rightarrow 6H_{2}O(g) + 12CO_{2}(g)$

26 H6 +60, -8420 +602 26H6 1202 3H2 0+6602

- $2C_6H_6(I) + 9O_2(g) \rightarrow 6H_2O(g) + 12CO_2(g)$
- $C_6H_6(I) + 9O_2(g) \rightarrow 6H_2O(g) + 6CO_2(g)$
- D) $C_6H_6(I) + 9O_2(g) \rightarrow 3H_2O(g) + 6CO_2(g)$
- E) $C_6H_6(I) + 15O_2(g) \rightarrow 3H_2O(g) + 6CO_2(g)$

26. Identify the limiting reactant and determine the mass of the excess reactant remaining when
7.00 g of chlorine gas reacts with 5.00 g of potassium to form potassium chloride.
A) Chlorine is the limiting reactant; 2.70 g of potassium remain.
B) Chlorine is the limiting reactant: 4.64 g of potassium remain.
Potassium is the limiting reactant; 2.47 g of chlorine remain.
D) Potassium is the limiting reactant; 7.23 g of chlorine remain.
E) No limiting reagent: the reactants are present in the correct stoichiometric ratio.
Cl2 +2k - 2KC
2 2 KC1 0.198 37
0 098
7.128 0.394 0.394
6.128 2 k - 0 2 h C]
GOOD LUCK O.128 -> ??
=0,128 mol kel
K is the limiting.
2k - , 1Cl2
=0.064 mol kc/2
· 到海

Birzeit University Chemistry Department Chemistry 141

First Exam

1st Sem. 2012-2013

 Student Name:	
Student No.:	Cooping N.
**************************************	Section No.:

E	D	C	BA	
				21
			-	22
				23
				24
				25
				26

E	D	C	В	A	
HV					
					(
					9
					8
			 		9
					
			<u> </u>		1(
	***************************************				10
			1		12
					13
					14
					15
					16
					17
					18
					19
					20

18 VIIIA 11 4 4026 FI & IE UN	Ne 18 39 948	36 85.708 84	57. 31. 32. 33.	84 (222) R 13	(18 () Umdi
4 17 VIIA	F 3 17 35 453	3 35 79 904	1.57 (26.90	85 (210)	117 () U@\$
iodni.com VA 16 VIA Habor R 15 939	jž) (1) (2)	76 52 127.60	28 S4 (209)	ING (291)
жw.регіо	OH ANTHOUSE COS 15 30 974	72.64 11.74.922 6. As	6.71 51 (21.76)	207.2 83 206.98 EPD BS	ST (115 () Uump
30000000000	B C	a J	49 114 22 50 115.71 In Sn	88 88	Usi () Tra (sen) Unit
	<u>a</u>		68 112.47 ±9 ±9 ±9 ±9 ±9 ±9 ±9 ±9 ±9 ±9 ±9 ±9 ±9	200.59 ST	A
Nonmetal Chalogens element Haltogens element Nobla gas	(25 °C; 101 kPa) Fe - solid Tig - synthetic	29 63.546 30 SS.36 CL Zn	7 (0787) Ag	100.37 100.37	111 (280) 112 (285) 民宴 C加
	AON S	27 58.933 28 56.693 CO NT CO NT	16 105 (2 F AL	2 78 15508 FP£	1610 (281) D.S.
Semimetal sain metal metals		B15 27 58.0	TOTION 45 10281 RELIEFERM PRODUK	623 77 19222 S B 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	TT) ANY (276)
Metai Son Alkali metai Alkaline eenth metai	Actinide Service Servi	5 54 538 26 55 845 NB F.C.	(98) 44 füt. [C Ku Medium kumerini	126,21 76 190,23 BRD BB HENLIN OSMILIN	7 (272) 108 (277) Bh High
33	, , , , , , , , , , , , , , , , , , ,	24 51.996 25 CF D	2	4 183.84 72 8.87 84 NOSTEN PHI	101 101 101 101 101 101 101 101 101 101
2 T	BLEMENT NAME	23 50 942 V	41, 92,936 42, 95,99 NB YKs	73 180.95 3.33	105 (227) 100 (277) 100 (2
RELAT GROUP IUPAC ATOMIC NUMBER—	SYMBOL	22.47.867 F.F.	6 40 91224 Zr	72 175 49 1	104 (267) References
All Storage Arrows	20 20 20 20 20 20 20 20 20 20 20 20 20 2	23 SC TT	87.62 39.10.906	-	
GROUP A out 9	3 2 7 3	14 31,098 20 40,07 F. C.1 1911-1911	# 1 B		(22) 88 (22e) FT Ra
PERIOD ~ ~	n = 1	4 5	S W	9	7

