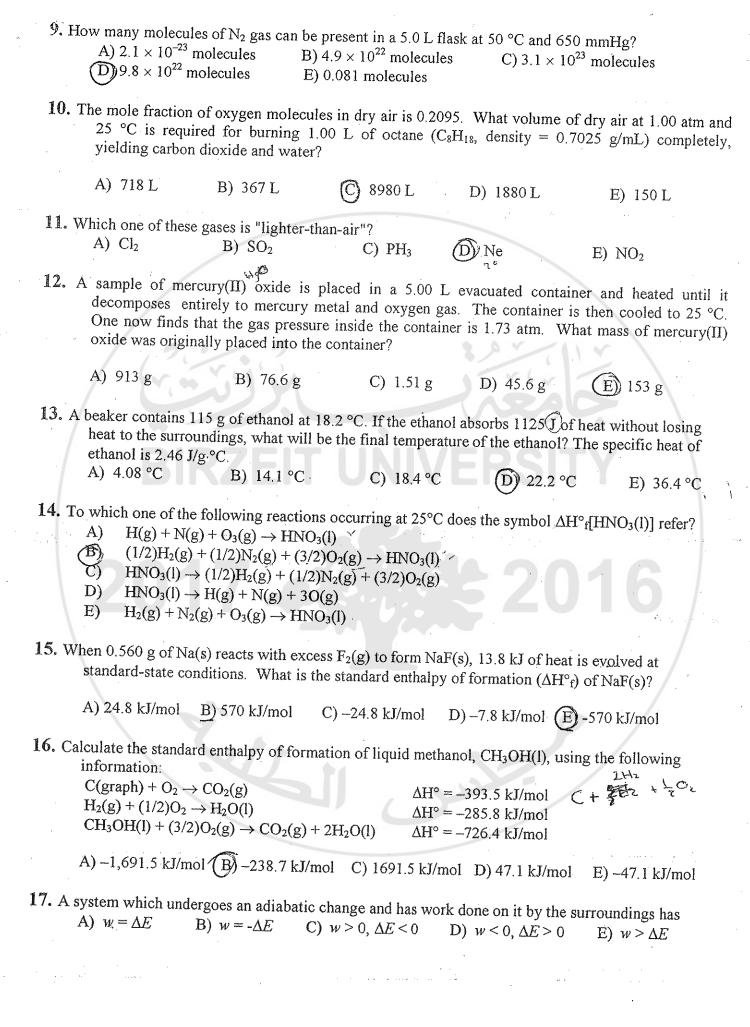
Second

Birzeit University

Chemistry Department
Chemistry 141

Second Hour Exam Time: 80 min. 1st Sem. 2012-2013

Student Name: Rahak Rimawi


Student No: 1120125

Instructor Name: Hejaze also Ali Section No: -Pharta-f)

Important note: There are (21) equally graded questions, please answer all of them.

E	D	C	В	A	Q	
		,	×		ì	
				×	2	\
	\sim				3	. \
ン					4	
		<u> </u>			5	·
<u> </u>					6	
			-	40)(1)	7	
	. #	$-\times$			8	
					9	
***************************************					10	
			<u> </u>		11	
					12 13	
					14	
					15	
					16	
		×		the second secon	17	IAI
X			and the same of th	,	18	3 E
		······································		\sim	19	
			×		20	
		×			21	

Student Name: 'Rahat' Rimani Student No: 1720125	
Please read each question carefully before you answer, and choose the best correc	ct ans
1. Which of the following compounds is a weak electrolyte?	
A) HCl \textcircled{B} NH ₃ C) C ₆ H ₁₂ O ₆ (glucose) D) N ₂ E) KCl	
2. Based on the solubility rules, which one of the following should be soluble in water?	
(A) $(NH_4)_3PO_4$ B) $Ca_3(PO_4)_2$ C) $AIPO_4$ D) Ag_3PO_4 E) $Mg_3(PO_4)_2$	
3. Which of the following will occur when a solution containing about 0.1 g of Pb(NO ₃) ₂ (aq) is m with a solution containing 0.1 g of KI(aq) /100 mL?	ixed
A) KNO ₃ will precipitate; Pb ²⁺ and I ⁻ are spectator ions. B) No precipitate will form. C) Pb(NO ₃) ₂ will precipitate; K ⁺ and I ⁻ are spectator ions. D) PbI ₂ will precipitate; K ⁺ and NO ₃ ⁻ are spectator ions. E) Pb ²⁺ and I ⁻ are spectator ions, and PbI ₂ will precipitate.	
4. What mass of Li ₃ PO ₄ is needed to prepare 500. mL of a solution having a lithium ion concentra 0.175 M?	tion of
A) 6.75 g B) 10.1 g C) 19.3 g D) 30.4 g E) 3.38 g	
5. In the following chemical reaction the oxidizing agent is $5\ddot{S} + 6\ddot{K}N\ddot{O}_3 + 2CaCO_3 \rightarrow 3\ddot{K}_2\ddot{S}O_4 + 2CaSO_4 + CO_2 + 3\ddot{N}_2$	
A) S B) N ₂ C) KNO ₃ D) CaSO ₄ E) CaCO ₃	
 6. Which of these properties is/are characteristic(s) of gases? A) High compressibility B) Relatively large distances between molecules C) Formation of homogeneous mixtures regardless of the nature of gases D) A and B. E) A, B, and C. 	/
 7. If the pressure of a gas sample is quadrupled and the absolute temperature is doubled, by what does the volume of the sample change? A) 8 B) 2 D) 1/4 E) 1/8 	factor
 8. Two moles of chlorine gas at 20.0 °C are heated to 350 °C while the volume is kept constant. To density of the gas A) increases B) decreases C) remains the same D) Not enough information is given to correctly answer the question. 	he

Stude	nt Name: Rahal Rimaidi Student No. 1120125.
	orbital has: vo total nodes B) Zero angular nodes C) Two radial nodes ne angular node C + D are correct
19. Select the to greate (A) B) C) D) E)	radio, infrared, ultraviolet, gamma rays gamma rays, infrared, radio, ultraviolet, infrared, radio gamma rays, ultraviolet, infrared, radio infrared, ultraviolet, infrared, radio infrared, ultraviolet, radio, gamma rays
aoesi	ron in the $n = 6$ level emits a photon with a wavelength of 410.2 nm. To what energy level the electron move? $= 1 \qquad \text{(B)} n = 2 \qquad \text{(C)} n = 3 \qquad \text{(D)} n = 4 \qquad \text{(E)} n = 5$
A) B) D)	ntation in space of an atomic orbital is associated with the principal quantum number (n) , the angular momentum quantum number (l) . the magnetic quantum number (m_l) . the spin quantum number (m_s) . None of these choices is correct.

