- Beam Analysis Using
~the Stiffness Method

The concepts presented in the previous chapter will be extended here and
applied to the analysis of beams. It will be shown that once the member
stiffn ess matrix and the ftranéfo_frﬁ ation m atrlxh ave been dev é'lc)ped', the
procedure for application is exactly the same as that for trusses. Special
consideration will be given to cases of differential settlement and =
temperature. Sa e e TR e

15-1 Preliminary Remarks

Before we show how the stiffness method applies to beams, we will first
discuss some preliminary concepts and definitions related to these members.

Member and Node Identification. In order to apply the stiffness
method to beams, we must first determine how to subdivide the beam into
its component finite elements. In general, each element must be free from
load and have a prismatic cross section. For this reason the nodes of each
element are located at a support or at points where members are connected
together, where an external force is applied, where the cross-sectional area
suddenly changes, or where the vertical or rotational displacement at a
point is to be determined. For example, consider the beam in Fig. 15-1a.
Using the same scheme as that for trusses, four nodes are specified

Fig. 15-1 (a)
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(b)

numerically within a circle, and the three elements are identified
numerically within a square. Also, notice that the “near” and “far” ends of
each element are identified by the arrows written alongside each element.

Global and Member Coordinates. The global coordinate system will
be identified using x, y, z axes that generally have their origin at a node and
are positioned so that the nodes at other points on the beam all have positive
coordinates, Fig. 15-1a. The local or member x', y', z' coordinates have
their origin at the “near” end of each element, and the positive x’ axis is
directed towards the “far” end. Figure 15-1b shows these coordinates for
element 2. In both cases we have used a right-handed coordinate system, so
that if the fingers of the right hand are curled from the x (x') axis towards
the y (y") axis, the thumb points in the positive direction of the z (z') axis,
which is directed out of the page. Notice that for each beam element the x
and x' axes will be collinear and the global and member coordinates will all
be parallel. Therefore, unlike the case for trusses, here we will not need to
develop transformation matrices between these coordinate systems.

Kinematic Indeterminacy. Once the elements and nodes have been
identified, and the global coordinate system has been established, the
degrees of freedom for the beam and its kinematic determinacy can be
determined. If we consider the effects of both bending and shear, then each
node on-a beam can have two degrees of freedom, namely, a vertical
displacement and a rotation. As in the case of trusses, these linear and
rotational displacements will be identified by code numbers. The lowest
code numbers will be used to identify the unknown displacements (uncon-
strained degrees of freedom), and the highest numbers are used to identify
the known displacements (constrained degrees of freedom). Recall that
the reason for choosing this method of identification has to do with the
convenience of later partitioning the structure stiffness matrix, so that the
unknown displacements can be found in the most direct manner.

To show an example of code-number labeling, consider again the conti-
nuous beam in Fig. 15-1a. Here the beam is kinematically indeterminate
to the fourth degree. There are eight degrees of freedom, for which code
numbers 1 through 4 represent the unknown displacements, and numbers
5 through 8 represent the known displacements, which in this case are all
zero. As another example, the beam in Fig. 15-2a can be subdivided into
three elements and four nodes. In particular, notice that the internal hinge
atnode 3 deflects the same for both elements 2 and 3; however, the rotation
at the end of each element is different. For this reason three code numbers
are used to show these deflections. Here there are nine degrees of freedom,
five of which are unknown, as shown in Fig. 15-2b, and four known; again
they are all zero. Finally, consider the slider mechanism used on the beam
in Fig. 15-3a. Here the deflection of the beam is shown in Fig. 15-3b, and
so there are five unknown deflection components labeled with the lowest
code numbers. The beam is kinematically indeterminate to the fifth degree.

Development of the stiffness method for beams follows a similar
procedure as that used for trusses. First we must establish the stiffness
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matrix for each element, and then these matrices are combined to form
the beam or structure stiffness matrix. Using the structure matrix
equation, we can then proceed to determine the unknown displacements
at the nodes and from this determine the reactions on the beam and the
internal shear and moment at the nodes.

591

15-2 Beam-Member Stiffness Matrix

In this section we will develop the stiffness matrix for a beam element
or member having a constant cross-sectional area and referenced from
the local x', y', z' coordinate system, Fig. 15-4. The origin of the
coordinates is placed at the “near” end N, and the positive x' axis extends
toward the “far” end F. There are two reactions at each end of the
element, consisting of shear forces gy, and gz, and bending moments
gny and qp,. These loadings all act in the positive coordinate directions.
In particular, the moments gy, and gp, are positive counterclockwise,
since by the right-hand rule the moment vectors are then directed along
the positive z' axis, which is out of the page.

