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Euclid’s
eommelry

If Euclid failed to kindle your youthful enthusiasm, then you were
not born to be a scientific thinker.

Very Brief Survey of the Beginnings of Geometry

The word “geometry” comes from the Greek geometrein (geo-, “earth,”
and metrein, “to measure”); geometry was originally the craft of meas-
uring land. The Greek historian Herodotus (fifth century B.c.) credits
Egyptian surveyors (“rope stretchers”) with having originated the sub-
ject of geometry. The Greek philosopher Aristotle credits the Egyptian
priestly leisure class with the further development of their mathemat-
ics, which they kept secret from the public. They found the correct {for-
mula for the volume of a truncated square pyramid—a remarkable ac-
complishment—and of course the Egyptians built (around 2500 B.c.)
those magnificent pyramids, their greatest achievernent. But basically
Egyptian geometry was a miscellaneous collection of rules for calcula-
tion—some correct, some not—without any justification provided. For
example, according to the Rhind papyrus, written before 1700 B.c. by
the Egyptian priest Ahmes, they thought that the area of a circular disk
was edual to the area of the square on eight-ninths of the diameter,
Ahmes called his writing Directions for knowing all dark things)
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Babylonian mathernatics was more advanced than Egyptian. The term
"Babylonian” refers not just to the inhabitants of the Jost city of Baby-
lon, located just south of Baghdad, but more generally to peoples who
lived in a region then called Mesopotamia, which is now part of Irag,
The surviving clay tablets from which historians learned about their math-
ematics date primarily from two eras: first, around 2000 s.c., and sec-
ond, from 600 B.c. forward for around 900 years. The Babylonians had
a highly developed arithmetic that used positional notation resembling
our decimal system, but they used the base 60 {hexagesimal system),
not our base 10 Their positional notation included fractions as well as
whole numbers. They could solve some quadratic and cubic equations.

Geometry played a lesser role for them. Some of their calculations
of areas and volumes were correct, some were not. They did know the
Pythagorean theoremn at least a thousand years before Pythagoras was
born, and they found many Pythagorean triples, integers satisfying
a* + b? = c?, such as (3456, 3367, 4825). They knew that COITesSpon-
ding sides of similar triangles are proportional. The division of a circle
‘into 3607 originated with Babylonian astronmomy.

The Hindu civilization of ancient India developed geometric infor-
mation related to the shapes and sizes of altars and temples. Histori-
ans have not been able to accurately date the beginning of Indian ver-
bal empirical rules for areas and volumes. Their Sulbasutra, the oldest
mathematics texts currently known, are compilations of oral teachings
that may go back to around 2000 B.c. In Sutra 50 of Baudhayana's Sul-
basutram is found a version of the Pythagorean theorem, which he uses
to show how to construct a square having the same area as a given
rectangle. It was the Indians who much later made one of the greatest
mathematical inventions of all time: the number zero.

The ancient Chinese were mainly concerned with practical matters;
their classic Jiuzhang suanshu (Nine Chapters on the Mathematical Art}

included hundreds of problems on surveying, agriculture, engineering, .
taxation, etc. Its Chapter 9, devoted to right triangle problems, displays

familiarity with the Pythagorean theorem and exhibits Pythagorean
triples such as (48, 55, 73). A Chinese diagram indicating why the
Pythagorean theorem is valid is the oldest such known.

All these civilizations knew how to calculate the areas of simple
rectilinear shapes. They guessed that the ratio of circumference to di-
ameter in circles is constant, and they obtained rough approximations
to that constant (William Jones called it = in 1706). The Babylonians
and Chinese knew that the area of a circle is half the circumference
times half the diameter,
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Mathematics in these four ancienl civilizations evolved in an intu-
itive and experimental manner, It was developed mainly to solve prac-
tical problems and referred to the physical world. The authors of works
that have come down to us state problems in numbers and solve them
by recipes for which they do not provide justification.

It was the Greeks, beginning with the legendary Thales of Miletus in
the sixth century B.c., who came to insist that geometric statements be
established by careful deductive reasoning rather than by trial and error. )
Furthermore, those statements did not refer to physical objects. They.
were about idealizations such as a line segment that had length but no
breadth. The orderly development of theorems with procfs about abstract
entities became characteristic of Greek mathematics and was entirely
new.! This was the first major revolution in the history of mathematics.

How this revolution came about is not well understood by histori-
ans. Among Greek philosophers, dialectics, the art of arguing well,
which originated in Parmenides’ Eleatic school of philosophy, played
an important role. And undoubtedly proofs were an outgrowth of the
need to convince others in a debate.

The first serious historian of mathematics in ancient Greece was
Eudemus of Rhodes. His works have been lost, but we know about
them from Proclus in the fifth century, who quotes from the Eudemian
summary. Much of what Greek mathematical history we know derives
from that source. .

The Pythagoreans

The systematization begun by Thales was continued over the next two
centuries by Pythagoras and his disciples. Pythagoras was a spiritual
teacher. He taught the immortality of the soul. He organized a broth-
erhood of spiritual seekers that had its own purification and initiation
rites, had a meditation practice, followed a vegetarian diet, and shared
all property {including credit for intellectual discoveries) communally.

‘The Pythagoreans differed from other religious sects in their belief that

the pursuit of philosophical, musical, and mathematical studies pro-
vided a moral basis for the conduct of life. Pythagorean philosophy was
directed to the goal of sane, civilized living.

1 1. L, Heilbron wrote: “Students should not become impatient if they do not immedi-
ately understand the point of georaetrical proofs. Entire civilizations missed the point
attogether(”

;
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In music, which was absolutely central to their philesophy, the
Pythagoreans observed that when the lengths of vibrating strings are
expressible as ratios of small numbers, the tones will be harmonious.
If a given string sounds the note C when plucked, then a similar string
twice as long will sound the note C an octave below, Tones between
these two notes are emitted by strings whose lengths have intermedi-
ate ratios: 16:9 for D, 8:5 for E, 3:2 for F, 4:3 for G, 6:5 for A, and 16:15
for B. Thus the Pythagoreans discovered what is possibly the cldest of
all quantitative physical laws. :

In mathematics, the Pythagoreans taught the mysterious and won-
derful properties of numnbers. By “number” the Pythagoreans meant
what we call a “whole or natural number” or “positive integer.” Their
motto was “All is number,”* Philolaus said: “All things which can be
known have number; for it is impossible that without number anything
can be conceived or known.”

They discovered some basic results in what we now call number
theory, but they also viewed each number as having a specific
guality—belief in numerclogy was common among ancient civiliza-
tions, For example, 10 was coensidered the number of “perfection.” They
believed that there must be a Central Fire hidden from us on the other
side of the sun in order that there would be 10 major heavenly bod-
ies, not just the 6 planets then known plus the earth, sun, and moon.

A fraction was considered by them to be a relation (ratio or pro-
portion) between two whole numnbers, not in itself a number. To aveid
unnecessary circumlocutions, we will say simply that they accepted
what we call positive rational numbers. We will say that once a unit
of measurement was arbitrarily chosen, the Pythagoreans originally be-
lieved that all geometric magnitudes (length, area, volume) were mea-
sured by rational numbers,

S0 the Pythagoreans were greatly shocked when they discovered
(around 430 B.c.} irrational lengths, such as V2; we will give Aristo-
tle’s proof of that irrationality in Chapter 2 when we discuss reductio
ad absurdum reasoning. In their geometric language, they said that the
diagonal of a square is incommensurable with the side, meaning that
there was no unit of measure for which the diagonal and the side both
have lengths that are whole numbers (the same applies to the diagonal

* Kurt Gédel showed in 1931 that so far as formally axiomatized mathematics is con-
cerned, this Pythagorean doctrine is correct. He showed, by his scheme for numbering
all the formulas and sentences in any given formal theory, how the statements of that
theory can all be translated into statements about numbers. He used that numbering
to prove his famous incompleteness theorems (see Chapter 8.
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and side of a regular pentagon). Proclus wrote: “It is well known that
the man who first made public the theory of incommensurables per-
ished in a shipwreck, in order that the inexpressible and unimaginable
should ever remain veiled.” Historians consider that a myth, but this
discovery precipitated the first major crisis in the foundations of math-
ematics.® Since the Pythagoreans certainly did not consider V2 to be
a number, they transmuted their algebra into geometric form in order
to represent V2 and other irrational lengths by line segments. Ruclid
followed that path later.

The Pythagoreans were unable to develop a theory of proportions
that was also valid for irrational lengths, This was later achieved bril-
lantly by Plato’s pupil Eudoxus, whose very modern theory was in-
corporated into Book V of Euclid’s Elements,

The development of plane geometry by the Pythagorean school was
brought to a conclusion around 400 B.c. in the work Elements by the
mathematician Hippocrates of Chios {(not to be confused with the fa-
mous physician of the same name). Although this treatise has been
lost, historians believe that it covered most of Books -1V of Euclid’s
Elements, which appeared about a century later. Hippocrates is also
known for his proof that the area of a certain lune (a region bounded
by two circular ares) is equal to the area of a certain triangle, a result
that gave hope for “squaring a circle.”

With the Pythagoreans, mathematics became more closely related
to a love of knowledge for its own sake than to the needs of practical
life. Yet we owe a great debt to the Pythagoreans for also recognizing
that Nature can be understood through abstract mathematics.

Plato

The fourth century B.c. saw the flourishing of Plato’s Academy of sci-
ence and philosophy in Athens, which attracted the leading scholars of
that era (such as Aristotle, who later founded his own Lyceum). In the

. Republic, Plato wrote: “The study of mathematics develops and sets

into operation a mental organism more valuable than a thousand eyes,
because through it alone can truth be apprehended.” Above the gate

? Subsequent major crises were caused by the nonrigorous use of infinitesimals in the
calculus, by the discovery of non-Enclidean geometries, by the Dedekind-Cantor in-
troduction of infinite sets into algebra and analysis, by Cantor’s theory of their cardi-
nal and ordinal numbers, and by paradoxes in the early development of set theory (see
Chapter 8).
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to the ‘Academy was the prociamation: “Let no one ignorant of geom-
elry enter here.” Plato claimed that reasoning about geometric objects
trains the mind for the more difficult task of ascending to knowledge
of what he called “The Good.” Plato taught that the world of Ideas is
more important than the material world of the senses, The errors of the
senses must be corrected by concentrated thought, which is best learned
by studying mathematics. Certainly we are able to imagine perfect geo-
metric figuresmperfectly straight lines with no breadth, etc. Plato main-
tained that these ideal figures not only exist in our imaginations but
also exist in a world of perfect Ideas, of universal eternal truths. Hu-
man minds are not eternal, but he believed that our minds have the
ability to perceive aspects of the eternal world of Ideas. Many promi-
hent mathematicians over the centuries have subscribed to Plato’s view
that the truths of mathematics reside in an objective reality outside of
our individual minds; others consider this viewpoint a bsychologically
useful myth, while still others reject it entirely.4

Plato cited the proof for the irrationality of the length of a diagonal
of the unit square as a dramatic illustration of the power of the method
of indirect proof (reductio ad absurdum—see Chapter 2). Aristotle con-
sidered this method Zeno's invention—a type of argument that begins
by assuming some statement accepted by an opponent and then seek-
ing to extract an unacceptable consequence from it, forcing the oppo-
nent to retract his commitment. Plato emphasized that the irrationality
of length could never have been discovered empirically by physical
Ineasurements. A practical civilization such as the Egyptian was per-
fectly content to treat V2 as 7/5 or some other rational approximation.
Greek civilization had moved to a new level of abstract thinking that
emphasized exactness, not approximations, and had made new con-
ceptual discoveries as a result.
"~ Plato was a philosopher, not a mathematician, but Plato knew
Archyias, the last great Pythagorean mathematician; and at Plato’s
Academy were the most important Greek mathematicians of that age
to whom, before Euclid, the axiomatic-deductive method has been as-
cribed: Theodorus, Eudoxus, Theaetetus. In Plato’s dialogue about
Theaetetus, Socrates asks him what an irrational is, Theaetetus replies
that he is very confused about it and does not know, but he has con-
cerns about it. Euclid later incorporated Theaetetus’ work on irrationals
in his Book X.

4 Eric Temple Bell considered it “fantastic nonsense of no possible value to anyone,”
You see that the philosophy of mathematics—unlike most of nathematics itself--is re-
plete with controversies (see Chapter 8), .
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of pure intelligence, corrupling  the major benefit of geometry—
training the mind in abstract thinking,

Eudoxus wag certainly the greatest mathematician of the era before
Archimedes. He invented the method of exhaustion, an unintentionally

into a mathematical science, using a complicated mode] of several
spheres to account for the motions around the earth of the sun, moon,
and six planets then known. His mode] placed the stars on an outer-
most sphere of a universe he considered to be finite in extent,

Euclid of Alexandrip

The beautiful city of Alexandria wag founded in 331 B.C., at the point

Euclid authored about a dozen treatises on various subjects, ip-
cluding optics, astronomy, music, mechanics, and spherical geometry,
Unfortunately, all but five of them have been lost. His maost famous
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one, the Elernents, written around 300 s.c., has survived, though not
as an original manuscript written by Euclid himself. The version we
use today has been reconstructed from a tenth-century Greek copy
found around 1800 in the Vatican Library and from Arabic translations
of other lost Greek copies and revisions. We are greatly indebted to the
medieval Arab scholars for preserving much of classical Greek mathe-
matics, The first printed version of the Elements appeared in Venice in
1482 (Campanus’ translation from the Arabic), and since then hundreds
of editions have been published. A new Greek text was compiled in
the 1880s by Heiberg, and that was translated into English in 1208 by
Sir Thomas Heath; it is the version to which English speakers mainly
refer.

The Elements is a definitive treatment in 13 volumes of Greek plane
and solid geometry’and number theory. We do not know which of its
material is original with Euclid, but we do know that in compiling this
masterpiece Euclid built on the achievements of his predecessors: the
Pythagoreans, Hippocrates, Archyias, Eudoxus, and Theaectetus,

® Books I-1V and VI are about plane geometry.
# Books XI-XIIT are about solid geometry.
* Book V gives Eudoxus’ theory of proportions.

o Books VII-IX treat the theory of whole numbers. The last propo-
sition of Book IX (Proposiiion 36) provides a method of construct-
ing a perfect number—a number that is equal to the sum of its proper
divisors, such as 6, 28, or 496, To this day no other method has
been found.

o Book X presents Theaetetus’ classification df certain types of ir-
rationals; curiousty, Buclid did not include a proof that the diago-
nal of a square is incommensurable with its side, though the Ital-
ian translation by Commandino in 1575 does add a proof of that.
Book II provides a geometric method for solving certain quadratic
equations (without algebraic notation, which came many centuries
later). Also, in Euclid’s treatment of whole numbers, stemming frorn
the Pythagoreans, it is a peculiarity that 1 was not considered a
number! It was the unit or “the monad.”

In this text we will redo much of the plane geometry in the Ele-
mertts. We will use notation such as 1.47 to refer to the 47th proposi-
tion in Book I of the Elements (it’s the Pythagorean theorem).

Euclid’s Elements is not just about geometry and number theory; it
is about how to think logically, how to build and organize a complicated
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theory, step by logical step. Euclid’s approach to geometry dominated
the teaching of the subject for over two thousand years. The axiomatic
method used by Euclid is the prototype for all of what we now call
pire mathernatics. It is pure in the sense of “pure thought”: No phys-
ical experiments could be performed to verify that the statements about
ideal objects are correct—only the reagsoning in the demonstrations can
be checked,

Euclid’s Elements is pure also in that the wark includes no practical
applications. Of course, Euclid’s geometry has had an enormous num-
ber of applications to practical problems in engineering, architecture, as-
tronomy, physics, etc., but none are mentioned in the Elements. Ac-
cording to legend, a beginning student of geometry asked Euclid, “What
shall T get by learning these things?” Euclid called his servant, saying,
“Give him a coin, since he must make gain cut of what he learns.”

Later Greek mathematicians did concern themselves with applica-
tions and other sciences—notably Archimedes with his mechanics and
hydrostatics, Eratosthenes with his remarkable estimate of the circum-
ference of the earth, Hipparchus and Claudius Plolemy with their as-
tronomy, and Heron with his optics and mechanics.

Aristotle and the Greek astronomers did not consider that the math-
ematical abstraction “Euclidean space” described all of actual physical
space because they believed the universe was finite in extent (bounded).
Thus the “truth” of Euclidean geometry for them is puzzling to us. It
was the work of Isaac Newton many centuries later that led to the iden-
tification of those two “spaces” in people’s minds, which lasted until
Einstein and other cosmologists proposed other possible geometric mod-
els for vast physical space.

The Axiomatic Method

Mathematicians can make use of trial and error, computation of spe-
cial cases, informed guessing, flashes of insight, drawing diagrams, or
any other method to discover their results. The axiomatic method is a
method of proving that the results are correct and organizing them into
a logical structure. Some of the most important results in mathematics
were originally given only incomplete proofs (we shall see that even
Euclid was guilty of this). No matter—correct, compiete proofs would
be supplied later (sometimes very much later), and mathematicians
would be satisfied.
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So proofs give us assurance that results are correct. Il many cases,
they also give us more general results, For example, the Egyptians,
Babylonians, and Indians inferred by experiment that if a triangle has
sides of lengths 3, 4, and 5, it is a right triangle. But later mathemati-
- cians proved that if a triangle has sides of lengths 4, b, and ¢ and if
a? + b% = ¢?, then the triangle is a right triangle. It would take an in-
finite number of experiments to check this result, and, anyhow, ex-
perimnents measure things only approximately, Finally, proofs give us
tremendous insight into relationships among different things we are
studying, forcing us to organize our ideas in a coherent way. You will
appreciate this by the end of Chapter 6 (if not sooner), Gauss gave
many proofs of the fundamental theorem of algebra and of the quad-
ratic reciprocity theorem in number theory. In so doing, he was not
trying to convince himself and others of the correcfness of those state-
ments; he was seeking deeper insights, different relationships to help
understand why those statements were valid.

Other important scientific works besides Euclid’s proceeded ax-
iomatically: Archimedes’ Book 1 on theoretical mechanics proved 15
propositions from 7 postulates. Newton’s Principia deduced the laws
-of motion from his well-known laws assumed at the start. In the twen-
tieth century, theoretical physicists Mach, Einstein, and Dirac used the
axiomatic method in some of their works,

What is the axiomatic method? If [ wish to persuade you by pure de-
ductive reasoning to believe some statement Sy, I could show you how
this statement follows logically from some other statement S, that you
may already accept. However, if you don’t believe S5, I would have to
shrow you how 5, follows logically from some other statement $3. I might
have to repeat this procedure several times until I reach some statement
that you already accept, one that I do not need to justify. That statement
plays the role of an axiom or postulate. If 1 cannot reach a statement that
you will accept as the basis of my argument, I will be caught in an “in-
finite regress,” giving one demonstration after another without end.

So there are two requirements that must be met for us to agree that
a proof is correct; -

REQUIREMENT 1. Acceptance of certain statements called axioms or
postulates without further justification,

REQUIREMENT 2. Agreement on how and when one statement “fol-
lows logically” from another, i.e., agreement on certain rules of logic.

Euclid’s monumental achievement was to single out a few simple
postulates, staternents that were acceptable to his peers without further
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justification, and then to deduce from them alt the conclusions known
at that time in elementary geometry—many of the results not at alt ob-
vious—without there being any vicious circles in his reasoning and with
most of his proofs being correct. One reason the Elements is such a
beautiful work is that so much has been deduced from so litile!

However, such a marvelous organization of results did not spring
fully developed from Euclid’s head the way the goddess Athena in Greek
mythalogy sprang fully grown from the head of the god Zeus. Geo-
metric results had been accumulated over many years by the Greeks,
and unfortunately all those earlier works have been lost ta us. We know
that they existed from reports by later commentators such as Proclus,
Euclid singled out (most of) the basic assumptions needed to prove all
the other results. Such an axiomatization and organization can only be
done successfully for a mature subject that has already been consider-
ably developed in a perhaps disorganized way (e.g., the axioms for the
real numbers came very late in their history).

Undefined Terms

We have been discussing what is required for us to agree that a proof
is correct. Here is an additional requirement that we took for granted:

REQUIREMENT 0. Mutual understanding of the meaning of the words
and symbols used in the discourse.

There should be no problem in reaching mutual understanding so
long as we use terms familiar to both of us and use them consistently,
If T use an unfamiliar term, you have the right to demand a definition
of this term. Definitions cannot be given arbitrarily; they are subject to
rules of reasoning also. For example, if I defined a right angle to be a
90° angle and then defined a 90° angle to be a right angle, 1 would vi-
olate the rule against circular reasoning. Sometimes a proof must first
be given in order for a definition to be acceptable—e.g,, if 1 define the
specific number o to be the ratio of the circumference of any circle to
the length of its diameter, 1 am tacitly assuming that that ratio is
constant; that definition will not be valid until a proof of constancy is
supplied (incredibly, very few books supply the proof, even the books
specifically devoted to the amazing history of this number).

Also, we cannot define every term that we use. In order to define
one tern we must use other terms, and to define these terms we must
use still other terms, and so on. If we were not allowed to leave some
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terms undefined, we would get involved in infinite regress (that’s why
dictionaries are circular). The undefined terms are also called primitive
terms,

Euclid did attempt to define all his geometric terms, which was a
surprising mistake, since Aristotle had already explained the necessity
for undefined terms. Euclid defined a “straight line” to be “that which
lies evenly with the points on itself.” This definition is not very use-
ful; so it is better to take “line” as an undefined term. Similarly, Eu-
clid defined a “point” as “that which has no part”-—again, not a very
informative definition. So we will also accept “point” as an undefined
term. Fortunately, nowhere in the Elements does Fuclid use in his proofs
those of his “definitions” that are vague, They are more like guides o
visualizing the geometry,

Here are the five primitive geometric terms that we will use as our
basis for defining all other geometric terms in plane geometry: '

point

line

lie on (as in “two points lie on a unique line”)
betwreen (as in “point C is between points A and B”)
congruent

For solid geometry, we would have to introduce a further undefined
geometric term, “plane,” and extend the relation “lie on” 10 allow points
and lines to lie on planes. In this book we will restrict our formal de-
velopment to plane geometry—to one single plane, if you like, We will
not use this term in our formal development, though we will mention
it informally. . .

There are expressions that are often used synonymously with “lie
on.” Instead of saying “point P lies on line [,” we sometimes say “I
passes through P” or “P is incident with [, denoted by P I L If point
P lies on both line [ and line m, we say that “I and m have point P in
cormmon” or that “I and m intersect (or meet) in the point P.”

Our undefined term, “line,” replaces what is usually called “a
straight line.” The adjective “straight” is problematic when it modifies
the noun “line,” so we won’t use it.> Nor will we talk about “curved
lines,” Although the word “line” will not be defined, its use will be

% Euclid did use the expression “straight line” and allowed the word “line” te also be
used for what we call “curves”; e.g., he defined a “circle” as a certain kind of line. It
is much simpler to avoid using “straight” in our formal discussions, though we will
have to use that word occasionally informatly. See Chapter 2 and Appendix A for more
on straightness.
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Figure 1.1

restricted by the axioms for our geometry. For instance, the first axiom
states that two given points lie on only one line. Thus, in Figure 1.1,
{ and m could not both represent lines in our geometry since they both
pass through the distinct points P and Q.

It is natural to aslk how to understand our five undefined terms. The
traditional method is something like this: You know how to draw a “seg-
ment” with a siraightedge. You can repeatedly extend the segment in
both directions with ybur straightedge. So imagine the drawn segment
already extended indefinitely longer in both directions with no ends; at
the same time, imagine such a drawing becoming thinner and thinner
until it has no breadth yet has not vanished—or if you can’t imagine
that, picture it as having a tiny breadth but then ignore that breadth,
as we do when we look at a geometric diagram. Similarly, you know
what a dot drawn on paper looks like—it occupies a tiny area; imagine
that area shrinking to zero without the dot disappearing to give an ide-
alized “point” that is pure position. You know what it means for a dot
you draw to lie on your drawn segment, though vou could quibble about
the dot lying “partly on” it because your drawing has breadth—just ide-
alize the drawing in your imagination. The relation “between” for dots
will only refer to three dots lying on a drawn segment; in that case, you
know what it means for one dot to lie between the other two,

We will discuss visualizing congruence below. In studying these
imaginary objects, we are dispensing with the features of physical ob-
jects that are irrelevant to what we are trying to accomplish. We are
simplifying the subject matter. All of science depends on idealized, sim-
plified ideas like this.

Alternatively, you could do what a blind person (who does not use
the sense of touch) or a computer must do: Having no image for our
undefined terms, just reason carefully about those terms using only the
properties we will assume about them in our axioms. While psycho-
logically more difficult, that would be preferable because in later chap-
ters we will provide alternative interpretations of some of the unde-
fined terms that may startle you. The visualizations are purely heuristic,
not part of the formal mathematics, and the flexibility to interpret the
undefined terms in a manner not originally intended often leads to some
very important new mathematics, That is the modern point of view.
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There are other mathematical terms we will use that could be added
to our list of undefined terms since we won't define them; they have
been omitted from the list because they are not specifically geometric
in nature. Nevertheless, since there may be seme uncertainty about
these terms, a few remarks are in order.

The word “set” is fundamental in all of mathematics today; it is
now used in elementary schools, so undoubtedly you are familiar with
its use. Think of it as a “collection of objects.” A related notion is “be-
longing to” a set or “being an element (or member) of” a set. If every
element of a set § is also an element of a set T, we say that § is “con-
tained in” or “part of” or “a subset of” 7. We will define “segment,”
“ray,” “circle,” and other geometric terms to be certain sets of points.
A “line,” however, is not a set of points in our treatment.® When we
need to refer to the set of all points lying on a line I, we will denote
that set by {i}. ' ,

For us, the word “equal” will mean “identical.”” Euclid used the
word “equal” in different undefined senses, as in his assertion that
“base angles of an isosceles triangle are equal.” We understand him to
be asserting that base angles of an isosceles triangle have an equal
number of degrees, not that they are identical angles. So to aveid con-
fusion we will not use the word “equal” in Fuclid’s sense. Instead, we
will use the undefined term “congruent” and say that “base angles of
an isosceles triangle are congruent. Similarly, we don't say that “if AB
equals AC, then AABC is isosceles.” (If AB equals AC, then following
our use of the word “equals,” AABC is not a triangle at all, only a seg-
ment,} Instead, we say that “if AB is congruent to AC, then AABC is
isosceles.” This use of the undefined term “congruent” is more general
than the one to which you may be accustomed; it applies not only to
triangles but to angles and segments as well, but it only applies to ob-
jects of the same kind (e.g., it would be nonsensical to say that some
angle is congruent to a segment). To undersiand the use of this word,
picture congruent objects as “having the same size and shape.” Alter-
natively, imagine that you could move one object, without changing
its size and shape, and superimpose it to fit exactly on the other ob-
ject. This is a heuristic, informal, visual image of congruence, which
is not to be used in proofs.

Of course, we must specify (as Euclid did for “equals” in his “com-
mon notions”) that “a thing is congruent to itself” and that “things
congruent to the same thing are congruent to each other.” Statements

% For reasons of duality in projective planes in Chapter 2, Also, the Greeks denied that
a line was made up of points,
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like these will later be included among our axioms of congruence (Chap-
ter 3}.

Our list of undefined geometric terms is due to David Hilbert
(1862-1943). His treatise Grundlugen der Geometrie (Foundations of
Geometry), first edition 1899 (later editions have important supplements
by Hilbert and Paul Bernays), clarified Euclid’s definitions, filled the
gaps in some of Fuclid’s proofs, added more axioms that Euclid tacitly
assumed, and provided brand new important insights into the founda-
tions of geometry. We will elaborate on that in Chapters 3-4.

Hilbert built on earlier work by Moritz Pasch, who in 1882 pub-
lished the first treatise on geometry that met the new standards of rigor
of his time; Pasch made explicit Euclid’s unstated assumptions about
betweenness (the axioms of betweenness will be studied in Chapter 3).
Some other mathematicians who have worked to establish rigorous
foundations for Euclidean geometry are G. Peano, M. Pieri, G. Veronese,
0. Veblen, G. de B. Robinson, E, V., Huntington, H. G. Forder, and
G. Birkhoff. These mathernaticians used lists of undefined terms dif-
ferent from the one used by Hilbert. Pieri used only the two undefined
terms “point” and “motion”; as a result, however, his axioms were
more complicated, The selection of undefined terms and axioms is ar-
bitrary and a matter of convenience and aesthetics. Hilbert’s selection
is popular because it leads to an elegant development of geometry quite
similar to Euclid’s presentation.

Euclid’s First Four Postulates

Euclid based his geometry on five fundamental axioms or postulates.
(Aristotle made a distinction between those two words that is no longer
accepted.} We will slightly rephrase Euclid’s postulates for greater clar-
ity and precision.

Evcrin’s PostuLaTE I. For every point P and for every point Q not
equal to P there exists a unique line that passes through P and Q.

This postulate is sometimes expressed informally by saying that “two
points determine a unigue line.” We will denote the unique line that
passes through P and Q by 1(’_(2) Actually, Euclid forgot to assume that
the line is unique, and since he tacitly used uniqueness in his proofs
(e.g., his proof of 1.4}, his first postulate was amended by subsequent
commentators.

To state the second postulate, we must present our first definition.
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Segment AR

Line AB

Figure 1.2

DEFINITION. Given distinct points A and B. The segment AB is the set
whaose members are the points A and B and all points C that lie on the
line AB and are between A and B (Figure 1.2}. The two given points
A and B are called the endpoints of the segment AB.?

EvcLin’s PostuLaTe IE. For every segment 1(&_}_3} and for every seg-
ment CD there exists a unique point E on line AB such that B is be-
tween A and E and segment CD is congruent to segment BE (Figure
1.3).

This postulate is expressed informally by saying that “any segment
AB can be extended (or produced) by a segment BE congruent to a
-glven segment CD.” Notice that in this postulate we have used the un-
defined term “congruent” in the new way, and we use the usual no-
tation CD &= BE to express the fact that CD is congruent to BE,

Euclid did not think of his lines as being infinitely long in both di-
rections as we do, but rather as being segments extendable arbitrarily
in both directions. The ancient Greeks did not accept. the existence of
infinite entities. Aristotle taught that the universe is finite in extent, so
the infinite should only be thought of as potential, not actual. Thus, Eu-
clid’s lines are potentially infinite insofar as we can keep extending
them as much as we like, by Postulate 2. The Greek expression to
apeiron means not only infinitely large but also undefinable, Itopelessty
complex, that which cannot be handled. Proclus wrote: “Just as sight
recognizes darkness by the experience of not seeing, so imagination rec-
ugnizes the infinite by not understanding it.”

Aristotle’s philosophical view of the infinite became a dogma that
slowed the advance of mathematies for thousands of years. It was fi-
nally overthrown in the late nineteenth century by Richard Dedekind
and Georg Cantor. It is difficult for some of us today to comprehend
why Aristotle and his successors (including the great mathematician
Gauss) were so afraid of abstract infinite things; after all, if we can

7 Warning on notation: In many high school geometry texts, the notation AB is used for
“segment AB.” .
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imagine an abstract line without breadth and an abstract point that has
no part, neither of which exists in the physical world, why are we for-
bidden to imagine an abstract infinitely long line or an infinite set?

In order to state the third postulate, we must introduce another
definition,

DEFINITION. Given distinct points O and A. The set of all points P
such that segment OP is congruent to segment OA is called the circle
with O as center and OA as radius. For each point P in that set, we
say that P lies on the circle and OP is called a radius of the circle.

It follows from our version of Euclid’s previously mentioned com-
mion notion that “a thing is congruent to itself” that OA = OA, so point
A lies on the circle. Also, if P lies on the circle and OP = 0Q, then Q
also lies on the circle because of Euclid’s common notion that “things
congruent to the same thing are congruent to each other.” (In Chapter
3, we will state these common notions as additional axioms.) The term
“radius” does not appear in Euclid’s work; he only spoke of a diame-
ter of a circle, defined as a segment whose endpoints lie on the circle
(i.e., a chord) and which passes through the center of the circle.

EvucLin’s PosTuLATE II. For every point O and every point A not
equal to O, there exists a circle with center O and radius OA (Figure 1.4).

Figure 1.4 Circle with center O and radius OA.
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A
Figure 1.5 Ray AB.

Actually, because we are using the language of sets rather than
that of Euclid, it is not really necessary to assume’ this postulate; it is
a consequence of a set theory axiom that the subset of ajl puints P such
that OP == OA exists. Of course, set theory did not yet exist in 300 p.c.
Euclid talked of drawing the circle with center O and radius OA, Qur
formal treatment purifies® Euclid by eliminating references to drawing.
(Notice that when we illustrate in Figure 1.4 what a circle looks like,
We are tacitly working in one plane, as we stated. If instead we were
working in three dimensions, the set of all paints P such that OP = 0A
would be the sphere with center O and radius 0A.)

DEFINITION. The ray AB is the following set of points lying on the
line (_{;B: those points that belong to the segment AB and all points C
on AB such that B is between A and C. The ray AB is said to emanate
from the vertex A and to be part of line AB (see Figure 1.5).

DEFINITION. Rays AB and AC are opposite if they are distinct, if they
emanate from the same point A, and if they are part of the same line
AB = A¢ (Figure 1.6.).

DEFINITION. An “angle Wi_@) vertex ;A} is a point A together with two
distinct non-opposite rays AB and AC (called the sides of the angle)
emanating from A (see Figure 1.7).°

Figure 1.6

& However, by bringing in set theory, as Hilbert did, we are sullying Euclid. To avoid
that, many of the terms we define as sets would have to be left undefined and new
axioms would have to be added to characterize them. The Greeks believed that lines
and circles were not made up of points.

# According to this definition, there is no such thing in our {reatment as a "straight an-
gle,” mor is there such a thing as a “zero angle,” We elimiinated those expressions be-
cause most of the assertions we will make about angles do not apply to them.
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Figure 1.7 Angle with vertex A.

We use the notation <A, <BAC, or <CAB for this angle, If r = fﬁs’
and 5 = AC, then rays r, 5 are said to be coterminal {(meaning they em-
anate from the same vertex), and the angle is also denoted <X (r, s),

DEFINITION. If two angke_g <DAB_§ncl 4CAD have a common side AD
and the other two sides AB and AC form opposite rays, the angles are
supplements of each other, or supplernentary angles (Figure 1.8).

DEFINITION. An angle <BAD is a right angle if it has a supplemen-
tary angle to which it is congruent (Figure 1.9).

We have thus succeeded in defining a right angle without referring
to “degrees,” by using the primitive notion of congruence of angles,
Degrees will not be introduced formally until Chapter 4, although we
will occasionally refer to themn in informal discussions. We can no

state Euclid’s {ourth postulate. '
EvcrLm’s POSTULATE IV. All right angles are congruent to one another,

This postulate expresses a homogeneity of the plane; two right an-
gles “have the same size and shape” no matter where they are located

B A C
Figure 1.8 <BAD and ¥DAC are supplementary angles.




20 EvucLip's GEOMETRY

B A C
Figure 1.9 Right angles <BAD = {CAD.

in the plane. The fourth postulate provides an “intrinsic” standard of
measurement for angles since right angles have been geometrically de-
fined and other angles can be compared with them.?

The Parallel Postulate

Euclid’s first four postulates have always been readily accepted by math-
ematicians. The fifth postulate—the “parallel postulate”—however, be-
came highly controversial. As we shall see later, consideration of al-
ternatives to Euclid’s parallel postulate resulted in the development of
non-Euclidean geornetries. At this time we are not going to state the
fifth postulate in its original form as it appeared in the Elements. In-
stead, we will present a simpler postulate, which we will show (in
Chapter 4) is logically equivalent to Euclid’s original. This version is

sometimes called Playfair’s postulate because it appeared in John Play- -

faii’s formulation of Euclidean geometry published in 1795—though it
was first presented by Proclus in the fifth century. We will call it the
Euclidean parallel postulate because it distinguishes Euclidean geome-
try from other geometries based on parallel postulates. The most im-
portant definition in this book is the following:

DEFINITION. Two lines I and m are parallel if they do not intersect,
i.e., if ho point lies on both of them. We denote this by 1 || m.

Notice first that in making this definition we assume the lines le
in the same plane (because of our convention that all points and lines
lie in one plane unless stated otherwise); in solid geometry, there are

10 On the contrary, there is no intrinsic standard of measurement for segments in Eu-
clidean geometry (this will be proved in Chapter 9). Units of length (1 foot, 1 meter,
etc.} must be chosen arbitrarily. The remarkable fact about elliptic and hyperbolic
peometries, on the other hand, is that they do admit an intrinsic standard of length
(see Chapters 6 and 9). ’
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m

Figure 1,10 m is the unique line through P parallel to 1,

non-coplanar lines that fail to intersect, and they are called skew lines,
not “parallel” lines. Spealdng informally, notice second what the defi-
nition does not say: It does not say that the lines are “equidistant,” i.e.,
it does not say that the “distance” between the two lines is everywhere
the same. Don’t be misled by drawings of parallel lines in which the
lines appear to be equidistant, like railroad tracks. To be rigorous we
must not introduce assumptions that have not been stated explicitly.
At the same time, don’t jump to the conclusion that parallel lines are
not equidistant. We are not committing ourselves either way and shall
reserve judgment until we study the matter further. At this point, the
only thing we know for sure about paraliel lines is that they do not
meet, 11

THE EVCLIDEAN PARALLEL POSTULATE. For every line [ and for every
point P that does not lie on /, there exists a unique line m through P
that is parallel to [ (see Figure 1.10).

Once again, this {s an axiom for plane geometry; in solid geometry,
there are infinitely many lines through P that do not intersect 1.

Why was this postulate so controversial? It may seem “obvious” to
you, perhaps because you have been conditioned to think in Fuclidean
terms. However, if we consider the axioms of geometry as abstractiorns
from experience, we can see a difference between this postulate and
the other four, The first two postulates are abstractions from our ex-
periences drawing with a straightedge; the third postulate derives from
our experience drawing with a compass. The fourth postulate is less
obvious as an abstraction. One could argue that it derives from our
experience measuring angles with a protractor, where the sum of
supplementary angles is always 180°, so that if supplementary angles
are congruent to each other, they must each measure 90°; if we think
of congruence for angles in terms of having the same number of de-
grees when measured by a protractor, then indeed all right angles are
11 1 have found two books about mathematics for educated lay readers, written by weli-

known, respected authors, which claim that the Euclidean parallel postulate asserts
that “parallel lines never meet.” That is a definition, not a postulate!
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congruent. (Pon't interpret what was just said as any kind of proof of
the fourth postulate; it is just a heuristic argument to make that as-
sumption plausible from our experience.)

The parallel postulate is different in that we cannot verify empiri-
cally whether two drawn lines meet since we can draw only segments,
not complete lines. We can extend the segments further and further to
see if the lines containing them meet, but we cannot go on extending
them forever. Our only recourse is to verify parallelism indirectly by
using criteria other than the definition.

‘What is another criterion to test whether [ is parallel to m? Euclid
suggested drawing a transversal (i.e., a line ¢ that intersects both { and
m in distinct points) and considering the interior angles « and g on
one side of t. He predicted that if the “sum” of angles « and # turns
out to be less than two right angles, the line segments, if produced suf-
ficiently far, would meet on the same side of ¢ as angles « and B (see
Figure 1.11). This, in fact, is the content of Euclid’s fifth postulate
(which we will refer to as Euclid V). It is a criterion for I and m to not
be parallel, and it tells on which side of the transversal they meet.

We have stated this criterion unofficially because it involves terms
that we will only be able to define precisely later (interior angles, same
side of the transversal, swm of angles). We are appealing to your pre-
vious experience with geometry and to the diagram so that you will
understand the content of Euclid V.

Reece Thomas Harris pointed out that what Euclid V in fact does
is grant the power to construct triangles by extending segments until
the lines meet (and it doesn’t mention parallels). Indeed, we will later
use that power to construct a triangle that is similar to a given one on
a given segment (see Wallis’ postulate, Chapter 5). However, the dif-
ficulty with this comstruction is that it does not provide any bound for
how far we have to extend the line segments to find the third vertex of
the triangle. We have the same difficulty as before in accepting it.

Figure 1.11
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Euclid himself must have recognized the controversial nature of his
fifth postulate, for he postponed using it for as long as he could—
until the proof of 1.29, which is the converse of the alternate interior
angle theorem 1.27 for parallel lines; then he used it for his results on
paratlelograms. That use of Euclid V may be why it has been incor-
rectly called “the parallel postulate,”

We know from Aristotle that in his time the theory of parallels had
not yet been put on a rigorous basis. Undoubtedly the formulation of
a postulate which does provide a rigorous foundation for that theory
is Euclid’s original contribution.

Attempts to Prove the Parallel Postulate

Remember that an axiom was originally supposed to be so simple and
obvious that no educated person could doubt its validity. From the very
beginning, however, the parallel postulate was attacked as insufficiently
plausible to qualify as an unproved assumption. For about twa thou-
sand years, mathematicians tried to derive it from the other {four pos-
tulates or to replace it with another postulate, one more self-evident,
All attemnpts to derive it from the first four postulates turned out to be
unsuccessful because the so-called proofs always entailed a hidden as-
sumption that was unjustifiable. The substitute postulates, purportedly
more self-evident, turned out to be logically equivalent to the parallel
postulate, so that nothing was gained logically by the substitution, We
will examine these attempts in detail in Chapter 5, for they are very
instructive. For the moment, let us consider one such effort.
" Adrien-Marie Legendre (1752~1833) was one of the hest mathe-
maticians of his time, contributing important discoveries to many dif-
ferent branches of mathematics. Yet he was so obsessed with proving
the parallel postulate that over a period of 29 years, he published cne
attempt after another in 20 different editions of his. Eléments de Géome-.
trie. Here is one attempt (see [igure 1.12}.
Given P not on line L. Drop perpendiculg) PQ from P to [ at Q. Let
m be the line through P perpendicular to PQ. Tgn m is parallel to |
since [ and m have the common perpendicular PQ. Let it be any line
ﬂ_]fough P distinct from m and PQ. We must show that n meets 1. Let
PR be a ray of n between Iﬁ and a ray . of m emanating from P, There
is a point R’ on the opposite side of PQ from R such that .QPR' =
L QPR. Then Q lies in the interior of <’RPR’. Since line  passes through
the point Q interior to <RPR’, [ must intersect one of the sides of this

.~
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Adrien-Marie Legendre*

gggle. If I meets side 1715)(, then certainly [ meets n. Suppose [ meets side
PR’ at a point A, Let B be the unique point on side PR such that PA ==
PB. Then APQA = APQB (S5AS); hence <POB is a right angle, so that
B lies on [ (and n).

You may feel that this argument is plausible enough. Yet how could
you tell whether it is correct? You would have to justify each step, first
defining each term carefully, For instance, you would have to define

R’ R

Figure 1.12

*The authenticity of this porirait was criticized by Peter Duren in “Changing Faces: the
Mistaken Portrait of Legendre,” in Notices of the American Matfiematical Society, 56, De-
cember 2009, pp. 1440-3 and 1445. '
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what is meant by two lines being “perpendicular’—otherwise, how
could you justify the assertion that lines ! and m are parallel simply
because they have a common perpendicular? {You would first have to
prove that as a separate theorem, if you could.) You would have to
justify the side-angle-side (SAS) criterion of congruence in the last state-
ment. You would have to define the “interior” of dn angle and prove
that a line through the interior of an angle must intersect one of the
sides. In proving all of these things, you would have to be sure to use
only the first four postulates and not any statement equivalent to the
fifth; otherwise the argument would be circular.

Thus, there is a lot of work that must be done before we can de-
tect the flaw. In the next few chapters, we will do this preparatory work
so that we can confidently decide whether or not Legendre’s proposed
proof is valid. (Legendre’s argument contains several statements that
cannot be proved from the first four postulates.) As a result of this
work, we will be better able to understand the foundations of Euclid-
ean geometry. We will discover that a large part of this geometry is in-
dependent of the theory of parallels and is egually valid in hyperbolic
geomelry.

The Danger in Diagrams

Diagrams have always been helpful in understanding geometry—they
are included in Euclid’s Elements, and they are included in this book.
But there is a danger that a diagram may suggest a fallacious argument,
A diagram may be slightly inaccurate or it may represent only a spe-
cial case. If we are to recognize the flaws in arguments such as
Legendre’s, we must not be misled by diagrams that look plausible.

What follows is a well-known and rather invelved argument that
pretends to prove that all triangles are isosceles. Place yourself in the
context of what you know from high school geometry. {After this chap-
ter you will have to put that knowledge on hold.} Find the flaw in the
argument. '

Given AABC. Construct the bisector of <A and the perpendicular bi-
sector of side BC opposite to €A, Consider the various cases (Figure 1.13).

7= CASE 1. The bisector of ¥A and the perpendicular bisector of
segment BC are either parallel or identical. In either case, the bisector
of 4A is perpendicular to BC and hence, by definition, is an altitude.
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Case 2 Case 4

Figure 1.13

Ther.efore, the triangle is isosceles. (The conclusion follows from the
Euclidean 'theorem: If an angle bisector and dltitude from the same ver-
tex of a triangle coincide, the triangle is isosceles.)

Supposse now that the bisector of <A and the perpendicular bisec-
'tor of the side opposite are not parallel and do not coincide. Then they
intersect in exactly one point, D, and there are three cases to consider:

#2521 CASE 2. The point D is inside the triangle.

# CASE 3. The point D is on the triangle.

CASE 4. The point D is outside the triangle.

For each case, construct DE perpendicular to AB and DF perpendi-
cular to AC, and for cases 2 and 4 join D to B and D to C. In each case
the following proof now holds (see Figure 1.13). ,

DT:J = DF because all points on an angle bisector are equidistant from
the sides of the angle; DA = DA, and <¥DEA and <DFA are right an-
gles; hence AADE is congruent to AADF by the hypotenuse-leg theo-
rem of Euclidean geometry. (We could also have used the SAA theo-
rem with DA == DA, and the bisected angle and right angles.) Therefore
we have AE = AF, Now, DB = DC because all points on the perpendi:
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cular bisector of a segment are equidistant from the ends of the seg-
ment. Also, DE = DF, and <DEB and <DFC are right angles. Hence,
ADEB ig congruent to ADFC by the hypotenuse-leg theorem, and hence
FC = BE. Ii follows that AB = AC—in cases 2 and 3 by addition and in
case 4 by subtraction. The triangle is therefore isosceles.

Henri Poincaré said: “Geometry is the art of reasoning well from
badly drawn diagrams.” J. L. Lagrange, the great master of dynamics
after Newton, prided himself that his Analytic Mechanics (published in
1788) contained not a single diagram. Jean Dieudonné, in his Linear
Algebra and Geometry (first published in 1969), also omitted all dia-
grams, contending that they are “unnecessary.” But Hilbert did include
diagrams in his Grundlagen der Geometrie. '

¢

The Power of Diagrams

Geometry, for human beings, is a visual subject, and many people think
visually more than symbolically, Correct diagrams can be extremely
helpful in understanding proofs and in discovering new results. For ex-
ample, the great physicist Richard Feynman invented a hew type of di-
agram (now narmed after him) to understand and do research in quan-
tum electrodynamics.

One of the best illustrations of the power of diagrams is Figure 1.14,
which reveals immediately the validity of the Pythagorean theorem in
Euclidean geometry.

Figure 1.15 is a simpler diagram suggesting a proof by dissection.
{(Euclid’s argument was much more complicated—see his proof of 1.47.)

Algebra did not blossom with more-or-less its current symbolism
until the eighteenth century. it was developed by the Arabs and Hin-
dus, with earlier work by the Babylonians and the Alexandrian Greek
mumber theorist Diophantus. It took a while for the novel idea of per-
forming arithmetic operations with letters, instead of numbers, to be-
come commonplace—Frangois Viéte in sixteenth century France origi-
nated that.

So our idea that the Pythagorean theoremn asserts that a® + b2 = ¢?,
where a, b are the lengths of the legs and c is the length of the hy-
potenuse of a right triangle, is a relatively modern idea. If you read
1.47, Euclid’s statement of that theorem, it does not display such an
equation. it states: “In a right triangle, the square on the side sub-
tending the right angle is equal to the squares on the sides containing
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Figure 1.14

the right angle.” We interpret this to mean that the area of the square
having the hypotenuse of the right triangle as a side is equal to the
sum. of the areas of the squares having the legs of the right triangle as
their sides. If we think of area as a number, then by the definition of
the area of a geometric square as the numerical square of the length
of its side, this statement is equivalent to the equation above, which
we may call the Pythagorean eguation,

Figure 1.15
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However, just as Euclid did not have numbers as lengths of seg-
ments, he did not have numbers as areas of plane figures. Instead,
Euclid considered area to be another kind of magnitude, a term he
did not define (volume is a third kind of magnitude for solid geom-
etry). To distinguish that concept from numerical area, modern math-
ematicians define what it means for two plane polygonal figures to
have equal content—informally, it means that you can dissect one
figure into polygonal pieces and then reassemble those pieces to
construct the other figure., That’s exactly what we illustrated with
the second diagrammatic “proof” of the Pythagorean theorem in
Figure 1.15, .

Figure 1.14 illustrates a possibly weaker resutt, If we adjoin to each
of the figures another flgure consisting of four copies of the original
right triangle, then the resulting figures will have equal content.

‘We will not develop these ideas in this text. For more details on the
interesting theory of equal content, see Hartshorne {2000), Chapter 5.

Straightedge-and-Compass Constructions, Briefly

In our heuristic discussion of Euclid’'s postulates, we mentioned draw-
ings with straightedge and compass as the experiential basis for ac-
cepting the first three postulates. We rephrased those postulates to be
compatible with today’s rigorous style of expressing abstract mathe-
matics. However, we can follow Euclid’s style and informally talk about
drawing, provided that you understand how to translate such figures
of speech into our precise language. Here is Euclid’s version of the first
three postulates in Heath’s translation:

1. To draw a straight line from any point to any point.
2. To extend a finite straight line continuously in a straight line.
3. To describe a circle with any tenter and any distance.

This language shows that Euclid thought about geometric existence cor-
structively, in the sense of idealized straightedge-and-compass con-
structions. Such idealized constructions became very important in the
history of elementary geometry. They are just a figure of speech for ob-
taining the existence of certain points by intersecting lines and/or cir-
cles with lines and/or circles, as well as for the existence of lines and
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circles as guaranteed by Postulates I-lil in the form we have stated
them. Euclid never mentions straightedge or compass, though he does
use words like “draw,” “describe,” and “extend” in Heath’s translation.

Here ig a list of those propositions in Books I-1V of the Elements

which are constructions:

1.1.  To construct an equilateral triangle on a given segment.

L2 To draw a segment congruent to a given segment at a given
point.

1.3.  To cut off a smaller segment from a larger segment.

1.9. To bisect an angle.

1.10. To hisect a segment.

1.11. ‘To erect a perpendicular to a line at a given point on the line.

1.22. To construct a triangle, given three sides, provided any two are
greater than the third.

1.23. 'To reproduce a given angle at a given point and side.

1.31. To draw a line parallel to a given line through a given point not
on that line.

1.42. To construct a paxal]elogram with a given angle equal in con-
tent to a given triangle.

1.44. To construct a parallelogram with gwen side and angle equal in
content {o a given triangle.

1.45. To construct a parallelogram with a given angle equat in con-
tent to a given figure.

1.46. To construct a square on a given segment,

I1.14. To construct a square equal in content to a given figure.

HI.1, To find the center of a circle.

HL.17. To draw a tangent to a circle from a point outside the circle.

IV.1. To inscribe a given segment in a circle.

IvV.2. To inscribe a iriangle, equiangular to a given triangle, in a circle.

1IV.3. To circumscribe a triangle, equiangular to a given triangle,
around a circle.

IV.4, To inscribe a circle in a triangle.

IV.5. To circumscribe a circle around a triangle.

IV.10. To construct an isosceles triangle whose base angles are twice
the vertex angle.

Iv.11. To inscribe a regular pentagon in a circle.

IV.12. To circumscribe a regular pentagon around a circle.

IV.15. To inscribe a regular hexagon in a circle.

IV.16. To inscribe a regular 15-sided polygon in a circle.
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The remaining propositions in Books I-IV are about relationshipé and
non-relationships among geometric figures, Here are several notable ex-
amples of such propositions:

1.5. Base angles of an isosceles triangle are congruent,

1.15. Vertical angles. are congruent.

1.16. An exterior angle of a triangle is greater than either opposite in-
terior angle.

1.17. Any two angles of a triangle together are less than two right
angles.

1.20.  Any two sides of a triangle together are greater than the thll‘d

1.27. Congruence of alternate interior angles implies the lines are
parallel.

1.29. If two lines are parallel, then alternate interior afigles cut by any
transversal are congruent.

L.32. The angle sum of a triangle is two right angles, and an exterior
angle equals the sum of opposite interior angles.

1.34. Opposite sides and angles of a parailelogram are congruent,
respectively,

1.47. Theorem of Pythagoras.

1.48. Converse of the theorem of Pythagoras.

L5, If two circles intersect, they do not have the same center,

II1.10. Two circles can intersect in at most two points.

Ii.20. The angle at the center is twice the angle at a point of the cir-
cumference subtending a given arc of a circle.

I11.21. Two angles from points of a circle subtending the same arc are
congruent.

1I1.22. Opposite angles of a quadrllateral inscribed in a circle add up
to two right angles.

1IL.31. An angle with vertex on a circle and subtending a semicircle of
that circle is a right angle.

Many of these propositions should be recognizable to you from your
previous course in Euchdean geometry. Proposition 0131 is attributed
to Thales.

After constructing the beautifully symmetric equilateral triangle on
a given segment in his very first proposition, why did Euclid wait un-
til his 46th proposition to construct the beautifully symmetric square
on a given segment? Because that construction depends on using the
fifth postulate.
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There were three famous siraightedge-and-compass construction
problems in ancient Greek geometry and a fourth that was less famous
but equally important:

1. Tiisect any angle,

2. Square any circle (i.e., construct a square having the same area as
the given circle).

3. Duplicate any cube (i.e., construct a segment such that the cube on
that segment has twice the volume of the given cube).

4. For any n > 6, construct a regular n-gon (i.e., an n-sided convex
polygon in which all sides and all angles are congruent to one an-
other, respectively).

The construction of a regular-n-gon for n = 3, 4, 5, 6 was carried out
in Euclid's Elements. The first unsolved case is n= 7.

The critical difficulty in these problems is the restriction to using
straightedge and compass alone (or, more precisely, to using only lines
and circles and no other curves). From the point of view of a design
engineer, say, that restriction can be circumvented by using other in-
struments. However, from the point of view of a pure mathematician,
that restriction poses an interesting theoretical probiem that eventually
led to some extremely interesting mathematics,

It turned out that none of these constructions could be carried out
in general. For certain special cases, the construction could be done—
e.g., a right angle can be trisected with straightedge and compass alone
{just bisect the angle of an equilateral triangle). A regular octagon can
easily be constructed by circumscribing a square with a circle, per-
pendicularly bisecting the sides of the square and joining the four points
where those perpendicular bisectors hit the circle to the adjacent ver-
tices of the square. Thanks to the work of C. F. Gauss, we know ex-
actly for which n Problem 4 is solvable, and the answer very surpris-
ingly depends on certain prime numbers that were first investigated by
Fermat and have been named after him. There are only three Fermat
primes n > 6 for which the regular n-gon is currently known to be con-
structible: 17, 257, and 65,537; that is because it's a currently unsolved
problem as to whether there are any other Fermat primes,

The impossibility of these constructions in general could only be
proved after analytic geometry was invented, and these geometric prob-
lems were successfully translated into purely algebraic ones in the early
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nineteenth century. That was a great triumph for the use of algebra in
geometry (a vindication of Descartes and Fermat, who pioneered such
usel. )

That impossibility has been thoroughly explained in several other
texts, s0 we won't go into it here. See Hartshorne or Moise, for exam-
ple. Very briefly and sketchily, using Cartesian coordinates of points,
the algebraic analogue of any straightedge-and-compass construction
involves the determination of certain numbers obtained from rational
numbers by repeatedly using the four arithmetic operations and the op-
eration of taking the square root of a positive number. The general-
case analogue of Problems 1 and 3 involves solving cubic equations,
and it can be proved that roots of irreducible cubic equations with ra-
tional number coefficients cannot be obtained using only those five op-
erations. Problem 2 was shown unsolvable when Lindemann pfoved
the much stronger result that o is transcendental—it is not a root of
any polynomial with integer coefficients.

Descartes {and long beiore him, Pappus in the third century) con-
jectured the impossibility in general of those first three constructions.
Kepler argued for the impossibility of constructing the regular hepta-
gon (seven-sided) and asserted, as a result, that it was simply “un-
Iknowable.” He also claimed that the regular p-gon for a prime p> 5§
could not be constructed; he did not know about the exceptions
p =17, 257, and 65,537 found by Gauss.

Certain Greek mathematiclans of antigquity mvented interesting tools
and methods other than straightedge and compass to construct those
desired geometric objects. As the simplest example, Archimedes showed
how to trisect any angle using a marked straightedge (see Exercise 16).
Many centuries later, Vigte proposed to add a new axiom to geomelry
to permit such so-called neusis constructions, but Euclidean geometry
was considered too sacrosanct by then for new axioms to be accepted.
Here is Vigte’s axiom, in which segment AB plays the role of two marks
on the straightedge:

ViiTE’s AXioM. Given a segment AB and point C. Let ¢, u be distinct
lines or a line and a circle {(Figure 1.16). Then there exists a point
on f and a point Q on n such that PQ = AB and P, Q, C are collinear,

You are invited to explore some of these developments in the ex-
ercises, Regardlng the 1mp0351b1hty results, mathematician Oscar Mor-
genstern said:
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B .
A./' - C

o

i

Figure 1.16 Viéte’s axiom PQ = AB,

Some of the profoundest insights the human mind has achieved are
stated in negative form. . . . Such insights are that there can be no per-
petuum mobile, that the speed of light cannot be excesded, that the cir-
cle cannot be squared using ruler and compass only, that similarly an
angle cannot be trisected, and so on. Each of these statements is the
culmination of great intellectual effort. All are based on centuries of
work. . ., Though stated negatively, these and other discoveries are
positive achievements and great contributions to human knowledge.

Descartes’ Analytic Geometry and
Broader Idea of Constructions

Although coordinates had been used long before their work (e.g., in
astronomy and geography), historians give René Descartes and Pierre
Fermat equal credit for the invention of analytic geometry, in which
numerical coordinates and algebraic equations in those coordinates are
used to obtain geometric results. Descartes was the first to publish in
1637, as an appendix (La Géométrie, in three parts) to his very influ-
ential Discourse on Method, his philosophical method for finding and
recognizing correct knowledge. Fermat never did publish his work; in-
stead, he communicated his results in private letters to a few colleagues,
and his work was made public only in 1679, fourteen years after he
died. Curiously, although both these men were outstanding mathe-
maticians, mathematics was not their profession. Fermat was a jurist
who did mathematics as a hobby. He is best known for his work in

number theory; his famous “last theorem” was finally proved in 1995, .

as a corollary to Andrew Wiles’ proof of the main patrt of the profound
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René Descartes

Shimura-Taniyama conjecture. Fermat also discovered the basic idea
of the differential calculus before Newton and Leibniz. Descartes con-
tributed to other sciences besides mathematics, but he was primarily a
philosopher whose writings had a great impact on the way educated
people viewed the world.

Both men initially introduced their algebraic methods in order to
solve problems from classical Greek geometry, recognizing that the new
methods had great potential to solve other problems. Their successors
over many decades realized that potential. Descartes’ stated goal was
to provide general methods, using algebra, to “solve any problem in
geometry.” He did not see geometry as an axiomatic deductive science
that derives theorems about geometric objects,

In the time of Descartes, the tradition was that algebra was a com-
pletely separate subject from geometry. That tradition was breaking
down with the work of Viete in the sixteenth century, and boih
Descartes and Fermat built on Vidte’s ideas. '

" Descartes defined the five algebraic operations of addition, subtrac-
tion, muitiplication, division, and extraction of square roots as
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geometric constructions on line segments and showed how those oper-
ations could be performed in the Euclidean plane by straightedge-and-
compass constructions, Thus, those algebraic operations were a legiti-
mate part of classical Euclidean plane geometry; they were operations
on geometric objects, not operations on numbers.

Particularly innovative was his simple definition of multiplication of
segments in terms of similar iriangles once a unit segment had been ar-
bitrarily chosen. Viéte thought of the product of two segments as rep-
resenting the area of a rectangle having those segments as its sides (in
solid geometry, the product of three segments was thought to represent
a volume). An algebraic expression such as a? + b made no sense to
Vigte, for how could one add an area to a segment? With Descartes’
definition, it made perfectly good sense as the sum of two segments.
Moreover, with Descartes’ definition, expressions involving products of
four or more terms now made geometric sense as segments, whereas
previously they had been rejected as meaningless because space had
only three dimengions. Thus, Descartes could carry out geometrically
all algebra involving those five operations. For example, Descartes
showed how to solve geometrically all guadratic equations in one un-
known having positive roots; he did not deal with negative roots be-
cause at that time they were considered “false.” He stated his general
method as follows:

If we wish to solve any geometric problem, we first suppose the solu-
tion already effected, and give names to all the segments needed for its

~ construction—to those that are unknown as well as to those that are
known. Then, making no distinction between known and unknown seg-
ments, we must unravel the difficulty in any way that shows most nat-
urally the relations between these segments, until . . . we obtain an
equation in a single unknown.

He then developed geometric techniques for solving polynomial equa-
tions in a single unknown, at least for equations of degree at most 6.
To geometrically solve equations of degree 3 or 4, he had to intersect
conics—parabolas or ellipses (including circles) or hyperbolas—with
each other or with lines, for he recognized that their solutions could
not generally be constructed by straightedge and compass alone (that
was not proved rigorously until the nineteenth century). To solve equa-
tions of degree 5 or 6, he had to introduce cubic curves. The study of
conics and higher-degree curves belongs to what used to be called
“higher geometry”; this text is primarily about elementary geometry,
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so we won't delve into that important subject. Descartes was certainly
not the first to use constructions other than straightedge and compass
ones {see Project 8); his new idea was to siudy them algebraically.

When Descartes gave a name or letter to the solution sought and
then reasoned from there, he was using the method that had classically
been called “analysis”—reasoning from the conclusion until one arrives
at propositions previously established or at an axiom. By reversing the
order of the steps—if possible—one obtains a demonstration of the re-
sult. Analysis is a systematic method of discovering necessary condi-
tions for the result to hold; synthesis would then hopefully show that
those conditions are sufficient. It is because of this method that
Descartes’ geometry is called analytic. (Later in the history of mathe-
matics, “analysis” came to have a completely different meaning: It was
the branch of mathematics dealing with Hmiting processes-—the calcu-
lus and its more advanced developments, So it would be more appro-
priate to call it “coordinate geometry” rather than “analytic geometry,”
and some authors do call it that,)

Most of the proofs in this book are synthetic, as in Euclid. Only in
the much later chapters will we use some analytic geometry.

Il took many years before analytic geometry was well understood
and accepted into mainstream mathematics. Blaise Pascal objected to
the use of algebra in geometry because it had no axiomatic foundation
at that time, What also slowed its acceptance was Descartes’ style of
writing, which was deliberately difficult to understand. Descartes
warned his readers that “I shall not stop teo explain this in more detatfl,
because I should deprive you of the pleasure of mastering it yourself.”

Isaac Newton was ambivalent about the proper role of analytic
geometry. In an appendix to his Opticks (published in 1704, composed
in 1676), he used analytic geometry to exhibit 72 species of curves
given by third-degree polynomial equations (cubics) in two unknowns
and plotted them. Newton thereby opened an entirely new field of
geometry for study: higher-degree plane algebraic curves (later, tran-
scendental curves—not given by a polynomial equation but given by
transcendental functions such as the logarithm or trigonometric fune-
tions—were studied). Before the invention of analytic geometry, only
a dozen or so curves were known to the Greeks,

But in his Arithmefica universalis (published in 1707 but written a
quarter-century earlier), Newton said:

Equations are Expressions of Arithmetical Computation, and properly
have no place in Geometry . . . these two sciences ought not to be
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confounded. The Ancients did so industriously distinguish them from
one another that they never introduced Arithmetical Terms into Geom-
etry. And the Moderns, by confounding both, have lost the Simplicity
in which all the Elegancy of Geometry consists.

It is clear from most of Newton’s writings that he fully realized and
utilized the value and power of coordinate numerical algebraic meth-
ods. Undoubtedly what Newton intended by this declaration was that
coordinate methods should not be used when dealing with elementary
geometry, i.e., Euclid’s geometry of lines and circles, but they are ac-
ceptable in higher geometry.

Nevertheless, Newton wrote his monumental Principia in the syn-
thetic style of Euclid because that was the style of mathematics that
was considered rigorous in his time. Newton later admitted that he orig-
inally discovered and elaborated his results by analytic methods.

Descartes and Fermat brought algebraic techniques into geometry
in a convincing manner that eventually revolutionized the subject. Their
analytic geomeiry was more limited than ours—e.g., they usually did
not allow negative coordinates. John Wallis, in his Arithmetica Infini-
torwm in 1655, was the first to do that systematically (we shall en-
counter his work again in Chapter 5). Hence all the loci of Descartes
and Fermat were restricted to the first quadrant.

Briefly on the Number w

All the ancient civilizations guessed that the ratio of circumference C
to diameter d of a circle was constant. For example, by marking a start-
.ing point and an ending point for a circular wheel rolling on a flat
surface, it could be seen that the wheel advanced forward a bit over
three diameters when it went through one revolution. The same ap-
proximate result was obtained no matter what the size of the wheel,
indicating that the ratio was independent of the size of the wheel.

In 1706, William Jones dencted that constant as o, and Leonhard
Euler subsequently popularized this symbol in his voluminous writings.
The ancient Egyptians had various estimates of 4r, one such being
22/7 = 3.142857.

The ancients also guessed from experience that the ratio of the area
A of a circular disk to the square r? of its radius was constant. The
Babylonians and ancient Chinese recognized that constant to be the
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saine 7 because they knew, in our notation, the formula A=Cr/2; we
don’t know how they arrived at this result. Archimedes, in the century
following Euclid, proved that formula, expressing it geometrically by
saying, “The circle equals in area the right triangle with base equal to
its circumference and altitude equal to its radius.” He proved his result
using Eudoxus’ method of exhaustion—a limiting argument.
Archimedes also approximated a circle by inscribed and circumscribed
regular polygons. Using 96-sided polygons, he obtained after a very
lengthy calculation the estimate 3.1416 for ; he also obtained a crude
bound for how much his estimate might be off. We know now that it
is correct to four decimal places. Some early mathematicians thought
of a circle as being a “regular polygon with infinitely many sides.”

To treat these ideas rigorously yet on a relatively elementary level,
if C is defined as the limit of the perimeters of the inscribed and cir-
cumscribed regular polygons, then after first proving that those limits
exist and are the same, the constancy of C/d can be proved by apply-
ing theorems about similar triangles to those regular po}ygons (See
Moise, 1990, Section 21.2.)

However, we will learn, in Chapter 6, that in non-Euclidean geom-
etry, similar triangles do not exist (except for congruent triangles, which
are trivially similar}). So that proof breaks down in non-Euclidean geom- '
etry, and in fact we will show in Chapter 10 that C/d is not constant
in real non-Euclidean geometry! The reason C/d appears to be constant
in our local physical world is that real Euclidean geometry provides a
very good approximate model for that local world, as we all know. In
the vast global world of the universe as a whole, Euclidean geometry
may not be the best medel, as we will discuss in Chapter 8.

Now the number o occurs in many formulas in many branches of
mathematics, branches such as probability and statistics and complex
analysis that have nothing to do with Euclidean geometry. Yet the
definition of o we have indicated above depends on a Euclidean re-
sult. While it is correct that the number # was discovered historically
via real Euclidean geometry, it is not logically correct to define +r that
way if we used the integral calculus to prove that C = d; that would
be circular reasoning.

(For those readers who know calculus, determination of the arc length
of a quarter of a circle of radius R comes down to multiplying R by the

integral f dt/V'1 — t2, To obtain the answer #/2 for this integral, one

must have already defiied and studied the arcsin function, determined
its derivative, and know that arcsin(0} = 0 and arcsin(1) = #/2, where
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o has been previously defined analytically or is simply defined as
2 arcsin(1).)

The correct method is to define 7 as the limit of a certain sequence!?
of rational numbers, which can be done in many ways. Similarly, al-
though the trigonometric functions were discovered historically via real
Euclidean geometry and defined in terms of ratios of sides of right tri-
angles, definitions that made sense because of the Fuclidean theorem
that corresponding sides of similar triangles are proportional, one log-
ically correct definition of the trigonometric functions independent of
Euclidean geometry is in terms of certain absolutely convergent infinite
series.'® Then those functions can be used in real non-Euclidean geome-
tries as well, where the Euclidean theory of similar triangles is inoper-
ative. See Chapter 10 and any rigorous treatise on analysis,

The number o has fascinated mathematicians (amateur as well as
professional) throughout the ages. Two attractive books devoted en-
tirely to this number are Posamentier and Lehmann {2004) and Eymard
and Lafon (2004) (see the bibliography at the back of this book). In-
credibly, neither of those hooks provide a proof that o is well defined,
Le., that C/d is constant in Euclidean geometry!

Conclusion

We have briefly discussed many historical facts and ideas in this chap-
ter to provide the background for what will follow, You have the
opportunity to explore them further in the exercises and projects for
this chapter.

In subsequent chapters, we will hone in on a rigorous presentation
of plane Euclidean geometry, placing special emphasis on the role
played by the parallel postulate. We will then be able to analyze other
attempts to prove that postulate besides the attempt by Legendre dis-
cussed in this chapter. After that we will see the dramatic story unfold
of the discovery and ultimate validation of non-Euclidean geometry,

12 For example,

13 For example,

REVIEW EXERCISE 41

Review Exercise

Which of the following statements are correct?

(1) The Euclidean parallel postulate states that for every line I and
for every point P not lying on [ there exists a unique line m
through P that is parallel to L

(2) An "angle” is defined as the space between two rays that em-~
anate from a common point.

(3) Most of the results in Euclid’s Elements were discovered by
Euclid himself.

(4) By definition, a line m is “paraliel” to a line ! if for any two
points P, Q on m, the perpendicular distance from P to ! is the
same as the perpendicular distance from Q to

(5) It was unnecessary for Euclid to assume the parallel postulate
because the French mathematician Legendre proved it.

(6} A “transversal” to two lines is another line that intersects both
of them in distinct points.