Avogadro's number = 6.022×10^{23}

R = 0.0821 atmL/mol K

R = 8.314 J/mol K $h = 6.626 \times 10^{-34} \text{ J.s}$

Rydberg constant = $1.096776 \times 10^7 \text{ m}^{-1}$

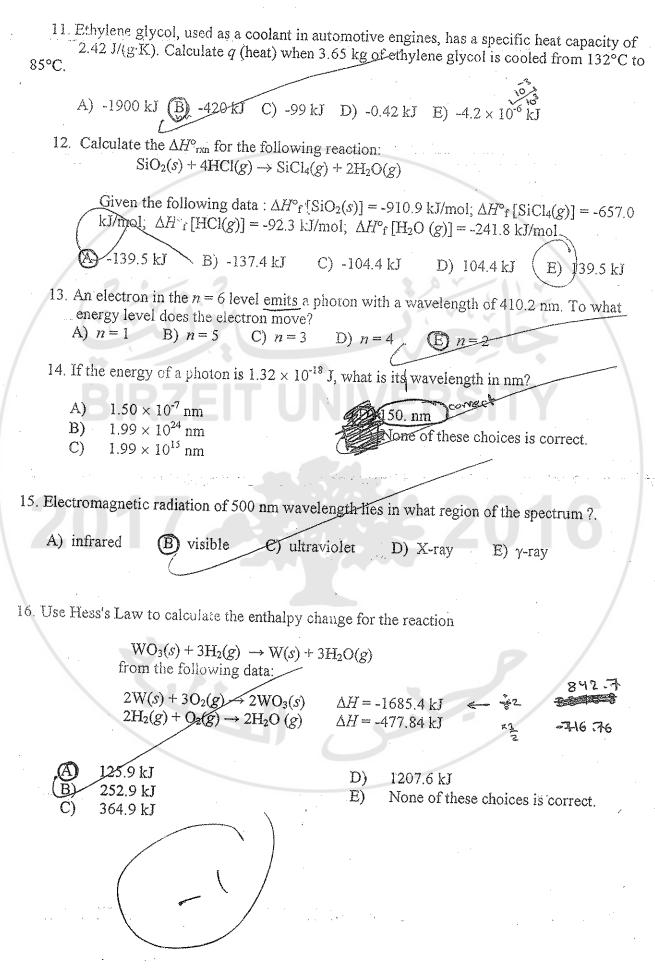
Excellend 2st. Sem.2013/2014 17/12/2013 Student No. Student Section D) 441 torr E) 359 torr

Birzeit University---Chemistry Department 2st Hr. Exam Chem. 141 Time: 65 Minutes Instructors: Dr. Zaki Hassan (Sections 1 and 2) (Dr)Abdullatif Abuhijleh (Sections(3) and 4) Dr. Mazen Hamed (Sections 5 and 6) (Gas constant, R=0.0821 and L/mol.K.; Blank's constant, h = 6.626 x 10⁻³⁴ J·s or kg·m²/s Speed of Light, c= 3.00 x 108 m/s, Rydberg constant, R = 1.096776x107 m⁻¹; Bohr constant= 2.18x10⁻¹⁸ J) Circle the correct answer 1. A sample of carbon dióxide gas at 125°C and 248 tort occupies a volume of 275 L. What will the gas pressure be if the volume is increased to 321 L at 125°C? B) 289 torr C) 356 torr A sample of ideal gas at 65.5°C and 524 torr has a volume of 15.31 L. What is its volume when the temperature is (-15.8°C) and its pressure is 524 torr? 11.6 L 20.2 L D) 63.5 L It is not possible, since the volume would have to be negative. A 250.0-mL sample of ammonia, NH3(g), exerts a pressure of 833 torr at 42.4°C. What mass of ammonia is in the container? A) 0.0787 g B) 59.8 g C) 8.04 g D) 17.0 g 4. A flask with a volume of 3.16 L contains 9.33 grams of an unknown gas at 32.0°C and 1.00 atm. What is the molar mass of the gas? B) 66.1 g/mol (C) 74.0 g/mol A) 7.76 g/mol D) 81.4 g/mol E) 144 g/mol

	A) nitrogen N_2 \longrightarrow 28 (D) ammonia $NH3$ \longrightarrow 36.5 (D) Ammonia $NH3$ \longrightarrow 28 (D) Ammonia $NH3$ \longrightarrow 29 (D) Ammonia $NH3$ \longrightarrow 20 (D) Ammonia $NH3$
PV=NAT	6. Small quantities of hydrogen can be prepared by the addition of hydrochloric acid to zinc. A sample of 195 mL of hydrogen was collected over water at 25°C and 753 torr. What mass of hydrogen was collected? (Pwater = 24 torr at 25°C)?H(1+Zn ->> ZnCl2+H2)
	A) 0.00765 g (B) 0.0154 g (C) 0.0159 g (D) 0.0164 g (E) 0.159 g
Me = m Mr = m 2 nar = 20 n ar = ne	7. A gas mixture with a total pressure of 300. torr, consists of equal masses of Ne (atomic weight 20) and Ar (atomic weight 40.). What is the partial pressure of Ar, in torr? A 100. torr Ne B) 75 torr C) 150 torr Part of total pressure of 300. torr, consists of equal masses of Ne (atomic weight 40.). What is the partial pressure of Ar, in torr? A 100. torr D) 200. torr E) None of these choices is correct. A 100. torr A 1
	8. A 20.0 L container holds 15.3 mol of Cl_2 gas at 227°C. Calculate the pressure, assuming real gas behavior. The van der Waals constants for Cl_2 are $a = 6.49$ atm. I^2/mol^2 and $h = 1.00$
	0.0562 L/mol. $ (P + \frac{n^2 a}{\sqrt{2}})(V - nb) = nRT $ $ ($
	9. How much faster will hydrogen effuse than oxygen through the same hole at the same temperature? Speed 01 A) 0.25 B) 2.83 D) 16 E) 4 This is a same hole at the same hol
	C) 0.50 215 5 10. A system delivers (gives) 225 J of heat to the surroundings while delivering 645 J of work. Calculate the change in the internal energy, ΔE, of the system.
	A) -420 J B) 420 J C) 870 J D) - 870 J E) -225 J