Linear and angular displacements associated with these loadings also
follow this same positive sign convention. We will now impose each of
these displacements separately and then determine the loadings acting
on the member caused by each displacement.

y
qny dny :
iy LNy gry dry are dew
qnz dng Q) ®

positive sign convention Fig. 15-4

y’ Displacements. When a positive displacement dy, is imposed while
other possible displacements are prevented, the resulting shear forces and
bending moments that are created are shown in Fig. 15-5a. In particular,
the moment has been developed in Sec. 11-2 as Eq. 11-5. Likewise, when
dpy is imposed, the required shear forces and bending moments are given
in Fig. 15-5b.

y' displacements

(a)

(b)

Fig. 15-5
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Fig. 15-6 z’ Rotations. If a positive rotation dy, is imposed while all other

possible displacements are prevented, the required shear forces and
moments necessary for the deformation are shown in Fig. 15-6a. In
particular, the moment results have been developed in Sec. 11-2 as
Eqgs.11-1 and 11-2. Likewise, when df, is imposed, the resultant loadings
are shown in Fig. 15-6b.

By superposition, if the above results in Figs. 15-5 and 15-6 are added,
the resulting four load-displacement relations for the member can be

—expressed in matrix form as
write equations for the _ _ T e _
member shear forces B e ) B Al s
and end moments. any | tean e e _dNy,.
6El  SdEL - 6Bl o 2EL |l

. qnz ?“ T i "}:2_ —L" dN?.' (15_1)
The same way we | BEI eEI 1Bl enll|
used to write qry L e L
equations for end- e S E L e i
moments in slope qrz . o O
deflection equations — —

These equations can also be written in abbreviated form as

Element Level q=kd (15-2)

The symmetric matrix k in Eq. 15-1 is referred to as the member stiffness
matrix. The 16 influence coefficients k;; that comprise it account for the
shear-force and bending-moment displacements of the member. Physically
these coefficients represent the load on the member when the member
undergoesaspecifiedunitdisplacement.Forexample, if dy, = 1, Fig.15-5a,
while all other displacements are zero, the member will be subjected only
to the four loadings indicated in the first column of the k matrix. In a similar
manner, the other columns of the k matrix are the member loadings for
unit displacements identified by the degree-of-freedom code numbers
listed above the columns. From the development, both equilibrium and
compatibility of displacements have been satisfied. Also, it should be noted
that this matrix is the same in both the local and global coordinates since
the x', y', z' axes are parallel to x, y, z and, therefore, transformation
matrices are not needed between the coordinates.
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15-3 Beam-Structure Stiffness Matrix

Once all the member stiffness matrices have been found, we must
assemble theminto the structure stiffness matrix K. This process depends
on first knowing the location of each element in the member stiffness
matrix. Here the rows and columns of each k matrix (Eq. 15-1) are
identified by the two code numbers at the near end of the member
(Ny, N, followed by those at the far end (Fy, F.). Therefore, when
assembling the matrices, each element must be placed in the same
location of the K matrix. In this way, K will have an order that will be
equal to the highest code number assigned to the beam, since this
represents the total number of degrees of freedom. Also, where several
members are connected to a node, their member stiffness influence
coefficients will have the same position in the K matrix and therefore
must be algebraically added together to determine the nodal stiffness
influence coefficient for the structure. This is necessary since each
coefficient represents the nodal resistance of the structure in a particular
direction (y’ or z') when a unit displacement (y’ or z") occurs either at
the same or at another node. For example, K,; represents the load in the
direction and at the location of code number “2” when a unit displacement
occurs in the direction and at the location of code number “3.”

15-4 Application of the Stiffness Method for Beam Analysis

After the structure stiffness matrix is determined, the loads at the nodes
of the beam can be related to the displacements using the structure
stiffness equation

Q=KD . [system level

Here Q and D are column matrices that represent both the known and
unknown loads and displacements. Partitioning the stiffness matrix into
the known and unknown elements of load and displacement, we have

[_QE.} _ {E@LLK!&][{’_&]
Q. Ky | Ky LDy

which when expanded yields the two equations
Qi = KD, + KDy, (15-3)
Q, = KD, + KDy, (15_4)

The unknown displacements D,, are determined from the first of these
equations. Using these values, the support reactions Q, are computed
for the second equation.
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fixed-end
element loading
on joints

()

actual loading

(2)

actual loading and
reactions on fixed-
supported element

Fig. 15-7 ()

Intermediate Loadings. For application, it is important that the
clements of the beam be free of loading along its length. This is necessary
since the stiffness matrix for each element was developed for loadings
applied only at its ends. (See Fig. 15-4.) Oftentimes, however, beams will
support a distributed loading, and this condition will require modification
in order to perform the matrix analysis.

