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• Reactions are at the heart of Organic Chemistry.

• Virtually all chemical reactions are woven together

by a few basic themes.

• Begin by looking for electron-rich or deficient

sites at functional groups in the reacting

molecules.

• These are often the location of bonds that might

be easily broken.

• Learn about how reaction takes place (i.e., does it

occur in one step or in a series of steps).

Organic Reactions
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• Equations for organic reactions are usually drawn with a

single reaction arrow () between the starting material

and product.

• The reagent (the chemical substance with which an

organic compound reacts) is sometimes drawn on the

left side of the equation with the other reactants.

• At other times, the reagent is drawn above the arrow.

• Although the solvent is often omitted from the equation,

most organic reactions take place in liquid solvent.

Writing Equations for Organic Reactions
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Ways to Write Organic Reactions

Figure 6.1

• The solvent and temperature of the reaction may be 

added above or below the arrow.

• The symbols “h” and “” are used for reactions that 

require light or heat, respectively.
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• The steps are numbered above or below the reaction arrow.

• This convention signifies that the first step occurs before the

second step, and the reagents are added in sequence, not at

the same time.

Writing Equations for Sequential Reactions
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• Substitution is a reaction in which an atom or a group of

atoms is replaced by another atom or group of atoms.

• In a general substitution, Y replaces Z on a carbon atom.

1. Substitution Reactions
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• Substitution reactions involve  bonds: one  bond breaks 

and another forms at the same carbon atom.

• While in some cases Z can be a hydrogen atom, the most 

common examples of substitution occur when Z is a 

heteroatom that is more electronegative than carbon.

Substitution Reactions
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• Elimination is a reaction in which elements of the

starting material are “lost” and a  bond is formed.

2. Elimination Reactions
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• In an elimination reaction, two groups X and Y are removed 

from a starting material.

• Two  bonds are broken, and a  bond is formed between 

adjacent atoms.

• The most common examples of elimination occur when X = H 

and Y is a heteroatom more electronegative than carbon.

Elimination Reactions



6

11

• Addition is a reaction in which elements are added to the

starting material.

3. Addition Reactions
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• In an addition reaction, new groups X and Y are added to

the starting material.

• A  bond is broken and two  bonds are formed.

Addition Reactions
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• Addition and elimination reactions are exactly opposite.

• A  bond is formed in elimination reactions, whereas a  bond

is broken in addition reactions.

• Often these reactions are reversible.

Relationship of Addition and Elimination 

Reactions
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• A reaction mechanism is a detailed description of how bonds

are broken and formed as starting material is converted into

product.

• A reaction can occur either in one step or a series of steps.

Reaction Mechanisms
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Regardless of how many steps there are in a reaction, there are 

only two ways to break (cleave) a bond: 

• Breaking a bond by equally dividing the electrons between 

the two atoms in the bond is called homolysis or homolytic

cleavage.

Bond Breaking

1. Homolytic

16

• To illustrate the movement of a single electron, use a 

half-headed curved arrow, sometimes called a fishhook.

Bond Breaking–Homolytic 

• Homolysis generates two uncharged species with unpaired 

electrons.

• A reactive intermediate with a single unpaired electron is 

called a radical.

• Radicals are highly unstable because they contain an atom 

that does not have an octet of electrons.
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Bond Breaking

2. Heterolytic 

• Breaking a bond by unequally dividing the electrons between

the two atoms in the bond is called heterolysis or heterolytic

cleavage.

• When two atoms have different electronegativities, the

electrons end up on the more electronegative atom.

18

• Heterolysis of a C—Z bond generates a carbocation or a

carbanion.

• A carbocation is an unstable intermediate containing a carbon

surrounded by only six electrons.

• A carbanion is an unstable intermediate having a negative

charge on carbon, which is not a very electronegative atom.

Bond Breaking–Heterolytic 

• A full-headed curved arrow shows the movement of an

electron pair.
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Figure 6.2

Reactive Intermediates Resulting from 

Breaking a C-Z Bond

20

• Radicals and carbocations are electrophiles because they 

contain an electron-deficient carbon.

• Carbanions are nucleophiles because they contain a carbon 

with a lone pair.

Bond Breaking–Intermediates 
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• Bond formation occurs in two different ways.

• Two radicals can each donate one electron to form a two-

electron bond.

• Two ions with unlike charges can come together, with the

negatively charged ion donating both electrons to form

the resulting two-electron bond.

• Bond formation always releases energy.