Q.	11. Ethylene glycol, used as a coolant in au 2.42 J/(g·K). Calculate q (heat) when 35°C.	tomotive engines, has a specific heat capacity of .65 kg of ethylene glycol is cooled from 132°C to
٥.		-415151
•	A) -1900 kJ (B) -420 kJ C) -99 kJ	D) -0.42 kJ E) $-4.2 \times 10^{-6} \text{ kJ}$
= DHP69 -	12. Calculate the ΔH°_{rxn} for the following DH c_{ext} : SiO ₂ (s) + 4HCl(g) \rightarrow SiCl ₄ (g) -369.2	reaction: $(-1780 - 4) + 2H_2O(g)$ $(-1780 - 4)$
	Given the following data: ΔH°_{f} [Si kJ/mol; ΔH°_{f} [HCl(g)] = -92.3 kJ/m	$O_2(s)$] = -910.9 kJ/mol; ΔH^o_f [SiCl ₄ (g)] = -657.0 nol; ΔH^o_f [H ₂ O (g)] = -241.8 kJ/mol
	A) -139.5 kJ B) -137.4 kJ C	C) -104.4 kJ D) 104.4 kJ E) 139.5 kJ
	13. An electron in the $n = 6$ level emits a pleasing place of the electron move? (13) An electron in the $n = 6$ level emits a pleasing place of the electron move? (14) $n = 1$ B) $n = 5$ C) $n = 3$	noton with a wavelength of 410.2 nm. Fo what D) $n = 4$ (E) $n = 2$
f=hc	14. If the energy of a photon is 1.32×10^{-18}	
hc 7	$1.50 \times 10^{-7} \text{nm}$	
E 34	$(8 \text{ B}) 1.99 \times 10^{24} \text{ nm}$	E) None of these choices is correct.
.626xw x3	$\begin{array}{ll} \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Electromagnetic radiation of 500 nm wavel	ength lies in what region of the spectrum?
\		
	, sand to the sand	riolet D) X-ray E) γ-ray
16.	Use Hess's Law to calculate the enthalpy ch	ange for the reaction
	$WO_3(s) + 3H_2(g) \rightarrow W(s) + 3$ from the following data:	$^{3}\mathrm{H}_{2}\mathrm{O}(g)$
•	$2W(s) + 3O_2(g) \rightarrow 2WO_3(s)$ $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$	
	(A) 125.9 kJ B) 252.9 kJ C) 364.9 kJ	D) 1207.6 kJ E) None of these choices is correct.
(5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{10000} = \frac{1685.4 + 1}{10000} = \frac{1685.4 + 1}{10000} = \frac{1685.4 + 1}{10000} = \frac{1}{10000} = \frac{1}{100000} = \frac{1}{100000} = \frac{1}{100000} = \frac{1}{10000000000000000000000000000000000$
	$3 + \frac{3}{2} \theta_2 \leftarrow W0_3$ $3 + 12 + \frac{3}{2} \phi_2 \longrightarrow 3 + 120$	None of these choices is correct. $ \begin{array}{cccccccccccccccccccccccccccccccccc$
-	· · · · · · · · · · · · · · · · · · ·	DH = 842.7 - 716.76
		·

17. The sha	pe of an atomic orbital is associated	with	e e e	
A)	the principal quantum number (n)	,		
(B)	the angular momentum quantum r	number (l').	
(C)	the magnetic quantum number (171	<i>i</i>).		
D) E)	the principal quntum number and none of the above	magnetic	quantum number.	
. 12)	none of the above			
18. Use the	Rydberg equation to calculate the f	reamency	of a nhotan absorbed who	un 41a a
hydr hydr	rogen atom undergoes a transition fr	om $n_1 = 2$	to $n_2 = 4$ ($R = 1.096776 \lor$	10 ⁷ m ⁻¹)
			1. (10 1.050) 10 x	10 111)
A)	$2.056 \times 10^6 \mathrm{s}^{-1}$		$8.226 \times 10^{14} \text{ s}^{-1}$	
B)	$2.742 \times 10^{6} \text{s}^{-1}$ $6.165 \times 10^{14} \text{s}^{-1}$	E) .	$> 10^{15} \mathrm{s}^{-1}$	
	6.165 × 10 ¹⁴ s ⁻¹		2 2 4 / 11 4	
19. Which o	of the following is a correct set of qu	0 to 1 to 1 to 1 to 1		
orbital?	' who following is a correst set of qu	amum nu	moers for an electron in a	P atomic
			n	=1
(A)	$n = 3, l = 1, m_l = -1$ $n = 3, l = 0, m_l = +1$	D) /	$n=3, l=3, m_l=\pm 1$	\
B)	$n=3, l=0, m_l=+1$	E)	$n = 3, l = 3, m_l = +1$ $n = 3, l = 1, m_l = -2$	
()	$n=3, l=2, m_l=3$			
20. Use the groun	Bohr equation to calculate the energial state. A) $2.78 \times 10^{-18} \text{ J}$ B) $4.59 \times 10^{17} \text{ J}$ C) $4.36 \times 10^{-18} \text{ J}$	gy needed D) Zero : E) 1.09 >	6 E = =	2.18 km 18 -2.18 km 18
	C) 4.30x 10 × 3			15)2
\				G ²
21. Sand is c	converted to pure silicon			
SiCl ₄	$g(g) + 2Mg(s) \rightarrow 2MgCl_2(s) + Si(s)$	$\Delta H = -\epsilon$	525.6 kJ	
What	is the enthalpy change when 25.0 nemental silicon (Si(s))?	nol of silid	con tetrachloride (SiCl ₄) is	converted
TO TO	-25.0 kJ	D)	$-3.13 \times 10^4 \text{ kJ}$	٠,
B)	-7820 kJ		None of these choices is co	orrect.
\ /	$-1.56 \times 10^4 \mathrm{kJ}$			
Sicly	+2Mg -> 2MgCl2 -	+Si +	625.6 KJ	
Sicly	GOOD LU	•		
01019	GOOD LU	CK		
L5		CEL		
TO D	H=-9 #of notes ofsi			
	stot roles ofsi	•		


Birzeit University---Chemistry Department

Chem. 141

2st Hr. Exam

2 st Hr. Exam	Chem. 141	2	st. Sem.2013/2014 17/12/2013
Time: 65 Minutes	Instructors: Dr. Zak Dr. Abd Dr. Maz	i Hassan (Sections ullatif Abuhijleh (zen Hamed (Sectio	Sections 3 and 4)
Student name Line Hi	MAW!	Student No.	1131197
		Student Section)]]
(Gas constant, R=0.0821 atr Speed of Light, c= 3.00 x 10 2.18x10 ⁻¹⁸ J)	n.L/mol.K; Blank's consta s m/s; Rydberg constant,	nt, h = 6.626 x 10 ⁻⁷ R = 1.096776x10 ⁷	.34 J·s or kg·m²/s ; m ⁻¹ ; Bohr constant=
Circle the correct answe	_		
A sample of carbon d will the gas pressure t	loxide gas at 125°C and 248 be if the volume is increased	torr occupies a volto 321 L at 125°C	lume of 275 L. What
A) 212 torr B) 2	89 torr C) 356 torr	D) 441 torr	E) 359 torr
A) 3.69 L B) 11.6 L C) 20.2 L D) 63.5 L E) It is not possible	at 65.5°C and 524 torr has a is (-15.8°C) and its pressure.	re is 524 torr?	18
3. A 250.0-mL sample of mass of ammonia is in A) 0.0787 g B) 5	ammonia, NH ₃ (g), exerts a the container? 9.8 g C) 8.04 g		E 6.180 g
4. A flask with a volume of 1.00 atm. What is the m	f 3.16 L contains 9.33 gram nolar mass of the gas?	ns of an unknown g	as at 32.0°C and
A) 7.76 g/mol B) 6	6.1 g/mol (C) 74.0 g/mol	D) 81.4 g/moi	E) 144 g/mol