{(7) By definition, a “right angle” is a 90° angle.

(8) “Axioms” or “postulates” are statements that are assumed,
without further justification, whereas “theorems” or “proposi-
tions” are proved using the axioms.

{(9) We call /2 an “irrational number” because it cannot be ex-

pressed as a quotient of two whole numbers.

(10) The ancient Greeks were the first to insist on proofs for math-
ematical statements to make sure they were correct.

{11) Archimedes was the first to develop a theory of propartions
valid for irrational lengths. ‘

{12) The precise technology of measurement available to us today
confirms the Pythagoreans’ claim that V2 is irrational.

(13) The: ancient Greek astronomers did not believe that three-
dimensional Euclidean geometry was an idealized model of the
entire space in which we live because they believed the uni-
verse is finite in extent, whereas Euclidean lines can be ex-
tended indefinitely,

{14) Descartes brought algebra into the study of geomeiry and
showed he could sclve every geometric problem with his
method, ' '

{15) The meaning of the Greek word “geometry” is “the art of rea-
soning well from badly drawn diagrams.”

el Univarsity - B LRERT
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(16) A great many of Euclid’s propositions can be interpreted as
constructions with straightedge and compass, although he
never mentions those instruments explicitly.

{(17) Euclid provided constructions for bisecting and trisecting any
angle.

(18} Although 4 is a Greek letter; in Euclid’s Elements it did not de-
note the number we understand it to denote today.

Exercises

In Exercises 1-4, you are asked to define some familiar geometric terms.
The exercises provide a review of these terms as well as practice in
formulating definitions with precision. In making a definition, you may
use the five undefined geometric terms and all other geometric terms
that have been defined in the text so far or in any preceding exercises,

Making a definition sometimes requires a bit of thought. For ex-
ample, how would you define perpendicularity for two lines [ and m?
A first attempt might be to say that “! and m intersect and at their point
of intersection these lines form right angles.” It would be legitimate to
use the terms “intersect” and “right angle” because they have been pre-
viously defined. But what is meant by the statement that lines form
right angles? Surely, we can all draw a picture to show what we mean,
but the problem is to express the idea verbally using only terms intro-

duced previously. According to the definition on page 18, an angle is

formed by two nonopposite rays emanating from the same vertex. We
may therefore define [ ﬂl}d m as perpendicular if they_gltersect at a point
A and if there is a ray AB that is part of { and a ray AC that is part of m
such that <{BAC is a right angle (Figure 1.17). We denote this by I 1 m.

m /

Figure 1.17 Perpendicular lines,
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Figure 1.18 Concuwrent lines.

1. Define the following terms:
{a) Midpoint M of a segment AB.
{b) Perpendicular bisector of a segment AB (you may use the term
“midpoint” since you have just defined it).
“(c) Ray BD bisects angle £ABC (given that point D is between A
and C).
(d) Points A, B, and C are collinear.
(e) Lines I, m, and n are concurrent (see Figure 1,18).
2. Define the following terms:
(a} The triangle AABC formed by three noncollinear points A, B,
and C. ' .
(b} The vertices, sides, and angles of AABC. (The “sides” are seg-
ments, not lines.) '
(c) The sides opposite to and adjacent to a given vertex A of AABC,
(&) Medians of a triangle (see Figure 1.19).
{e) Altitudes of a triangle (see Figure 1.20).
(f) Isosceles triangle, its base, and its base angles.
(g) Equilateral triangle.
(h) Right triangle.

Figure 1.19 Median,
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Fignre 1.22 Vertical angles.

Figure 1.20 Altitude,

6. {a) Given two poinis A and B and a third peint C between them.

3. Given four points, A, B, C, and D, no three of which are collinear {Recall that “between” is an undefined term.) Can you think

and such that any pair of the segments AB, BC, CD, and DA either
have no point in common or have only an endpoint in common.
We can then define the quadrilateral CJABCD to consist of the four
segments mentioned, which are called its sides, the four points be-
ing called its vertices (see Figure 1.21). {Note that the order in which
the letters are written is essential. For example, [JABCD may not
denote a quadrilateral because, for example, AB might cross CD. If
OJABCD did denote a guadrilateral, it would not denote the same
one as [JACDB. Which permutations of the four letters A, B, C, and
D do denote the same quadrilateral as [JABCD?) Using this defini-
tion, define the following notions:

(a) The angles of (JABCD.

. (b} Adjacent sides of [JARCD,

(e} Opposite sides of [JABCD.

(d) The diagonals of [JABCD.,

(e) A parallelogram, (Use the word “parallel.”)

Define vertical angles (Figure 1.22). How would you alttempt to prove
that vertical angles are congruent to each other? (Just sketch a plan
for a proof—don’t carry it out in detail.)

Use a common notion to prove the following result: If P and Q are
any points on a circle with center O and radius OA, then OP = 0Q.

B C

Fignre 1.21 Quadrilaterals,

of any way to prove from the postulates that C lies on line AR?

(b} Assuming that you succeeded in proving C lies on AB can you
prove from the definition of “ray” and the postulates that AE =
AC?

. If § and T are any sets, their union (S U T} and intersection (SN T

are defined as follows: _
{) Something belongs to S U T if and only if it belongs either to
S or to T {or to both of them).

" (i) Something belongs to § N T if and only if it belongs both to 5

and to T.
CGiven two points A and B, conszder the two rays AB and BA. Draw
e —_— m——
diagrams to show that AB U BA = AB and AB N BA = AB. What ad-
ditional axioms about the undefined term “between” must we as-
sume in order to be able to prove these equalities?

. To further illustrate the need for careful definition, consider the fol-

lowing possible definitions of rectangle:
() A quadrilateral with four right angles.
(i) A quadrilateral with all angles congruent to one another.
(iii) A parallelogram with at least one right angle.
In this book we will take (i) as our definition. Your experience
with Euclidean geometry may lead you to believe that these three

_definitions are equivalent; sketch informally how you might prove

that and notice carefully which theorems you are tacitly assuming.
In hyperbolic geometry, these definitions give rise to three different
sets of quadrilaterals (see Chapter 6).

. Can you think of any way to prove from the postulates that for

every line 1
(a) There exists a point lying on {2
(b) There exists a point not lying on 1?2

10. Can you think of any way to prove from the postulates that the

plane is nonempty, i.e., that points and lines exist? (Discuss with
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your i_nstructor what it means i say that mathematical objects, such
as points and lines, “exist,”)
11.Do.you think that the Euclidean parallel postulate is “obvious”?
Write a brief essay explaining your answer.,
12. What is the flaw in the “proof” that ajl triangles are isosceles? (All
the theorems from Euclidean geometry used in the argument are
correct.)
13, If: the number r is defined as the ratio of the circumference of any
Flrf:le to its diameter, what theorem must first be proved to legit-
imize this definition? For example, if I “define” a new number @ o
be the ratio of the area of any circle to its diameter, that would not
be legitimate. Explain why not,
14, I.n this exercise, we will review several basic Euclidean construc-
tions with a straightedge and compass. Such constructions fasci-
nated mathematicians from ancient Greece until the nineteenth cen-
tury, when all classical construction problems were finally solved.
(a) Given a segment AB. Construct the perpendicular bisector of
A.B. {Hint: Make AB a diagonal of a thombus, as in Figure 1,23.)

{b) Givenalinelanda point P lying on 1. Construct the line through
Pf;;e)rpendicular to {. (Hint: Make P the midpoint of a segment
Or L.

(c) Given a line  and a point P riot lying on 1. Construct the line
through P perpendicular to 1. (Hint: Construct isosceles trian-
gle AABP with base AB on [ and use (a))

(d) Given a line [ and a point P not lying on I Construct a line
through P parallel to L. (Hint: Use {b) and (c).)

(e} Constiuct the bisecting ray of an angle. (Hint: Use the Ruclid-
ean theorem that the perpendicular bisector of the base on an

Figure 1.23
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isosceles triangle is also the angle bisector of the angle oppo-
site the base.}

{f) Given AABC and segment DE s AB, Congstruct a point F on a
given side of line DE such thh_a)t ADEF = AABC.

(&) Givel('l_gngle <*ABC and ray DE. Construct F on a given side of

: line DE such that <ABC == {FDE, :

15. Euclid assumed the compass to be collapsibile. That is, given two
points P and Q, the compass can draw a circle with center P pass-
ing through Q (Postulate III}; however, the spike cannot be moved
to another center O to draw a circle of the same radius. Once the
spike is moved, the compass collapses. Check through your con-
structions in Exercise 14 to see whether they are possible with a
collapsible compags. (For purposes of this exercise, being “given”
a line means being given two or more points on it.)

(a} Given three points P, Q, and R. Construct with a straightedge
and cellapsible compass a rectangle [JPQST with PQ as a side
and such that PT = PR (see Figug—:} 1.24).

(b) gj;ren a segment PQ and a ray AB. Construct the point C on
AB such that PQ = AC, (Hint: Using part (a), construct rec-
tangle OPAST with PT = PQ and then draw the circle centered
at A and passing through §.) _

Part (b) shows that you can transfer segments with a collapsible

compass and a straightedge, so you can carry out all constructions

as if your compass did not collapse.

16. The straightedge you used in the previous exercises was supposed
to be unruled (if it did have marks on it, you weren’t supposed to
use them}. Now, however, let us mark two points on the straight-
edge so as to mark off a certain distance d. Archimedes showed
how we can then trisect an arbitrary angle.

For any angle, draw a circle v of radius d centered at the ver-
tex O of the angle. This circle cuts the sides of the angle at points

A and B. Place the marked straightedge so that one mark gives a

Filgure 1.24
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D
d
B
N —r e
p C
Figure 1.25

pPint C on line Oﬁ&sueh that O is between C and A, the other mark
glves a point D on circle v, and the straightedge must simultane-
ously rest on the point B, so that B, C, and D are collinear (Figure
1.25}. Prove that €COD so constructed is one-third of <AOB (Hint:
Use Euclidean theorems on exterior angles and isosceles tria.ngles.).

Major Exercises

1.

14

with straightedge and tompass as follows:
(2) Construct a square [JABCD.
{b) Construct midpoint M of AB.
{(c} Construct point E such that B ig between A and E and MC ==
ME (Figure 1,26),
((d)) Construct the foot F of the perpendicular from E to DG
e) Then (JAEFD is a golden rectangle - .
gle (ase the Pytha -
| orem for AMREC). : : ’ gore“an e
(f llvllloreover, {_IBEFC is another golden rectangle (first show that
p=p—1).

The next two exercises require a knowledge of trigonometry.

For applications of the golden ratio to Fi i
o Fibonacei numbers and i
eter (2001}, Chapter 11, Also see Livio (2005). e phylotaxds, see Cox-

Fignre 1.26

. The Egyptians thought that if a quadrilateral had sides of lengths

a, b, ¢ and d, then its area S was given by the formula
(a+ c)(b + d)/4. Prove that actually

45=(a+ )b+ d)
with equality holding only for rectangles. (Hint: Twice the area of
a triangle is ab sin 6, where # is the angle between the sides of
lengths a, b, and sin 8 = 1, with equality holding only if 8 is a right
angle.)

- Prove analogously that if a triangle has sides of lengths a, b, ¢, then

its area S satisfies the inequality
45V3=a? + b2 + &2
with equality holding only for equilateral triangles, (Hint: If 8 is the
angle between sides b and ¢, chosen so that it is at most 60°, then
use the formulas
25=becsin @
2bc cos 6 = b + ¢ — a? (law of cosines)
cos (60° ~ @) = (cos @ + V3sin )/2

. Let AABC be such that AB is not congruent to AC. Let D be the

point of intersection of the hisector of <A and the perpendicular hi-
sector of side BC. L(:.‘L} Eﬁ.s argl) G De the feet of the perpendiculars
dropped from D to AB, AC, BC, respectively. Prove that:

(a) D lies outside the triangle on the circle through ABC.

(b) One of E or F lies inside the triangle and the other outside.
(c) E,F, and G are collinear.

{Use anything you know, including coordinates if necessary.)

. Figure out an algebraic proof that if a nataral number n is not the

square of some other natural number, then V7 is irrational. (If you
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are stymied, see Barry Mazur's essay “How did Theaetetus prove
his theorem?” at Www.math.harvard.edu/~mazur/prepﬁnts/Eva.
Nov.20.pdf. In this essay, Pappus is quoted as saying “Ignorance of
the fact that incommensurables exist is a brutish and inhuman
state.” Do you agree or disagree? Explain.)

Proects

L. (a) Report on at least three other proofs of the Pythagorean theo-
Tem besides the ones illustrated in this chapter. (Suggestion:
See Maor, 2007.) If you find further interesting historical in-
formation about this great theorem, repert on that too {e.g.,
President Garfield’s proof).

(b) A Pythagorean triple is a triple (q, b, ) of positive integers sat-
isfying the Pythagorean equation. The triple is primitive if the
integers have no common factor. A general Pythagorean triple
is a positive integer multiple of a primitive one (cancel the ged).
Find polynomials b, g, r of degree 2 in two integer variables
such that every primitive Pythagorean triple is given by a =
plm, n), b= g(m, n), and ¢ = r{m, n) and conversely these
equations provide a primitive Pythagorean triple for every pair
of unequal relatively prime positive integers (im, n). (Hint: Show
that this problem is equivalent to finding all points on the unit
circle with rational coordinates and solve that using the pencil
of lines through (-1, 0}.} Search the web for further results on
Pythagorean triples and Teport on the results you find most in-
teresting.

2. From the long list of propositions in Euclid’s Elements that were de-
scribed in this chapter as straightedge-and-compass constructions,
choose five that have not been discussed in Exercise 14 and report
in detail on how Euclid’s proofs of those propositions can be inter-
preted as such constructions,

. Write a paper explaining in detail why it is impossible to trisect an
arbitrary angle or square a circle using only a comnpass and un-
marked straightedge (see Jones, Morris, and Pearson, 1991; Eves,
1972; or Moise, 1990). Explain how arbitrary angles can be trisected
if in addition we are allowed to draw a parabola or a hyperbola or
a conchoid or a limagon {see Peressini and Sherbert, 1971).

4. Here are two other famous results in the theory of constructions:
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{a) Mathematicians G. Mohr of Denmark am'i L. Mascheroni .of Ital‘s;
discovered independently that all Euclidean cqnstrucnons 0
points can be made with a compass alope. A line, of COL.II‘SES
cannot be drawn with a compass, but' it cax? be de.termmlf‘
‘with a compass by constructing two points lying 01.1 it. Iéx t }s
sense, Mohr and Mascheroni showed that the straightedge is

(b) giniizssggér hand, German mathematician .J . Steiner anc%

' Frenchman J. V. Poncelet showed that all Euchdc?an const?lct
tions can be carried out with a straightedge alone if we are firs

i single circle and its center,
Repoivsr? 'glesegremarkable discoveries (see Eves, 1972).

Given any AABC. Draw the two rays that trisect each of its angles

and let P, Q, and R be the three points of intersection O.f ad}'acer}t
trisectors.’ Prove Morley’s theorem!® that APQR. is an equilateral tri-
angle (see Figure 1.27 and Coxeter, 2001, Secftlon 1.9). -
| An n-sided polygon is called regular if all its sides (res;iective 3t;, an-
. Construct a regular pentagon
les) are congruent to one another,
indja regular hexagon with straightedge and compass. 'l“hg zigeulrzr
tructed; in fact, Gauss proved- -
heptagon cannot be so constructed; : prov
m:i‘kagble theorem that the regular n-gon is constructible if and on}lly
if all odd prime factors of n occur to the first power and 'have the
form 22" + 1 {e.g., 3, 5, 17, 257, 65,537). Report on this rc?sult,
using Klein (2007}. Primes of that form are call_ed Fermat pr‘"tmesé
The five listed are the only ones known at this time. Gazss ?11;1 ‘:;E.Od
7-gon or 65,537-gon; he s
-actually construct the regular 25 : 37-
2;:11‘; tgat the minimal polynomial equation satlsﬁe-zd by cos(qul/ln)
for such n could be solved in the surd field (see Muoise, 1990). Other

Figure 1.27 Morley’s theorem.

15 For a converse and generalization of Morley's theorem, see Kleven (1978).
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devoted (obsessive?) mathematicians carried out the constructions.
The constructor for n = 65,537 labored for 10 vears and was rewarded
with a Ph.D. degree; what is the reward for checking his work?
Research and report on neusis constructions, mentioned in this.chap-
ter and illustrated in Exercise 16, (Search on the web or use Bos
{2001} as a reference.) Give and explain your opinion on whether
Vigte’s axiom for neusis constructions should be accepted in ele-
mentary geometry. Discuss in your repoit Viéte's construction of
the regular heptagon using compass and marked ruler as another
example of how useful this axiom is (see Hartshorne, Problem 30.4).
Describe the primes p for which the regular p-gon can be constructed
with compass and marked straightedge using the marks between
lines only (Hartshorne, Corollary 31.9). Is p = 11 one of them?
Report on solutions in antiquity to the three classical construction
problems using curves other than lines and circles (e.g., the quadra-
trix, the conchoid, the cissoid, etc.). Use Bos (2001) as a great ref-
erence to report on the historical issue of what constitutes an “ex-
act” construction in geometry and for a thorough analysis of what
Descartes did. 7 ‘

Write a report on the invention/discovery of analytic geometry. Your
report should explain the differences and similarities between the
works of Descartes and Fermat.

In chronological order of birth, Eudoxus, Archimedes, and Apollo-
nius were the greatest mathematicians of ancient Greece. Choose
one of them and report on his work,

. Report on episedes that interest vou in the history of irrational num-

bers (use the web or a good history text such as Katz, 1998).

Report on Descartes’ La Géométrie {1954, in its English translation,

if necessary). Do you agree with his statement that explaining the

subject in too much detail deprives the reader of the pleasure of

mastering it himself?

Comment on the following quotes:

(a) The axiomatic' method has many advantages over honest
work—Bertrand Russell.

(b) Our difficulty is not in the proofs, but in learning what to
prove—Emil Artin,

Logic and
Tncidence
- Geometry

4
Reductio ad absurdum . . . is a far finer gambit than any chess
gambit: a chess player may offer the secrifice of a pawn or even a

iece,-bit a mathematician offers the garme. .

Elementary Logic

In the previous chapter, we introduced the postulates and basic def?—
nitions of Euclid’s plane geometry, slightly rephrased for greater Pr‘em—
slon. We would like to begin proving some the_orems or propos.1t1ons
that are logical consequences of the postulates. However, certain ex-
ercises in the previous chapter may have alerted you to exi.:nect so'me
difficulties that we must first clear up. For example, ﬂ:‘lEI‘F.‘ 1s'nothm5g
in the postulates that guarantees that a line has any p?mts lyn.ag on %t
{or off it)! You may feel this is ridiculous—it Wouldg.t be a hne: if it
didn’t have any points lying on it. Your protest is legitimate, for if my
concept of a line were so different from yours, then we would not un-

53
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derstand each other, and Requirement O--that there be mutual under-
standing of words and symbols used—would be violated.

So let’s be clear: We must play this game according to the rules,
the rules mentioned in Requirement 2 but not spelled owt. Unfortu-
nately, to discuss them thoroughly would require changing the content
of this text from geometry to mathematical logic. Instead, [ will simply
remind you of some basic rules of reasoning that you, as a rational be-

ing, already know and have used in your previous work in mathemat-

ics. Some ideas and notation from mathematical logic will be intro-
duced. If you have a good deal of experience in mathematics, I
recommend that you quickly skim this material on logic and move
ahead to the section on incidence geometry.

Locic Ruie 0. No unstated assumptions may be used in a proof.

The reason for taking the trouble to list all our agioms is to be ex-
plicit about our basic assumptions, including the most obvious. Al-
though it may be “vhvious” that two points Iie on a unique line, Eu-
clid stated this as his first postulate. So if in some proof we want to
say that every line has points lying on it, we should list this as another
postulate (or prove it, but we can't). In other words, all our cards must
be out on the table, and we will have to add two other axioms in the
section on incidence geometry to guarantee that existence.

Perhaps you have realized by now that there is a vital relation be-
tween axioms and undefined terms. As we have seen, we must have
undefined terms in order to avoid infinite regress. But this does not
mean we can use these terms in any way we choose. The axioms tell

Figure 2.1 The shortest path between two points on a sphere is an arc of a
great circle (a circle whose center is the center of the. sphere and whose
radius is the radius of the sphere, e.g., the equator).
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us exactly what properties of undefined terms we are allowed to use
in our arguments. You may have some other properties in your mind
when you think about these terms, but you’re not allowed to use them
in a proof (Rule 0). For example, when you think of the unique line
segment determined by two points, you probably think of it as being
“straight,” or as “the shortest path between the two points.” Euclid’s
postulates alone do not allow us to assume these properties. Besides,
from one viewpoint, these properties could be considered contradic-
tory. If you were traveling over the surface of the earth, idealized as a
sphere, say from San Francisco to Moscow, the shortest path would be

. an arc of a great circle {a straight path would bore through the earth).

Indeed, a pilot making that trip nonstop normally takes the great cir-
cle route (see Figure 2.1).

Theorems and Proofs

All mathematical theorems are conditional statements, statements of
the form :

If [hypothesis] then [conclusion]

In some cases, a theorem may state only a conclusion; the axioms
of the particular mathematical system are then implicitly assumed as a
hypothesis. If a theorem is not written in the conditional form, it can
nevertheless be translated into that form. For example,

Base angles of an isosceles triangle are congruent

can be translated as

If a triangle has two congruent sides, then the
angles opposite those sides are congruent.

Put another way, a conditional statement says that one condition
(the hypothesis) implies another (the conclusion). If we denote the hy-
pothesis by H, the conclusion by C, and the word “implies” by a dou-
ble arrow =», then every theorem has the form H = C. (In the exam-
ple above, H is “two sides of a triangle are congruent” and C is “the
angles opposite those sides are congruent.”)

Not every conditional statement is a theorem. For example, the

statement
If AABC is any triangle, then it is isosceles



56 LoGic AND INCIDENCE GEOMETRY

is not a theorem. Why not? You might say that this statement is “false,”
whereas theorems are “true.” Let’s avoid the loaded words “true” and
“false” as much as we can, for they beg the question and lead us into
much more complicated philosophical issues.

In a given mathematical system, the only statements we call theo-
rems are those statements for which a correct proof has been supplied.
(We also call them propositions, corellaries, or lemmas. “Theorem” and
“proposition” are interchangeable words, though usually the word “the-
orem” is reserved for a particularly important proposition. A “corol-
lary” is an immediate consequence of a theorem, and a “lemma” is a
“helping or subsidiary theorem.” Logically, they all mean the same; the
title is just an indicator of the author’s emphasis.} The statement that
every triangle is isosceles has not been given a correct proof (I hope
you found the flaw in the pretended proof in Chapter 1). You will later
refute that statement in Euclidean geometry by proving there exists a
triangle that is not isosceles. :

The crux of the matter, then, is the notion of proof. By definition,
a proof is a list of statements, together with a justification for each
statement, ending up with the conclusion desired. Usually, each state-
ment in a formal proof will be numbered. in this book, and the justifi-
cation for it will follow in parentheses.

Locic Ruie 1. The following are the six types of justifications al-
lowed for statements in proofs: '
(1} “By hypothesis . . .”
(2) “By axiom . ..”
(3) “By theorem .. .” (previously proved)
{(4) “By definition , . .”
(5) “By step . . .” (a previous step in the argument}
(6) “By rule ... of logic.” .

»

Later in this text our proofs will be less formal, and justifications
may be omitted when they are clear. (Be forewarned, however, that
these omissions can lead to incorrect results.} Also, a justification may
include several of the above types. . ‘

Having described proofs, it would be nice to be able to tell you how
to find or construct them. Yet that is the artistry, the creativity, of do-
ing mathematics. Certain techniques for proving theorems are learned
by experience, by Imitating what others-have done. If the problem is

not too complicated, you can figure out a proof using your natural rea- -

soning ability. But there is no mechanical method for proving or dis-
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SIDNEY HARRIS

1 T YoU SYoUlp BE i
MORE EXPLICIT HERE N STEP Two."

proving every statement in mathematics. (The nonexistence o-f sud}daf
mechanical method is, when stated precisely, a deep theorem sﬁ mat 1_
ematical logic and is the reason why computc?rs as we know ’fj em ;d
day will never put mathematicians out of business——see any a v.anc :
text on mathematical logic. Of course, there has been prpgresslln au

tomatic theorem proving for small portions of mathematics.) T 1Ere is
a mechanical method for verifying that a proof, presented ‘forma' Y, ;Sf
correct—just check the justification for each step. .In the (fhsc:‘!.ishstl(;lrzl °
Proposition 2.2 ahead, indication is given of how VltS proo mig

been discovered. _ N
‘Somie 'suggestions may help you construct proofs. First, make sure

you clearly undérstand the meaning of each.ter@ in .thle_ staternent Zf
the préposed'theore‘m. If riecessary, review their definitions. Seco? E
1-<eep reminding yourself of what it is you are trymg to prove, I. i
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involves parallel lines, for example, look up previously proved propo-
sitions that give you information about parallel lines. If you find an-
other proposition that seems to apply to the problem at hand, check
carefully to see whether it really does apply. Draw diagrams to help
you visualize the problem.

RAA Proofs

The most common type of proof in this book is proof by reductio ad
absurdum, abbreviated RAA. In this type of proof, you want to prove
a conditional statement, H = C, and you begin by assuming the con-
trary of the conclusion you seek. We call this contrary assumption the
RAA hypothesis to distinguish it from the hypothesis H. The RAA hy-
pothesis is a temporary assumption from which we derive, by reason-
ing, an absurd statement (“absurd” in the sense that it denies some-
thing known to be valid). Such a statement might deny the hypothesis
of the theorem or the RAA hypothesis; it might deny a previously proved
theorem or an axiom. Once it is shown that the negation of C leads 1o
an absurdity, it follows that C must be valid. This is called the RAA
conclusion. To sumnmarize:

Locic RULE 2. To prove a statement H = (, assume the negation of
staternent C (RAA hypothesis) and deduce an absurd statement, using
the hypothesis H if needed in your deduction,

Let us illustrate this rule by proving the following proposition
(Proposition 2.1): 1 { and m are distinct lines that are not parallel, then
{ and m have a unique point in common,

Proor:

(1) Because ! and m are not parallel, they have a point in common
(by definition of “parallel”},

(2) Since we want to prove uniqueness for the point in common,
we will assume the contrary, that ! and m have two distinct
points A and B in common (RAA hypothesis),

(3) Then there is more than one Hpe on which A and B both lie
(step 2 and the hypothesis of the theorem, { # m).

(4} A and B lie on a unique line (Euclid’s Postulate I}.

(5) Intersection of I and m is unique (step 3 contradicts step 4, RAA
conclusion). «
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Figure 2.2

Notice that in steps 2 and 5, instead of writing “Logic Rule 2” as jus-
tification, we wrote the more suggestive “RAA hypothesis” and “RAA
conclusion,” respectively.

As another illustration, consider one of the earliest RAA proofs,
given by Aristotle and presumably discovered by the Pythagoreans (to
their great dismay). In giving this proof, we will use some facts that
you know about Euclidean geometry, algebra, and numbers, and we
will be informal,

Suppose AABC is a right isosceles triangle with right angle at C.
We can choose our unit of length so that the legs have length 1. The
theorem then says that the length of the hypotenuse is irrational (Fig-
ure 2.2},

By the Pythagorean equation, the length of the hypotenuse is V2,
so we must prove that V2 is an irrational number, i.e., that it is not
a rational number,

What is a rational number? It is a number that can be expressed as
a quotient p/g of two integers p and g. For example, 2/3 and 5 = 5/1
are rational numbers. We want to prove that V2 is not one of these
numbers,

We begin by assuming the contrary, that V2 is a rational number
(RAA hypothesis). In other words, V2 = p/q for certain unspecified
whole numbers p and g. We may assume, from our knowledge of numn-
bers and fractions, that after canceling out any common 2's, p and q
are not both even numbers.

Next, we clear denominators

Vag=p

and square both sides:
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This equation says that p? is an even number (since p? is twice an-
other whole number, namely, ¢?). If p? is even, p must be even, for
the square of an odd number is odd, as you know. Thus,

p=2r

for some whole number r (by definition of “even™). Substituting 2r for
D in the previous equation gives

2g° = (21)% = 412,
We then cancel 2 from both sides to get
g = 2r2,

This equation says that g2 is an even number; hence, as before, g must
be even. !

We have shown that numerator p and denominator g are both even.
Now this is absurd because all common 2 factors were canceled. Thus
V2 is irrational (RAA conclusion). =

Negation

In an RAA proof, we begin by “assuuming the contrary.” Sometimes the
contrary or negation of a statement is not obvious, so you should know
the rules for negation.

First, some remarks on notation. If § is any statement, we will de-
note the negation or contrary of S by ~S. For example, if S is the state-
ment “p is even,” then ~-§ is the statement “p is not even” or “pis
odd.”

The rule below applies to those cases where § is already a negative
statement. The rule states that two negatives make a positive.

Locic RuLk 3. The statement “~(~S$)” means the same as “S.”

We followed this rule when we negated the statement “VZ is irra-
tional” by writing the contrary as “V/2 is rational” instead of “V? is
not irrational.”

Another rule we have already followed in our RAA method is the
rule for negating an implication. We wish to prove H = ¢, and we as-
sume, on the contrary, H does not imply C, i.e., that H holds and at
the same time ~C holds. We write this symbolically as H & ~C, where
& is the abbreviation for “and.” A statement involving the connective
“and” is called a conjunction. Thus:

QUANTIFIERS 6l

Locic RuLe 4, The statement “~[H = C]” means the same thing as
“H & ~C."

Let us consider, for example, the conditional statement “If 3 is an
odd number, then 32 is even.” According to Rule 4, the negation of this
is the declarative statement “3 is an odd number and 32 is odd.”

How do we negate a conjunction? A conjunction 5; & S, means that
statements §; and S, both held., Negating this would mean asserting
that one of them does not hold, i.e., asserting the negation of one or
the other. Thus:

Locic RuLe 5. The statement “~[5; & 5;]” means the same as
“E’-"Sl \/ '-"Sl]‘”

Here we have introduced the logic symbol “\/” to abbreviate or. A
statemnent involving “\/” is called a disjunction. The mathematical “or”
is not exclusive like the “or” in everyday usage. When a mathemati-
cian writes “S; \/ S,,” what is meant is “either 5; holds or 5, holds or
they both hold.”

Now let us clarify what is meant by “an absurd statement” in Rule
2 (RAA): Tt is a contradiction, a statement of the form “S & ~S8.” Usu-
ally in an RAA argument, statement S will occur in one line of the proof
and statement ~S will occur in another line. By the meaning of “and”
we can then infer § & ~§, but we will usually not bother with that and
will just point out that the line with ~5 contradicts the line with S.

Quantifiers

Most mathematical statements involve variables. For inst_ance, the
Pythagorean theorem states that for any right triangle, if @ and b
are the lengths of the legs and ¢ the length of the hypotenuse, then
c? = g* + b* Here g, b, and ¢ are variable numbers, and the triangle
whose sides they measure is a variable triangle.

Variables can be quantified in two different ways. First, in a uni-
versal way, as in the expressions:

“For any x, . . ."
“For every x, . . .
“Forall x, .. .”
“Given any x, .
“If x is any . . .”

2

»
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Second, in an existential way, as in the expressions:

3

“For some x, . . .
“There exists an x . . .
“There is an x-, . .”
“There are x . , .”

3

Consider Euclid’s first postulate, which states informally that two points
P and Q determine a unique line I, Here P and Q may be any two
points, so they are quantified universally, whereas ! is quantified exis-
tentially since it is asserted to exist once P and Q are given,

It must be emphasized that a statement beginning with “For
every . . .” does not imply the existence of anything. The statement
“Every unicorn has a horn on its head” does not imply that unicorns
exist.

If a variable x is quantified urdversally, this is usually denoted as
Vx (read as “for all x*). If x is quantified existentially, this is usually
denoted as 3x (read as “there exists an x . . .”). After a variable x is
quantified, some statement is made about x, which we can write as
S(x) (read as “statement S about x”). Thus, a universally quantified
statement about a variable x has the form VxS(x).

We wish to have rules for negating quantified statements, How do
we deny that statement S(x) holds for all x2 We can do so clearly by
asserting that for some x, S(x) does not hold.

Locic RULE 6. The statement “~[VxS(x)]” means the same as
uax — S[JC)."

For example, to deny “All triangles are isosceles” is to assert “There
Is a triangle that is not isosceles.”

Similarly, to deny that there exists an x having property $(x} is to
assert that all x fail to have property S(x).

Locic Rute 7. The statement “~[dxS(x)]” means the same as
“Vx -~ S(x).”

For example, to deny “There is an equilateral right triangle” is to
assert “Every right triangle is nonequilateral” or, equivalently, to assert
“No right triangle is equilateral,”

Since in practice quantified statements involve several variables, the
above rules will have to be applied several times. Usually, common
sense will quickly give you the negation, If not, follow the above rules.
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Let’s work out the denial of Euclid’s first postulate. This postulate
is a statement about all pairs of points P and Q; negating it would mean,
according to Rule 6, asserting the existence of points P and Q that do
not satisfy the postulate. Postulate I involves a conjunction, asserting
that P and Q lie on some line I and that { is unique. In order to deny
this conjunction, we follow Rule 5. The assertion becomes either “p
and Q do not lie on any line” or “they lie on moare than one line.” Thus,
the negation of Postulate I asserts: “There are two points P and Q that
either do not lie on any line or lie on more than one line.”

If we return to the example of the surface of the earth, thinking of
a “line” as a great circle, we see that there do exist such points P ‘and
Q-—namely, take P to be the north pole and Q the south pole. Infinitely
many great circles pass through both poles {see Figure 2.3).

Mathematical statements are sometimes made informally, and you
may sometimes have to rephrase them before you will be able to negate
them. For example, consider the following statement:

If a line intersects one of two paralle! lines,
it also intersects the other.

This appears to be a conditional statement, of the form “if .
then . . .”; its negation, according to Rule 4, would appear to be:

A line intersects one of two parallel lines
and does not intersect the other,

If this seems awkward, it is because the original statement con-
tained hidden quantifiers that have been ignored. The original state-
ment refers to any line that intersects one of two parallel lines, and
these are any parallel lines. There are universal quantifiers implicit in

Great circles

Figure 2.3
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Fhe original statement. So we have to follow Rule 6 as well as Rule 4
in forming the correct negation, which is:

There exist two parallel lines and a line that intersects
one of thern and does not intersect the other,

Here are two other ways we will work with quantifiers in proofs.
Suppose it has been Pbreviously proved or an axiom states that there
exists some object with a certain property. We are then permitted to
say “Let . . . be an object with that property.” This amounts to nam-
ing an exemplar of what has been proved to exist. For example,
Euclid’s third postulate asserts the existence of a circle with a given ra-
dius. So we can say “Let y be a circle with radius .. ." and refer to
Euclid 1 for justification. This naming method is called specification.
Going in the other direction, suppose we wish to prove that all objects
of a certain type have a certain property. We begin by naming an ar-
bitrary object of that type. Then we prove that it has the property we
seek. Since the object was arbitrary, we are allowed to conclude that
all objects of that type have the desired property. That method is called
generalization. For example, suppose we want o prove that the square
of every odd number is odd. We start by saying “Let n be an odd num-
ber” and justify this as our hypothesis. Then we prove that the square of
n is odd. That will usually be the end of our proof, it being understood
that since n was arbitrary, we have proved the assertion for all n.

[mplication

Another rule, called the rule of detachment, or modus ponens, is the
following: |

Loetc RULE 8. If P = Q and P are steps In a proof, then Q is a jus-
tifiable step.,

This rule is almost a definition of what we mean by implication.
For example, we have an axiom stating that if <A and <B are right
angles, then 4A = 4B (Postulate IV). Now in the course of a proof,
we may come across two right angles. Rule 8 allows us to assert their
congruence as a step in the proof.

_ You should beware of confusing a conditional statement P = Q with
Its converse Q = P. For example, the converse of Postulate IV states
that if <A = &B, then A and 4B are right angles, which is not valid,
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However, it may sometimes happen that both a conditional state-
ment and its converse are valid. In the case where P = Q and Q= P
both hold, we write simply P < Q {(read as “P if and only if Q” or
“P is logically equivalent to Q). All definitions are of this form, For ex-
ample, three points are collinear if and only if they lie on a line. Some
theorems are also of this form, such as the theorem “a triangle is isosce-
les if and only if two of its angles are congruent to each other.” An ab-
breviation for “P if and only if Q" is “P iff Q.”

The next rule gives a few more ways that “implication” is often
used in proofs.

Logic RuLE 9.
(@) [[P= Q] & [Q=R]} = [P=R]
b) [P&QI =P, [P&QOI=Q
(€} [-Q@= ~Fl e [P= Q]

Part (c) states that every implication P = Q is logically equivalent
to its contrapositive ~Q = ~P. For example, the statement “If two sides
of a triangle are congruent, then the angles opposite those sides are

~ congruent” is logically equivalent to the statement “If the angles op-

posite two sides of a triangle are not congruent, then the two sides are
not congruent.” You can verify this logical equivalence by using the
RAA rule and Rule 3. Part (a) expresses the transitivity of implication.
Part (b} gives the connection between conjunction and implication.

All parts of Rule 9 are called tautologies because they are valid just
by their form, not because of what P, , and R mean; by contrast, the
validity of a formula such as P = @ does depend on the meaning of
its constituents P and Q, as we have seen. There are infinitely many
tautologies, and the next rule gives the most controversial one (see the
historical discussion below).

Law of Excluded Middle and Proof by Cases

Locic RuLe 10. For every statemnent P, “P\/ ~P” is a valid step in
a proof (law of excluded middle).

Far example, given point A and line I, we may assert that either A
lies on ! or it does not. If this is a step in a proof, we will usually then
break the rest of the proof into cases--giving an argument under the
case assumption that A lies on [ and giving another argument under the
case assumption that A does not. Both arguments must be given, or else
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the proof is incomplete. A proof of this type is given in Chapter 3 for
the proposition that there exists a line through A perpendicular to (.

Sometimes there are more than two cases, For example, it is a the-
orem that either an angle is acute or it is right or it is obtuse—three
cases. We will have to give three arguments—one for each case as-
sumption, You will give such arguments when you prove the 3§ (side-
side-side) criterion for congruence of triangles in Exercise 32 of Chap-
ter 3. This method of proof by cases was used (correctly) in the incorrect
attermnpt in Chapter 1 to prove that all triangles are isosceles.

Logcic RULE 11. Suppose the disjunction of statements S; or S, or

. . OI Sy is already a valid step in a proof. Suppose that proofs of C
are carried out from each of the case assumnptions 8y, Sz, . . . , S, Then
C can be concluded as a valid step in the proof (proof by cases},

Finally, we will state Euclid’s “common notions” for equality as a
rule of logic.

Locic RuLe 12.
D VX X=X
R)VEIVY E=Y e Y=X)
B) VXVYVZ(X=Y&Y=2) = X=2)
(4) ¥ X =Y and S(X) is a statement about X, then $(X} < 5(Y).

Statement (1} says equality is reflexive; (2) says equality is symmetric;
and (3) says equality is transitive. The conjunction of (2) and (3) gives
us Euclid’s common notion that “things equal to the same thing are
equal to each other.” Later on we will encounter other binary relations
having these three properties—congruence, for example. Such relations
are called eguivalence relations. They play an extremely important role
in modern mathematics. Statement (4} says that “equals can be sub-
stituted for equals” in any statement. This informal assertion must be
qualified when quantifiers are part of the statement, for in that case you
are only allowed to substitute for “free” occurrences of the variable X,
See any logic textbook for the details.

Brief Historical Remarks

This concludes our list of rules for elementary logic. No claim is made
that all the basic rules of logic have been listed, just that those listed

BrierF HISTORICAL REMARKS G7

suffice for our purpose of developing elementary geometry (we have
skipped many technical details, including the careful development of a
formal language—all “statements” we discuss must be expressed in that
language). Euclid took the rules of reasoning for granted, but if we are
committed to making all our assumptions explicit, we should do so not
only for our geometric assumptions but also for our assumptions about
logic.

Aristotle was the first to formulate basic principles of logic in his
system of syllogisms. However, mathematicians in ancient Greece did
not use Aristotle’s syllogistic forms. Instead, they basically followed the
forms of argument delineated in the third century p.c. by the Stoic
(Megarian) philoesophers—most prominently Chrysippus, considered a
(greater logician than Aristotle, but his works mostly have been lost,

It was Gottiried Wilhelm von Leibniz in his 1666 publication De
Arte Combinatoria who first proposed the idea of an algebra of logic,
He wished to develop a symbolic language for reasoning with a sim-
ple set of basic rules to do logic algebraically. It was not until the mid-
dle of the nineteenth century that George Boole and Augustus de Mor-
gan began to canry out his idea. Boolean algebra is now the foundation
for computer arithmetic and is very important in pure mathematics.

In 1879 Gottlob Frege brought quantifiers into logic, introducing
what is now known as the predicate calculus, but with terrible nata-
tion. Most of the currently used notation and methods of mathemati-
cal logic stem from the society of logicians founded in the 1880s by
Giuseppe Peano along with Mario Pieri. They emphasized the impor-
tance of a formal symbolic language for mathematics to remove the
ambiguities of natural languages, to make mathematics utterly precise,
and to permit the mathematical study of entire mathematical theories.
Many years later, this formalization also enabled the programming of
computers to do mathematics,

The discovery and validation of non-Euclidean geometries, together
with Georg Cantor’s invention of set theory and Karl Weierstrass’ rig-
orous presentation of analysis, caused mathematicians to study ax-
iomatics seriously for the first time, It was not until 1889 that axioms
for the arithmetic of natural numbers were satisfactorily formulated—
by Peano, based on Richard Dedekind’s set-theoretic development
using the successor function (and influenced by earlier algebraic work
of Herman Grassmann). Peano’s 1899 “first-order” axioms did not re-
fer to sets. They included the basic algebraic laws of addition and mul-
tiplication and, most importantly, the principle of mathernatical induc-
tion, which mathematicians had been using informally since at least



68 Logic AND INCIDENCE GEOMETRY

the time of Fermat and Pascal. The formal system based on those ax-
ioms is called Peano arithmetic, denoted PA. Hilbert’s set-theoretic ax-
lomatization of elementary geometry also appeared in 1899,

In the twentieth century, mathematical logic came into its own as
a very important branch of mathematics. The most influential foun-
dational works in logic in the early twentieth century were the Prin-
cipia Mathematica of Bertrand Russell and A. N. Whitehead; the work
of David Hilbert with his associates Wilhelm Ackermann, Paul
Bernays, and John von Neumann; and the contributions of Thoralf
Skolem. By formalizing all rules of reasoning and axioms in a purely
symbolic language, mathematicians were able to study entire branches
of their subject, such as Peano arithmetic and elementary geometry
and Zermelo-Fraenkel set theory. They were then able to prove the-
oreins about those branches—theorems that are called metamathe-
matical because they are about mathematical theories, not about
numbers or geometric figures or sets, The most important meta-
mathematical theorems are the completeness and incompleteness the-
orems of Kurt G&del from the early 1930s, which revolutionized our
thinking about the nature of mathematics. Also vitally important in
the 1930s were the equivalent determinations of the class of effec-
tively computable number-theoretic functions by Alan Turing, Alonzo
Church, Emil Post, and Gédel,

The rules of logic we have listed come from what is known as clas-
sical two-valued logic. Just as there are non-Euclidean geometries, in
which certain axioms of Euclidean geometry are changed, there are also
non-classical logics in which certain rules are changed or dropped. For
example, constructivist mathematicians such as L. E. J. Brouwer and
Errett Bishop reject the use of the law of excluded middle when ap-
plied to infinite sets; Arend Heyting developed the so-called intuition-
ist formal logic for reasoning without that law. Constructivists believe
that it is meaningless to assert that a statement either holds or does
not hold when we have no method of declding which one is the case
(so, for them statements have three values: true, false, and presently
indeterminate). They also reject Logic Rule 6 when applied to infinite
sets because they insist that in order to meaningfully assert that a math-
ematical object exists, one must supply an “effective” method for con-
structing it; they consider it inadequate merely to assume that the
object does not exist (RAA hypothesis) and then derive a contradiction,
Such a derivation for them merely proves ~ ~Q, where Q is the exis-
tenice assertion; for them, ~ ~Q does not automatically imply Q (they
deny Logic Rule 3).
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Incidence Geometry

Let us apply the logic we have developed to a very basic part of geom-
etry, incidence geometry. This is a geometry of straightedge drawing
alone, if you like—no circles are given, only lines and points. We will
see that there are many different examples of such a geometry. We as-
sume only the undefined terms point and line and the undefined rela-
tion incidence between a point and a line, expressed as “P lies on [”
or “I passes through P,” as before. We will also use the abbreviation
P I lin formulas. We don’t discuss “betweenness” or “congruence” or
distance in this restricted geometry. We are now beginning the new ax-
iomatic development of geometry that fills the gaps in Euclidean geom-
etry and applies to other geometries as well; that development will con-
tinue in later chapters. , _

These undefined terms will be subjected to three axioms, the first
of which is the same as Euclid’s first postulate.

INCIDENCE AxXioM 1. For every point P and for every point Q not
equal to P, there exists a unique line ! incident with P and Q.

We say, that “! is the line joining P to Q,” and we denote it, as be-
fore, by PQ.

INCIDENCE AxiOM 2. For every line [, there exist at least two distinct
points incident with [,

INCIDENCE AXIOM 3. There exist three distinct points with the prop-
erty that no line is incident with all three of them.

The last two axioms fill the gap mentioned in the Exercises of Chap-
ter 1, We can now assert that every line has points lying on it—at least
two, possibly more—and that all the points do not lie on one single
line, Moreover, we know that the geometry must have at least three
distinct points in it, by the third axiom and Rule 9(b) of logic. Namely,
Incidence Axiom 3 is a conjunction of two statemnents:

1. There exist three distinct points,
2. For every line, at least one of these points does not lie on that Hne.

Rule 9(b) tells us that a conjunction of two statements implies each
statement separately, so we can conclude that three distingt points ex-
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ist (applying Rule 8, modus ponens). Applying Incidence Axiom 1 to
any pair of those three points, we deduce that the geometry must also
have at least three distinct lines,

When we refer to these axioms in our justifications, we will denote
thern as I-1, I-2, and -3, '

Incidence geometry has some defined terms, such as “collinear,”
“concurrent,” and “parallel,” defined exactly as they were in Chapter
1. To repeat:

DEFINTTION, Three or more points A, B, C, . . . are collinear if there
exists a lne incident with ali of them,

Axiom I3 can be rewritten as “There exist three distinct non-
collinear points.”

DEFINITION. Three or more lines I, m, n, . . . are.concurrent if there
exists a point incident with all of them.

As belore, if point P lies on both 7 and m, we say that “l and m in-
tersect or meet at P* or “/ and m have point P in’common.” Notice
that “concurrent” is the dual notion to “collinear” in the sense that it
is defined the same way except that the roles of point and line are
interchanged.

DEFINITION. Lines [ and m are parallel if they are distinct lines and
no point is incident with both of them.

We use the notation [ || m for “! and m are parallel.” Notice that
according to Axiom I-1, the dual notion for points to the notion of par-
allel lines is vacuous—there are no such pairs of points,

For the fun of it, let us write our three axioms in symbolic logic no-
tation, with the understanding that capital letters denote points and
italic lowercase letters denote lines. We will use the abbreviation 31 to
mean “There exists a unique . . | (having a certain property).” We also
abbreviate ~(P = Q) by P # Q. :

AxioMm I-1. VPVYQ ((P+# Q) = 31 { (PIl& Q1Y
Axiom I-2. VI 3P3Q (P #Q&(PILI&QT I

Axiom I-3. JIAIBAC (A+B&A+C&B#C) & ~II(ATl&
Bri&aczi))
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What sort of results can we prove using this meager collection of
axioms? None that are very exciting, but here are five easy ones. We
proved the first one previously.

ProrosITION 2.1. If ! and m are distinet lines that are not parallel,
then ! and m have a unigue point in commont.

PROPOSITION 2.2. There exist three distinct lines that are not
concurrent.

For students new to doing proofs, permit me to think “out loud”
slowly just to illustrate how one might discover a proof of this, If I were
not familiar with the notion of concurrence, I would reread the defini-
tion to make sure I understood it. I might draw one or more diagrams
to help me visualize three nonconcurrent lines, Then I might get an-
noyed at having to prove something so obvious but would remind my-
self that we're learning to be rigorous, which will turn out to be a use-
ful skill. T look at the axioms to see which ones tell me that lines exist,

. Not [-3, because the only line mentioned there is said not to exist. Not

I-2, because although it says that every line has a certain property, I re-
member that that doesn't guarantee existence (“Every unicorn , . .").
S0 I have to use I-1, which does assert the existence of a line, but it is
a conditional existence-—first I have to be given two points, Where will
I find them? Aha! I-3 gives me three distinct points A, B, C, and they're
not collinear. Then I can apply I-1 and join those points in pairs to ob-
tain three lines that are distinct because the points are not collinear. Are

- those iines concurrent? Certainly not, but to prove it I could first prove

a lemma that if three lines are concurrent, the point at which they meet
is unique. This follows from Proposition 2.1 already proved. So I can
finish the argument using RAA: If those joins were concurrent, then A =
B = C, contradicting the way we obtained those points. Donel

I'leave it as an exercise to rewrite that argument as a formal proof
and to find proofs for the following three propositions. Remember that
you can use results previously proved.

ProrosrTion 2.3. For every line, there is at least one point not ly-
ing on it.

ProrosITion 2.4. For every point, there is at least one line not pass-
ing through it.

ProrosiTion 2.5. For every point P, there exist at least two distinct
lines through P.
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Models

In reading over the axioms of incidence in the previous section, you
may have imagined drawing dots for points and, with a straightedge,
long dashes to illustrate lines, With this representation in mind, the ax-
ioms appear to be correct statements (ignoring as usual the breadth of
the drawn dots and dashes). We will take the point of view that these
idealized dots and dashes are a model for incidence geometry.

More generally, if we have any formal system, suppose we inter-
pret the undefined terms in some way-—i.e., give the undefined terms
a particular meaning—and then interpret statements about those un-
defined terms by substituting the interpreted meanings. We call this an
interprétation of the system. We can then ask whether the axioms, so
interpreted, are correct statements, If they are, we call the interpreta-
tion a model of the axioms. When we take this point of view, inter-
pretations of the undefined terms “point,” “line,” and “incident” other

than the usual dot-and-dash drawings become possible. That is some- .

thing Euclid never imagined. Moritz Pasch said in 1882:

If geometry is to be deductive, the deduction must everywhere be in-
dependent of the meaning of geometrical concepts, just as it must be
independent of the diagrams; only the relations specified in the postu-
lates and definitions employed may legitimately be taken into account.

EXAMPLE 1. Consider a set {A, B, C} of three distinet letters.
We interpret “point” to he any one of those letters. “Lines” will be
those subsets that contain exactly two letters—{A, B}, {A, C}, and
{B, C}. A “point” will be interpreted as “incident” with a “line” if it is
a member of that subset. Thus, under this interpretation, A lies en
{A, B} and {A, C} but does not lie on {B, C}. In order to determine
whether this interpretation is a model, we must check whether the in-
terpretations of the axioms are correct statements. For Incidence Ax-
fom 1, if P and Q are any two of the letters A, B, and C, then {P, Q}
is the unique “line” on which they both lie, For Axiom I-2, if {P, Q}
is any “line,” P and Q are two distinct “points” lying on it. For Axiom
I-3, we see that A, B, and C are three distinct “points” that are not
collinear.

What is the use of models? The main property of any model of an
axiom system is that all theorems of the system are correct staterents
in the model. This is because logical consequences of correct siate-

MODELS 73

ments are themselves correct. (By the definition of “medel,” axioms
are correct staterments when interpreted in models; theorems are logi-
cal consequences of axioms. We are assuming that the rules of logic
we have listed apply to our models.) Thus, we immediately know that
the five propositions in the previous section hold when interpreted
in the three-point model of Example 1. Check them if you are not
convinced.

Suppose we have a statement in the formal system but don’t yet
know whether it can be proved. We can look at our models and see
whether the statement is correct in the models. If we can find one
model where the interpreted statement fails to hold, we can be sure
that no proof is possible. You are undoubtedly familiar with testing for
the correctness of geometric statements by drawing diagrams. Of course,
the converse does not work; just because a drawing makes a statement
look right does not guarantee that you can prove it. This was illustrated
in Chapter 1.

The advantage of having several models is that a statement may
hold in one model but not in another. Models are “laboratories” for ex-
perimenting with the formal system.

Let us experiment with the Buclidean parallel postulate. This is a
statement in incidence geometry: “For every line ! and every point P
not lying on I, there exists a unique line through P that is parallel to
L.” This statement appears to be correct if we imagine our drawings are
on an infinite flat sheet of paper {can you see that on a finite sheet
there would be many parallels through P?). But what about our three-
point model? It is immediately apparent that no parallel lines exist in
this model: {A, B} meets {B, C} in the point B and meets {A, C} in
the point A; {B, C} meets {A, C} in the point C. (We say that this
model has the elliptic parallel property, as shown in Figure 2.4.)

Thus, we can conclude that no proof of the Euclidean parallel pos-
tulate from the axioms of incidence alone is possible; in fact, from the

B

A C

Figure 2.4 Elliptic parailel property (no parallel lines}. A three-point
incidence geometry.



74 Locic aND INCIDENCE CEOMETRY

axioms of incidence geometry alone, it is impossible to prove that par-
allel lines exist. Similarly, the statement “any two lines have a point in
common” (the elliptic parallel property) cannot be proved from the
axioms of incidence geometry, for if you could prove it, it would hold
in the idealized drawn model and in the models that will be described
in Examples'3 and 4.

The technical description for this situation is that the statement “Par-
allel lines exist” is “independent” of the axioms of ineidence. We call
a statement independent of or undecidable from given axioms if it is
impossible to either prove or disprove the statement from those ax-
ioms. Independence may be demonstrated by constructing two models
for the axioms: one in which the statement holds and one in which it
does not hold. This method will be used very decisively in Chapter 7
to settle once and for all the question of whether the Euclidean paral-
lel postulate can be proved using all the other axioms we will later in-
troduce. For now, we know that the incidence axioms alone are too
weak to prove it,

£ EXAMPLE 2. Suppose we interpret “points” as points on a sphere,

“lines” as great circles on the sphere, and “incidence” in the usual
sense, as a point lying on a great circle. In this interpretation there are
again no parallel lines because any pair of great circles on a sphere in-
tersect in two points that are anfipodal (meaning the straight line in
three-space joining them passes through the center of the sphere—1like
the north and south poles). However, this interpretation is not a model
for incidence geometry, for the uniqueness part of the interpretation of
Axiom I-1 fails to hold—e.g., there are infinitely many great circles pass-
ing through the north and south poles on the sphere, all the “circles
of longitude” (see Figure 2.3, p. 63).

B EXAMPLE 3. Let the “points” be the four letters A, B, C, and D.
Let the “lines™ be all six sets containing exactly two of these letters:
{A, B}, {A.C), {4, D}, {B, C}, {B, D}, and {C, D}. Let “incidence”
be set membership, as in Example 1. As an exercise, you can verify
that this is a model for incidence geometry and that in this model the
Euclidean parallel postalate does hold (see Figure 2.5). By Examples 1
and 3, the Euclidean parallel postulate is independent of the axioms of
incidence geometry.

%558 EXAMPLE 4. Let the “points” be the five letters A, B, C, D, and
E. Let the “lines” be all 10 sets containing exactly two of these letters.
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Figure 2.5 Euclidean parallel property. A four-peint incidence geometry,

Let “incidence” be set membership, as in Examples 1 and 3. You. can
verify that in this model the following statement about parallel lines,
called the hyperbolic parallel property, holds: “For every line [ and every
point P not on I, there exist at least fwo lines through P parallel to [
(see Figure 2.6).

{The figures illustrating Examples 1, 3, and 4 are cn?hf ‘meant to be
suggestive. They have features not included in the definition of ‘Ehose
models in terms of letters. For example, in Figure 2.5, the dash illus-
trating the “line” {A, D} appears to intersect the dash ilh}strating the
“line” {B, C} when those “lines” are actually parallel, so it’s better to.
view Figures 2.5 and 2.6 as three-dimensional drawings.)

Let us summarize the significance of models. Models can be used
to demonstrate the impossibility of proving or disproving a statement
from the axioms. We just showed the undecidability of the E‘ucliidean,
elliptic, and hyperbolic statements about parallel lines in incidence
geometry. Moreover, if an axiom system has many mocl.els that are es-
sentially different from one another, as are the models in Examples 1.,
3, and 4, then that system has a wide range of applicability. Pro‘pom-
tions proved from the axioms of such a system are autorpatmally

E

Figure 2.6 Hyperbolic parallel property. A five-point incidence geometry,



76 Logic AND INCIDENCE GEOMETRY

correct statements within any of the models. Mathematicians often dis-
cover that an axiom system they constructed with ene particular model
in mind has applications to completely different models they never
dreamed of, as we will see.

As we menticned in Chapter 1, Johannes Kepler believed that the
regular heptagon (seven-sided) was “unknowable” because he argued
that there is no way to construct it using straightedge and compass
alone, For Kepler, knowledge in geometry meant constructibility by
straightedge and compass. After Kepler died and by the time real ana-
lytic geometry became generally accepted, no mathematician of any im-
portance denied knowledge of the regular heptagon or, more generally,
the regular n-gon, because they accepted the possibly nonconstructible
existence of the angle whose radian measure is 27/n. By successively
laying off this angle with vertex at the origin n times, the points where
those rays intersect a fixed circle centered at the origin will form the
vertices of a regular n-gon. We will see from our study of models of
our axioms of geometry that existence may depend on which model
you're looking at.

In Chapter 3, we will exhibit a model (coordinatized by the field of
constructible numbers) of the elementary Euclidean axioms in which
regular heptagons do not exist, So from our current point of view, Ke-
pler was merely restricting his attention to such a model. You can see
that “existence” is a tricky notion! (See Project 7, Chapter 1 for a ref-
erence to Viete's neusis construction of the regular heptagon.)

Conststency

An axiomatized theory is called consistent if no contradiction can be
proved from the axioms. Notice that in an inconsistent theory, every
statement is provable because of the RAA rule: Given any statement S,
assume ~S (RAA hypothesis). Since the theory is inconsistent, it has
proved some contradiction {we don’t care which). Hence, by RAA con-
clusion, § is proved in that theory. This is a three-step proof of S in
the inconsistent theory. Review the RAA rule if you don’t follow this.
Obwviously, an inconsistent theory is worthless,

Models provide evidence for the consistency of the axiom system.
For example, if incidence geometry were inconsistent, there would ex-
ist a proof of the statement YPYQ (P = Q) (since, as we. just showed,
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any statement in the language of an inconsistent theory could be
proved}. Translating that alleged proof into the language of the three-
point model of Example 1, we would have a proof that A = B, for in-
stance. But we chose our model so as to have three distinct letters A,
B, and C. Hence, we know that incidence geomeiry is consistent,

We will discuss the question of consistency of Enclidean and non-
Euclidean geometries in Chapter 7. For now, note that the consistency
of Euclidean geometry was never doubted because it was believed to
describe, in an idealized fashion, the space in which we all live. In that
sense, it was believed that its axioms are “true.” We will see that the
discovery of non-Euclidean geometry shattered the belief in the “truth”
of Euclidean geometry. However, all classical mathematicians believe
that Euclidean geometry is consistent, especially since no contradiction
has popped up in over 2400 years. We will later discuss Hilbert’s rel-
ative proof of the consistency of real Euclidean geometry-—relative to
the consistency of the theory of the real number system.?

NOTE FOR ADVANCED STUDENTS. Mathematicians first became se-
riously concerned about consistency after it was discovered that Georg
Cantor’s set theory contained contradictory statements about the set of
all sets or the set of all ordinal numbers. Bertrand Russell’s famous par-
adox (see Exercise 19) showed that Gottlob Frege’s system of logic and
classes was inconsistent,

It is generally very difficult if not impossible to convincingly prove
that complicated mathematical theories are consistent. The simplest
such proof of any importance is the one that propositional logic—logic
without qguantifiers—is consistent. The key to that proof is to introduce
suitable “truth tables” for statements in propositional logic. A tautol
ogy is a statement whose truth table has only “true” in all its entries,
no matter what the “truth values” of its constituents are (e.g., P = P
is “true” no matter what P is). After stating suitable axioms, the key is
to prove that all theorems in propositional logic are tautologies (and
conversely). Since P & ~P is not a tautology (it is “false” no matter
what P is), it cannot be proved. Hence propositional logic is consistent.
For details, see any good mathematical logic text. Notice, however, that
although we have used loaded words like “true” and “false” here, be-
cause of the historical and psychological origin of these ideas, we could
just as easily have used any two distinct signs, such as 1 and 0.

In section 3 of my article in the American Mathematical Monthly March 2010, 1 describe
consistency proofs for the elementary part of Euclidean geometry.
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You will find in many reputable books and articles the claim that
“If a formal axiomatic theory 9 has a model 4, then 9 is consistent”—
some books even describe this claim as a “theorem” in metamathe-
matics. The idea behind such a claim is that the model “exists in re-
ality,” so it is meaningful to assert that statements in the model are
either “true” or “false.” Now by definition of a model, the axioms of
g are true when interpreted in M, and since our logic is designed to
be truth-preserving, all the statements in & proved from those axioms
must also be true when interpreted in M. Hence if a contradiction were
provable in 7, the interpretation in {{ of that contradiction, which is
also a contradiction, would be true in 4. But contradictions are false,
not true. Therefore, & must be consistent if it has a model Al.

We used that strategy to prove that incidence geometry is consis-
tent, arguing that if it wa% inconsistent, then we could prove A = B in
the model of Example 1, a statement we know is false. The point is
that for such a trivial three-point model, the notions of “truth” and “fal-
sity” for statements in the set-theoretic language of that model are
straightforward and can be rigorously defined (e.g., using a method of
Alfred Tarski}.

However, when we are dealing with infinite models, the notions of
“truth” and “falsity” are not so clear, and there is even disagreement
among reputable mathematicians and philosophers as to whether such
models “really exist.” Therefore, that claim would not be a theorem in
metamathernatics until further hypotheses are added.

For example, PA (Peano arithmetic) has as its “standard” model the
infinite system N of natural numbers. Reputable mathematicians like
Gauss did not accept that N exists because it is an infinite set (Gauss,
as we mentioned, accepted Aristotle’s doctrine that infinity is only
potential—one cannot collect all the natural numbers in a set). In for-
mal set theory, an axiom is required to obtain the existence of N—it
is simply assumed to exist. And even for those mathematicians who do
accept its existence, the concept of truth in N is not generally clear to
all—constructivists don’t accept it and philosophers are still arguing
about it.

If the model N guaranteed, as claimed, that PA is consistent, then
why did Hilbert and his associates work so hard trying to prove con-
sistency by “finitary” methods? Although they obtained finitary con-
sistency proofs for some simpler arithmetical theories, they couldn’t
prove by finitary methods that the full PA was consistent and com-
plete. Then Godel, in 1931, proved that it is impossible to prove the
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" consistency of PA by methods considered to be “finitary”—that was his

famous second incompleteness theorem {(his first incompleteness theo-
rem proved that PA is incomplete by constructing a formal statement
that was undecidable from the axioms of PA).

Virtually all mathematicians believe that PA is consistent, but after
Godel’s result, we have no hope of proving consistency by methods
considered to be finitary. The attitude of meost mathematicians is that
the belief in the consistency of PA and Zermelo-Fraenkel (ZF) set the-
ory is based on experience: No contradiction has been found in all the
many years we have been working with those systems. We have con-
fidence that if a contradiction is ever found, mathematicians will ad-
just their axioms a bit to get rid of it, as was done when Cantor’s in-
formal infinite set theory was formalized by Ernest Zermelo and
Abraham Fraenkel in the early twentieth century. Nicholas Bourbaki
wrote: “Historically speaking, it is of course untrue that mathematics
is free from contradicton; non-contradiction appears as a goal to be
achieved, not as a God-given quality that has been granted us once for
all.”

Model theory is a very important branch of mathematical logic. It
was via infinite model. théory that Abraham Robinson, in 1960, dis-
covered an extension of the real number system-——now called the fiy-
perreal numbers—in which infinitesimals and infinitely large numbers
exist. His nonstandard analysis showed how to use them to justify the
use of infinitesimal and infinite methods in the differential and integral
calculus—methods that were freely used without justification by New-
ton, Leibniz, Euler, et al.

The three-, four-, and five-point models we have exhibited are triv-
ial examples of finite incidence geometries. Finite geometries have
turned out to be surprisingly important (see Project 7).

Isomorphism of Models

We now make precise the important notion of two models being “es-
sentially the same,” or isomorphic, For incidence geometries, this will
mearn that there exists a one-to-one correspondence P « P’ between
the points of the models and a one-to-one correspondence !« I’ be-
tween the lines of the models such that P 1 [if and only if P’ T I’; such
a correspondence is called an isomorphism from one model onto the

other.
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EXAMPLE 5. Consider a set {a, b, ¢} of three letters, which we
will call “lines” now. “Points” will be those subsets that contain ex-
actly two letters—{a, b}, {a, ¢}, and {b, c¢}. Let incidence be set mem-
bership; for example, “paint” {a, b} is “incident” with “lines” a and b
but not with ¢. This model is the dual of the three-point model in Ex-
ample 1—all we’ve done is interchange the interpretations of “point”
and “line.” It certainly seems to be structurally the same. {However,
the duals of Examples 3 and 4 are not structurally the same as the
originals—in fact, they’re not even models. Can you see why not?) An
explicit isomorphism of Example 5 with Example 1 is given by the fol-
lowing correspondences:

Aofa b} {ABlob
B <« {b, ¢} {B,C}lec
C < {a _c} {A, C} e a

Note that A lies on {A, B} and {A, C} only; its corresponding “point”
{a, b} lies on the corresponding “lines” b and a only. Similar check-
ing with B and C shows that incidence is preserved by our correspon-
dence. On the other hand, if we had used a correspondence such as

{A,B} oa
{B,C}<b
{A,Clec

for the “lines,” keeping the same correspondence for the “points,” we
would not have an isomorphism because, for example, A lies on {A, Cc}
but the corresponding “point” {a, b} does not lie on the corresponding
“line” ¢,

To further illustrate the idea that isomoerphic models are “essen-
tially the same,” consider two models with different parallelism prop-
erties, such as one with the elliptic property and one with the Fu-
clidean. We claim that these models are not isomorphic: Suppose, on
the contrary, that an isomorphism could be set up. Given line I and
point P not on it, then every line through P meets [, by the elliptic
property. Hence every line through the corresponding point P/ meets
the corresponding line ', but that contradicts the Euclidean property
of the second model.

Later on, we will need to use the concept of “isomorphism” for
models of a geometry more complicated than incidence geometry—
neutral geometry. In neutral geometry, we will have betweenness and
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congruence relations, in addition to the incidence relation, and we will
require an “isomorphism” to preserve those relations as well.

The general idea is that an isomorphism of fwo models of an axiom
system is a one-to-oné correspondence between the basic objects of the
system. that preserves all the basic relations of the system.

Another example (to be discussed in Chapter 9) is the axiom sys-
tem for a “group.” Roughly speaking, a group is a set with a multipli-
cation for its elements satisfying a few familiar axioms of algebra. An
“isomorphism” of groups will then be a one-to-one mapping x — x’ of
one set onto the other, which preserves the multiplication, i.e., for
which (xy)’ = x'y’.

Projective and Affine Planes

We now briefly discuss two types of models of incidence geometry that
are particularly significant. During the Renaissance, in the fifteenth cen-
tury, artists developed a theory of perspective in order to realistically
paint two-dimensional representations of three-dimensional scenes.
Their theory described the projection of points in the scene onto the
artist's canvas by lines from those points to a fixed viewing point in
one of the artist’s eyes; the intersection of those lines with the plane
of the canvas was used to construct the painting. The mathematical
formulation of this theory was called projective geometry. In this tech-
nique of projection, parallel lines that lie in a plane cutting the plane
of the canvas are painted as meeting {visually, they appear to meet at
a point on the faraway horizon, as shown in Figure 2.7).

This suggested an extension of Euclidean geometry in which paral-
lel lines “meet at infinity,” so that the Euclidean parallel property is re-
placed by the elliptic parallel property in the extended plane. We will
carry out this extension rigorously. First, some definitions.

Figure 2.7 Parallel railroad tracks appear to converge as they recede into
the distance.



82 LoGic AND INCIDENCE GEOMETRY

DEFINITION, A projective plane is a model of incidence geometry hay-
ing the elliptic parallel property (any two lines meet) and such that

every line has at least three distinct points lying on it (strengthened In-
cidence Axiom 2},

Our proposed extension of the Euclidean plane uses only its inci-
dence properties (not its betweenness and congruence properties); the

" purely incidence part of Fuclidean geometry is called affine geometry,
which leads to the next definition.

DEFINITION. An affine plane is a model of incidence geometry hav-
ing the following Euclidean parallel property:

VIVP (~(P 1D =3m P1mé&l|m. ¢

So the idea in extending an affine plane to a projective plane is to
add enough new “points at infinity” so that all lines parallel to any
given line will now meet at one such point, Moreover, in order to sat-
isfy Axiom I-1, we need to join those “points at infinity” by inventing
a new “line at infinity” that intuitively corresponds to the horizon in
the example above, Here we see mathematical imagination at its best!
The technicality in our construction is that we will be working within
set theory, and we have to define those new objects as certain sets. It
may be awkward psychologically at first for you to think of those sets
as “points” and a “line,” but remember that we are free to interpret
those undefined terms any way we choose so long as we can prove that
the axioms are satisfied in that interpretation. That’s what we’ll do.

Example 3 in this chapter illustrated the smallest affine plane (four
points, six lines),

Let # be any affine plane. We introduce a relation I ~ m on the
lines of & to mean “l = m or ! || 7m.” This relation is obviously reflex-
tve {{ ~ 1) and symmetric (I ~ m = m ~ f). Let us prove that it is tran-
sitive ~mand m~n = [ ~ n}): If any pair of these lines are equal,
the conchlusion is immediate, so assume that we have three distinct
lines such that ¢ || rn and m || n. Suppose, on the contrary, that ! meets
n at point P. P does not lie on m because I || m. Hence we have two
distinct parallels n and [ to m through P, which contradicts the Eu-
clidean parallel property of .

