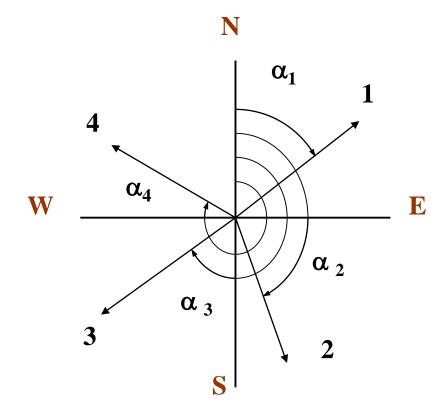
Azimuths and Coordinates

The Azimuth

It represents the orientation (direction) of objects in the horizontal plane (2D).



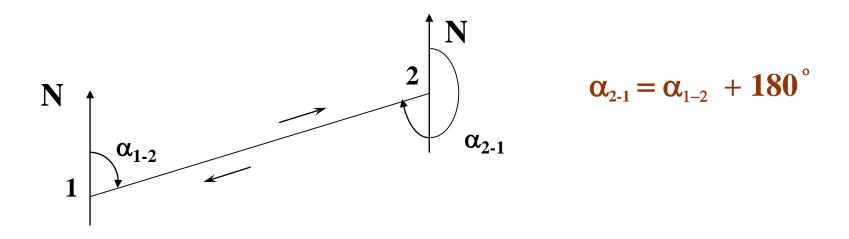
0	<	α	<	360
· ·				

Quadrant	Azimuth
1	$0 < \alpha < 90$
2	$90 < \alpha < 180$
3	$180 < \alpha < 270$
4	$270 < \alpha < 360$

The Back Azimuth

Every line has two azimuths.

A forward azimuth $(\alpha 1-2)$ and a backward azimuth $(\alpha 2-1)$



Special cases:

-If the azimuth is greater than 360 degrees, subtract 360 degrees.

- If the calculated azimuth has a negative value, add 360 degrees.

Why!!

• In which quadrants the following azimuths are located:

123, 87, 245, 341, 18, 322, 184, 217.

• What are the backward azimuths for the following fore azimuths:

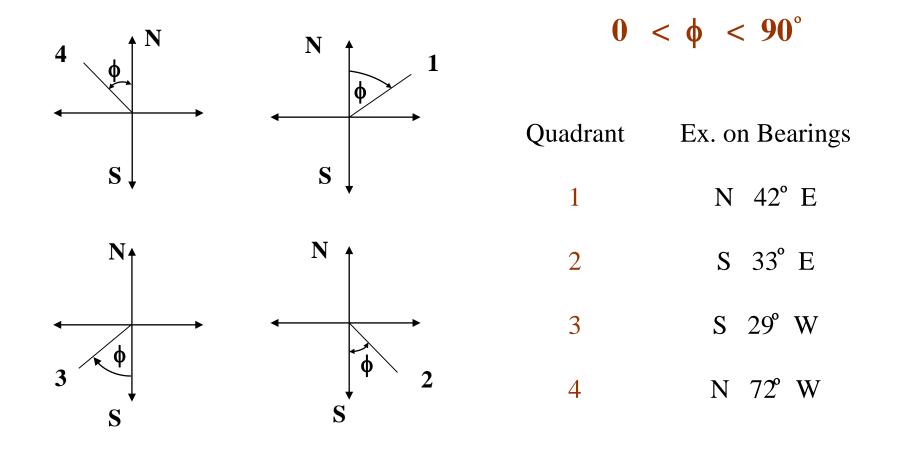
64, 215, 162, 319.

• What are the fore azimuths for the following back azimuths:

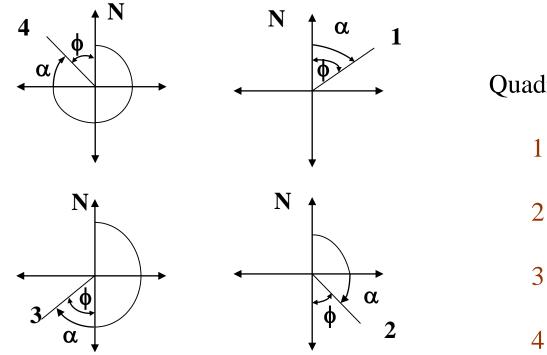
115, 82, 236, 341.

The (Reduced) Bearing

It represents the orientation in the horizontal plane (2D).



Transformation between the Azimuth and the Bearing



adrant	Relation		
1	$\alpha = \phi$		
2	$\alpha = 180^{\circ} - \phi$		
3	$\alpha = 180^{\circ} + \phi$		
4	$\alpha = 360^{\circ} - \phi$		

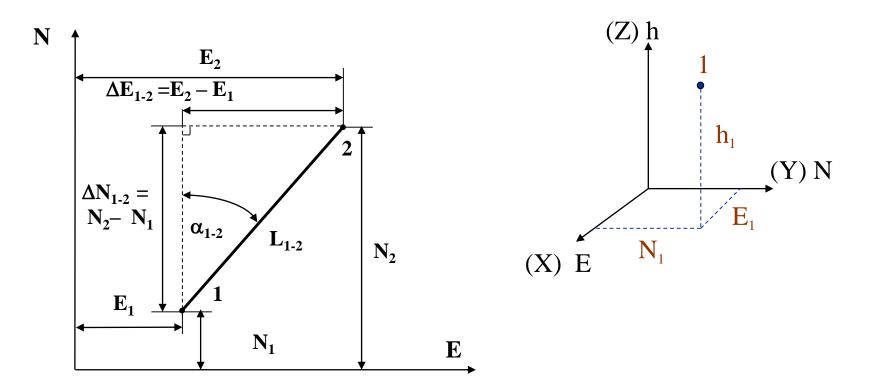
• Transform the following bearings to azimuths:

N 59° 28 33 W, S 87° 18 51 W, S 24° 31 49 E.