The state of the s
5. Which of the following gases effuses most rapidly? 23 A) nitrogen N ₂ 32 B) oxygen O ₂ 36.5 C) hydrogen chloride HCl 23 E) earbon monoxide GO
6. Small quantities of hydrogen can be prepared by the addition of hydrochloric acid to zinc. A sample of 195 mL of hydrogen was collected over water at 25°C and 753 torr. What mass of hydrogen was collected? ($P_{\text{water}} = 24 \text{ torr at } 25^{\circ}\text{C}$)
A) 0.00765 g B) 0.0154 g C) 0.0159 g D) 0.0164 g E) 0.159 g
7. A gas mixture, with a total pressure of 300. torr, consists of equal masses of Ne (atomic weight 20.) and Ar (atomic weight 40.). What is the partial pressure of Ar, in torr? (A) 100. torr
D) 200. torr B) 75 torr E) None of these choices is correct.
8. A 20.0 L container holds 15.3 mol of Cl_2 gas at 227°C. Calculate the pressure, assuming real gas behavior. The van der Waals constants for Cl_2 are $a = 6.49$ atm·L ² /mol ² and $b = 0.0562$ L/mol.
Real gas equation: $(P+n^2a/V^2)(V-nb) = nRT$
A) 31.4 atm B) 29.0 atm C) 46.9 D) 14.5 atm E) 29.0 torr
9. How much faster will hydrogen effuse than oxygen through the same hole at the same temperature?
A) 0.25 B) 2.83 C) 0.50
10. A system delivers (gives) 225 J of heat to the surroundings while delivering 645 J of work. Calculate the change in the internal energy, ΔE , of the system.
A) -420 J B) 420 J C) 870 J D - 870 J E) -225 J

- 17. The shape of an atomic orbital is associated with the principal quantum number (n).

 the angular momentum quantum number (l).

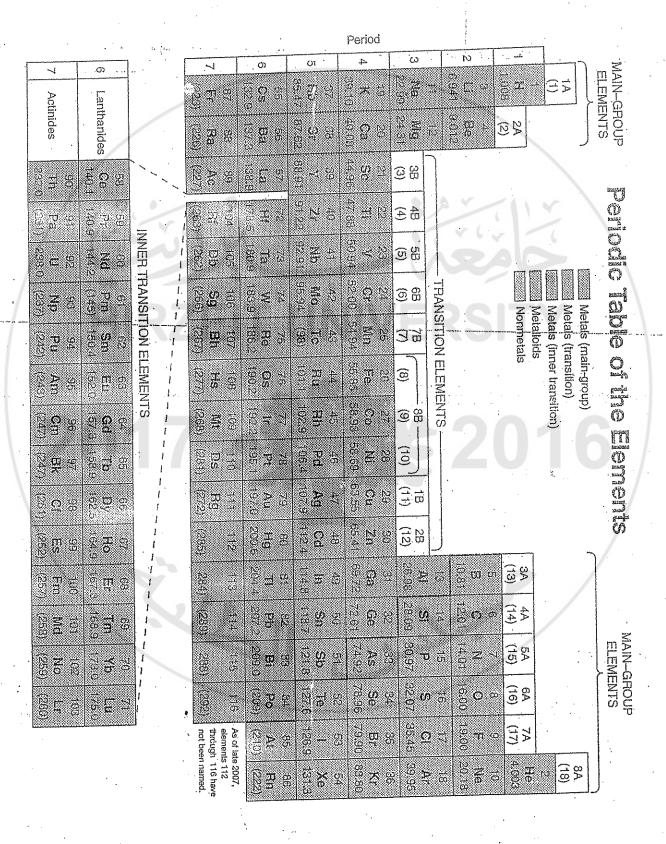
 the magnetic quantum number (m_l).

 the principal quntum number and magnetic quantum number.

 E) none of the above
- 18. Use the Rydberg equation to calculate the frequency of a photon absorbed when the hydrogen atom undergoes a transition from $n_1 = 2$ to $n_2 = 4$. $(R = 1.0967.76 \times 10^7 \text{ m}^{-1})$
 - A) $2.056 \times 10^{6} \text{ s}^{-1}$ B) $2.742 \times 10^{7} \text{ s}^{-1}$ C) $6.165 \times 10^{14} \text{ s}^{-1}$

- D) $8.226 \times 10^{14} \text{ s}^{-1}$ E) $> 10^{15} \text{ s}^{-1}$
- 19. Which of the following is a correct set of quantum numbers for an electron in a 3P atomic orbital?
 - (A) $n = 3, l = 1, m_l = -1$ B) $n = 3, l = 0, m_l = +1$ (C) $n = 3, l = 2, m_l = 3$
- D) $n = 3, l = 3, m_l = +1$ E) $n = 3, l = 1, m_l = -2$
- 20. Use the Bohr equation to calculate the energy needed to ionize a hydrogen atom from its ground state.
 - $\begin{array}{c}
 \text{(A)} 2.18 \times 10^{-18} \text{ J} \\
 \text{B)} 4.59 \times 10^{17} \text{ J} \\
 \text{C)} 4.36 \times 10^{-18} \text{ J}
 \end{array}$
- D) Zero J E) 1.09 × 10⁻¹⁸ J
- 21. Sand is converted to pure silicon

$$SiCl_4(g) + 2Mg(s) \rightarrow 2MgCl_2(s) + Si(s)$$
 $\Delta H = -625.6 \text{ kJ}$


What is the enthalpy change when 25.0 mol of silicon tetrachloride (SiCl₄) is converted to elemental silicon (Si(s))?

A) -25.0 kJ

300D LUCK

A) -25.0 kJB) -7820 kJ $-1.56 \times 10^4 \text{ kJ}$

- D) $-3.13 \times 10^4 \text{ kJ}$
- E) None of these choices is correct.