Bond Forming 

22

Arrows Used in Organic Reactions
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Bond Dissociation Energy

• Because bond breaking requires energy, bond dissociation 

energies are always positive numbers, and homolysis is always 

endothermic.

• Conversely, bond formation always releases energy, and thus is 

always exothermic. 

• Bond dissociation energy is the energy needed to homolytically

cleave a covalent bond.
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Energy Associated with the H2 Bond

• Example: the H-H bond requires +104 kcal/mol to

cleave and releases –104 kcal/mol when formed.

26
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• Comparing bond dissociation energies is equivalent to comparing 

bond strength.

• The stronger the bond, the higher its bond dissociation energy.

• Bond dissociation energies decrease down a column of the 

periodic table.

• Generally, shorter bonds are stronger bonds.

Bond Dissociation Energy and Bond Strength
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• Bond dissociation energies are used to calculate the enthalpy

change (H°) in a reaction in which several bonds are broken

and formed.

Enthalpy Change in Reactions
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Determining H° for a Reaction

Sample Problem 6.2

30

• H° is negative for both oxidations, so both reactions are 

exothermic.

• Both isooctane and glucose release energy on oxidation 

because the bonds in the products are stronger than the bonds 

in the reactants.

Enthalpy Changes in Oxidation Reactions
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• Bond dissociation energies present overall energy changes 

only; they reveal nothing about the reaction mechanism or 

how fast a reaction proceeds.

• Bond dissociation energies are determined for reactions in the 

gas phase, whereas most organic reactions occur in a liquid 

solvent where solvation energy contributes to the overall 

enthalpy of a reaction.

– Though imperfect, using bond dissociation energies to calculate H°
gives a useful approximation of the energy changes that occur in a 

reaction.

Limitations on Bond Dissociation Energies
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• For a reaction to be practical, the equilibrium must favor 

products and the reaction rate must be fast enough to form 

them in a reasonable time. 

• These two conditions depend on thermodynamics and kinetics

respectively.

• Thermodynamics describes:

• how the energies of reactants and products compare; 

and

• what the relative amounts of reactants and products are 

at equilibrium.

• Kinetics describes reaction rates (how quickly reactants 

are converted to products).

Kinetics and Thermodynamics
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• The equilibrium constant, Keq, is a mathematical expression

that relates the amount of starting material and product at

equilibrium.

Kinetics and Thermodynamics
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• The size of Keq expresses whether the starting materials or

products predominate once equilibrium is reached.

• When Keq > 1,

• equilibrium favors the products.

• equilibrium lies to the right as the equation is written.

• When Keq < 1,

• equilibrium favors the starting materials.

• equilibrium lies to the left as the equation is written.

• For a reaction to be useful, the equilibrium must favor the

products, and Keq > 1.

• The position of the equilibrium is determined by the relative

energies of the reactants and products.

The Equilibrium Constant

36

Figure 6.3

The Equilibrium Constant and Free Energy

• G° is the overall energy difference between reactants and

products.
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• G° is related to the equilibrium constant Keq by the following

equation:

• When Keq > 1, log Keq is positive, making G° negative, and 

energy is released. 

• Equilibrium favors the products.

• When Keq < 1, log Keq is negative, making G° positive, and

energy is absorbed.

• Equilibrium favors the reactants.

Relationship Between Equilibrium Constant 

and Free Energy
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• Compounds that are lower in energy have increased stability.

• Equilibrium favors the products when they are more stable

than the starting materials.

• Because G° depends on the logarithm of Keq, a small change

in energy corresponds to a large difference in the relative

amount of starting material and product at equilibrium.

Energy Difference and Equilibrium



20

39

• Monosubstituted cyclohexanes exist as two different chair

conformations that rapidly interconvert at room temperature.

• The conformation having the substituent in the roomier

equatorial position is favored.

• Knowing the energy difference between two conformations

permits the calculation of the amount of each at equilibrium.

Conformations and Equilibrium
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• Entropy is a measure of the randomness of a system.

• The more freedom of motion or the more disorder

present, the higher the entropy.

• Gas molecules move more freely than liquid

molecules and are higher in entropy.

• Cyclic molecules have more restricted bond rotation

than similar acyclic molecules and are lower in

entropy.

Entropy
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• The total energy change is due to two factors: the change in

bonding energy and the change in disorder.

• The change in bonding energy can be calculated from bond

dissociation energies.

• In most reactions that are not carried out at high temperature,

the entropy term (TS°) is small compared to the enthalpy

term (H°), and therefore, it is usually neglected.