To handle this case, we will use the principle of superposition in a
manner similar to that used for trusses discussed in Sec. 14-8. To show its
application, consider the beam element of length L in Fig. 15-7a, which
is subjected to the uniform distributed load w. First we will apply fixed-
end moments and reactions to the element, which will be used in the
stiffness method, Fig. 15-7b. We will refer to these loadings as a column
matrix —qo. Then the distributed loading and its reactions qq are applied,
Fig. 15-7c. The actual loading within the beam is determined by adding
these two results. The fixed-end reactions for other cases of loading are
given on the inside back cover. In addition to solving problems involving
lateral loadings such as this, we can also use this method to solve problems
involving temperature changes or fabrication errors.

Member Forces. The shear and moment at the ends of each beam
element can be determined using Eq. 15-2 and adding on any fixed-end
reactions g if the element is subjected to an intermediate loading, We have

Element Level q=kd + q (15-5)

If the results are negative, it indicates that the loading acts in the opposite
direction to that shown in Fig. 15-4.
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Section 15-4 Application of the Stiffness Method for Beam Analysis -

PROCEDURE FOR ANALYSIS

The following method provides a means of determining the
displacements, support reactions, and internal loadings for the
members or finite elements of a statically determinate or statically
indeterminate beam.

Notation

o Divide the beam into finite elements and arbitrarily identify each
element and its nodes. Use a number written in a circle for a node
and a number written in a square for amember. Usually an element
extends between points of support, points of concentrated loads,
and joints, or to points where internal loadings or displacements
are to be determined. Also, E and [ for the elements must be
constants.

e Specify the near and far ends of each element symbolically by
directing an arrow along the element, with the head directed
toward the far end.

e At each nodal point specify numerically the y and z code numbers.
In all cases use the lowest code numbers to identify all the
unconstrained degrees of freedom, followed by the remaining or
highest numbers to identify the degrees of freedom that are
constrained.

o From the problem, establish the known displacements Dy and
known external loads Qy. Include any reversed fixed-end loadings
if an element supports an intermediate load.

Structure Stiffness Matrix

o Apply Eq. 15-1 to determine the stiffness matrix for each element
expressed in global coordinates.

e After each member stiffness matrix is determined, and the rows
and columns are identified with the appropriate code numbers,
assemble the matrices to determine the structure stiffness matrix K.
As a partial check, the member and structure stiffness matrices
should all be symmetric.

Displacements and Loads

o Partition the structure stiffness equation and carry out the matrix
multiplication in order to determine the unknown displacements D,,
and support reactions Q,.

o The internal shear and moment q at the ends of each beam
element can be determined from Eq. 15-5, accounting for the
additional fixed-end loadings.
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EI is constant.

Determine the reactions at the supports of the beam shown in Fig. 15-8a.

SkN

Solution

Notation.

of freedom.

The known load and displacement matrices are

unknown displacements are given
the first indices for DOF

The DOF indices are mapped for
the element and systems matrices

The beam has two elements and three nodes, which are
identified in Fig. 15-8b. The code numbers 1 through 6 are indicated
such that the lowest numbers 1-4 identify the unconstrained degrees

2m |

Fig. 15-8

0|1 decide on known
=512 9 =[0]5 displacements
013 *“lolé |and known forces
0|4

for element 1
12EI/L"3 = 1.5 EI

6 4 5 3

15 45 [=18" ‘1576

k,=EI| 15 2 |-15 1 |4

/]E -15 -15| (1) -15|5
\_@ 15 1 |-15 2 |3

matrices is determined from Eq. 15-1. Note carefully how the code
numbers for each column and row are established.

6EI/L"2 = 1.5 EI Member Stiffness Matrices.
4EI/L =2 El
2EI/L = 1El

(b)

Each of the two member stiffness

5 3 1
@ 15 | 15 1575
k=EI| 15 2 |F19 1 |3
—15 15| 15 -15[2
15 1 | =45 @
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SecTion 15-4 Application of the Stiffness Method for Beam Analysis = 597

Displacements and Loads. 'We can now assemble these elements into
the structure stiffness matrix. For example, element Ky; = 0 + 2 = 2,
K55 =15+15= 3, etc. Thus,

Q = KD

1 2 3 4 5 6 — :
e i = ar~ 1= [Fill in the system matrix
1 o 2 -15 1 o0 i 15 o [ | y na

like a puzzle, we fill in
2 =3 =t5 L3 =ga g ely 0 o pieces of element
= - 15| D . e

3l o [=#] 2 * ! ¢ 3113 |stiffness matrix in the
41| 0 0 g L 2 ettt || D8 |14 | Lo Dosition
51| "os 15150 C15 (3 ~1s|| o |l |"9MP
6L Qs | 0 0 15 15i-15 15].01ls

The matrices are partitioned as shown. Carrying out the multiplication
for the first four rows, we have