A relation that is reflexive, syminetric, and transitive is called an
equivalence relation. Such relations occur frequently in mathematics

- and are very important. Whenever they occur, we consider the equiv-

alence classes determined by the relation: For example, the equivalence
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lass [1} of I is defined to be the set consisting of all lines Feguivalent
C l—ie., of L and all the lines in s parallel to L In the farn}har Flarte-
t:":;'atn rn:olciel of the Euclidean plane, the set of all horizontal hr%es is O'I:E
wivalence class, the set of verticals is another, the set of.hnes Wlt
sﬁnpe 1 is a third, etc. Equivalence classes take us from equivalence to
ity: I ~m e [1] = fm]. .
equ;:?histoﬂcal and visual reasons, we call these equwalegael classzs
i i i hin mod-
3 rifinity; have made this vague idea precise Wi
points at infinity; we Lt by
the model ¢ to a ne
ern set theory., We now enlarge . L o w model 517 by
i i { & “ordinary” points fo
ing these points, calling the points o . po
afajgrilsg We fm?ther enlarge the incidence relation by spfemf;?ng ;hatnt e;a;::.
gf thes:e equivalence classes lies on every o;llelr of t,;lﬁ lmei; 1tr111 ; :mzrag ea
i h that I || m. Thus,
lies on [ and on every line m suc
[ll]ane o*, ! and m are no longer parallel, but they meet at 1. .
’ We W‘ant &* 1o be a model of incidence geometry alsgl, whgii 1:6
i id’ to add o
i To satisfy Huclid’s Postulate I, we ne‘e '
e e o which i infinity lie: Define the
i i ly) the points at nfinity
new line on which all (and on . atin > the
rii ts at infinity. Let us now ¢
‘e at infinity 1. to be the set of all poin infi ‘
?}?aft A* 1];‘ at);roject'we plane, called the projective completion of .

= VERIFICATION OF I-1. If P and Q are ordinary points, they lie

on a unique line of s (since I-1 holds in ) an;i tl'illey d(?t;:ot geﬁzls i:,n
i i i i infinity [m], then either
rdinary and Q is a point at infini : :
" 1;112 I?Q = my or, by the Euclidean parallel proper.t).r, P heg orll a umqfue
n;rallel n to m and Q also les on n (by the definition c3f mc1dt?n§.e .tor
goints at infinity), so 1<3_)Q = 1. If both P and Q are poinis at infinity,
L

then PQ = la.

smp2d VERIFICATION OF STRENGTHENED I-2. Each line m gf .ﬂﬂl;:s

;at léast two points on it (by I-2 in ), and now we ve.a(ficiﬁowe; fhitd

point [m) at infinity. That l= has at least three pol.nts 01'1 it (o s from
i i lines that intersect in pairs {(suc

the existence in & of three | TSe . el

lines joining the three noncollinear ponts furnls'hed by Axiom I-3}; the

equivalence classes of those three lines do the job.

s VERIFICATION OF I-3. It holds already in sf.

s VERIFICATION OF THE ELLIPTIC PAMLLEL PROPEt;l;I‘&s’.amli
-twrvo‘ ordinary lines do not meet in &, then the"y‘belong to . me
equivalence class and meet at that point at infinity. An ordinary .

m meets l. at [m]. <



84 LoGic AND INCIDENCE GEOMETRY

1 EXAMPLE 6. Figure 2.8 illustrates the smallest projective plane,
Projective completion of the smallest affine plane; it has seven points
and seven lines. The dashed line could represent the lne at infinity,
for removing it and the three points C, B, and E that lie on it leaves
us with a four-point, six-line affine plane isomorphic to the one in Ex-.
ample 3, Figure 2.5,

Informally, the usual Euclidean plane, regarded just as a mode] of
incidence geometry (ignoring its betweenness and congruence struc-
tures), is referred to as the real affine plane, and its projective com-
pletion is called the real projective plane (see Example 8 for a formal
definition).

Notice what happens to a line in the real affine plane after it has
been extended with a point at infinity: It becomes a closed curve in
the real projective plane. Namely, imagine two horizontal parallel lines
in the real affine plane. They have to meet at a point at infinity on the
right and also at a point at infinity on the left. But those points at in-
finity must be the same because of Proposition 2.1: The point of in-
tersection of two lines is unique. So when you travel along one line
out to infinity to the right, after you “reach infinity,” if you keep go-
ing in the same direction you will be returning from the left to where
you started. (This is loose talk, of course; there is no notion of distance
in incidence geometry and “infinity” is just a figure of speech suggested
by perspective drawing.) -

% EXAMPLE 7, To visualize the projective completion #* of the
real affine plane s, picture & as the plane T tangent to a sphere S in
Euclidean three-space at its north pole N (Figure 2.9). If O is the cen-
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Figure 2.9 Visualizing the projective completion.

ter of spheré 5, we can join each point P of Tto O by a .Euclidee%n lin’e
that will intersect the northern hemisphere of S in a u:fnque point P’;
this gives a one-to-one correspondence between the points P of ‘T and
the points P’ of the northern hemisphere of § (N corresponds to itself).
Similarly, given any line m of T, we join m to O by a plane II Fhroug}f
O that cuts out a great circle on the sphere and a great semicircle m
on the northern hemisphere; this gives a one-to-one correspondence
between the lines m of T and the great semicircles m' ojf the northern
hemisphere, a correspondence that clearly preserveg incidence,

Now if [ {| m in T, the planes through O determined by these par-
alle! lines will meet in a line lying in the plane of the equgtor, a line
that (since it goes through O) cuts out a pair of antr':podz?l points on the
equator, Thus, the line at infinity of #* can be VI.SualllZEd .u'nder our
{somorphism as the equator of S with antipodal points identified (they
must be identified, or else Axiom I-1 will fail}. In other words, s* can
be described as the northern hemisphere with antipodal poinfts on Fhe
equator pasted to each other; however, we can’t visualize this pastlr}g
very well because it can be proved that the pasting cannot be done in
Euclidean three-space without tearing the hemisphere. o

Projective planes are the most important models of pure.mmdence
geometry, We will see in Chapter 9 that Euclidean, hyperbaolic, fmcji’, of
course, elliptic geometry can all be considered “§ubgeometr}es of
projective geometry. This discovery by Cayley led him to exclaim that
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“projective geometry is all of geometry,” which turned out to be an
oversimplification.

5222 EXAMPLE 8. ALGEBRAIC MODELS OF AFFINE AND PROJEC-
TIVE PLANES. H you've taken a course in abstract algebra, you know
what an abstract field F is. If not, think of the following specific fields
that are familiar: .

(} = the field of all rational numbers
R = the field of all real numbers
C = the field of all complex numbers.

Let F be any field. Let F? be the set of ali ordered pairs (x, y} of ele-
ments of F, We give F? the structure of an affine plane by taking its
elements as our “points.” A “line” will be the set of all solutions to a
linear equation

cax+by+c=0,

where at least one of the coefficients a, b is nonzero. Point (x, y) will
be interpreted as “incident” with that line if it satisfies “the” equation
(notice that multiplying the coefficients a, b, ¢ by a nonzero constant
yields the same “line”). With these interpretations, we claim that F2
becomes an affine plane called the affine plane over F. By the defini-
tion of “affine plane,” we must verify the interpretations of the three
incidence axioms and we must verify the Euclidean parallel property.
If you’ve taken a course in analytic geometry, you know how to ver
ify those. We sketch a few of the ideas:

1. To verify 1-3, show that the points (0, 0}, (0, 1), and (1, 0) are not
collinear by showing that any linear equation they ail satisfy must
have alt three coefficients equal to 0.

2. To verify -2, say coefficient a % 0. Then (—c/a, 0} is one point on
the line. Find another depending on whether b is 0 or not.

3. To verify I-1, let (u, v) and (s, t) be distinct points. Use your knowl-
edge of analytic geometry to write a linear equation satisfied by
those points. To show uniqueness, use Cramer’s rule to find the
unique solution to a pair of linearly independent linear eduations.

4. To verify the Euclidean parallel property, first establish the result
that two lines are parallel iff they have the same slope (handle the
case of vertical lines separately). Then use the point-slope formula
to determine the unique line parallel to a given line through a given
point not on that line, '
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Next we briefly describe the projective plane over ¥, denoted P2(F). Here
both “points” and “lines” are equivalence classes of trip}es {x, v, z) of th
ements of F that are not all zero, where two such triples are consid-
ered equivalent if one is a nonzero constant multiple of the other. X.’ou
can easily verify that this is an equivalence relation. Each such tnp’le
is referred to as homogeneous coordinates, and its equivalence class will
be denoted [x, ¥, z}. We interpret incidence by the linear homogeneous
equation

ax+by+cz=0

when [x, v, z] is a “point” and [a, b, c] is a “line.” ‘ ‘

We show that P2(F) is isomorphic to the projective completion of
12 as follows: Map each “point” (x, }) of F? to the “point” [x, y, 1] of
P2(F). Map each “line”

{(x, ¥) | ax + by + ¢ =0}

of ¥ to the “line” [a, b, c] of P2(F). Verify easily that these mappings
are one-to-one and preserve “incidence” for the affine plane. Next map
the line at infinity in the projective completion to the “line” {Q, 0, 1],
i.e., to the “line” whose equation is z = 0; it is the only “line” in P?(F’)’
that is not the image under our mapping of an affine line. A “point
on this line has homogeneous coordinates of the form [a, b, 0], wh&?re
at least one of a, b is nonzero. We let this point correspon'd to the point
at infinity common to all the lines parallel to the e‘xfﬂne Ime. ax + by =
0. It is straightforward to verify that these mappings provide the de-
sired isomorphism. o

It follows from this isomorphism that P2(F) is a pro]ectw'e plane
since an interpretation isomorphic to a projective plane is easily seen
to satisfy all the requirements to be a projective .plane. I_‘.et us c.heck,
for example, that every line has at least three pcnn.ts 01.1 it. If it is the
image of an affine line, we know by I-2 that the affine hn'e has fﬂ llee.ist
two points on it, and the projective line also has the %)cimt f’:li' infinity
of that affine line. H it is the image of the line at infu.nty, it .has the
three distinct points {1, 0, 0], [0, 1, 0], and [1, 1, 0] lyl.ng on it. .

Hopefully, with this model you see that there is nothl‘ng‘ r{lyster.xous
about the “line at infinity,” for under our isomorphism it is ]Est gwen
by the equation z = 0. Nor is there any rm./stery about the “point at
infinity” common to all the parallel affine lines ax + by =, where a
and b are fixed (not both zero) and t varies through all the elements
of F; under our isomorphism, it is the “point” [b, _~—~r1,. o} . ‘

A projective plane isomorphic to P2(F) for some field F is said to
be coordinatized by F.
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EXAMPLE 9. DUALITY IN PROJECTIVE GEOMETRY. Let & be
a projective plane. Define the dual interpretation @* of @ to have as
its points the lines of @&, as its lines the points of %, and as its inci-
dence the same incidence relation. Let us verify that @* is also a pro-
jective plane:

1. To verify the interpretation of I-1 in &*, we must show that any
t}}m lines of % meet in a unique point. That they meel is the ellip-
tic parallel property, which helds in @ by the definition of a pro-
jective plane. That the point of intersection is unique was proved
in Proposition 2.1,

2. To verify the interpretation of I-2 in *, refer to Proposition 2.5 for
%, which you will prove as an exercige. ‘ '

3." To verily the interpretation of I-3 in ®*, refer to Proposition 2.2
proved for %,

4. To verify the elliptic parallel property for @*, observe that it is just
the interpretation of I-1 for .

5. Finally, we must show that every line of ®* has at least three points
cgn it, which means showing every point A of @ has at least three
lines through it. By Proposition 2.4, there exists a line I that does
not pass through A. By the definition of projective plane, [ has at
least three points lying on it. Joining three points of [ to A then pro-
vides three lines that we seek,

The fact'that ®* is also a projective plane explains the principle of
duality in plane projective geometry: If a statement has been proved to
‘hold in all projective planes, then the dual statement obtained by in-
terchanging “peint” and “line” automatically holds as well—no further
proof is required. Caveat: If the statement involves defined notions
(such as “collinear”), you must replace those notions by their duals
(“concurrent” in this case), This was probably the first metamathe-
muatical theorem in history,

Slf'ou can see duality very clearly in the algebraic model P2(F), A
“point” in that model is an equivalence class [x, y, z] of triples of not-
all-zero elements of F under the equivalence relation that the triple
(x, ¥, 2} is equivalent to {x’, ¥', z") iff there is a nonzero k in F such
that x’ = kx, y' = ky, and z’ = kz. But a “line” in that model is exactly
tbe same thing, except that we have been using letters from the be-
ginning of the alphabet for “lines.” And incidence is given by the same
linear homogeneous equation.
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Brief History of Real Projective Geometry

An important 1822 text on synthetic real projective geometry was com-
posed by Frenchman J.-V. Poncelet while he was incarcerated in 2 Russ-
ian prison after being captured from Napoleon’s invading army. He in-
troduced the points at infinity officially into geometry, though the idea
had already appeared in a piece by Johannes Kepler in 1604 and in the
neglected treatise by Girard Desargues in 1639. Desargues and Kepler
thought that the points at infinity formed a “circle of infinite radius”
(which they seem to do when viewed affinely], but Poncelet correctly
recognized that they formed a line (no different from any other line
when considered projectively). Blaise Pascal was another earlier con-
tributor to projective geometry with his mystic hexagram theorem of
1639, discovered when he was only 16 (see Project 4).

The principle of duality was first expounded in 1825-1827 by 1.-D.
Gergonne. Poncelet knew about duality but thought it resulted from
Apollonius’ idea of the poles and polars determined by a conic; in the
case of a circle, that polarity (see Project 2) will play an important role
in our work in Chapter 7. The most famous dual theorems are those
of Pascal and C.-L. Brianchon about a hexagon inscribed in (respec-
tively, circumscribed about) a conic.

The algebraic approach to projective geometry via homogeneous co-
ordinates and homogeneous equations was introduced by A. F. Mdobius
in 1827 and then vastly developed into higher dimensions by J. Pliicker
in the 1830s. There was an acrimonious dispute during the nineteenth
century between the projective geometers who worked algebraically
and those who waorked synthetically—over which was the proper ap-
proach, Poncelet was a strident synthesist, declaring publicly that al-
gebraic methods were inferior, yet it was discovered from his private
notes long after he died that he (like Newton) secretly used algebraic
methods to discover some of his results. Another leading synthesist was
K. C. G. von Staudt, who, in the 1850s, eliminated any references fo
nurmber and distance from profective geometry. Pliicker’s work was not
appreciated until decades later, so he became a physicist and made im-
portant contributions to that science.

Projective geometry is the best setting for the study of algebraic
geometry. For a simple example, the theorem of Bézout states that a
plane algebraic curve of degree m intersects another plane algebraic
curve of degree n in mn points if the intersections are counted with
multiplicities. This theorem is generally valid only in the projective
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plane, not in the affine plane, because the intersections at infinity must
be counted, and only when the plane is coordinatized by numbers from
an algebraically closed field such as C (otherwise, the two curves might
not intersect at all—consider a line and a circle in the real Euclidean
plane; in case the line is tangent to the circle, the point of tangency
must be counted with multiplicity 2 for Bézout's theorem to work).

Algebraic curves of degree 2 are conics. The nondegenerate affine
ones are the ellipse, parabola, and hyperbola, Desargues recognized
that they can be distinguished in the real affine plane by the number
of points each has at infinity, namely, 0, 1, 2, respectively, In the pro-
jective plane, they cannot be distinguished—they all look like ellipses
(more precisely, they are all projectively equivalent).

We will not develop projective geometry very deeply in this text,
using it mainly in Chapters 7 and 10 to facilitate our understanding of
non-Euclidean geometries. See the projects in this chapter for further
interesting theorems.

Conclusion

This chapter has two main themes: The first is logic, and the second
is incidence geometry. Experienced students of mathematics prabably
were able to quickly review the classical principles of logic presented
in the first few sections, but even they need to study the sections on
models and should take note of the RAA proof that V2 is irrational.
Mathematical logic, insofar as it is the study of correct reasoning (it
also studies other important topics such as computability), tradition-
ally has two aspects: syntax and semantics. Generally speaking, syntax
studies the form of reasoning and is a purely formal study of the con-
nectives =, &, \/, ~; the quantifiers v, 3; predicates such as = and €;
variables, etc. Semantics, on the other hand, interprets the formal Sy1-
bols and gives them various meanings, and we are only concerned w1th
mathematical interpretations.

A formal mathematical theory starts with undefmed terms and ax-
ioms about those terms, which can be written in a symbolic language
(as we did “for the fun of it” with Axioms I-1, I-2, and I- 3) or which
can be written in a natural language such as English for easier com-
prehension. Using the rules of logic, propositions were then proved
from the axioms, and we described precisely what proofs are. When
axioms have been given, what we are interested in is interpretations
that satisfy those axioms. Those are called models.
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QOur main application of these ideas so far is to incidence geometry.
We gave its three basic axioms and stated five propositions that can
easily be proved from those axioms. That was purely formal, althoulgh
we used undefined terms point, line, incidence, which are suggestive
of familiar geometric notions. However, since the terms are undefined,
we took the liberty of interpreting thern in unfamiliar ways, such as in
our three-, four-, and five-point models, which have three different par-
allel properties. The notion of parallel lines is the main topic studied
in this text. What we accomplished with those models was to show
that incidence geometry is a consistent theory and to show the impos-
sibility of proving various different statements about parallel lim?s if
we only assume the axioms of incidence geometry. The demonstrations
of those impossibilities belong to a subject that may be new to you:
metamathematics. .

Then we returned to mathematics itself and gave the two most im-
portant examples of incidence geometries (i.e., models of the axioms
of incidence geometry): affine planes, which are models in which the
Euclidean parallel property holds, and projective plarnes, which are mod-
els in which parallel lines do not exist {and in which every line has at
least three points lying on it). We proved the main result that every
affine plane can be naturally completed to a projective plane by ad-
joining points “at infinity” and a “line at infinity” on \.Jvhich all th.05e
points lie. We then presented the main example of affine and projec-
tive planes coordinatized by a field (such as the field of real numbers
or the field of complex numbers). _

Finally, we proved another metamathematical theorem, the princi-
ple of duality for projective planes.

Affine geometry is Euclidean geometry without betweenness and
congruence. In the next chapter, we will add betweenness and con-

gruence to our structure.

Exercises

1. (a)} What is the negation of P \/ Q?
(b) - What is the negation of P & ~Qt?
() Using Logic Rules 3, 4, and S, show that P = Q means the
same as [~P v Q].
2. State the negation of Euclid’s fourth postulate. '
3. State the negation of the Euclidean parallel postulate, (This will be

very important later.)
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4. State the converse of each of the following statements:

(a) If lines [ and m are parallel, then a transversal t to lines ] and
m cuts out congruent alternate interior angles;

(b) If the sum of the degree measures of the interior angles on one
side of transversal t is less than 180°, then lines [ and m meet
on that side of transversal ¢,

5. I?ewrite the informal argument given in the text to prove Proposi-
tion 2.2 as a formal proof, i.e., as a list of steps with each step num-
bered and with a justification for each step given. The justification
must be one of the six types allowed by Logic Rule 1. Use your own
argument if you have a better one,

6. Give formal proofs of Propositions 2.3, 2.4, and 2.5.

7. For each pair of axioms of incidence geometry, invent an interpre-
tation in which those two axioms are satisfied but the third axiom
is not. (This will show that the three axioms are independent in the
sense that it is impossible to prove any one of them from the other
two. It is more economical and elegant to have axioms that are in-
dependent, but it is not essential for developing an interesting
theory.). -

8. Show that the interpretations in Examples 3 and 4 of this chapter
are models of incidence geometry and that the Kuclidean and hy-
perbolic parallel properties, respectively, hold for them.

9. In each of the following interpretations of the undefined terms
which of the axioms of incidence geometry are satisfied and WhiCl’;
are not? Tell whether each interpretation has the elliptic, Euclidean
or hyperbolic parallel property. ,
(a) “Points” are lines in Buclidean three-dimensional space, “lines”

are planes in Euclidean three-space, “incidence” is the usuat
relation of a line lying in a plane.

(b) Same as in part (a), except that we restrict ourselves to lines
and planes that pass through a fixed point O,

() Fix a circle in the Euclidean plane, Interpret “point” to mean
a Euclidean point inside the circle, interpret “line” to mean a
chord of the circle, and let “incidence” mean that the point lies
on the chord. (A chord of a circle is a segment whose end-
points lie on the circle.) |

{(d) Fix a sphere in Euclidean three-space. Two points on the sphere
are called antipodal if they lie on a diameter of the sphere; e.g.
the north and south poles are antipodal. Interpret a “point” t(;
be a set {P, P’} consisting of two points on the sphere that are
antipodal. Interpret a “line” to be a great circle on the sphere.
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Interpret a “point” {P, P’} to “lie on” a “iline” C if both P and
P le on C (actually, if one lies on C, then so does the other,
_ by the definition of “great circle”}.
10.(a) Show that when each of two models of incidence geometry has
exactly three “points” in it, the models are isomorphic.
{b} Must two models having exactly four “points” be isomorphic? If
you think so, show this; if you think not, give a counterexample,
{c) Show that the models in Exercises 9(b) and 9(d) are isomor-
phic. (Hint: Take the point O of Exercise 9(b} to be the center
of the sphere in Exercise 9(d) and cut the sphere with lines
and planes through point O to get the isomorphism.)
11.Invent a model of incidence geometry that has neither the elliptic,
hyperbolic, nor Euclidean parallel properties. These properties refer
to any line ! and any point P not on L Invent a model that has dif-
ferent parallelism properties for different choices of I and P. (Hint:
Five points suffice for a finite example, or you could find a suitable
piece of the Euclidean plane for an infinite example, or you could
refer to a previous exercise, Or invent a fourth example.)
12.(2) Show that in any affine plane, ViVm Van (i m & min &
[ # n = 1| 7). This property is called transitivity of parallelism.
(b) Show that, conversely, a model with this property must be an
affine plane, provided a parallel to any given line exists through
" every point not on that line.
(c) FExhibit a model of incidence geometry in which parallel lines
exist but parallelism is not transitive.

13, Suppose that in a given model for incidence geometry, every “line”
has at least three distinct “points” lying on it. What is the least num-
ber of “points” and the least number of “lines” such a model can
have? Suppose further that the model has the Euclidean parallel prop-
erty, i.e., i$ an affine plane. Show that 9 is now the least number of
“points” and 12 the least number of “lines” such a model can have,

14. (a} Let S be the following statement in the Ianguage of incidence

geometry: If L and m are any two distinet lines, then there ex-
ists a point P that does not lie on either I or . Show that S is
not a theorem in incidence geometry, i.e., cannot be proved
from the axioms of incidence geometry.
(b) Show, however, that statement S holds in every projective
" plane. Hence ~$ cannot be proved from the axioms of inci-
dence geometry either, so S is independent of those axioms.
() Use statement S to prove that in a finite projective plane, all
the lines have the same number of points lying on them. (Hint:
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Map the points on [ onto points on m by projecting from the
point P. This mapping is called a perspectivity with center P.)

{(d) Prove that in a finite affine plane, all the lines have the same
number of points lying on them. (Hint: Apply part (¢) to the
projective completion or find a direct affine proof.)

15.(a) Four distinct points, no three of which are collinear, are said

to form a quadrangle. Let & be a model of incidence geome-
try for which every line has at least three distinct points lying
on it. Show that a quadrangle exists in @,

(b) Now suppose ¢ is a projective plane, Four distinct lines, no
three of which are concurrent, are said to form a guadrilateral.
Use the principle of duality to prove that a quadrilateral exists
in 9.

(c) Give an example of a statement that holds in all affine planes
but whose dual never holds. Thus the principle of duality is
not valid for affine planes.

16.(a) Fill in the missing details in Example 8.

(b) Generalize the definition of P2(F) to construct P3(F}, projective
three-space coordinatized by the field F. Interpret “points,”
“lines,” and “planes” in P3(F). If you have some experience
with analytic geometry in three dimensions, show that any two
planes in P3(F} have a line in common, Show that three non-
collinear points lie in a unique plane; what is the three-
dimensional dual to this statement?

(¢) Propose undefined terms and axioms for three-dimensional pro-
jective geometry.

17. The following whimsical syllogisms are by Lewis Carroll, They are

intended to illustrate that logical syntax depends only on the form

of the argument, not on the meaning or truth of the statements.

Which of them are correct argurnents? :

{a) No frogs are poetical; some ducks are unpoetical. Hence, some
ducks are not frogs.

(b) Gold is heavy; nothing but gold will silence him. Hence, noth-
ing light will silence him.

(c) All lions are fierce; some lions do not drink coffee. Hence, some
creatures that drink coffee are not fierce.

(d) Some pillows are soft; no pokers are soft. Hence, some pokers
are not pillows.

18. Here is a whimsical question: We think of the lines in the real affine

plane as “straight.” When we completed that plane to the real pro-
jective plane, we added just one point at infinity to each affine line.
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As we indicated, this extended line is now a closed curve, How did

the line lose its “straightness” just by adding one point at infinity?

Or, could a closed curve be “straight™? Can you picture the real pro-

jective plane as some smooth surface in Euclidean three-space? Dis-

cuss this question informally,

19, (a) Let S be the following self-referential statement: “Statement 5
is false.” Show that S is true iff S is false, This is the liar par-
adox. Does it imply that some statements are neither true nor
false? (Kurt Godel used the variant “This statement is unprov-
able” as the starting point for his famous incompleteness the-
orem in mathematical logic.)

(b) A set is intuitively any collection of things, and those things
are the elements of that set, Suppose we collect all the sets S
with the property that S & S and only those sets. Call that set
C. By the law of excluded middle, either C & C or C & C. Show
that in either case, a contradiction can be deduced. This is
Bertrand Russell’s paradox. Does it imply that set theory is in-
consistent? Discuss this question with your instructor.

Major Exercises

1. Consider the following interpretation of incidence geometry. Begin
with a punctured sphere in Euclidean three-space, i.e., a sphere with
one point N removed. Interpret “points” as points on the punctured
sphere. For each circle on the sphere passing through N, interpret
the punctured circle obtained by removing N as a “line.” Interpret
“incidence” in the usual sense of a point lying on a punctured cir-
cle. Is this interpretation a model? If so, what parallel property does
it have? Is it isomorphic to any other model you know? (Hint: If N
is the north pole, project the punctured sphere stereographically
from N onto the plane II tangent to the sphere at the south pole,
as shown in Figure 2.10. Use the fact that planes through N other
than the tangent plane cut out circles on the sphere and lines in II.
For an amusing discussion of this interpretation, refer to Chapter 3
of Sved, 1991.)

2. Show that every projective plane % is isomorphic to the projective
completion of some affine plane sf. (Hint: Pick any line m in o,
pretend that m is “the line at infinity,” remove m and all the points
lying on it, and then show that what remains is an affine plane oA
and that @ is isomorphic to the completion $4* of .)
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o

Figure 2.10 Stereographic projection.

3. Let® be a finite projective plane so that, according to Exercise 14fc}
all lines in & have the saine number of points lying on them; caﬂi
this number n + 1, with n 2. Show the following: ,

(a) Each point in @ has n'+ 1 lines passing through it.
(b) The total number of points in @ is 2 +n + 1.
(¢} . The total number of lines in @ is n? + n + 1,
The number 7 is called the order of the finite projective plane.

4. Let & be a finite affine plane so that, according to Exercise 14(d)
all lines in & have the same number of points lying on them; let n
be this number, with 71 = 2. Show the following: o
(a) Each point in & has n + 1 lines passing through it. '

(b) The total number of points in « is n2.
(¢} The total number of lines in o is n{n + 1).
The number n is called the order of the finite affine plane.

5. Let F be the field with two elements {0, 1} whose multiplication
anc} addition have the usunal tables except that 1 + 1 = 0. Show that
F? is isomorphic to the smallest affine plane, described iﬁ Example
3 of t‘he text. Show that P2(F) is isomorphic te the projective plane
described in Example 6 of the text, This is the smallest projective
plane; it has order 2 and is called the Fano plane iﬁ honor of Gino
Fano, who worked with finite geometries in 1892 (K. G. C, von
Staudt was the first to consider them). : ’
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6. Recall from Exercise 15 that four points, no three of which are
collinear, form a guadrangle. The four points are called the vertices,
and the six lines obtained by joining pairs of vertices are called the
sides of the quadrangle. (Note that sides are lines, not segments,
because segments are defined by betweenness and we have no be-
tweenness in pure incidence geometry.) Suppose we are working in
a projective plane, so that every pair of sides will intersect. Pairs of
sides that do not intersect at a vertex are called oppostte sides, and
there are three of those pairs; the points at which those pairs in-
tersect are called the diagonal points of the quadrangle. Fano’s ax-
iom for projective planes asserts that the diagonal points of any
quadrangle are not collinear. Show that Fano’s axiom fails for the
.Fano plane.

In P2(F), where F is any field, show that the four points at
(1, 0, 0], [0, 1, 0], [0, O, 1], and [1, 1, 1] are vertices of a quad-
rapgle. Determine the equations for the six sides, tell which pairs
are opposite sides, find the coordinates of the diagonal points, and

. tell whether or not those points are collinear.

7. Some authors characterize projective planes by three axioms: Ax-
jom I-1, the elliptic parallel property, and the existence of a quad-
rangle. Show that a model of those axioms is a projective plane un-
der our definition, and conversely.

8. Figare 2.11 is a symmetric depiction of the projective plane of
order 3. The outer circle represents the line at infinity, and the black
dots on It represent the points at infinity except that pairs of an-
tipodal points on that circle are considered to be the same.
~ Let F be the field with three elements {0, 1, —1}, whose multi-
plication and addition have the usual tables except that 1 + 1 = -1
and 1 = {~1) + (—1) (addition mod 3). Label the 13 points in the

Fignre 2.11 Projective plane of order 3.
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diagram with their homogeneous coordinates from F to illustrate the
fact that this plane is isomorphic to P3(F).

Adyanced Projeéts on Projective Planes

1. The following statement is by Desargues: “If the vertices of two tri-
angles correspond in such a way that the lines joining correspon-
ding vertices are concurrent, then the intersections of corresponding
sides are collinear,” This statement is independent of the axioms
for projective planes. It holds only in those projective planes that
can be embedded in a projective three-space. For example, if you
Tegard Figure 2.12 as a three-dimensional picture in which the
shaded triangles are in different planes, the line that Desargues as-
serts to exist is just the intersection of those two planes (the two
triangles are in perspective from the point of concurrence P cutside
those planes). Report on this independence result and give an ex-
ample of a non-Desarguesian projective plane (the best known ex-
ample is due to Frederick Moulton in 1902; it is described in the
English translation of Hilbert’s Grundlagen). State the dual to De-
sargues’ statement and compare that to its converse: What do you
observe about them? (Note: A triangle in incidence geometry is de-
fined to be a set of three distinct noncollinear points. The sides of
the triangle are the three lines joining pairs of vertices. We cannot
consider the sides as being segments because we do not have a no-
tion of betweenness in pure incidence geometry.)

Figure 2.12 Desargues’ theorem.
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2. An isomorphism of a projective plane % onto its dual plane ®* is

called a polarity of @. It assigns to each point A of & a line p(A)
of @ calied the polar of A, and to each line m of ® a point P(m) of
@ called the pole of m, in such a way that A lies on m if and only
if P(m) lies on p{A)}, and the correspondences are one-to-one onto.
The set of all points A such that A lies on its polar is called the
conic determined by this polarity, and for A on the conic, the polar
p(A) is called the tangent to the conic at A.

This very abstract definition of “conic” (which does not refer to

distances) can be reconciled with more familiar descriptions, such
as the solution set to a homogeneous quadratic equation in three
variables, when the plane can be coordinatized by a field. The the-
ory of conics is one of the most important topics in plane projec-
tive geometry. Report on this theory, (The German poet Goethe said;
“Mathematicians are like Frenchmen: Whatever you say to them,
they translate it into their own language and forthwith it is some-
thing entirely different.”)
Pappus of Alexandria (fourth century) was the last great Greek math-
ematician. His Collection, in eight volumes, is an invaluable com-
pilation of the mathematical achievements of the ancient Greek
world. He also contributed much original mathematics of his own,
The theorem of Pappus in geometry states: “If A, B, and C are three
distinct points on one line and if A', B’, and C’ are three other dis-
tinct points on a second line, then the intersections of lines AC’' and
CA’, AB’ and BA', and BC' and CB’ are collinear.” (See Figure 2.13.)
Pappus’ theorem can be proved for a projective plane P2(F) coor-
dinatized by a field—in particular, for the real projective plane.
G. Hessenberg proved, conversely, that if Pappus' statement holds
in a projective plane, then it can be coordinatized by a field; his
proof is based on ideas originating with von Staudt and later work
by Hilbert.

Figure 2.13 Pappus’ theorem.
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Fignre 2.14. Pascal’s mystic hexagram theorem.

Since P2(F) can be embedded in P3(F), it follows that Pappus’
statement implies Desargues’ (this was also proved directly in the
plane by G. Hessenberg). The converse does not hold (see Project
5). Report on these results, .

A pair of lines is a degenerate form of a conic. Pascal, at the age
of 16, generalized Pappus’ theorem to all conics in the real projec-
tive plane (as a result, some authors such as Hilbert refer to Pap-
pus’ theorem as Pascal’s theorem). See Figure 2.14 and state the
theorem. Brianchon’s theorem was discovered 167 years afterward.
CGeometers subsequently noticed that it follows immediately from
duality. See Figure 2.15 and state the theorem (Note: A tangent to
a conic js the dual to a point on a conic.)

- A division ring or a skew field has the same algebraic structure as
a field except that multiplication is not necessarily commutative—
i.e., ab = ba may not hold for all ¢, b, An example is the skew field
of quaternions, denoted H in honor of William Rowan Hamilton,
who discovered them in 1853, (His close friend John Graves dis-
covered the octonions, but Arthur Cayley published information
about them first, so they are sometimes called the Cayley numbers;
they do not form a division ring because the associative law albc) =
(ab)e does not hold for all octonions.)

H F is any division ring, we can construct the projective plane
P2(F) coordinatized by F the same way as before, just being care-
ful about the commutative law. A beautiful theorem relating alge-
bra to geometry states that a projective plane can be coordinatized
by some division ring if and only if Desargues’ theorem holds in
that plane. Furthermore, that division ring is a field—i,e., multipli-
cation is commutative—if and only if Pappus’ theorem holds in that
plane,

Figure 2,15 Brianchon’s theorem.

A non-Desarguesian projective plane can be coordinatized only
by an algebraic structure called a ternary ring. The octonions pro-
vide an example., Report on all these results.

. The principle of duality is that once a statement S has been proved

for all projective planes, its dual statement S* is automatically also
a theorem because $* is just § applied to the dual plane. But as was
pointed out, the statements of Desargues, Pappus, and Fano do not
hold in all projective planes. Nevertheless, it is the case that if one
of these three statements holds for a particular projective plane,
then so does its dual, and that requires proof in each case—you
cannot just invoke the principle of duality. Find or report on proofs
that each of these statements implies its dual.

However, suppose some staternent S has been proved for all pro-
jective planes coordinatized by a field, or at least for all fields ¥ of
a certain type. In that case, §* does hold automatically for those
planes because the dual plane is also coordinatized by that same
field, as we have seen. For exarmple, Fano’s statement holds for all
planes coordinatized by a field or division ring of characteristic dif-
ferent from 2, i.e., one in which 1 + 1 # 0. Report cn this and the
converse, that if the plane is coordinatized by a division ring and
Fano's statement holds, then the division ring has characteristic #2.
Fano’s and Pappus’ statements are taken as axioms in those treat-
ments of projective plane geometry which focus on generalizing
classical results that held in the real projective plane (Coxeter, 2003).

. If ¥ is a finite field, it is an elementary result in abstract algebra

that the number of elements in F is a prime power p*. Conversely,
for every prime power pX, there exists a finite field (unique up to
isomorphism) with p* elements, Since the order of the projective
plane P2(F) is equal to the number of elements of F, it follows that
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* there exist projective planes of every prime power order. So there
exist projective planes of orders 2,3, 4,5 7,89, 11, ....kis
known, however, that not every finite projective plane is coordina-
tized by a field (e.g., there are four different projective planes of or-
der 9, up to isomorphism). The first example of a finite non-
Desarguesian plane was published by O. Veblen and J. H. M.
Wedderburn in 1907. A finite Desarguesian projective plane auto-
matically satisfies Pappus’ theorem; no geometric proof of this is
known, but it follows from another famous theorem of Wedderburn
that a finite division ring must be commutative (compare Project 5),

It is conjectured that the order of a finite projective plane must
be a prime power. Orders 6, 14, 21, 22, and infinitely many others
were shown to be impossible by the Bruck-Ryser theorem: Suppose
that 72 is not a prime power and n =1 or 2 (mod 4). If n is not the
sum of two squares, then no Projective plane of order n exists,

Now 10 =2 (mod 4), but 10 is the sum of two squares, so the
Bruck~Ryser theorem does not apply. It was shown in 1989 by C.
Lam and associates, after several years of computer searching, that
there is no projective plane of order 10, They used results from 1970
by F. J. MacWilliams, N. J. A. Sloane, and J, G. Thompson to nar-
row the search to a few big computations. The next three unknown
cases are n = 12, 15, and 18. Report on all thege results.

As often happens in pure mathematics, the abstract subject of
finite geometries turns out to have important connections to other
subjects, e.g., to finite groups, cryptography, combinatorics, design
theory, and quantum information theory. If he were alive today,
Signor Fano would be very happy to see that his idea of finite geome-
tries was so useful!

An excellent reference for these projects is L, Kadison and M. T.
Kromann 1996. Projective Geometry and Modern Algebra, Boston:
Birkhauser.

Hi qurt’s
Axioms

The value of Euclid’s work as a masterpiece of logic has been very

grossly exaggerated,

Flaws in Buclid

Having specified our rules of reasoning in Chapter 2, let us return to
Euclid. In the exercises of Chapter 1, we saw that Euclid neglected to
state his assumptions that points and lines exist, that not all points are
collinear, and that every line has at least two peints lying on it. We
made these assumptions explicit in Chapter 2 by adding two more ax-
ioms of incidence, I-2 and I-3, to Euclid’s first postulate, I-1. We proved
a few consequences of those three axioms, we showed that those ax-
foms alone do not lead to any contradictions, and we briefly studied
two main tf,vpes of models of those axioms: affine planes, in which the
Euclidean parallel postulate holds but which can be somewhat differ-
ent from our usual Euclidean plane (e.g., they can be finite, and they
have only an incidence structure), and projective planes, which are
very different in that parallel lines do not exist in them. We showed
the intimate connection between these two models: Each affine plane
can be completed to a projective plane by adding a point at infinity
to each line and the line at infinity upon which all those points lie;

103
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David Hilhert

inversely, by removing one line and all the points on it from a projec-
tive plane, an affine plane is obtained,

In other exercises of Chapter 1, we saw that some assumptions about
betweenness are needed. Euclid never mentioned this notion explicitly
but tacitly assumed certain facts about it that seem obvious in dia-
grams. Gauss pointed out this omission in an 1831 letter to Farkas
Bolyai, but he did not carry out the iask of stating the required new
:’:lXiOIHS and deducing theorems from them. That was eventually done
in 1882 by Moritz Pasch, and David Hilbert later incorporated Pasch’s
work as part of his Grundlagen der Geometrie (1899). Pasch has been
called “the father of rigor in geometry” by the mathematician and his-
torian Hans Freudenthal,

Several of Euclid’s proofs are based on reasoning from diagrams.
tI‘o make these proofs rigorous, a much larger system of explicit axioms
1s needed. We will present a modified version of David Hilbert’s sys-
termn of axioms, which are perhaps the most intuitive and are certainly
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the closest in spirit to Euclid’s.! Hilbert’s axioms are divided into five
groups: incidence, betweenness, congruence, continuity, and parallelism,
In the following sections, we will introduce the remaining four groups,

During the first quarter of the twentieth century, David Hilbert was
considered the leading mathematician of the world {only Henri Poin-
caré could be considered his rival in that era). He made outstanding,
original contributions to a wide range of mathematical fields as well as
to theoretical physics (the infinite-dimensional spaces used in quantum
mechanics are named after him). In addition to his work in geometry,
he is perhaps best known for his research in invariant theory, algebraic
number theory, integral equations, functional analysis, the calculus of
variations, and mathematical logic. At the International Congress of
Mathematics in 1900, he challenged mathematicians with 23 problems
that turned out to be some of the most important of the twentieth cen-
tury (most of them have been solved, the best known unsolved one
being to setile the Riemann hypothesis). He unwittingly started a new
tradition: In 2000, a committee of top mathematicians chose what they
considered to be the 7 most challenging problems for the new century.
The Clay Mathematics Institute is offering a million-dollar prize to any-
one who can solve one of them, and it appears that one of those prob-
lems, the Poincaré conjecture in three dimensions, may have been
proved (the proof is being thoroughly checked). The Riemann hypoth-
esis is one of the other 6 problems.

Hilbert made a famous proclamation in 1930 that exemplifies his
courageous, optimistic attitude toward mathematical problems: Wir
miissen wissen, wir werden wissern. (We must know, we shall know.)?2

Axioms of Betweenness

So far we have considered the two undefined terms point and line and
the undefined incidence relation of a point to a line. Our fourth unde-
fined or primitive term is the relation of betweenness among three

! Let us not forget that no serious work toward tonstructing new axioms for Euclidean
geometry had been done until the discovery of non-Euclidean geometry shocked math-
ematicians into reexamining the foundations of the former. We have the paradox of
non-Euclidean geomeiry helping s to better understand Euclidean geometry!

2 See the biography of Hilbert by Constance Reid (1970). 1t is nontechnical and conveys
the excitement of the time when G8ttingen was the capital of the mathematical world,
And see Gray, J. J. 2000, The Hilbert Challenge, New York: Oxford University Press,
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points, By introducing another relation to our system, we are adding
more structure to our geometry, which will eliminate certain models of
the previous structure (incidence geometry, in this case) that cannot
support the new structure. For example, it will be shown as a conse-
quence of the four betweenness axioms to be introduced shorily that
every line must have infinitely many points lying on it; thus, all the
nice finite geometries mentioned in the examples and exercises of Chap-
ter 2 will no longer concern us. We will refer to the betweenness ax-
ioms briefly as B-1 through B-4.

The flaw in the argument from diagrams in Chapter 1 that all tri-
angles are isosceles has to do with betweenness. As you were asked
to show in Major Exercise 4 of that chapter, the intersection D of the
perpendicular bisector of the base with the bisector of the opposite an-
gle must lie outside the triangle if these lines are distinct, and only one
of the two feet of the perpendiculars dropped from D to the other two
sides lies inside the triangle. These notions of “inside” and “outside”
will be defined in terms of betweenness.

The statement of Euclid’s Postulate 5 refers to two lines meeting on
one “side” of a transversal, but Euclid neither defines the notion of
“side” nor gives axioms for an undefined notion of “side.” We will de-
fine that notion using betweenness and study its properties. Also, when
we come to the proof of the exterior angle theorem in Chapter 4, you
will see that betweenness properties play a crucial role.

Here Is another example to illustrate the need for betweenness. It
is an attempt to prove that the base angles of an isosceles triangle are
congruent. This attempt is not Euclid's somewhat complicated proof
known as pons asinorum, which is flawed in other ways, but is rather
a simple argument found in some high school geometry texts.

Proor:
Given AABC with AC = BC. To prove <A = XB (see Figure 3.1):

{1) Let the bisector of <C meet AB at D (every angle has a
bisector}.

(2) In triangles AACD and ABCD, AC = BC (hypothesis).

(3) <ACD = 4BCD (definition of bisector of an angle).

(4) CD =CD (things that are equal are congruent).

{5} AACD = ABCD (SAS).

(6) Therefore, 4A=<B (corresponding angles of congruent
triangles}. «
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Figure 3.1

Consider the first step, whose justification is that every angle has a
bisector. This is a correct statement and can be proved separately. But
how do we lknow that the bisectar of <C meets ?&73) or if it does, how
do we know that the point of intersection D lies between A and B? This
may seem obvious, but if we are to be rigorous, it requires proof. For
all we know, the picture might look like Figure 3.2, If this were the
case, steps 2-5 would still be correct, but we could conclude only that
<B is congruent to <CAD, not to <CAB, since < CAD is the angle in
AACD that corresponds to <B. ‘

Once we state our four axioms of betweenness, it will be possible
to prove (a(ft_e)r a considerable amouni of work) that the hisector of <C
does meet AB in a point D between A and B, so the above argument
will be repaired (see the crossbar theorem later in this section), There
is, however, an easier proof of the theorem (Proposition 3.10, p. 123).
We will use the shorthand notation

A+B=*C

to abbreviate the statement “point B is between point A and point C.”

Figure 3.2
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Figure 3.3

BETWEENNESS AX10M 1. If A+ B+ C, then A, B, and C are three dis-
tinct points all lying on the same line, and C* B * A.

The first part of this axiom f{ills the gap mentioned in Exercise 6 of
Chapter 1., The second part (C * B * A) makes the obvious remark that
“between A and C” means the same as “hetween C and A”—it doesn’t
matter whether A or C is mentioned first,

BETWEENNESS AXIOM 2. Given any two distinet points B and D, there
exist points A, C, and E lying on BB such that A* B+ D, B+ C~D, and
B = D *+E (Figure 3.3).

This axmm ensures that there are points between B and D and that
the Jine BD does not end at either B or D. This axiom also shows that
the points on a line do not form a discrete set like the natural num-
bers, where there are no natural numbers between n and n + 1 for
any 1.

BETWEENNESS AXIoM 3. If A, B, and C are three distinct points ly-
ing on the same line, then one and only one of the points is between
the other two.

This axiom ensures that a line is not circular; if the points were on
a simple closed curve like a circle, you would then have to say that
each is between the other two or that none is between the other two—
it would depend on which of the two arcs you look at (see Figure 3.4).
Speaking intuitively, we have seen that when we complete the real
affine plane to the real projective plane, a line becomes a closed curve.

>
W

Figure 3.4
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Thus, it is not possible to have a betweenness structure on the real
projective plane corresponding to our intuitive notion of betweenness
satisfying this axiom. In its place, a relation called separation among
four distinct points on a projective line can be introduced and studied—
see Appendix A,

Recall that the segment AB is defined as the set of all pcunts be-
tween A and B together with the endpoints A and B. The ray AB is de-
fined as the set of all points on the segment AB together with all points
C such that A * B+ C, Axiom B-2 ensures that such points C exist,
B-3 ensures that C i3 not between A rg_}ld B, and B-1 ensures that C is
not equal to either A or B; so the ray AB is largg than the segment AB.
Axiom B-1 also ensures that all points on ray AB lie on the line AB.

PROI’OSITION 3 1. For any two peints A and B: (i) AB n BA = AB,
and (ii) AB UBA = {AB}

Proor orF (1):

(1) By the definition of segment and ray, AB C A and AB C BA,
50 by the definition of intersection, AB C AB M BA.

(2) Conversely, let the point C belong to the intersection of AB and
BA; we wish to show that C belongs to AB.

(3] C=Aor C=8, Cis an endpoint of AB. Otherwise, A, B,
and C are three collinear points (by the definition of ray and
Axiom B-1), so exactly one of the relations A« C+ B, A*B =
C, or C * A *+ B holds (Axiom B-3). .

(4) HA+B=C llglds, then C is not on BA; if C *+ A = B holds, then
C is not on AB. In either case, C does not belong to both rays.

(5) Hence, the relation A * C * B must hold, so C belongs to AB
(definition of AB, proof by cases). <

The proof of (if) is similar and is left as an exercise. (Reeall that
{jﬁ} is the set of points lying on the }M{ge AB.)

Recall next that if C+ A * B, then AC is said to be opposite to AB
(see Figure 3.5). By Axiom B-1, ﬂ))mts A, B, _egld C are collinear; by
Axiom 3, C does not belong to AB, so rays AB and AC are distinet,
This definition is therefore in agreement with the definition given in
ggapter 1 (see Proposiﬁo_n) 3.6). Axiom B-2 guarantees that every ray
AR has an opposite ray AC.

Figure 3.5
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It seems clear from Figure 3.5 that every point P lying on the line
1 through A, B, C must belong either to ray Kﬁ or to the opposite ray
AC. This statement seems similar to the second assertion of Proposi-
tlon 3.1, but it is actually more complicated; we are now discussing
four points, A, B, C, and P, whereas previously we had to deal with
only three points at a time. In fact, we encounter here another “picto-
rially obvious” assertion that cannot be proved without introducing an-
other axiom (see Exercise 17).

Suppo_sg we caIl the assertion “C + A * B and P collinear with A, B,
C=PEACU AB" the line separation property. Some mathematicians
take this property as another axiom. However, it is considered inele-
gant in mathematics to assume more axioms than are necessary (al-
though we pay for elegance by having to work harder to prove results).
S0 we will not assume the line separation property as an axiom; in-
stead, we will prove it as a consequence of our previous axioms and
our last betweenness axiom, called the plane separation axiom.

DEFINITION. Let [ be any line, and A and B any points that do not lie
on L. If A = B or if segment AB contains no point lying on [, we say A
and B are on the same side of I, whereas if A # B and segment AB does
intersect I, we say that A and B are on opposite sides of [ (see Figure
3.6). The law of the excluded middle (Logic Rule 10) tells us that A
and B are either on the same side or on opposite sides of 1.

BETWEENNESS AX10M 4 (PLANE SEPARATION). For every line [ and
for any three points A, B, and C not lying on &

Figure 3.6 A and B are on the same side of I; C and D are on oppasite
sides of I,
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Axiom 4{3)

;Figm‘e 3.7

(L If A and B are on the same side of { and if B and C are on the
same side of I, then A and C are on the same side of { (see Fig-
ure 3.7}. :

(if) If A and B are on opposite sides of I and if B and C are on op-
posite sides of I, then A and C are on the same side of | (see

Figure 3.8).

CoOROLLARY, (iii) If A and B are on opposite sides of { and if B and
C are on the same side of {, then A and C are on opposite sides of L

Axiom 4(i) guarantees that our geometry is two-dimensional, since
it does not hold in three-space, (Line I could be outside the plane of
this page and cut through segment AC; this interpretation shows that
if we assumed the line separation property as an axiom, we could not
prove the plane geparation property.} Betweenness Axiom 4 is also
needed to make sense of Euclid’s fifth postulate, which talks about two
lines meeting on one “side” of a transversal. We can now define a side
of a line [ as the set of all ponts that are on the same side of [ as some
particular point A not lying on . If we denote this side by Ha, notice
that if C is on the same side of [ as A, then by Axiom 4(1), Hc = Ha.
{The definition of a side may seem circular because we use the word
“side” twice, but it is not; we have already defined the compound ex-
pression “on the same side.”) Another expression commonly used for
a “side of 1" is a half-plane bounded by L.

Axiom 4(ii)
A
N

Figure 3.8
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Prorosition 3.2, Every line bounds exactly two half-planes, and
these half-planes have no point in common,

Proor:

(1) There is a point A not lying on ! (Proposition 2.3).
{2) There is a point O lying on ! {Incidence Axiom 2).

(3} There is a point B such that B+ 0 » A (Betweenness Axiom 2)
{(4) Then A and B are on opposite sides of { {(by definition), so l
has at least two sides. ,

(5) Let C be any point distinet from A and B and not lying on I

If C and B are not on the same side of I, then C and A are on.
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(5) Then EC meets AB in a point beween A and B (definition of
“oppaosite sides™).

(6) That point must be C {Proposition 2.1},

(7) Thus, A#*B=*C and A * C» B, which contradicts Betweenness
Axiom 3. ‘ —

{8} Hence, A and B are on the same sicélgé of EC (RAA conclusion).

(9} B and D are on opposite sides of EC (steps 3 and 8 and the
-corollary to Betweenness Axiom 4). s .

(10) Hence, the point C of intersection of lines EC and BD lies be-
tween B and D (definition of “opposite sides”; Proposition 2.1,
i.e., that the point of intersection is unique). '

the same side of ] (by the law of excluded middle and Be-
thlaenness Axiom 4(i1)). So the set of points not on [ is the
union of the side H, of A and the side Hg of B.

(6) If C were on both sides (RAA hypothesis), then A and B would
be on the same side (Axiom 4(i)), contradicting step 4; hence
the two sides are disjoint (RAA conclusion). «

We next apply the plane separation property to study betweenness
relations among four points.

A similar argument involving (E—B> proves that A * B + I (Exercise 2(b)). «
R
COROLLARY. Civen A+*Bx*(C and B+ C*D. Then A+*B+*D and

AxCx*D.
Finally we prove the line separation property.

PROPOSITION 3.4, If C* A+ B and [ is the line through A, B, and C
(Betweenness Axiom 1), then for every point P lying on [, P lies either

p .
ROPOSITION 3.3. Given A+B+Cand A*C+ D, ThenB+C+D and on ray AB or on the opposite ray AC.

A +B+D (see Figure 3.9).

Proor:

(1} A, B, C, and D are four distinct collinear points (see Exercise 1)

(2) There exists a point E not on the line through A, B, C, D (Propo-.
sition 2.3), o

(3) Consider line FC. Since (by hypothesis) AD meets this line in
point C, points A and D are on opposite sides of ﬁ):

{(4) We claim A and B are on the same side of e, Assume on the

contrary that A and B are on opposite sides of EC (RAA hy-
pothesis).

Figure 3.9

PrROOF:

(1} Either P lies on AB or it does not {law of excluded middle).

(2} If P does lie on ES) we are done, so assume it doesn’t; then
P+ A + B (Betweenness A_x_;om 3).

(3) If P = C, then P lies on AC (by definition), so assume P # C;
then exactly one of the relations C*A*P, C*P* A, or
P % C * A holds (Betweenness Axiom 3 again}.

(4) Suppose the relation C = A * P holds (RAA hypothesis).

(5) We know (by Betweenness Axiom 3) that exactly one of the
relations P+ C+ B, C=P + B, or C *B P holds.

(6) If P*B~*C, then combining this with P * A= B {step 2) gives
A * B+ C (Proposition 3.3), contradicting the hypothesis.

(7) If C+P * B, then combining this with C* A+ P (step 4) gives
A * P = B (Proposition 3.3), contradicting step 2.

(8) IfB * C * P, then combining this with B » A= C (hypothesis and
Betweenness Axiom 1) gives A # C + P (Proposition 3.3), con-
tradicting step 4.

{(9) Since we obtain a contradiction in all three cases, C+AsP
does not hold (RAA conclusion).
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I~

A

Figure 3,10 Pasch’s Theorem.

(10) Therefore, C* P+ A or P ¥ C * A (step 3), which means that P
lies on the opposite ray AC. <

The next theorem states a visually obvious property that Pasch dis-
covered Fuclid to be using without proof.

Pasci’s THEOREM. If A, B, C are distinct noncollinear points and !
is any line intersecting AB in a point between A and B, then ! also in-
tersects either AC or BC (see Figure 3.10). If C does not lie on [, then
{ does not intersect both AC and BC,

Intuitively, this theorem says that if a line “goes into” a triangle
through one side, it must “come out” through another side.

Proor:

{1) Either C lies on { or it does not: if it does, the theorem holds
(taw of excluded middle).

(2} A and B do not lie on I, and the segment AB does intersect I
{hypothesis and Axiom B-1).

{3) Hence, A and B lie on opposite sides of I (by definition).

(4} From step ! we may assurne that C does not lie on I, in which
case C is either on the same side of { as A or on the same side
of [ as B (separation axiom).

(5) If Cis on the same side of I as A, then C is on the opposite
side from B, which means that I intersects BC and does not in-
tersect AC; similarly, if C is on the same side of I as B, then I
intersects AC and does not intersect BC (separation axiom),

(6) The conclusion of Pasch’s theorem holds {Logic Rule 11—proof
by cases). «

Here are some more results on betweenness and separation that you
will be asked to prove in the exercises.

PROPOSITION 3.5. Given A * B * C, Then AC = AB U BC and B is the
only point common to segments AB and BC,
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c/

interior
~=TA D

Figure 3.11

i .’Then B is the only peint common
PROPOSITION 3 _g) Given A * B » C. The yp
to rays BA and BC, and AB = AC.

DEFNITION. Given an angle {CABf defin(e;a; point D tq be 'in the in-
terior of <LCAB if D is on the same side of AC as B and if D is als".o on
the same side of AB as C. (Thus, the interior of an angle is the inter-
section of two half-planes.) See Figure 3.11.

PRrOPOSITION 3.7. Given an angle <.CAB and point D lying on line
BC is i interior of- if and only if B * D * C (see Fig-
BC. Then D is in the interior of «CAB if an \'

Cure 3.12).

%ﬁuﬁgﬁii? Zis Do not assume that every point in the interior of an angle lies
oln a segﬁ;e_rljt joining = peint on one side of the angle to a point on the other
side. n fact, this assumption is false in hyperbolic geomelry (see Exercise 19),

PRrOPOSITION 3.8. _ILD is in the interior of <CAB, then (a) 59 is every
other point on ray AD except A; (b) no point on the oppfmlte ray.to
Kﬁ is in the interior of < CAB; and (¢} if C* A+ E, then B is in the in-
terior of <DAE (see Figure 3.13}.

— .= ——
DEFINITION. Ray AD is between rays AC and AB if AB and AC are not
opposite rays and I is .interior to {C{&B. (By Il’roposmoi) 3.8(a), this
definition does not depend on the choice of point D on AD)

Figure 3.12
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Figure 3.13

CrOsSBAR THEOREM. If AD is between AG and AB, then AD inter-
sects segment BC (see Figure 3.14).

Proor:

(1) D is in the interior of <CAB (by hypothesis and definition of
“betweenness” for rays).

(2) LetEbea <_E_c))int such that E + A « C {B-2; see Figure 3.13)

(3) Since line AD intersects segment EC in point A betWEEI.l E .and
C, E and C are on opposite sides of line AD {definition of “op-
posite sides™).

(4) B is in the interior of ¥DAE (step 1 and Proposition 3.8(c))

(5) Hence B and E are on the same side of line AD {definition ‘of
“interior” of an angle}.

(6} Therefore, B and C are on opposite sides of line ﬁ (step 3
and corollary to B-4).

(7} Let G be the point between B and C that lies on line Kf)) {step
6, definition of “opposite sides”).

(8) G is in the interior Ef.; < CAB (step 7 and Proposition 3.7)

(9) G lies either on ray AD or on its opposite ray (Proposition 3 4)

(10) Suppose G lies on the opposite ray (RAA hypothesis), o

{11) Then G is not in the integigr of LCAB (Proposition 3.8(b)).

(12) Therefore, G lies on ray AD (step 11 contradicts step 8, RAA
conclusion). <

Figure 3.14 Crossbar Theorem.
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We call this result a theorem instead of a propesition to emphasize its
importance (as was illustrated in the incomplete argument that base
angles of an isosceles triangle are congruent).

DEeFINTEIONS. The interior of a triangle is the intersection of the inte-
riors of its three angles. A point is exterior to the triangle if it is not in
the interior and does not lie on any side of the triangle.

ProposITION 3.9. (a) If a ray r emanating from an exterior point of
AABC intersects side AB in a point between A and B, then r also in-
tersects side AC or side BC. (b) If a ray emanates from an interior point
of AABC, then it intersects one of the sides, and if it does not pass
through a vertex, it intersects only one side.

You are asked to prove this also as an exercise.

EXAMPLE 1. AFFINE PLANES OVER ORDERED FIELDS. We
saw in Chapter 2 that if F is a field, then the set F* of ordered pairs
(x, ¥) of elements of F can be given a natural structure of incidence
plane, where lines are determined by linear equations and a point lies
on a given line if and only if its coordinates satisfy the equation for
that line. Moreover, the Euclidean parallel postulate holds in this plane,
so it is (by definition) an affine plane.

Suppose now that F has the structure of an ordered field. This means
that besides the algebraic operations of addition, subtraction, multipii-

. cation, and division for elements of ¥, there is a relation a < b for el-

ements of F that is compatible with the algebraic operations. (See p.
600 for the precise definition.) If you have not taken a course in ab-
stract algebra, think of the familiar ordered fields of rational numbers
@ or of real numbers R {later we will consider another important or-
dered field K called the constructible field—the closure of @ under the
operation of taking square roots of positive numbers). Not every field
can be given an order structure: One of the conditions for an ordered
field is
For every a, b, ¢, if a <b then a+c<b+ec
Another condition is that 0 <C'1,

Hence,0<0+1<1+120+1+1<1+1+1<---.Thus-,byre-
peatedly adding 1’s, we see that an ordered field must have infinitely
many elements (in fact, it must contain an ordered subfield isomorphic
to @). This eliminates all the finite fields we mentioned in the exer-
cises for Chapter 2. Other conditions in an ordered field are that for
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every a # 0, we have 0 < a? and that —1 < 0; hence —1 cannot have
a square root in an ordered field. This eliminates the tield C of com-
plex numbers,

Given three distinct elements a, b, cin the ordered field F, we de-
fine b to be between a and c if either a <b <c¢or c<b < a. For ex-
ample,  is between 1 and 0. Using this definition, we interpret be.
tweenness for three distinct collinear points A, B, C in F? as follows:

i

CASE 1. The line they lie on has an equation of the form y =
mx + b. Then A * B * C iff the first coordinate of B is between the first
coordinates of A and C,

CASE 2. The line they lie on is vertical, i.e., has an equation of
the form x = k, where k is constant. Then A + B * C iff the second co-
ordinate of B is between the second coordinates of A and C.

We leave it as project 1 for those readers familiar with ordered fields
to verify that with this interpretation of betweenness, the interpreta-
tions of axioms B-1 through B-4 hold, so F2 becomes a model of both
our incidence axioms and our betweenness axioms. Let us llustrate
Proposition 3.2: In Case 1, the two half-planes determined by that line
are determined, respectively, by the inequalities y<mx+b and y >
mx + b; in Case 2, they are determined, respectively, by the inequali-
ties x <k and x > k. We call a model of both our incidence and be-
tweenness axioms an ordered incidence Dlane,

NOTE. Since @2 with the incidence and betweenness structures we
have defined is an ordered incidence plane, we have shown that if the
theory of the ordered field of rational numbers is consistent, then so is
the theory of ordered incidence planes (because any proof of a con-
tradiction in the latter theory could be translated via the above model
into a contradiction in the former theory). This is a relative consistency
demonstration, but it is important because we have Tmore experiernce
and confidence that the theory of the ordered field () is consistent than
we might have for this new theory of ordered incidence planes.

= EXAMPLE 2. AN ORDERED INCIDENCE PLANE (THE DISK)
WITH THE HYPERBOLIC PARALLEL PROPERTY. Let the open unit
disk U in F2, consisting of all points (x, y) in F? such that x2 + y2 < 1,
be our new set of points. Interpret lines to be chords of the unit circle
¥24+32=1 and interpret incidence the same as before, You have al-
ready shown (at least informally) in Exercise 9(c) of Chapter 2 that this
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interpretation is an incidence plane satisfying the‘hygerbolic‘ Qarallel
property. If we restrict the relation of betweenness in F to U, it is easy
to see that the betweenness axioms so interpreted still hold. So U is
another ordered incidence plane.

Axioms of Congruence

if we were more pedantic, congruent, the last of our undeﬁned.terms,
would be replaced by two terms since it refers to either a relation be;
tween segments or a relation between angles. By ".al_:;usg of language

{as French mathematicians say—it is really a simp.hﬁcgt‘lon .of ou'r lan-
guage}, we will not be so pedantic because the ll'ltt%].tIVE idea is the
same for both types of congruence. We use the familiar symbol = to
denote congruence. The following definition provides fu.rther abuse be-
cause we will use the word “congruent” also as a defined term for a

relation between triangles.

DeriNiTION. Triangles AABC and ADEF are congruent if there exists
a one-to-one correspondence between their vertices such that corre-
sponding sides are congruent and corresponding angles are congruent,
We will use the notation AABC = ADEF to indicate not only th.at thesge
triangles are congruent but that a correspondence demonstrating t’hat
congruence is such that A corresponds to D, B to E, and C to F (i.e.,
the order in which we write the vertices matters).

We will introduce six axioms for congruence, which will be referred

to as C-1 through C-6.

ConNGRUENCE AXioMm 1. If A and B are distinct points and if ﬁf’ is
any point, then for each ray r emanating from A’ there is a unigue
point B’ on r such that B’ # A’ and AB = A'B’ (see Figure 3.15).

Figure 3.15
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Figure 3,16

Intuitively spealdng, this axiom 53ys you can “move” the segment
AB so that it lies on the ray r with A superimposed on A’ and B su-
perimposed on B'. (In Exercise 15(b), Chapter 1, you showed how to
do this with a straightedge and a collapsible compass.)

CONGRUENCE AXioM 2./ If AR = CD and AB == FF, then CD = EF,
Moreover, every segment is congruent to itself.

This axiom replaces Fuclid’s first comumon notion since it says that
segments congruent to the same Segment are congruent to each other,
It also replaces the fourth common notion since it says that segments
that ceincide are congruent,

CONGRUENCE AXIOM 3. If A+ R~ C, A"+B'+ ', AB = A'B’, and
BC=B'C’, then AC= A'C (see Figure 3.16).

This axiom replaces the second common naotion since it says that if
congruent segments are “added” to congruent segments, the sums are
congruent. Here, “adding” means juxtaposing segments along the same
line. For example, using Congruence Axioms 1 and 3, you can lay off
a copy of a given segment AB two, three, . . ., n times, to get a new
segment 7t + AB (see Figure 3.17).

CONGRUEN(;_E_) AXIOM 4. Civen any LBAC (where, by the definition
of “angle,” AR is not opposite to AC) and given any ray A’B’ emanat-
ing from a point A’, then there is a unigue ray A’C’ on a given side of

line A’B" such that <B'A’C’ == SLBAC (see Figure 3.18).

This axiom can be paraphrased to state that a given angle can he

“laid off” on a given side of a given ray in a unique way (see Exercise
14(g), Chapter 1).

A B B’ B~
Figure 3.17 AB" =3 . AB,
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Figure 3.18 < B'A'C = {BAC.

CONGRUENCE AXIOM 5. If <A = 4B and 4A = C, then ¥B = C,
Moreover, every angle is congruent to itself,

This is the analogue for angles of Congruence Axiom 2 for segme'.’n.ts;
the first part asserts the transitivity and the second part the reflexivity
of the congruence relation. Combining them, we can prove the sym-
metry of this relation: €A = 4B = 4B = JA.

Proor: .
YA = 4B (hypothesis) and ¥A = <A (reflexivity) imp%y‘ .(subsn-
tuting A for C in Congruence Axiom 5) «B = 4A (transitivity). -«

{By the same argument, congruence of segments is a symmetric
relation.) N o

It would seem natural to assume next an “addition axiom 'f‘or con-
gruence of angles analogous to Congruence Axiorfx 3 (the addition ax-
fom for congruence of segments), We won’t do this, however,. because
such a result can be proved using the next congruence axiom (see

" Proposition 3.19),

CONGRUENCE AX1oM 6 (SAS). If two sides and the included angle
of one triangle are congruent, respectively, to two sides and the in-
cluded angle of another triangle, then the two triangles are congruent

(see Figure 3.19).

This side-angle-side criterion for congruence of triar‘igles iIs a pro-
found axiom. It provides the “glue” that binds the relation of congru-
ence of segments to the relation of congruence of angles. It e.nables‘us
to deduce all the basic results about triangle congruerice Wlt‘h which
you are presumably familiar. For example, herej is onel: immediate f:on-
sequence which states that we can “lay off” a given triangle on a given
base and a given half-plane,
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A

Figure 3,19 SAS.

COROLLARY TC SAS. Given AABC and segment DE = AB, there is a
unique point F on a given side of line DE such that AABC = ADEF.

f

Proor:

There is a unique ray DF on the given side such that < .CAB == 4FDE,
and F on that ray can be chosen to be the unique point such that
AC = DF {by Congruence Axioms 4 and 1), Then AABRC = ADEF
{SAS). «

As we said, Euclid did not take SAS as an axiom but tried to prove
it as a theorem (Euclid 1.4). His argument was essentially  as folIo_ug.
Move AA'B'C’ s0 as to place point A’ on point A and A'B’ on AB,
Since AR = A_’E}’ by hypothesis, point B’ must fall on point B. Since
+A = ¢A’, A'C’ must fall on AC, and since AC = A'C’, point C' must
coincide with point C. Hence, B'C' will coincide with BC and the re-
maining angles will coincide with the remaining angles, so the trian-
gles will be congruent.

This argument is called superposition. It derives from the experi-
ence of drawing twao triangles on paper, cutting out one, and placing
it on top of the other. Although this argument is a good way to con-
vince a novice in geometry to accept SAS, it is not a proof, and Euclid
reluctantly used it in only one other proposition (1.8). It is not a proof
because Euclid never stated an axiom that allows figures to be moved
around without changing their size and shape.

Some modern writers introduce “motion” as an undefined term and
lay down axioms for this term. (In fact, in Pieri’s foundations of geom-
etry, “point” and “motion” are the only undefined terms.) Or else, the
geometry is first built up on a different basis, “distances” introduced,
and a “motion” defined as a one-to-one transformation of the plane
onto itself that preserves distance, Euclid can be vindicated by either
approach. In fact, Felix Klein, in his 1872 Erlanger Programme, defined
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a geometry as the study of those properties of figures that remain
invariant under a particular group of transformations. This idea will be
developed in Chapter 9,

You will show in Exercise 35 that it is impossible to prove SAS or
any of the other criteria for congruence of triangles (SSS, ASA, SAA)
from the preceding axioms. As usual, the method for proving the im-
possibility of proving some statement S is to invent a model for the
preceding axioms in which S is false.

As an application of SAS, the simple proof of Pappus for the theo-
rein on base angles of an isosceles triangle follows.

ProraosiTion 3.10. If in AABC we have AB = AC, then ¥B = ¥C
(see Figure 3.20),

Proor:

(1} Constder the correspondence of vertices A< A, Bw C,
C «» B. Under this correspondence, two sides and the included
angle of AABC are congruent, respectively, to the correspon-
ding sides and included angle of AACB (by hypothesis and
Congruence Axiom 5 that an angle is congruent to iself).

(2) Hence, AABC = AACB (SAS), so the corresponding angles, <B
and C, are congruent (by the definition of congruence of

triangles}. «

This proposition is Euclid 1.5. Pappus’ short proof was considered
unacceptable by some because, if one thinks about triangle congruenc.e
as superposition, his proof seems to involve flipping the isosceles tri-
angle through the third dimension; Pappus had the modern point of

A ¢

Figure 3.20 Isosceles triangle.
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Figure 3.21

view of triangle congruence in terms of any one-to-one correspondence
of vertices.?