(15)

Birzeit University---Chemistry Department

2nd Hr. Exam

Chem. 141

1st. Sem.2014/2015 30/11/2014

Time: 80 Minutes

<u>Instructors:</u> Dr.Adil Alhidmeh(section 1)

Mr.Adi Qamhieh(section 2)

Dr. Zaki Hassan (Section 3)

Dr. Abdullatif Abuhijleh (Sections 4)

Student name Shoroug Och

Student No. MOSEY

Student Section -----

Constants : (gas constant R= 0.0821 atm.L/mol.K , Plank's constant (h)= 6.626×10^{-34} J·s , speed of light =3.00 x 10^8 m/s)

Circle the correct answer

1. Use Hess's Law to calculate the enthalpy change for the reaction:

 $WO_3(s) + 3H_2(g) \rightarrow W(s) + 3H_2O(g)$

from the following data:

 $2W(s) + 3O_2(g) \rightarrow 2WO_3(s)$

 $\Delta H = -1685.4 \text{ kJ}$

 $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$

 $\Delta H = -477.84 \text{ kJ}$

A) 1207.6 kJ

B 125.9 kJ

C) 252.9 kJ

D) 364.9 kJ

E) None of these choices is correct

2. Complete this sentence: Atoms emit visible and ultraviolet light -----

A as electrons jump from higher energy levels to lower levels.

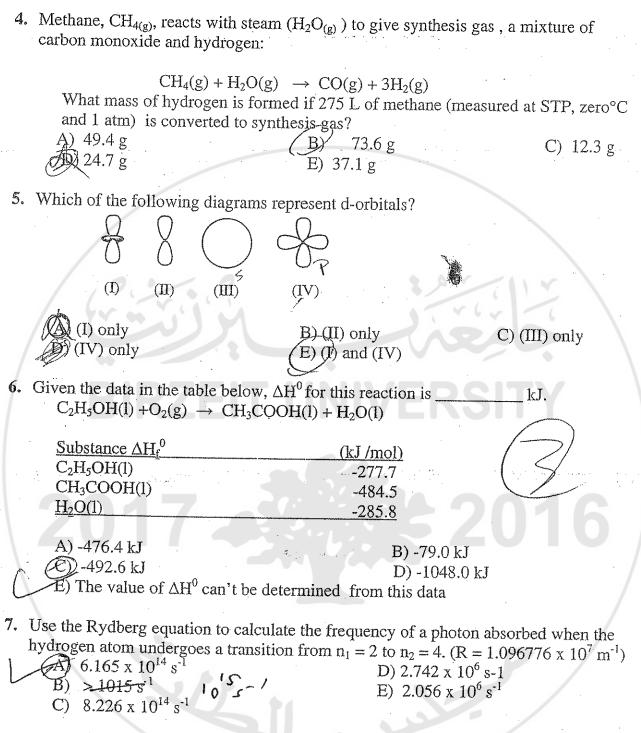
as they are heated and the solid melts to form a liquid.

C. as the electrons move about the atom within an orbit.

D. as electrons jump from lower energy levels to higher levels.

E. as the atoms condense from a gas to a liquid.

3. Which of the following is a correct set of quantum numbers for an electron in a 3p atomic orbital?


$$(A)$$
 $n = 3, 1 = 3, m_1 = 3$

C)
$$n = 3, 1 = 1, m_1 = -1$$

$$(n = 4, 1 = 3, m_1 = 0)$$

B)
$$n = 3, 1 = 0, m_1 = +1$$

$$n = 3, 1 = 2, m_1 = +2$$

8. A sample container of carbon monoxide occupies a volume of 435 mL at a pressure of 785 torr and a temperature of 298 K. What would its temperature be if the volume were changed to 265 mL at a pressure of 785 torr?

182 K

A) 489 K D) 298 K

- B) 538 K
- E) 387 K

9. What is the pressure in a 7.50 L 0.33 mol of oxygen? The tempe	iter flask if 0.15 mol of carbon	n dioxide is added to
0.33 mol of oxygen? The tempe A) 3.96 atm D) 0.592 atm	B) 4.80 atm	C) 0.252 atm
710. If helium diffuses through a porrate (in moles per minute) would A) 8.0	doxygen gas diffuse?	es per minute, at what
D) 0.50	(B) 1.41 E) 2.0	Ç) 0.20
11. When the electron in a hydrogen wavelength of is en A) 93.8nm D) 434nm	n atom moves from n = 6 to n = nitted. B) 487nm E) 657nm	= 2, light with a
 12. Calcium hydroxide, which reacts used by the ancient Romans as moreocess is Ca(OH)₂(s) + CO₂(g) → Catwhat is the enthalpy change in the context of the con	$CO_3(s) + H_2O(g)$ $\Delta H = 0$ If 3.8 mol of calcium carbonate $D) -69 \text{ kJ}$	reaction for this 769.1 kJ e is formed?
C) + 260 kJ and endothermic	E) -18 kJ	and endothermic
13. Calculate q (heat) when 28.6 g of A) 1.61x 10 ³ kJ D) 0.385 kJ	water is cooled from 78.3°C (B) - 9.37 kJ E) - 6.74 kJ	to 22.0 °C C) - 1.61 kJ
14. A system absorbs 21.6 kJ of heat surroundings. If the initial internation A) 82.8 kJ 89.7 kJ	while performing 6.9 kJ of world energy, E, is 61.2 kJ, what is B) 32.7 kJ (E) 75.9 kJ	ork on the s the final value of E? C) 46.5 kJ
15. A sample of methane gas, CH ₄ (g), torr and a temperature of 29.3°C. torr and the same volume (60.3 L	VV 11211 M/(MILLO POD 1PO Popular a control	at a pressure of 469 e at a pressure of 243
A) 310.6°C D) 15.2°C	B) 15.5°C (E)-116.5°C	C) 57.7°C

16. Benzene has specific her a 225-g sample of be	at capacity = 1.74 J/g•K. If 16.7 kJ of energy is absorbed by enzene at 20.0°C, what is its final temperature?
A) 62:7°C	B) 36.7 °C
	Æ) None of these choices is correct.
17. What is the density of ca A) 1.74 g/L D) 0.279 g/L	rbon dioxide (CO ₂) gas at -25.2°C and 0.98 atm? B) 2.21 g/L C) 0.232 g/L E) 0.994 g/L
18. A 0.1727 g of an unknown Is the gas likely to be me	wn gas in 125-mL flask has a pressure = 736 torr at 20.0°C. thane, CH ₄ , nitrogen, N ₂ , oxygen, O ₂ , neon, Ne, or argon,
$ \begin{array}{c} A \\ N_2 \end{array} $	3) Ar $\stackrel{\text{C}}{\sim}$ CH ₄ $\stackrel{\text{D}}{\sim}$ D) Ne $\stackrel{\text{E}}{\sim}$ $\stackrel{\text{C}}{\sim}$
1014 S ?	f electromagnetic radiation which has a frequency of $3.818 \times 10^{10} \text{ cm/sec}$, $nm=10^{-7} \text{ cm}$) (B) $7.858 \times 10^{-7} \text{ nm}$ (D) 1145 nm
20. The value of ΔH ⁰ for the CH ₃ OH (l) How many kJ of heat A) 8.3 kJ D) 62.0 kJ	reaction below is +128.1 kJ: \rightarrow CQ(g) + 2H ₂ (g) are consumed (absorbed) when 5.75 g of CQ(g) is formed? B) 23.3 kJ E) 162 kJ
21. What is the energy of a ph A. 1.86 x 10 ⁻²⁴ J C2. 18x10 ⁻¹⁸ J E. 2.80 x 10 ⁹ s ⁻¹	noton of radiation which has a wavelength of 10.7 cm? B)3.21 x 10 ¹⁰ J D. 3.00 x 10 ⁸ m
*	Good Luck Promise Marianos Cood Cood Cood Cood Cood Cood Cood Co

CHEMISTRY DEPARTMENT

SECOND HOUR EXAM

Tuesday, Dec. 1st, 2015

First Semester 2015/2016

Time; 90 min

Student Name: Saja Omar Mesteh.