(1) Pure Appl. Chem., 81, No. 11, 2131-2155 (2009)
Relative atomic masses are expressed with five significant figures. For elements that have no stable mucifies, the value enclosed in trackets indicates the mass number of the langest-lived isotope of the element blowever there such elements (Tr., Ps and U) do have a characteristic terrestrial isotopic composition, and for these an atomic weight is tabulated.

LANTHANIDE

65 358 58 59 66 5550 67 364 53 68 367 28 69 685 5 78 73 05 72 374 57 101 (250) 102 (259) 103 (252) CCEPTUR 100 (257) 30.0 92. (227) 94 (244) 95 (245) 96 (247) 97 (247) 98 (251) 4 Ö 闔 57 (38.91 | 58 (39.12 | 59 (40.51 | 60 (74.22 | 60 (74.5) | 61 (50.35 | 63 (51.56 | 64 (57.25 हा कि क्षा हि S. NORTHER NEDTONING PROSECULAR 49 (227) 30 232.04 01 231.04 52 238.03 jedosi Antonio Sancino 2. ecci secce Fesse Fesse CT Paul CTINIDE U St,

Copyright © 2012 Ent Generalit

Birzeit University---Chemistry Department

	26/10/20	014
Time: 80 Minutes	Instructors: Dr. Adil Alhidme	h(section 1)
20	Mr.Adi Qamhie	h(section 2)
	Dr. Zaki Hassan	(Section 3)
20	Dr.Abdullatif Al	ouhijleh (Sections 4)
/ (v. s. 1.1 ·).	1746	
Student name Sharoug Od	Student No.	1110564
	Student Section	013
Circle the correct answer	UNIVERS	3)
1. Express 96,342 m using 2 signific	cant figures.	
9.60 x 10 ⁴ m 9.6 x 10 ⁴ m C) 9.60 x 10 ⁻⁴ m	D) 9.6 x 10 ⁻⁴ m E) 96,000. m	q.6x10
centimeters (cm ²)	² . Given that 1 inch = 2.54 cm, expr	
A) 96.8 cm ² B) 448.8 cm ²	(C) 1140. cm ² D) 69.57 cm ²	E) 27.39 cm ²
3. The number 6.0448, rounded to 3 (A) 6.045 B) 6		
1 2	$.60448 \times 10^3$	
(C) 6.044 D) 0.	.00 1 10 X 10	

4.	Acetone boils at 56.1°C. What is the boiling point in degrees Fahrenheit?
	A) 159°F B) 133°F C) 101°F D) 69.0°F E) 43.4°F
5.	Bromine is the only nonmetal that is a liquid at room temperature. Consider the isotope Bromine 81, ⁸¹ ₃₅ Br. Select the combination which lists the correct atomic number, neutron number, and mass number, respectively.
	A) 35, 46, 81 B) 35, 81, 46 C) 81, 46, 35 D) 46, 81, 35 E) 35, 81, 116 Which of the following compounds is ionic?
0,	A) PF3 B) CS2 C) CH4 D) SO2 E) MgCl2
7.	Which of the following gives the formula and the bonding for sodium oxide?
	A) NaO, ionic compound B) NaO, covalent compound C) Na ₂ O, covalent compound C) Na ₂ O, covalent compound
8.	The compound, NaH ₂ PO ₄ , is present in many baking powders. What is its name?
	A) sodium biphosphate B) sodium hydrogen phosphate C) sodium dihydride phosphate Sodium dihydrogen phosphate
9.	What is the formula for Fe(III) oxide?
	A) FeO B) Fe ₂ O C) FeO ₃ D) Fe ₂ O ₅ E) Fe ₂ Q ₃
10.	What is the name of PCl ₃
	A) phosphorus chloride B) phosphorus trichloride C) phosphorus trichlorate C) phosphorus trichlorate
11.	What is the molecular mass of ammonium sulfate?
	A) 63.07 amu B) 114.10 amu C) 118.13 amu D) 128.11 amu E) 132.13 amu

12. Calculate the number of moles in 17.8 g of the anti-acid magnesium hydroxide, Mg(OH)₂.

A) 3.28 mol

B) 2.32 mol

(C) 0205 mol

D) 0.431 mol

E) 0.200 mol

,13. Calculate the mass of lead in 139 g of lead (II) nitrate, Pb(NO₃)₂.

