# Birzeit University civil engineering department

EDM

#### Introduction

1- current EDMs use infrared, light, laser light or microwaves.

2- microwaves systems use a receiver/ transmitter at both ends of the measured line whereas infrared and laser systems utilize a transmitter at one end of the measured line and a reflecting prism at the other end. Basic principle of electronic distance measurements (EDMs)

1- Light wave is travelling along x-axis with a velocity of 299792.5 ± 0.4 km/s

2- The frequency wave is the time taken for one complete length

$$\lambda = \frac{c}{f}$$
where  $\lambda = wave - length(meters)$ 

$$c = velocity(km/sec)$$

$$f = frequency(hertz = onecycle/sec)$$

# **Sloping distance**



3- The instrument can count number of full waves length or instead the instrument can send out a series (3 or 4) of modulated waves at different frequencies

4- The frequency is typically reduced each time by a factor of 10 so the wave length is increased each time by a factor of 10

5- substituting the resulting values of wave lengths and phase difference into S, the value of n can be found

6- the instruments are designed to carry out this procedure in a matter of seconds and then to display the value of L in digital form

The term  $(\Delta/360^\circ)\lambda$  represents the fractional wavelength preceding example, with f = 14.989625 MHz, and taking the speed the 299,792.5 km/sec:

$$\lambda = \frac{V}{f} = \frac{299,792,500 \text{ m/sec}}{14,989,625 \text{ cycles/sec}} = 20 \text{ m/cycle}$$

Ising Equation (6.3) with a phase difference  $(\Delta) = 250^{\circ}$ :

$$S = \frac{1}{2} \left[ 20n + \frac{250^{\circ}}{360^{\circ}} \cdot 20 \right] \text{ meters } = \left[ 10n + 6.944 \right] \text{ meters}$$

| Measured<br>Phase Difference | л<br>(т)                                                                                                                                   | $\frac{1}{2} \frac{\Delta}{360^\circ}$                                                                                                                    | λ                                                                                                                                                                                       |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\Delta_1 = 250^\circ$       | 20                                                                                                                                         | 6.944 m                                                                                                                                                   |                                                                                                                                                                                         |
| $\Lambda_2 = 98^\circ$       | 200                                                                                                                                        | 27                                                                                                                                                        | m                                                                                                                                                                                       |
| $\Lambda_{3} = 190^{\circ}$  | 2000                                                                                                                                       | 527                                                                                                                                                       | m                                                                                                                                                                                       |
| $\Delta x = 91^{\circ}$      | 20000                                                                                                                                      | <u>2</u> 527                                                                                                                                              | n                                                                                                                                                                                       |
|                              | Measured<br>Phase Difference<br>$\Delta_1 = 250^{\circ}$<br>$\Delta_2 = 98^{\circ}$<br>$\Delta_3 = 190^{\circ}$<br>$\Delta_4 = 91^{\circ}$ | Measured<br>Phase Difference $\lambda$<br>(m) $\Delta_1 = 250^\circ$ 20 $\Delta_2 = 98^\circ$ 200 $\Delta_3 = 190^\circ$ 2000 $\Delta_4 = 91^\circ$ 20000 | Measured<br>Phase Difference $\lambda$ $\frac{1}{2}$ $\Delta$ $\Delta_1 = 250^\circ$ 206.944 $\Delta_2 = 98^\circ$ 20027 $\Delta_3 = 190^\circ$ 2000527 $\Delta_4 = 91^\circ$ 200002527 |

Mast EDM instruments available in the market nowadays perform





# Factors affecting the velocity of EDM

- The velocity of light through the atmosphere can be affected by 1- temperature 2- atmospheric pressure 3- water vapour content

- It can be corrected by consulting nomographs or by performing automatically on some EDMs by the on-board processor/ calculator after entering the values for temperature and pressure

- for short distances theses factors have relatively small significance but for large ones atmospheric corrections can become quite important

# EDM characteristics

- 1- Distance range 800m-10 km (single prism with average atmospheric conditions)
  2- short range EDMs can be extended to
- 1300 m using 3 prisms
- 3- long range

# **EDM** accuracies

1- accuracies are stated in terms of a constant instrumental error plus a measuring error proportional to the distance being measured

2- Accuracy is claimed to be (±(5mm +5ppm)) where ± 5mm is the instrument error that is independent of length of measurements whereas 5ppm denotes the distance related error

|            | THE FRANK FRANK FRANK                                                                                                                                                                                           |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.9        | SOURCES OF MEASUREMENT                                                                                                                                                                                          |
|            | When using electro-optical instruments for distance measurements                                                                                                                                                |
| follo      | wing sources of errors may occur:                                                                                                                                                                               |
| (1)        | Eccentric error due to inexact centering of and<br>over the survey stations.                                                                                                                                    |
| (2)<br>(3) | Inexactness of the instrument in periods in phase measurement toos and<br>The zero point of the light ray used in phase measurement toos and<br>coincide exactly with the theoretical center of the instrument. |
| (4)        | The actual center of the remeeted of center.                                                                                                                                                                    |
| (5)        | these frequencies.                                                                                                                                                                                              |
| (6)        | measured.                                                                                                                                                                                                       |
|            | 165                                                                                                                                                                                                             |
|            |                                                                                                                                                                                                                 |

## Index of refraction

The ratio between the velocity of propagation of electromagnetic wave in a vacuum ( $V_o$ ) and the velocity in the atmosphere (V) is called the index of refraction ( $N_a$ ); that is:

Where:  $\lambda$  = wavelength of light in  $\mu$ m = 0.9 - 0.93  $\mu$ m for near infrared light from Gallium Arsenide diode = 0.6328  $\mu$ m for light generated by helium-neon laser



To determine the zero centering correction for an EDM, the followin values for AB, AC and CB were measured by the EDM:

 $\overline{AB} = 313.647 \text{ m}, \quad \overline{AC} = 112.556 \text{ m}, \text{ and} \quad \overline{CB} = 201.088 \text{ m}.$ 

- (a) Find the correction for zero centering (c).
- (b) A distance was recorded to be 718.128 m when using the sar instrument. Compute the correct distance.

#### SOLUTION:

(a) c = AB - AC - CB = 313.647 - 112.556 - 201.088 = +0.003 m(b) Corrected distance = 718.128 + 0.003 = 718.131 m



## **Distance and elevation**