Student No. 11511-74.

Circle your discussion lecture

Dr. Hani Awad (Sec.1) (R 11:00-11:50)

Miss. Salam Maloul (Sec.2) (T 13:00 - 13:50)

(Dr. Adel Hidmi) (Sec.3) (S 13:00 - 13:50)

Dr. Ismail Badran (Sec.4) (R 09:00 - 09:50)

Dr. Mohammad Qneibi (Sec.5) (S 8:00-8:50)

Student Name:	Sàja	Omar	Mes)	eh.		
•						

Fill the correct answer by putting a cross in the box

T/F Questions	True	False
1	المسهة	
2		
. 3		
4		
5		
6	4	
7 :		Δ.
8		
9		
10		

MC Question	A	В	С	D	E
1	·				
2					
3					
4					
5	^_				
6		۷	•		
7					
8					
9		-			
10					
11					
12			,		
13					
14					
15					

	A. Part One - True/False Questions
1.	F Water is a polar molecule that can dissolve many covalent as well as ionic compounds.
2.	In an acid-base (neutralization) reaction the indicator will change color at the end point.
3.	At constant pressure, the density of the gas is directly proportional to its molecular mass and inversely proportional to its temperature.
4.	In an oxidation-reduction (redox) reaction, the oxidizing agent undergoes loss of electrons.
5.	Ammonia (NH ₃) effuses faster than helium gas (He)
6.	The average kinetic energy of gas molecules is proportional to the absolute temperature.
7.	If a system does work (w) on the surrounding, then work would be negative
8.	The standard heat (enthalpy) of formation of nitrogen gas, N ₂ (g), is zero.
9.	Bohr's model of the atom worked beautifully for all atoms in the periodic table
10	Heisenberg's uncertainty principle allows us to locate both the position and the speed of subatomic particles, like electrons.

B. Multiple Choice Questions

Select the <u>net ionic equation</u> for the reaction between sodium chloride and mercury(I) nitrate.

 $2NaCl(aq) + Hg_2(NO_3)_2(aq) \rightarrow NaNO_3(aq) + Hg_2Cl_2(s)$

- A) $Na^{+}(aq) + NO_{3}(aq) \rightarrow NaNO_{3}(aq)$
- $(3) \qquad \operatorname{Hg}_{2}^{2+}(aq) + 2\operatorname{Cl}(aq) \to \operatorname{Hg}_{2}\operatorname{Cl}_{2}(s)$
- C) $\operatorname{NaCl}(aq) \to \operatorname{Na}^+(aq) + \operatorname{Cl}^-(aq)$
- (D) $\text{Hg}_2(NO_3)_2(aq) \rightarrow \text{Hg}_2^{2^+}(aq) + 2NO_3(aq)$
- E) $\text{Hg}_2^{2+}(aq) \rightarrow \text{Hg}_2(s)$

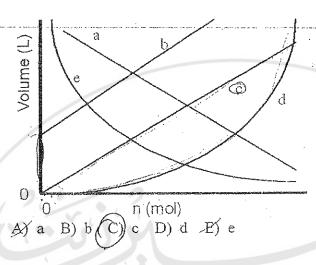
2. A 0.00100 mol sample of Ca(OH)₂ requires 25.00 mL of aqueous HCl for neutralization according to the reaction below. What is the concentration of the HCl?

$$Ca(OH)_2(s) + 2HCl(aq) \rightarrow CaCl_2(aq) \mathcal{H}_2O(l)$$

A) 0.0200 M

D) $4.00 \times 10^{-5} M$

B) 0.0400 M


E) None of these choices is correct.

- (C) 0.0800 M
- 3. Identify the oxidizing agent in the following redox reaction.

$$\operatorname{Hg}^{(2)}(aq) + \operatorname{Cu}(s) \to \operatorname{Cu}^{2+}(aq) + \operatorname{Hg}(l)$$

A) $Hg^{2+}(aq)$ B) Cu(s) C) $Cu^{2+}(aq)$ D) Hg(l) E) $Hg^{2+}(aq)$ and $Cu^{2+}(aq)$

Which of the lines on the figure below is the best representation of the relationship between the volume and the number of moles of a gas, measured at constant temperature and pressure?

A sample of propane has a volume of 35.3 L at 315 K and 922 torr. What is its volume at STP? [

A) 25.2 L B) 30.6 L C) 33.6 L D 37.1 L E) 49.2 L

6. A gas mixture, with a total pressure of 300. torr, consists of equal masses of Ne (atomic weight 20.) and Ar (atomic weight 40.). What is the partial pressure of Ar, in torr?

- A) 75 torr
- B) 100. Torr
- C) 150. torr
- D) 200. torr
- E) None of these choices is correct.

Magnesium metal (0.100 mol) and a volume of aqueous hydrochloric acid that contains 0.500 mol of HCl are combined and react to completion. How many liters of hydrogen gas, measured at STP, are produced?

 $Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$

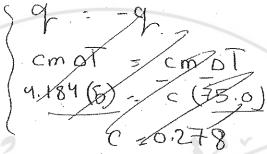
 \bigcirc 2.24 L of H₂

D) 11.2 L of H₂

B) 4.48 L of H₂

E) 22.4 L of H₂

- C) 5.60 L of H_2
- 8. The ΔE of a system that releases 12.4 J of heat and does 4.2 J of work on the surroundings is ______J.
 - A) 16.6.
 - B) 12.4
 - C) 4.2
 - (D) -16.6
 - E) -8.2


SIRZEIT UNIVERSITY

- 7. The specific heat of liquid bromine is 0.226 J/g-K. How much heat (J) is required to raise the temperature of 10.0 mL of bromine from 25.00°C to 27.30°C? The density of liquid bromine: 3.12 g/mL.
 - A) 5.20
- (B) 16.2
 - C) 300
 - D) 32.4
 - E) 10.4

- 10. Given the following reactions -
- $Fe_2O_3(s) + 3CO(s) \rightarrow 2Fe(s) + 3CO_2(g)$
- $\Delta H = -28.0 \text{ kJ}$
- $3Fe(s) + 4CO_2(s) \rightarrow 4CO(g) + Fe_3O_4(s)$
- $\Delta H = +12.5 \text{ kJ}$

What is the enthalpy of the reaction of Fe₂O₃ with CO in kJ?