Here are some more familiar results on congruence. We will prove
some of them; if the proof is omitted, see the exercises.

Prorosimion 3.11 (SEGMENT SUBTRACTION). If A*B+C, D*E=*F,
AB = DE, and AC = DF, then BC = EF (see Figure 3.21).

ProrosiTioN 3.12. Given AC = DF, then for any point B between A
and C, there is a unique point E between D and F such that AB = DE.

Proor:

(1) There is a unique point E on ﬁ_ﬁ such that AB = DE (Congru-
ence Axiom 1).

(2) Suppose E were not between D and F (RAA hypothesis; see
Figure 3.22). —

{3) Then either E=F or D » F = E (definition of DF) ",

(4} If E=F, then B and C are two distinct points on AC such that
AC =DIF = AB (hypothesis, step 1), contradicting the unique-
ness part of Congruence Axiom 1. .

(5) U D+F=E, then there is a point G on the ray opposite to CA
such that FE = CG (Congruence Axiom 1),

{6) Then AG == DE (Congruence Axiom 3). .

(7} Thus, there are two distinct points B and G on AC such that
AG =DE = AB (steps 1, 5, and 6), contradicting the unique-
ness part of Congruence Axiom 1,

{8) D+E+*F (RAA conclusion). «

IPEFINITION, AB < CD (or CD > AB) means that there exists a point
E between C and D such that AB = CE.

® In Appendix II of later editions of his Grundlagen, Hilbert (1988) did an advanced study
of the role of the base angles of an isosceles triangle statement, constructing "non-
Pythagorean” planes in which that statement and other familiar results fail. It also fails
in the taxicab plane of Major Exercise 6.
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Figare 3.22

ProrosiTION 3.13 (Spemunt ORDERING). (a) Exactly one of the
following three conditions holds (trichotomy): AB < CD, AB = CD, or
AB > CD. (B) If AB < CD and CD = EF, then AB < EF. {c) If AB > CD
and CD == EF, then AB > EF. (d} If AB < CD and CD < EF, then AB < EF

(transitivity).
ProrosiTioN 3.14. Supplements of congruent angles are congruent.

ProprosiTioN 3.15. (a) Vertical angles are congruent to each other.
(b) An angle congruent to a right angle is a right angle.

ProrosiTION 3.16. For every line ! and every point P there exists a
line through P perpendicular to L

Proor:

(1) Assume first that P does not lie on [ and let A and B be any
two points on [ (Incidence Axiom 2). (See Figure i.)23.)

(2} On the opposite side of [ from P there exists a ray AX such that
YLXAB == 4{PAB (Conggg_}ence Axiom 4).

(3) There is a point P’ on AX such that AP’ = AP (Congruence Ax-
iom 1}. :

Figure 3.23 Existence of perpendicular to ! through peint P not on l.
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{4) PP’ intersects [ <1_1)1 a point Q (definition of opposite sides of [}.

(5] 1f Q=A, then PP’ L [ {definition of 1 and B-1).

(6) ¥ Q+# A, then APAQ = AP'AQ (SAS).

. (7) Hence, ¥PQA = 4<P'QA (corresponding angles), so BB L 1
(definition of L and B-1).

(8) Assume now that P lies on . Since there are points not lying
on ! {Proposition 2.3), we can drop a perpendicular from one
of them to { (steps 5 and 7), thereby obtaining a right angle.

{9) We can lay off an angle congruent to this right angle with ver-
tex at P and one side on I {Congruence Axiom 4); the other
side of this angle is part of a line through P perpendicular to {
(Proposition 3.15(b)). <«

it i1s natural to ask whether the perpendicular to ! through P con-
structed in Proposition 3,16 is unique. If P lies on I, Proposition 3,23
(later in this chapter) and the unigqueness part of Congruence Axiom 4
guarantee that the perpendicular is unique. If P does not lie on {, we
will not be able to prove uniqueness for the perpendicular until the
next chapter.

NOTE ON ELLIPTIC GEOMETRY. Informally, elliptic geometry may be
thought of as the geometry on a Euclidean sphere with antipodal points
identified (the model of incidence geometry first described in Exercise
9{d), Chapter 2}. Its “lines” are the great circles on the sphere. Given
such a "line” [, there is a point P called the “pole” of [ such that every
line through P is perpendicular to {! To visualize this, think of [ as the
equator on a sphere and P as the north pole; every great circle through
the north pole is perpendicular to the equator (Figure 3.24}.

Figure 3.24
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Figure 3.25

ProrosiTioN 3.17 (ASA CRITERION FOrR CONGRUENCE). Given
AABC and ADEF with €A = 4D, €C= <F, and AC= DF. Then
AABC == ADEF.

PROPOSITION 3.18 {CoNVERSE oF PRoOrOsITION 3.10). If in AABC
we have 4B =£ 4C, then AB = AC and AABC is isosceles,

PROPOSITION 3.19 (ANGLE ADDITION). Given BG between BA and
BC, EH between ED and EF .CBG = 4 FEH, and ¥GBA = <HED. Then
L ABC = ¥ DEF (see Figure 3.25).

PRroor:;

(1) By the crossbar theorem,* we may assume G is chosen so that
AxG=*(,

(2) By Congruence Axiom 1, we may assume D, F, and H chosen
so that AB = ED, GB = EH, and CB = FF.

(3) Then AABG = ADEH and AGBC = AHEF (SAS).

{4) <«DHE = 4AGB, <FHE = 4CGB (step 3), and ¥AGB is sup-
plementary to €CGB (step 1 and B-1).

(5) D, H, I are collinear, and <DHE is supplementary to <FHE
(step 4, Proposition 3.14, and Congruence Axiom 4)

(6) D+H =*F (Propositicn 3.7, using the hypothesis on EH)

(7) AC=DF (steps 3 and 6, Congruence Axiom 3).

{8) <BAC = {EDF (steps 3 and 6).

{9) AABC = ADEF (SAS; steps 2, 7, and 8).

{10} €ABC == 4 DEF (corresponding angles). «

PROPOSITION 3.20 (ANGLE SUBTRACTION) Given BG between BA
and BC EH between ED and EF XCBG = {FEH, and LABC = {DEF.
Then <GBA = <{HED.

4 This renaming technique will be used frequently. G is just a label for any point # B on

the ray that intersects AC, so we may as well choose G to be the point of intersection
rather than clutter the argument with a new label,
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DEHNITION LABC <X <DEF means there ig a ray EG between ED and
EF such that € ABC = 4GEF (see Figure 3.26).

ProrosiTioN 3.21 (ORDERING OF ANcGLES). (a) Exacily one of the
following three conditions holds (trichotomy): <P < €Q, <P = <Q, or
FQ <P, (b) If 4P < €£Q and ¥Q = ¥R, then <P < LR. {¢) If LP >
¥Q and €0Q == 4R, then LP > <R, (d) If <P < €0 and €Q < &R, then
4P < 4R,

ProrosiTion 3.22 (888 CRITERION FOR CONGRUENCE). If AB =
DE, BC = EF, and AC == DF, then AABC = ADFEF,

The AAS criterion for congruence will be given in the next chapter,
The next proposition was assumed as an axiom by Euclid but can be
proved from Hilbert’s axioms.

ProrosiTion 3.23 (EvcLin’s FourTe PosTuLaTE). Al right an-
gles are congruent to each other (see Figure 3,27},

Proor:

(1) Given ¥BAD = 4 CAD and ¥FEH = < GEH (two pairs of right
angles, by definition). Assume the contrary, that <BAD is not
congruent to €FEH (RAA hypothesis).

Figure 3.27
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{2

(3)
(4)
(5}

(6)
7
(8)

Then one of these angles is smaller than the other—e.g.,
4FEH < «{BAE {Proposmon 3. 2.1[a))—s0 that by definition
there is a ray AJ between AB and AD such that <BAJ = <FEH.
¥ CAJ = {GEH (Proposition 3.14).

XCAJ = {FEI—_I__gsteps 1 and 3, Congruence Axiom 5).

There is a ray AK between AD and AG such that ¥BAJ == LCAK
(step 1 and Proposition 3.21(b)).

IBAJ = < CAJ (steps 2 and 4, and Congruence Axiom 5).
¥CAJ = ¥CAK (steps 5 and 6, and Congruence Axiom 5).
Thus, we have < CAD greater than €CAK (by definition) and

less than its congruent angle ¥CAJ (step 7 and Proposilion
3.8(c})), which contradicts Froposition 3.21.
(9) <BAD == LFEH (RAA conclusion). «

. f
DEFINITIONS, An angle is acute if it is less than a right angle, obtuse
if it is greater than a right angle.

According to Proposition 3.23 and Proposition 3. 21(b) and {(c), it
doesn’t matter which right angle is used for comparison in these
definitions.

DEFNITION. A model of our incidence, betweenness, and congruence

axioms is called a Hilbert plane.
T

Axioms of Continuity

There is a gap in the argument Euclid gives to justify his very first
proposition. Here is his argument:

Evcrin’s PRoPoSITION 1. Given any segment, there is an equilateral
triangle having the given segment as one of its sides.

Eucim’s PROOF:

(1) Let AB be the given segmeni. With center A and radius AB, let
the circle BCD be described (Postulate IIT). (See Figure 3.28.)

(2) Again with center B and radius BA, let the circle ACE be de-
scribed (Postulate III).

(3) From a point C in which the circles cut one another, draw the
segments CA and CB (Postulate I},

{4) Since A is the center of the circle CDB, AC is congruent to AB
(definition of circle).
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Figure 3,28 Buclid’s proof of 1.1.

(5) Again, since B is the center of circle CAE, BC is congruent to
BA (definition of circle},

(6) Since CA and CB are each congruent to AB (steps 4 and 5),
they are congruent to each other {first common notion).

{7} Hence, AABC is an equilateral triangle (by definition) having
AB as one of its sides. «

Since every step has apparently been justified, you may not see the
gap in the proof. It occurs in the first three steps, especially in the third
step, which explicitly states that C is a point in which the circles cut
each other. (The second step states this implicitly by using the same
letter “C” to denote part of the circle, as in the first step.) The point
is: How do we know that such a point C exists?

If you believe it is obvious from the diagram that such a point C
exists, you are right—but you are not allowed to nse the diagram to

justify this! We aren't saying that the circles constructed do not eut

each other; we’re saying only that another axiom is needed to prove
that they do. s

The gap can be filled using the following circular or circle-circle con-
tinuity principle:

CIRCLE-CIRCLE CONTINUITY PRINCIPLE. If a circle y has one point
inside and one point outside another circle 7', then the two circles in-
tersect in two points.

Here a point P is defined as inside a circle with center O and ra-
dius OR if OP < OR (outside if OP > OR). In Figure 3.28, point B is in-
side circle ', and the point B’ (not shown) such that A is the mid-
point of BB' is outside v'. This principle is also needed to prove Euclid
122, the converse to the triangle inequality (see Major Exercise 4).

Another gap occurs in Euclid’s method of dropping a perpendicu-
lar to a line (Euclid 1.12, our Propaosition 3.16). His construction tacitly
assumes the line-circle continuity principle.
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LiNE-CIRCLE CONTINUITY PRINCIPLE. If a line passes through a point
inside a circle, then the line intersects the circle in two points.

This follows from the circular continuity principle (see Major Exer-
cise 1, Chapter 4); but our proof will use Proposition 3.16, so Euclid’s
argument must be discarded to avoid circular reasoning. Another use-
ful consequence (see Major Exercise 2, Chapter 4) is the elementary or
segment-circle cantinuity principle,

SEGMENT-CIRCLE CONTINUITY PRINCIPLE. If one endpoint of a seg-
ment is inside a circle and the other endpoint is outside, then the seg-

ment Intersects the circle at a point in between.

Can you see why these are “continuity principles”? For example, in
Figure 3.29, if you were drawing the segment with a pencil moving
continuously from A to B, it would have to cross the circle (if it didn’t,
there would be a “hole” in the segment and the circle).

You may wonder why we have called these three statements “prin-
ciples” instead of “theorems” or “axioms.” The latter two would be
theorems if we assumed the first one (as we will later show), but we
do not wish to call the first one an axiom because we wish to illumi-
nate exactly where it is needed, and then we will add it as a hypoth-
esis. That will make the logical structure—which we emphasize in our
treatment-—-clearer.

It is impossible to prove the circle-circle continuity principle from
our incidence, betweenness, and congruence axioms alone. To demon-
strate this independence result, one must exhibit a model of those ax-
ioms in which the circle-circle continuity principle is false. The con-
struction of such a model is algebraic, requiring knowledge of
Pythagorean ordered fields that are not Euclidean fields (see Hartshorne,
Exercise 16.10). Also, Euclid L1, the existence of equilateral triangles
on any base, cannot be proved in arbitrary Hilbert planes without fur-
ther assumption (see Hartshorne, Exercise 39.31).

e Q

Figure 3.29
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The next statement is not about continuity but rather about mea-
surement, Archimedes was astute enough to recognize that a new ax-
iom was needed, It is listed here because we will show that it is a con-
sequence of Dedekind’s continuity axiom, given later in this section. It
is needed so that we can assign a positive real number as the length
AR of an arbitrary segment AB, as will be explained in Chapter 4.

ARCHIMEDES’ AXI10M. If CD is any segment, A any point, and r any
ray with vertex A, then for every point B # A on r there is a number
nt such that when CD is laid off n times on r starting at A, a point E
is reached such that n + CD = AE and either B = E or B is between A
and E.

Here we use Congruence Axiom 1 to begin laying off CD on r start-
ing at A, obtaining a unique point A; on r such that AA; = CD, and
we define 1 - CD to be AA;. Let ry be the ray emanating from A, that
© is contained in r. By the same method, we obtain a unique point A,
on 1y such that AyA, = CD, and we define 2 - CD to be AA;. Iterating
this process, we can define, by induction on n, the segment n * CD to
be AA,. - ‘

For example, if AB were o units long and CD of 1 unit length, you
would have to lay off CD at least four times to get to a point E beyond
the point B (see Figure 3.30).

The intuitive content of Archimedes’ axiom is that if you arbitrar-
ily choose one segment CD as a unit of length, then every other seg-
ment has finite length with respeet to this unit (in the notation of the
axiom, the length of AB with respect to CD as unit is at maost n units).
Another way to look at it is to choose AB as unit of length. The axiom
says that no other segment can be infinitesimally small with respect o
this unit (the length of CD with respect to AB as unit is at Ieast 1/n
units),

The next statement is a consequence of Archimedes’ axiom and the
previous axioms (as you will show in Exercise 2, Chapter 5), but if one
wants to do geometry with segments of infinitesimal length allowed,
this statement can replace Archimedes’ axiom (see my note “Aristotle’s

I
r A ~
A i H # "5 H E
e oy
C D

Figure 3.30
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Axiom in the Foundations of Hyperbolic Geometry,” Journal of Geom-
etry, vol. 33, 1988). Besides, Archimedes’ axiom is not a purely geo-
metric axiom since it asserts the existence of a number.

ARISTOTLE’S ANGLE UNBOUNDEDNESS AXIOM. Given any side of an
acute angle and any segment AB, there exists a point Y on the givenl
side of the angle such that if X is the foot of the perpendicular from Y
to the other side of the angle, XY > AB.

In other words, the perpendicular segments from one side of an acute
angle to the other are unbounded—no segment AB can be a bound. In
Chapter 5, where various attempts to prove Euclid V are analyzed, we
will discuss how Proclus used this hypothesis in his attempt. Conversely, -
we will show in Chapter 4 that Euelid V implies Aristotle’s dxiom. Sac-
cheri {(whose work is discussed in Chapters 4-6) also recognized the im-
portance of Aristotle’s axiom and proved it using Archimedes’ axiom.

IMPORTANT COROLLARY TO ARISTOTLE’S AXIOM. Let AB be any
ray, P any point not collinear with A and ‘B, and <XVY any acute an-
gle. Then there exists a point R on ray AB such that <{PRA < <XVY.

Informally, if we start with any point R on Kﬁ, then as R “recedes
endlessly” from the vertex A of the ray, <PRA decreases to zero {be-
cause it will eventually be smailer than any previously given angle
«XVY). This result will be used in Chapter 6. Its proof uses Theorem
4.2 of Chapter 4 (the exterior angle theorem), and so it should be given
after that theorem is proved, but we sketch the proof now for con-
venience of reference. You may skip it now and return when needed.

Proor:

Let Q be the foot of the perpendicular from P to AB. Since pomt B
is just a label, we choose it so that Q # B and Q lies on ray BA. X
and Y are arbitrary points on the rays r and s that are the sides of
¥XVY (see Figure 3.31). Let X’ be the foot of the perpendicular
from Y to the line containing r. By the hypothesis that the angle is
acute and by the exterior angle theorem, we can show {by an RAA
argument) that X’ actually lies on r; so we can choose X to be X',

Aristotie’s axiom guarantees that Y can be chosen SLl_Cl)’l that
XY > PQ. By Congruence Axiom 1, there is one point R on QB such
that QR = XV, We claim that <}:PRQ < LXVY, Assume the contrary,
By tﬂchotomy,_)there is a ray RS such that LQRS = LXVY and RS
either equals RP or is between RP and RQ
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Figure 3.31

"By the crossbar theorem, point § (which thus far is also merely
a label) can be chosen to lie on segment PQ; then $Q is not greater
than PQ. By the ASA congruence criterion, 5Q = XY. Hence XY is
not greater than PQ, contradicting our choice of Y. Thus <PRQ <
4 XVY, as claimed. If R lies on ray AB, then ¥PRQ = {PRA and we
are done. i not, R and Q lie on the opposite ray. By the exterior
angle theorem, if R’ is any point such that Q * R * R’, then ¥PR'Q <
FPRQ < 4XVY. We get <PBA = 4{PBQ < ¥XVY by taking R’ = B.
<4

All four principles thus far stated are in the spirit of ancient Greek
geometry. They are all consequences of the next axiom, which is ut-
terly modern.

DEDEKIND’S AXIOM.” Suppose that the set {{} of all points on a line
[ is the disjoint union %1 U X; of two nonempty subsets such that no
point of either subset is between two points of the other. Then there
exists a unigue point O on [ such that one of the subsets is equal to a
ray of { with vertex O and the other subset is equal to the complement.

Dedeldnd’s axiom is a sort of converse to the line separation prop-
erty stated in Proposition 3.4. That property says that any point O on

5 This axiom was proposed by J. W. R, Dedekind in 1871; an analogue of it is used in
analysis texts to express the cempleteness of the real number system. It implies that
every Cauchy sequence converges, that continwous functions satisfy the Intermediate
value theorem, that the definite integral of a continuous function exists, and other im-
portant conclusions. Dedekind actually defined a “real number” as a Dedekind cut on

" the set of rational numbers, an idea Eudoxus had 2000 years earlier (see Maolse, 1950,
Chapter 20).
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Figure 3.32

! separates all the other points on ! into those to the left of O and those
to the right (see Figure 3.32; more precisely, {{} is the union of the
two rays of I emanating from O}. Dedekind’s axiom says that, con-
versely, any separation of points on [ into left and right is produced by
a unique point O. A pair of subsets ¥; and ¥, with the properties in
Dedekind’s axiom is called a Dedekind cut of the line.

Loosely speaking, the purpose of Dedekind’s axiom is to ensure that
a line  has no “holes” in it, in the sense that for any point O on ! and
any positive real number x there exist unique points P_, and P, on [
such that P_, + O # P and segments P..,O and OP, both have length x
(with respect to some unit segment of measurement)., See Figure 3.33.

Without Dedekind’s axiom there would be no guarantee, for ex-
ample, of the existence of a segment of length . With it, we can in-
troduce a real number coordinate system into the plane and do geom-
elry analytically. This coordinate system enables us to prove that our
axioms for real Euclidean geometry are categorical in the sense that the
system has a unigque model (up to isomorphism-~see the section Iso-
morphism of Models in Chapter 2), namely, the usual Cartesian coor-
dinate plane of all ordered pairs of real numbers. (See Example 3 in
the next section.)

The categorical nature of all the axioms is proved in Borsuk and
Szmielew (1960, p. 276 {f.).

i3 1f you have never seen Dedekind’s axiom before, arguments

using it may be difficult to follow. Don’t be discouraged. With the excep-
tion of Theorem 6.2 in hyperbolic geometry, it is not needed for studying
the main theme of this book. I advise the beginning student to skip to the
next section, Hilbert’s Euclidean Axiom of Parallelism,

Let us sketch a proof that Archimedes” axiom is a consequence of
Dedekind’s (and the axioms preceding this section).

-
- nt

Figure 3.33
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Proor:

Given a segment CIJ and a point A on line I, with a ray 7 of { em-
anating from A. In the terminology of Archimedes’ axiom, let 3,
consist of A and all points B on r reached by laying off copies of
segment CI) on r starting from A, Let %, be the complement of X,
in r. We wish to prove that =, is empty, so assume the contrary,

In that case, let us show that we have defined a Dedekind cut
of 7 {see Exercise 7(a)}. Start with two points P, Q in 3, and say
A xP» Q. We must show that PQ C 5. Let B be between P and Q,
Suppose B could be reached, so that n and E are as in the state-
ment of Archimedes’ axiom; then, by Proposition 3.3, P is reached
by the same n and E, contradicting P € 3,. Thus PQ C 3,. Simi-
larly, you can show that when P and Q are two points in 3, PQ C
21 (Exercise 7(b)). So we have a Dedeldnd cut. Let O be the point
of r furnished by Dedekind’s axiom.

‘ CASE 1. O € 3. Then for some number n, O can be reached by
laying off n copies of segment CD on r starting from A. By laying off
one more copy of CD, we can reach a point in 3, but by the defini-
tion of 3, that is lmpossfble

CASE 2. O € ;. Lay off a copy of CD on the ray opposite to 3,
startlng at O, obtaining a point P € 5. Then for some number 11, P can
be reached by laying off n copies of segment CD on r starting from A.
By laying off one more copy of CD, we can reach O. That contradicts
O e 3,

So in either case, we obtain a contradiction, and we can reject the
RAA hypothesis that %; is nonempty. «

To further get an idea of how Dedekind’s axiom gives us continu-
ity results, we sketch a proof now of the segment-circle continuity prin-
ciple from Dedekind’s axiom (logically, this proof should be given later
because it uses results from Chapter 4). Refer to Figure 3.29, p. 131.

Proor:

By the definitions of “inside” and “outside” of a circle y with cen-
ter O and radius OR, W£>have OA < OR < OB. Let ¥, be the set of
all points P on the ray AB '[_I}gt either lie on v or are outside v, and
let 3 be its complement in AB, By trichotomy {Proposition 3.13(a))},
2, consists of all points of the segment AB that le inside y. Ap-
plying Exercise 27 of Chapter 4, you can convince yourself that
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{31, 23) is a Dedekind eut. Let M be the point on AB furnished by
Dedekind’s axiom. Assume M does not e on v (RAA hypothesis).

CASE 1, OM < OR. Then M € 3;. Let m and r be the lengths
{defined in Chapter 4} of OM and OR, respectively. Since 2; with M Is
a ray, there is a point N € 5,; such that the length of MN is ${r — m)
by laying off a segment whose length is ¥(r — m)}. But by the tri-
angle inequality (applied to AOMN), the length of ON is less than
m+ %(r - m}-< m-+{r—-m)= - T, Which contradicts N &3,

CASE 2. OM > OR. The same argument apphes, interchanging
the roles of 2; and %;.

So in either case, we obtain a contradiction, and M must lie on . «

You will find a lovely proof of the circle-circle continuity principle
from Dedekind’s axiom on pp. 238-240 of Heath’s translation and com-
mentary on Euclid’'s Flements (1956). It assumes that Dedekind’s ax-
iom holds for semicircles, which you can easily prove, and alsc uses
the triangle inequality and the fact that the hypotenuse is greater than
the leg (proved in Chapter 4). '

Euclid’s tacit use of continuity principles can often be avoided. We
did not use them in our proof of the existence of perpendiculars (Propo-
sition 3.16). We did use the circular continuity principle to prove the
existence of equilateral triangles on a given base, and Euclid used that
to prove the existence of midpoints, as in your straightedge-and-
compass solution to Major Exercise 1{a) of Chapter 1. But there is an
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ingenious way to prove the existence of midpoints using only the
very mild continuity given by Pasch’s theorem (see Proposition 4.3,
Chapter 4),

Figure 3.34 shows the implications discussed (assuming all the in-
cidence, betweenness, and congruence axioms-—especially SAS).

Hilbert’s Euclidean Axiom of Parallelism

If we were to stop with the axioms we now have, we could do quite
a bit of geometry, but not all of Euclidean geometry. We would be able
to do what J. Bolyai called “absolute geometry.” This name is mislead-
ing because it does not include elliptic geometry and other geometries
(see Appenchx B}. Preferable is the name suggested by W. Prenowitz
and M. Jordan, neutral geometry, so calied because in doing this geom-
etry we remain neutral about the one axiom from Hilbert’s list left to
be considered—historically the most controversial axiom of all.

HILBERT'S EUCLIDEAN AXIOM OF PARALLELISM. For every line [
and every point P not lying on { there is at most one line m through P
such that m is parallel to [ (Figure 3.35),

Note that this axiom is weaker than the Euclidean paralle] postu-
late introduced in Chapter 1. This axiom asserts only that at most one
line through P is parallel to [, whereas the Euclidean parallel postulate
asserts in addition that at least one line through P is parallel to /. The
reason “at least” is omitted from Hilbert’s axiom is that it can be proved
from the other axioms (see Corollary 2 to Theorem 4.1 in Chapter 4);
it is therefore unnecessary to assume this as part of an axiom. This ob-
servation is important because it implies that the elliptic parallel prop-
erty {no parallel lines exist} is inconsistent with the axioms of neutral
geometry, Thus, a different set of axioms is needed for the foundation

- of elliptic geometry {see Appendix A).

The axiom of parallelism completes our list of 15 axioms for real
Euclidean geometry. A real Euclidean plane is a model of these axioms.
In referring to these axioms, we will use the following shorthand: The

P

Figure 3.35
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incidence axioms will be denoted by I-1, I-2, and 1-3; the betweenness
axioms by B-1, B-2, B-3, and B-4; the congruence axioms by C-1,.C-2,
C-3, C4, C-5, and C-6 (or SAS). Dedekind’s axiom and Hilbert's
Euclidean parallelism axiom will be referred to by name.

The continuity axiom for a real Euclidean plane is Dedekind’s ax-
iom. This axiom is not needed to do elementary Euclidean geometry.
Instead, the circle-circle continuity principle suffices to prove all the
propositions in the first four volumes of Euclid’s Elements.

DEFINITION. A Euclidean plane is a Hilbert plane in which Hilbert's
Euclidean axiom of parallelism and the circle-circle continnity princi-
ple hold.

: EXAMPLE 3. THE REAL EUCLIDEAN OR THE CARTESIAN

T

PLANE This is the model that most people have in mind when they

talk about “the” Euclidean plane. In major Exercise 8, Chapter 5, you
will be able to prove that a real Euclidean plane is isomorphic to the
model we are about to describe,

As we indicated, Dedekind’s axiom provides a one-to-one corre-
spondence between the polnts on a line and the ordered field R of real
numbers. We have seen that [R* becomes a model of our incidence and
betweenness axioms, as well as of Hilbert’s Euclidean axiom of paral-
lelism, with the interpretations discussed in Example 1 of this chapter.
We now need to interpret the undefined term “congruence” to make
R? into a Euclidean plane. We do this via the familiar definition of dis-
tance or segment length in analytic geometry, based on the Pythagorean
formula,

If A= (a1, a;) and B = (by, b;) are two points in R?, define d(A B)

by

d(AB) = V{ay — b1)? + (az — by)2

Interpret AB == CD to mean d{A B) = d(C D}; i.e., two segments are in-
terpreted as congruent if they have the same length, To interpret con-
gruence of angles, one could define a measure of angles by real num-
bers and interpret two angles to be congruent if they have the same
angle measure; since that is not easy to do rigorously, we can use the
following trick once we have verified the interpretation of C-1; Label
the angle LABC with vertex B by letting A, C on the sides of the an-
gle be the unique points such that d(A B) = d(C B) = 1. Label {DEF
similarly. Then interpret £ABC = <'DEF to mean d(A C) = d(D F). (This
is the SSS criterion in disguise.)
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We leave it as Projects 1-4 to either verify that R? with these in-
terpretations of congruence satisfies our six congruence axioms and
Dedekind’s axiom, or to look up and report on the verification of those
seven claims in other textbooks recommended, Hence R? becomes a
Euclidean plane with those interpretations—the real Euclidean plane (also
referred to as the Cartesian plane in honor of Descartes’ invention of
analytic geometry, though Descartes had no precise notion of the real
numbers and his coordinates were geometric segments).

EXAMPLE 4. THE CONSTRUCTIBLE EUCLIDEAN PLANE. In
Example 3, we could try io use the same interpretations of congruence
for the ordered rational affine plane ©? instead of R?, Would that too
become a model of our congruence axioms? The answer is NO! For in-
stance, thesinterpretation of axiom C-1 fails. Consider the segment AB
with A = (0, 0) and B = (1, 1}. If one tries to lay off this segment on
the ray v emanating from the origin A that passes through the point
{1, 0) (i.e., the positive ray of the x-axis), we find that we cannot do
that in Q2 because the point B’ on r which corresponds to B in R? is
B’ = (\/2, 0) since d{AB) = V2. Geometrically, the way we would con-
struct the point B’ is to draw the circle v centered at A of radius AB
and then take B’ to be the point where that circle intersects the posi-
tive ray of the x-axis. When we restrict to points with rational coordi-
nates, there is no such intersection point. We also see from this example
that the segment-circle continuity principle fails in @% If C = (2, 0),
segment AC has one endpoint A inside y and the other endpoint C out-
side y, yet there is no point in between in ©? where v intersects AC,

Joel Zeitlin informed me of another quirk in this interpretation, Con-
sider point D = (1, 0). In R?, D is inside y because d(AD) = 1 and ¥
has radius of length V7 =1, However, in @, D is not inside ! The
reason is that the point I’ in R? between A and B for which d(AD") =
1 does not have rational coordinates (review the definition of “inside”
and of < for segments). Similarly, D is neither outside nor on the cir-
cle y. Trichotomy fails in this interpretation.

If you carry out or loak up the verification of the interpretation of
the congruence axioms and the circle-circle continuity principle in R?,
you will see that the full power of the real number system is hardly
used at all, only the fact that if a is a positive number, then Va is in
R. The reason is that congruence is interpreted in terms of distance,
and distance was defined as the square root of a positive number. As
for the verification of the circle-circle continuity principle, it too comes
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down to the existence of square roots of positive numbers because eir-
cles are represented in ®* by certain quadratic equations, and if the
hypothesis of the circle-circle principle is satisfied, then one can show
that the two quadratic equations for the two circles have two common
solutions obtained through use of the quadratic formula. This leads us
to the following definitions and theorem.

DEFINITION. A Euclidean field is an ordered field F with the property
that every positive element of F has a square root in F.

THEOREM. If F is a Euclidean field, then F?, with congruence inter-
preted in the same way as in Example 3 above, is a Euclidean plane.

See the Projects for hints toward proving this.
Here is the most important example of a Euclidean field other

than R.

DEFINITION. The constructible field K is the intersection of all Euclid-
ean subfields of &, (K is also called the surd field in Moise’s 1990 text.)
An element of X is a real number that can be expressed in terms of ra-
tional numbers by finitely many applications of the five operations of
taking the square root of positive numbers, addition, subtraction, mul-
tiplication, and division, The constructible Euclidean plane is F2, where
F=K

For example, (3 — V/2)1/2 is an element of K, but /2 is not (that
requires proof), The latter result is the key to showing that duplication
of a cube is impossible using only straightedge and compass. In fact,
the Fuclidean plane coordinatized by K is the key to proving the im-
possibility in general of the four classical straightedge-and-compass con-
structions discussed in Chapter 1. (See Hartshorne, Chapter 6, for all
the details.}

Note also that while the theory of real Euclidean planes is categorical—
all its models are isomorphic—the theory of Euclidean planes is not:
The plane coordinatized by R is not isomorphic to the plane coordi-
natized by K. For example, in R? every angle has a trisector, but over
K the 60° angle does not have a trisecior and the regular heptagon does
not exist {as Kepler observed).

MOTE FOR ADVANCED STUDENTS ON THE RELATIVE CONSIS-
TENCY OF PLANE EUCLIDEAN GEOMETRY. Hilbert used the result
that R2 is a model of his planar axioms to prove that if the theory of
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the real numbers is consistent, then so is real Euclidean geometry,
Frankly, this result is of dubious valie philosophically. Elementary
plane Fuclidean geometry is thousands of years older than the theory
of the real numbers, and once the gaps in Euclid’s presentation are
filled by our—essentially Hilbert’s—15 axioms for a Euclidean plane,
we will have much more evidence to instill confidence that Euclidean
geometry is consistent than we have for the consistency of the
theory of R. Or, if one seeks an algebraic proof of relative consistency,
it is better to use the plane coordinatized by the field of constructible
numbers K since K is a much more elementary field than R (e.g., Kis
a countably infinite field, an algebraic extension of @, whereas R is an
uncountable transcendental extension of @, and its exact cardinality is
a complete mystery to mathematicians because of the independence of
the continuum hypothesis from the accepted axioms of set theory ZFC).
K can be defined without referring to R by showing how to succes-
sively adjoin square roots of positive elements to fields built up that
way starting from Q (see any good abstract algebra text).

Conclusion

The main purpose of this chapter is to fill in the gaps in Euclid’s pre-
sentation of plane geometry. It is not claimed that we have filled in all
of them—we have not, but almost all® the elementary synthetic Bu-
clidean results you learned in high school can be proved from the 15
axioms for Euclidean planes.

The section on betweenness is probably new to you since Euclid
did not consider that notion. The results on betweenness may seem ob-
vious, yet they have profound significance. For one thing, they do not
hold in elliptic geometry—the geometry of projective planes with the
added structure of a four-point separation relation and a congruence
relation (see Appendix A); in an elliptic plane, a line does not bound
two half-planes (all the points not on the line are on the same side of
the line). For another, they guarantee that we are working in two di-
mensions and that the plane is orientable—see Chapter 9, Exercise 23.
Also review the warning in the betweenness section about one state-

 Euclid’s theory of content—his version of area—requires Archimedes’ axiom at certain
points (see Hartshorne, Chapter 5).
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ment you may consider “obvious” but which cannot be proved from
our betweenness axioms (see Exercise 19).

The section on congruence contains results that should all be fa-
miliar. The main surprise, perhaps, is that the SAS triangle congruence
criterion must be taken as an axiom—Euclid’s superposition argument
is good heuristics, but it is certainly not a proof in his system.

Euclid’s fourth postulate (that all right angles are congruent to
one another) is no longer an axiom in our system: It was proved as
Proposition 3.23. Proclus, in his fifth-century commentary on Book 1 of
the Elements, said Euclid IV should not be a postulate because it can
be proved, and the idea for the proof we gave of Proposition 3.23 can
be found in Proclus (1992, pp. 147-148). On the surface of a cone, right
angles at the cone vertex are not congruent to right angles at other
points of the cone (Henderson and Taimina, 2005, p. 58), so one can
also argue that Euclid IV is not “obvious.”

In the section on comtinuity, we showed how the circle-circle con-
tinuity principle fills the gap in Euclid’s very first proposition, the con-
struction of an equilateral triangle on any given base. We mentioned
two other continuity principles that later will be shown to be conse-
quences of circle-circle continuity and that fill other gaps in Euclid. We
also introduced Aristotle’s axiom, a very important elementary geo-
metric axiom used by Proclus; Archimedes” axiom, which is not a purely
geometric axiom but which is needed for measurement; and Dedekind’s
set-theoretic axiom, which turns out to be equivalent to coordinatizing
our plane with real numbers.

Finally, we stated Hilbert's Euclidean axiom of parallelism, the last
of our axioms for a Euclidean plane. In Chapter 4, we will show that
it is equivalent to Euclid V, We have not derived any consequences of
that axiom yet and will not do so for a while because we wish to re-
main neutral about it and see what can be proved without it. None of
the results in this chapter, including the results in the exercises, depend
on Hilbert’s Euclidean axiom of parallelism. We provided (without
proofs) two very important examples of Euclidean planes: the real Carte-
stan plane and the constructible Euclidean plane.

NOTE FOR ADVANCED STUDENTS ON THE EXISTENCE OF CER-
TAIN GEOMETRIC SETS. The astute reader may have noticed that
while we have been very careful to add explicit axioms asserting the
existence of certain points and lines, such as Axioms I-1, I-2, I-3, B-1,
B-2, C-1, C-4, and the circle-circle continuity principle, and to carefully
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prove irom those axioms other existence assertions {such as the exis-
tence of perpendiculars and parallels, the crosshar theorem, etc.), we
have been rather casual about the existence of circles, segments, rays,
half-planes, and so on. We either referred to "elementary set theory”
as justification or just took their existence for granted. Let us be a lit-
tle more precise here. Given distinct points O and A, the circle y with
center O and a radius QA is defined as

y= {PiOP.% OA}.

In words: Circle v is the set of all peints P satisfying the geometric con-
dition that OP is congruent to the given segment QOA. As another ex-
ample, if A and B are distinct points,

AB={PlP=A\/P=B\/A=*P B}

In words: Segment AB is the set of all points P satisfying the geomet-
ric condition that either P is A, or P is B, or P is between A and B.

The general principle of set theory we are invoking is as follows:
For any geometric condition, the set of all points and lines satisfying
that condition exists. However, that set may be the empty set: As one
example, the set of all triples of points A, B, C such that A = B » C but
A, B, C not collinear is empty, according to Axiom B-1. As another ex-
ample, in a projective plane, the set of all lines parallel to a given line
is empty.

What's missing here is a precise definition of “geometric condition.”
That would require a more systematic discussion of the mathematical
logic underlying our theory, We would have to precisely define the lan-
guage of our theory and what is a well-formed formula in that lan-
guage. Then a geometric condition is just a well-formed formula in the
language of elementary geometry with one or more free (i.e., unquan-
tified) variables. We are not stating the above principle as another ax-
iom in our system. Consider it rather as a background principle akin
to Euclid’s common notions.”

7 To be totally faithful to the spirit of Fuclid, one should not bring in set theory at all
since it is a theory first presented rigorously in the twentieth century, In that case, ane
would have to replace everything we have done using sets with further undefined terms
and further axioms about those terms (e.g., “circle” would become an undefined termy}.
That is a complicated project. The interested reader is invited to learn about Tarski's
different first-order primitive terms and axioms for elementary Euclidean geometry at
http://en.wikipedia, org/wiki/Tarski’s_axioms. Tarski’s theory is decidable and complete—
i.e., there is an algorithm for deciding whether any geometric statement in his language
Is provable or its negation is, One can question how “elementary” Tarski's axioms are
since there are infinitely many continuity axioms (brought inta one axiom scherna).
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Review Exercise

Which of the following statements are correct?

(1) Hilbert’s axiom of parallelism is the same as the Fuclidean par-
* allel postulate given in Chapter 1.

_(2) A=B=*C is logically equivalent to C * B * A,

‘ (3) In Axiom B-2, it is unnecessary to assume the existence of a

) point E such that B * D + E because this can be proved from

the rest of the axiom and Axiom B-1, by interchanging the roles
of B and D and taking E to be A.
{4) If A, B, and C are distinct collinear points, it is possible that

! both A+B+*C and A*=C+B,

.+ (5) The “line separation property” asserts that a line has two sidnles.

' (6) If points A and B are on opposite sides of a line [, then a point

' C not on I must be either an the same side of [ as A or on the
same side of [ as B.

(7) I line m is parallel to line I, then all the points on m lie on
the same side of L

(8) If we were to take Pasch’s theorem as an axiom instead of the

- separation axiom B-4, then B-4 could be proved as a theorerp.

(9) The notion of “congruence” for two iriangles is not defined in

* this chapter.

(10) It is an immediate consequence of Axiom C-2 that if AB == CD,
then CD = AB.

(11) One of the congruence axioms asserts that if congruent seg-

-+ ments are “subtracted” from congruent segmernts, the differ-
ences are congruent.

(12) In the statement of Axiom C-4, the variables A, B, C, A’,.a‘nd
B’ are quantified universally, and the variable C' is quantified
existentially. ‘

(13} One of the congruence axioms is the side-side-side (S55) crite-

*-  rion for congruence of triangles. .

{14) Fuclid attempted unsuccessfully to prove the side-angle—md}e
{SAS) criterion for congruence by a method called “superposi-
tion.”

(15) We can use Pappus’ method to prove the converse of the the-
orem on base angles of an isosceles triangle if we first prove
the angle-side-angle (ASA) criterion for congruence. '

(16) Archimedes’ axiom is independent of the other 15 axioms for
real Euclidean geometry given in this book.

P
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(17) AB << CD means that there is a point E between C and D such
that AB = CE.

(18) All Euclidean planes are isomorphic to one another.

(19) V2 is not a constructible number.

(20} A Hilbert plane is any model of the incidence, betweenness,
and congruence axioms.

Exercises on Betweenness

1, Given A*B+*Cand A+=C=+D,

(a) Prove that A, B, C, and D are four distinct points (the proof
requires an axiom).

(b) Prove that A, B, C, and D are collinear.

{c) Prove the corollary to Axiom B-4.

2. (a) @ish the proof of Proposition 3.1 by showing that ABUBA =

AB.

(b) Finish the proof of Proposition 3.3 by showing that A « B # D.

(c) Prove the converse of Proposition 3.3 by applying Axiom B-1.

(d) Prove the corollary to Proposition 3.3.

3. Given A*B=C.

(a)} Use Proposition 3.3 to prove that AB C AC, Interchanging A
and C, deduce CD C CA; which axiom justifies this interchange?

(b) Use Axiom B-4 to prove that ACC ABUBC. (Hint: If P is a
fourth point on AC, use another line through P to show P &
AB or P € BC.}

(c] Finish the proof of Proposition 3.5. (Hint: f P#B and P &
AB M BC, use another line through P to get a contradiction.)

4, Given A*B=C,

(a) If P is a fourth point collinear with A, B, and C, use Proposi-
tion 3.3 and gg}axiom to prove that ~A * B_*;P =_>9~A *C= P,

{b) Deduce that BAC ﬁ and, symumnetrically, BC C AC,

(c) Use this result, Proposition 3.1(a}, Proposition 3,3, and Propo-
sition 3.5 to prove that B is the only point that BA and BC have
in common. o

5. Given A * B * C. Prove that AB = AC, completing the proof of Propo-
sition 3.6. Deduce that every ray has a unique opposite ray,

6. In Axiom B-2, we were given distinct points B and D, and we as-
serted the existence of points A, C, and E such that A* B+ D,
B*C+*D, and B * D + E. We can now show that it was not neces-
sary to assume the existence of a point C between B and I} because
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Figure 3.36

7.

8

we can prove from our other axioms (including the rest of Axiom
B-2) and from Pasch’s theorem (which was proved without using
Axiom B-2) that C exists.? Your job is to justify each step in the
proof (some of the steps require a separate RAA argument).

Proor (SEe Ficure 3.36):

(1) There exists a line BD through B ani) D.

(2) There exists a po'mt_f;‘ not lying on BD.

(3) There exists a line BF through B and F.

{(4) There exists a point G such that B+ F * G.

(5) Points B, F, and G are collinear. .

(6) G and D are distinct points and D, B, and G are not collinear.

{7} There exists a poin’gﬂ such that G =D = H.

(8) There exists a line GH.

(9) Hand F are distincg_goints.

(10) There exists a lineeiH.

(11) D does not lie on ﬁ;l

(12} B does not lie on I;“_I‘i

{13} G does not lie on FH. - '

{14) Points D, B, and G determine ADBG, and FH intersects side
BG in a point between B and G. — -

(15) H is the only point lying on both FP(I_)and GH.

(16) No poin{t_;)etween G and D lies on FH.

(17) Hence, FH intersects side BD in a point C between D and B.

(18) Thus, there exists a point C between D and B. 4

(a) Define a Dedekind cut on a ray r the same way a Dedekinfl eut
is defined for a line. Prove that the conclusion of Dedekind's

Regarding superfluous hypotheses, there is a story that Mapoleon, after ex'amining a
copy of Laplace’s Celestial Mechanics, asked Laplace why there was no mention of God
in the work. The author replied, "I have no need of this hypothesis.
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?;?I?;l:halso holds for r. (Hint: One of the subsets, say, %, con-
: ‘te vertex A of r; enlarge this set so as to include the ray
t £§PS1 e t'o r an{-:‘l show that a Dedekind cut of the line ! con-
£ ms r fs ob'tamed.) Similarly, state and prove a version of
. edekind’s axiom for a cut on a segment,
(b) Supp}y the, mcliicated arguments left out of the proof of
. Archimedes’ axiom fram Dedekind’s axiom.
. ;r?vn; the c;Ehreio;pclnli11t maode] {Example 1 in Chapter 2) we saw that
used onty the axioms of incidence
| ; . » we could not prove that
:Xlime has more than two points lying on it. Using the betweenness
= ;Jtmé 'as welll, prove that every line has at least five points lying
on . Give e;n u;f;rmal argument to show that every segment (a for
» €very linej has an infinite number of poj i i )
) : points lying on it (a for-
. giil proollf requires the technigue of mathematica] inductionJ(
. en i i .
alinel, a _E}omt Aonl and a point B not on I. Then every

10. Prove Proposition 3.7.
11. Prove Proposition 3.8 {Hint;
8. t: For P it] i
stops thation 3.8 N m.posmon(_g.sgc), prove in two
B does nor oré the same side of AD, first showing that
' eg and then showing that ER g
: opposite ray E‘ Use Exercise 9.) ’ °% nol mect the
2. i‘gve Pr;positionlefﬂ. (Hint: For Proposition 3.9(a), use Pasch’s the-
o gll and Proposition 3.7; see Figure 3.37. For Proposition 3.9{h)
s fay emenate from point D in the interior of AABC, Use the:
Zr;ss: tal:E theo;em and Proposition 3.7 to show that AD meets BC in
oint £ such that A+ D+ g Apply Pasch’
. s th
AAEC; see Figare 3.38.) ¢ ofem [0 AARE and
;:.Erzvebﬂlat a line cannot be contained in the interior of a triangle
.em , E a?d C are rays, let us say that they are coterminal if the.y
anate irom the same point, and let us use the notation a + b * c

Figure 3.37
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Figure 3.38

to mean that b is between a and ¢ (as defined on p. 115). The ana-
logue of Axiom B-1 states that if o * b # ¢, then a, b, ¢ are distinct
&nd coterminal and ¢ * b * g; this analogue is obviously correct. State
the analogues of Axioms B-2 and B-3 and Propaosition 3.3 and tell
which parts of these analogues are correct. (Beware of opposite
rays!) . _

15.Find an interpretation in which the incidence axioms and the first
two betweenness axioms hold but Axiom B-3 fails in the following
way: There exist three collinear points, no one of which is between
the other two. (Hint: In the usual Euclidean model, introduce a new
betweenness relation A * B # C to mean that B is the midpoint of AC.)

16. Find an interpretation in which the incidence axioms and the first
three betweenness axioms hold but the line separation property
(Proposition 3.4} fails. (Hint: In the usual Euclidean model, pick a
point P that is beween A and B in the usual Euclidean sense and
specify that A will now be considered to be between P and B, Leave
all other betweenngg relations among points El}one. Show that P
lies neither on ray AB nor on its opposite ray AC.)

17. A rational number of the form /27 (with a, n integers) is called
dyadic. In the interpretation of Example 1 (p. 117) for this chapter,
restrict to those points which have dyadic coordinates and to those
Hnes which pass through several dyadic points. The incidence ax-
joms, the first three betweenness axioms, and the line separation
property all hold in this dyadic rational plane; show that Pasch’s
theorem fails. (Hint: The lines 3x + y = 1 and y = 0 do not meet in
this plane.)

18. A set of points S is called convex if whenever two points A and B
are in S, the entire segment AB is contained in S. Prove that a hali-
plane, the interior of an angle, and the interior of a triangle are all
convex sets, whereas the exterior of a triangle is not convex. Is a

triangle a convex set?
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19.Fill in the details of Example 2 of this chapter to show informally
that the open unit disk U in F? is an ordered incidence plane hav-
ing the hyperbolic paralte] property {existence of more than one par-
allel to a given line through a given point not on that line). Take F
to be R if you are unfamiliar with ordered fields. Draw a diagram
in this model to show that for any angle in this model, there exist
points interior to that angle which do not lie on any line that in-
tersects both sides of the angle. (Congruence in this model will he
explained in Chapter 7.)

Exercises on Congruence

20. Justify each step in the following proof of Proposition 3.11:

Proor:

(1) Assume on the contrary that_) BC is not congruent to EF.

(2) Then there is a point G on EF such that BC == EG.

(3} G#F.

(4) Since AB = DE, adding gives AC = DG.

(5} However, AC == DF,

(6) Hence, DF = DG.

{7} Therefore, F = G.

(8) Our assumption has led to a contradiction; hence, BC = EF. «

21. Prove Proposition 3.13(a). (Hint: In the case Whe_gre AB and CD are
not congruent, there is a unique point ¥ # D on CD such that AB =
CF (reason?). In the case where C * F + D, show that AB < CD. In
the case where C * D * F, 1se Proposition 3.12 and some axioms to
show that CD << AB.) Provide the details of the claim in Example 4
of this chapter that trichotomy sometimes fails in 2,

22. Use Proposition 3.12 to prove Propositions 3.13(b) and (c).

23. Use the previous exercise and Proposition 3.3 to prove Proposition
3.13(d).

24. Justify each step in the following proof of Proposition 3,14 (see Fig-
ure 3.39). :

Proor:
Given < ABC = {DEF. To prove ¥CBG = <FEH:

(1) The points A, C, and G being given arbitrarily on the sides of
¥ABC and the supplement <CBG of <ABC, we can choose the
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Figure 3.39

points D, F, and H on the sides of the other angle and itslsup-
plements so that AB = DE, CB = I'E;, and BG == EH.

(2} Then, AABC = ADEF.

(3) Hence, AC == DF and <A = «D.

{4) Also, AG = DH.

(5) Hence, AACG = ADFH.

{6) Therefore, CG == FH and 4G = H.

{7} Hence, ACBG = AFEH. .
(8) It follows that $.CBG = ¥FEH, as desired. <

25. Define “vertical angles.” Deduce Proposition 3.15 from Proposition

3.14.

26. Justify each step in the following proof of Proposition 3.17 {see Fig-

ure 3.40):

Proor:
Given AABC and ADEF with €A = 4D, «C = 4F, and AC = DF.

To prove AABC = ADEF:

=% L)
(1) There is a unique point B’ on ray DE such that DB’ = AB.

(2) AABC = ADB'F.
(3) Hence, ¥DFB’ = {C.

Figure 3.40
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27,
28.

29.
30.

31.
32,
33,
34,

35.

{4) This implies FE = 5: 0
(5) In that case, B’ = E.
{6) Hence, AABC = ADEF, «

Prove Proposition 3.18,

Prove that an equiangular triangle (all angles congruent to one an-

other} is equilateral,

Prove Proposition 3.20, (Hin_t.; Use AXiOIIl_) C-4 ang) Proposition 3.19.)

Given ¥ABC = <_):_LJEF and BG_];;etwee_p_) BA and BC, Prove that there

is a unique ray EH between ED and EF such that €£ABG = <DEH,

(Hint: Show that D and F can be chosen so that AB = DE and BC =

EF, and that G can be chosen so that A * G » C. Use Propositions

3.7 and 3.12 and SAS to get H; see Figure 3.25.)

Prove Proposition 3.21 (imitate Exercises 21-23).

Prove Proposition 3.22. (Hint: Use the corollary to $AS to reduce

to the case wherg_ifx =D, C=F, and the points B and E are on

opposite sides of AC.)

If AB < CD, prove that 2AB < 2CD.

(a) Prove Euclid’s second postulate.

(b) Prove that the center of a circle is unique and its radius is
unigue up to congruence; that is, if peints O, O’ and radii 0A,
O'A, respectively, determine the same circle, then 0 = O’ and
CA=0'A",

In the real Euclidean plane of Example 3 in this chapter, we have

defined the length of any segment by the Pythagorean formula. We

will now distort that interpretation as follows: For segments on the
x-axis only, redefine their length as twice what it was previously

(e.g., the length of the segment from (1, 0) to (4, 0} is now 6 in-

stead of 3}, Reinterpret congruence of segments to mean that two

segments in the plane have the same “length” in this perverse way
of measuring (e.g., the segment from (0, 0) to (0, 6) on the y-axis
is now congruent to the segment from (1, 0) to (4, 0) on the x-axis).

Points, lines, incidence, and betweenness will have the same mean-

ing as before and satisfy the same axioms as before. Congruence of

angles will mean that the angles have the same number of degrees,

i.e., the same meaning as in high school peometry (something we

have not defined, but treat this example informally). Show infor-

mally that the first five congruence axioms and angle addition

(Proposition 3.19} still hold in this interpretation but that SAS fails

for certain pairs of triangles (see Figure 3.41). This shows that Ax-

iom C-6 {SAS) is independent of the other 12 axioms for a Hilbert
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Fignre 3.41

plane (it can neither be proved nor disproved fromltherr.l). Dra\fv
diagrams to show that §85 and ASA also fail for certain pafrs_of tr}-
angles. Draw a diagram of a circle with center on the x-a.ms 1n.th1s
interpretation and use that diagram to show tl}at .the grcl_e—mrclre
continuity principle and the segment-circle continuity principle fail

in this interpretation,

- Major Exercises

1. In the real Euclidean plane, let -y be a circle with center A and ra-

dius of length r. Let ' be another circle with center A"and radius
of length 7', and let d be the distance from A to A’ (see Figure 3.42},
There is a hypothesis about the numbers r, 1, and d that. ensures
that the circles y and 4’ intersect in two distinct points.. Figure out
what this hypothesis is. (Hint; Its statement is that certain numbers
obtained from r, ', and d are less than certain others.} .

‘What hypothesis on r, 7, and d ensures that y and mtersec?t
in only one point, i.e., that the circles are tangent to each other?

{See Figure 3.43.)

. Define the reflection in a line m to be the transformation Ry, of the

plane that leaves each point of m fixed and transforms: a peoint A
not on m as follows. Let M be the foot of the perpendicular from
A to m. Then, by definition, R,{A) is the unigue point A’ such that

¥ .“\

Figure 3.42
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Y v

Figure 3.43

A"+ M=* A and A'M = MA (sce Figure 3.44). This definition uses
the result from Chapter 4 that the perpendicular from A to m is
unique, so that the foot M is uniguely determined as the intersec-
tion with m. Prove that Ry, is a motion, i.e., that AB = A’B’ for any
segment AB. Prove also that AB=CD = A’B'=C'D’ and that
+A = 9B = YA’ = {B’. (Chapter 9 will be devoted to a thorough
study of motions; the reflections generate the group of all such trans-
formations.) (Hint: The proof breaks into the cases (i) A or B lies
on m, (i) A and B lie on opposite sides of m, and (iii) A and B lie
on the same side of m. In (i), let M, N be the midpoints of AA’
BB’ and let C be the point at which AB meets m; prove tha;
A" *» C + B’ by showing that <{A’CM == B'CN and apply Axiom C-3.
In (iii), let C be the point at which AB' meets m, and use B = (B*)/
and the first two cases to show that AABC = AA'B'C, Take care
not to use results that are valid only in Euclidean geometry,)

If F is an ordered field for which F? is a Hilbert plane,. find the
explicit formula for the reflection across a line, treating separately
the cases where the line is vertical (given by an equation x = con-
stant) and where it is not (hence given by an equation y = mx + b).
{Hint: In the latter case, a perpendicular to the line has slope —1/mt.
Use that to find the coordinates of the foot M of the perpendicular
from A and then find the coordinates of A’ in terms of those of A.)

5

m

> o

Figure 3.44 Reflection of A across m.
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NOTE ON ELLIPTIC GEOMETRY. Consider the sphere with antipo-
dal points identified, “lines” being great circles. The perpendicular from
A to m is unique except for one point P called the pole of m (see Fig-
ure 3.24, p. 126, where m is the equator and P is the north pole); all
perpendiculars to m pass through P. The definition of reflection is mod-
ified in this model so that R, (P) = P, because the natural candidate for
Rm(P) is the point antipodal to P, but we have identified antipodal
points. Show informaily in this model that R, is the same as the 180°
rotation about the pole of m. When we study rotations in Hilbert planes
in Chapter 9, we will prove that no rotation can be the same as a re-
flection, so this is another major difference between neutral geometry

and elliptic geometry.

In the following exercises, we will assume that a segment AB has a
length which has the familiar properties (they are spelled out in The-
orem 4.3, Chapter 4). Here we denote that length by |AB|. You can
think of it as a real number, as you did in high school, or you can read
the more sophisticated treatment in Hartshorne’s book, in which |AB]
is the congruence class of segment AB and these classes can be added
and ordered.

3. Let y be a circle with center O. For any point P on y, we have called
segment OP a radius of . Let us call |OP| the radius of v and de-
note it by r. Let ¥ be another circle with center 0’ # O and radius
r and let d = |00’|. In the next chapter, we will prove the triangle
inequality (Euclid 1.20) for any Hilbert plane: If A, B, C are not
collinear, then |AB| + |[BC| > |AC|. Assume that result for now. Sup-
pose that the hypothesis of the circle-circle continuity principle is
satisfied—i.e., that there is a point of 7' inside v and also another
point of ¥ outside y. Show that the following three inequalities
hold: r+ ¢ >d, r+d=r,and v + d>r. (Hint: Use the triangles
formed with O and O’ by the point inside and by the point outside
v and apply the fact that if @ < b, then forany c, a+c<b+cl)

4. The converse to the triangle inequality is the statement that if a, b,
¢ are such that the sum of any two is greater than the third, then
there exists a triangle whose sides have those lengths. Again, as-
suming the triangle inequality, which will be proved in Chapter 4,
show that its converse implies the circle-circle continuity principle.
(Hint: Apply the previous exercise to get one point of intersection
and reflect across the line joining O and O’ to get the other, Use
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the uniqueness part of Axiom C-4 to prove that those iwo are the
only points of intersection of the eircles.)

. Fuclid L.22 is the converse to the triangle inequality. Here is Eu-
clid’s preof, which has a gap. when he assumes without justifica-
tion the existence of point K, Show that the gap can be filled by as-
suming the circle-circle continuity principle. Combining this with
the previous two exercises, we obtain the following result: For all
Hilbert planes,

Circle-circle continuity principle < converse to the triangle fnequality.

Keep in mind that neither one of these has been proved by itself,
only that they are logically equivalent given the 13 axioms for Hilbert
planes (and the triangle inequality, which will be proved for all
Hilbert planes in Chapter 4).

Proor:

Choose notation for the thrﬂ; given lengths so that a = b = ¢, Take
any point D and any ray DE emanating from D. Starting from D,
lay off successively on that ray points F, G, H so that a = |DFl, b =
[FG|, ¢ = |GH|. Then the circle with center F and radius a meets the
circle with center G and radius ¢ at a point K, and AFGK is a tri-
angle that has sides of “length” a, b, and ¢ (see Figure 3.45). <«

. The taxicab plane is another example like Exercise 35 where dis-
tance is modified in 2 so that SAS and other familiar statements
fail. Instead of using the Pythagorean formula to define the distance
between two points A = (a1, a;) and B = (b, bi), use the taxicab
formula:

dT(A, B} = fﬂ’_]_ - b1| + [az el bzl

Figure 3.45 Euclid’s proof of 1.22.
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Diagramatically, if A and B are not on the same vertical or hori-
zontal line, draw a horizontal line through A and drop a vertical
perpendicular from B to that line with foot C. Then segment AB is
the hypotenuse of a right triangle with right angle at C, and the or-
dinary distanice d(A, B) is the usual length of that hypotenuse, The
taxicab distance dT(A, B) is the sum of the usual lengths of the legs
of that triangle and is longer than the ordinary distance. If you were
in a city with a rectangular grid of streets, it is the distance a taxi-
cab would have to travel to get you around a corner at C from point

A to point B. If, however, points A and B both lie on either a hor-

izontal line, y = constant, or on a vertical line, x = constant, then

dT(A, B) = d(A, B).

(a) With points, lines, incidence, betweenness, and congruence of
angles interpreted as in Exercise 35 (the usual interpretation)
but with congruence of segments interpreted via taxicab dis-
tance, exhibit a pair of triangles and a correspondence between
thelr vertices for which SAS fails. Do the same for 555 and
ASA. Show informally that the first five congruence axioms and
angle addition (Proposition 3.19} still hold in this interpreta-
tion. (Hint: Verify C-1 using the formulas x =rcos 6 and y =
r sin @ relating rectangular to polar coordinates.)

(b} Exhibit an equilateral triangle in which one angle is a right an-
gle and the other angles are acute. Since an equilateral trian-
gle is an isosceles triangle, this is also an example in which
the base angles of an isosceles triangle are not congruent.

(c} Exhibit a triangle in which two angles are congruent but the
sides opposite those angles are not congruent.

(d) Show that a “circle” in taxicab geometry is a square in the real
Euclidean plane bui that not every Euclidean square is a taxi-
cab circle. Give an example of two taxicab circles that satisfy
the hypothesis of the circle-circle continuity principle but that
intersect in infinitely many points.

(e) In the real Euclidean plane, the locus of points equidistant from
two given points A, B is the perpendicular bisector of segment
AB. What does that locus look like with respect to taxicab dis-
tance? (Hint: Work out some specific examples. The locus can
have several shapes.)

(If you are stymied by this exercise, see the delightful little book

Taxicab Geometry: An Adventure in Non-Euclidean Geomnetry (Dover,

1987), by Eugene F. Krause.)
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Projects

1. Verify the claim in Example 3 that with the interpretation of con-
gruence via the Pythagorean formula given there, the interpretations
of the first five congruence axioms hold in the real Euclidean plane,
(The nontrivial statements to verify are C-4, the laying off of an an-
gle, and C-1, the laying off of a segment. If you are stymied, see
Hartshorne, section 16.)

2. A Pythagorean ordered field is an ordered field F in which for every
¢&F, V1+c?€&F. We see that Q is not Pythagorean by taking
¢ = 1. Hilbert denoted the smallest Pythagorean subfield of R by the
Greek letter {2, An element of ) is obtained from rational numbers
by finitely many applications of the operations of addition, sub-
traction, multiplication, division, and taking the positive square root
of a number of the form 1 + ¢2. Since 0 << 1 + ¢2, every Euclidean
ordered field is Pythagorean, but the converse is false. If you have
studied field theory, report on Exercise 16.10, p. 147, of Hartshorne
where it i$ shown that {) is strictly smaller than the constructible
field K (e.g., (1 + V2)/2 ¢ Q). If F is any ordered field, the inter-
pretations of Axioms C-2 through C-5 hold in F2, but the interpre-
tation of C-1 will hold iff F is Pythagorean. Show this, referring to
Hartshorne, section 16 if you are stymied.

3. The standard method for verifying SAS (Axiom C-6) in F2, when F
is a Pythagorean ordered field, is to first establish the existence of
enough motions in 2 so that Euclid’s idea of superposition can be
made rigorous. Report on that method from Hartshorne, Chapter 3,
Section 17. The difficulty of that verification shows that SAS is the
deepest of the axioms. We will study motions of the plane in Chap-
ter 9 (reflections have already been defined in Major Exercise 2
above).

4, Finally, to show that F? is a Euclidean plane when F is a Fuclidean
ordered field (in particular, when F=R), one must verify the
circle-circle continuity principle. In F2, we interpreted segment con-
gruence via the Pythagorean distance function d{AB): AB = CD iff
d{AB) = d(CD), Having verified the interpretation of C-1 in Project
2, we see also that AB << CD iff d(AB) <d(CD). If A*B =, you
can easily verify that d(AC) = d(AB) + d(BC). You can directly ver-
ify the triangle inequality in F2. Hence, Major Exercises 3-5 become
applicable, and it suffices to verify the converse to the triangle in-
equality in order to verify the circle-circle continuity principle, If
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you canmuot verify that yourself, report on the verification found in
Moise’s Elementary Geometry from an Advanced Standpoint, 1990,
3rd ed., p. 239 fi. (where it is called The Triangle Theoremn). In your
report; hightight the step which uses the hypothesis that F is a Eu-
clidean field (the step which uses Va € F for any a > 0).

. If Fis a Pythagorean ordered field that is not a Euclidean field (Pre-

ject 2), then the interpretation of the circle-circle continuity princi-
ple fails in F*—in fact, the line-circle continuity principle, which
will be shown in Major Exercise I of Chapter 4 to be a consequence,
fails. Here is an argument {(due to Descartest) to show that the va-
lidity in F? of the line-circle continuity principle implies that ¥ is Eu-
clidean: Given a > 0 in F. Let r = ${a -+ 1) and let & be the circle of
center (r, 0) and radius r. Let A = (a, 0). Show that A lies inside §.
Hence the vertical line x = a through A meets § in two points, by
the line-circle continuity principle. If B is the intersection point in
the upper half-plane, show that B = {a, Va). Hence, Va € F,

Combining the results of Projects 4 and 5, we see that for Hilbert

. planes of the form F?, the line-circle continuity principle implies the

circie-circle continulty principle. (Using this result, one can prove
this implication for all Hilbert planes, using Pejas’ classification of
Hilbert planes described in Appendix B, Part I1)



Neutral
(eometry

If only it could be proved . . . that “there is a Triangle whose angles
are together not less than two right angles”! But alas, that is an ignis
fatuus that has never yet been caught!.. : : '

Geometry Without a Parallel Axiom

In the preceding chapters, we strengthened the foundations of Euclid’s
geometry by presenting 13 axioms plus continuity principles to replace
his first 4 postulates. The 13 axioms (3 incidence, 4 betweenness, and
6 congruence axioms) are essentially those of David Hilbert, and in his
honor a mode! of those axioms was called a Hilbert plane.

Euclid’s fifth pestulate will be discussed in this chapter, but it will
not be assumed except when we explicitly announce it as a hypothe-
sis. Instead, we will be studying some statements that we will show to
be logically equivalent to it for Hilbert planes. One such statement is
Hilbert’s Buclidean axiom of parallelism introduced in Chapter 3. Our
purpose is to develop as much elementary geometry as possible with-
out assuming a parallel postulate, and that is what is meant by doing
“neutral geometry”—adopting a neutral stance about a parallel pos-
tulate. All the elementary geometric results proved since we started
assuming some of the Hilbert plane axioms are results in neutral

161
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geometry.! Euclid himself postponed involdng his fifth postulate for a
proof until 1.29, his 29th proposition of Book I, When we eventually
bifurcate into studying Euclidean and hyperbolic geometries separately,
all the results in neutral geometry will be valid in both geometries.

In all the propositions, theorems, corollaries, and lemmas of this
chapter, the 13 axioms for a Hilbert plane will be assumed. Our proofs
will be less formal henceforth.

What is the purpose of studying neutral geometry? We are not in-
terested in studying it for its own sake. Rather, we are trying to clar-
ify the role of the parallel postulate by seeing which theorems in the
geometry do not depend on it, i,e., which theorems follow from the
other axioms alone without ever using the parallel postulate in proofs,
This will enable us to avoid many pitfalls and to see much more clearly
the logical structure of our system. Certain questions that can be af-
swered in Fuclidean geometry (e.g., whether there is a unique paralle]
through a given point) may not be answerable in neutral geometry be-
cause its axioms do not give us enough information.

Alternate Interior Angle Theorem

The next theorem requires a definition: Let ¢ be a transversal to lines
Land I, with ¢ meeting [ at B and !’ at B'. Choose points A and C on
[ such that A = B * C; choose points A’ and C' on I such that A and A’
are on the same side of ¢ and such that A’ * B’ » C'. Then the follow-
ing four angles are called interior: <A’'B'B, <{ABE’, <+ C'B'B, <.CBB'.
The two pairs ($£ABB’, <<C'B'B} and (<A'B'B, <CBB'} are called pairs
of alternate interior angles (see Figure 4.1).

ALTERNATE INTERIOR ANGLE (AIA)} THEOREM 4.1. In any Hilbert
plane, if two lines cut by a transversal have a pair of congruent alter-
nate interior angles with respect to that transversal, then the two lines
are parallel.

This is Fuclid 1.27. Our RAA proof will be less formal. The intuitive
idea of the proof is that congruence of alternate interior angles implies
that the lines are situated symmetrically about the transversal, so if by

LI am deliberately nat defining “neutral geometry” precisely. In general, it will be the
study of Hilbert planes, but occasionally a continuity principle will also be explicltly
assumed. The fundamental idea of neutral geometry is not te assume any parallel pos-
tulate or any statement equivalent to a parallel postulate,

»
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Figure 4.1

RAA hypothesis the lines met on one side of the transversal, we could

" reflect the triangle so formed over to the other side of the transversal

to obtain a second meeting point, which viclates Axiom I-1. Notice how
crucial to this proof is Axiom B-4, which guarantees that a line has two
disjoint sides.

PROOE;

Given <'A'B'B == <{CBB’. Assume on the contrary that { and I’ meet
at a point D. Say D is on the same side of ¢ as C and C’. There is
a point E on B'A’ such that B'E == BD (Axiom C-1). Segment BB’ is
congruent to itself, so that AB’BD = ABB’E (SAS). In particular,
4DB’'B = LEBB’'. Since <NB'B is the supplement of <EB'B, <ERE’
must be the supplement of £DBB’ (Propesition 3.14 and Axiom
C-4), This means that E lies on [, and hence { and ! have the two
points E and D in common, which contradicts Proposition 2.1 of in-
cidence geometry. Therefore, I || I, «

This theorem has two very important corollaries.

COROLLARY 1. Two lines perpendicular to the same line are parallel.
Hence the perpendicular dropped from a point P not on line ! to ! is
unique (and the point at which the perpendicular intersects [ is called
its foot). ‘ ‘

PROOF:

If I and I are both perpendicular to t, the alternate interior angles
are right angles and hence are congruent (Proposition 3.23). «

CororLrary 2 {EvcLip 1.31). If I is any line and P is any point not

on [, there exists at least one line m through P parallel to ! (see Fig-
ure 4.2j.
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Fignre 4.2 The standard configuration.

ProoOFE:

There is a line ¢ through P perpendicular to !, and again there is a
unique line m through P perpendicular to ¢ (Proposition 3.16). Since
! and m are both perpendicular to ¢, Corollary 1 tells us that
l ” . < ¢

The construction of the parallel m to { through P given in the above
proof will be used repeatedly. We will refer to it as the standard con-
struction. Let Q be the foot of the perpendicular from P to 1. For brevity,
we will also call this the standard configuration, denoted PQlmt.

