

Because Group III Compounds are Electrophiles, they react with Nucleophiles

		Alkyl Ha	lides	
	alkyl halides			
	R−−F an alkyl fluoride	R—Cl an alkyl chloride	R—Br an alkyl bromide	R−−I an alkyl iodide
	This chapter disc <mark>halides</mark> .	usses the <mark>subs</mark>	titution reactions	of alkyl
	Alkyl halides have	e good leaving	groups.	
				5
© 201	6 Pearson Education, Inc.			

Summary of the Experimental Evidence for the Mechanism of an S_N2 Reaction

- 1. The rate of the reaction is dependent on the concentration of both the alkyl halide and the nucleophile.
- 1. The relative rate of the reaction is:

© 2016 Pearson Education, Inc

primary alkyl halide > secondary alkyl halide > tertiary alkyl halide.

3. The configuration of the product is inverted compared to the configuration of the reacting chiral alkyl halide.

Why do Methyl Halides react the fastest and Tertiary the Slowest?

Why do Methyl Halides react the fastest and Tertiary the slowest?

The rate of ar is affected by th	n S _N 2 Reacti le Leaving G	on iroup
	relative rates of reaction	$\underline{pK_a}$ values of HX
$HO^- + RCH_2I \longrightarrow RCH_2OH + \Gamma$	30,000	-10
$HO^- + RCH_2Br \longrightarrow RCH_2OH + Br^-$	10,000	-9

200

1

-7

3.2

18

 $HO^- + RCH_2CI \longrightarrow RCH_2OH + CI^-$

 $HO^- + RCH_2F \longrightarrow RCH_2OH + F^-$

© 2016 Pearson Education, Inc.

Base Strength and Nucleophile Strength

stronger base, better nucleophile		weaker base, poorer nucleophile
HO^{-}	>	H ₂ O
CH_3O^-	>	CH ₃ OH
$^{-}NH_{2}$	>	NH ₃
$CH_3CH_2NH^-$	>	CH ₃ CH ₂ NH ₂

A negatively charged atom is a stronger base and a better nucleophile than the same atom that is neutral.

21

© 2016 Pearson Education, Inc.

S_N2 Reactions can be used to make a variety of Compounds

Summary of the Experimental Evidence for the Mechanism of an S_N1 Reaction

- 1. The rate of the reaction depends only on the concentration of the alkyl halide.
- 1. Tertiary alkyl halides react the fastest.

© 2016 Pearson Education, Inc

1. If the halogen is attached to an asymmetric center the product will be a pair of enantiomers.

26

The Product is a Pair of Enantiomers

The Product is a Pair of Enantiomers

The Leaving Group in an S _N 1 Reaction	
relative reactivities of alkyl balides in an S. 1 reaction	
$\frac{1}{10000000000000000000000000000000000$	active
	31
© 2016 Pearson Education, Inc.	

Comparing S_N2 and S_N1 Reaction

The Intramolecular Reaction is favored when a Five- or Six-Membered Ring can be formed

An E1 Reaction is Regioselective

Under S_N2/E2 conditions, a Primary Alkyl Halide forms primarily a Substitution Product

Under S_N2/E2 conditions, a Secondary Alkyl Halide forms Substitution and Elimination Products

Under S_N2/E2 conditions, a Tertiary Alkyl Halide forms only an Elimination Product

Under S_N1/E1 conditions, a Tertiary Alkyl Halide forms Substitution and Elimination Products

Tertiary (S_N1/E1): Substitution is Favored Tertiary (S_N2/E2): Only Elimination

Summary of the products obtained from Substitution and Elimination Reactions

Table 8.2 Summary of the Products Expected in Substitution and Elimination Reactions					
S _N 2 versus E2	S _N 1 versus E1				
primarily substitution	cannot undergo S _N 1/E1 solvoylsis reactions				
substitution and elimination	cannot undergo S _N 1/E1 solvolysis reactions				
only elimination	substitution and elimination with substitution favored				
5	oducts Expected in Substitution an S _N 2 versus E2 primarily substitution ubstitution and elimination only elimination				

© 2016 Pearson Education, Inc.

If the reactants are neutral, increasing the polarity of the solvent increases the Rate

How a solvent affects the Rate of a Reaction that does not have a Charged Reactant

How a solvent affects the Rate of an Reaction that has a Charged Reactant