• Transform the following azimuths to bearings:

 $123^{\circ}29^{\circ}58^{\circ}, 81^{\circ}39^{\circ}47^{\circ}, 328^{\circ}31^{\circ}17^{\circ}.$

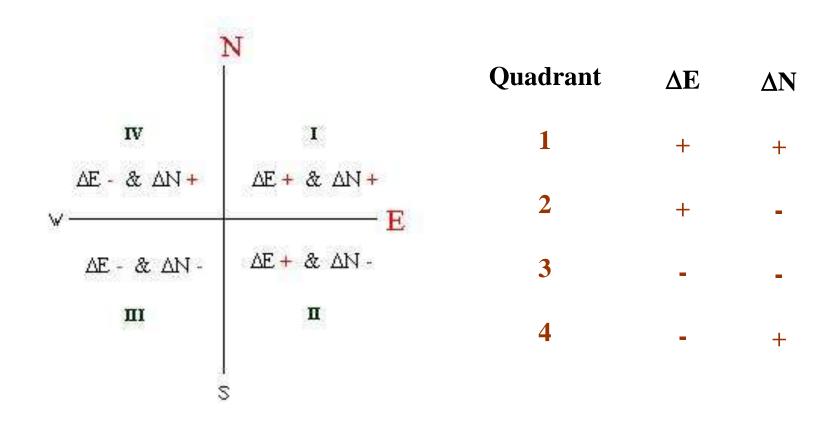
Relation between plane coordinates and the Azimuth



 $\Delta E_{1-2} = E_2 - E_1 = L_{1-2} \sin \alpha_{1-2}$

 $\Delta N_{1\text{-}2} = N_2 - N_1 = L_{1\text{-}2} \cos \alpha_{1\text{-}2}$

Signs of ΔE and ΔN

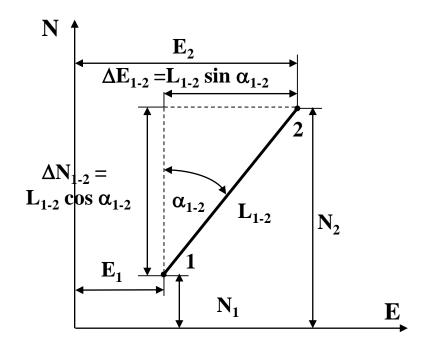


The Direct Problem

Unknowns:the coordinates of point 2 (E_2, N_2) .Known:the coordinates of point 1(E1,N1).Measurements: L_{1-2}, α_{1-2} .

Solution:

 $\Delta E_{1-2} = L_{1-2} \sin \alpha_{1-2}$ $\Delta N_{1-2} = L_{1-2} \cos \alpha_{1-2}$ $E_2 = E_1 + \Delta E_{1-2}$ $N_2 = N_1 + \Delta N_{1-2}$

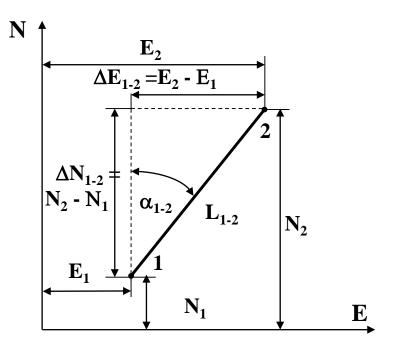


The Inverse Problem

Unknowns: L_{1-2} , α_{1-2} . Known: the coordinates of points 1 &2 (E1,N1), (E₂, N₂).

Solution:

- $\Delta \mathbf{E}_{1-2} = \mathbf{E}_2 \mathbf{E}_1$ $\Delta \mathbf{N}_{1-2} = \mathbf{N}_2 \mathbf{N}_1$
- $(L_{1-2})^2 = (\Delta E_{1-2})^2 + (\Delta N_{1-2})^2$
- $L_{1-2} = \sqrt{(\Delta E_{1-2})^2 + (\Delta N_{1-2})^2}$
- * Determine the bearing ϕ : $\phi = \tan^{-1} (\Delta E_{1-2} / \Delta N_{1-2})$



- * Determine the quadrant from the signs of $\Delta E \& \Delta N$.
- * Determine α_{1-2} from ϕ_{1-2} and the quadrant.

- The coordinates of point 1 are (625.23m, 1250.67m), the length L1-2 is 126.34m, and the azimuth of the line 1-2 is $126^{\circ} 34^{\circ} 51^{\circ}$.
- Determine the length and azimuth of the line joining the two points A & B. The coordinates of the points A & B are (318.36m, 745.67m) and (652.19m, 511.00m), respectively.

Determine the azimuth of the line 1-2, where the points 1 and 2 were determined from the traverse leg A-B given that the coordinates of point A and B are (400,460) and (527,861), respectively. The following measurements were also taken:
i. the length B-2 is 92.54m, the angle 2-B-A is 98° 12' 33",
ii. the length A-1 is 81.40m, and the angle B-A-1 is 42° 15' 00".