SIERTETE You are accustomed in Euclidean geometry to use the con-
verse of Theorem 4.1, which states, “If two lines are parallel, then aliernate
interior angles cut by a transversal are cengruent.” We haven't proved this
converse, so don't use it!

Exterior Angle Theorem

An angle supplementary to an angle of a triangle is called an exterior
angle of that triangle. The other two angles of the triangle are called
remote interior angles relative to that exterior angle.

EXTERIOR ANGLE (EA) THEOREM 4.2. In any Hilbert plane, an ex-
terior angle of a triangle is greater than either remote interior angle (see
Figure 4.3).

To prove CACD is greater than 4B and <A:

Proor:

Con51der the remote interior angle €BAC. If €{BAC = JACD, then
AB is parallel to &n D (Theorem 4.1}, which contradicts the hypoth-
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Figure 4.3 Our proof of exterior angle theorem.

esis that these lines meet at B. Supose <+BAC is greater than_;):ACD
{RAA hypothesis). Then there is a ray AE between AB and AC such
that XACD == {CAE (by definition). This ray AF intersects BC in a
point G (cgggsbar ﬂ(ﬁorem, Chapter 3). But according to Theorem
4.1, lines AE and CD are parallel, Thus «BAC cannot be greater
than < /ACD (RAA conclusion). Since <BAC is also not congruent
to <ACD, €£BAC must be less than <ACD (Proposition 3.21(a)).

For remote angle €ABC, use the same argument applied to ex-
terior angle <BCF, which is congruent to <{ACD by the vertical an-
gle theorem (Proposition 3.15{a}). <

CoroLLary 1. If a triangle has a right or ebtuse angie, the other two
angles are acute.

The exterior angle theorem will play a very important role in what
follows. It was the 16th proposition in Euclid’s Elements. Euclid’s proof
had a gap due to reasoning from a diagram. He considered the line BM
joining B to the midpoeint of AC, and he constructed point B’ such that
B+ M=+ B’ and BM = MB’ (Axiom C-1). He then assumed from the di-
agram that B’ lay in the interior of ¥ ACD (see Figure 4.4). Since
<B'CA = <A (S5AS), Euclid concluded correctly that < ACD > A,

The gap in Euclid’s argument can easily be filled with the tocls we
have developed. Singgw> segment BB' intersects AC at M, B and B’ are
on opposite sides of AC (by definigi}on) Since BD meets AC at C, B and
D are also on opposite sides of AC. Hence B’ and D are on the same
side of AG (Axiom B-4). Next, B’ and M are on the same side of B
Sm(:e segment MB’ does not contain the point B at which MB’ meets
&n (by construction of E; and Axioms B-1 and B-3). Also, A and M
are on the same side of CD because segment AM does not contain the
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Figure 4.4 Euclid’s proof of exterior angle thearem.

point C at which K’"ﬁ meets E_IB (by the definition of midpoint and Ax-
iom B-3). Su again, Separation Axiom B-4 ensures that A and B’ are
on the same side of §§ By the definition of “interior” (in Chapter 3,
p. 115), we have shown that B’ lies in the interior of ¥ACD. «

Many reputable writers mistakenly state that to fill this gap in
Euclid one must add an axiom that “lines are infinite in extent”—
whatever that may mean. All that is needed are the betweenness ax-
loms and their consequences.

NOTE ON ELLIPTIC GEOMETRY. Figure 3.24, p. 126, shows a trian-
gle on the sphere with both an exterior angle and a remote interior an-
gle that are right angles, so the exterior angle theorem doesn’t hold.
Our proof of it was based on the alternate Interior angle theorem, which
can’t hold in elliptic geometry because there are no parallels. The proof
we gave of Theorem 4.1 breaks down in elliptic geometry because Ax-
tom B-4, which asserts that a line separates the plane into two sides,
doesn’t hold; we knew points E and D in that proof were distinct be-
cause they lay on opposite sides of line ¢, Or, thinking in terms of spher-
ical geometry, where a great circle does separate the sphere into two
hemispheres, if points E and D are distinct, there is no contradiction
because great circles do meet in two antipodal points.

Euclid’s proof of Theorem 4.2 breaks down on the sphere because
“lines” are great circles and if segment BM is long enough, the reflected
point B might lie on it (e.g., f BMis a semicircle, B’ = B),

As a consequence of the exterior angle theorem (and our previous
results), you can now prove as exercises the following familiar
propositions.

PROPOSITION 4.1 (SAA CONGRUENCE CRITERION). Given AC = DF,
YA = <D, and ¥E = <E. Then AABC = ADEF (Figure 4.5).

EXTERIOR ANGLE THREOREM 167

C F
A B D E

* Fignre 4.5 SAA.

PROPOSITION 4.2 (HYroTENUSE-LEG CRITERION). Two right trian-
gles are congruent if the hypotenuse and a leg of one are congruent,
respectively, to the hypotenuse and a leg of the other (Figure 4.6).

B B’
A ' C A c

Prorosrrion 4.3 (MIppoInTS).
midpoint.

’

Figare 4.6
Every segment has a unigque

Here is a proof that AB has a midpoint, whose steps you are asked
to justify in Exercise 5 (see Figure 4.7}, You are asked to prove unique-
ness of the midpoint in Exercise 6.

Proor:

{1) Let C be any poiil_t) not on Eﬁ (2) There is a unique ray 1—3"}_{> on
the opposite side of AB {rin)m C such that <CAB = {ABX. (3} There
is a unique po\;gt D on BX such that AC = BD. (4) D is on the op-
posite side of AB from C. (5} Let E be the point at which segment
CD intersects AB. (6) Assume E is not between A and B. {7) Then
eith(ggE=A, OTE=B,orE+A*B,orA+B«E (8} is paralle}
to BD.(#Q) Hence,_ E+ A and E # B. (10} Assume E+A+B. (11)
Since CA intersects side EB of AEBD at a_point between E and B,
it must also intersect either ED or BD. {12} Yet this is impossible. (13)
Hence A is not between E and B, (14) Similarly, B is not between
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Figure 4,7 Construction of midpoint E.

A and E. {15) Thus A=E=+*B., (16) Then 4AHEC = «BED. (17)
AEAC = AEBD. (18) Therefore, E is a midpoint of AB. «

Prorosirion 4.4 (Bisecrors). (a) Every angle has a unique bisec- .

tor. {b) Every segment has a unique perpendicular bisector.

Euclid constructed midpoints {I.10) and angle bisectors (1.9) using
his previous construction (1.1} of an equilateral triangle on a given seg-
ment; we have seen that his proof of 1.1 has a gap requiring the
circle-circle continuity principle to fill. The construction of the midpoint
given above does not depend on equilateral triangles; the construction
of the angle bisector follows easily from that. Also, Euclid’s proofs of
1.9 and 1.10 tacitly use betweenness properties—his proof of 1.10 re-
quires the crossbar theorem, and his proof of 1.9 is based on a diagram
where a point he constructs is on the opposite side, from the vertex of
the angle, of a certain line he constructs. See the commentary on those
proofs in Heath's translation of Euclid.

The next proposition combines Euclid 1.18 and 1.19.

PropoSITION 4.5. In a triangle AABC, the greater angle lies opposite
the greater side and the greater side lies opposite the greater angle; i.e.,
AB > BC if and only if ¥C > <A.

The next proposition combines Euclid 1.24 and 1.25.

PROPOSITION 4.6. Given AABC and AA'B'C’, if we have AB = A’B’
and BC = B'C’, then ¥B < <B’ if and only if AC < A'C’,
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Measure of Angles and Segments

Thus far in this treatment of geometry, I have refrained from using
numbers that measure the sizes of angles and segments—this was in
keeping with the spirit of Euclid. After all, for thousands of years, his
readers understood what Euclid meant geometrically without using
numbers. In accord with modern standards of rigor, Hartshorne in his
book has made Euclid’s work precise, using congruence classes of seg-
ments and angles instead of number measures. That is the correct ap-
proach, valid in all Hilbert planes. However, since the treatment of an-
gle measure in Hartshorne’s Section 36 requires abstract group theory
(his “unwound circle group”}, knowledge of which is not presumed for
my readers, | must “cop out” and use number measurement as a lan-
guage for situations where it simplifies the statements.

1 also presume that my readers have not necessarily studied the rig-
orous foundations of real numbers but that they are accustomed to in-
formal talk about them. So although the next theorem refers to real
numbers and we only sketch how it is proved, I alert you to the fact
that it is not mathematically necessary to bring them in here; mathe-
matically, all that is needed is the ability to do elementary algebra with
congruence classes. I only bring in numbers to shorten a long story.?

Archimedes’ axiom is needed to measure with real numbers—that
is why Hilbert called it “the axiom of measurement.” Theorem 4.3 be-
low asserts the possibility of measurement and lists its basic proper-
ties, In many popular treatments of geometry, a version of this theo-
rem is taken as an axiom (ruler-and-protractor postulates—see, e.g.,
Moise). The familiar symbol (<£A)° denotes the number of degrees in
A, and AB denotes the length of segment AB with respect to some
unit of measurement.

MEASUREMENT THEOREM 4.3. Hypothesis for all but parts (4) and
(11): Archimedes’ axiom. Hypothesis for parts (4) and (11) as well:
Dedekind’s axiom.

2 Major Exercise 5, Chapter 5, does use the full power of real numbers for the theory of
similar triangles in a real Euclidean plane; again, Hartshorne presents the Hilberi-
Enriques approach (using the abstract theory of fields and a crucial proposition about
cyclic guadrilaterals), which aveids using real mumbers even for that theory. See
Hartshorme's Proposition 5.8 and Section 20. The power of Theorem 4.3 is also used
for Proposition 9.2, Chapter 9, in Archimedean Hilbert planes. Real numbers are of
course used in Chapter 10 on real hyperbolic geometry. For a complete proof of The-
orem 4.3, see Borsuk and Szmielew (1960), Chapter 3, Sections 9-10,
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A. There is a unique way of assigning a degree measure to each angle
such that the following properties hold:
(0) (£A}° is a real number such that 0 < (LA)° < 180°.
(1) (£A)° = 90° if and only if 4A is a right angle.
{2) ({A‘}l‘: = (¥B)° if and only if <A = 4B,
(3) If AC is interior to <DAB, then (<DAB)® = (£DAC)® +
(€CAB)° (refer to Figure 4.8).
(4) For every real number x between 0 and 180, there exists an an-
gle <A such that {A)® = x°,
- (6) If ¥B is supplementary to €A, then (¥£A)° + (LB)° = 180°,
{6) (XA)° > (B)° if and only if <A > <B.

B. Given a segment O, called a unit segment. Then there is a unidue
way of assigning a length AB to each segment AB such that the fol-
lowing properties hold:

(7) ABis a positive real number and OI = 1.

(8) AB= CDif and only if AB = CD.

(9) A =B = C if and only if AC = AB + BC.

(10) AB< CD if and only if AB < CD.

(11) For every positive real number x, there exists a segment AB

such that AB = x.

NOTE. So as not to mystify you, here is the method for assigning
lengths (the method for assigning degrees to angles is similar), We start
with a segment OI whose length will be 1. Then any segment obtained
by laying off n copies of OI will have length n. By Archimedes’ axiom,
every other segment AB will have its endpoint B between two points
Bp.—; and B, such that AB,,.; = n — 1 and AB, = n; then AB will have
to equal ABy..; + BB by condition (9) of Theorem 4.3, s0 we may
assume 711 =1 and Bp—; = A. If B is the midpoint By, of AB;, we set
A?l;, = 1/2; otherwise B lies either in AB, 2 orin By 5By, say, in ABy;.
If then B is the midpoint By, of ABy,;, we set AB, 4= V4; otherwise B

Figure 4.8
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Hes in ABy 4, say, and we continue the process, Eventually B will ejther
be obtained as the midpoint of some segment whose length has been
determined, in which case AB will be determined to be some dyadic
rational number a/2%; or the process will continue indefinitely, in which
case Kﬁwi_ll_ be the limit of an infinite sequence of dyadic rational num-
bers; i.e., AB will be determined as an infinite decimal with respect to
the base 2.

Note conversely that if a Hilbert plane satisfies part B, (7) through
{10}, then the plane is Archimedean, and if in addition (11) is satis-
fied, then Dedekind’s axiom holds.

DEFINITION, If (£B)° + (XC)° = 90° ; then 4B and <C are called com-
plements of each other and are said to be complementary angles. It is
an easy exercise to show that every acute angle has a complementary
angle {Exercise 7).

COROLLARY 2 TO THE EA THEOREM. The sum of the degree mea-
sures of any two angles of a triangle is less than 180°.

Proor:

Referring to Figure 4.9, (HCBD)® > (<XA)° By the EA theorem.
Adding (¥XCBA)° to both sides of this inequality gives the result. <«

TRIANGLE INEQUALITY. If AB, BC, AC are lengths of the sides of a
triangle AABC, then AC << AB + BC.

Proor:

{1) There is a unique point D such that A *:E *D and BD s= BC.
(Axiom C-1 applied to the ray opposite to BA). (See Figure 4.9,)

(2} Then <«BCD = {BDC (Proposition 3.10: base angles of an
isosceles triangle).

Figure 4.9
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(3) AD= AB + BD (Theorem 4.3(9)) and Eﬁf BC (step 1 and The-
orem 4.3{8)); substituting gives AD = AB + BC.

-_ —_— — i
(4) CB is between CA and CD (Proposition 3.7); hence €ACD =
<BCD (by definition).

(5) <XACD > JADC (steps 2 and 4: Proposition 3.21(c)).
(6) AD > AC (Proposition 4.5).

(7) Hence AB+ BC > AC (Theorem 4.3(10); steps 3 and 6). «

Note that in these last two results, the only properties of numbersg
used were the ability to add and the relationship of addition to order.
Numbers provide a more convenient language than the awkward one
used by Euclid. Archimedes’ axiom and the full power of Theorem 4.3
are certainly not used! For example, Euclid 120 states the triangle in-
equality as follows: In any triangle, two sides taken together in any
manner are greater than the remaining one.

His proof is the same as the one just given, except that he presumes
that the reader understands what he means by “two sides taken to-
gether.” We recognize that as meaning geometric addition of two seg-
ment congruence classes. We initially approximate that addition by ex-
tending the first segment with a congruent copy of the second one—that
is exactly what Euclid’s second postulate allows us to do, and you can
easily prove Euclid II using Axioms C-1 and B-2. Then Axiom C-3 guar-
antees that this addition is well-defined for segment congruence classes,
It is then routine to verify that this addition has all the familiar alge-
braic properties and is compatible with the ordering of segment con-
gruence classes (see Major Exercise 9). So numbers are not really
needed; they are just convenient and more familiar to beginners than
are congruence classes.

The diligent reader is invited to figure out, whenever we use mea-
surement henceforth, how it could be avoided with the algebra of con-
gruence classes. In the case of congruence classes of angles, there is a
technical difficulty. We could use Proposition 3.19 on “angle addition”
to define addition of angle congruence classes by juxtaposing the two
angles, but that only works in the special case of angles such that one
is less than the supplement of the other, See Hartshorne, Section 36,
for the definition and properties of that addition in the general case.

For us, talk about degrees does not really mean measurement, but it
is a shorthand for that algebra of angle congruence class.
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We call the converse to the triangle inequality the statement that if
a, b, ¢ are lengths such that the sum of any two is greater than th.e
third, then there exists a triangle whose sides have those lengths. This
is Euclid 1.22, but he of course did not talk about lengths; he tal%‘:ed
about segments. His proof has a gap which requires another applica-
tion of the circle-circle continuity principle. It turns out tlr%at .the con-
verse to the triangle inequality can be used to prove that principle. The

result is the following.

COROLLARY. For any Hilbert plane, the converse to the triangle in-
equality is equivalent to the circle-circle continuity principle. Hence the
converse to the triangle inequality holds in Euclidean planes,

A proof of this equivalence was indicated in Major Exercises 3—5’ of
Chapter 3, assuming the triangle inequality there, and I.10W we've
proved the triangle inequality. The second assertion of this coroliary
follows from our definition of “Euclidean plane,” which includes the
circle-circle continuity principle as one of its axioms (see p. 139).

Equivalence of Euclidean Parallel Postulates

We shall now prove the equivalence of Euclid’s fifth postulate and
Hilbert’s Euclidean parallel postulate, Note, however, that .we are not
proving either or both of the postulates; we are only Qrovmg that vs.fe
can prove one if we first assume the other. We shall. first state Euclid
V (all the terms in the statement have now heen defined carefully].

EucLip’s POSTULATE V. If two lines are intersected by a transversal
in such a way that for the two interior angles on one side of the trans-
versal, one of these angles is less than the supplement of the other an-
gle, then the two lines meet on that side of the transversal.

THEOREM 4.4. Euclid’s fifth postulate < Hilbert’s Euclidean parallel
postulate.

Proor:

First, assume Hilbert’s postulate. The situation of E}JCHd Vis sho:vn
in Figure 4.10. (£1)° + (¥2)° < 180° (hypothesis) and {X1)° +
(43}° = 180° (supplementary angles, 'I‘heorgm 4.3(5};5_?Hence
(<2)° < 180° — {£1)° = (¥£3)°. There is a unique ray B'C’ such
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that €3 and €C’'B'B are congruent alternate interior angles {Axiom
C-4). By Theorem 4.1, B'C’ is paralle] to L. Since m # W m meets
{ (Hilbert’s postulate). To conclude, we must prove that m meets |
on the same side of ¢ as C'. Assume, on the contrary, that they meet
at a point A on the opposite side. Then 42 is an exterior angle of
AABB'. Yet it is smaller than the remote interior <3. This contra-
diction of Theorem 4.2 proves Euclid V (RAA).
Conversely, assume Euclid V and refer to Figure 4.11, the sit-
uation of Hilbert’s postulate, Let ¢ be the perpendicular to { through
P, and m the perpendicular to ¢ through P. We know that m { 1
(Corollary 1 to Theorem 4.1). Let n be any other line through P.
- We must show that n meets I Let <1 be the acute angle n1 makes
with ¢ (which angle exists because n m}. Then we have
(L1)° + (LXPQR)®° < 90° + 90° = 180°. Thus the hypothesis of
Euclid V is satisfied. Hence n meets I, proving Hilbert’s postulate, «

Since Hilbert’s Euclidean parallel postulate and Euclid V are logi-
cally equivalent in the context of neutral geometry, Theorem 4.4 allows
us to use them interchangeably. You will prove as exercises that the

"\rp
L i m
n
- ) ;
Q R

Figure 4.11
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following statements are also logically equivalent to the parallel pos-
tulate?

PROPbSITION 4.7. Hilbert’s Euclidean parailel postulate «» if a line
intersects ane of two parallel lines, then it also intersects the other.

PROPOSITION 4.8, Hilbert’s Euclidean parallel postulate < converse
to the alternate interior angle theorem.

ProrosiTiON 4.9. Hilbert’s Euclidean parallel postulate «» if £ is a
transversal to I and m, ! | m, and t L I, then t 1 m.

PrOPOSITION 4.10, Hilbert's Euclidean parallel postulate < if k |} £,
m Lk andn A [ theneither m=norml| n.

The next proposition provides a very important consequence of

Hilbert’s Euclidean parallel postulate. It is not equivalent to t.hat par-

allel postulate without adding further assumptions to our Ell.XI.OI'nS for

Hilbert planes, as we shall see later. (Many books state that it is equiv-
alent, but they are assuming other axioms.)

ProrosiTiON 4.11. In any Hilbert plane, Hilbert’s Euclidean parallel
postulate implies that for every triangle AABC,

(XA)° + (¥B)° + (£C)° = 180°,

In words: The angle sum of every triangle is 180° if we assume Hilbert’s
Euclidean parallel postulate.

PRrooF:

Refer to Figure 4.12. By the Corol(l_q)ry 2 to the AlA theor.em, there
is a line through B parallel to line AC, Since Hilberi's Euclidean par-
allel postulate s equivalent to the converse to ‘the AIA theorem
(Proposition 4.8}, the alternate interior angles with respect to the
transversals BA and BC are congruent, as shown. But the three an-
gles at vertex B have degree measures adding to 180°. «

We emphasize that this conclusion depends on Hilbert’s Euclidean
parallel postulate. The simple proof we gave was calied by Proclus th.e
Pythagorean proof {of the second assertion in Euclid 1.32) because it

3 Transitivity of pé;réllelisrfl Is also logically equivalent to the parallel postulate
(Exercise 10).
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A

Figure 4.12 Angle sum is 180°,

was known to the Pythagorean school long before Euclid. The next
corollary is Fuclid’s first assertion of 1.32.

CoroLLARY. Hilbert's Euclidean parallel postulate implies that the
degree of an exterior angle to a triangle is equal to the sum of the de-
grees of its remote interior angles,

Proor:
Refer again to Figure 4.3 on p. 165. We have

(LA)® + (LB)° + (£C)° = 180° = (LACD)® + (XO)°,

50 cancel (¥£C)°. «

Saccheri and Lambert Quadrilaterals

In this section, we will study certain quadrilaterals that are extremely
important in neutral geometry. The results are mainly due to Girolamo
Sacchert (1667-1733), who published them in 1733 in a work called
Euclides ab Omni Naevo Vindicatus (Euclid Freed of Every Flaw) or sim-
ply Euclides Vindicatus (Euclid Vindicated). It was so far ahead of its
time that it did not receive the appreciation it deserved until 1889, when
the geometer Eugenio Belirami rediscovered it, We will discuss the his-
torical importance of his work in the next chapter. The path Saccheri
followed is the correct one. I will often present proofs of his results
that are modern simplifications and generalizations, but the ideas are
basically his (and his predecessors’—see Rosenfeld (1988), Chapter 2,
for the work of his predecessors).

DEFINITION. Quadrilateral [(JABDC in which the adjacent angles <A
and (B are right angles will be called bi-right; we will label such quadri-
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laterals so that the first two letters denote vertices at :Which the quadri-
Jateral has right angles. (There may or may not be right a\'ngles at one
ar both of the other vertices as well—we are not assuming anything
about them for now.) Side AB joining the right angles wﬂ‘l be called
the base with respect to this labeling; its opposite side CD will be called
the summit. ¥C and <D will be called the summit angles, and C'A and
DB will simply be called the sides of the bi-right quadrilateral with re-
spect to this labeling. .

An isosceles bi-right quadrilateral OABDC is one whose mciles are
congruent—i.e., CA = DB—and is called a Sacchen‘. guadrilateral
(Figure 4.13). Given any segment AB, since perpendiculars can be
erected at A and at B (Proposition 3.16} and a segmeni congruent
to a given segment can be laid off on a given ray (Axiom C-1), we
see that Saccheri quadrilaterals exist—in fact, they can be con-
structed on any given base with any given congruence class of the
sides. ' o

These quadrilaterals named after Saccheri were studied in the
twelfth century by the Iranian poet and mathematician Omar Khayyam,
and in the thirteenth century by the Iranian astronomer and mathe-
matician Nasir Eddin (whose work had the similar title Treatise That
Heals the Doubt Raised by Parallel Lines). These quadrilaterals were
also studied later by several Europeans (e.g., Clavius in 1574, Giordano
Vitale in 1680), Saccheri developed their significance more deeply. (In
what follows, a notation such as Saccheri X stands for Proposition X
in Saccheri’s treatise.}

PROPOSITION 4.12. () (Saccheri I). The summit angles of a Sacch.eri
quadrilateral are congruent to each other. (b) (Sac'cheri 113, ’.i‘he line
joining the midpoints of the summit and the base is perpendicular to
both the summit and the base. :

C Summit D

1 []
A Base B

Figure 4.13 Saccheri quadrilateral.
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Figure 4.14 Proof of Saccheri 1.

Proor:

(a) By hypothesis and SAS, ADBA = ACAB. Then by 888, ADCB =
ACDA. Hence «C = 4D by angle addition (Figure 4.14).

(B) (See Figure 4.15.) Let M be the midpoint of the summit and N
the midpoint of the base (Proposition 4.3), Then AACM =
ABDM by part (a) and SAS. Hence AM = BM (corresponding
sides), whence AANM = ABNM by $$S. By corresponding an-
gles, LANM = <BNM, but since they are supplementary an-
gles, they are by definition right angles. Similarly, we have
AACN = ABDN by SAS and Proposition 3.23, ACNM = ADNM
by 855, so the stﬂlementary angles €CMN and XDMN are
congruent. Thus MN is perpendicular to both the base and the
sumimnit. <«

C " M " D !
[ / \ i
” ~
- N
I3 ~
e 4 ~ —
s N
I N
// \\
Ly I v

Figure 4,15 Proof of Saccheri 1.

Prorosition 4.13. In any bi-right quadrilateral (JABDC, <C > <D
¢> BD > AC. In words: The greater side is opposite the greater summit
angle (Figure 4.16).

Proor:

Assume first BD > AC. Then by definition there is a unique point
E between B and D such that AC = BE. Then [JABEC is Saccheri,
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Figure 4.16

so by the previous proposition, < {ACE = 4BEC. E is interior to
<L ACD (use Exercise 28), It then follows from the exterior angle the-
oremm and Proposition 3.21 that 4D < LACE < XACD, as was
claimed.

Next, assume that .C > 4D. Suppose that BD is not greater
than AC (RAA hypothesis). By Proposition 3.13, either BD < AC or
BD = AC. In the former case, reversing the roles of AC and BD, it
has been shown that €C < D, contradicting our hypothesis. In the
latter case, TJABDC is Saccheri, so by the previous proposition, 4.C
and LD are congruent, contradicting our hypothesis. Hence BD >
AC {(RAA conclusion). <

Cororrary 1. Given any acute angle with vertex V. Let Y be any
point on one side of the angle, let Y' be any point farther out on that
side, i.e., V* ¥ = Y'. Let X, X' be the feet of the perpendiculars from
Y, Y’, respectively, to the other side of the angle. Then Y' X' > ¥X, In
words: The perpendicular segments from one side of an acute angle
to the other increase as you move away from the vertex of the angle
(Figure 4.17). ‘ :

Figure 4.17
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Proor:

By the corollary to the exterior angle thecorem, angles <VYX and
SVY'X’ are both acute. LY'YX, supplementary to <VYX, is there-

fore obtuse and greater than <VY'X’. Now apply Proposition 4.13
to the bi-right quadrilateral CIXX'Y'Y, «

CoRrOLLARY 2. Fuclid V implies Aristotle’s axlom,

Proor:

Refer to Figure 4.18. Let « be the given acute angle and let AB be
the test segment for Aristotle's axiom. Let o* be a complementary
angle, so that &® + «*° = 90°, On a chosen side of line ﬁ, lay off
angle o* at A and a 90° angle at B (Axiom C-4). By Euclid V, the

‘ rfq./s of those angles not part of BA meet at a point C, and by Pr’opo-

- sitton 4.11 (which assumes Buclid V), €C°® = @°. Let Y be any point
such that C * A+ Y and let X be the foot of the perpendicular from
Y to ray CB. By Corollary 1 to Proposition 4.13, YX > AB. «

’ T.he c‘()nver?e to this corollary does not hold because Aristotle’s ax-
fom is also valid in hyperbalic planes (Exercise 13, Chapter 6).

Figure 4.18 YX > AB.

DEFINITION. A quadrilateral with at least three right angles is called
a Lambert quadrilateral. The remaining angle, about which we are not
assuming anything for now, is referred to as the fourth angle with re-
spect to the three given right angles. (Now named after J. H. Lambert
{1728-1777}, these quadrilaterals were studied eight centuries earlier
by the Egyptian scientist Ibn al-Haytham and also by Saccheri.)

CoroLLARY 3 (SAccHERT IIf, COROLLARY 1). A side adjacent to
the fourth angle # of a Lambert quadrilateral is, respectively, greater
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than, congruent to, or less than its opposite side if and only if 0 is
acute, right, or obtuse, respectively. (In Figure 4.19, DB is adjacent to
g and CA is oppaosite; also, DC is adjacent to § and BA is opposite.)

Proor:

This follows from the proposition and trichotomy. <

C : D

- e

I3 N
A B

Figure 4.19 Lambert guadrilateral.

OBSERVATION. We can “halve” Saccheri quadrilateral [JABDC in Fig-
are 4.15 to obtain Lambert quadrilateral ONBDM with the fourth an-
gle equal to the summit angle. Conversely, we can “double” Lambert
quadrilateral (INBDM by reflecting it across side MN to obtain Saccheri
quadrilateral (JABDC with the summit angle equal to the fourth angle
of CINBDM, Applying Corollary 3 together with this observation, we
obtain the following.

CoroLLaRY 4 (SaccHERI III}. The summit of a Saccheri quadrilat-
eral is, respectively, greater than, congruent to, or less than the base
if and only if its summit angle is acute, right, or obtuse, respectively.

NOTE. Hilbert’s Euclidean parallel postulate implies that every Lam-
bert quadrilateral and every Saccheri quadrilateral is a rectangle.
(I\lgmely, in Figure 4.19, when a perpendicular is dropped from C to
BD, the foot of that perpend&ular must be D; otherwise we would have
found a second parallel to AB through C (Corollary 1 to the AIA theo-
rem). Thus this Lambert quadrilateral is a rectangle. The assertion about
Saccheri quadrilaterals follows by halving.

The next goal is to prove that the behavior of the summit angles
and the fourth angles of Saccheri and Lambert guadrilaterals is uniform
throughout the plane—e.g., if one such quadrilateral has an acute an-
gle, then so do all such quadrilaterals.
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Un1rorRMITY THEOREM.# For any Hilbert plane, if one Saccheri quadri-
lateral has acute (respectively, right, obtuse) summit angles, then so
do all Saccheri guadrilaterals.

The uniformity theorem has a proof which, while elementary, is
somewhat lengthy. In order not to exhaust the patience of beginning
readers, the proof is indicated in Major Exercises 5-8,

COROLLARY 1. For any Hilbert plane, if one Lambert dquadrilateral
has an acute (tespectively, right, obtuse) fourth angle, then so do all
Lambert quadrilaterals. Furthermore, the type of the fourth angle is the
same as the type of the summit angles of Saccheri quadrilaterals.

Proor: .
By doubling. «

DEFINITION, A Hilbert plane is called semi-Euelidean® if all Lambert
quadrilaterals and all Saccheri quadrilaterals are rectangles. If the fourth
angle of every Lambert quadrilateral is acute {respectively, obtuse), we
say that the plane satisfies the acute (respectively, obtuse) angle hy-
pothesis.

CororLLaRrY 2. There exists a rectangle in a Hilbert plane iff the plane
is semi-Euclidean. Opposite sides of a rectangle are congruent to each
ather.

CoRrOLLARY 3. In a Hilbert plane satisfying the acute (respectively,
obtuse) angle hypothesis, a side of a Lambert quadrilateral adjacent to
the acute (respectively, obtuse) angle is greater than (respectively, less
than} its opposite side. :

COROLLARY 4. In a Hilbert plane satisfying the acute (respectively,
obtuse) angle hypothesis, the summit of a Saccheri quadrilateral is

* Also called the “three musketeers theorem” by historian Jeremy Gray. It shows that
the plane is homogeneous {geometrically the same everywhere). Saccheri was the first
to prove this result in his Propositions V, VI, and VII, but he used an unnecessary con-
tinuity argument (see Bonola, 1955, Section 12).

% The term “semi-Euclidean” first appeared in the German Lterature on the foundations
of geometry, It is an important name to emphasize that the “right angle hypothesis”
does not suffice to prove Euclid V—a further axiom is needed for that, as Hilbert em-
phasized. Analogous notions of “semihyperholic” and “semielliptic” planes are dis-
cussed and exemplified in Hartshorne’s treatise,
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greater than (respectively, less than) the base. The midline segment
MN is the only common perpendicular segment between the summit
line and the base line, If P is any point #M on the summit line and Q
is the foot of the perpendicular from P to the base line, then PQ > MN
(respectively, PQ < MN). As P moves away from M along a ray
of the summit line emanating from M, PQ increases {respectively,

decreases).

These are consequences of Proposition 4.13 and its coroilaries.

Angle Sum of a Triangle

The angle sum (in degrees) of triangle AABC is {¥A)° + (¥B)° +
(£}, by definition. Proposition 4.11 tells us that Hilbert’s Euclidean
parallel postulate implies that the angle sum of every triangle is 180°,
but we are not assuming that postulate here.

SACCHERI'S ANGLE THROREM {His PROPOSITION ‘XV). For any

Hilbert plane,
(&) If there exists a triangle whose angle sum is <{180°, then every

triangle has an angle sum <180°, and this is equivalent to the
fourth angles of Lambert quadrilaterals and the summit angles
of Saccheri quadrilaterals being acute.

(b} If there exists a triangle with angle sum =180°, then every tri-
angle has angle sum =180°, and this is equivalent to the plane
being semi-Euclidean.

(c) If there exists a triangle whose angle sum is >180°, then every
triangle has an angle sum >180°, and this is equivalent to the
fourth angles of Lambert quadrilaterals and the summit angles
of Saccheri quadrilaterals being obtuse.

For the proof of Saccheri’s theorem, we need the next lemma (Sac-
cheri VIII}).

LEMMA. Let [JABDC be a Saccheri quadrilateral with sumrmit angle
class ¢. Consider the alternate interior angles <ACB and < DBC with
respect to diagonal CB (Figure 4.20),

(a) <ACB < 4DBC iff 6 is acute.

.(b) €£ACB = 4DBC iff ¢ is right.

(c) XACB > <DBC iff ¢ is obtuse.
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Proor:

This is an application of Proposition 4.6 and the work we have just
done. AACB and ADBC have congruent sides AC and BD (by hy-
pothesis) and have the common side CB congruent to itself. Propo-
sition 4.6 tells us that ¥ ACB is less than, congruent to, or greater
than <DBC according as AB js less than, congruent to, or greater
than CD (those are the sides of the triangles oppasite these angles).
But AB is the base and CD is the summit of our Saccheri quadri-
lateral, The lemma then follows from Cerollaries 2 and 4. «

Fignre 4.20

ProoF oF SACCHERY’'S THEOREM:

Consider first a rig_};t triangle AACB with right angle at A. Erect a
perpendicular to AB at B, and on the ray of that perpendicular em-
anating from B on the same side of AP as C, lay off BD = AC so as
to form Saccheri quadrilateral [JABDC (see Figure 4.20). By con-
struction, <DBC is complementary to <{CBA, Now apply the lemma.
We conclude that the sum of the degrees of the acute angles in
AACB is less than, equal to, or greater than 90° iff summit angle ¢
is less than, equal to, or greater than 20°. By the uniformity theo-
rem and its corollaries, the conclusion of Saccheri’s theorem holds
for right triangles.

Now let AACB be arbitrary. By the second corollary to the ex-
terior angle theorem, AACB has at least two acute angles—say, <A
3_{1;1 4B are acute. Let D) be the foot of the perpendicular from C to
AB. Then A + D = B (by an RAA argument, using the exterior angle
theorem again). '

The angle sum % of AACB is then equal to o + 1, where o, 7
is the angle sum of the acute angles in right triangle AADC, ABDC,
respectively (Figure 4.21). By Saccheri’s theorem for right trangles
just proved, o and + are either both <90° or hoth =90° or both
>90"—mutually exclusive cases equivalent to the cases where ¥ is
<180°, =180°, or >>180°, «
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Figure 4.21

‘We now show that the obtuse angle hypothesis cannot occur if Aris-
totle’s axiom holds. This is a new resuit.

NonN-OBTUSE-ANGLE THEOREM, A Hilbert plane satisfying Aristotle’s
axiom either is semi-Euclidean or satisfies the acute angle hypothesis
(so that by Saccheri’s angle theorem, the angle sum of every triangle
is =180°).

PROGF;

Assume on the contrary (using the uniformity theorem) that the
fourth angle of every Lambert quadrilateral is obtuse. Since Hilbert’s
Euclidean parallel postulate implies that Lambert guadrilaterals are
rectangles (see note above), that postulate fails in this plane. Hence
there is a line ! and a point P not on [ such that more than one par-
allel to I passes through P (Figure 4.22). Denote by m the parallel
through P obtained by the standard construction of perpendiculars
and let n be a second parallel. Let Y be any point on the ray of n
from P between m and [ and let X be the foot of the perpendicular
from Y to m. We claim that Aristotle’s assertion fails for acute an-
gle < YPX, Drop a perpendicular from Y to PQ with foot 5. We must
have P = 5§ = Q because any oger position of S on line f—?g would
contradict the parallelism of YS with m and I (Corollary 1 to the

\P I—X "
T n
Al !
Q

Fignre 4.22
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AlA theorem). In Lambert quadrilateral [JXPSY, <Y is obtuse (RAA
hypothesis). By Proposition 4.13, YX < $P < PQ. Thus the perpen-
dicular segments YX for <YPX, as Y varies on that ray of n, are
bounded by fixed segment PQ, contradicting Aristotle’s axiom, -«

COROLLARY. In a Hilbert plane satisfying Aristotle’s axiom, an exte-
rior angie of a triangle is greater than or congruent to the sum of the
two remote interior angles.

By the EA theorem, that sum is a well-defined angle up to congru-
ence. See Exercise 1(d).

Here is a famous theorem weaker than the non-obtuse-angle theo-
rem because its hypothesis, Archimedes’ axiom, is stronger than Aris-
totle’s axiom (Exercise 2, Chapter 5).

SACCHERI-LEGENDRE THEOREM. In an Archimedean Hilbert plane,
the angle sum of every triangle is =180°,

Direct proofs by Legendre of this theorem that don’t invoke the new
non-obtuse-angle theorem are indicated in Exercises 15 and 16.

It is natural to generalize the Saccheri-Legendre theorem to poly-
gons other than triangles. For example, let us prove that the angle sum
of a quadrilateral ABCD is at most 360°. Break [JABCD into two tri-
angles, AABC and AADC, by the diagonal AC (see Figure 4,23). By the
Saccheri-Legendre theoremnt,

(XB)° + (LBAC)® + (XACB)° = 180°
and

(XD)° + (LDAC)® + (LACD}*® = 180°.
Measurement Theorem 4.3(3) gives us the equations

(¥BAC)® + (XDAC)® = (LBAD)®

Figure 4.23 Convex quadrilateral.
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and
(LACB)° + (<CACD}® = (LBCD)".

Using these equations, we add the two inequalities to obiain the de-
sired inequality
(£B)° + (¥D)° + (LBAD)® + (LBCD)° = 360°.

Unfortunately, there is a gap in this simple argument! To get the
equations used above, we assumed by looking at the diagram (Figure
4.23) that C was interior to <BAD and that A was interior to <BCD.
But what if the quadrilateral looked like Figure 4.24? In this case, the
equations would not hold. To prevent such a case, we must add a hy-
pothesis; we must assume that the quadrilateral is “convex.”

A ’ cC

Figure 4,24 Non-convex quadrilateral.

DEFINITION, Quadrilateral [JABCD is called convex if it has a pair of
opposite sides, e.g., AB and CI, such that CD is contained in one of
the half-planes bounded by AB and AB is contained in one of the half-

planes bounded by cD.6

The assumption made above is now justified by starting with a con-
vex quadrilateral. Thus we have proved the following corollary.

% It can be proved that this condition also holds for the other pair of opposite sides, AD
and BC—see Exercise 28 in this chapter. The use of the word “convex” in this defini-
tion does not agree with, its use in Exercise 19, Chapter 3; a convex quadrilateral is ob-
viously not a “convex set” as defined in that exercise, However, we can define the in-
terior of a convex quadrilateral CJABCD as follows: Each side of CJABCD determines a
half-plane containing the opposite side; the interior of [JABCD is then the intersection
of the four half-planes so determined. You can then prove that the interior of a con-
vex quadrilateral is a convex set {Exercise 29).
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COROLLARY. In an Archimedean Hilbert plane, the angle sum of any
contvex quadrilateral is at most 360°,

NOTE ON ELLIPTIC GEQOMETRY. The Saccherl-Legendre theorem is
false in elliptic geometry (see Figure 3.24, p. 126). In fact, it can be
proved in elliptic geometry that the angle sum of a triangle is always
greater than 180° (see Kay, 1969). Since a triangle can have two or
three right angles, a hypotenuse, defined as a side opposite a right an-
gle, need not be unigue, and a leg, defined as a side of a right trian-
gle not opposite a right angle, need not exist {and if opposite an ob-
tuse angle, a leg could be longer than a hypotenuse).

NOTE FOR ADVANCED STUDENTS ABOUT NON-ARCHIMEDEAN
GEOMETRIES.” Non-Archimedean geometries were first considered
by Giuseppe Veronese in 1890. Hilbert stated in his Grundlagen that
they were “of fundamental significance.” He provided an algebraic
model of a non-Archimedean geometry. Other models were provided
by his student Max Dehn and by Friedrich Schur (who also published
his own Grundlagen der Geometrie in 1909).

There is an algebraic version of Archimedes’ property for ordered
fields: The ordered field is called Archimedean if, given any positive ele-
ments ¢ and u, there exists a natural number n such that nt > u; consid-
eration of u/t shows that it suffices in this property to take t = 1. Hilbert
gave an example of a non-Archimedean ordered field F, and other ex-
amples have been given since (see Projects 1 and 2). In such a field, there
are infinitesimal and infinitely large elements. A positive element u is
called “infinitely large” if it is greater than every natural number; that is
the case iff its reciprocal 1/u is smaller than the reciprocal 1/n of every
natural number. An element ¢ is called infinitesimal iff its absolute value
|t| is smaller than the reciprocal of every natural number.

EXAMPLE 1. F? where F is a non-Archimedean Pythagorean or-
dered field. (See Project 1, p. 206.)

We know that the Euclidean parallel property holds in every model
F2, so by Corollary 2 to Proposition 4.13, Aristotle’s axiom holds in this
model. But since F is non-Archimedean, so 18 F2. Therefore this model
shows that Aristotle’s axiom does not imply Archimedes’ axiom.

7 Strange as non-Archimedean geometry may seem, theoretical physicists are applying

it to the study of subatomic particles. See Branko Dragovich at http://arxiv.org/

PS_cache/math-ph/pdf/0306/0306023.pdf.
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: EXAMPLE 2. A semi-Euclidean plane in which the Euclidean par-
allel postulate fails.

Let F be as in the previous example. Let TI be the subplane of F?
consisting of points (x, y}, both of whose coordinates are infinitesimal,
and lines in F? passing through at least two such points. It is straight-
forward to show that all the 13 axioms for a Hilbert plane still hold
when interpreted in 1I. Furthermore, the angle sumn of every triangle
in IT is still 180° because that is the case in the larger plane F2. How-
ever, whenever two lines of 11 meet in a point in ¥? whose coordinates
are not both infinitesimal, those lines are parallel considered as lines
of II because they do not meet in a point of II. With the appearance
of these new parallels, the Euclidean parallel postulate fails. This ex-
ample is due to Max Dehn.

IMPORTANT NOTE. Dehn also gave an example, using infinitesimals,
of a Hilbert plane in which the fourth angle of every Lambert quadrilat-
eral is obtuse.® Such examples are important because they contradict the
assertion made in some books and articles that “the hypothesis of the
obtuse angle” is inconsistent with the first 4 axioms of Euclid. In fact, it
is consistent with the 13 axioms for Hilbert planes (which imply those
4 axioms). Many writers claim that to reject the hypothesis of the ob-
tuse angle, one must explicitly assume that, as one popular historian put
it, “a line can be extended to any given length” or, as others stated, that
“lines are infinite in extent.” This claim is erroneous because Euclid’s
second postulate explicitly assumes the extendability of line segments,
which we have proved using Axioms B-2 and C-1. When these writers
talk loosely about needing to assume “lines are infinite in extent,” they
imagine that the only geometries in which “the hypothesis of the obtuse
angle” holds are the real spherical and elliptic geometries, where “lines”
are topologically circles and have finite length. Some of those writers
point to Euclid’s proof of the exterior angle theorem, claiming that it tac-
itly assumes that lines are infinite in extent.

As our discussion on pp. 164-166 showed, what was missing in Euo-
clid’s proof was the betweenness axioms, especially the Plane Separa-
tion Axiom B-4. Gauss noticed that gap and Pasch filled it. The exterior
angle theorem is valid in examples like Dehn’s! Saccheri and Legendre
both recognized that an additional assumption, acceptable to the ancient

& “Die Legendre’schen Sitze tiber die Winkelsumme im Dreieck,” Mathematische An-
nalen 53 (1900}, 404-439, or see Hartshorne, Exercise 34,14, p. 318 (the infinitesimal
neighborhood of a point on a non-Archimedean sphere—the whole sphere is not a
Hilbert plane but the infinitesimal neighborhood of a point is).
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Greeks, which suffices to reject the hypothesis of the obtuse angle, is
Archimedes’ axiom (and I showed that the weaker axiom of Aristotle
suffices). '

Conclusion

In this chapter, we have continued the study of elementary geometry
without a parallel postulate (neutral geometry)—specifically, the study
of Hilbert planes, which are models of our incidence, hetweenness, and
congruence axioms. We demonstrated the alternate interior angle {(AIA)
theorem for arbitrary Hilbert planes, which implies that for every line
and every point P not on the line, there exists a parallel line through
P, by the standard construction with successive perpendiculars; we do

not know in neutral geometry whether that parallel is unique or not.

We used the AIA theorem to deduce the familiar exterior angle (EA)
theorem; from that we deduced further familiar propositions (our Propo-
sitions 4.1-4.6} of Euclid, which are valid in arbitrary Hilbert planes.

In the next section, we (unnecessarily!) brought in measurement of
segments and angles by real numbers in order to simplify our state-
ments; Archimedes’ axiom was used to obtain that. Euclid didn’t have
any measurement, so many of his statements (such as the triangle in-
equality) were awkward. We proved his triangle inequality in neutral
geometry and showed that its converse is equivalent to the circle-
circle continuity principle. We also proved that the angle sum of any
two angles in a triangle is <180°.

In the next section, we showed that Euclid’s fifth postulate is equiv-
alent for Hilbert planes to Hilbert’s Euclidean parallel postulate, We
also proved it is equivalent to several other familiar statermnents, such
as the converse to the AIA thearem. A subtle point, ignored in most
books, was that any one of these equivalent statements implies that
the angle sum of every triangle is 180°, but it is not possible to prove
the converse for arbitrary Hilbert planes.

The next two sections are rich with less familiar but elementary
concepts and results in neutral geometry that appeared in the works of
Khayyam, Saccheri, and Lambert (among others). We introduced and
studied the important concepts of bi-right, Saccheri, and Lambert
quadrilaterals, which will be used extensively in subsequent chapters.
The latter two types of quadrilaterals provided our first inkling of non-
Euclidean concepts because in Euclidean geometry they are nothing but
rectangles,

REVIEW EXERCISE 191

It is possible, in an arbitrary Hilbert plane, for the angle sum oi airi-
angle to be <180°, =180¢, >180°. Our main result was Saccherl’s an-
gle theorem that the behavior of that angle sum is uniform throughm%t
the plane. Saccheri and Legendre eliminated the case where the summit
angles of Saccheri and Lambert quadrilaterals are obtuse, buf‘.‘ only by as-
suming Archimedes’ axiom. We proved that the weaker axiom 9f A-ns-
totle, whose significance was first recognized by Proclus arlld which isa
purely geometric axiom (unlike Archimedes’ axiom), su.fflces to .ehml—
nate the case of obtuse angles. In addition, Aristotle’s axiom provides a
missing link between the angle sum of triangles equaling 180° and Eu-
clid’s fifth postulate (see Proclus’ theorem in Chapter 5).

f

Review Exercise

Which of the following statements are correct?

(1) If two triangles have the same angle sum, they are congruent.

(2) Euclid’s fourth postulate is a theorem in neutral geometry.

(3) Theorem 4.4 shows that Euclid’s fifth postulate is a theorem
in neutral geometry. '

(4) The Saccheri-Legendre theorem tells us that some tnangles ex-
ist that have angle sums less than 180° and some triangles
exist that have angle sums equal to 1807, . ‘

(5) The alternate interior angle theorem states that if parallel lines
are cut by a transversal, then alternate interior angles are con-
gruent to each other.

{6) It is impossible to prove in neutral geometry that rectangles
exist. . .

(7) The Saccheri-Legendre theorem is false in Euclidean geo.metry
because in Euclidean geometry the angle sum of any triangle
is never less than 180°.

(8) According to our definition of “angle,” the degree measure of
an angle cannot equal 180°. .

(9) The notion of one ray being “between” two others is

undefined. _
{(10) It is impossible to prove in neutral geometry that paraliel lines

exist.
(11) Archimedes’ axiom is used to measure segments and angles by

real numbers. . .
(12) An exterior angle of a triangle is any angle that is not in the

interior of the triangle.
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(13) The 88S criterion for congruence of triangles is a theorem in
neutral geometry,

{14} The alternate interior angle theorem implies, as a special case,
that if a transversal is perpendicular to one of two parallel lines,
then it is also perpendicular to the other.

(15} If a Hilbert plane satisfies Aristotle’s axiom, then the fourth an-
gle in a Lambert quadrilateral in that plane cannot be obtuse,

{16) The ASA criterion for congruence of triangles is one of our ax-
loms for neutral geometry,

(17} A Lambert quadrilateral can be “doubled” to form a Sacchert
quadrilateral, and a Saccheri quadrilateral can be “halved” to
form a Lambert quadrilateral,

(8) It AAEE is any triangle and if a perpendicular is <_c}g)opped from
C to AB, then that perpendicular will intersect AB in a point
between A and B.

(19) It is a theorem in neutral geometry that given any point P and
any line [, there is at most one line through P perpendicular
to L

(20} It is a theorem in neutral geometry that vertical angles are con-
gruent to each other.

(21} In the sphere interpretation, where “lines” are interpreted to
be great circles, Euclid V holds, yet the Euclidean parallel pos-
tulate does not.

(22) The gap in Buclid’s attempt to prove Theorem 4.2 can be filled
using our axioms of betweenness.

Exercises

The exercises that follow are exercises in neutral geometry unless oth-
erwise stated. This means that in your proofs you are allowed to use
only those results about Hilbert planes that have been previously
demonstrated (including results from previous exercises).

I,

(a) State the converse to Fuclid V (Euclid’s fifth postulate). Prove
this converse as a proposition in neutral geomeftry, -

(b} Prove Corollary 1 to the exterior angle theorem.

(¢) Prove that Hilbert’s Euclidean parallel postulate implies that all
Saccheri and Lambert quadrilaterals are rectangles and that rec-
tangles exist.

(d) Prove the corollary to the non-obtuse-angle theorem.
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. The following purports to be a proof in neutral geometry of the SAA

congruence criterion, Find the step in the proof that is not valid in
neutral geometry and indicate for which special Hilbert planes the
proof is valid (see Figure 4.5, p. 167).

Given AC = DF, A = 4D, 4B = 4E. Then 4C = <F since

(€£C)° = 180° — (XA)° — (¥B)°
= 180° — (£D)° - (LE}° = (LF}°.

Hence AABC == ADEF by ASA (Proposition 3.17}.

. Here is a proof of the SAA criterion (Proposition 4.1) that is valid

in neutral geometry. Justify each step (see Figure 4.25),

Figure 4.25 Proof of

(1) Assume side AB is not congruent to side DE. (2} Then AB <
DE or DE < AB. (3) If DE < AB, then there is a point G between A
and B such that AG == DE. (4) Then ACAG = AFDE. (5} Hence
LAGC = <E. (6) It follows that $AGC == B, (7} This contradicts
a certain theorem. (8) Therefore, DE is not less than AB. {9) By a
similar argument involving a point II between D and E, AB is not
less than DE. (10) Hence AB == DE. {11) Therefore, AABC = ADEF,

. Prove Proposition 4.2. (Hint: See Figure 4.6. On the ray opposite to

AC lay off segment AD congruent to A’C’. First prove ADAB =
AC'A'B’; then use isosceles triangles and a congruence criterion to
conclude.)

. Justily each of the 18 steps on p. 167 proving that every segment

has a midpoint (Proposition 4.3). Reconstruct Euclid’s shorter

proof, which uses the existence of an equilateral triangle on any -

segment (but that existence can’'t be proved in neutral geometry

without a further axiom such as the circle-circle continuity

principle).

{(a) Prove that segment AB has only one midpoint. (Hint: Assume
the contrary and use Propositions 3.3 and 3.13 to derive a
contradiction, or else derive a contradiction from congruent

triangles.}
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(b} Prove Proposition 4.4 on the existence of angle bisectors. Prove
that the angle bisector is unique.

7. Prove that every acute angle has a complementary angle and that
if complements of two acute angles are congruent, then the acute
angles are congruent.

8. Prove Proposition 4.5. (Hint: If AB > BC, then let I be the point
between A and B such that BD = BC (Figure 4.26). Use isosceles
triangle ACBD and exterior angle <BDC to show that <ACR = KA.
Use this result and trichotomy of ordering to prove the converse.)

4

C

Figure 4,26

9. Here is a sketch of an argument to prove Proposition 4.6. Fill in the
details and justify the steps: Given <B < <B’. Use the hypothesis
of Proposition 4.6 to reduce to the cage wherte A= A’,B=B,BC =
BC’, and C is interior to LABC’, so that you must show AC < AC’
(see Figure 4.27 where D is obtained from the crossbar theorem).

ot

Figure 4,27

The case where C = D being clear, suppose C # D. Proposition 4.5
reduces our task to showing LAC'C < £ACC! using the hypothesis
to show that BC'C = <BCC’. In the case where B + D+C (as in
Figure 4.27), we have <AC'C < <BC'C and LBCC’ < LACC'. In
the case where B * C + D, apply the exterior angle theorem twice
(see Figure 4.28):

LACC’ > LDCC’ > «BC'C = LBCC’ > €CC'D = FAC/C.
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ol <

Figure 4.28

10.

11.

12.
13.
14,

15,

The converse implication in Proposition 4.6 follows from the di-
rect implication just shown, using trichotomy.
Prove Proposition 4.7, Deduce as a corollary that transitivity of par-
allelism is equivalent to Hilbert’s Euclidean parallel postulate.
Prove Proposition 4.8, (Hint: Assume first the converse to the AIA
theorem. Let m be the parallel to I through P constructed in the
standard way and let n be any parallel to ! through P. Use the con-
gruence of alternate interior angles and the uniqueness of perpen-
diculars to prove m = n. Assuming next the parallel postulate, use
Axiom C-4 and an RAA argument to establish the converse to the
AlA theorem.)
Prove Proposition 4.9,
Prove Proposition 4.10.
The ancient Greek mathematician Heron gave an elegant proof of
the triangle inequality different from the one in the text. In order
to prove that AB+ AC> BC, he bisected <A. He let the bisector
meet BC at point D, which we justify via the crossbar theorem. He
then applied the exterior angle theorem and Proposition 4.5 to tri-
angles ABAD and ACAD. Fill in the details of this argument.
Here is Legendre’s lemma—which is needed for his proof found in
many texts, based on the Archimedean property of angles—that the
angle sum of every triangle is =180°. He got the idea for this from

" Euclid’s construction in his {(incomplete) proof of the exterior angle

theorem (I.16). Given AABC. Let D_lzg the midpoint of BC. Let E
be the point on the ray opposite to DA such that DE = DA. Prove
that AAEC has the same angle sum as AABC and that either
(FAEC)® or (¥EAC)® is =14 (LBAC)°. (Hint: See Figure 4.29. Use
congruent triangles to show that (LEAC)° + (XAEC)® = (XBAC)®.)
Use Legendre’s lemma to give an RAA proof of the Saccheri-
Legendre theorem. (Hint: repeat this construction enough times.)



196 NEUTRAL GEOMETRY EXERCISES 197

18.In any Hilbert plane, prove that every triangle has an inscribed
clrcle—more specifically, prove that the three angle bisectors are con-
currentt in a point P (called the incenter) interior to the triangle which
is equidistant from the sides of the triangle—i.e., the perpendicu-
lars dropped from P to the sides are congruent—so that the circle
with center P and radius equal to any of those perpendiculars is
tangent to the sides of the triangle. {(Hint: Show first that two an-
gle bisectors must meet at a point P interior to the triangle; then
show by congruent triangles that P is equidistant from the sides and
lies on the third angle bisector.)

19. Prove the theorem of Thales that in a semi-Euclidean plane, an an-
gle inscribed in a semicircle is a right angle (see Figure 4.31]}.

Figure 4.29

16.Here is another proof by Legendre of the Saccheri-Legendre theo-
rem that the angle sum of every triangle is =180° in an Archimedean
Hilbert plane (Figure 4.30). Justify the unjustified steps. (1) Let
AyAzBq be the given triangle, lay off n copies of segment AjA;, and
construct a row of triangles AjAj1By, j=1, . . ., n congruent to
A1AzB,, as shown in Figure 4.30. (2} The BjA;+1Bjr, j= 1, ..., n
are also congruent triangles, the last by constructon of Bp.;.
{3) With angles labeled as in Figure 4.30, o + v + 8 = 180° and we
have B + y + § equal to the angle sum of A1A;B,. {4) Assume on
the contrary that 8 > . (5) Then AjA; > BB, by Proposition 4.6.
(6) Also, ABi+n - BBy + BppApp1 >0 AA;, bY repeated
application of the triangle inequality. (7) AiBi = Bnpyidas. (8)
2418, > n{A1A; — B1B;). (9) Since n was arbitrary, this contradicts
Archimedes’ axiom. (10) Hence the triangle has angle sum =180°,

;

Fignre 4,31

20, (a)y Find the flaw in the following argument purporting to construct
a rectangle, Let A and B be any two points. There is a line {
through A perpendicular to AB (Proposition 3.16) and simi-
larly, there is a line m through B perpendicular to AB. Take
any point C on m other than B. There is a line through C per-
pendicular to I—let it intersect I at D. Then [NABCD is a
rectanglé.

() In a general Hilbert plane, opposite sides of a parallelogram
need not be congruent, as is illustrated by Saccheri and Lam-
bert quadrilaterals in non-semi-Euclidean planes. Prove that in
a plane satisfying the Euclidean parallel postulate, opposite
sides and opposite angles of a parallelogram are congruent,

21.The sphere, with “lines” interpreted as great circles, is not a model

of neutral geometry. Here is a proposed construction of a rectangle
on a sphere. Let &, 8 be two circles of longitude and let them in-
- tersect the equator at A and D. Let  be a circle of latitude in the
northern hemisphere intersecting « and 8 at two other points, B

Figure 4.30

17, Prove the following theorems:

{2} Let -y be a circle with center O and let A and B be two points
on y. The segment AB £ called a chord of y; let M be its mid-
point. If O # M, then OM is perpendicular to AB. (Hint: Cor-
responding angles of congruent triangles are congruent.)

(b) Let AB be a chord of the circle ¥ having center O. Prove that
the perpendicular bisector of AB passes through the center O
of y.




198 : NeuTRAL GEOMETRY

and C. Since circles of latitude are perpendicular to circles of lon-
gitude, the guadrilateral with vertices ABCD and sides the arcs of
a, v, and B and the equator traversed in going from A north to B
east to C south to D west to A should be a rectangle. Explain why
this construction doegg;t woégg.

22.Given A+ B *C and DC 1. AC. Prove that AD > BD > CD (Figure
4.32; use Proposition 4.5).

Figure 4.32

23. Given any triangle ADAC and any point B between A and C. Prove
that eﬂ;er DB < DA or DB < DC. (Hint: Drop a perpendicular from

D to AC and use the previous exercise.)

24.Recall from Exercise 18, Chapter 3, that a set is called convex if
whenever points A, B are in the set, the entire segment AB is con-
tained in the set.

(a) Prove that the interior of a circle is a convex set (the interior
is the set of all points inside the circle).

(b) Assume the line-circle continuity principle. Show that if a line
passes through a point inside a circle, then it also passes
through points outside the circle.

25. Suppose that lirte { meets circle v in two points C and D. Prove that;

(a} Point P on [ lies inside v if and only if C + P * D.

(b) If points A and B are inside v and on opposite sides of {, then
the point E at which AB meets [ is between C and D.
26.Look up and state Euclid IILL.20 and II1.32 more precisely, Rewrite

his proofs and show that they work in any semi-Euclidean plane.

27.The proof of the uniformity theorem uses the idea of constructing

a congruent copy of a Saccheri quadrilateral. Two Saccheri quadri-

laterals are defined to be congruent if all their corresponding parts

are congruent—their bases, their summits, their sides, and their
sumimit angles. For triangles we have an axiom (C-6) and various
propositions (ASA, SSS, SAA} which tell us that if three particular
corresponding parts are congruent, then the other three correspon-
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ding parts are automatically congruent. State and prove one or more
analogous propositions for Saccheri quadrilaterals. Explain how to
construct a congruent copy.

28, Recall that a quadrilateral DABCD is formed from four distinct points
(calted the vertices), no three of which are collinear, and from the
segments AB, BC, CD, and DA (called the sides), which have no in-
tersections except at those endpoints labeled by the same letter. The
notation for this quadrilateral is not unique—e.g., DABCD =
[(OCBAD. Two vertices that are endpoints of a side are called adja-
cent; otherwise the two vertices are called opposite. A pair of sides
having a vertex in common are called adjacent; otherwise the two
sides are called opposite. The remaining pair of segments AC and
BD formed from the four points are called diagonals of the quadri-
lateral; they may or may not intersect at some fifth point. If X, Y,
Z are vertices of (JABCD such that Y is adjacent to both X and Z,
then €XYZ is called an angle of the quadrilateral; if W is the fourth
vertex, then <XWZ and <{XYZ are called opposite angles.

The quadrilaterals of main interest are the convex ones. By def-
inition, they are the quadrilaterals such that each pair of opposite
sides, e.g., AB and CD, has the property that CD is contained in one
of the half-planes bounded by the line through A and B, and AB is
contained in one of the half-planes bounded by the line through C
and D). Using Pasch’s theorem, prove that if one pair of opposite
sides has this property, then so does the other pair of opposite sides.
Prove, using the crossbar theorem, that the following conditions are
equivalent:

(a) The quadrilateral is convex.

(b) Each vertex of the quadrilateral lies in the interior of the op-
posite angle,

(¢) The diagonals of the quadrilateral meet.

Prove that Saccheri and Lambert quadrilaterals are convex.

Draw a diagram of a quadrilateral that is not convex.

29. A convex quadrilateral is not a convex set in the sense of Exercise
18, Chapter 3. However, define the interior of a convex quadrilat-
eral to be the intersection of the interiors of its four angles. Prove
that the interior of a convex quadrilateral is a convex set and that
the point of intersection of the diagonals lies in the interior.

30. State and prove a generalization of Pasch’s theorem to Saccheri and
Lambert quadrilaterals (or, more generally, to convex guadrilaterals).

31. Prove that there exists a scalene triangle-—one which is not isosceles.

32. In Figure 4.33, the angle pairs (<{A'B'B”, €£ABB"} and (¥.C'B'B*, «CBE")
are called pairs of corresponding angles cut off on [ and ' by trans-
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A B’ c’

I

Figure 4.33

versal t, Prove that corresponding angles are congruent if and only
if alternate interior angles are congruent.

33.(a) Define a complement of an acute angle without referring to de-

gree measurement.

(b) Suppose real number measurement of lengths does not exist—
i.e., suppose the plane is non-Archimedean. State a version of
the triangle inequality for such a plane in terms of addition of
segment congruence classes and prove it. Do the same for
Corollary 2 to the EA theorem,

(c) Examples exist of Hilbert planes satisfying the obtuse angle
hypothesis (see footnote 8). According to the Saccheri-
Legendre theorem, such planes must be non-Archimedean.
Now the angle sum of a triangle was defined by adding the
real number degree measures of its angles, but in order to
obtain such a measurement in Theorem 4.3, Archimedes’ ax-
iom was needed. Still, we would like to state that in a Hilbert
plane satisfying the obtuse angle hypothesis, the angle sum
of every triangle is greater than a “straight” angle, and we
would like to prove that statement, Propose a precise defi-
nition of that statement and sketch how to prove it.

Magor Exercises

1. Fill in the details of the following argument which proves that the

circle-circle continuity principle implies the line-circle continuify prin-
ciple (see Figure 4.34; since the circle-circle continuity principle
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P’

Figure 4.34 Proof that circle-cirele implies line-circle continuity,

holds in a Euclidean plane by definition, this shows that the line-
circle continuity principle holds in a Euclidean plane).

Let O be the center of . By hypothesis, line I passes through a
point A inside . The goal is to prove that [ intersects ¥ in two
points. The case where I passes through O is easy. Otherwise, let
point B be the foot of the perpendicular from O to I, Point C is con-
structed such that B is the midpoint of OC, and 4 is the circle cen-
tered at C having the same radius as y (v' is the reflection of y
across [). Prove that the hypothesis of the circle-circle continuity
principle is satisfied—specifically that ' intersects OC in a peint E’
inside v and a point E outside ¥, so that v’ intersects y in two points
P, P’, Prove that these points lie on the original line L.

. Prove that the line-circle continuity principle implies the segment-

circle continuity principle and conversely. (Hint: Use the results in

Exercises 22 and 24(b).)

{(a) Assume the line-circle continuity principle. Prove that there ex-
ists a right triangle with a hypotenuse of length ¢ and a leg of
length b iff b < ¢, (Hint for the “if” part: Take any point C and
any mutually perpendicular lines through C. There exists a
point A on one line such that |AC| = b. If vy is the circle cen-
tered at A of radius ¢, point C lies inside y. Show that y in-
tersects the other line in some point B, Then AABC is the req-
uisite right triangle.}

(b} Assume that whenever b < ¢, there exists a right triangle with
a hypotenuse of length ¢ and a leg of length b. Prove that this
implies the line-circle continuity principle.
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. 4, Let Ilne I intersect circle y at point A. Let O be the center of y. ¥f

B 11 OA we say that [ Is tangent to y at A; otherwise [ is called se.

cant to .

(a} Suppose [ is secant to ., Prove that the foot F of the perpen-
dicular ¢ from O to ! les inside v and that the reflection A’ of
A across t is another point at which [ meets vy (see Figure 4.35),

(b} Suppose now that I is tangent to -y at A. Prove that every point
B # A lying on [ is outside y, hence A is the unique point at
which ! meets . Prove that all points of v other than A are on
the same side of I Prove conversely that if a line intersects a
circle at only one point, then that line is tangent to the circle,

R

t
i
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Figure 4.35

The next four major exercises provide a proof of the uniformity
theorermn. The first two are lemmas needed for the main argument
in the third and fourth.

5. Prove Lemma 1. Given a Saccheri quadrilateral {JABDC and a point
P between C and D. Let Q be the foot of the perpendicular from P
to the base AB (Figure 4.36), Then
{a) PQ < BD iff the summit angles of (JABDC are acute.

(b) PQ == BD iff the the summit angles of JABDC are right angles.
() PQ > BD iff the summit angles of [[JABDC are obtuse.

C P D
] [
A Q B

Figure 4.36
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(Hint: Apply Proposition 4.13 to the bi-right quadrilaterals [JAQPC
and (OBQPD, using the fact that <QPC and <QPD are supplemen-
tary, the definition of a Saccheri quadrilateral, Proposition 4.12(a),
and trichotomy.}

6. Prove Lemma 2. Given a Saccheri quadrilateral CJABDC and a point
P such that C = D = P. Let Q be the foot of the perpendicular from
P to AB (Figure 4.37). Then
{a) PQ > BD iff the summit angles of [JABDC are acute.
(b) PQ = BD iff the summit angles of JABDC are right angles,
(¢} PQ < BD iff the summit angles of [JJABIIC are obtuse.
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A B Q

Figure 4.37

(Hints: Suppose PQ = BD. Then QAQPC is Saccheri, so apply part
(b} of Lemma 1. Suppose PQ <t BD. Then there is a unique point E
such that Q * P *» E and QE = BD. We then have two more Saccheri
quadrilaterals {TJAQEC and COIBQED, each of which has congruent
summit angles. To show that <BDC is greater than its supplement
<BDP, implying that it is obtuse, use the idea that exterior angle
< EDP is greater than remote interior angle <ECD and that C* D« P
implies <BDE < €LACE and subtract.

Suppose PQ > BD. Then there is a unique point E such that
P+ E * Q and QE = BD. We again have two more Saccheri quadri-
laterals [JAQEC and [IBQED, each of which has congruent surnmit
angles. The rest of the argument is similar to the previous case. Fi-
nally, show that the other direction of these three cases follows from
trichotomy.)

7. Prove the special case of the uniformity theorem where the midline

segments of the two given Saccheri quadrilaterals are congruent
{Figure 4.38). (Hints: First construct a congruent copy of [JA'B'D'C’
for which M = M’ and N = N’, so we can assume these midpoints
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Figure 4.38

coincide, as do the summit and the base lines. Then apply the two
lemmas in the preceding exercises,) Tmportant remark: In this spe-
clal case, we have also proved a uniformity result for Lambert
quadrilaterals (OMNBD and [SMNB'D’, which have common side
MN where there are right angles and common lines containing the
sides adjacent to MN, «

8. Here is a proof of the general case of the uniformity theorem from
the three previous exercises. Your job is to provide justifications for
the steps.

Proor:

The case MN = M'N’ having been handled, consider the case
M'N" > MN. There is a unique point L such that I, » M * N and LN =
M'N’. We will construct a Lambert quadrilateral CTL.NHG with the
fourth angle at G, congruent to half of Saccheri quadrilateral
[JA'B'D'C’ (Figure 4.39).

L G M o
i ] 8’
K D
Mg
8
] R ] 3 I
N H B N’ B’
Figure 4,39
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On ray NB let H be the point such that NH == N’B’ On the same
side of iN as H and on the perpendicular to LN through 1L, let G
be the point such that LG = M'D'. Then ALNH = AM'N'B’,
LGLH == {D'M'B’, AGLH = AD'M'B’, so that <G = 4D’ and, by
addition, ¥NHG = <B’, which is a right angle.

Smce G and L lie on a parallel to f\—/l—})) they are on the same side
of MD and since L. is on the opposite side of MD from N, G is on
the opposite side from H. Let K be the point at which GH meets
hne MD), necessarily on ray MD since G and H are on the same side
of IN.

Now apply the important remark from the special case above:
IMKH is of the same type as ¥D. But <{MKH is also of the same
type as «G. Therefore 4G and 4D are the same type of angle, and
we are done. If M'N’ << MN, reverse the roles, «

. Denote by |AB| the congruence class of segment AB (the set of all

segments congruent to AB). Then, by definition and Axiom C-2,
AB = CD & |AB| = |CD|.

That is the underlying idea of “passing to the quotient”—replacing
the equivalence relation = with actual equality of equivalence classes.

We have already defined an ordering of segments: AB << CD
means that there is a point E between C and D such that AB = CE.
{This seems to depend on the choice of one endpoint C of segment
CD; show that it does not.) This ordering induces an ardering of
segment congruence classes when we define

|AB| < |CD| < AB < CD.