- $3Fe_2O_3(s) + CO(g) \rightarrow CO_2(g) + 2Fe_3O_4(s)$
- A) -59.0 B) 40.5
- C) -15.5
- D) -109
- E) + 109

- 11. A piece of copper metal is initially at 100.0°C. It is dropped into a coffee cup calorimeter containing 50.0 g of water at a temperature of 20.0°C. After stirring, the final temperature of both copper and water is 25.0°C. Assuming no heat losses, and that the specific heat (capacity) of water is 4.18 J/(g·K), what is the heat capacity of the copper in J/K?
 - 2.79 J/K
 - 3.33 J/K
 - 13.9 J/K

None of these choices is correct.

- 12. The wavelength of a photon that has an energy of 5.25×10 -19J is
- 3.79×10^{-7} B) 2.64×10^{6}
- C) 2.38×10^{23}
- D) 4.21×10^{-24}
- E) 3.79×10^7
- 13. Calculate the energy (J) change associated with an electron transition from n = 2 to n = 5 in a Bohr hydrogen atom (Hint, use the formula provided at the end of the exam)
- A) 6.5×10^{-19}
- B) 5.5×10^{-19}
- C) 8.7×10^{-20}
- \bigcirc 4.6 × 10⁻¹⁹
 - E) 5.8×10^{-53}

Bonus Questions

n = 5

14. Which of the following is a correct set of quantum numbers for an electron in a 5f orbital?

(A)
$$n = 5, l = 3, m_l = +1$$

B) $n = 5, l = 2, m_l = +3$
E) $n = 5, l = 4, m_l = 3$

C)
$$n = 4, l = 3, m_l = 0$$

- 15. From your study of atomic orbitals, circle the INCORRECT statement
 - (A) A (2s) orbital can hold a maximum of two electrons

EUG.

- (B) The quantum number (I) is called the angular momentum quantum number.
- \bigcirc The magmatic quantum number (m_L) cannot have negative values.
- (D) The radial probability distribution (sum of all ψ^2) for any atomic orbital is zero at the nucleus (r = 0)
- (E) 3s and 3p orbitals in the hydrogen atom are degenerate (have the same energy)

2017 3 2016

The Periodic Table of the Elements

	8.7 F1: F3.neclina (223)	.55 Cs Cojum 132,90548	37 Rb Rubillian 85:4678	19 5 800 74.	11 Na sotum 22.989770	3 Littlema 6.941	Hydroger 100794
	88 Ra Radium (220)	56 Ba 137.327	38 Sr Streamine 87.62	20 Ca	12 Mg Maganesian 24,3050	4 Be Boylinan 9,012182	,
	89 A.c. Activism (227)	57 La Landlehuri Landlehuri	39 X X X X 39	21 Sc Scandium 44.955910			
	104 R f Rullerflextion (261)	72. HI Halmuu 178.49	40 Zx Zircumm 91.224	22. Titasian 47,867			
\$8 Ce Carlum 140.116 90 Th	105 Db Dubnism (202)	73. Ta Tanadon 180.9479	NESO06.38	23. V-agadajan 50.9415			
59 Pr 140,90785 91 91 Paredinion 231,01888	Sg Subwighter (203)	74 W Tungston 183.84	42 Mo Mohaleum 95.94	24 O Geometri 51,9961	Y		
60 Nd Nathymen 1.14.24 92 U Chapter 2.18.0289	107 Bh (262)	7.5 R.e Rhenism 186,207	43 Tc Technique (98)	25 M11 Ninganese, 54,938049			
61 Pum Promedium (145) 93 Np Neptosition (237)	1,08 Hs (265)	7.6 Os Osinium 190,223	Run Run Runcinina 1101.07	26 Fe 35.845			
62 Sm Samuniam 150.36 94 Pti Ptinonimin (244)	109 Mt Maincrition (266)		4,5 R.h Rhodinin 102.90550	27 Co			
63 Eu Eudyinn 181,964 95 Am Amarichun- (243)	110	78 Pt Ptsimm 195.078	2 ****	120	A manufacturity or the state of		
64. Gd (**25.5) 96 Cm (**247)	111	7.9 Au . a _{nta} . 196.96655	47 Ag Silver 107.8682	29 Cu 63.546		01	
65 Tb 158.92531 97 Bk Betterlinn (247)	1	Hg 200.59	.1	1			
Dy Dyspinsion 162:50 98 Cf Californium (251)	ننځ دسم	113833 113863 1178633	114.838	Ga Ga 69.723	13 A) A)mession 26.981538	<u>2</u>	
67 H0 11000000 164.93032 99 ES Einsteininik (252)	114	L		32 Ge Georganium 72,61	SI Silvani 28.0855	6 C Catton 12.0107	
68 Er Er Ethius 167:26 100 Fm Gernium (257)		Bi Bi ^{Uismath} 208,98038	Sb 221.760	33 As Assais 74.92160	15 Phasinaire 30.973761	7 N Nicogen 14:00674	
69 Tim Tholiana 168.93421 101 Md Majnishevaum (258)		Po Po Polarium (209)		Schenium 78.96	2000 P	E -	
70 Yb Ybothum 173,04 102 No Nahedium (259)		At At (210)	126.90447	Br Brownine 79,904	(ξ) (Σ) (Σ) (Σ) (Σ) (Σ) (Σ) (Σ) (Σ) (Σ) (Σ	9 Flooring 18.9984(032 2)	
71 Lu 174.967 103 Lr Laventinn (262)		Ruh (222)	X X X X	Kr.	18 39,948	Ne.	He tog

Physical Constants and Important Equations

1 cal = 4.1868 J

1 atm = 760 mmHg

1 atm = 101325 pa

 $h = 6.626 \times 10^{-34} \text{ m}^2 \text{ kg/s},$

c = 299792458 m/s

 $R = 0.08314 \text{ L bar K}^{-1} \text{ mol}^{-1} = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

