TAKE HOME EXAM

1. Propose structures for the three compounds whose $\,^1\!\text{HNMR}$ spectr-a are shown.

2. Propose structures for the *two* compounds \Vhose ¹H NMR spectra are shown.

3- Identify the indicated sets of protons as unrelated, homotopic, enantiotopic, or diastereotopic:

2

4- The following 1_{1-1} NMR absorptions were obtained on a spectrometer operating at 300 MHz. Convert the chemical shifts from 8 units to hertz downfield from TMS.

(a) 2.1 δ (b) 3.45 δ (c) 6.30 δ (d) 7.70 δ

- 5- When measured on a spectrometer operating at 200 MHz, chloroform (CHC1_3) shows a single sharp absorption at 7.3 $\delta.$
- (a) How many parts per million downfield from TMS does chloroform absorb?
- (b) How many hertz downfield from TlvfS would chloroform absorb if the measurement were carried out on a spectrometer operating at 360 MHz?
- (c) What would be the position of the chloroform absorption in δ units when measured on a 360 MHz spectrometer"?

6- An unknown compound has the molecular formula C₉H₁₁Br. Its proton NMR spectrum shows the following absorptions:

singlet, δ 7.1, integral 4.4 cm singlet, δ 2.3, integral 13.0 cm singlet, δ 2.2, integral 6.7 cm

Propose a structure for this compound.