This definition seems to depend on the choice of representatives of
the equivalence classes; using Proposition 3.13, show that it is in-
dependent of that choice. Furthermore, show that Proposition 3.13
also yields the following information:

Trichotomy: a < b or a=b or b < a, and only one of these possi-
bilities occurs.
Transitivity: a<band b<ec = a<rc.

Here a, b, ¢ are arbitrary segment congruence classes.

We indicated in the discussion after the triangle inequality how
to define addition of congruence classes, Show that Axiom C-3 guar-
antees that addition is well-defined.
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Here are some further properties of addition and order of seg-
ment congruence classes that you should verify:

Addition is commutative: a + b= b + a.

Addition is associative: (¢ + b) +c=a + (b + ).

Subtraction when defined: a < b iff there is a class ¢ such that
b=a+c

Cancellation: a+c=5b + ciff a = b.

Compatibility of + and < : If @ < b, then for any congruence class
c,atc<b+e

If A, B, C are collinear, then A * B+ C ¢« |AB] + [BC| = |AC|.

We see that with all these nice properties, the congruence class |AB|
of AB behaves just like a measure of length for AB, e¥en though it
is not a real number. (The idea for this goes back to Descartes.)

Projects

1.

Report on the example of a Pythagorean non-Archimedean ordered
field in Hartshorne, Exercise 18.9, p. 163; it is the field K{(£)) of for-
mal Laurent series with coefficients in a Pythagorean field K.
Examples of Euclidean non-Archimedean fields: In the previous ex-
ample, assume now that the coefficient field K is Euclidean. Con-
struct an ascending chain of formal Laurent series fields K((t,,}) with
t=t; and ti4, =t, for any positive integer n. Let F be the union
of all those fields, so that an element of F is a formal Laurent se-
ries in t, for some n. Show that F is a Fuclidean non-Archimedean
field (thus by adjoining iterated square roots of ¢, one obtains square
roots of all positive elements—see Hessenberg and Diller (1967) if
you are stymied). For another example, see Hartshorne, Proposition
18.4, p. 161.

Report on Euclid’s theory of content (area without numbers); use
Hartshorne, Chapter 5, as a reference. Indicate which results de-
pend on Archimedes’ axiom.

Go through all the propositions in Euclid’s Books I-1V that we have
not discussed and that do not refer to area. With the assistance of
Heath’s commentaries about them, report on all the flaws found in
Euclid’s proofs of them and repair those flaws using our axioms for
a Euclidean plane and all the results we have proved in the text
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and exercises. Be sure to tell which results are valid in neutral geom-
etry and prove them without using any strictly Euclidean results.

. Report on interesting theorems abowt cyclic quadrilaterals (quadri-

laterals that have a circumscribed circle) in Euclidean planes (use

the web or relevant books). Such quadrilaterals are important for

developing the theory of similar triangles in planes satisfying

Hilbert’s Euclidean parallel postulate. Develop a more general the-

ory of cyclic quadrilaterals valid in neutral geometry.

Comment on these statements by Edward Nelson, referring to his

article Syntax and Semantics, accessible online at http: //www.math.

princeton.edu/ % 7Enelson/papers/s.pdf:

(a) In the 1960s infinitesimals rose again, phoenix-like, thanks to
the genius of Abraham Robinson, the creator of nonstandard
analysis. . . . So do infinitesimals exist or not? This is the wrong
question, The guestion is, as Humpty Dumpty said to Alice,
which is to be master—that’s all. Mathernatics is our inven-
tion, and we can have infinitesimals or not, as we choose. The
only constraint is consistency.

{b) But what a constraint that is! Indeed, we have no reason to as-
sume that the axiom systerns we use in mathematics are con-
sistent. For all we know, they may lead to a contradiction, Pla-
tonists believe otherwise, but to a formalist their arguments
carry no conviction,



History of the
Parallel Postulate

Like the goblin “Puck,” [the feat of proving Euclid V] has led me "up
and down, up and down,” through many a wakeful night: but
always, just as I thonght T had it, some unforeseen fallacy was sure
to trip me up, and the tricksy sprite would “leqp out, laughing hg,

....ho, hot” -

Review

Let us summarize what we have done so far. We have discovered cer-
tain gaps in FEuclid’s definitions and postulates for plane gecmetry. We
filled in these gaps and firmed up the foundations for this geometry by
presenting (a modified version of) Hilbert’s definitions and axioms. We
then built a structure of theorems on these foundations, However, the
structure thus far erected does not rest on Euclid’s paralle]l postulate,
and we called this structure “neutral geometry.”

You may feel that to deny the Fuclidean parallel postulate would
go against common sense. Albert Einstein once said that “common
sense is, as a matter of fact, nothing more than layers of preconceived
notions stored in our memories and emotions for the most part before
age eighteen.”

For more than two thousand years, some of the best mathematicians
tried to prove Euclid’s fifth postulate. What does it mean, according to
our terminology, to have a proof? It should not be necessary to assume
the parallel postulate as an axiom; one should be able to prove it from

209
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the other axioms, so that it would become a theorem in neutral geom-
etry and neutral geometry would encompass all of Euclidean geometry,

In this chapter, we will examine a few illuminating attempts to
prove Euclid’s parallel postulate (tnany other attempts are presented in
Bonola, 1955; Gray, 1989; and Rosenfeld, 1988). It should be empha-
sized that most of these attempts were made by outstanding mathe-
maticians of their time, not incompetents. And even though each at-
tempt was flawed, the effort was often not wasted; for, assuming that
all but one step can be justified, when we detect the flawed step, we
find another statement which to our surprise is equivalent! to the par-
allel postulate. You will have the opportunity to do more of this en-
joyable detective work in Exercises 4-8.

Proclys

Proclus (410-485) was the head of the Neoplatonic school in Athens
more than seven centuries after Euclid. He was primarily a philoso-
pher, not a mathernatician, but his Commentary on the First Book of
Euclid’s Elements is one of the main sources of information on Greek
geometry.

Proclus criticized Euclid’s fifth postulate as follows: “This ought
even to be struck out of the Postulates altogether; for it is a state-
ment involving many difficulties. . , . The statement that since [the
two lines] converge more and more as they are produced, they will
sometime meet is plausibie but not necessary.” Proclus offered the
example of a hyperbola that approaches its asymptotes as closely as
you like without ever meeting them (see Figure 5.1). This example
shows that the opposite of Euclid’s conclusion cam at least be imag-

ined.? Proclus adds: “It is then clear from this that we must seek a-

proof of the present theorem, and that it is alien to the special char-
acter of postulates.”

Proclus attempted to prove the parallel postulate as follows (see Fig-
ure 5.2): Given two parallel lines { and m. Suppose line n cuts m at P.
We wish to show n intersects I also {see Propasition 4.7). Let Q be the

! Actually, the fawed argument only proves that the unjustified statement implies the
parallel postulate; the converse requires further argument, I do not present any attempts
that are uninformative.

% Students always object to Figure 5.1 on the grounds that the hyperbola s nat “straight.”
We agreed not ta use this word because we don't have a precise definition. A precise
definition can be given in differential geometry (see Appendix A).
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Figure 5.1 Hyperbola with its asymptotes.

= ]

foot( of the perpendicular from P to l_) Ifn coigcidg with PQ, lt_hex;) it
intersects [ at Q. Other_)wise, one ray PY of n emanating from P lies be-
tween IT) and a ray PX of m. Take X to be the foot of the perpen-

i ¥ Y to m.
dlCI;}?;cﬁlosn:hen argued that as the point Y rece@es ex}dles§1y from P on
n, segment XY increases without bound, by Aristotle s axiom, sc; even;
tually XY becomes greater than fixed segment PQ. At that stage, m}ls
be on the other side of I, hence between that pf)smon‘. and its starting
position, ¥ must have hit !, which means that line n' intersects L

Proclus’ argument is sophisticated, involving motion and between-.
ness. Moreaver, every step in the argument can be shown to be corre(,:t
(if we assume Aristotle’s axiom)—except that the last sentence doesn’t
I

fou?—l‘z;v could one justify the last step? Let us drop a perpendicul:’:tr YZ
from Y to [. You might then say that (1) X, Y, and Z are always collinear,
and (2} XZ = PQ. Thus, when XY becomes greater than .PQ, Xﬁg tlw:'llust
also be greater than XZ, so that Y must be on the other side of I. Here

\P lj{ m

-
Q

Figure 5.2 Proclus’ argument.

sl Usgversity - 3
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the conclusion does indeed follow from statements (1} and (2). The
trouble is that there is no justification for these statements!

If this boggles your mind, it may be because Figure 5.2 makes state-
ments (1} and {2) seem correct. Recall, however, that we are not al-
lowed to use a diagram to justify a step in a proof. Each step must be
proved from stated axioms or previously proved theorems. (We will
show later that it is not possible in neutral geometry to prove state-
ment (1). It can be proved only by using Euclid’s parallel postulate or
one of its equivalents.)

This analysis of Proclus’ faulty argument illustrates how careful you
must be in the way you think about parallel lines, You probably visu-
alize parallel lines as railroad tracks, everywhere equidistant from each
other, and the ties of the tracks perpendicular to both parallels. This
imagery is valid only in Euclidean geometry. Without the parallel pos-
tulate, the only thing we can say about two lines that are parallel is
that, by the definition of “parallel,” they have no point in common.
You can’t assume they are equidistant; you can’t even assume they
have a common perpendicular segment. As Humpty Dumpty remarked
in Alice in Wonderland: “When I use a word it means what 1 wish it
to mean, neither more nor less,”

Procius reported on an earlier attempt to justify Euclid V by the
great second-century Greek astronomer Ptolemy. Ptolemy tried to prove
the contrapositive (see p. 65) of Euclid V, which is logically equivalent
to it. So he started with two parallel lines cut by a transversal, He
pointed out correctly that if the interior angles on one side of the trans-
versal add up to <<180°, then the interior angles on the other side of
the transversal (which are their supplements) add up to >>180°. He
then argued intuitively that the rays of the parallel lines on one side of
the transversal were “no more parallel” than the rays on the opposite
side, so this could not happen. If one tries to make that intuitive idea
precise, one sees that Ptolemy was tacitly assuming the converse of the
AlA theorem, which states that parallel lines are situated symmetrically
about any transversal. But we proved in Proposition 4.8 that the con-
verse to the AIA theorem is equivalent to Euclid V in neutral geome-
try, so Plolemy was tacitly assuming what he was trying to prove.

According to a medieval Arabic source, Archimedes also wrote a
treatise on parallel lines, Unfortunately, it has been lost.?

¥ In 1906, philologist J, L. Heiberg found an Archimedes manuscript. It was subsequently
lost or stolen and then turned up again in 1998, The palimpsest, erased, written over,
and even painted over, has been scrutinized usiag a synchrotron X-ray beam and other
technologies to decipher what Archimedes wrote. Do a search on the web for the lat-
est information about this marvelous discovery,
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Equidsstance

The image of parallel lines as equidistant led to several confused attempts
to prove Euclid’s parallel postulate. Posidonius (circa 150 B.c.) based ?ﬁs
attempt on a different definition of “parallel lines” as two lines for which
all the perpendicular segments dropped from either one of them to the
other are congruent. Aside from the obvious fallacy of giving the word
“parallel” a different meaning, Posidonius could not have proved in neu-
tral geometry that such pairs of lines exist, as we shall later show.
Proceeding more carefully, given a line ! and segment PQ of a line
perpendicular to [ at Q, we can con31der the set of all | points P’ on t} the

same side of [ as P such that if Q' is 'tl-'l_e foot of the perpendlcular from

P’ to [, then PQ = P'Q’. Call that set the eqmdlstant Tocus (or curve) to
! through P. Christopher Clavius, in 1574, proposed the following ax-
jom as an alternative to Fuclid V.

Cravius® Axiom. For any line [ and any point P not eon [, the equi-
distant locus to I through P is the set of all the points on a line through
P {which is parallel to I).

The heuristic argument Clavius gave for assuming this axiom was
that the equidistant locus has the property that it “lies evenly” with
the points on it, hence it must form a line according to Euclid’s def-
inition of a line! Centuries earlier, 1bn al-Haytham tried to justify this
axiom via a kinematic argument, imagining the rigid segment PQ at-
tached to line [ at Q and perpendicular to I; he argued that as Q
moved along the (straight) line I, the other end P of the segment had
to move along a second (straight) line so long as the segment stayed
perpendicular to I. It may be difficult to imagine that the path traced
out by P might be curved, but anyhow kinematics is not part of pure

geometry. o
The following theorem illuminates the status of Clavius’ axiom in

neutral geometry.

THEOREM. The following three statements are equivalent for a Hilbert
plane:
(a) The plane is semi-Fuclidean.
(b) For any line I and any point P not on [, the equidistant locus
to [ through P is the set of all the points on the parailel to !
through P obtained by the standard construction, i.e., on the
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line through P perpendicular to % where Q is the foot of the
perpendicular from P to L
{c) Clavius’ axiom.

Proor:

(b} = (c) is trivial. Assume (c), let {JABDC be any Saccheri quadri-

lateral, and let MN be its midline segment. Since M is on the line
CD, Clavius’ axiom tells us that M is on the equidistant locus to AB
through C and D; i.e., MN = CA = DB, So by the corollaries to the
uniformity theorem of Chapter 4, the plane is semi-Euclidean.
Assume (a). Let m be the parallel to [ through P obtained by the
standard construction. If P! is any other point on m and Q' is the
foot of the perpendicular from P’ to I, then [JQQ'P'P is a Lambert
quadrilateral, hence a rectangle, by (a), so the opposite sides PQ
and P'Q’ of this rectangle are congruent {Corollary 3 to Proposition
4.13). Thus P’ lies on the equidistant locus to { through P. Now let
P’ # P lie on that locus. Then [JQQ'P'P is a Saccheri quadrilateral,
Loy . pany
hence a rectangle, by (a). Thus P'P is perpendicular to PQ at P. By
uniqueness of the perpendicular, P’ lies on m. «

As was stated in the note on non-Archimedean geometries at the
end of Chapter 4, the Euclidean parallel postulate need not hold in an
arbitrary semi-Euclidean non-Archimedean plane, so Clavius’ axiom is
weaker than the Euclidean parallel postulate and alj attempts to prove
the parallel postulate using just Clavius’ axiom are flawed., Some me-
dieval Arab mathematicians invoked Archimedes’ axiom in addition to
Clavius’ axiom in their flawed atteinpts (see Chapter 2 of Rosenfeld,
1988), which was the correct idea, as we shall soon show,

Wallis

John Wallis (1616-1703) was the most influential English mathemati-
cian before Newton.* He made very substantial contributions to the de-
velopment of calculus, algebra, and analytic geometry.

# In his 1656 treatise Arithunetica Infinitorum (which Newton studied}, Wailis introduced
the symbol = for “infinity,” developed formulas for certain integrals, and presented his
famous infinite product formula for

w2244 658

2 1-3:3:.5-5.7.7.++

Wallis promoted the power of algebra in mathematics, in sharp disagreement with the
insistence of Newton’s teacher Isaac Barrow on traditional synthetic Euclidean methods.
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John Wallis

Wallis was astute enough not to try to prove Euclid’s parallel pos-
tulate in neutral geometry. Instead, in a treatise on Euclid, which he
published in 1693, he proposed a new postulate that he believed to be
more plausible. He phrased it as follows:

Finally (supposing the nature of ratio and of the science of similar fig-
ures already known), I take the following as a common notion; to every
figure there exists a similar figure of arbitrary magnitude,

In order to make Wallis’ postulate precise, we will restrict our at-
tention to triangles instead of arbitrary “figures.” We have not dev‘el—
oped “the nature of ratio.” We can circumvent that difficulty by defin-

ing “similar triangles” as follows.

DEFINITION. Two iriangles are similar if their vertices can be put in
one-to-one correspondence in such a way that corresponding angles are
congruent (AAA). We use the notation AABC ~ ADEF to ir%dicate that
these triangles are similar when A, B, C cerrespond, respectively, to B,

E, F (see Figure 5.3).
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A B D E
Fignre 5.3 Similar triangles.

WaLLIS” POSTULATE, Given any triangle AABC and given any seg-

ment DE, there exists a triangle ADEF having DE as its si
one of
such that AABC ~ ADEF, i o e sides

Th'e intuitiv.e meaning of Wallis’ postulate is that you can either
magnify or shrink a triangle as much as you like without distortion,

Using Wallis’ postulate, the Euclidean parallel postulate can be proved
as follows.

Proor:

Given point P not on line I, let PQIm be the configuration obtained
by the standard parallel construction. Let r be any other line through
P, We must show that 1 meets . As before, consider a ray of n em-
anating Eg)m P that is between a ray of m emanating from P and
the i‘F:ly PQ. For any pc()i_r;t R on this ray, let S be the foot of the per-
pendicular from R to PQ (see Figure 5.4).

l;llowhapply Wallis’ postulate to APSR and segment PQ. It tells
us that there is a point T such that APSR ~ APOT
T lies on the same side of PQ i Q ot selioes o
Tl me ide of PQ as R (Figure 5.5)—if not, reflect across
PQ. By the definition of similar triangles, <.TPQ = 4RPS. But since

P
L_ m
S‘] \

o n

Q 1

Figure 5.4
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Figure 5.5 Proof that Wallis® postulate implies Euclid V.

e a4
thege angles have the ray(g)Q = P§ as a common side, and since T
lies on the same side of PQ as R, the only way they can be con-
&uent_}is to be equal {by the uniqueneds part of Axiom C-4}. Thus
PR = PT, so that T lies on n. Similarly, <PQT = ¢PSR, a right an-
gle; hence T lies on I as well. Thus n and I meet at T, and m is the

only line through P parallel to . <

There is no reason to belleve Wallis’ postulate is preferable to
Euclid’s because you will easily show in Exercise 3(a) that'it is equiv-
alent in neutral geometry to Euclid V.

Wallis became publicly engaged in a dispute with the prominent
seventeenth-century philosopher Thomas Hobbes after Hobbes published
a manuscript in 1655 purporting to square the circle by straightedge and
compass and to solve other outstanding geometric problems. Wallis pub-
lished a reply in the same year in which he pointed out the many errors
and rather deplorable state of Hobbes' geometry. Proud Hobbes could not
accept Wallis’ critigue and published an angry attack against him, A bit-
ter, vituperative public verbal battle—encompassing much broader phito-
sophical, political, and religious issues of that time, not just geometry—
evolved between them that lasted 20 years. An excellent account of this
dispute can be found in the 1999 book by Douglas M. Jesseph, Squaring
the Circle: The War Between Hobbes and Wallis. There is an informative
review of this book at www.maa.org/reviews/squaring.html.

Squaring the circle was a puzzle of widespread popularity among
the general population in the late seventeenth century. There were con-
tests open to all, and the March 1686 edition of the Journal des Savants
even reported that “one young lady positively refused a perfectly eli-
gible suitor simply because he had been unable, within a given time,
to produce any new idea about squaring the circle.”

You will find a new idea in the last section of Chapter 10.
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Sacchers

We next discuss further the remarkable work of the logician and Jesuit
priest Girolamo Saccheri (1667-1733), many of whose propositions
were proved in Chapter 4.

We saw that the summit angles of his quadrilaterals are congruent
to each other, and there are three possible geometries according as
those angles are acute, right, or obtuse. Saccheri’s idea was to demon-
strate that the acute and obtuse angle cases lead to contradictions, leav-
ing the right angle case—the case where the Saccheri quadrilateral is
a rectangle—as the only possibility,

By assuming the generally accepted Archimedes’ axiom, Saccheri
successfully eliminated the case of the obtuse angle (Saccheri-Legendre
theorem, Chapter 4). But however hard he tried, Saccheri could not
squeeze a contradiction out of “the iniimical acute angle hypothesis,”
as he called it. He was able to deduce many strange results—such as
parallel lines having one common perpendicular and then diverging on
both sides of the perpendicular, or the possibility of parallel lines di-
verging in one direction but converging asymptotically in the opposite
direction and having a “common perpendicular at infinity” in that di-
rection. He was not able to find a contradiction.

Finally, he exclaimed in frustration: “The hypothesis of the acute
angle is absolutely false, because [it is] repugnant to the nature of the
straight line!™ It is as if a man had discovered a rare diamond but, un-
able to believe what he saw, announced it was glass. Although he did
not recognize it (or was afraid to acknowledge it), Saccheri had dis-
covered the elementary part of non-Euclidean geometry and deserves
much acclaim for that discovery.

There is no very serious error in Saccheri’s treatise. Moreover, the
following remarks by him show that he was aware that his work was
not satisfying,

It is well to consider here a notable difference between the foregoing
refutations of the two hypotheses. For in regard to the hypothesis of the
obtuse angle the thing is clearer than midday light, . . . But on the con-
trary, I do not attain to proving the falsity of the other hypothesis, that
of the acute angle. . . . I da not appear to demonstrate from the viscera
of the very hypothesfs, as must be done for a perfect refutation,”s

¥ See the translation of Saccherf's 1733 treatise by G. B. Halsted (Saccheri, 1970,
Scholion, p. 233). Saccheri had previously published several versions of his treatise on
logic, which Halsted, in his introduction, also lauds as far ahead of his time; for ex-

CLAIRAUT’S AXIoM AND PROCLUS’ THEOREM 219

we will further examine Saccheri’s non-Euclidean resjults in t1.1e next
chapter. It has been claimed by one anonymous writer that 1r‘1r S;%c-
cheri’s time, the existence of a valid non-Euclidean geometry w:as qultf
literally, unthinkable—not impossible, not wrong, but _u'nthnlzkable.
well, Saccheri did think about it. Why would a fine Iog}cilan like Sac-
cheri bother publishing all those correct results in non-Euclidean g”eom-
etry if he simply believed that such a geometry was “re.pugnanft ? He
must have at least sensed that there was something very interesting g(}:-
ing on that he couldn’t fully understand, and he wanted .mati‘lemau—
cians to know about it. By claiming he had vindicated Euelid, kis book
received the stamp of approval from the Inguisition. Unfortunately, Sac-
cheri died a month after its publication.

Clairaut's Axiom and Proclus’ Theorem

Alexis-Claude Clairaut {1713-1765) was a leading French matl'lematici;:m
who made important contributions to differential geometry. Like Wallis,
he did not try to prove the parallel postulate in neutral geometry Put re-
placed it in his 1741 text Eléments de Géometrie with another axiom,

CLAIRAUT’S AXIOM. Rectangles exist.

He showed how one easily constructs a saccheri quadr.ilateral and
he claimed that it was a rectangle. To justify his axiom, Clairaut argued
that “we observe rectangles all around us in houses, gardens, rooms,
walls.”

So why didn't that settle the matter? Perhaps because the game of
trying to prove Euclid V had been going on for sc? many cent_urles that
it became a challenging obsession for mathematicians. Or dl(} mat.he-
maticians finally recognize that geometry was not about “physical
space”? After all, if you believe that a rectangle can b.e drawrll on the
ground, then you cannot also believe that the eaf'th is spherical, be-
cause rectangles do not exist on a sphere. If you think you have drawn
a “physical rectangle,” you could be mistaken because exact measure:-
ments are physically impossible. Or did it finally dawn on mathemati-
cians that any postulate proposed to replace Euclid V—no matter how

ample, Saccherl was the first to consider the problems of the md?pendence of onelpo::
tulate from the others and of the consistency of a system qf axioms, For lfnn e)é];.! an :
tion of the “common perpendicular at infinity” to asymptotically parallel lines discov
ered by Saccheri, see the Conclusien in Chapter 6.
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intuitively appealing—was weaker than or logically equivalent to
Euclid V and therefore nothing was gained logically by the replacement?

Even if one accepts Clairaut’s axiom, it does not suffice to demon-
strate Euclid’s parallel postulate. Our investigations in Chapter 4 show
that Clairqut’s axiom holds in a Hilbert plane iff the plane is semi-
Euclidean. As Example 2 in Chapter 4 showed, Euelid V need not hold
in a non-Archimedean, semi-Euclidean plane.

Hilbert, in his lectures on geometry after the publication of the first
edition of his Grundlagen, emphasized that the angle sum of a triangle
equaling 180° does not imply Euclid V without a further hypothesis.
Dehn provided a nen-Archimedean model to show that. Proclus was
the first to recognize a correct, purely geometric candidate for that ad-
ditional hypothesis: Aristotle’s axiom is a missing link.

Procrus’ THEOREM. The Fuclidean parallel postulate holds in a
Hilbert plane if and only if the plane is semi-Euclidean (i.e., the angle
sum of a triangle is 180°) and Aristotle’s angle unboundedness axiom
holds. In particular, the Euclidean parallel postulate holds in an
Archimedean semi-Euclidean plane.

Proor:

The last remark follows from the result that Archimedes’ axiom im-
plies Aristotle’s axiom, which you will prove in Exercise 2.

The “only if” part of the theorem was proved in Chapter 4 (Propo-
sition 4.11 and Corallary 2 to Proposition 4.13). For the “if” patt,
return to the situation illustrated in Figure 5.6, where m is the par-
allel to [ through P obtained by the standg};d construction, Let S be
the foot of the perpendicglgr from Y to PQ. § is on the same side
of m as Y and Q because SY is parallel to m (Corollary 1 to the AIA
theorem). Since the plane is semi-FEuclidean, Lambert quadrilateral

\P X

I m

|
Q

Figure 5.6 Proof of Proclug’ theorem.
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[OXPSY is a rectangle, hence its opposite sides PS and XY are con-
gruent (Corcliary 3 to Proposition 4.13). '

We now apply Aristotle’s axiom and Proclus’ argurment; A point
Y exists on the given ray of n so that XY > PQ. Then PS, which is
congruent to XV, is also > PQ, hence P» Q * 5. As before, Y is on
the same side of [ as S, hence on the opposite side of [ from P. By
the definition of “opposite side,” n meets ! at some point between
P and Y. «

Legendre

Adrien-Marie Legendre (1752-1833)}, mentioned in Chapter 1, certainly

. knew of Clairaut’s text and rejected Clairaut’'s axiom because he be-

lieved he could prove Euclid V in neutral geometry. He did not know
of Saccheri’s work and rediscovered (with different proofs) some of
Saccheri’s main theorems in neutral geometry—the most important one
being the Saccheri-Legendre theorem in Chapter 4. Legendre also took
Archimedes’ axiom for granted. We have already discussed, in Chap-
ter 1, one of Legendre’s attempts to prove the parallel postulate, whose
flaw we ask you to detect in Exercise 4. Legendre published a collec-
tion of his many attempts as late as 1833, the year he died. Here is one
of his attempts to prove that the angle sum of any triangle is 180°.

Proor (sEe Figure 5.7):

Suppose, on the contrary, there exists a triangle AABC having defect
d # 0 (see p. 252). By the Saccheri-Legendre theorem, d > 0. One of
the angles of the triangle—say {A—must then be acute (in fact, less
than 60°). On the opposite side of B¢ from A, let D be the unigue
point such that <DBC = < ACB and BD == AC (Axmms C-1 and C-4).

Then AACB = ADBC (SAS). Also BD || AC and BA | DC (by the al-
ternate interior angle theorem, Theorem 4.1), so that D lies in the in-

Bs
B/r
2 D,
By b
B __—7 b 2
A \ 5
A C C, C, - 1

Figure 5.7 Legendre’s attempt to prove that the defect is zero.
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terior of the acute < A. Hence there is a line [ through D such that {
intersects side AB in a point B; #+ A and side Alina point C; # A,
Because of the parallel lines, we know that By # B and C; # C.

Suppose B; is on segment AB, Then A and By would be on
the same side of BD. Since BD I A&, A and Cy are on the same
side of BD. Thus By, and C; are on the same side of BD (Axiom
B-4). But since D lies in the interior of %A, B; * D * C; (Proposition
-3.7). This contradiction shows that A = B * By, Similarly, we have
A+ C+*Cq. Since AACB = ADBC, the defect of ADBC is also d.
Therefore, by the additivity of the defect (Prop. 6.1, p. 252) applied
to the four triangles into which AAB;C; has been decomposed, the
defect of AAB;C; is greater than or equal to 2d.

Repeating this construction for AAB;C,, we obtain AAB,C, with
defect greater than or equal to 4d. Iterating the construction 7z times,
we obtain a triangle with defect greater than or equal to 2"d, which
can be made as large as we like by taking n sufficiently large, But
the defect of a triangle cannot be more than 180°) This contradic-
tion shows that every triangle AABC has defect 0. «

Can you see the flaw? It is easy, because we have justified every
step but one, the sentence beginning with “Hence.” That is the as-
sumption you were warned on p. 115 not to make. Legendre made the
same eITor as was made many centuries earlier by Simplicius (Byzan-
tine, sixth century), al-Jawhari (Persian, ninth century), Nasir Eddin
al-Tusi, and others. He failed to prove in neutral geometry that the de-
fect of every triangle is zero. Nevertheless, Legendre succeeded in prov-
ing the following theorem in neutral geometry.

LEGENDRE’S THEOREM (STILL ASSUMING ARCHIMEDES’ AX1oM). Hy-
pothesis: For any acute %A and any point D in the interior of XA, there
exists a line through D and not through A that intersects both sides of
+A. Conclusion: The angle sum of every triangle is 180°,

You will easily see from the Klein model in Chapter 7 that the hy-
pothesis of Legendre’s Theorem fails in hyperbolic geometry (Figure
7.5). Let us show that the hypothesis can be proved in Euclidean geom-
etry. Drop a perpendicular from interior point D to one of the sides of
<A and let B be the foot of that perpendlcular Since <A is acute,
{€A)° + (XDBA)° = (¥A)° + 90° < 180°. So BD meets the other side
of <A, by Euclid V. «
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For future reference, we name this hypothesis after Legendre.
LEGENDRE’S AX10M. For any acute angle and any point in the inte-
rior of that angle, there exists a line through that peint and not through

the angle vertex which intersects both sides of the angle.

Just like Saccheri, Legendre wrote that “it is repugnant to the na-
ture of a straight line” for this axiom not to hold.

Lambert and Taurinus

Regarding Euclid V, Johann Heinrich Lambert (1728-1777) wrote:

Undoubtedly, this basic assertion is far less clear and obvious than the
others. Not only does it naturally give the impression that it should be
proved, but to some extent it makes the reader feel that he is capable
of giving a proof, or that he should give it. However, to the extent to
which I understand this matter, that is just a first impression. He who
reads Euclid further is bound to be amazed not only at the rigor of his
proofs but also at the delightful simplicity of his exposition. This being
so, he will marvel all the more at the position of the fifth postulate
when he finds out that Euclid proved propositions that could far more
easily be left unproved.

Lambert studied quadrilaterals having at least three right angles,
which are now named after him (though they were studied seven cen-
turies earlier by the Egyptian scientist ibn-al-Haytham). A Lambert
quadrilateral can be “doubled” (by reflecting it across an included side
of two right angles) to obtain a Saccheri quadrilateral. Lambert was fa-
miliar with Saccheri’s work. Like Saccheri, Lambert disproved the ob-
tuse angle hypothesis and studied the implications of the “inimical”
acute angle hypothesis. He observed that it implied that similar trian-
gles must then be congruent, which in turn implied the existence of an
absolute unit of length (see Proposition 6.2, Chapter 6), He called this
consequence “exquisite” but did not want it to be true, worrying that
the absence of similar, proportional figures “would result in countless
inconveniences,” especially for astronomers.

He also noticed that the defect of a triangle was proportional to its
area (see Chapter 10). He recalled that on a sphere in Euclidean space,
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Johann Heinrich Lambect

the angle sum of a triangle formed by arcs of great circles was greater
than 180° and that the excess over 180° of the angle sum of the tri-
angle was proportional to the area of the triangle, the constant of pro-
portionality being the square r? of the radius of the sphere (see Rosen-
feld, 1988, Chapter 1, or Appendix A for the case r = 1), If ris replaced
by ir (i = V-1), squaring introduces a minus sign that converts the
excess into the defect in that proportionality. Lambert therefore spec-
ulated that the acute angle hypothesis described geometry on a “sphere
of imaginary radius.”s

Fifty years passed before this brilliant idea was further elaborated
in a booldet dated 1826 by F. A. Taurirus, who transformed the for-
mulas of spherical trigonometry into formulas for what he called “log-
spherical geometry” by substituting ir for r (his formulas are proved by
a different method in Theorem 10.4, Chapter 10}. When Taurinus first

& L . .
In fact, this idea can be explained in terms of a natural embedding of the non-Euclidean
Plan‘e In. relativistic three-space {see Chapter 7). Lambert is known for proving the
irrationality of 7 and of e* and tan x when x is rational, as well as for important

laws he discovered in optics and astronomy. The quote is from B. A, Rosenfeld (1988), -

p. 100.
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notified €. F. Gauss of his work, Gauss replied favorably (see the let-
ter from Gauss on p. 243); but when Taurinus then urged Gauss to
publish his own work on this topic, Gauss refused to continue com-
municating. This rejection threw Taurinus into a state of despair, and
he burned the remaining copies of his booklets. Taurinus vacillated
over whether such a geometry actually “existed.”

Lambert cautiously did not submit his Theory of Parallels for pub-
lication (it was published posthumously in 1786). It contained an er-
roneous attempt to disprove the acute angle hypothesis.

Farkas Bolyai

There were so many attempts to prove Euclid V that by 1763 G. S.
Kliigel was able to submit a doctoral thesis finding the flaws in 28 dif-
ferent supposed proofs of the parallel postulate, expressing doubt that
it could be proved. The French encyclopedist and mathematician
1. L. R. d’Alembert called this “the scandal of geometry.” Mathemati-
cians were becoming discouraged. The Hungarian Farkas Bolyai, who
had also tried to prove Euclid V (see Exercise 5), wrote to his son Jdnos:

You must not attempt this approach to parallels. I know this way to its
very end. 1 have traversed this bottomless night, which extinguished atl
light and joy of my life. I entreat you, leave the science of parallels
alome. . . . I thought I would sacrifice myself for the sake of the truth.
I was ready to become a martyr who would remave the flaw from geom-
etry and return it purified to mankind. I accomplished monstrous, enor-
mous Jahors; my creations are far better than those of others and yet I
have not achieved complete satisfaction, . . . I turned back when I saw
that no man can reach the bottom of the night. I turned back uncon-
soled, pitying myself and all mankind.

I admit that T expect little from the deviatior: of your lines. It seems
to me that T have been in these regions; that I have traveled past all
reefs of this infernal Dead Sea and have always come back with bro-
ken mast and torn sail. The ruin of my disposition and my fall date
back to this time. I thoughtlessly risked my life and happiness—aut
Caesar cut nihil.”

7 The correspondence between Farkas and Jdnos Bolyal is from Meschkowsld £1964).
Farkas Bolyai is credited, along with W. Wallace and P. Gerwien, for having proved
the important theorem that polygons of egual area are equidecomposable (see
Chapter 10).
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Farkas Bolyai

But the young Bolyai was not deterred by his father’s warnings, for
he had a completely new idea. He assumed that the negation of

Euclid’s parailel postulate was not absurd, and in 1823 he was able to
write to his father:

It is now my definite plan to publish a work on paraliels as soon as I
can complete and arrange the material and an opportunity presents it-
self; at the moment I still do not clearly see my way through, but the
path which I have followed gives positive evidence that the goal will
be reachied, if it is at all possible; I have not quite reached it, but I have
discovered such wondeful things that I was amazed, and it would be
an everlasting piece of bad fortune if they were lost, When you, my
dear Father, see them, you will understand; at present I can say noth-
ing except this: that out of nothing I have created a strarnge new uni-
verse. All that I have sent you previously is like a house of cards in
compartison with a tower. I am no less convinced that these discover-
fes will bring me honor than I would be if they were completed,

We will explore this “strange new universe” in the following chapters.
A century after Jdnos Bolyai wrote this letter, the Englich physicist

J. J. Thomson remarked, somewhat facetiously:
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We have Einstein’s space, de Siiter’s space, expanding universes, con-
tracting universes, vibrating universes, mysterious universes. In fact,
the pure mathematician may create universes just by writing dmzvn an
equation, and indeed if he is an individualist he can have a universe
of his own.

" In fact, in 1949 the renowned logician Kurt Gédel found a model of the

universe that satisfies Einstein’s gravitational equations, one in which
it is theoretically possible to travel backward in time!®

Review Exercise

Which of the following statements are correct?

(1) Wallis’ postulate implies that there exist lwo triangles that are
simnilar but not congruent.

{2) A “Saccheri quadrilateral” is a quadrilateral (JABDC such that
< CAB and <DBA are right angles and AC = BD,

(3) A “Lambert quadrilateral” is a quadrilateral having at least three
right angles. . .

(4) A quadrilateral that is both a Sacchert and a Lambert quadri-
lateral must be a rectangle.

(5) A hyperbola comes arbitrarily close to its asymptotes without
ever intersecting them.

(6) Jinos Bolyai warned his son Farkas not to work on the paral-
lel problem.

(7) Saccheri succeeded in disproving the “inimical” a¢ute angle
hypothesis.

(8) In trying to prove Euclid V, Ptolemy was tacitly assuming the
converse to the AIA theorem.

(9) Itis a theorem in neutral geometry that if [ || m and m | n, then
l|in.

(10) ItH is a theorem in neutral geometry that every segment has a
unique midpoint.

(11} It is a theorem in neutral geometry that if a rectangle exists,
then the angle sum of any triangle is 180°.

8 To date, attemnpts to refute Gidel’s model on either mathematica{ or philosophical
o grounds have failed, See “On the paradoxical time-structures of G&del,” by Howard
Stein, Journal of the Philosophy of Science, v. 37, December 1970, p. 589,
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(12) It is a theorem in neutral geormetry that if [ and m are paralle]

! lines, then alternate interior angles cut out by any transversal
to ! and m are congruent to each other.

(13) Legendre proved in neutral geometry that for any acute A
and any point D in the interior of <A, there exists a line through
D and not through A which intersects both sides of <A,

(14) Clairaut showed that Euclid’s fifth postulate could be replaced
in the logical presentation of Euclidean geometry by the “more
ohvious” postulate that rectangles exist, yet mathematicians
were not appeased by Clairaut’s replacement and they contin-
ued to try to prove Fuclid V.

(15) Lambert guessed that there was such a thing as a “sphere of
imaginary radius” on which the acute angle hypothesis was valid,

{16) Gauss responded to Taurinus about his booklet on “log-
spherical geometry,” telling about his own unpublished work,
but when Taurinus urged Gauss to publish it, Gauss did not
reply.

(17} Saccheri used the undefined notion of “repugnance” in his at-
tempt to prove Euclid V by an RAA argument.

{(18) That Legendre made so many incorrect attempts to prove Eu—
clid V for Archimedean Hilbert planes shows that his work in
geometry was worthless.

Exercises

1. Given a right triangle APXY with right angle at X, form a new right
E triangle APX’Y’ that has acute angle «P in common with the given
triangle, right angle at X', but double the hypotenuse (prove that
this can be done); see Figure 5.8, If the plane does not satisfy the
obtuse angle hypothesis, prove that the side opposite the acute an-
gle is at least doubled, whereas the side adjacent to the acute an-
gle 18 at most doubled. (Hint: Extend side XY far enough to drop a
perpendicular Y'Z to XY. Prove that APXY = AY'ZY and apply

~ Corollary 3 to Proposition 4,13, Chapter 4.)

2. Use Exercise 1 and the Saccheri-Legendre’ theorem to prove that
Archimedes’ axiom implies Aristotle’s axiom—i.e., in Figure 5.8,
prove that as Y “recedes endlessly” from P, perpendicular segment
XY increases without bound. (Hint: Use Archimedes’ axiom and the
fact that 2" — e as n-»,) Does segmént PX also increase
indefinitely?
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Figure 5.8

3.

(a) Prove that Euclid’s fifth postulate tmplies Wallis® postulate (see
Figure 5.9). (Hint: Use Axiom C-4 and the fact that in Euclid-
ean geometry the angle sum of a triangle is 180°—Propuosition
4.11)

(b} Suppose that in the statement of Wallis’ postulate we add the
assumption AB = DE and replace the word “similar” by “con-
gruent.” Prove this new statement in neutral geometry.

Figure 5.9

4. Reread Legendre’s attempted proof of the parallel postulate in Chap-

ter 1, Find the flaw and justify all the steps that are correct. Prove
the flawed statement in Euclidean geometry.

Find the unjustified assumption in the following “proof” of the par-
allel p%gulate by Farkas Bolyai (see Figure 5.10). Given P not on
line [, PQ perpendicular to ! at Q, and line m perpenglgu]ar to 1(36
at P. Let n be any line through P distinct from m and Q. We must
show that n meets [. Let A be any point between P and Q. Let B
be the unique point such that A * Q * B and AQ = QB. LeL R be the
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and let Y be the foot of the perpendicular from X to f"é As X re-
cedes endlessly from P, PY incrﬁses indefinitely. Hence, Y even-
tually reaches a position Y on PQ such that PY’ > PQ. Let X' be
the corresponding position reached@lgﬁy_))( on line n. Now X' and ¥’
are on the same side of ! because X'Y" is parallel to I. But Y’ and
P are on opposite sides of L. Hence, X' and P are on opposite sides
of [, so that segment PX' (which is part of i) meets [,

7. Find the flaw in the following attempted proof of the parallel pos-
tulate ﬂen by I. D. Gergonne (see Figure 5.12). Given P not on
line I, PQ perpendicular to { at 2, line m perpendicular to PQ at P,
and point A # P on nt. Let PB be the last ray between PA and ITQ)
that intersects I, B being the point of intersection. There exists a
pomt Conlisuchthat Q+B+C (Amorns B_} and B-2). It follows
that PB is not the last ray | betwee_n) PA and PQ that intersects [, and
hence all rays between PA and PQ meet I. Thus m is the only par-

"

\

Figure 5.10 Attempted proof by Farkas Bolyai.

allel to ! through P.

foot of the perpendicular from A to . Let C be the unigue point ,P 4

such that A * R * C and AR = RC. Then A, B, and C are not collinear
(else R = P}; hence there is a unique circle -y passing through theim.
Since ! is the perpendicular bisector of chord. AB of ¥ and n is the
perpendicular bisector of chord AC of v, [ and n meet at the center
of v (Exercise 17(b), Chapter 4). .

The following attempted proof of the parallel postulate is sirnilar to

Q B\ c\

6.
Proclus’ but the flaw is different; detect the flaw with the help of Figure 5.12
Exercise 1 (see Figure 5.11). Given P not on line I, PQ perpendic-
ular to [ at Q, and line m perpendmular to PQ at P, Let n be any line
through P distincet from m and_l:Q We must show that i meets L, 8. It was stated at the beginning of this chapter that if all steps but
Let PX be a ray of n between PQ and a ray of i emanating from P one of an attempt to prove the parallel postulate are correct, then
the flawed step yields another statement equivalent to Hilbert's par-
allel postulate. Assuming Aristotle’s axiom, show that for Proclus’
attemnpt, that statement is: Given paralle] lines [, m having a com-
P m mon perpendicutar and a point Y not lying on { or m, if X (respec-
= tively Z) is the foot of the perpendicular from Y to ! (respectively
y[H X\n to m), then X, Y, and Z are collinear.
QM ¢ ! 9. You will show in Exercise 16 that the following statement can be
o \ X’ proved in Euclidean geometry: If points P, Q, R lie on a circle with
Y ™~ center O, and if 4<PQR is acute, then (LPQR)® = 12(LPOR)°. In
" neutral geometry, show that this statement implies the existence of
Figure 5,11 a triangle whose angle sum is 180°.
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The remaining exercises in this chapter are exercises in real
Euclidean geometry, which means you are allowed to use the Dparalle]
postulate and its consequences already established. We will refer to these
results in Chapter 7. You are also allowed to use the following result,
a proof of which is indicated in the Major Exercises.

PARALLEL PROJECTION THEOREM. Given three parallel lines I, m,
and n. Let t and ¢' be transversals to these parallels, cutting them in
points A, B, and C and in points A’, B’, and C’, respectively, Then
AB/BC = A'B’ B/B'C’ (Figure 5.13),

\a foo
\p [

Figure 5.13

10. Fundamental theorem on similar triangles. Glven AABC ~ AA'R’ ch
le., given LA = JA', 4B = <B’, » and £C = 4C’, Then correspond-
ing sides are proportional; i.e., AB/A'B’ = AC/A'C' = BC/B'C’ (see
Figure 5.14). Prove the theorem. (Hint: Let B” I_Jgthe point on .fﬁ
such that AB” = A’B’ and let C" be the point on AC such that AC” =
A’C’, Use the hypothesis to show that AAB"C" = AA'B'C’ and de-

A A
A B A o
B C

Figure 5.14
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duce from corresponding angles that B s paralle] to BC. Now
apply the parallel projection theorem.)

11. Prove the converse to the fundamental theorem on similar triangles.
{Hint: Choose B" as hefore. Use Pasch’s theorem to show that the
parallel to B2 through B” cuts AC at a point C”. Then use the hy-
pothesis, Exercise 10, and the $SS criterion to show that we have
AABC ~ AAB'C" = AA'B'C'.)

12, 8AS similarity criterion. If <A = <A’ and AB/A’B’ = AC/A C’, prove
that AABC ~ AA'B’C’, (Hint; Same method as in Exercise 11, but
using SAS instead of 558.)

13. Prove the Pythagorean theorem. (Hint: Let CI) be the altitude to the
hypotenuse; see Figure 5.15. Use the fact that the angle sum of a
triangle equals 180° (Proposition 4.11) to show that we have
AACD ~ AABC ~ ACBD. Apply Exercise 10 and a little algebra
based on AB = AD + DB to get the result.)

C

I
|
1
:
I
|
)
t
ll]
A D B

Fignre 5.15

14. The fundamental theorem on similar triangles (Exercise 10) atllows
the trigonometric functions such as sine and cosine to be defined,
Namely, given an acute angle <A, make it part of a right triangle
ABAC with right angle at C and set

sin ¥A = {BC)/(AB)
cos XA = (AC)/(AB).

These definitions are then independent of the choice of the right tri-
angle used. If <A is obtuse and <A’ is its supplement, set

sin A = +sin <A’
cos LA = —cos A,

If XA is a right angle, set

sin LA =1
cos <A =0..
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Now, given any triangle AABC, if a and b are the lengths of the
sides opposite A and B, respectively, prove the law of sines,

a _ sin XA
b sin ¥B°

_ (Hint: Drop altitude CD and use the two right triangles AADC and
ABDC to show that b sin <A = CD = a4 sin <B; see Figure 5.16.)
Similarly, prove the law of cosines,

€® =a® + b2 — 2ab cos 4C,

and deduce the converse to the Pythagorean theorem,

C

.

A D B

Fignre 5.16

15.Given A » B = C and point D not collinear with A, B, and C (Figure
5.17). Prove that

AB AD sin <ADB
BC  CD sin <% CDB
AC  AD sin £ADC
BC  BD sin «BDC

(Hint: Use the law of sines to compute AB/AD, CD/BC, and BD/BC
and remember that sin ¥ABD = sin <CBD.)

D

Figure 5.17
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16.Let y be a circle with center O and let P, Q, and R be three points
on y. Prove that if P and R are diametricaily opposite, then $PQR
is a right angle, and if O and Q are on the same side of ﬁ){ then
(4£PQR)° = VA(LPOR)°. (Hint: Again use the fact that the triangu-
lar angle sum is 180°. There are four cases to consider, as in Fig-
ure 5.18.) State and prove the analogous result when O and Q are

on opposite sides of PR,

Figure 5.18

17. Prove that if two angles inscribed in a circle subtend the same arc,
then they are congruent; see Figure 5.19. (Hint: Apply the previous
exercise after carefully defining “subtend the same arc.”)

Qo
s~

& R

Figure 5.19 4POR = £<PQ’'R.

18, Prove that if ¥{PQR is a right angle, then Q les on the circle y hav-
ing PR as diameter. {Hint: Use uniqueness of perpendiculars and

Exercise 16.)
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Major Exercises

Thes'e exercises furnish the proof of the parallel projection theorem in
Euclidean geometry (p. 232; also see Figure 5.13]},

1. Prove the following results about Euclidean parailelograms:

(a) Opposite sides (and likewise, opposite angles) of a parallelo-
gram are congruent to each other.

(b) A parallelogram is a rectangle iff its diagonals are congruent,
and in that case the diagonals bisect each other.

(€) A parallelogram has a circumseribed circle iff it is a rectangle,
{(Hint for the “only if” part: Opposite angles must subtend semi-
circles.)

(d) “ A rectangle is a square iff its diagonals are perpendicular.

2. Let k, [, m, and n be parallel lines, distinct, except that possibly [ =
m. Let transversals t and # cut these lines in points A, B, C,and D
and in A’, B, C', and I, respectively (Figure 5.20). If AB = CD,
prove that A'B’ = C'[)'. (Hint: Construct parallels to ¢t through A’
and C’. Apply Major Exercise 1{a) and the congruence of corre-
sponding angles.)

3. Prove that parallel projection preserves betweenmness; i.e., in Figure
513, f A*B=C, then A’ » B' + ', (Hint: Use Axiom B-4),

4. Prove the parallel projection theorem for the special case in which
the ratio of lengths AB/BC is a rational number p/q. (Hint: Divide
AB into p congruent segments and BC into g congruent segments
so that all p + ¢ segments will be congruent. Use Major Exercise 2
applying it p + g times.) ’

5. The _case where AB/BC is an irrational number x is the difficult case.
Let A'B'/B'C’ = x', The idea is to show that every rational number

' 1
A/ \A’ .
4

J AN
B / B’ !
/
/
/
> II C’
¥ ——
/ !
][ ! / \

m

.D/ ,'. f" \D ‘ '
/ /
- : !

Figure 5.20
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D/q less than x is also less than x' (and, by symmetry, vice versa).
This will imply x = %’ since a real number is the least upper bound
of all the rational numbers less tlla_)n it (see any good text on real
analysis), To show this, lay off on BA a segment BD of length pCB/q
and let D’ be the parallel projection of D onto t'. From p/q << x, de-
duce B+ D+ A, Now apply Major Exercises 3 and 4 to show that

plg <x'®

. Given a segment AB of length a with respect to some unit segment

Ol (see Theorem 4.3). Using straightedge and compass only, show
how to construct a segment of length Va. (Hint: Extend AB to a
segment AC of length a + 1; erect a perpendicular through B and
let D be one of its intersections with the circle having AC as diam-
eter; apply the theory of similar triangles to show that BD = Va.
Review the construction in Exercise 14, Chapter 1.}

. Prove that given any line [, two points A and B not on [ are on the

same side § of 1 if and only if they lie on a circle contained in S. (Hint:
If they are on the same side S, let M be the midpoint and m the per-
pendicula(r_> bisector of AB, Any circle through A and B has its center
on m. If AB || [, take any point P between M and the point where m
meets [ and use the circle through A, B, and P (see Exercise 10, Chap-
ter 6). Otherwise, if A is closer to [ than is B, let the perpendicular
from A to I meet m at O. Show that the circle centered at O with ra-
dius OA = OB lies in S. Be sure to indicate where the hypothesis that
the geomnetry is Euclidean is used; see Exercise P-20, Chapter 7.)

. Let TI be a real Euclidean plane—i.e., a Hilbert plane satisfying

Dedekind’s axiom and Hilbert’s Euclidean parallel postulate. By The-
orem 4.3, there exists a real number measure of lengths of segments
in IT with respect to some chosen unit segment. Let O be any point
in 11, let I, m be two lines through O that are perpendicular, and
let r, s be rays of [, m respectively emanating from O. Define a one-
to-one mapping ¢ of I1 onto R2 as follows: ¢{0) = (0, 0). For any
point P # O, let P/, P” be the intersections with I, m of the lines
through P that are perpendicular to I, m respectively, Let x = P'Q,
y = %, where we define OO = 0 in the case where P lies on ! or
m. Then define ¢(P) = (*x, *y), where the plus sign is chosen if
P’, P” lie on rays r, s respectively, and, if not, the appropriate mi-
nus sign is chosen for the one or both of them that lie(s} on the

? This clever method of proof was discovered by the ancient Greek mathematician

Eudoxus-—see E. C. Zeeman, “Research, Anclent and Modern,” Bulletin of the Institute
of Mathematics and Its Applications, 10 (1974): 272-281, Warwick University, England.



238 HisTORY OF THE PARALLEL POSTULATE

opposite ray. Prove, using the Pythagorean equation, that ¢ is an
isomorphism of I1 onto R? with its structure of Fuclidean plane de-
fined in Example 3, p. 139, This result enables us to use coordi-
nates and do analytic geometry in a real Euclidean plane.

Projects

I. Eudoxus was also the founder of theoretical astronomy in antiquity
{his work was later refined by Ptolemy). In his model, the universe
was bounded by “the celestial sphere,” so that the physical inter-
pretation of Euclid’s second and third postulates was false! Even
Kepler and Galileo believed in an outer limit to the world. It was
René Descartes (1596-1650) who promoted the idea that we live in
infinite, unbounded Euclidean space, Report on these issues, using
Torretti (1978} as one reference.

2. Our treatment of similar triangles in the previous exercises used real
numbers. Hilbert, with a later refinement by G. Vaitali, showed that
the theory of similar triangles can be fully developed elegantly with-
out real numbers. In that approach, the constants of proportional-
ity come from the intrinsic field of segrment arithmetic. Report on
that development, using Hartshorne, Sections 19, 20, as a reference.

3. Our definition of “Euclidean plane” given in Chapter 3 avoids
Dedekind’s axiom (which is equivalent to bringing in real numbers},
replacing that axiom with the circle-circle contﬁluity principle. What
then are the possible Euclidean planes? It turns out they are the
models 2, where F is a Euclidean field. This result is the precise
modern formulation of what Descartes, Fermat, Euler et al. did when
they brought in analytic geometry! If we drop the circle-circle con-
tinuity principle from our list of axioms but keep Hilbert’s Euclid-
ean parallel postulate, it is still the case that dll models have the
form F2, but now we can only assert that F is a Pythagorean field.
Curiously, equilateral triangles on arbitrary bases still exist
in those models, but Euclid’s proof of Euclid 1.1 can no longer be
used; the result is proved algebraically using the fact that V3 is in
F. Report on these lovely results, using Hartshorne, Section 21, as
a reference,

The Discovery of

Non-Euclidean
Geometry

Jdnos Bolyas

It is remarkable that sometimes when the time is right for a new idea
to come forth, the idea occurs to several people more or less simulta-
neously. Thus it was in the eighteenth century with the discovery of
the calculus by Newton in England and Leibniz in Germany, and in the
nineteenth century with the discovery of non-Euclidean geometry.
When Jdnos Bolyai (1802-1860) announced privately his discoveries in
non-Euclidean geometry, his father Farkas admonished him:

Tt seems to me advisable, if you have actuaily succeeded in obtaining
a solution of the problem, that, for a two-fold reason, its publication
be hastened: first, because ideas easily pass from one man to another

239
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who, in that case, can publish them; secondly, because it seems to be
true that many things have, as it were, an epoch in which they are dis-
covered in several places simultaneously, just as the violets appear on
all sides in springtime.!

Janos Bolyal did publish his discoveries, as a 26-page appendix to a
mathematical treatise by his father (the Tentamen, 1831). Farkas sent
a copy to his friend, the German mathematician Carl Friedrich Gauss
(1777-1855)}, undisputedly the foremost mathematician of his time.
Farkas Bolyai had become close friends with Gauss 35 years earlier,
when they were both students in Géttingen. After Farkas returned to
Hungary, they maintained an intimate correspondence,? and when
Farkas sent Gauss his own attempt to prove the paralle! postulate, Gauss
tactfully pointed out the fatal flaw, ¢

Janos Bolyai

! Quoted in Meschkowski (1964). The title of J. Bolyai's appendix is “The Science of
Absolute Space with a Demonstration of the Independence of the Truth er Falsity of
Euclid’s Parallel Postulate {Which Cannot Be Decided a Priori) and, in Addition, the
Quadrature of the Circle in Case of Tts Falsity.”

2 For the complete correspondence (in German), see Schmidt and Stickel (1972).
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Jdnos was 13 years old when he mastered the differential and in-
tepral calculus. His father wrote to Gauss begging him to take the young
prodigy into his household as an apprentice mathematician. Gauss
never replied to this request (perhaps because he was having enough
trouble with his own son Eugene, who had run away from home). Fif-
teen years later, when Farkas mailed the Tentamen to Gauss, he cer-
tainly must have felt that his son had vindicated his belief in him, and
Janos must have expected Gauss to publicize his achievement. One can
therefore imagine the disappointment Janos must have felt when he
read the following letter to his father from Gauss:

If I begin with the statement that T dare not praise such a work, you
will of course be startled for a moment: but I cannot do otherwise; to
praise it would amount to praising myself; for the entire content of the
work, the path which your son has taken, the results to which he is
led, coincide almost exactly with my own meditations which have oc-
cupied my mind for from thirty to thirty-five years. On this account 1
find myself surprised to the extreme.

My intention was, in regard to my own work, of which very little
up to the present has been published, not to allow it to become known
during my lifetime. Most people have not the insight to understand our
conclusions and 1 have encountered only a few who received with any
particular interest what I communicated to them. In order to under-
stand these things, one must first have a keen perception of what is
needed, and upon this point the majority are quite confused. On the
other hand, it was my plan to put all down on paper eventually, so that
at least it would not finally perish with me.

S0 I am greatly surprised to be spared this effort, and am overjoyed
that it happens to be the son of my old friend who outstrips me in such
a remarkable way.?

Despite the compliment in Gauss’ last sentence, Jinos was bitterly
disappointed with the great mathematician’s reply; he even imagined
that his father had secretly informed Gauss of his results and that Gauss
was now trying to appropriate them as his own. A man of fiery tem-
perament, who had fought and won 13 successive duels (unlike
Galois, who was killed in a duel at age 20), Jdnos never published any
of his results in the 14,000 pages of notes he left. A translation of his

3 Wolfe {1945). Gauss did write to Gerling about the appendix a month earlier, saying:
“I find all my ewn ideas and results developed with greater elegance. . . . I regard this
young geometer Bolyal as a genius of the first order.” That malkes it aif the more puz-
zling why Gauss did not help further Jinos’ mathematical career.
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immortal appendix can be found in J. J. Gray (2004}. In 1851, Janos
wrote;

In my opinion, and as I am persuaded, in the opinion of anyone judg-
ing without prejudice, all the reasons brought up by Gauss to explain
why he would not publish anything in his life on this subject are pow-
erless and void; for in science, as in common life, it is necessary to
clarify things of public interest which are still vague, and to awaken,
to strengthen and to promote the lacking or dormant sense for the true
and right. Alas, to the great detriment and disadvantage of mankind,
only very few people have a sense for mathematics; and for such a rea-
son and pretence Gauss, in order to remain consistent, should have
kept a great part of his excellent work te himself, It {s a fact that, among
mathematicians, and even among celebrated ones, there are, unfortu-
nately, many superficial people, but this should not give a sensible man
a reason for writing only superficial and mediocre things and for leav-
ing science lethargically in its inherited state. Such a supposition may
be said to be unnatural and sheer folly; therefore I take it rightly amiss
that Gauss, instead of acknowledging honestly, definitely and frankly
the great worth of the Appendix and the Tentamen, and instead of ex-
pressing his great joy and interest and trying to prepare an appropriate
reception for the good cause, avoiding all these, he rested content with
pious wishes and complaints about the lack of adequate civilization.
Verily, it is not this attitude we call life, work and merit,*

Gauss

There is evidence that Gauss had anticipated some of J. Bolyai’s dis-
coveries—in fact, that Gauss had been working on non-Euclidean geom-
etry since the age of 15, i.e., since 1792 (see Bonola, 1955, Chapter 3).
In 1817, Gauss wrote to W. Olbers: “I am becoming more and more
convinced that the necessity of our [Euclidean] geometry cannot be
proved, at least not by human reason nor for human reason. Perhaps

4 Quoted in L. Fejes Té6th, Regular Figures (Macmillan, New York, 1964], pp. 98-99, See
the very informative review of Gray’s book on Bolyai by Robert Osserman at
http://www.ams.org/notices/200509%/rev-osserman,pdf. See also an earlier history,
Jdnos Bolyai, Appendix, F. Kdrtesi, ed., Elsevier, 1987, and the article by F. Kiss in
Prékopa and Molndr (2005) that discusses Bolyai’s unpublished discoveries in number
theory, ete.
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in another life we will be able to obtain insight into the nature of space,
which is now inattainable.” In 1824, Gauss answered F. A. Taurinus,
who had attempted to investigate the theory of parallels:

In regard to your attempt, I have nothing (or not much) to say except
that it is incomplete. 1t is true that your demonstration of the proof that
the sum of the three angles of a plane triangle cannot be greater than
180° is somewhat lacking in geometrical rigor. But this in itself can eas-
ily be remedied, and there is no doubt that the impossibility can be
proved most rigorously. But the situation is quite different In the sec-
ond part, that the sum of the angles cannot be iess than 180°; this is
the critical point, the reef on which all the wrecks occur. I imagine that
this problem has not engaged you very long. I have pondered it for over
thirty years, and 1 do not believe that anyone can have given more
thought to this second part than I, though I have never published any-
thing on it,

The assumption that the sum of the three angles is less than 180°
leads to a curious geomelry, quite different from ours [the Euclidean],
but thoroughly consistent, which I have developed to my entire satis-

Carl Friedrich Gauss
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faction, so that T can solve every problem in it with the exception of
the determination of a constant, which cannot be designated a priori.
The greater one takes this constant, the nearer one comes to Euclidean
geometry, and when it is chosen infinitely large, the two coincide. The
theorems of this geometry appear to be paradoxical and, to the unini-
tiated, absurd; but calm, steady reflection reveals that they contain noth-
ing at all impossible. For example, the three angles of a triangle be-
come as small as one wishes, if only the sides are taken large enough;
yet the area of the triangle can never exceed a definite limit, regardless
of how great the sides are taken, nor indeed can it never reach it.

All my efforts to discover a contradiction, an inconsistency, in this
non-Euclidean geometry have been without success, and the one thing
in it which is opposed to our conceptions is that, if it were true, there
must exist in space a linear magnitude, determined for itself (but un-
known to us). But it seems to me that we know, despite the say-
nothing word-wisdom of the metaphysicians, too little, or too nearly
nothing at all, about the true nature of space, to consider as absolutely
impossible that which appears to us unnatural. If this non-Euclidean
geometry were true, and it were possible to compare that constant with
such magnitudes as we encounter in our measurements on the earth
and in the heavens, it could then be determined a posteriori. Conse-
quently, in jest I have sometimes expressed the wish that the Fuclid-
ean geometry were not true, since then we would have a priori an
-absolute standard of measure,

I do not fear that any man who has shown that he possesses a
thoughtful mathematical mind will misunderstand what has been said
above, but in any case consider it a private communication of which
no public use or use leading in any way to publicity is to be made, Per-
haps I shall myself, if I have at some future time more leisure than in
Iy present circumstances, make public my investigations.S

It is amazing that, despite his great reputation, Gauss was actually
afraid to make public his discoveries in non-Euclidean geometry, He
wrote to F. W. Bessel in 1829 that he feared “the how! from the Boeo-
tians” if he were to publish his revolutionary discoveries.® He told

5 Wolfe (1945), pp. 46-47.

§ An allusion to dull, obtuse individuals. Ganss had more important work to do than
to get into a quarrel with them, “Actually, the ‘Boeotian’ eritics of non-Euclidean
geometry—conceited people who claimed to have proved that Gauss, Riemann, and
Helmholz were blockheads—did not show up before the middle of the 1870s, If you
witnessed the struggle against Einstein in the Twenties, you may have some idea of
[the] amusing kind of literature [produced by these critics]. , . . Frege, rebuling Hilbert
like a schoolboy, also joined the Boeotians. . . . ‘Your system of axioms,” he said to
Hilbert, “is like a system of equations you cannot solve' (Freudenthal, 1962).
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H. C. Schumacher that he had “a great antipathy against being drawn
into any sort of polemic.”

The “metaphysicians” referred to by Gauss in his letter to Taurinus
were followers of Immanuel Kant, the supreme European philosopher
in the late eighteenth century and much of the nineteenth century.
Gauss’ discovery of non-Euclidean geometry refuted Kant’s position that
Euclidean space s inherent in the structure of our mind. In his Critigue
of Pure Reason (1781), Kant declared that “the concept of [Euclidealn]
space is by no means of empirical origin, but is an inevitable necessity
of thought.” Gauss, in that letter to F. Bolyai, also wrote about “ . .,
the mistake Kant made in stating that space was merely the form of
our loolking at things.”

Another reason that Gauss withheld his discoveries was that he was
4 perfectionist, one who published only completed works of art. His
devotion to perfected work was expressed by the motto on his seal,
pauca sed matura (“few but ripe”). There is a story that the distin-
guished mathematician K. G. J. Jacobi often came to Gauss to relate
new discoveries, only to have Gauss pull out some papers from his
desk drawer that contained the very same discoveries. Perhaps it is be-
cause Gauss was so preoccupied with original work in many branches
of mathematics, as well as in astronomy, geodesy, and physics {he co-
invented an improved telegraph with W. Weber), that he did not have
the opportunity to put his results on non-Euclidean geometry into pol-
ished form. The few results he wrote down were found among his pri-
vate papers after his death.

Ganss has been called “the prince of mathematicians” because of
the range and depth of his work. (See the biographies by Bell, 1934;
Dunnington, 1955; and Hall, 1970.)

Lobacheysky

Another actor in this historical drama came along to steal the limelight
from both J. Bolyai and Gauss: the Russian mathematician Nikalai
Ivanovich Lobachevsky (1792-1856). He was the first to actually pub-
lish an account of non-Euclidean geometry, in 1829, Lobachevsky ini-
tially called his geometry “imaginary,” then later “pangeometry.” His
worle attracted little attention on the continent when it appeared be-
cause it was written in Russian. The reviewer at the St. Petersburg
Academy rejected it, and a Russian literary journal attacked Loba-
chevsky for “the insolence and shamelessness of false new inventions”
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Nikolai Ivanovich Lobachevsky

(Boeotians howling, as Gauss predicted). Nevertheless, Lobachevsky
courageously continued to publish further articles in Russian and then
a treatise in 1840 in German,” which he sent to Gauss. In an 1846 let-
ter to Schumacher, Gauss reiterated his own priority in developing non-
Euclidean geometry but conceded that “Lobachevsky carried out the
task in a masterly fashion and in a truly geometric spirit.” At Gauss’
secret recommendation, Lobachevsky was elected to the Géttingen Sei-
entific Society., (Why didn’t Gauss recommend Janos Bolyai?)
Lobachevsky openly challenged the Kantian doctrine of space as a
subjective intuition. In 1835 he wrote: “The fruitlessness of the attempts
made since Euclid’s timne . . . aroused in me the suspicion that the truth
. . was not contained in the data themselves; that to establish it the
aid of experiment would be needed, for example, of astronomical ob-
servations, as in the case of other laws of nature.” (Gauss privately

7 For 2 translation of this paper, see Bonola (1955). For corrections to that translation
and an attempt to explain what Lobachevsky and Bolyai did, see Chapter 10 of Jeremy
J. Gray's Ideas of Space: Euclidean, Non-Euclidean and Relativistic, Oxford University
Press, 2nd ed., 1989. Gray has also argued that Gauss’ clalm to priority in discovering
non-Euclidean geometry is unjustified by concrete evidence; see his article "Gauss and
Non-Euclidean Geometry” in Prékopa and Molndr (2005).
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agreed with this view, having written to Olbers in 1817: “Perhaps we
shall come to another insight in another life into the nature of space,
which is unattainable for us now. But until then we must not put Geom-
elry on a par with Arithmetic, which exists purely a priori, but rather
with Mechanics. . . .” The great French mathematicians J. L. Lagrange
(1736-1813) and J. B. Fourier (1768-1830) tried to derive the parallel
postulate from the law of the lever in statics.)

Lobachevsky has been called “the great emancipator” by Eric Tem-
ple Bell; his name, said Bell, should be as familiar to every schoolboy
as that of Michelangelo or Napoleon.? Unfortunately, Lobachevsky was
not so appreciated in his lifetime; in fact, in 1846 he was fired from
the University of Kazan, despite 20 years of outstanding service as a
teacher and administrator. He had to dictate his last book in the year
before his death, for by then he was blind.

It is amazing how similar are the approaches of J, Bolyai and
Lobachevsky and how different they are from earlier work. Both de-
veloped the subject much further than Gauss. Both attacked plane geom-
etry via the “horosphere” in hyperbolic three-space (it is the limit of
an expanding sphere through a fixed point when its radius tends to in-
finity). Both showed that geometry on a horosphere, where “lines” are _
interpreted as “horocycles” (limits of circles), is Euclidean, Both showed
that Fuclidean spherical trigonometry is valid in hyperbolic geometry,
and both constructed a mapping from the sphere to the non-Euclidean
plane to derive the formulas of non-Euclidean trigonometry (including
the formulas Taurinus discovered—see Chapter 10 for a simpler deri-
vation using a plane model). Both had a constant in their formulas that
they could not explain; the later work of Riemann showed it to be the
curvature of a hyperbolic plane.

It is not entirely accurate to say that J. Bolyai and Lobachevsky “dis-
covered” non-Euclidean geometry. We have seen that Saccheri, Lambert,
and Taurinus discovered some basic results in non-Euclidean geometry
before them, only these predecessors still doubted that such a geomelry
was consistent and actually “existed.” J. Bolyaf and Lobachevsky did be-
lieve in its noncontradictory existence, but they did not convincingly es-
tablish that. What they did was brilliantly elaborate its properties if it did
exist. In an 1865 note on Lobachevsky’s work, Arthur Cayley wrote:
“. .. it would be very interesting to find a real geometric interpretation
of Lobachevsky’s system of equations.” In 1868 Eugenio Beltrami finally
found one—see Chapter 7.

8 Bell {1954, Chapter 14).
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Subsequent Developments

It was not until after Gauss’ death in 1855, when his correspondence
was published, that the mathematical world began to take non-Fuclid-
ean ideas seriously. (Yet, as late as 1894, an incorrect attempt to prove
Euclid V was published in Arthur Cayley’s Jowrnal of Pure and Applied
Mathematics. Cayley himself never accepted the non-Euclidean geom-
etry of Bolyai-Lobachevsky, though he did work in elliptic geometry.)
Some of the best mathematicians (Beltrami, Klein, Poincaré, and Rie-
mann) took up the subject, extending it, clarifying it, and applying it
to other branches of mathematics, notably complex function theory. In
1868 Eugenio Beltrami settled once and for all the question of a proof
for the parallel postulate. He proved that no proof was possible—by
exhibiting a Euclidean model of non-Fuclidean geometry. (We will dis-
cuss his model in the next chapter.)

