Birzeit University Faculty of Engineering Department of Civil and Environmental Engineering

ENCE 331, Soil Mechanics

<u>Homework assignment #3</u> Due on Thursday, Oct. 15th , 2020 @ 11:59 PM.

Problem 1:

During Atterberg limit tests in the soil mechanics laboratory, the students obtained the following results from a clayey soil.

Liquid limit tests:

Number of blows, N	Moisture content (%)		
14	38.4		
16	36.5		
20	33.1		
28	27.0		

Plastic limit tests:

Students conducted two trials and found that PL= 17.2% for the 1st trial and PL= 17.8% for the second trial.

- Draw the flow curve and obtain the liquid limit.
- What is the plasticity index of the soil? (Hint: Use an average value of *PL*)
- Determine the flow index.
- Determine the liquidity index of the soil if the in-situ moisture content is 21%, and comment on the probable engineering behavior of this soil.

Problem 2:

During a shrinkage limit test, a 19.3 cm^3 saturated clay sample with a mass of 37 g was placed in a porcelain dish and dried in the oven. The oven-dried sample had a mass of 28 g with a final volume of 16 cm³.

• Determine the shrinkage limit and the shrinkage ratio.

Problem 3:

In a shrinkage limit test, a sample of saturated clay was dried in the oven. The dry mass of the soil was 22.5 g. when the moisture content is at the shrinkage limit, the soil reaches a constant total volume, $V_f = 10.3 \text{ cm}^3$.

• calculate the shrinkage limit of the soil. (Given: $G_s=2.72$)

Problem 4:

The sieve analysis of ten soils and the liquid and plastic limits of the fraction passing through the No. 40 sieve are given below.

• Classify the soils by the AASHTO classification system and give the group index for each soil.

	Sieve an	alysis—Pe	rcent finer		Plasticity index	
Soil	No. 1 0	No. 4 0	No. 200	Liquid limit		
1	98	80	50	38	29	
2	100	92	80	56	23	
3	100	88	65	37	22	
4	85	55	45	28	20	
5	92	75	62	43	28	
6	97	60	30	25	16	
7	100	55	8	_	NP	
8	94	80	63	40	21	
9	83	48	20	20	15	
10	100	92	86	70	38	

Problem 5:

Classify the following soils using the Unified soil classification system.

		Pe	Percent passing		
Sieve size	Α	В	С	D	E
No. 4	94	98	100	100	100
No. 10	63	86	100	100	100
No. 20	21	50	98	100	100
No. 40	10	28	93	99	94
No. 60	7	18	88	95	82
No. 100	5	14	83	90	66
No. 200	3	10	77	86	45
0.01 mm	_	_	65	42	26
0.002 mm	_	_	60	17	21
Liquid limit	_	_	63	55	36
Plasticity index	NP	NP	25	28	22

Problem 6:

For an inorganic soil, the following grain-size analysis is given. Knowing that the liquid limit is 23, and Plastic limit is 19.

- AASHTO soil classification system. Give the group index.
- Unified soil classification system. Give group symbol and group name (specific classification).

U.S. sieve no.	Percent passing		
4	100		
10	90		
20	64		
40	38		
80	18		
200	13		

Problem 7:

9% of a soil is retained on No. 4 sieve, and 11% passes the No. 200 sieve. It is also known that 10%, 30%, and 60% of the soil is smaller than 0.1 mm, 0.8 mm, and 1.9 mm, respectively. When Atterberg limit tests are conducted, it is found that the liquid limit is 32% and the plastic limit is 24%.

Classify this soil according to the Unified soil classification system and give group symbol and group name.