A) 107 g B) 90.8 g

(C) 87.0 g

D) 83.4 g

E) 62.6 g

14. Balance the following equation:

$$C_8H_{18}O_3(l) + O_2(g) \rightarrow H_2O(g) + CO_2(g)$$

A) $C_8H_{18}O_3(l) \div 8O_2(g) \rightarrow 9H_2O(g) + 8CO_2(g)$

 $2C_8H_{18}O_3(i) + 22O_2(g) \rightarrow 9H_2O(g) + 16CO_2(g)$

D)
$$C_8H_{18}O_3(l) + 13O_2(g) \rightarrow 18H_2O(g) + 8CO_2(g)$$

 $2C_8H_{18}O_3(l) + 17O_2(g) \rightarrow 18H_2O(g) + 16CO_2(g)$ E)

15. Ammonia will react with fluorine to produce dinitrogen tetrafluoride and hydrogen fluoride

$$2NH_3(g) + 5F_2(g) \rightarrow N_2F_4(g) + 6HF(g)$$

How many moles of NH_3 are needed to react completely with 13.6 mol of F_2 ?

A) 34.0 mol

B) 27.2 mol

C) 6.80 mol

D) 5.44 mol

E) 2.27 mol

16. Aluminum reacts with oxygen to produce aluminum oxide:

$$4\text{Al}(s) + 3\text{O}_2(g) \rightarrow 2\text{Al}_2\text{O}_3(s)$$

A mixture of 82.49 g of aluminum ($\mathcal{M} = 26.98$ g/mol) and 117.65 g of oxygen ($\mathcal{M} = 32.00$ g/mol) is allowed to react. Identify the limiting reactant and determine the mass of the excess reactant present in the vessel when the reaction is complete.

- A) Oxygen is the limiting reactant; 19.81 g of aluminum remain.
- B) Oxygen is the limiting reactant; 35.16 g of aluminum remain.
- C) Aluminum is the limiting reactant; 16.70 g of oxygen remain.
- Aluminum is the limiting reactant; 35.16 g of oxygen remain. D) Aluminum is the limiting reactant; 44.24 g of oxygen remain.

17. When 2.61 g of concentration of		dissolved in suffic	cient water to mak	e 250 mL of solution,	the
A) 0.0985 M	B) 10.4 M	C) 0.205 M	D) 0.0246 M	E) 0.141 M	
18. In the following	reaction, what is	ons, if any, are spe	ectator ions?		
Pb(NO ₃) ₂ (ac	q) + 2NaCl(aq)	\rightarrow PbCl ₂ (s) + 1	2NaNO ₃ (aq)		
A S TON THE S CONTROL					
A) $Pb^{2+}(aq)$, $C\Gamma(aq)$			aq), CI (aq)		
(B) Nz*(aq), NO3 (e) Pb ²⁺ (aq), NO3	_	E) There	e are no spectator	ions.	
1 / 120					
19. Select the correc	t set of products	for the following	reaction.		
Ba(OH)2(a	$q) + \text{HNO}_3(aq) -$		V	(7)	
A) BaN2(s) + H2 B) Ba(s) + H2(g) C) Ba(NO3)2(aq)	+ NO2(g)) + NO2(g) + H2C ction occurs.		
		H_2SO_4 as an acid nL of the battery		much 1.20 M NaOH	
H_2SO_4	(aq) + 2NaOH $(a$	$q) \longrightarrow 2^{-1} {}_{2}\mathrm{O}(l) +$	Na ₂ SO ₄ (aq)		
(A) 1.1 L	B) 0.28 L	© 0.56 L D) 0.90 L	E) 0.045 L	
21. Select the precipi sulfate.	tate that forms w	hen aqueous lead	(II) nitrate reacts v	with aqueous sodium	
A) NaNO3	B) Na2NO	C) Pb ₂ So	D) PbSO	E) PbS	
		GOOD LUC	CK		
			•	,	