Bernhard Riemann, who was a student of Gauss, had the most pro-
found insight into the geometry, not just the logic. In 1854, he built
upon Gauss’ discovery of the inirinsic geometry on a surface in Eu-
clidean three-space. Riemann invented the concept of an abstract geo-
metrical surface that need not be embeddable in Euclidean three-space
yet on which the “lines” can be interpreted as geodesics and the in-
trinsic curvature of the surface can be precisely defined. Elliptic {and,
of course, spherical) geomeiry “exist” on such surfaces that have con-
stant positive curvature, while the hyperbolic geometry of Bolyai and
Lobachevsky “exists” on such a surface of constant negative curvature.
That is the view of geometers today about the “reality” of those non-
Euclidean planes. We will describe Gauss and Riemann’s idea only in
Appendix A, since it is too advanced for the level of this text. Riemann
presented the idea of a geometric manifold of arbitrary dimension n,
not just n = 2 or 3, and defined a notion of curvature for it. He made
the revolutionary suggestion that the universe might be finite in extent
{as the ancient Greeks believed) but without any boundary if its cur-
vature was slightly positive. A further generalization of that idea pro-
vided the geometry for Einstein’s general theory of relativity.

Interestingly, a direct relationship between the special theory of rel-
ativity and hyperbolic geometry was discovered by the physicist Arnold
Sommerfeld in 1909 and elucidated by the geometer Viadimir Varitak
in 1912. A model of hyperbolic plane geometry is a sphere of imagi-
nary radius with antipodal points identified in the three-dimensional
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Georg Friedrich Bernhard Riemann

space-time of special relativity, vindicating Lambert’s idea (see Chap-
ter 7; or Rosenfeld, 1988, pp. 230, 270; or Yaglom, 1979, p. 222 {f.).
Moreover, Taurinus’ technique of substituting ir for r to go from spher-
ical trigonometry to hyperbolic trigonometry received a structural ex-
planation in 1926-1927 when Elie Cartan developed his theory of Rie-
mannian symmetric spaces: The Euclidean sphere of curvature 1/r? js
“dual” to the hyperbolic plane of curvature —1/r? (see Helgason, 2001).

Non-Euclidean Hilbert Planes

let us begin our investigation of the particular non-Fuclidean plane
geometry 'explored by Saccheri, Lambert, Gauss, I. Bolyai, and
Lobachevsky, nowadays called hyperbolic geometry (ak.a
Lobachevskian or Bolyai-Lobachevskian geometry). To arrive at a cor-
rect axiomatization for this geometry, we will proceed along historical
lines, not dogmatically. Consider the following.
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Figure 6,1 Line ! Hes in the interior of [JAPE,

NEGATION OF HILBERT’S EUCLIDEAN PARALLEL POSTULATE. There
exist a line [ and a point P not on { such that at least two distinet lines
parallel to I pass through P.

In a plane where such a configuration exists, the entire line ! iies
in the interior of <APB (Figure 6.1) without meeting either side, which
Legendre tacitly assumed to be impossible—that is the flaw in his at-
tempted proof of Euclid V presented in Chapter 1. A Hilbert plane sat-
Isfying this negation will be called a non-Euclideari Hilbert plane.

To develop an intéresting geometry from the consequences of this
axiom,” we will need to assume more than just the negation of the
Euclidean parallel postulate, for there are some nen-Euclidean Hilbert
planes which are not that important (such as the ones satisfying the
obtuse angle hypothesis). One additional assumption is Aristotle’s
axiom, discussed in Chapters 3-5. Saccheri recognized the impor-
tance of that statement for nen-Euclidean geomeiry; it was his Propo-
sition. XXI, and he proved it from Archimedes’ axiom (Exercise 2,
Chapter 5).

Basic THEOREM 6.1. A non-Euclidean plane satisfying Aristotle’s ax-
iom satisfies the acute angle hypothesis. From the acute angle hy-
pothesis alone, the following properties follow: The angle sum of every
triangle is <180°, the summit angles of all Saccheri quadrilaterals are
acute, the fourth angle of every Lambert quadrilateral is acute, and rec-
tangles do not exist. The summit of a Saccheri quadrilateral is greater
than the base. The segment joining the midpoints of the summit and
the base is perpendicular to both, is the shortest segment between the
base line and the summit line, and is the only common perpendicular
segment between those lines. A side adjacent to the acute angle of a
Lambert quadrilateral is greater than the opposite side,

% In previous editions of this book, it was incorrectly called the “hyperbalic axiom,”
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PRroOF:

The non-obtuse-angle theorem in Chapter 4 tells us that in a plane
satisfying Aristotle’s axiom, the angle sum of every wiangle is
=180°. Proclus’ theorem in Chapter S tells us that the angle sum
cannot equal 180° because we assumed Aristotle’s axiom and the
plane was non-Euclidean. The only remaining possibility is that it
is <<180°, In that case, the remaining assertions follow from all our

work in Chapter 4. «

The negation of Hilbert’s Euclidean parallel postulate referred to
some line [ and some point P not on [, but we can prove a universal

version of that property.!0

UNIVERSAL NON-EUCLIDEAN THEOREM. In a Hilbert plane in which
rectangles do not exist, for every line [ and every point P not on I, there
are at least two parallels to [ through P,

f~= m
1 T Te=all ts

1 [ I
Q R

Figure 6.2

Proor:

Let PQIm be the standard configuration. Let R be another point on
[, erect perpendicular t to I through R, and lf;g S be the foot of. the
perpendicular from P to ¢ (Figure 6.2). Then PS is parallel to ! since
they are both perpendicular to t (Corollary to the AIA theorem). It
is a different parallel than m; otherwise S would lie on m and

CIPQRS would be a rectangle. <

16 1n previous editlons, we called this result the "universal hyperbolic theorem.” That
name is incorrect because the result is also valid in non-Euclidean planes other than

the hyperbolic ones. ™
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COROLLARY. In a Hilbert plane in which rectangles do not exist, for
every line ! and every point P not on {, there are infinitely many par-
allels to I through P,

ProoF:

Just vary the point R in the above construction. The nonexistence
of rectangles again guarantees that the parallels constructed are
distinct. «

The Defect

Since the angle sum of every triangle AABC in a plane as above is
<<180°, that angle sum is the measure of an angle—namely, an angle
constructed by successively juxtaposing the three angles of AABC, The
positive measure of the supplement of that angle is called the defect\?
of the triangle and is denoted §(ABC). Thus by definition,

(LAY + (LB)° + (£C)° + 6{ABC) = 180°.
Prorosition 6.1 {ApDITIVITY OF THE DErrEcT). If D is any point
between A and B (Figure 6.3}, then

S(ABC) = 86(ACD) + §(BCD).

Fignre 6.3

PRrOOF:

This follows immediately from the definition of the defect, from the
fact that for the supplementary angles at point D, (€£ADC)° +
(X£BDC)° = 180°, and from {XC)° = (¥ACD)® + ({BCD)°. -

11 Hartshorne defines the defect as the congruence class of that supplement, not its mea-
sure. His definition avoids the use of Archimedes” axiom.
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Figure 6.4

REMARK. In Exercise 28 of Chapter 4, we studied the notion of a con-
vex quadrilateral. One characterization of convex duadrilaterals is that
each vertex lies in the interior of the opposite angle. From that one eas-
ily sees {Figure 6.4) that in a plane satisfving the acute angle hypothe-
sis, the angle sum of every convex guadrilateral is <360°. The defect of
a convex quadrilateral is defined to be 360° minus its angle sum.

Similar Triangles

Consider next Wallis* postulate, which cannot hold in a non-Euclidean
plane because we saw in Chapter 5 that it implies the Euclidean par-
allel postulate, The negation of Wallis’ postulate asserts that sometimes
a triangle similar to a given triangle does not exist. Once again, we can
prove a universal version of this statement: Similar noncongruent tri-
angles never exist!

PRrorosiTION 6.2 (No SIMILARITY). In a plane satisfying the acute
or obtuse angle hypothesis, if two triangles are similar, then they are
congruent, Thus, AAA is a valid criterion for congruence of triangles.

Figure 6.5
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Progr:

Assume on the contrary that there exist triangles AABC and AA'B'C’
which are similar but not congruent, Then no corresponding sides
are congruent; otherwise the triangles would be congruent (ASA).
Consider the triples (AB, AC, BC) and (A'B’, A'C’, B'C’) of sides of
these triangles. One of these triples must contain at least two seg-
ments that are larger than the two corresponding segments of the
other triple, e.g., AB > A'B’ and AC > A’C’. By definition of > there
exist points B” on AB and C" on AC such that AB" = A'B’ and AC" =
A'C’ {see Figure 6.5). By SAS, AA'B'C' = AAB"C". Hence, corre-
sponding angles are congruent: <AB"C”" == ¥B’, <AC'B"= <C’. By
the hypothesis that AABC and AA'B'C’ are similar, we have
XAB'C' = 4B, ¥AC'B'= «C (Axiom C-5). This implies that 5'C |
B by corresponding angles (AlA theorem and Exercise 32, Chapter
4), so that quadrilateral (JBB"C"C is convex (Exercise 28, Chapter 4).
By supplementary angles,

(€B)° -+ (LBB'C')° = 180° = (¥C)° + (LCC"B")°.

It follows that convex quadrilateral CJBBC"C has angle sum 360°,
This contradicts the remark after the proof of Proposition 6.1. «

A consequence of Proposition 6.2 is that in a plane satisfying the
acute angle hypothesis, an angle and a side of an equilateral triangle
determine one another uniquely. If we assume the circle-circle conti-
nuity principle, then we know from Euclid’s construction in his first
proposition that given any segment, an equilateral triangle exists hav-
ing that segment as its side. In a hyperbolic plane (studied later in this
chapter), for every acute angle § < 60°, an equilateral triangle exists
having @ as its angle; see Chapter 10 for a construction (corollary to
the right triangle construction theorem).

Parallels Which Admit a Common Perpendicular

In Chapter 5, in our comment on Proclus’ failed attempt to prove Eu-
clid V, the reader was warned not to presume that a pair of parallel
lines look like railroad tracks—i.e., not to presume, as Clavius did ex-
plicitly, that the set of points on a line through P parallel to a given
‘line { coincides with the equidistant curve to I through P. We saw that
~ Clavius® assumption is equivalent to the plane being semi-Euclidean.
Negating that condition, we can prove the following precise result.

¢
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A B C ;
[1 1 [ I
A B’ c’

Figure 6.6 AA’=BB'=CC'=,, ..

ProrOSITION 6.3. In a plane in which rectangles do not exist, if
L] ¥, then any set of points on ! equidistant from !’ has at most two
points in it.

Proor:

Assume, on the contrary, that three points A, B, and C on { are equi-
distant from ', By Axiom B-3, we may assume A+ B+ C. If A’, B',
and C' on I’ are the feet of the perpendiculars from A, B, C, re-
spectively, to I', then AA’ = BB’ = CC’ by the RAA hypothesis, So
we obtain three Saccheri quadrilaterals {{JA'B'BA, [[JA'C'CA, and
[(OB'C'CB (see Figure 6.6}.
We know that the summit angles of any Saccheri quadrilateral
"are congruent (Proposition 4.12}, By transitivity (Axiom C-5), the
supplementary angles at B are congruent to each other, hence are
right angles. Thus these Saccheri quadrilaterals are rectangles, con-
tradicting our hypothesis that rectangles do not exist, «

The proposition states that at most two points at a time on { can be
equidistant fram ', It allows the possibility that there are pairs of points
{A, B), (C, D), ..., onlsuch that each pair is equidistant from }'—
e.g., AA' = BB’ and CC' = DD’ dropping perpendiculars—but AA' is
not congruent to CC’. A diagram for this might be Figure 6.7, which
suggests that there is a point of [ that is closest to ', with [ diverging

Figure 6.7
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from [' symmetrically on either side of this closest point (under the
acute angle hypothesis). We will prove that this is indeed the case. {I
hope the reader is not too shocked to see line ! drawn as being
“curved!”)

ProrosrrioN 6.4. In a Hilbert plane satisfying the acute angle hy-
pothesis, if I || ' and if there exists a pair of points A and B on [ equi-
distant from !, then I and I’ have a unique common perpendicular seg-
ment MM’ dropped from the midpoint M of AB, MM’ is the shortest
segment joining a point of { to a point of ', and the segments AA’ and
BB’ increase as A, B recede from M.

Proor:

The common perpendicular segment is obtained by joining the mid-
poeints of the summit and the base of Saccheri quadrilateral [JA’B'BA
{Proposition 4.12). That it is unique follows from the nonexistence
of rectangles. The other assertions follow from the acute angle hy-
pothesis and Propositions 4.5 and 4.13 of Chapter 4, «

ProrosiTioN 6.5. In a Hilbert plane in which rectangles do not ex-
ist, if lines [ and !’ have a common perpendicular segment MM’, then
they are parallel and that common perpendicular segment is unique,
Mareover, if A and B are any points on [ such that M is the midpoint
of AB, then A and B are equidistant from I'.

Proor:

The first statement follows from the corollary to the AIA theorem
in Chapter 4 and the nonexistence of rectangles, Suppose now that
M is the midpoint of AB, with A and B on [, and let A’, B’ be the
feet of the perpendiculars from A, B to I’. We must prove that AA’ =
BB’ (see Figure 6.8).

A M B

A 1 I v !
N Vs
~ 4
N V4
~ s
N Vs
A rd
Y s

nl il 1 v

A M B

Figure 6.8
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Observe that AAM'M = ABM'M (5AS), so that AM’ = BM' and
FAM'M = ¥BM'M. Their complementary angles XA'M'A and
XB'M'B are then congrueni, and we obtain AAA'M = ABB'M
(SAA). Hence AA' = BB’. <

The preceding propositions give us a good understanding of parallel
lines that have a common perpendicular in a plane satisfying the acute
angle hypothesis. We know that such parallel lines exist from thfa Sta{ln
dard construction. There remains another possibility for parallel lines in
such planes: that there is no pair of points on I equidistant from l’.eEnd
no common perpendicular between these lines! According to Proposition
4.13 on biright quadrilaterals TJA'B'BA, [ would diverge from !’ in one
direction and converge toward ' in the opposite direction without meet-
ing it (see Figure 6.9). (Omar Khayyam, trying to prove Fuclid V, assur‘ned
as a new axiom that this second type of parallel lines could not exist.)
As we will discuss in the next section, a further axiom is needed to guar-
antee that, in certain planes satisfying the acute angle hypothesis, the sec-
ond type of parallel lines really does exist.

4

Figure 6.9 BB’ > AA'.

Limiting Parallel Rays, Hyperbolic Planes

Saccheri, Gauss, J. Bolyai, and Lobachevsky all took for- granted that
parallel lines of the second type exist in a very specific manner which
we will now describe. Here is the intuitive idea (see Figure 64_9).

Let PQIm be a standard configurg_t_ion. CD_I}SidEI‘ one ray PS of m
and consider various rays between PS and PQ. Sozg)e of these rays,
such as P_lf){ will intersect I, while others, such as PY, will not (uni-
versal non-Euclidean theorem). Now imagine R receding endlessly from
Q along its ray _o_f) I. The master geometers just :'m‘entioned all took it
for granted that PR would approach a certain limiting ray .PX. Tha't ray
could not intersect I, for if X were on I, there would exist a point R
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further out on I—i.e., R_*_>X * J (Axiom B-2)—and IT}() would not be the
limit, (Saccggri called PX “the _figst ray v which fails to meet 1.”) None
of thgays PY that lie between PS and PX intersect I, for if one of them
did, PX would also have to intersect }_?y the crossbar theorem. Ac-
cording to Figure 6.10, we could call PX the lift limiting parallel ray
to, [ emanating from P (in a Euclidean plane, PX would coincide with
PS). Similarly, there would be a right €_.l};N'u'tl'mg parallel ray to I ema-
nating from P on the opposite side of PQ.

m@@ﬁﬁ It is not possible to prove that limiting parailel rays exist in
every plane satisfying the acute angle hypothesis. F. Sehur found a non-
Archimedean counterexample (the infinitesimal neighborhood of the origin
in a non-Archimedean Klein model}, and later an Archimedean counterex-
zuﬁple wasg found (the interior of a virtual circle—see Hartshorne, Exercises
39.,25-39.31).

ADVANCED THEOREM. In non-Euclidean planes satisfying Aristotle’s
gxtom and the line-circle continuity principle, limiting parallel rays ex-
ist for every ling I and point P not on L.

My proof of this theorem!? is based on the classification due to
W, Pejas of all possible Hilbert planes (see Appendix B}. I hope that
someday an elementary proof of this theorem will be found that could
be presented in a text at this level. Jdnos Bolyai foresaw this result
when he gave the following straightedge-and-compass construction of
the limiting parallel ray in such a plane.

J. BOLYAr’S CONSTRUCTION OF THE LIMITING PARALLEL RAY. Let
PQIm be a standard configuration. Let R be any point on { different
from Q and let S be the foot of the perpendicular from R to m. Then

12 See M, J. Greenberg, “Aristotle’s Aziom in the Foundations of Hyperbolic Geometry,”
Journal of Geometry, 33 (1988): 53-57. A proof is sketched at the end of Appendix B,
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OSPQR is a Lambert quadrilateral with acute angle at vertex R (The-
orem 6.1). By Coroliary 3 to Proposition 4.13, PS < QR. Also, we
have PR > QR (hypotenuse greater than leg). By the segment-circle
continuity principle, a consequence of the line-circle continuity prin-
ciple (Major Exercise 2, Chapter 4), the circle with center P and ra-
dius congruent to QR will intersect segment SR in & unique point X
between § and R. Jdnos Bolyai claimed that ray PX is (ﬁ'}e limiting
parallel ray to [ emanating from P on the same side of PG as R (see
Figure 6.11).

In non-Archimedean examples where the ray constructed by J.
Bolyai’s method is not limiting parallel to I, it does have the property
that so shocked Saccheri: It has “a common perpendicular with { at
infinity!*13

We will prove below that in a non-Euclidean plane satisfying
Dedekind’s axiom, limiting paralle] rays always exist. However, Bolyai's
construction shows that only a very mild quadratic continuity as-
sumption is needed for the existence of limiting parallel rays, not the
full power of the real number system! Hilbert’s idea was simply to study
Hilbert planes in which limiting parallel rays always exist, which fi-
nally provides the axiom we need.

DEFINITION. Given a line { and a point P not on L. Let Q be the foot

of the perpendicular from P to l. A limiting parallel ray to 1 emanating
ﬁ .

from P is a ray PX that does not intersect [ and such that for every ray

PY which is between lﬁ and PX, PY intersects [,

HiLBERT’S HYPERBOLIC AXIOM OF PARALLELS. For every line ! and
every point P not on {, a limiting parallel ray_If)X emanating from P ex-
ists and it does not make a right angle with PQ, where Q is the foot of
the perpendicular from P to [

13 See M. J. Greenberg, “On J. Bolyal’s Parallel Construction,” Journal of Geometry, 12(1)
(1979): 45-64,
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DEFINITION. A Hilbert plane in which Hilbert's hyperbolic axiom of
parallels holds is called a hyperbolic plane. Obviously a hyperbolic plane
is non-Euclidean.

PROPOSITION 6.6, In a hyperbolic plane, with notation as in the above
definition, ¥XPQ is acute. &ere is a ray PX! emailgting from P, with
X' on the opposite side of PQ from X, such that PX' is another limit-
ing parallel ray to [ and ¥XPQ = <X'PQ. These two rays, situated sym-
metrically about ﬁ, are the only limiting paralle! rays to [ through P,

Proor:

Let PQIm be the standagg_) configuration and let S be atay of m with
S on the same sicE> of PQ as X. If <{XPQ were obtuse, PS would lie
between PQ and PX, hence would intersect { by definition of a limit-
ing parallel ray; but that contradicts m beigg) parallel to [. Hence <XXPQ
is acute. The other Igiting parallel Jay PX’ emanating from P is ob-
tained by reflecting PX across line PQ. Uniqueness follows from the
definition of a limiting parallel ray and the ordering of angles. «

DEFINITION. With the above notation, acute angles <XPQ and 4X'PQ
are called angles of pardllelism for segment PQ, Lobachevsky dencted
their congruence class (or, par abus de langage, any angle congruent
to them) by TI(PQ).

Saccheri, in his Proposition XXXII, recognized the existence of this
acute angle; Proclus noted that possible existence many centuries ear-
lier,* Major Exercise 5 shows that II{PQ) depends only on the con-
gruence class of PQ.

Hilbert and his followers’ development of plane hyperbolic geome-
try from his hyperbolic axiom is a beautiful tour de force. Although it
is all carried out at the same elementary level that we have been work-
ing at in this book, the arguments are far too lengthy for our purpose.
See Hartshorne, Chapter 7, for all the details.

Instead we will bring in our dens ex machina, as classical Greek
theatre called it (a god comes down from heaven to save the day):
Dedekind’s axiom.

THEOREM 6.2. In a non-Euclidean plane satisfying Dedekind’s axiom,
Hilbert's hyperbolic axiom of parallels holds, as do Aristoile’s axiom
and the acute angle hypothesis,

4 See the Morrow edition {1992) of Proclus, p. 290.
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Proor:

For the second part, we know from Chapter 3 that Dedekind’s ax-
iom implies Archimedes’ axiom, and you showed in Exercise 2,
Chapter 5, that Archimedes’ axiom implies Aristotle’s axiom.!® The
acute angle hypothesis follows from Basic Theorem 6.1,

For the fir_st) part, refer again to Figun(a_g.lﬂ above. To prove rig-
orously that PX exists, consider the line 5Q (Figwg};e 6.12). Let 3, be
the set of all points T on segment $Q such that PT meets [, together
with all points on the ray opposite to Q?; let %,; be the complement
of 5, (s0 Q € 3 and S € 3,). By the crossbar theorem (Chapter 3),
if point T " on segment SQ belongs to %, then the gntire segment TQ
{in fact, TQ) is contained in 3;. Hence (%, %3} is a Dedekind cut,
By Dedekind’s axiom (Chapte(i) 3), there is a unique point X on SQ
such that for P, and Py on SQ, Py * X # P, if and only if X # I,
X % Pa, Pleﬁl, and P;J,EEQ_. N

By definition of 3; and 3, rays below PX all meet [ and rays
above PX do not. We _gaim that PX does not meet ! either. Assume
on the contrary that PX meets ! in a point U (Figure 6.12). Choose
any point V on ! to the left of U, (1_e> V= U = Q (Axiom B-2). Since
V and U are on the same side of SQ (fxercise 9, Chapter 3}, V and
P are on opposite sides, so VP meets 5Q in a point ¥. We have
y_;k X = Q (Proposition 3.7), 80 Y & 3, contradicting the fact that
PY meets L It follows that PX is the left limiting parallel ray (we
obtain the right limiting parallel ray in a similar manner).

Fignure 6.12

To prove symmetry, assume on the contrary that angles <XPQ
and ¥X'PQ are not congruent, €8s ({XPQI’) < (£X'PQ}°. By Ax-
iom C-4, there is a ray between PX’' and PQ that intersects ! (by

15 Iny fact, Aristotle’s axiom holds in any hyperbolic plane: See Exercise 13. So does the
circle-circle continuity principle: See Appendix B or Hartshorne, Corotlary 43.4.
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iom C-4, there is a ray between PX’ and P_(),) that intersects I (by the
definition of limiting ray) in a point R/ sucf._)that JR'PQ =5 ¥XPQ,
Let R be the point on the opposite side of PQ from R’ such that R
*Q*R’ and RQ = R’'Q (Axiom C-1). Then ARPQ = AR'PQ {(8AS),
Hence 4RPQ = «R'PQ, and by transitivity [Axmm C-5), we have
<IRPQ = <XPQ. But this is impossible because PR is between PX
and I3_(5 (Axiom C-4). «

; j#3# In the section on incidence geometry, Chapter 2, we cailed
the “hyperbalic parallel property” the property that there is more than one
parallel to [ through P (the property in the universal non-Euclidean theg-
rem above). Do not confuse that property with the one in Hilbert’s hypes-
bolic axiom of parallels! The latter implies the former, but not conversely,
unless additional axioms are assumed (such as Dedekind’s or the two ax-
ioms in the advanced theorem).

DEFINITION. A non-Euclidean plane satisfying Dedekind’s axiom is
called a real hyperbolic plane.

CororLrary 1. All the results proved previousty in this chapter hold
in real hyperbolic planes.-

¢ They also hold in general hyperbolic planes—see Hartshorne, Chap-
ter 7.
Engel’s theorem in Chapter 10 guarantees that Bolyai’s construction
gives the limiting parallel ray in a real hyperbolic plane. The construction
is also justified for the Klein model at the end of Chapter 7 (pp. 344-345).

CororrarY 2. A Hilbert plane satisfying Dedekind’s axiom is either
real Euclidean or real hyperbolic.

More generally, from the advanced theorem, a Hilkert plane satis-
fying Aristotle’s axiom and the line-circle continuity principle is either
Euclidean or hyperbolic,

Classification of Parallels

We have discussed two types of parallels to a given I The first type
consists of parallels m such that ! and m have a common perpendicu-
lar; m diverges from [ on both sides of the common perpendicular. The
second type consists of parallels that approach { asymptotically in one
direction (they contain a limiting parallel ray in that direction, major
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Exercise II) and diverge from [ in the other direction. If m: is the sec-
ond type of parallel, Exercises 6 and 7 show that I and m do not have
a common perpehdicular. We have implied that these two are the only
types of parallels, and this is the content of the next theorem.

THEOREM 6.3. In a hyperbolic plane, given m paraliel to { such that
m does not contain a limiting parallel ray to [ in either direction. Then
there exists a common perpendicular to m and [ (which is unique by
Proposition 6.5),

This theorem is proved by Borsuk and Szmielew (1960, p. 291) by
a continuity argument, but their proof gives you no idea of how to
actually construct the common perpendicular. There is an easy way to
find it in the Kiein and Poincaré models discussed in the next chapter.
Hilbert gave a direlt construction, which we will sketch. (Project 1
gives anather.)

Proor:

Hilbert’s idea is to find two points H and K on { that are equidis-
tant from m, for once these are found, the perpendicular bisector
of segment HK is also perpendicular to m (see Basic Theorem 6.1.
Choose any two points A and B on [ and suppose that the perpen-
dicular segment AA’ from A to m is longer than the perpendicular
segment BB’ from B to m (see Figure 6.13). Let E be the pomt be-
tween A’ and A such that A’E = B'B. On the same side of AA’
as B, let EF be the unique ray such that <A'EF = {B'BG, where
AxB# E) The key pomt that will be proved in Major Exercises 2-6
1s that EF intersects AG in a point H. Let K Qg_ghe un(l_(:_g).le peint on
BG such that EH = BK. Drop perpendiculars HH’ and KK’ to m. The
upshot of these constructions is that (JEHH'A’ is congruent to
DBRK'B’ (just divide them into triangles). Hence the corresponding
sides HH' and KK’ are congruent, so that the points H and X on [
are equidistant from m, as required. «

m
A B’ H K

Figure 6.13 Hilbert’s construction of the commeon perpendicular,
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SUMMARY. Given a point P not on I, there exist exactly two limiting
parallel rays to [ through P, one in each direction. There are infinitely
many lines through P that do not enter the region between the limit-
ing rays and 1. Each such line is divergently parallel to ! and admits a
unique common perpendicular with ! (for one of these lines the com-
mon perpendicular will go through P, but for all the rest the common
perpendicular will pass through other points).

A NOTE ON TEAMINOLOGY. In most books on hyperbolic geometry,
the word “parallel” is used only for lines that centain limiting parallel
rays. The other lines, which admit a common perpendicular, have var-
ious names in the literature: “non-intersecting,” “ultraparallel,” “hy-
perparallel,” and “superparallel.” We will continue to use the word
“parallel” to mean “non-intersecting.” Following J. Bolyai, a parallel to
[ that contains a limiting parallel ray to ! will be called an asymptatic
parallel; a parallel to [ that admits a common perpendicular to { will
be called a divergently parallel line. Rays that are limiting parallel will
be denoted by a brace in diagrams (see Figure 6.14).

Strange New Unverse?

In this chapter, we have only begun to investigate the “strange new
universe” of hyperbolic geometry. You can develop much more of this
geometry by doing the exercises, major exercises, and projects in this
chapter. You will encounter new entities such as asymptotic triangles,
lines of enclosure, and ideal and ultra-ideal points at infinity in the
projective completion of the hyperbolic plane,

If you consider this geometry oo sirange to pursue, you are in for
a surprise. You will see in the next chapter that if the undefined terms
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of hyperbolic geometry are suitably interpreted, hyperbolic geometry
can be censidered a part of Euclidean geometry!
Meanwhile, notice how we have deepened our understanding of the

" role of Hilbert’s Euclidean parallel postulate P in Euclidean geometry.

To simplify, let us work in real neutral geometry—the theory of Hilbert
planes that satisfy Dedekind’s axiomn. Any statement S in the language
of real neutral geometry that is a theorem in real Euclidean geometry
{P = S) and whose negation is a theorem in real hyperbolic geometry
{~P = ~8) is equivalent in real neutral geometry to P (by RAA). As
an example, take the statement §: “There exist similar non-congruent
triangles.” Ten other examples are in Exercise 1; you will have the
pleasure in that exercise of providing many more.

The angle of parallelism IT{PQ) is the key to the deeper results in
hyperbolic geometry. #Major Exercise 9 shows that it can be any acute
angle. It can be used to define segments geometrically, which is im-
possible in Euclidean geometry (see p. 411, Chapter 9). For example,
Schweikart’s segment class is defined to be the congruence class of a
segment whose angle of parallelism is half a right angle (Major Exer-
cise 5 shows that all such segments are congruent), One of the great-
est discoveries by J. Bolyai and Lobachevsky is their formula for the
measure of [I(PQ) (see Theorems 7.2 and 10.2).

An important topic we will sketch in Chapter 10 is the theory of
area in hyperbolic planes. It is completely different from the Euclidean
theory of area, which is based on squares—there are no squares in hy-
perbolic planes. The area of a Euclidean triangle can be made as large
as you like by taking the base and the height as large as needed. How-
ever, in a hyperbolic plane, the possible areas of triangles are bounded
because it is a fundamental theorem that the area of a triangle is pro-
portional to its defect and of course the defect is bounded by 180°, But
in order to make sense of this strange result, noted by Lambert, one
must first clarify what is meant by “area.” We defer to other good
texts!® for the details.

The reader’s attention is called to Major Exercise 13 of this chap-
ter. That exercise construcis the projective completion of a hyperbolic
plane, analogous to the construction of the projective completion of an
affine plane in Chapter 2, but here we add an entire region at infinity
to the hyperbolic plane, not just a line at infinity: The hyperbolic plane

18 See Moise {1990) or Hartshorne. Charles Dodgson (Lewis Carroll} refused to accept

such a strange result, not comprehending how the areas of triangles could be bounded
when the lengths of their sides are unbounded.
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lies inside a conic at infinity called the absolute, consisting of all the
ideal points where asymptotic parallels meet; the tangent to the ab-
solute at that meeting point can be considered the “common perpen-
dicular at infinity” whose discovery shocked Saccheri. Qutside that
conic lie all the ultra-ideal points where divergent parallels meet, This
projective completion is the idea behind the Klein model discussed in
the next chapter. Another use is the following nice result.

PERPENDICULAR BISECTOR THEOREM. Given any triangle in a hy-
perbolic plane, the perpendicular bisectors of its sides are concurrent
in the projective completion,

Unlike Euclidean planes, those perpendicular bisectors need not be
concurrent in an ordinary point; they may meet in the projective com-
pletion at an ideal or ultra-ideal point (see Exercises 10 and 11].

NOTE ON OUR AXIOMATIC DEVELOPMENT. By simply negating
Hilbert’s Euclidean paralle] postulate, one allows nonclassical, non-
Archimedean Hilbert planes discovered by Dehn, such as semi-
Euclidean ones that are not Euclidean and ones satisfying the obtuse
angle hypothesis. They can be ruled out by assuming Aristotle’s axiom,
which reduces us to certain planes satisfying the acute angle hypothe-
sis. Some of those are nonclassical because limiting parallel rays do not
exist (my advanced theorem and the second result mentioned in foot-
note 15 tell us that the line-circle continuity principle is then necessary
and sufficient to obtain that existence), Yet all the classical non-
Euclidean geometers (Saccheri, Gauss, J. Bolyai, and Lobachevsky) ar-
gued intuitively that limiting parallel rays do exist. So Hilbert simply toak
that existence as an axiom and only studied the hyperbolic planes it
defines. Hilbert did not wish to bring in the powerful field of real num-
bers where it was not needed (see the quote by him in Appendix B).

Since Hilbert's development is long and complicated, we invoked
Dedekind’s axiom to prove the existence of limiting parallel rays as well
as Aristotle’s axiom and the acute angle hypothesis. That is what we
called real plane hyperbolic geometry. 1t is less general than Hilbert’s
theory, which permits coordinatization from arbitrary Euclidean fields
(including non-Archimedean ones), not just from the field R of real
numbers. The theory of real hyperbolic planes is categorical: All its
models are isomorphic to the real models in the next chapter (see
Hartshorne). But the theory of hyperbolic planes in Hilbert’s mare gen-
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eral sense is not categerical since not all Euclidean fields are isomor-
phic (e.g., the constructible field K is not isomarphic to R),

Qur main tasks in the next chapter will be to prove that axiomatic
hyperbolic plane geometry is just as logically secure as plane Euclid-
ean geometry and to reveal how it can be visualized from a Euclidean
point of view.

Review Exercise

Which of the following statements are correct?

(1} The negation of Hilbert’s Euclidean parallel postulate states that
for every line I and every point P not on [ there exist at least
two lines through P parallel to L

(2) 1t is a theorem in neutral geomeiry that if lines ! and m meet
on a given side of a transversal ¢, then the sum of the degrees
of the interior angles on that given side of t is less than 180°.

(3) Gauss began working on non-Euclidean geometry when he was
15 vears old. '

(4) The philosopher Kant taught that our minds could not conceive
of any geometry other than Euclidean geometry.

(5) The first mathematician to publish an account of hyperbolic
geometry was Lobachevsky.

(6) The crossbar theorem asserts that a ray emanating from a ver-
tex A of AABC and interior to <A must intersect the opposite

' side BC of the triangle,

(7) Itis a theorem in hyperbolic geometry that for any segment AB
there exists a square having AB as one of its sides.

{8) In hyperbolic geometry, the summit angles of Saccheri quadri-
laterals are always acute.

(9) In hyperbolic geometry, if AABC and ADEF are equilateral tri-
angles and XA = 4D, then the triangles are congruent,

(10) In hyperbolic geometry, given a line [ and a fixed segment AB,
the set of all points on a given side of [ whose perpendicular
segment to [ is congruent to AB equals the set of points on a
line parallel to L

{11} In hyperbolic geometry, any two.parallel lines have a common
perpendicular. '

- {12) In hyperbolic geometry, the fourth angle of a Lambert ¢uadri-
lateral is obtuse.
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(13) In hyperbolic geometry, some triangies have angle sum less
than 180° and some triangles have angle sum equal to 180°,

{(14) In hyperbolic geometry, if point P is not on line { and Q is the
foot of the perpendicular from P to [, then an angle of paral-
lelism for P with respect to 1 is the angle ﬂ_l__a;. a limiting paral-
lel ray to [ emanating from P makes with PQ.

(15} J. Bolyai showed how to construct liriting parallel rays using

' the segment-circle continuity principle.

(16) In hyperbolic geometry, if { || m, then there exist three points
on m that are equidistant from [.

(17) In hyperbolic geometry, if m is any line parallel to , then there
exist two points on m which are equidistant from I,

(18) In hyperbolic geometry, if P is a point not lying on line I, then
there are exactly two lines through P parallel to [,

(19} In hyperbolic geometry, if P is a point not lying on line I, then
there are exactly two lines through P perpendicular to L

(20) In hyperbolic geometry, if 1| m and m || n, then I || n (transi-
tivity of parallelism).

(21) In hyperbalic geometry, if m contains a limiting parallel ray to
l, then [ and m have a common perpendicular.

{22) In hyperholic geometry, if I and m have a common perpendic-
ular, then there is one point on m that is closer to ! than any
other point on m.

(23) In hyperbolic geometry, if m does not contain a limiting par-
allel ray to I and if m and I have no common perpendicular,
then m intersects L.

(24) In hyperbolic geometry, the summit of any Saccheri quadrilat-
eral is greater than the base.

(25) Every valid theorem of meutral geometry is also valid in hy-
perbolic geometry,

(26) In hyperbolic geometry, opposite angles of any parallelogram
are congruent to each other,

(27} In hyperbolic geometry, opposite sides of any parallelogram are
congruent to each other.

(28) In hyperbolic geometry, let <P be any acute angle, let X be
any point on one side of this angle, and let Y be the foot of
the perpendicular from X to the other side, If X recedes with-
ouf bound from P along its side, then Y will recede without
bound from P along its side.

(29) In hyperbolic geometry, if three points are not colhnear, there
is always a circle that passes through them.
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(30) In hyperbolic geometry, there exists an angle and there exists
a line that lies entirely within the interior of this angle.
(31) Limiting parallel rays exist in Euclidean planes.

Fxercises

1. This is perhaps the most important exercise in this book. It is a

payoff for all the work you have done. Come back to this exercise as
you do subsequent exercises and read further in the book. Your as-
signment in this exercise is to make a long list of geometric statements
that are equivalent to the Euclidean paraliel postulate in the sense that
they hold in real Euclidean planes and do not hold in real hyperbolic
planes. The statements proved in neutral geometry are valid in both
Euclidean and hyperbolic planes, so ignore them. To get you started,
here are 10 statements that qualify. They do not say anything about
parallel lines, so you might have been surprised before studying this
subject that they are equivalent to the Fuclidean parallel postulate.

Every triangle has a circumscribed circle.

Wallis’ postulate on the existence of similar triangles.

A rectangle exists.

Clavius’ axiom that the equidistant locus on one side of a line is
the set of points on a line.

Some triangle has an angle sum equal to 180°.

An angle inscribed in a semicircle is a right angle.

The Pythagorean equation holds for right triangles.

A line cannot lie entirely in the interior of an angle.

Any point in the interior of an angle lies on a segment with end-
points on the sides of the angle.

Areas of triangles are unbounded.

. This problém has five parts. In the first part we will construct

Saccheri quadrilaterals associated with any triangle AABC. Then

we will apply this construction. Figure 6.15 illustrates the case

where the angles of the triangle at A and B are acute; you are in-

vited to draw the figure when one of these angles is obtuse or

right.

{a} Let], J, K be the midpoints of BC, CA, AB, respectively. Let D,
E, F be the feet of the perpendiculars from A, B, C, respec-
tively, to IJ (which is called a medial line). Prove, in any Hilbert
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Figure 6.15 Saccheri quadrilateral associated to AABC,

plane, that AD = CF = BE, hence that [JEDAB is a Saccheri
quadrilateral with base ED, sumimit AB. Show that a triangle
and its associated Saccheri quadrilateral have equal content—
i.e., that you can dissect the Saccheri quadrilateral reglon into
polygonal pieces and then reassemble these pieces to construct
the triangular region.

(b) Prave that the perpendicular bisector of AB is also perpendi-
cular to 1J. (Hint; Use a result about Saccheri quadrilaterals.)
Hence if the plane is hyperbolic, g is divergently parallel to

B. Assume now the plane is real, so lengths can be assigned
(Theorem 4. 1.3) and the Saccheri- -Legendre theorem applies.

{c) Prove that ED = 21J. Deduce that AB > 21J (respectively AB =
217) if the plane is hyperbolic (respectively is Euclidean).

(d) Prove that K, F, and C are collinear if and only if AC= BC
(isosceles triangle). If that is the case, prove that F is the mid-
point of CK iff the plane is Euclidean. If K, F, and C are not
collinear and the plane is not Euclidean, prove that CF is not
perpendicular to % B (ray CF does intersect AB at some point
G in the case shown, where the angles at A and B are acute,
by the crossbar theorem, but CG is not an altitude of the tri-
angle if the plane is not Euclidean).

() Show that if the Pythagorean equation holds s for all right tri-
angles and if ¥C is a right angle, then AB = 2IJ can be proved.
Deduce from part (c) that such a plane must be Euclidean. (Use
these results to add to your answers to Exercise 1.)

The remaining exercises are in hyperbolic geometry, You can use
the results proved in this chapter as well as any results proved
in neutral geometry in previous chapters. Do not use any of the
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Euclidean results from Exercises 10-18 and the major exercises
of Chapter 5.

Assume that the parallel lines ! and I' have a common perpendicu-
lar segment MM', Prove that MM’ is the shortest segment between
any point of ! and any peint of ¥, (Hint: In showing MM’ << AA’,
first dispose of the case in which AA’ is perpendicular to I' by means
of a result about Lambert quadrilaterals and then take care of the
other case by Exercise 22, Chapter 4.)

Again, assume that MM’ is the common perpendicular segment be-
tween [ and !'. Let A and B be any points of I such that M+ A* B
and drop perpendiculars AA’' and BB’ to I'. Prove that AA’ < BB'.
{Hint: Use Proposition 4.13; see Figure 6.16.)

B i

r

Figure 6.16

5.

Given parallel lines [ and m. Given points A and B that lie on the
opposite side of m from [; i.e., for any point P on I, A and P are on
opposite sides of m, and B and P are on opposite sides of m, Prove
that A and B lie on the same side of I. (This holds in any Hilbert
plane )

Let BY be a limiting parallel ray to I through P and let X be a point
on this ray be_t\;veen P and Y (Figure 6.17). It may seem intuitively
obvious that XY is a limiting parallel ray to [ through X, but this re-
quires proof. Justify the steps that have not been justified.

P

Q R Tl

Figure 6.17
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Proor:

(1} We must prove that any ray XS between XV and XR meets I
where R is the foot of the perpendicular from X to {. (2) S and ¥
are on the same side of XR. (3) P and Y are on oppos1te sides of
XR. (4) By Exercise 5, S and Y are on tf the same side of PQ (5) §
and R are on, ff the same side of XY PY {6) Q and R are on the
same side of PY _(Z) Q arﬂ) S are on the same side of PY {8) Thus,
PS lies between PY and PQ, 50 it intersects [ in a point T, (9) Point
X is exterior to APQT. (10) X3 does niot E)tersect PQ. {11} Hence
X8 intersects QT (PIOpOSlt}P_I}l 3.9{a)), so XS meets [, <

. Let us assume instead that XY is limiting parallel to I, with P+ X = ¥,
Prove that PY is E)rmtmg parallel to I (Hint: See Figure 6.18. You
must show that PZ meets [ in a pomt V. Choose any S such that
5+ P+ Z. Show that SX meets PQ in a point U such that U=P » Q.
_QI_l)(Jose any W such_t)hat U+ X *» W and show that XW is between
XY and XR so that XW meets [ in a point T. Apply Proposition 3.9{a)
to get V.)

Figure 6,18

. Let PX be the right limiting parallel ray to [ through P and let Q
and X’ be the feet of the perpendiculars from P and X, respectively,
to [ (Figure 6.19). Prove that PQ > XX'. (Hint: Use Exercise 6 to

Y }
Q X !

Figitre 6.19
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a

show that <X'XY is acute and that <<X’XP is obtuse, so that Propo-
sition 4.13, Chapter 4, can be applied to [JPOX'X.) This exercise
shows that the distance from X to [ decreases as X recedes from P
along a limiting parallel ray. In fact, one can prove that the distance
from X to I approaches zero (see Major Exercise 11).

AssE)ne that the parallel lines I and I’ have a common perpendicu-
lar PQ. For any point X on I, let X' be the foot of the perpendicu-
lar from X to I'. Prove that as X recedes endlessly from P on I, the
segment XX’ increases indefinitely; see Figure 6.20. (Hint: We saw
that it increases in Exercise 4. Drop a perpendicular XY to the lim-
iting parallelmgay between PX and PX'. Use the crossbar theorem to
show that PY intersects XX’ in a point Z. Use Proposition 4.5 to
show that XZ = XY. Conclude by applying Aristotle’s axiom.)

P X
=< ; 1
Tz
Y [~
e
. - )
Q X

Figure 6.20 Distance between divergently parallel lines increases without
bound.

10.

11,

In Exercise 5, Chapter 5, we saw the elder Bolyai’s false proof of
the parallel postulate, The flaw in his argument was the assump-
tion that every triangle has a circumscribed circle, e, that there is
a circle passing through the three vertices of the triangle. The idea
of the Euclidean proof of this assumption is to show that the per-
pendicular bisectors of the sides of the triangle meet in a point and
that this point is the center of the circumscribed circle. Figure out
how Euclid’s fifth postulate is used to prove that two of the per-
pendicular bisectors [ and m have a common point (use Proposi-
tion 4.10) and then argue by congruent triangles to prove that the
third perpendicular bisector passes through that point and that the
point is equidistant from the three vertices. (Hint: Join the common
point D to the midpoint N of the third side and prove that DN is
perpendicular to the third side; see Figure 6.21.)

Part of the argument in Exercise 10 works for hyperbolic geometry;
that is, if two of the perpendicular bisectors have a common point,
then the third perpendicular bisector also passes through that point.
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AA’ = BB’ and CC’ = BB'. Hence {JC'A’AC is a Saccheri quadrilat-
eral with N the midpoint of its summit AC. If N’ is Jf}f midpoint of
the base A'C’, lse Theorem 6.1 to show that n = NN’ is perpendi-
cular to t and AC; see Major Exercise 7 for the asymptotically par-
allel case.)

12.In Theorem 4.1 it was proved in neutral georetry that if alternate in-
terior angles are congruent, then the lines are parallel. Strengthen this
result in hyperbolic geometry by proving that the lines are divergently
parallel, i.e., that they have a comumon perpendicular, (Hint: Let M be
the midpoint of transversal segment PQ and drop perpendiculars MN
and ML to lines m and [; see Figure 6.23. Prove that L, M, and N are
collinear by the method of congruent triangles.)

H

Figure 6.21 Euclid V implies existence of circumcenter D.

In hyperbolic geometry, there will be triangles for which two of the
perpendicular bisectors are parallel {otherwise the elder Bolyai’s
proof would be correct). Moreover, these perpendicular bisectors
can be parallel in two different ways. Suppose that they are diver-
gently parallel; that is, suppose that the perpendicular bisectors [
and m have a common perpendicular ¢ (see Figure 6.22). Prove that
the third perpendicular bisector n is also perpendicular to ¢. (Hint:
Let A’, B', and C' be the feet on ¢ of -the perpendiculars dropped
from A, B, and C, respectively. Let [ bisect AB at L and be perpen-
dicular to ¢ at L" and let m bisect BC at M and be perpendicular to
t at M'. Let N be the midpoint of AC. Show by Proposition 6.5 that

BN

m

rl l_—_

Figure 6.23 Alternate interior angle congruent.

13. Prove that Aristotle’s axiom holds in a hyperbolic plane. (Hint: For
the given acute angle, lay off a segment of parallelism along one
side and erect the perpendicular ray at the end of that segment
which is limiting parallel to the other side. On that perpendicular
ray, lay off the challenge segment AB, at the end of which erect the
perpendicular ray that hits the other side of the angle, and from that
point of intersection X drop a perpendicular XY to the first side.
From the Lambert quadrilateral thus formed, deduce that XY > AB.)

14. Prove that a non-Euclidean Hilbert plane satisfying the important corol-
lary to Arisiotle’s axiom (stated on p. 133) also satisfies the acute an-
gle hypothesis. (Hint: Find a triangle whose angle sum is <180°.)

15. Comment on the following injunction by Saint Augustine: “The good
Christian should beware of mathematicians and all those who make
empty prophesies. The danger already exists that the mathemati-
cians have made a covenant with the devil to darken the spirit and
to confine man in the bonds of Hell.”

Figure 6.22 ‘Poincaré disk model {(see Chapter 7) example where the three
perpendicular bisectors of AABC have common perpendicular t. Computer
graphic drawn by high school student Ben Zinberg,
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c D

Figure 6.24 Biangle [ABCD,

Mayor Exercises

1. Let A, D be the points on the same side of line BG such that BA I tD.
Then the flgure consisting of segment BC (called the base) and rays
BA and CD (called the sides) is called the biangle |ABCD with vertices
B and C (see Figure 6.24). The interior of [ABCD is the intersection
of the interiors of its angles _EABC and <DCB; if P lies in the interior
and X is e1ther vertex, ray XP is called an interior ray. We write the
relation BA | CD when these rays are sides of a biangle and when
every interjor ray emanating from B intersects C_>D in that case, we
say that BA is liriting parallel to 5)3 generalizing the previous defi-
nition which required <DCB to be a right angle and we say that the
biangle [ABCD is closed at B. Given BA l CD prove the followmg
generalization of Exercise 6: If P+ B » A or HB*P = A, then PA] CD.

2. Symmetry of limiting parallelism. If BA | CD, then CD | BA, (In that
case, we say simply that biangle [ABCD is closed.) Justify the un-
justified steps in the proof (see Figure 6.25).

Proor:

1) Assume that [ABCD is : not closed at C. (2) Then some interior
ray CE does not intersect BA, (3) Point E, which so far is just a la-
bel, can be chosen so that <BEC < <ECD, by the important corol-

B A

F
C ~ D

Figure 6.25 Symmetry of limiting parallelism proof,
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lary to .glstotle s axiom, Chaﬂer 3. (4) Segrnen.t BE does not in-
tersect CD. (5) Interior ray BE intersects Ch in a point F, and
B+ E=F. (6) Since <BEC is an exterior angle for AFFC, we have
IBEC > <ECF. (7) Contradiction. (I am indebted to George E. Mar-
tin for this simple proof.) =

. Transitivity of limiting parallelism. If AB and CD are both limiting

parallel to ﬁ, then they are limiting parallel to each other. Justify
the steps in the proof.

A B
UL ! F
e
rd H
//
D
C
Figure 6.26
Proor:

(1} AB and fﬁ)) have no point 11(1_> COMmOon. (2)<_I;Ience <@f)re are
two cases depending on whether EF 1(5_Petween AB and CD or AB
and ﬁ are both on the same side of EF. (3) In the case Where 53
is between AB and ﬁ let G be the mtersectlc_)g of AC with 513 (see
Figure 6.26). We may assume G lies on ray EF; otherwise wg__gan
consider GF. (4) Any ray AH interior to £GAB must mtersect EF in
a point 1, (5) II—I lying interior to <4CIF, must 1rggrseat CD (6} Hence
any ray AH interior to <LCAB must intersect CD, so AB is limiting
parallel to CD

Step (7) is the following sublemma. That this requires such a
long proof was overlooked even by Gauss. The proof (for which I
am indebeted to Fdwin E. Moise) uses our hypotheses of limiting
parallelism. If we had made the weaker hypothesis of just parallel
lines, the sublemma would not follow, as you will show in Exer-
cise K-2(c) of Chapter 7.

o
SUBLEMMA. E}fﬁ and &B are | both on the same side of EF, then one
of them, say CD, is between AB and EF.

Proor oF SUBLEMMA:
M u sufﬁces to prove there is a line transversal to the three rays
AB, C_f) EF. (2) In the case where A and F are on the same side of
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Figure 6.27

fi_é, then ray EA 1(:5_} interior to <E. (3) Then EA intersects C_ﬁ, by
symimetry. (4) So EA is our<_t§ansversal. (5) In the case where A and
F are on opposite sides of EC, let G be the point at which AF meets
@ (§g_$ Figure 6.27). (6) Choosing H such that E* F » H, we have
FH | AB. (7) <HFG > «F. (8) Therefore there is a ray FI interior to
{HFQ_) = ﬁ{FG Sutzl} that <HFI = <K, (9) Ff meets ﬁ at a point J,
(10) FJ || EC. (11) EC intersects side AF and does not intersect side
FJ of AAFJ. (12) Hence EC intersects AJ and is our transversal. «

ConcLusIoN. oF PROOF OF TRANSITIVITY (SEE Ficure 6.28):

(_8) Theg} AFE intersects C_ng in a point G, which we may assume lies
on ray CD. (9E>f\ny ray AH interior to <GAB intersects EF in a point
I. (10) Since CD enters AAEI at G and does not intersect side EI, it
must intersect Al. (11) Therefore, CD is limiting parallel to AB. <

NOTE 1. The last four steps did not use the hypothesis that cb | ﬁﬁ;
ﬂ‘ley therefore prove that any line between two asymptotically paraliel
lines is asymptotically parallel to both and in the same direction.

Fignre 6.28
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NOTE 2. Given rays r and s, define r ~ s to mean that r C s or
s C rorr|s. Major Exercises 13 show that this is an equivalence
relation among rays. An equivalence class of rays is called an ideal
point, or an end, and we adopt the convention that it lies on all
(and only those) lines containing the rays making up the class. Since
a point on a line breaks the line into two opposite rays and oppo-
site rays are not equivalent, we see that every line has two ends ly-
ing on it. The set of all ideal points was named the absolute by Cay-
ley. {This is the beginning of constructing a hyperbolic analogue of
the projective completion of an affine plane described in Chapter 2;
we continue the construction in Major Exercise 13. The absolute is
analogous to the line at infinity of the affine plane, but the absolute
could not be a new line because it intersects each old line in two
points; it will turn’out to be a conic in the projective completion.)

If R, S are the vertices of r, s, where r | s, and ) is the ideal
point determined by these rays, we write r == PQ) and s = S{) and
refer to the closed biangle with sides r, s as the singly asymptotic
triangle ARSE. The next two exercises show that these triangles
have some properties in common with ordinary triangles. (You can
similarly define as an exercise doubly (two ideal points) and triply
{three ideal points) asymiptotic triangles.)

. Exterior angle theorem. If APQ{} is a singly asymptotic triangle, the

exterior angles at P and Q are greater than their respective oppo-
site interior angles. Justify the steps in the proof.

Proor (see Ficure 6.29):

(1) Given R # Q_f) P. We must show that RQ{ is greater than
LQP{). (2) Let QD be the unique ray on the same side of 153 as ray
QL such that ¥RQD = XQPQ. (3} f U = Q * D, then LUQP = QP{.

P

Figure 6.29 Exterior angle theorem for singly asymptotic triangle.
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(4) By Exerc1se 12, QD is divergently parallel to f’—ﬁ (5) Hence QD
is between QR and QO (6) LRQL > LQPO. «

. Congruence theorem. If in asymptotic triangles AAB() and AA’B'()’
we have <BAQ = {B'A'{Y, then ¥AB = XA’B'() if and only if
AB = A’B’, Justify the steps in the proof and deduce as a corollary
that PQ = P'Q’ if and only if TI{PQ)° = II(P'Q'}"°.

A D A’ n’

B - B’

Figure 6.30

Proor (S FIGURE 6.30):

(1} Assume AB = A'B’' and on the contrary <LABQO > SA'B'),
(2) Thereis a umque Tay ﬁ between B{ and ﬁ such that < ABC =
LA'BY. (3) BC intersects AQ in a point D. (4) Let D’ be the unique
point on A’} such that AD = A'D’. (5) Then ABAD = AB'A'D,
(6) Hence <A'B'D' = £ A'B(}, which is absurd. (7) Assume con-
versely that €AB{) = €A'B’{} and, on the contrary, A'B' < AB. (8)
‘Let C be the point on AB such that BC = B’A" and let CQ) be the
ray from C limiting parallel to A{} (see Figure 6.31). (9) Then C{}
is also limiting parallel to B{}. (10) By the first part of the proof,
LBC} = {B'A'(}; hence we have <LBC{)= <BA{. (11} But
FBC( > <BAL, which is a contradiction. <

Aj\
c— r%
1 Q
QI
B Al B’ A

Figure 6.31

6. Concluszon_f the proof of Theorem 6.3. We wish to show that EF

intersects AG (see Figure 6.32). Justify the steps in the proof.

MaAJOR EXERCISES 281

[ -
A B »

m

Figure 6.32 Proof that point H exists as shown.

Proor:

(1} Let A'M be limiting parallel to EF A’N limiting paraltel to AG
and BE limiting parallel to BG 2) Smcgw%A’ = BB’ and ﬂ EF =
ﬁBG, we have_{};.A M= <BB'P. (3) B'L chffe_rg from B’P, and
A'lL diff(e__l;s")from A'N. (4} ¥MA'L = {PB'L. (5) B'P is limiting par-
allel to A'N. (6) Hence <.NA'L is smaller than <PB'L. (7) It follows
- — — e
that A'M lies between A’'N and A'A, 59 it must intersect AG in a
point J. (8) J is on the same side of EF as A’ hence it is on the
side opposﬂej}rom A. (9) Thus AJY intersects £F in a&gomt H, which
must be on EF because H is on the same side of AA” as J. «

Where was the hypothesis of this theorem used?

7. In Exercises 10 and 11 we considered the perpendicular bisectors
of the sides of AABC and showed that (1) if two of them have
a common point, the third passes through that point; (2) if two
of them have a common perpendicular, the third has that same
perpendicular. It follows that if two of them are asymptotically
parallel, then any two of them are asymptotically parallel. This
result can be strengthened as follows: If perpendicular bisectors
[ and m are asymptotically parallel in the direction of ideal point
0, then the third perpendicular bisector n is asymptotically par-
allel to [ and m in the same direction . Give the proof and jus-
tify each step. The proof is based on the following two lemmas.

LEMMA 6.1. Given AABC. Let [, m, and n be the perpendicular bi-
sectors of sides AB, BC, and AC at their midpoints L, M, and N, re-
spectively. Let AC = AB and AC = BC (AC is the longest side). Then [,
m, and n all intersect AC.
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A

Figure 6.33

Proor:

(1) (£B)° = (XA)° and (XB)° = (£C)°. (2) Hence there is a point
L_’ on AC such that <A == LI'BA, and a point M’ on AC such that
~C = <M'BC (see Figure 6.33). (3) Then we have AL’ = BL' and
CM' = BM’. (4) Thus { is the line joining L to L', and m = W
{5) 1t follows that all three perpendicular bisectors cut AC. «

LeEMMaA 6.2 No line_intersects all three sides of a wrebly asymptotic

triangle.

Proor:

(1) Suppose that a line ¢ cuts { at Q and m at P. {2) Then ray P_C3
of t lies between the rays PQ, and P}, which are limiting parallel
to [ (see Figure 6.34). (3) P{;, the other ray through P that is lim-
fting parallel to n, is oppasite to P(l,. (4) Hence P(,; lies between
PQ and PQg3. (5) Thus Iﬁ does not intersect n. (6} Similarly, f)-l%
does not intersect n. -

Givent any angle <A'OA, It is a theorem in hyperbolic geometry that
there is a unique line { called the line of enclosure of this angle such

Figure 6.34
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Figure 6.35 Hilbert's construction of line of enclosure.

that [ is limiting parallel to both sides OA' and 63. Cnly the idea of the
proof is given here; fill in the details (Hartshorne, Proposition 40.6).

Assume that A and A’ are chosen so that 0OA = OA'Jsee Figure
6.35). Let A’} be the limiting parﬂel ray to OA through
A’, and A% the limiting parallel ray to OA” through A. Let the rays
r and r' be the bisectors of €ZA0 and LQA'S, respectively. The
idea of the proof is to show that the lines m and m’ containing these
rays are neither intersecting nor asymptotically parallel, so that, by
Theorem 6.3, they have a unique cominoen perpendicular [ that turns
out to be the line of enclosure of LA'OA. (See also Exercise K-11,
Chapter 7; the advantage of this complicated proof is that it yields
a straightedge-and-compass construction.)

. Use the result of the previous exercise to prove that every acute an-

gle is an angle of parallelism, i.e., giggi an acute angle <BOA, th_e};e
is a unique line { per\p_e>ndicular to BO and limiting parallel to OA.
(Hint: Reflect across OB.)

Alternatively, fill in the details of the following continuity proof
of Lobachevsky. First show that there exist perpendiculars to O

that fail to intersect OA by the following argument. In Figure 6.36,

B is the foot of the perpendﬂﬂar from A and OB = BB’'. If the per-
pendicular at B’ intersects QA at A’, then

S0A'B’ = SOAB' + §AA'B’ = 260AB + SAA'B’ > 280AB.

If wg_i;erate this doubling along OB and the perpendicular always
hits OA, the defects of the resulting triangles will increase indefi-
nitely. So we must _ev_eﬁnt_u_gily arrive at a point where the perpen-
dicular fails to intersect OA.



284 THE DiscovERY oF NoN-EUCLIDEAN GEOMETRY

[ 1
0 B B’ C R

Figure 6.36 Lobachevsky's proof using Dedekind’'s axiom,

10

¢+ Second, apply Dedekind’s axiom to obtain “the first” such per-
pendicular ray r emanating from R. -

Finally, show that 7 | 0A: For any interior ray RS, let C be the
foot of the perpendicular from 8; show that €8 hits OA at some
point I and apply Pasch’s theorem to AOCD.

.Let [ and m be divergently parallel lines and let ¢ be their common

perpendicular cutting I at Q and m at P (Figure 6.37). Let r be a ray
of [ emanating from Q and s the ray of m emanating from P on the
same side of t as r. Prove that there is a unique point R on r such
that the perpendicular to { through R is limiting parallel to s. Prove
also that for every point R’ on r such that R’ * R * (, the perpen-
dicular to [ through R’ is divergently parallel to m. (Hint: Use Ma-~
jor Exercises 3 and 9.)

r ]
R R Q

Figure 6.37 Existence of asymptotic Lambert quadrilateral.

11,

Let ray r emanating from point P be limiting parallel to line ! and
let Q be the foot of the perpendicular from P to ! (Figure 6.38). Jus-
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Q T 53

Figure 6.38 Proving asymptotic parallelism,

12.

13.

tify the terminology “asymptotically parallel” by proving that for
any point R between P and Q there exists a point R’ on ray 7 such
that R’Q’ = RQ, where Q’ is the foot of the perpendicular from R’
to I, (Hint: Use Major Exercise 3 and Proposition 6.6 to prove that
the line through R that is asymptotically parallel to ! in the oppo-
site direction from r intersects r at a point S. Show that if T is the
foot of the perpendicggr from S to 1, the point R’ obtained by re-
flecting R across line ST is tHe desired point.)

Similarly, show that the lines diverge in the other direction. Use
a similar method to prove that the perpendiculars dropped {rom one
line divergently parallel to another are unbounded.
Let I and n be divergently parallel lines and PQ their common per-
pendicular segment. The midpoint § of PQ is called the symmetry
point of 1 and n. Let m be the perpendicular to PQ through 8. Let
Q and Q' be the ideal points of I and let % and %' be the ideal
points of n (labeled as in Figure 6.39). By Major Exercise 8, there
are unique lines “joining” these ideal points. Prove that (a) 0% and
3.0 meet at S; (b) m is perpendicular to both 3, and '%’. (Hint:
Use Major Exercise 5 and the symmetry part of Proposition 6.6.)
Projective completion of the hyperbolic plane. The ideal points were
defined in Note 2 after Major Exercise 3. By adding them as ends

5 P i 5
f -1 4
1
| 8 |
l__l m |
] \L‘:
1
¥
ot VQ ; Q

Figure 6.39 Symmetry point 5 of divergently parallel 1 and n.
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to our lines, we ensure that asymptotically parallel lines meet at an
ideal point; Major Exercise 11 shows that the lines do converge in
the direction of that common end. We need to add more “points at
infinity” to ensure that divergently parallel lines will meet. Two di-
vergently paraliel lines have a unique common perpendicular ¢, A
third line perpendicular o t can be considered to have “the same
direction” as the first two, so all three should meet at the same
point, just as in the projective completion of the Euclidean plane.
We therefore define the pole P() to be the set of all lines perpen-
dicular to t and specify that P{t) lies on all those lines and no
others; poles of lines are called ultra-ideal points. Note here that
t# u = P(t}) # P{w) (unigqueness of the common perpendicular, if
one exists), unlike the Euclidean case. A “point” of the projective
completion & is defined to be either a point of the hyperbolic plane
{called “ordinary”) or an ideal point or an ultra-ideal point.

We also add new “lines at infinity” as follows. The polar p(A)
of an ordinary point A is the set of all poles of lines through A, and
the only poeints incident with p{A) are those poles; polars of ordi-
nary points are called ultra-ideal lines. The polar p({}) of an ideal
point ) consists of {3 and all poles of lines having {2 as an end;
again, the incidence relation is &, and p(£}) is called an ideal line.

* The polar of an ultra-ideal point P(f) is just . A “line” of @ is de-

fined to be a polar of a peoint of . We have defined incidence al-
ready. The pole of p(A) is A and of p(£}) is (2.

THEOREM, P is a projective plane and p is a polarity {an isomorphism
of ¥ onto its dual plane).

Since the ideal points are the only points of @ that lie on their
polars, the absolute y is by definition the conic determined by po-
larity p, and p{£}) is the tangent line to y at {} (see Project 2, Chap-
ter 2). If {} and % are the two ends of ordinary line ¢, then, by def-
inition, the point of intersection of the two tangent lines p({)) and
p(Z) is P(1), which gives geometric meaning to the rather abstract
P(t). Moreover, the interjor of v is the set of ordinary points since
every line through an ordinary point is ordinary and intersects  twice.

Your exeicise is to prove this thecrem. To get you started, we
show that Axiom I-1 holds for &:

{) Two ordinary points A, B lie on ordinary line AB and do not
lie on any “extraordinary” lines by definition of the latter.
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(ii) Given ordinary A and ideal {1, they are joined by the ordinary
line containing ray A(}.

(iii} Given ideal points ) and Z, let A be any ordinary point and
consider the rays A% and AQ. If these are opposite, then the
line containing them joins { and %,; otherwise, the line of en-
closure (Major Exercise 8) of the angle determined by these
coterminal rays joins £ and Z.

(iv) Given ordinary A and ultra-ideal P(f), the line joining them is
the perpendicular to t through A,

(v) Given ideal Q and ultra-ideal P(£). If {) lies on ¢, these points
lie on p({}); by the definition of incidence, they do not lie on
any other extraordinary line, and they could not lie on an or-
dinary line z because u would then be both asymptotically par-
allel to and perpendicular to t. If Q2 does not lie on t, let A be
a point on t. If ray A{} is at right angles to ¢, the line contain-
ing AQ joins Q to P(f); otherwise, Major Exercise 9 ensures
that there is a unique line u L t such that AQ is limiting par-
allel to n and . joins & to P(£).

(vi) Given ultra-ideal points P(t) and P{u), t meets u either at or-
dinary point A, in which case p(A} is the join, or at ideal point
£, in which case p({}) is the join, or, by Theorem 6.3, at
ultra-ideal peint P(m), in which case m (the common perpen-
dicular to t and 2} joins.P() and P(u).

Projects

1.

Here is another construction for the cornmon perpendicular between
divergently parallel lines ! and 7. It suffices to locate their symme-
try point S, for a perpendicular can then be dropped from § to both
lines (Figure 6.39, p. 285). Take any segment AB on I Construct
point C on ! such that B is the midpoint of AC and lay off any seg-
ment A’B’ on n congruent to AB. Let M, M’, N, and N’ be the (nﬁlﬂ}
points of AA’, BB, BA’, and CB’, respectively. Then the lines MM’
and W are distinct and intersect at S. (The proof follows from the
theory of glide reflections; see Exercises 21 and 22 in Chapter 9; also
see Coxeter, 1998, p. 269, where it is deduced from Hjelmslev’s mid-
line theorem.) Report on a proof.

Report on the development of plane hyperbolic geometry from
Hilbert’s hyperbolic axiom of parallelism alone, without bringing in
Dedekind’s axiom, using Hartshorne, Chapter 7, as one reference.
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Describe some proofs in your report, particularly a proof of the acute
angle hypothesis and the proof of the existence of the line of en-
closure of an angle.

Report on Hilbert’s arithmetic of ends, using his Foundations of
Geomnetry, Appendix Il for reference, Hilbert constructs a field that
can be used to coordinatize a general hyperbolic plane and do an-
alytic geometry in it '
Report on Joan Richards’ study of the resistance to non-Euclidean
geometry in late nineteenth-century England; see her Mathematical
Visions: The Pursuit of Geometry in Victorian England, Chapters 2
and 3, Academic Press, 1988, Your report should discuss the contri-
butions of Hermann von Helmholtz and William Clifford toward en-
lightening the English on the philosophical implications of Riemann’s
new ideas about space. Search the library or the web for more in-
formation on how Helmholtz and Clifford spread the ideas of non-
Euclidean geometry and developed them further, with Clifford’s work
being a precursor of general relativity 45 years before Einstein—e.g.,
http://members.aol.com/jebcolst/Paraphysics/twistl.htm

Independence of the
Parallel Postulate

All my efforts to discover a contradiction, an inconsistency, in this
non-Euclidean geomelry have been without siceess. .. .

Consistency of Hyperbolic Geometry

In the previous chapter, you were introduced to hyperbelic geometry
and presented with some theorems that must seem very strange to
someone accustomed to Euclidean geometry, Even though you may ad-
mit that the proofs of these theorems are correct, given our assump-
tions, you may feel that the basic assumption of hyperbolic geometry—
the hyperbolic parallel axiom of Hilbert—is a false assumption. Let’s
examine what might be meant by saying it's false.

What sort of experiment could I perform to show that the hyper-
bolic axiom or the negation of Hilbert’s Euclidean parallel postulate is
false? First of all, I would have to understand what this statement
means., What does it mean that ! is a “line,” that P i3 a “point” not
“on” I, and that there is at most one “parallel” to [ through P? I might
represent “points” and “lines” with paper, pencil, and straightedge.
Suppose I draw the perpendicular from P to [, draw line m through P
perpendicular to PQ, and then draw a line n through P, making a very

289
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small angle £ with m (Figure 7.1). Using Euclidean trigonometry, I can
calculate exactly how far out on n I would have to go to get to the
point where n is supposed to intersect I, but if ¢ is small enough, that
point might be very far away. Thus I could not physically perform the
experiment to prove that the negation of Euclid V is false.

But is geometry about lines that we can draw? Pure geometry is
about idealized lines, which are concepts, not objects. The only exper-
iments we can perform on these idealized lines are thought experi-
ments. 5o the question should be: Can we conceive of a non-Euclidean
geometry? Kant said no, that Euclidean geometry is a priori true. At
that time, of course, no one had yet conceived of a different geometry.
It is in this semse that J. Bolyal and Lobachevsky “created a new
universe.”

Other questions can be raised. Mathematicians reject many ideas
because they either lead to contradictions or do not lead anywhere, i.e,,
do not prove fruitful, useful, or interesting. Does the hypothesis of the
acute angle lead to a contradiction? Saccheri imagined it would and
tried to prove Euclid’s parallel postulate that way. Is hyperbolic geoms-
etry fruitful, useful, or interesting?