 $N_a = 6.022 \times 10^{23} \text{ mol}^{-1}$

PV = nRT RZEIT UNIVERSITY

$$c = \lambda v$$

$$E = nhv$$

$$E = \frac{h}{mu}$$

$$E = -2.18 \times 10^{-18} J \left(\frac{1}{n_2^2} - \frac{1}{n_1^2} \right)$$

BirZeit University Chemistry Department Chemistry 143 + 141

Second Hour Exam 80 min. 2nd Sem. 2015/2016 17/5/2016

Discussion Instructor Name: Sack Musiok Discussion Section: TUBS ODV

				eaction (in kJ) for	
OÌ	tungsten carbide		elements.	$W_{(s)} + C_{(graphite)} W_{(s)}$	<u>(s)</u>
	$2W_{(s)} + 3O_{2(g)} =$			$\Delta H = -1680.6 \text{ kJ}$	7
	$C_{\text{(graphite)}} + O_{2(g)}$			$\Delta H = -393.5 \text{ kJ}$	7
		$\rightarrow 2WO_{3(s)} + 2CO$	2(0)	$\Delta H = -2391 \text{ kJ}$	
	706	<u> </u>	<u> </u>	,	J
A) -38	30.0 (B	38.0	C) -3.80	D) +380	E) +380.0
		in which of the ies symbolized M		processes constitu	tes the electron
A	$M(g) + e \rightarrow M$ $M(s) \rightarrow M(g) + e \rightarrow M$	(g) e)		$M(s) + e \rightarrow M(s)$ $M(g) \rightarrow M(g)$	
TA TL	eachema of the a	ee aberaarda latide	non the co	antum number	
) m_l	ibital depends d			D) m _s
2.5) ""[Town I	ر)		
11. T	he following has	the largest atomic	: rad <u>i</u> us:	Cole.	s hite
A	.)Ag	B) Cl	(0	Rb	D) Mn
12. W	Thich of the follow	ving elements has	the larges	t s <u>econd ionizatio</u> i	n energy (IE2)?
A) 1	Na	B) F	Chi	D) O	E) B
13. W	Thich one of the f	allowing statemer	rts about o	rbital energies is <u>I</u>	NCORRECT?
		-		ıclear charge Zinci	The state of the s
				ns is explained in to	
I	penetration effect.				
000	<u>[n the hydrogen at</u> quantum number <i>n</i>	The state of the s	an orbital d	epends only on the	value of the
vD)	Inner electrons sh	teld outer electrons	s more effec	ctively than do elec	trons in the same
	arbital.			07/23	
	many-electron	ntoms the energy o	f an orbital	depends on both n	and L
14 1	Janais Aldala	13		La Callandia	accivia iamication
*	energies/ in kJ/m		mich has i	he following succ	3621
	IE ₁ , 1314	IE ₂ , 3 <u>389</u>	IE ₃ , 529	8 IE ₄ , 7 <u>47</u>	
	IE ₅ , 10992	IÉ), 13329	(JE ₇ , 713	·	
		121	S 16 000	76	• /)
	A)Ne	THE TOP OF	7		(C) Li
	D) B	E) N	Ione of thes	se choices is correct	t.

15. A reason why fluorine, F, ha		an oxygen, O, is	that:			
			en en en en 1900 en			
B) Q has larger number of neutro			,			
Chas larger effective nuclear						
D) F has smaller effective nuclea			•			
E) Both have same number of ele	ctrons but F has lar	ger number of prote	ons			
16. There are several possible a						
electrons in a 3d subshell. T	o determine the	correct distribution	on for the ground			
state we are guided by						
A) the uncertainly principle	△	Rithe Aufl	pan principle			
the wave particle duality		D) Hund's				
the Pauli Principle	, brittorbio	7 ATTOMICS	-13.4.4.4.C			
of the raun rincipie						
17. The number of unpaired elec	strone in the CT ic	รา ซื้อเจ				
a 1. a are remissable of margicial or cros	truin the that to ev	ER RIF				
A) 0	C) 2	D) 3	E) 4			
, ,	0) 2	2,3	2) !			
18. Which of the following arra energies is correct?	ngements from 1	owest to highest	in first ionization			
energies is correct:	UNIV					
(A) He < Ne < N < Be < Li		B) Li < Be < N < 1	Ve < He			
C) He $<$ Li $<$ Be $<$ N $<$ Ne	-	D) Be < Li < N < I				
oran non - letemnon						
19. Covalent bonds formed by the		trons are most li	kelv to be formed			
between			A Committee of the Comm			
The state of the s	^ و `					
AX an atom with a low electron	onegativity and an	atom with a high	ionization energy			
	A) an atom with a low electronegativity and an atom with a high ionization energy B) an atom with a low electronegativity and an atom with a high ionization energy					
	C) an atom with a high electron affinity and an atom with a low ionization energy					
(D) two atoms with low electron affinities and low ionization energies						
E) two atoms with high electron affinities and high ionization energies						
	محسیری کندب					
20. A "shell" consists of all orbi	tals having					
A) the same values of n and l						
B) the same value of n.						
(2) the same values of all four of	quantum numbers.	· /10				
D) the same values of n, l, and	$\mathbf{m}l$	(1	/))			
21. Which of the following equati	ione docaribae the	lattice energy of	a substance?			
71. WHICH OF THE ROHOWING EQUAL	THE COULLDCON CHUI	TENERICE CHICKEL OF	i Juneous i			
A) $M^+(g) + X(s) \rightarrow MX(g) +$	enerav	B) MX(s) +energy	$\rightarrow M^{+}(\alpha) + X^{-}(\alpha)$			
C) $M(g) + A(g) \rightarrow MA(g) + C$	مِينَ مِينَ الْمُعَالِمِينَ الْمُعَالِمِينَ الْمُعَالِمِينَ الْمُعَالِمِينَ الْمُعَالِمِينَ الْمُعَالِمِينَ ال	D) $X(o) + energy$	$\rightarrow M^{+}(g) + X(g) ,$ $\rightarrow X(g) + e^{-}$			
O INTO I OTICIEN THE (E)	· ,	~ / * X (8)	1 1 5 1 1 V			

lithium C) potassium D) sodium E) rubidium A) cesium 23. Which of the following has the bonds correctly arranged in order of increasing polarity? A)Mg-F < Be-F < N-F < O-FB) N-F < Be-F < Mg-F < O-F(C)D-F < N-F < Be-F < Mg-F D) Be-F< Mg-F< N-F< O-F E) O-F < Be-F < Mg-F < N-F24. Acetone can be easily converted to isopropyl alcohol by addition of hydrogen to the carbon-oxygen double bond. Calculate the enthalpy of reaction using the bond energies given. $-CH_3(g)$ C-O H-H O-H C-C Bond: C=0 Bond energy(kJ/mol): 745 436 464 347 -AUS+2(347)+6(414)+436 2484 4359 B) -48 kJ +366 kJ E) -366 kJ Based on electronegativity trends in the periodic table, predict which of the 25. following compounds will have the greatest % ionic character in its bonds. D) RhE E) HCl A) H₂O B) LiI Arrange the following bonds in order of increasing bond strength.

C-Br < C-I < C-Cl < C-F

C-L < C-Br < C-CL < C-F $C-I < \hat{C}-Br < C-F < C-CL$

22. The chloride of which of the following metals should have the greatest lattice

- energy?

C-F < C-CI < C-Br < C-I

None of these orders is correct.