Role of Entropy in Total Energy Change
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• Reactions resulting in increased entropy are favored.

• S° is (+) when the products are more disordered than the

reactants and (-) when the products are more ordered.

• Entropy changes are important when:

• the number of molecules of starting material differs from

the number of molecules of product in the balanced

chemical equation; and when

• an acyclic molecule is cyclized to a cyclic one, or a cyclic

molecule is converted to an acyclic one.

Reactions in which S° Plays a Role
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• An energy diagram is a schematic representation of the energy

changes that take place as reactants are converted to

products.

• An energy diagram plots the energy on the y axis versus the

progress of reaction, often labeled as the reaction coordinate,

on the x axis.

Energy Diagrams
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• The energy difference between reactants and products is H°.

• As a chemical reaction proceeds from reactants to products, it

passes through an unstable energy maximum called the transition

state.

• The energy difference between the transition state and the

starting material is called the energy of activation, Ea.

• The larger the Ea, the greater energy needed to break bonds, and

the slower the reaction rate.

Energy Diagrams
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• The structure of the transition state is somewhere between

the structures of the starting material and product.

• Any bond that is partially formed or broken is drawn with

a dashed line.

• Any atom that gains or loses a charge contains a partial

charge in the transition state.

• Transition states are drawn in brackets, with a superscript

double dagger (‡).

Transition States
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Figure 6.4

Slow, Endothermic Energy Diagram
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Figure 6.4

Slow, Exothermic Energy Diagram

50

Figure 6.4

Fast, Endothermic Energy Diagram
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Figure 6.4

Fast, Exothermic Energy Diagram
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Figure 6.5

Comparing ∆H° and Ea in Energy Diagrams
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• An energy diagram must be drawn for each step.

• The two energy diagrams must then be combined to form an

energy diagram for the overall two-step reaction.

• Each step has its own energy barrier, with a transition state at

the energy maximum.

Energy Diagrams and Two-Step Reactions
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Stepwise Reaction Energy Diagram–Step 1
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Stepwise Reaction Energy Diagram–Step 2



29

57

Figure 6.6

Stepwise Reaction Overall Energy Diagram
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• Kinetics is the study of reaction rates.

• Ea is the energy barrier that must be exceeded for reactants

to be converted to products.

Kinetics and Energy Diagrams
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1. The higher the concentration, the faster the rate.

2. The higher the temperature, the faster the rate.

– G°, H°, and Keq do not determine the rate of a reaction.

– These quantities indicate the direction of the equilibrium and the

relative energy of reactants and products.

Factors Affecting Reaction Rates
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• A rate law or rate equation shows the relationship between

the reaction rate and the concentration of the reactants.

• It is experimentally determined by measuring the decrease

in concentrations of reactants or the appearance of

products over time.

Rate Law

• Fast reactions have large rate constants.

• Slow reactions have small rate constants.
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• The rate constant k and the energy of activation Ea are inversely 

related; a high Ea corresponds to a small k.

• A rate equation contains concentration terms for all reactants in 

a one-step mechanism.

• A rate equation contains concentration terms for only the 

reactants involved in the rate-determining step in a multistep

reaction.

• The order of a rate equation equals the sum of the exponents of 

the concentration terms in the rate equation.

Rate equations



32

63

• A two-step reaction has a slow rate-determining step, and a fast

step.

• In a multistep mechanism, the reaction can occur no faster than

its rate-determining step.

• Only the concentration of the reactants in the rate-determining

step appears in the rate equation.

Rate equations for Two-Step Reactions
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• Some reactions do not proceed at a reasonable rate 

unless a catalyst is added.

Catalysts

66

• A catalyst is a substance that speeds up the rate of a 

reaction. 

• It is recovered unchanged in a reaction, and it does not 

appear in the product.

• A catalyst lowers the activation energy, thus increasing 

the rate of the catalyzed reaction.

• The energy of the reactants  and products is the same in 

both the catalyzed and uncatalyzed reactions, the position 

of equilibium is unaffected.

Figure 6.7

Role of the Catalyst
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• Enzymes are biochemical catalysts composed of amino 

acids held together in a very specific three-dimensional 

shape.

• An enzyme contains a region called its active site which 

binds an organic reactant, called a substrate. 

• The resulting unit is called the enzyme-substrate complex.

• Once bound, the organic substrate undergoes a very 

specific reaction at an enhanced rate. 

• The products are then released.

Enzymes
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Lactase–a Biological Catalyst

Figure 6.7