Let us postpone the latter question until the end of Chapter 8 (the
answer is yes!) and take up the former: Is hyperbolic geometry con-
sistent? As was explained in Chapter 2, this is a question in meta-
mathematics, i.e., a question outside a mathematical system about the
system itself. The question is not about lines or points or other geo-
metric entities; it is a question about the whole system of axioms, def-
initions, and propositions in plane hyperbolic geometry.

if hyperbolic geometry were inconsistent, an ordinary mathemati-
cal argument could derive a contradiction. Saccheri tried to do this and
failed. Could it be that he wasn’t clever enough, that someday some
genius will find a contradiction?
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On the other hand, can it be proved that hyperbolic geometry is
corsistent-—can it be proved that there is no possible way to derive a
contradiction?

We might ask the same question about Euclidean geometry: How
do we know it is consistent? Of course, this was never a burning ques-
tion before the discovery of non-Fuclidean geometry simply because
everyone believed Euclidean geometry to be consistent since it was sup-
posedly an idealization of physical space. Remarkably enough, if we
make this belief an explicit assumption, it is possible to give a proof
that hyperbolic geometry is consistent.

METAMATHEMATICAL THEOREM 1. If Euclidean geometry is consis-
tent, then so is hyperbolic geometry.

~

Granting this result for the moment, we get the following important
corollary.

CoroLLARY. If Euclidean geometry is consistent, then no proof or dis-
proof of Euclid’s parallel postulate from the axioms of neutral geome-
try will ever be found—Euclid’s parallel postulate is independent of the
other postulates.

Proor:

To prove the corollary, assume on the contrary that a proof in neu-
tral geometry of Euclid’s parallel postulate exists. Then hyperbolic
geometry would be inconsistent since one of its theorems (the nega-
tion of Euclid V) contradicts a proved result {tecall that neutral
geometry is part of hyperbolic geometry}. But Metamathematical
Theorem 1 asserts that hyperbolic geometry is consistent relative to
Euclidean geometry. This contradiction proves that no neutral proof
of Euclid’s parallel postulate exists (RAA). The hypothesis that
Euclidean geometry is consistent ensures that no disproof exists
either. <

Thus 2000 years of efforts to prove Euclid V were in vain.

Of course, when we say this, we are assuming the consistency of
the venerable Euclidean geometry. Had Saccheri, Legendre, F. Bolyai,
or any of the dozens of other scholars succeeded in proving Euclid V
from Euclid’s other axioms, with the noble intention of making Eu-
. clidean geometry more secure and elegant, they would have instead
- completely destroyed Euclidean geometry as a consistent body of
thought! (I urge you, dear reader, to go over the preceding statements
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very carefully to make sure you have understood them. If you have not
understood, you have missed the main point of this text.)! Euclid is
“vindicated” by the failure of all those dedicated mathematicians who
arduously attempted to prove his fifth postulate from his other postu-
lates; the independence of Euclid V {assuming consistency) shows
that his insight was profound in assuming a statement that is not
“obvious.”

In the form given here, Metamathematical Theorem 1 is due to
Eugenio Beltrami (1835~1899); a different proof was later given by Fe-
lix Klein (1849-1925). Beltrami proved the relative consistency of real
hyperbolic geometry in 1868 using differential geometry in a manner
influenced by Riemann’s new ideas. Klein recognized that projective
geometry could be used to give another proof. In 1871 he applied the
methed to hyperbolic geometry that Arthur Cayley used in 1859 to ex-
press distance and angle measure projectively for Euclidean and ellip-
tic geometries. We will discuss their work in the next sections.

To prove Metamathematical Theorem 1, we have to again ask our-
selves, what is a “line” in hyperbolic geometry—in fact, what is the
hyperbolic plane? The honest answer is that we don’'t know; it is just
an abstraction. A hyperbolic “line” is an undefined term describing an
abstract concept that resembles the concept of a Euclidean line except
for its parallelism properties. Then how shall we visualize hyperbolic
geometry? In mathematics, as in any other field of research, posing the
right question is vital.?

The question of “visualizing” for us means finding Euclidean ob-
jects that represent hyperbolic objects since we are accustomed to see-
ing diagrams for Euclidean geometry. More precisely, this means find-
ing a Euclidean model for hyperbolic geometry. In Chapter 2, we
discussed the idea of models for an axiom system; there we showed
that the Euclidean parallel postulate is independent of the axioms for
incidence geometry by exhibiting three-point and five-point models of
incidence geometry that do not satisfy the Euclidean parallel postulate
and a four-point model that does. Here we want to know whether the

! William F. Orr has written the delightful short story “Euclid Alone,” about a scientist
who believed he had proved Euclidean geometry inconsistent; see http://www.cs,
kun.nl/ ~ freek/jordan/euclidalone.html. Some authors state flatly that hyperbolic geom-
etry has been proved consistent because it has Euclidean models; it does not occur to
them that the consistency of Euclidean geometry is a hypothesis, not a proven result.

1. L Rabi, the Nobel Prize-winning physicist, recounted that when he was a boy re-
turning home from school, his mother would usually say, “Did you ask any good gques-
tions in school today?” (My thanks ta Robert W, Fuller for this anecdote.)

v
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Euclidean parallel postulate is independent of a much larger system of
axioms, namely, the axioms for neutral geometry {e.g., the axioms for
a Hilbert plane plus Dedekind’s axiom}. We can show that it is, and
by the same method—exhibiting models.

Beltrami’s Interpretation

Since Beltrami’s work was based on differential geometry, we can only
sketch in broad terms what he accomplished. His 1868 paper Saggio di
Interpretazione della Geometria Non-Euclidea (“Essay on an Interpreta-
tion of Non-Fuclidean Geometry”) has been misrepresented by some
popular writers. They claim that he found a medel for a region of the
real hyperbolic plane only on a certain surface in Euclidean three-space
called the pseudosphere. He did find that. However, Beltrami also found
a model for the entire real hyperbolic plane as a disk in R2, where hy-
perbolic lines are represented by Euclidean chords but where the dis-
tance function is of course not the usual Euclidean distance.® Here is
an excerpt from the “sales talk” Beltrami felt he needed to give to be-
gin his groundbreaking study. It shows how controversial these notions
still were in 1868,

In recent times the mathematical public has begun to take an interest
in some new concepts which seem destined, if they prevail, to change
profoundly the whole complexion of classical geometry,

These concepts are not particularly recent. The master GAUSS
grasped them at the beginning of his scientific career, and although his
writings do not contain an explicit exposition, his letters confirm that
he had always cultivated them and attest his full support for the doc-
trine of LOBACHEVSKY.

Such attempts at radical innovation in basic principles are encoun-
tered not infrequently in the history of ideas. Today they are a natural
result of the critical spirit which accompanies all scientific investiga-
tion, When these attempts are presented as the fruits of consciéntious
and sincere investigations, and when they receive the support of a pow-
erful, undisputed authority, it is the duty of men of science to discuss
them calmly, avoiding equally both enthusiasm and disapproval. . . .

3 See p. 11 of the English translation in John Stillwell, Sources of Hyperbolic Geometry,
American Mathematical Society History of Mathematies Series, vol. 10, 1996, Beltrami’s
model will be explained in the following sections in a manner that does not require
knowledge of differential geometry.
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In this spirit we have sought, to the extent of our ability, to con-
vince ourselves of the results of LOBACHEVSKY’s doctrine; then, fol-
lowing the tradition of scientific research, we have tried to find a real
substrate for this doctrine, rather than admit the necessity for a new
order of entities and concepts.

By "a real substrate” Beltrami meant what we now call a Euclidean
model, and having such a model provides a proof of Metamathemati-
cal Theorem 1. However, Beltramni did not set out to prove the relative
consistency of hyperbolic geometry or the independence of the Euclid-
ean parallel postulate. His purpose was to show that Lobachevsky had
not introduced strange new concepts at all, but had merely described
the theory of geodesics on surfaces of constant negative curvature, con-
cepts that were familiar to differential geometers.

Eugenio Beltrami

Here is another excerpt, showing that Lambert and Taurinus were
on the right track:

One finds many analogies between.the geometries of the sphere and
the plane—where the straight lines correspond to geodesics, i.e., great
circles—analogies which have been noted in geometry for a long time.

. BELTRAMI’S INTERPRETATION 295

If other analogies, of different type but the same origin, have not been
given equal attention, it is probably because the idea of mapping flex-
ible surfaces onto one another has not become familiar until recently.

. . We can explain the passage from Euclidean to non-Euclidean
planimetry in terms of the difference between the surfaces of zero cur-
vature and the surfaces of negative curvature.

What Beltrami did was map an abstract complete surface of constant
negative curvature onto a disk in R?, sending the geodesics of that sur-
face onto chords of the disk, and then observe that the geometry was
hyperbalic,

The curvature of surfaces was first defined and studied in detail by
Gauss. He formulated the concept of a geometry intrinsic to a surface,
and his famous Theorema Egregium showed that his curvature was in-
trinsic (see Appendix A). Gauss’ student H. F. Minding studied surfaces
of constant negative curvature. He gave the example of the pseudo-
sphere, which is obtained by rotating a curve called a tractrix around
its asymptote. It looks like an infinitely long horn. A tractrix is char-
acterized by the property that the tangent line from any point on the
curve to the asymptote has constant length (see Figure 7.2}

Fractrix Pseudosphere

Figure 7.2

As was stated, the pseudosphere is not a model of the entire real
hyperbolic plane but only a model of a horocyclict sector in which
the boundary segments have been identified, Still, the pseudosphere
made a stunning impression in helping people visualize plane hyper-
bolic geometry at least locally. (Construction of the pseudosphere from

4 Horocycles will be discussed in Chapters 9 and 10.
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a horocyclic sector is analogous to taking a segment in the real
Fuclidean plane, taking two rays emanating from the endpoints of
the segment, perpendicular to and on the same side of if, and then
identifying those two rays to form an infinitely long cylinder with a
boundary.}

Curiously, in 1839 and 1840 when Minding and in 1857 when Co-
dazzi published their research on surfaces of constant negative curva-
ture, exhibiting the trigonometry on such surfaces, nobody noticed that
their formulas were the same as Lobachevsky’s until Beltrami made the
connection, influenced by Riemann’s idea of an abstract geometric sur-
face. In a subsequeni 1868 article,” Beltrami acknowledged Riemann'’s
ideas and applied them to derive three different models of n-dimen-
sional hyperbolic geometry. In the case where n = 2, one of those mod-
els is the disk model he exhibited in the previous paper, and the other
models {(which we will discuss later in this chapter) are now named
after Henri Poincaré, who studied them in 1882 and applied them to
complex function theory and to quadratic forms. In this second article,
Beltrami gives a differential-geometric proof of the result discovered
by Wachter in 1816 and shown independently by J. Bolyal and
Lobacheysky that a horosphere in hyperbolic three-space has a con-
stant curvature of zero, hence its geometry is Euclidean. Beltrami con-
cludes that the formerly mysterious non-Euclidean geometry of
Lobachevsky and J, Bolyai is now transparent from the viewpoint of
Riemann. He says:

Thus all the concepts of non-Euclidean geometry are perfectly matched
in the geometry of a space of constant negative curvature. It remains
to observe only that whereas the concepts of planimetry receive a true
and proper interpretation, because they are constructible on a real sur-
face, those which embrace three dimensions are susceptible only to an
analytic representation. . . . Experience does not seem to accord with
the results of this more general geometry. . . . It could be, however,
that the triangles we have measured and the portions of space we have
observed have been too small, just as measurements on a small por-
tion of the terrestrial surface are insufficiently precise to reveal the
sphericity of the globe.

5 Translated by Stillwell as “Fundamental Theory of Spaces of Constant Curvature,” ibid.,
pp. 35-62, Robert Osserman, in his review of Gray’s book on Bolyai, states that aver-
looldng the importance of Beltrami’s second article has been “a great historical wrong.”
See also John Milnor, 1982, “Hyperbolic Geometry: The First 150 Years,” Bulletin of
the American Mathematical Society (N.5.) 6: 9-24. ‘ '
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Fugenio Beltrami (1835-1899) made other important contributions to
differential geometry, analysis, and physics.® It was he who, in 1889,
resurrected the long-neglected work of Saccheri.

The Beltrami-Klein Model

Telix Klein (1849-1925), in an 1871 ariicle with the translated title
“On the So-called Non-Fuclidean Geometry,”? presented the Beltrami
disk model via projective geometry. His formulation is simpler, more
general, and more widely known, so the model has come to be named
after him. If you read Major Exercise 13 in Chapter 6 on the proj-
ective completion of the hyperbolic plane, you will understand the
motivation for the Klein model. Instead of constructing the projective
plane from the hyperbolic plane, Klein does the reverse. We will not
follow Klein exactly because our purpose is to construct a model
within a Euclidean plane, which itself has a completion to a proj-
ective plane. But the basic idea is Klein’s.

Felix Klein was a master of many branches of mathematics and a
very influential teacher, His history of nineteenth-century mathematics
shows how familiar he was with all aspects of the subject. Klein’s fa-
mous inaugural address in 1872, his Erlanger Programme, made the
study of groups of transformations and their invariants the key to geom-
etry (see Chapter 9); this work emerged out of his collaboration with
Sophus Lie. Klein’s lectures on non-Euclidean geometry, published in
1928 after his death, are masterpieces of exposition. His work on com-
plex function theory was a major mathematical contribution, summa-
rized in the four volumes he wrote jointly with Robert Fricke. Poin-
caré, who competed with Klein in the study of automorphic functions,
named the groups which occur in that theory after Klein; those groups
are still an active area of research today.

While Abel had shown that the general polynomial equation of de-
gree 5 could not be solved by radicals, Klein used the symmetry group
of the icosahedron and elliptic modular functions to solve it. In topol-
ogy, there is a compact nonorientable surface called the "Klein bottle”;
it cannot be embedded in Euclidean three-space without crossing it-
self. Another surface for the study of which he is famous is the “Klein

6 See, for example, http://www-groups.dcs.st-and.ac,uk/-—'history/Mathematicians/
Reltrami,html! and the references therein. ' :
7 Stillwell, ibid., pp. 63-111,
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" Felix Klein

quartic.” Klein also very actively worked to improve mathematical
teaching.®

For the Klein model, we fix once and for all a circle v in a Euclid-
ean plane (Cayley called y the “absolute”). If O is the center of v and
OR is a radius, the interior of y by definition consists of all points X
such that OX < OR. In Klein’s model, the points in the interior of Y
represent the points of the hyperbolic plane.

Recall that a chord of y is a segment AB joining two points A
and B on y. We wish to consider the segment without its endpoints,
which we will call an open chord and denote by A)(B. In Klein’s
model the open chords of vy represent the lines of the hyperbolic
plane. The relation “lies on” is represented in the ug_t_l_)al sense: P les
on A}(B means that P lies on the Euclidean line AB and T is be-
tween A and B. The hyperbolic relation “between” is represented by
the usual Euclidean relation “between.” This much is easy. The rep-
resentation of “congruence” is much more complicated, and we will

8 See http://wwwaroups.des.stand ac, ul/~history/Mathematicians/Klein.htrn] and the
references therein for more detail about the life and work of Klein. See the last section
of Chapter 8 for more on the Klein quartic.
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: discuss it later on in this chapter (The Projective Nature of the

Beltrami-Klein Model).
It is immediately clear from Figure 7.3 that the negation of Hilbert’s
Fuclidean parallel postulate helds in this representation,

Figure 7.3

Here the two open chords m and n through P are both parallel to
the open chord [—for what does “paralle]” mean in this representation?
The definition of “parallel” states that two lines are paraliel if they have
no point in common. In Klein’s representation, this becomes: Two open
chords are parallel if they have no point in common (in the definition
of “parallel,” replace the word “line” by “open chord”). The fact that
the three chords, when extended, may meet outside the circle v is
irrelevant-—points outside of y do not represent points of the hyper-
bolic plane. So let us summarize the Beltrami~Klein proof of the rela-
tive consistency of hyperbolic geometry as follows,

First, a glossary is set up to “translate” the five undefined terms
(“point,” “line,” “lies on,” “between,” and “congruent™} into their in-
terpretations in the Euclidean model (we have done this for the first
four terms). All the defined terms are then interpreted by “translating”
all oceurrences of undefined terms, For instance, the defined term “par-
allel” was interpreted by replacing every occurrence of the word “line”
in the definition by “open chord.” Once all the defined terms have been
interpreted, we have to interpret the axioms of the system. Incidence
Axiom 1, for example, has the following interpretation in the Klein
model.

IncipENCE Axiom 1 (KLEIN). Given any two distinct points A and
B in the interior of circle . There exists a unique open chord ! of v
such that A and B both lie on L.
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We must prave that this is a theorem in Euclidean geometry (and
similarly, prove the interpretations of all the other axioms}. Once all
the interpreted axioms have been proved to be theorems in Euclidean
geomelry, any proof of a centradiction within hyperbolic geometry
could be translated by our glossary into a proof of a contradiction in
Euclidean geometry. From our assumption that Euclidean geometry is
consistent, it follows that no such proof exists. Thus if Euclidean geom-
etry is consistent, so is hyperbolic geometry. '

We must now backtrack and prove that the interpretations of the
axioms of hyperbaolic geometry in the Klein mode] are theorems in Eu-
clidean geometry. Let us prove Axiom I-1 (Klein} stated above,

Proor:

Given A and B interior to ., Let AE be the Euclidean line through
them (see Figure 7.4). This line intersects v in two distinct points
C and D. Then A and B lie on the open chord C}(D, and, by Ax-
tom 1-1 for Euclidean geometry, this is the only epen chord on which
they both lie, «

Figure 7.4

A

Flgure 7.5 Limiting paralle] rays.
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In the second step of the proof, we used the line-circle continuity
principle of Euclidean geometry, which states that a line passing through
the interior of a circle intersects the circle in two distinct points. This
can be proved from the circle-circle continuity principle (see Major Ex-
ercise 1, Chapter 4}. Verifications of the interpretations of the other in-
cidence axioms, the betweenness axioms, and Dedekind’s axiom (if the
Fuclidean plane is real) are left as exercises; the congruence axioms
are verified later in this chapter.

One nice aspect of the Klein model is that it is easy to visualize

the limiting paralle! rays (see Figure 7.5). Let P be a point interior
to ¥ and not on the open chord A)(B. A and B are points on the cir-
cle and therefore do not represent points in the hyperbolic plane;
they represent ideal points and are called the ends of the hyperbolic
line represented by A){B. Then the limiting parallel rays to A) (B from
P are represented by the segments PA and PB with the endpoints A
and B omitted. It is clear that any ray between these limiting paral-
lel rays intersects the open chord A)(B, whereas all other rays ema-
nating from P do not. The symmetry and transitivity of limiting par-
allelism are utterly obvious in the Klein model, as is the fact that
every angle has a line of enclosure (given QPR, if A is the end of
= . —
PQ and B is the end of PR, then A)(B is the line of enclosure of
< QPR). Thus four fundamental theorems of axiomatic real hyper-
bolic geometry, whose proofs were fairly difficult, are perfectly clear
in the Klein model. Compare Theorem 6.2 and Major Exercises 2, 3,
and 8, Chapter 6.

Let us conclude this section by considering the interpretation in the
Klein model of “congruence,” the subtlest part of the model, One
method of interpretation is to use a system of numerical measurement
of angle degrees and segment lengths. Two angles would then be in-
terpreted as congruent if they had the same number of degrees, and
two segments would be interpreted as congruent if they had the same
length, The catch is that Euclidean methods of measuring degrees and
lengths cannot be used. If we use Euclidean length, for example, then
every line (i.e., open chord) would have a finite length less than or
equal to the length of a diameter of . This would invalidate the in-
terpretations of Axioms B-2 and C-1, which ensure that lines are infi-
nitely long.

We will further discuss the matter in this chapter (in the sections
Perpendicularity in the Beltrami-Klein Model and The Projective Na-
ture of the Beltrami-Klein Model), but first let's consider the Poincaré
models, in which congruence of angles is easler to describe.
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The Poincaré Models

A disk model due to Henri Poincaré (1854-1912) also represents points
of the hyperbolic plane by the points interior to a Euclidean circle +,
but lines are represented differently. First, all open chords that pass
through the center O of v (i.e., all open diameters | of y) represent
lines. The other lines are represented by open arcs of circles orthogonal
to y. More precisely, let 8 be a circle orthogonal to v {at each point of
intersection of vy and 8 the radii of y and 8 through that point are per-
pendicular}). Then intersecting & with the interior of y gives an open
arc m, which by definition represents a hyperbolic line in the Poincaré
model. So we will call Poincaré line, or “P-line,” either an open diam-
eter [ of ¥ or an open circular arc m orthogonal to y (see Figure 7.6},

A point interior to y “lies on” a Poincaré line if it lies on it in the
Euclidean sense. Similarly, “between” has its usual Euclidean inter-
pretation (for A, B, and C on an open arc coming from an orthogonal
circle_‘)c? with center P, B is between A and C if PB is between 133
and PC}.

The interpretation of congruence for segments in the Poincaré model
is complicated, being based on a way of measuring length that is dif-

Henrt Poincaré
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Figure 7.6

Figure 7.7

Tangent ray

Ordinary ray

Figure 7.8

ferent from the usual Euclidean way, just as in the Klein model (see
p. 320}, Congruence for angles has the usual Euclidean meaning, how-
ever, and this is the main advantage of the Poincaré model over the Klein
model.? Specifically, if two directed circular arcs intersect at a point A,
the number of degrees in the angle they make is by definition the num-
ber of degrees in the angle between their tangent rays at A (see Figure
7.7). Or, if one directed circular arc intersects an ordinary ray at A, the
number of degrees in the angle they make is by definition the number

? Technically, we say that the Poincaré model is conformal—meaning it represents an-
gles accurately—while the Klein model is not. Another example of a conformal model
is Mercator's map of the surface of the earth.

s Drwversdy - Mok Lissey
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of degrees in the angle between the tangent ray and the ordinary ray
at A (see Figure 7.8).

Having interpreted all the undefined terms of hyperbolic geometry
in the Poincaré model, we get (by substitution) interpretations of al}
the defined terms. For example, two Poincaré lines are parallel if and
only if they have no point in common. Then all the axioms of hyper-
bolic geometry get translated into statements in Euclidean geometry,
and it will be shown in the section Inversion in Circles, Poincaré Con-
gruence later in this chapter that these interpretations are theorems in
Euclidean geometry. Hence the Poincaré model furnishes another proof
that if Euclidean geometry is consistent, so is hyperbolic geometry.

The limiting parallel rays in the Poincaré model are illustrated in
Figure 7.9. Here we have chose<n_> [ to be an open diameter A){B; the
rays are circular arcs that meet AB at A and B and are tangent to this
line at those points. You can see how these rays approach ! asymptot-
ically as you move out toward the ideal points represented by A and B,

Figure 7.9 Limiting rays.

Figure 7.10 Divergent parallels,
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Figure 7.10 illustrates two parallel Poincaré lines with a common
perpendicular. The diagram shows how m diverges from [ on either
gide of the common perpendicular PO.

Figure 7.11 illustrates a Lambert quadrilateral. You can see that the
fourth angle is acute. By adding the mirror image of this Lambert quadri-
lateral, we get a diagram illustrating a Saccheri duadrilateral (Fig-
ure 7.12).

(&

Fignre 7.11 Lambert quadrilateral.

&

Figure 7,12 Saccheri quadrilateral.

You may be surprised that we have two different models of hyper-
bolic geometry, one due to Klein and the other to Poincaré. (There is
a third model, also due to Poincaré, and a fourth model on one sheet
of a hyperboloid in three-space will be described later in this chapter.}
Yet you may have the feeling that these models are not “essentially dif-
ferent.” In fact, these models are isomorphic in the technical sense that
one-to-one correspandences can be set up between the “points” and
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“lines” in one model and the “points” and “lines” in the other so as to
preserve the relations of incidence, betweenness, and congruence. Such
isomorphism is illustrated in Figure 7.13. We start with the Klein mode]
and consider, in Euclidean three-space, a sphere of the same radius sit-
ting on the plane of the Klein model and tangent to it at the origin. We
project upward orthogonally the entire Klein mode! onto the lower hemi-
sphere of this sphere; by this projection, the chords in the Klein model
become arcs of circles orthogonal to the equator, We then project stereo-
graphically from the north pole of the sphere onto the original plane,
The equator of the sphere will project onto a circle larger than the ope
used in the Klein model, and the lower hemisphere will project stereo-
graphically onto the inside of this circle. Under these successive trans-
formations, the chords of the Klein model will be mapped one-to-one
onto the diameters and orthogonal arcs of the Poincaré model. In this
way the isomorphism of the models may be established.

One can actually prove that all possible models of real hyperbolic
geornetry are isomorphic to one another, i.e., that the axioms for real
hyperbolic geometry are categorical. The same is true for real Euclid-
ean geometry. The categorical nature of real Euclidean geometry is es-
tablished by introducing Cartesian coordinates into the real Euclidean
plane. Analogously, the categorical nature of real hyperbolic geometry

Figare 7.13 Isomorphism of Klein and Poincaré imodels.
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is established by introducing Beltrami coordinates into the real ‘hypep
bolic plane (for which real hyperbolic trigonometry must first be
developed).i?

In the other Poincaré model mentioned here, the points of the hy-
perbolic plane are represented by the points of one of the Euclidean
half-planes determined by a fixed Euclidean line, if we use the Cartg-
sian model for the Euclidean plane, it is customary to rnakg the x-axis
the fixed line and then to use for cur model the upper half-plane con-
sisting of all points (x, y) with y > 0. Hyperbolic lines are represented

in two ways:

1. As rays emanating from points on the x-axis and perpendicular to

the x-axis; ‘
2. As semicircles in the upper half-plane whose center lies on the x-
axis (see Figure 7.14).

Figure 7.14 P-lines in upper half-plane model.

incidence and betweenness have the usual Euclidean interpretations.
This model is conformal also (degrees of angles are measured in the
Euclidean way). Measurement of lengths will be discussed later,

To establish isomorphism with the previous models, choose a point
E on the equator of the sphere in Figure 7.13 .and let I1 be the plane
tangent to the sphere at the point diametrically opposite :to E Stereo-
graphic projection from E to I maps the equator ontoh a line in H .and
the lower hemisphere onto the lower half-plane determined by this line.
Notice that the points on this line represent ideal points. Howevnler, one
ideal point is missing: The point E got lost in the ste.recagi.iap’l’uc pro-
jection, It is customary to imagine an ideal “point at ‘mflmty’ w that
corresponds to E; it is the common end of all the vertlcal'ray:s,.

Like Gauss, Henri Poincaré made profound discoveries in many
branches of mathematics and physics. He even started a new branch

1t Sea Chapter 10 as well as Borsuk and Szmielew (1960, Chapter 6).
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of mathematics, algebraic topology, inventing the fundamental group
and other concepts. Settling his famous conjecture about the three-
sphere is one of the seven millennium problems for the solution of
which the Clay Institute is offering a million-dollar prize. He was a pi-
oneer in the currently very active field of dynamics and chaos theory,
as well as in function theory in several complex variables. He used his
models of hyperbolic geometry to discover new theorems about auto-
morphic functions of a complex variable. There is a widely published
account of his two experiences, while on vacation, of suddenly realiz-
ing that the transformations he had used to define Fuchsian functions
and the arithmetic transformations of ternary quadratic forms are iden-
tical to those of hyperbolic geometry.!! This epiphany solidified the ac-
ceptance of hyperbolic geometry by the mathematics community and led
to very important furthef research still ongoing today (see the last section
of Chapter 8). Poincaré made major contributions to several branches
of mathematical physics, particularly celestial mechanics. He was nearly
a co-discoverer with Einstein of the theory of relativity in physics, Poin-
caré is also important as a philosopher of science (Chapter 8 has a dis-
cussion of his conventionalist philosophy of mathematics).1?

Perpendicularity in the Beltrami~Klein Model

The Klein model is not conformal. Congruence of angles is interpreted
differently from the usual Euclidean way and will be explained later in
this chapter. Here we will describe only those angles that are COTgru-
ent to their supplements, namely, right angles.

Let I and m be open chords of y. To describe when { L m in the
Klein model, there are two cases to consider:

CASE 1. One of [ and m is a diameter. Then ! L m in the Klein
sense if and only if I L m in the Euclidean sense (see Figure 7.15).

A CASE 2, Neither ! nor m is a diameter. In this case, we associate
-with I a certain point P() outside of y called the pole of ! and defined

1 sSee, for example, “Mathematical Creation,” in vol. 4 of The World of Mathematics,
J. R. Newman, ed., Allen & Unwin Ltd., London, 1960, pp. 2041-2050.

12 gee http://www-groups.des.st-and.ac.uk/~history/Mathematicians/Poincare.html,
http://Www.utm.edu/research/iep/p/poincare.htm and the references therein for more
detail about the life and work of Henrl Poincaré, who was the consin of the president

of France, Raymond Poincaré, Also see The Poincard Conjecture by D, O’Shea (Walker,
2007).
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m

Figure 7.15

as follows. Let t; and t; be the tangents to v at the endpoints of 1. Then
by definition P(I) is the unique point common to _tl and t; (f and ty
are not parallel because [ is not a diameter); see Figure 7.16. '
It turns out that ! is perpendicular to m in the sense of the Rlein
model if and only if the Euclidean line extending mm passes through the

pole of L.

This description of perpendicularity will be justified later. We can
use it to see more easily why divergently parallel IIines have a com-
mon perpendicular. We are given two parall.el lines that are not
asymptotically parallel. In the Klein model, this means that we are
given open chords I and m that do not intersect and (.iO not have ’a
common end. How do we find their common perpendicular k? Le:[ 8
discuss case 2, leaving case 1 as an exercise. By the above descrip-
tion of perpendicularity, if k were perpendicular to both I and m,
the extension of k would have to pass through the pole of I and the
pole of rt. Hence to construct k, we need only join these poles by a

-

P

Figore 7.16 m is Klein perpendicular to L
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Pl

P}

Figure 7.17 k is Klein perpendiciar to  and m.

’

Euclidean line and take k to be the open chord of v cut out by this
line (Figure 7.17}.13

We will use the language of the projective cornpletion, Major Ex-
ercise 13, Chapter 6, to describe the behavior of pairs of lines in the
Klein model. Let us call the points inside circle v (which represent all
the points in the hyperbolic plane) ordinary peints. We already called
the points on the circle y ideal points. Let us call the points outside v
ulira-ideal points. Finally, for every diameter of v, let us add the point
“at infinity” such that all the Euclidean lines perpendicular in the Eu-
clidean sense to this diameter meet in this point at infinity in the proj-
ective cornpletion of the Euclidean plane (see Chapter 2). These points
at infinity will also be called ultra-ideal. We can then say that two Klein
lines “meet” at an ordinary point, an ideal point, or an ultra-ideal point,
depending on whether they are intersecting, asymptotically parallel, or
divergently parallel, respectively. The ulira-ideal point at which diver-
gently parailel Klein lines { and m “meet” is the pole P(k) of their com-
mon perpendicular & (see Figure 7.17).

This language is suggestive of further theorems in hyperbolic geom-
etry. For exarnple, we know that two ordinary points determine a unique
line, and we have seen that two ideal points also determine a unique
line, the line of enclosure of Major Exercise 8, Chapter 6. We can ask
the same question about two points that are ultra-ideal or about two
points of different species. For example, an ordinary point and an ideal

B 1ft and m did have a common end {, the Euclidean line joining P(Z) and P(m) would
be tangent to y at {3, That is why Saccher! claimed that asymptotically paratiel lines
have “a common perpendicular at infinity,” and this he found repugnant,

A MODEL OF THE HYPERBOLIC PLANE FROM PHYSIcs 311

Ultra-ideal Ideal
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s \Ultra-ldeal
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~

Figure 7.18

or ultra-ideal point always determine a unique ordinary line, but two
ultra-ideal points may or may not (see Figure 7.18). Let us translate
back from this language, say, in the case of an ordinary point O and
an ultra-ideal point P(l) that is the pole of a Klein line I, What is the
Klein line “joining” O to P{I)? It is the unigue Klein line m through O
that is perpendicular in the sense of the Kiein model to the line ! {see
Figure 7.16). We leave the. other cases for exercises.

If you did most of the exercises in hyperbolic geometry in Chapter
6, deriving results without having reliable diagrams to guide you, the
Klein and Poincaré models must come as a great relief. It is a useful
exercise to take an absurd diagram like Figure 6.22, p. 274, and draw
those divergently parallel perpendicular bisectors of the triangle more
accurately in one of the models, It is amazing that J. Bolyal and
Lobachevsky were able to visualize hyperbolic geometry without such
models, especially since they worked in three dimensions. They must
have had non-Euclidean eyesight.

A Model of the Hyperbolic Plane from Physics

This model comes from the theory of special relativity, In Cartesian
three-space R?, with coordinates denoted x, y, and t (for time), dis-
tance will be measured by the Minkowski metric

ds? = dx? + dy?* — dt2.
Then with respect to the Minkowski metric, the surface of equation

xZ+y?r—tt=—1
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is a “sphere” centered at the origin O = (0, 0, 0) of imaginary radius
i="%/~1. (As was mentioned in Chapter 5, Lambert was the first to
wonder whether such a model existed.) In Euclidean terms, it is g two-
sheeted fiyperboloid (surface of revolution obtained by rotating the hy-
perbola t* — x* = 1 around the x-axis). We choose the sheet 3: t = 1
as our model. It looks like an infinite bowl (see Figure 7.19}. Analo-
gously with our interpretation of “lines” on a sphere in Chapter 2, Ex-
ercise 10(c), “lines” are interpreted to be the sections of % cut out by
planes through O; thus a “line” is one branch of a hyperbola on 3,
Here is an isomorphism of % with the Beltrami-Klein model A. The
plane ¢ = 1 is tangent to 2 at the point C = (0, 0, 1}. Let A be the unit
disk centered at C in this plane. Projection from O gives a one-to-one
correspondence between the points of A and the points of 3 (i.e., point
P of A corresponds to the point P’ at which ray oP pierées 3}. Simi-
larly, each chord m of A lies on a unique plane IT through O, and m

Figure 7.19 Isomorphism of Klein and hyperboloid models.
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corresponds to the section m' of = cut out by I1. This isomarphism of
incidence models can be used to interpret betweenness and congruence
on 3. Alternatively, they can be defined in terms of the measurement
of arc length induced on 5 by the Minkowski metric; then further ar-
gument is needed te verify that our correspondence is indeed an iso-
morphism of models of hyperbolic geometry. Another justification of %
as a model of the hyperbolic plane will be given analytically in Chap-
ter 10 (see the discussion of Weierstrass coordinates in the section Co-
ordinates in the Hyperbolic Plane, p. 508).

NOTE. From the point of view of Einstein’s special relativity theory,
¥ can be identified with the set of plane uniform motions, and the hy-
perbolic distance can be identified with the relative velocity of one mo-
tion with respect to the other. A glossary can be set up to translate
every theorem of hyperbalic geometry into a theorem of relativistic
kinematics, and conversely. See Yaglom (1979, p. 225 ff.). See also
Chapter 10 of Ramsay and Richtmyer (1995) for a more detailed dis-
cussion of this model and its relation to special relativity.

Inversion in Circles, Poincaré Congruence

In order to define congruence in the Poincaré models and verify the
axioms of congruence, we must study inversion in a Euclidean circle;
when interpreted in the model, this transformation turns out to be re-
tlection across a line in the hyperbolic plane. This theory is part of Eu-
clidean geometry and is called inversive geometry. It originated with
Apollonius in ancient Greece and was developed much further by Jakob
Steiner in the 1820s and by August Mo&bius in the 1850s, among
others.

Steiner was a purist about using only synthetic methods in geome-
try, considering that calculation replaces thinking whereas geometry
stimulates thinking. While our development will be primarily synthetic,
we will not be so austere as Steiner and will occasionally use coordi-
nate methods available to us in R2, This is justified by Major Exercise
8, Chapter 5, which showed, using the Pythagorean equation, that a
real Euclidean plane must be isomorphic to iR2. (Almost everything we
do works just as well in F%, where F is any Euclidean field.) We will

- use the results on similarity and circles proved for a real Euclidean

plane in the exercises toward the end of Chapter 5.
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DEFINITIOI“\'. Let v be a_circle of radius r, center O. For any point
P # O _the inverse P’ of P with respect to y is the unique point P’ g

— —
ray OF such that (OP) (OF') = r2? (see Figure 7.20),

‘The following properties of inversion are immediate from the
definition.

PRO‘POSITION 7.1. {a) P =P if and only if P lies on the circle of in-
version . (b) If P is inside v, then P’ is outside v if P is outside
then P’ is inside . {c) (P'}) = P. ’

PJ

Figure 7.20

PJ

Figure 7.21

DeFiNtTION. If TU is a chord of circle v which is not a diameter, then
the pole of TU is the point of intersection of the tangents to y at T and
U (see Figure 7.21). That point exists because TU is a transversal to
those tangents satisfying the hypothesis of Euclid V.

' The next two propositions tell how to construct the inverse point
with a straightedge and compass. '
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PRrROPOSITION 7.2, Suppose P # 0 is 1'1(1_s_i>de v. Let TU be the chord of
v through P, which is perpendicular to OP. Then the inverse P’ of P is
the pole of chord TU (see Figure 7.21),

PROOF:

Suppose the tangent to -y at T cuts OB at point P'. Right triangle
AOPT is similar to right triangle AQTP' (since they have <TOP in
common and the angle sum is 180°}. Hence corresponding sides are
proportional (Exercise 10, Chapter 5). Note that OT = r, so we get
(OP)/r = r/(OP’}, which shows that P’ is inverse to P. Reflecting
across ﬁ (Major Exercise 2, Chapter 3), we see that the tangent to
v at U also passes through P, so I is indeed the pole of TU. «

PrOPOSITION 7.3. If P is outside v, let Q be the midpoint of segment
OP. Let ¢ be the circle with center Q and radius OQ = QP. Then o cuts
v in two points T and U, BT and PU are tangent to vy, and the inverse
P’ of P is the intersection of TU and OP (see Figure 7.22}.

————

-~ ~

Figure 7.22

PRroor:

By the circle-circle continuity principle (Chapter 3}, o and y do meet
in two points T and U. Since < OTP and 4 OUP are inscribed in sexp_i;
circlesH of o, they are right angles {Exercise 16, Chapter 5}; hence PT
and PU are tangent to y. If TU meets OP in a point I, then P is the
inverse of P’ (Proposition 7.2); hence P’ is the inverse of P in . «

The next proposition shows how to construct the Poincaré line join-
ing two ideal points-—the line of enclosure of <TOU in Figure 7.23.

ProrosiTiON 7.4. Let T and U be points on +y that are not diametri-
cally opposite and let P be the pole of TU. Then we have PT = PU,
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Figure 7.23

LPTU J = {PUT, op A 'ﬁ?), and the circle § with center P and radius
PT = PU cuts y orthogonally at T and U (see Figure 7.23).

Proor:

By the definition of pole, <OTP and % QUP are right angles; so by
the hypotenuse-leg criterion, AOTP = AQUP. Thus PT = PU and
<OPT = 4.0PU. The base angles <{PTU and <¥PUT of the migosceles
triangle ATPU are then congruent, and the angle bisector PO is per-
pendicular to the base TU. The circle & is then well defined beﬁgause
I(?;l; = PU and & cufs y orthogonally by our hypothesis that PT and
FU are tangent to v. «

LemMma 7.1. Given that point O does not lie on circle 5. (a) If two
lines through O intersect & in pairs of points (P,, P;) and (Qq, Q), re-
spectively, then (613;) (OP,) = (00} (0Q,). This common product is
called the power of O with respect to & when O is outside 8, and mi-
nus this product is called the power of O when O is inside 8. {(b) If O
is outside § and a tangent to § from O touches 8 at point T, then (OT)?
equals the power of O with respect to 8.

Proor:

(a) Since angles that are inscribed in a circle and subtend the same
arc are congruent (Exercise 17, Chapter 5), we have

TP P10y = P40,
<):PleQl = ‘):P1P2Q1
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(see Figure 7.24). It follows that AOP;Q, and AOQ,P; are similar,

o that (OP;)/(00Q4) = (0Q,)/(OP5), as asserted. .
{b) Let C be the center of 8 and let line OC cut § at P; and P,, with

O = Py = C » P, By the Pythagorean theorem,
(OT)? = (0C)? — (CT)?
= (OC — CD)(OC + CT)
= (OC — CP,)(OC + CP)
= (OP,)(0P)

(see Figure 7.25.). «

Q
Py
Q;
Py
Figure 7.24
T
i)
P
O PIU |
Figure 7.25

PROPOSITION 7.5. Let P be any point that does not lie on circle vy
and that does not coincide with the center O of , and let & be a cir-
cle through P. Then & cuts vy orthogonally if and only if § passes through
the inverse point P’ of P with respect to .
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Proor:

Suppase first that 6 passes through P’. Then the center C of § lies
on the perpendicular bisector of PP’ (Exercise 17, Chapter 4); hence
CO = CP (Exercise 22, Chapter 4) and O lies outside §. Therefore,
there is a point T on & such that the tangent to & at T passes through
O (Proposition 7.3). Lemma 7.1(b) then gives (OT)? = (OP)(OP’} =
rZ, so that T also lies on vy and § cuts y orthogonally.

Conversely, let § cut y orthogonally at points T and U, Then the
tangents tg_)& at T and UJ meet at O, so that O lies outside 8. It fol-
lows that OP cuts 8 again at a point Q. By Lemma 7.1(b}, we have
r2 = (OT)? = (OP}(0Q), so that Q = P’, the inverse of P in . <

CoROLLARY. Let P be as in Proposition 7.5. Then the locus of the cen-
ters of all circles & through P orthogonal to vy is the line I, which is the
perpendicular bisector of PP'. If P is inside v, then ! is a line in the ex-
terior of y. Conversely, let [ be any line in the exterior of v, let C be
the foot of the perpendicular from O to I, let § be the circle centered
at C which is orthogonal to y (constructed as in Proposition 7.3), and
let P be the intersection of § with OC; then [ is the locus of the cen-
ters of all ‘circles orthogonal to v that pass through P.

Proor:

"Any § orthogonal to ¥ must pass through P and P', so its center C
must be equidistant from P and P’. The locus of all such C is the
perpendicular bisector of PP’. As we have seen, the center of any
circle 8 orthogonal to vy lies outside . We leave the converse as an
easy exercise, <

Proposition 7.5 can be used to canstruct the P-line joining two points

P and Q inside y that do not lie on a diameter of +. First, construct the .

inverse point P', using Proposition 7.2. Then construct the circle § de-
termined by the three noncollinear points P, @, and P/ (use Exercise 10,
Chapter 6}. By Proposition 7.5, § will be orthogonal to v; intersecting 8
with the interior of vy gives the desired P-line. This verifies the interpre-
tation of Axiom I-1 for the Poincaré disk model. The verification is even
simpler for the Poincaré upper half-plane model: Given two points P and
Q that do not lie on a vertical ray, let the perpendicular bisector of Eu-
clidean segment FQ cut the x-axis at C, Then the semicircle centered at
C and passing through P and Q is the desired P-line,

We could also have verified the interpretations of the incidence ax-
foms, the betweenness axioms, and Dedekind’s axiom by using iso-
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morphism with the Klein model (where the verifications are trivial).
The advantage of the argument we gave is that it provides an explicit
construction, and constructions are a main theme of this section.

We turn now to the congruence axioms. Since angles are measured
in the Euclidean sense in the Poincaré models, the interpretation of Ax-
jom C-5 is trivially verified. Consider Axiom C-4, the laying off of a
congruent copy of a given angle at some vertex A (for the disk model).
If A is the center of v, the angle is formed by diameters and the lay-
ing off is accomplished in the Euclidean way. If A is not the center O
of v, then the verification is a matter of finding a unique circle 8 through
A that is orthogonal to v and tangent to a given Euclidean line I that
passes through A and not through O (since the tangents determine the
angle measure), By Proposition 7.5, 8 must pass through the inverse
A’ of A with respect to . The center C of § must lie on the perpendi-
cular bisector of chord AA' (Exercise 17, Chapter 4); call this bisector
m. If 8 is to be tangent to [ at A, then C must also lie on the perpen-
dicular 11 to [ at A. So 8 must be the circle whose center is the inter-
section C of m and n and whose radius is CA (see Figure 7.26).

To define congruence of segments in the disk model, we introduce
the following definition of length.

DEFINITION. Let A and B be points inside  and let P and Q be the
ends of the P-line through A and B, We define the cross-ratio (AB, PQ)

by

(AP) (D)
(BP)(AQ)

(AB, PQ) =

Figure 7.26
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where, for example, AP is the Euclidean length of the Euclidean seg.
ment AP). We then define the Poincaré length d{AB) by

d(AB) = [log(AB, PQ)|.

ImpoRTANT REMARK. This definition makes no sense for Euclidean
planes coordinatized by an arbitrary Euclidean field F because there ig
no log function defined for such fields as there is for any BEuclidean
subfield of i, The only reason for introducing the log here is for the
length to be additive, as is customary and as will soon be proved. The
logarithm function converts multiplication into addition, but why is it
necessary to do that? We could just as well have length be multiplica-
tive, as it would be if we simply used the cross-ratic and dispensed
with the logarithm, with one proviso: The order in which we write the
letters (AB, PQ) matters. It doesn’t matter when we bring in the ab-
solute value of the log, as we will soon show. So to use (AB, PQ) as
our multiplicative P-length for P-segment AB, we must specify that on
the circular arc which is the P-line joining A to B, A lies between P
and B. Then B lies between A and Q, and by this convention the mul-
tiplicaﬁve P-length is also equal to (BA, QP), as a little algebra shows,
The multiplicative length is denoted u(AB).'* We leave it to the reader
to verify that everything we do with the additive version of P-length works
equally well with the multiplicative definition just given when the for-
mulas are adjusted appropriately; hence our results are also valid for ar-
bitrary Eunclidean fields.

P-length d(AB) does not depend on the order in which we write P
and Q: If (AB, PQ) = x, then we have (AB, QP) = 1/x, and therefore
llog(1/x)| = [—log x| = |log x|. Furthermore, since (AB, PQ) = (BA, QP),
we see that d(AB) also does not depend on the order in which we write
A and B.

We may therefore interpret the Poincaré segments AB and CD to be
Poincaré-congruent if d(AR) = d(CD). With this interpretation, Axiom
C-2 is immediately verified.

Suppose we fix the point A on the P-line from P to Q and let point
B move continuously from A to P, where Q* A * B + P, as in Figure
7.27. The cross-ratio (AB, PQ) will increase continuously from 1 to o
since (AP)/ (AQ) is constant, BP approaches zero, and BQ approaches
ﬁ. If we fix B and let A move continuously from B to Q, we get the

' Robin Hartshorne introduced this very valuable notion, which will be exploited in Ap-
pendix B—see his Section 39, He described the cross-ratio as “magic” because one
cannot visualize it geometrically, It is the fundamental invariant for coordinate pro-
jective geometry (Exercise 68, Chapter 9).
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! —>
same result. It follows immediately that for any Poincaré ray CD, there

is a unigue point E on Ef) auch that d(CE) = d(AB}, where A and B
are given in advance. This verifies Axiom C-1.

Figure 7.27 .

REMARK. The argument just given is valid only for the real Euclid-
ean plane because it appeals to the intermediate value theorem for con-

. Hnuous functions of a real variable. An argument that works for arbi-

trary Euclidean planes will be given after the sublemma following

Theorem 7.1. - .
We next verify Axiom C-3. This will follow immediately from the

additivity of the Poincaré length, which asserts that ifA+*C+Bin th.e ‘
sense of the disk model, then d(AC) -+ d(CB) = d(AB). To prove t%ns
additivity, label the ends so that Q * A «+ B + P. Then the cross-ratias
(AB, PQ), (AC, PQ), and (CB, PQ) are all greater than 1 (because AP >
Eﬁ, ETd > m, etc.); their logs are thus positive, and we can drop the
absolute value signs, We have

d(AC) + d(CB) = log(AC, PQ) + log(CB, PQ)
= log[(AC, PQ}(CB, PQ)}],

but (AC, PQ}(CB, PQ) = (AB, PQ), as can be seen by canceling terrr.ls.
Finally, to verify Axiom C-6 (S8AS), we must study the effect of in-
versions on the objects and relations in the disk model.

DEFINITION. Let O be a point and k a positive number. 'I“he dilatiorn
with center O and ratio k is the transformation of. the Eut:hdein pl@g
that fixes O and maps a point P # O onto the unique point P* on C?P
such that OP* = k(OP) (so that points are moved radially from O a dis-

tance k times their original distance).

LoMMma 7.2. Let & be a circle with center C # O and radius s Unde:
the dilation with center O and ratio k, 8 is mapped onto the circle 8
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with center C* and radius ks. If Q is a point on 8, the tangent to §* at
Q* is parallel to the tangent to & at Q.

PRroor:

Choose rectangular coordinates so that O is the origin. Then the di-
lation is given by (x, ¥) — (kx, ky}. The image of the line having
equation ax + by =c¢ is the line having equation ax + by = ke;
hence the image is parallel to the original line, In particular, CO is
parallel to C*Q*, and their perpendiculars at Q and Q*, respectively,
are also parallel. If & has equation (x — ¢;)2 + (y — )2 = 52, then
6* has equafion (x — ke1)® + (v — kep)? = (ks)?, from which the
lemma follows. «

REMARK. The argument just given uses analytic geometry for the first
time, It is quicker than a synthetic argument, which can also be given,

PROPOSITION 7.6. Let vy be a circle of radius r and center 0, § a cir-
cle of radius s and center C. Assume that O lies outside §; let p be the
power of O with respect to 8 (see Lemma 7.1), Let k = r2/p. Then the
Image &’ of & under inversion in y is the circle of radius ks whose cen-
ter is the image C* of C under the dilation from O of ratio k. If P is
any point on § and P’ is its inverse in v, then the tangent t' to 8’ at P’
is the reflection across the perpendicular bisector of PP’ of the tangent
to 8 at P (see Figure 7.28).

Proor:

Since O is outside §, 63 either cuts § in another point Q or is tan-
gent to § at P (in which case let Q = P}, Then

opr _OFf 0P _r

0@ ©OQ OF p°

which shows that P’ is the image of Q under the dilation from O of
ratio k = r%/p. Hence §* = §'. By Lemma 7.2, the tangent t' to &’
at P’ is parallel to the tangent u to § at Q. Let ¢ be tangent to § at
P. By Proposition 7.4, t and u meet at a point R such that <RQP =
<RPQ. Then t and t' meet at a point $ such that <SP'p == LSPP’
by transitivity of congruence and corresponding angles of parallel
lines in a Euclidean plane. Since APSP’ is an isosceles triangle (base
angles are congruent), S les on the perpendicular bisector of PP’.
Hence t' is the reflection of t across this perpendicular bisector. <
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Figure 7.28

r '
CoroiLARY. Circle § is orthogonal to circle y if and only if § is mapped
onto itself by inversion in .

Proor:

If 8 is orthogonal to v and P lies on &, then p = (OP}(OP") = r?
(Proposition 7.5 and Lemma 7.1}, sc k=1 and § = &', Coqverseiy,
if 8 =48', then p~r? and § passes through the inverse P" of P in
¥, $0 that by Proposition 7.5, § is orthogonal to v. <

LemMMa 7.3, Let O be the center of circle v, let P and Q be two points
that are not collinear with O, and let P’ and Q' be their inverses in V.
Then APOQ is similar to AQ'OP’ (Figure 7.29).

Proor:

The triangles have €POQ in common and we have (O_P) (or") =
r2 = (0Q){0Q’). Thus the SAS similarity criterion is satisfied (Ex-
ercise 12, Chapter 5). < -

Qf

Figure 7.29
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PROPOSITION 7.7, Let I be a line not passing through the center O of
circle v, The image of ! under inversion in -y is a punctured circle with
missing point O. The diameter through O of the completed circle 8 is
(when extended) perpendicular to ! (see Figure 7.30).

Proor:

Let A be the foot of the perpendicular from O to I, P be anv other
point on /, and A’ and P’ their inverses in v. By Lemma 7.3, AQP’A’
is similar to AQAP. Hence €0P'A’ is a right angle, so that P’ must
lie on the circle 8 having OA’ as a diameter (Exercise 18, Chapter
5). Conversely, if we start with any point P/ on 8 other than O and
let OP’ cut Iin P (using Fuclid V), then reversing the above argu-
ment shows that P’ is the inverse of P in y. <

Figure 7,30

NOTE. A line through O is transformed into itself by inversion in 7,
by the definition of inversion.

PrOPOSITION 7.8. Let 8 be a circle passing through the center O of
y. The image of 8 minus O under inversion in vy is a line ! not through
0; I is parallel to the tangent to & at O.

Proor:

Let A’ be the point on & diametrically opposite to O, let A be its in-
verse in v, and let [ be the line perpendicular to OA at A (see Fig-
ure 7.30). By the proof of Praposition 7.7, inversion in ¥ maps !

onto & mim;s Q; hence, it must map & minus O onto ! (Proposition
7.1{c)). «
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Reflection in a Fuclidean line preserves the magnitude but reverses
the sense of directed angles (angles whose rays have a specified or-
der). The next proposition generalizes this to inversions.

ProposiTIoN 7.9, A directed angle of intersection of two circles is
preserved in magnitude but reversed in sense by an inversion. The
same applies to the angle of intersection of a circle and a Hne or of two
lines.

PRrRoOF!

Suppose that circles & and o intersect at point P with tangents [ and
m there, Let P’ be the inverse of P in vy, let 8" and ¢’ be the im-
ages of 8 and o under inversion in v, and let I and m' be their re-
spective tangents at P’, The first assertion then follows from the fact
that I’ and m' are the reflections of ! and m across the perpendic-
ular bisector of PP’ (Proposition 7.6). The other cases follow from
Propositions 7.7 and 7.8. <

The next proposition shows that inversion preserves the cross-ratio
used to define Poincaré length.

ProrositioN 7.10. H A, B, P, Q are four points distinct from the
center O of v and A’, B/, P!, Q' are their inverses in 7y, then we have
(AB, PQ) = (A'B’, P'Q").

Proor:
By Lemma 7.3, we see that (AP)/(0A) = (A'P')/ (OP’) and that
(AQ)/(0A) = (A'Q7)/(0Q’), whence:

X6 AP OA 09 AT

® - 3570k m - or A
Similarly,

BQ oOr BQ
(2) —_ = e —r,

BP 0Q' B
Multiplying equations (1) and (2} gives the result. <

ProrosiTioN 7.11. Let circle § be orthogonal to circle y. Then in-
version in 8 maps y onto y and maps the interior of y onto itself. In-
version in.§ preserves incidence, betweenness, and congruence in the
sense of the Poincaré disk model inside v,
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Proor:

The corollary to Proposition 7.6 tells us that v is mapped onto it-
self. Suppose that P is inside v and P’ is its inverse in 8. Let C be
the center and s the radius of §. Let 61% cut y at Q and Q’, so that
by Proposition 7.5 (CQ) (CQ") = s2 = (CP) (CP"). Since P lies between
Q and Q', we have the inequalities CQ < CP < CQ’. Taking the re-
ciprocal reverses inequalities, and we get s2/CQ > s2/CP > s2/CQ’,
which is the same as CQ' > CP’ > CQ. Thus P’ lies between Q and
Q' and therefore is inside 7.

By Propositions 7.6, 7.8, and 7.9, inversion in 8 maps any circle
o orthogonal to y either onto another circle o orthogonal to v or onto
2 line o’ orthogonal to v, i.e., a line through the center O of y. The
line o joining O to C is mapped onto itself, and any other line o through
0O is mapped onto a circle &' punctured at C, which is orthogonal to
v (by Propositions 7.7 and 7.9). In all these cases, the above argu-
ment shows that the part of o inside ¥ maps onto the part of ¢’ in-
side 7y, Hence P-lines are mapped onto P-lines,

If A and B are inside y and P and Q are the ends of the P-line
through A and B, then inversion in 8 maps P and Q onto the ends of
the P-line through A’ and B’, By Propositien 7.10, d(AB) = d(A'B"), so
cangruence of segments is preserved, Proposition 7.9 shows that con-
gruence of angles is also preserved. Furthermore, Poincaré between-
ness is also preserved because B is between A and D if and only if A,
B, and D are Poincaré-collinear and d(AD) = d(AB) + d(BD). «

NOTE. If, in the statement of Proposition 7.11, 8 is taken to be a line
through O and “inversion in 6” is replaced by “reflection across 8,”
then the conclusion of Proposition 7.11 still holds—see Major Exercise
Z, Chapter 3. Proposition 7.11 shows that in the P-model, inversion is
the interpretation of hyperbolic reflection for P-lines that are not di-
ameters of vy, Combining these two cases of P-lines, we cail either of
these two transformations P-reflections.

THEOREM ON THE CONSTRUCTION OF P-REFLECTIONS. For any two
points A, B in the disk, a unique P-line § can be constructed such that
the P-reflection in'é interchanges A and B. The intersection of & with
the P-line joining A and B is thejr P-midpoint,

Proor:

Let P, Q be the ends of the P-h’ne 1 thljoug(ll)A and B. Case 1: [is an
arc of a circle o L 7. Consider the E-lines AB and lg_)Q Case 1.1: They
meet in a point C (necessarily outside both circles). Propositions 7.3
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and 7.4 tell us how to construct circle § centered at C such that
o | 8. Then inversion in & interchanges A, B and P-, Q (Corollary, p.
323), and since y passes through the 8-invgrse poimts P, Q, v L &
{(Proposition 7.5). Thus P-reflection in the P-line m cut .out by 6 does
the job. Case 1.2 They are parallel. Then the E-perpendicular bisector
of the chord PQ cuts out a diameter m of -y, passes through the cen-
ter of ¢ and is also the perpendicular bisector of chord AB of o (Ex-
ercise 17, Chapter 4}, Hence reflection in the P-line m d0e§ the job.
Case 2. l is a diameter of v. Case 2.1, Neither A nor B is O (cen-
ter of 7). Construct the inverses A, B’ in y (Propositior‘l 7.2). Then
the circles, o, v with diameters AA’, BB’ resp. cut out P-lines thm‘ugh
A, B resp. perpendiculat to [ Let A", B” be ends. of thfse"P—hnes
on the same side of I, Case 2.1.1. The E-line e joining A", B m'eets
the extension of ! in a point C. As in Case 1.1, conSFruc‘t the circle
& centered at C such that v 1 8 and let m be the P-line it cu?s out.
Then P-reflection in the P-line mt does the job. Caselz.l,z. e is par-
allel to the extension of I, Then the E-perpendicular .blsector of chlord
A'B" cuts out a diameter m of -y, reflection in whu?,h does the job.
Case 2.2 A = O, Similar to Case 2.1.1 using the diameter perpen-

dicular 1o [ instead of circle o

‘We come finally to the verification of the SAS axiom. We are given
two Poincaré triangles AABC and AXYZ inside vy such that €A = X,
d(AC) = d(XZ), and d(AB) = d(XY) (Figure 7.31). We must prove that
the triangles are Poincaré-congruent, We first reduce to t'he case where
A = X = O (the center of vy): By the theorem ju?,t proxlred, '1f A # Q, there
is a unique circle £ orthogonal to 7y such that mve.rsmn'm's maps A Btg
O; by Proposition 7.11, inversion in £ maps the P01nFare triangle AA
onto a Poincaré-congruent Poincaré triangle AOB’C’. In the same way,

Figure 7.31 Proof of SAS for the Poincaré model.
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Poincaré triangle AXYZ can be mapped by inversion onto a Poincaré-
congruent Poincaré triangle AOY'Z’ (see Figure 7.31).

LrMma 7.4. If d(OB) = d, then OB = r{ed — 1}/(e + 1), where ¢ is
the base of the natural logarithm and r is the radius of Y.

Proor:

If P and Q are the ends of the diameter of y through B, labeled so
that Q * O » B + P, then d = log(OB, PQ). Exponentiating both sides
of this equation gives

=(|3]
~
+
Q
ws]

ed = (OB, PQ) =

3|l
23|

and solving this equation for OB gives the result. <
Cororrary. OB is P-congruent to OC iff they are Eunclidean-congruent.

Returning to the proof of SAS, we have shown that we may assume
that A=X =0, . By Lemima 7.4 and the SAS hypotliesis, we see that
OB = 0Y, OC = 0Z, and <BOC = LYOZ. Hence a suitable Euclidean ro-
tation about O—combined, if necessary, with reflection in a diameter—
will map Euclidean triangle AOBC cnto Euclidean triangle AOYZ. This
transformation maps vy onto itself, and the orthogonal circle through B
and C onto the orthogonal circle through Y and Z, preserving Poincaré
length and angle measure. Hence the Poincaré triangles AOBC and
AQYZ are Poincaré-congruent. «

NOTE. We have verified SAS in the Poincaré disk model by superpo-
sition, which was Euclid’s idea! More precisely, we verified SAS
by “rigidly moving” one triangle onto the other via a sequence of

P-reflections. In fact, we have proved the following strong result (us-
ing Proposition 7.11).

THEOREM 7.1. Two triangles in the Poincaré disk model are
P-congruent if and only if one can be mapped onto the other by a suc-
cession of P-reflections.

Let us call a transformation of the Poincaré disk model which is a
composition of P-reflections a P-rigid-motion. Such a transformation pre-
serves incidence, betweenness, and P-congruence in the model. These
motions will be studied in greater detail in Chapter 9. For now, we
need the following result.
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SUBLEMMA. (a) For any two points A, B in the Poincaré disk model,
there is a P-rigid-motion sending A to B. (b) For any three noncolhnear
points A iB there is a P-rigid-motion fixing A and sending P-ray AB
to P-ray AB'.

Proor:

(a) In fact, we previously proved that there is a P-reflection that in-
terchanges A and B. (b) f A # O, let R be the P—reﬂectlon ﬂdiug
A to O and let R(B} = C, R(B’} = C'. The P- -rays AR and AB’ are
mapped by R to P-rays emanating from O, which are just part of
Euclidean rays emanating from O that form a Euclidean angle with
vertex O. If § is the Euclidean reﬂecﬁc}n across the Fuclidean bi-
sector of <COC’, then S interchanges o¢ and OC’.'_I‘_I;en the P-rigid-
motion RSR fixes A and sends P-ray AB to P-ray AR’. «

Let us use this sublemma to give a verification of Axiom C-1 for
the P-model, which does not appeal to continuity (hence is valid in ar-
hitrary Euclidean planes, not just the real Euclidean plane). We are
given a P-segment AB, a point A’, and a P-ray r emanating from A’
C-1 requires us to find-a point B’ on r such that we have AB = A'B’
(P-congruence). By (a), there is a P-rigid-motion T sending A Eo_) A', By
(b); there is a P-rigid-motion § fixing A’ and sending P-ray T(AB) to r.
Let B = ST(B). Then AB = A’B’ because P-rigid-motions map any P-
segment onto a P-congruent P-segment (a consequence of Proposition
7.10 and the corollary to Lemma 7.4). <

We have verified the axioms for a Hilbert plane in the Poincaré
disk model. It follows that all propositions and theorems valid in
Hilbert planes are valid in this model. It is, however, an interesting
exercise to verify some of those propositions in the model by direct
Euclidean constructions. For example, in the sublemma above, the
P-rigid-motions mentioned can actually be taken to be P.reflections.
We’ve shown that for part (a). For part (b), we can use the
P-reflection across the P-angle-bisector t of P-angle <{BAB’. In Exer-
cise P-4 you are asked to construct ¢ {we did that in the special case
where A = Q).

It remains to verify Hilbert’s hyperbolic axiom of parallels for the
Poincaré disk model. Just use the isomorphism with the Klein model,
where the verification is trivial. For a direct construction of the
P-limiting parallel rays, see Exercise P-10.

Having verified that the Poincaré disk model is indeed a model of
plane hyperbolic geometry within a Euclidean plane, we have proved
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Metamathernatical Theorem 1: If plane Euclidean geometry is consistent,
then so is plane hyperbolic geometry 15
Let us next study what P-circles look like in the Poincaré disk model.

ProrosiTion 7.12. A P-circle is a Fuclidean circle in the disk, and
conversely, but the P-center differs from the Euclidean center except
when the center is O.

PRoOF:

Consider first the case where the P- or E-center of the circle is Q.
The result follows from the corollary to Lemma 7.4. Next, suppose
the P-center of the P-circle 8 is A # O. Let R be the P-reflection in-
terchanging A and O. Then R(8) is a P-circle with P-center O, hence
a Euclidean circle with E-center O by the first case. By Proposition
7.6, 8§ = R(R(8)) is a Euclidean circle with Euclidean center C not
equal to A (Proposition 7.6 tells us that C is the image of O under
a certain dilation from the center A’ of &, not the image A of O un-
der R).

Conversely, let & be a Euclidean circle inside the disk, having
Euclidean center 0" # O. Let the line m joining O to O’ intersect 8
at points A, B (m is both a P-line and an E-line}. Let M be the
P-midpoint of AB and let R be the inversion (P-reflection} inter-
éhanging M and O. Then R(8) is a Euclidean circle with diameter
R{A)R(B). Since O is the P-midpoint of this diameter, it is also the
Euclidean midpoint {corollary to Lemma 7.4), so O is the Euclidean
center of R(5), and R(8) is a P-circle with P-center O. Hence we see
that 8 = R(R(8)) is a P-circle with P-center M. <

Cororrary. The circle-circle continuity principle holds in the Poin-
caré disk model within a Euclidean plane.

Proox:

P-circles are Euclidean circles inside the disk, and the inside of a
circle is the same. So the result follows from that principle in the
Euclidean plane. «

NOTE. This corollary furnishes a proof that the circle-circle (hence
line-circle) continuity principle holds in all hyperbolic planes once it is

!5 The converse to this metatheorem has also been proved recently—see Project 1 and
the application of polar ceordinates in Chapter 10. :
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proved that every hyperbolic plane is isomorphic to a Poincaré disk
model within a Euclidean plane. Hartshorne, Section 43, proves the lat-
ter using Hilbert's Euclidean field of ends. it would be interesting to
have a direct, synthetic proof of those principles.

CONSTRUCTION OF THE P-CIRCLE wiTH GIVEN P-CENTER AND
P-raDIGS, AS WELL AS ITs E-CENTER. Given distinct points A, B in
the disk. We wish to construct the P-circle ¢ with P~center A passing
through B. We have shown that it is a Euclidean circle, so we need
only find its E-center C and construct the E-circle £ with E-center C and
E-radius CB. If A = O, then C = O, so suppose A # O. Then the diam-
eter d of y through A is a P-line through the P-center of £ and so must
be orthogonal to &; that means it passes through the E-center C of &.
If B does not lie on d, construct the E-circle 8§ orthogonal to <y through
A and B (the E-circle through A, B, and A"); it cuts out the P-line join-
ing A to B, which cuts out a P-diameter of £, so ¢ is orthogonal to 8
at B. That means the tangent ¢ to § at B passes through C. Hence C is
the point where d meets t (see Figure 7.32).

Suppose B lies on d. Construct the P-perpendicutar 8 to d at A: It
is cut out of the disk by the E-circie through A and A" whose center is
the midpoint of AA’. Construct the inverse B’ of B in & (as in Propo-
sitionn 7.3). Then B’ has the same P-distance from A as B, and so lies
on £. Hence the E-center C of ¢ is the E-midpoint of BB'. «

Figure 7.32 Construction of E-center C of P-circle .
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EvcLIDEAN CHARACTERIZATION OF THE P-CENTER. Since P-circles
are just B-circles & inside -y, we can ask what the P-center of £ is from
the Euclidean point of view. In any Hilbert plane, the center of a cir-
cle ¢ is characterized as the point of concurrence of all the lines that
intersect £ orthogonally, Knowing the interpretation of “line” in the
Poincaré model, we see that the P-center A of £ is the point of con-
currence inside y of all E-circles that intersect both ¢ and vy orthogo-
nally and of the unique diameter of v, which intersects £ orthogonally.
(Those E-circles and that diameter extended have another point of con-
currence outside y—namely, the inverse A’ of A in y.)

We will now apply the Poincaré model to determine the formula
of J. Bolyai and Lobachevsky for the angle of parallelism. Let I1{d)
denote the number of radians in the angle of parallelism corresponding
to the Poincaré distance d (the number of radians is /180 times the
number of degrees).

THEOREM 7.2. In the Poincaré disk model, the formula for the angle
of parallelism is e~ == tan[TI(d)/2].16

In this formula, e is the base for the natural logarithm. The trigono-
metric tangent function is defined analytically as sin/cos, where the
sine and cosine functions are defined by their Taylor series expansions
(p. 488, Chapter 10). The tangent is not to be interpreted as the ratio
of opposite to adjacent for a right triangle in the hyperbolic plane!

Proor:

By definition of the angle of parallelism, d is the Poincaré distance
d{PQ) from some point P to some Poincaré line I, and T{d) is the
number of radi%s in the angle that a limiting parallel ray to I through
P makes with PQ. We may choose [ to be a diameter of v and Q to
be the center of v, so that P lies on the perpendicular diameter, A
limiting parallel ray through P is then an arc of a circle § orthogo-
nal to y such that § is tangent to  at one end =, The tangent line
to 8 at P therefore meets [ at some interior point R that is the pole
of chord P3; of 8, and, by Proposition 7.4, <RP2 and <RXP both
have the same number of radians 8 (see Figure 7.33). Let « = II(d),
which is the number of radians in <RPQ. Since 282 is the number
of radians in {PRQ (exterior to APRY), we get @ + 28 = /2, or

16 Theorem 7.2 uses real numbers, of course. Hartshorne has a version of it, valid in ar-
bitrary hyperbolic planes, which uses his multiplicative length and his algebraic ver-
sion of the tangent function: See his Proposition 41.9.
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B = w/4 — «/2. The Euclidean distance PQ is r tan B, so that, by
the proof of Lemma 7.4,

pd = 1+tan B

T 1—tan B’
Using the formula for g and the trigonometric identity

¢ & _ a)_ 1—tan{a/2)
an ( 1 2,) 1+ tan(a/2)

we get the desired formula after some algebra. «

-2

Figure 7.33 Bolyai-Lobachevsky formula proved for Peincaré model.

We have developed only enough of the geometry of inversion in cir-
cles to verify the axioms in the Poincaré disk model. You will find fur-
ther developments in the exercises and in Chapters 9 and 10. Inversion
has many other applications in geometry, notably in Feuerbach’s farnous
theorem on the nine-point circle of a triangle, the problem of Apcllonius
(Hartshorne, Section 38), and the construction of linkages that change lin-
ear motion into curvilinear motion (see Kay, 1969, and Pedoe, 1970).

The Projective Nature of the Beltrami-Klein Model

Although the .Klein model is also located on an open disk in a Euclid-
ean plane, it can best be understood via the projective completion of
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that 