0:2D1‘_1.5D2+D3+0

5 known forces --- unknown
=57 = “15D1 + 15Dy — 13D+ 0 displacements, so we solve for
0 = Dy — 15D, + 4D + D, unknown displacements
0=0+0+ D;+2D,
Solving,
_ 1667
‘T EI
D, - _ 2667
> EI
6.67
D3 =~
333 Fr.om system
Di=—%r stiffness matrix we

can determine the

i It d multiplying the last two rows, gives .
Using these results, and multiplying gl reaction forces

y 26.67 3.33
Qs = 1.531(— 1—6ﬂ) = 1.551(— ——) +0- 1.5}31(§) From element
EI EI stiffness matrix we
= 10kN Ans. determine the
6.67 3.33 element forces
0s=0+0+ 1.5EI( EI) + 1.5}5{(—}51 )

= —5kN Ans.
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Fig. 15-11

12 kN-m
beam subjected to actual load and
fixed-supported reactions

(©)

Determine the moment developed at support A of the beam shown
in Fig. 15-11a. Take E = 200 GPa, I = 216(10%) mm*.

Solution

Notation. Here the beam has two unconstrained degrees of freedom,
identified by the code numbers 1 and 2.

The matrix analysis requires that the external loading be applied
at the nodes, and therefore the distributed and concentrated loads are
replaced by their equivalent fixed-end moments, which are deter-
mined from the table on the inside back cover. (See Example 11-2.)
Note that no external loads are placed at @ and no external vertical
forces are placed at @ since the reactions at code numbers 3,4 and 5
are to be unknowns in the load matrix. Using superposition, the results
of the matrix analysis for the loading in Fig. 15-11b will later be
modified by the loads shown in Fig. 15-11c. From Fig. 15-11b, the
known displacement and load matrices are

0]4
12]1
D,=10/5 Qk:Lasz
0)6

Member Stiffness Matrices. Each of the two member stiffness matrices

is determined from Eq. 15-1.
* go for element 1

Member 1:
12E1 _ 12(200)(216) _ 400 q0 4=96
r & q0_3 =96
6EI _ 6(200)(216) _.»g q0_5= 96
! _. L* 6° q0_2 =-96
96 kN'm — 12 kN-m = 84 kN-m. 12kN'-m ﬂ = 4_.4(200)(216) =28 800
L 6
beam to be ana]yze((?) )by stiffness method @ _ 2(200) (21 6) e
L 6
4 3 5 2

2400 7200 -2400 7200 | 4
= 7200 28800 -=7200 14400(3
1 2400 =7200 2400 -=7200(5
7200 14400 7200 28800|2
Member 2:
12E1 _ 12(200)(216) _ o4 000
L3 2
‘5_1—*721 _ 6(200)(216) _ ¢, 00
L 2
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SecTion 15-4 Application of the Stiffness Method for Beam Analysis - 603

4_5_1 _ 4(200;(216) — 86 400 go for element 2
"2EL _ 2(200)(216) _ 4350 q0_5=24
1. 2 a g0_2=12
5 2 6 1 g0 _6=24
64800 64800 -86400 86400|5 g0_1=-12
k= 64800 86400 -86400 432002
64800 -64800 86400 -64800|6
64800 43200 -86400 864001
Displacements and Loads. We require
Q=KD + Q0
- 1 2 3 4 5 6
Q1=0 86400 43200 i O 0 64800 64800 D, Q0_1=-12
Q 2=0 |ls00 115200 ; 14400 7200 57600 64800 | |D, QO0_2=-84
Q_3 =7 0 14400 | 28800 7200 -7200 0 0 -l_ QO 3=06
) 0 7200 ¢ 7200 2400 -2400 0 0 -
Q4 — . ||e4s0  s7e0 P00 2400 67200 64800 | | 0 Q0_4 =96
Q. 5=7 ||ess00 64800 ! 0 0 -64800 64800 0 Q0 5=120
Q6="? -- QO0_6= 24
Solving in the usual manner,
12 = 86 400D, + 43 200D,
84 =43 200D, + 115 200D,
D; =-02778(10°) m
D, = 0.8333(10°) m
Thus,
Assignment, calculate the Reactions forces Q_3 and Q_4
based on the analysis results
This result compares with that determined in Example 11-2.
Although not required here, we can determine the internal moment
and shear at B by considering, for example, member 1, node 2,
Fig. 15-11b. The result requires expanding
q = kid + (qo);
i i 5 4 How to calculate member forces ?
\ a, 2400 7200 2400  7200][ © 96 Assignment, calculate the member
M 93| - | 7200 28800 7200 1440011 O g3, | %6 forces of members 1 & 2
\Vj qs -2400  -7200 67 200 57 600 0 q6
M 4, 7200 14400 -57600 115200])0.8333 -96 |

b
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