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Slender Columns

9.1 INTRODUCTION

The material presented in Chapter 8 pertained to concentrically or eccentrically loaded
short columns, for which the strength is governed entirely by the strength of the mate-
rials and the geometry of the cross section. Most columns in present-day practice fall
in that category. However, with the increasing use of high-strength materials and
improved methods of dimensioning members, it is now possible, for a given value of
axial load, with or without simultaneous bending, to design a much smaller cross
section than in the past. This clearly makes for more slender members. It is because
of this, together with the use of more innovative structural concepts, that rational and
reliable design procedwes for slender columns have become increasingly important.

A column is said to be slender if its cross-sectional dimensions are sma]I
compared with its length. The degree of slenderness is generally expressed in terms of
the slenderness ratio lf r, where I is the unsupported length of the member and r is the
radius of gyration of.its cross section, equal to t/IfA. For square or circular members,
the value of r is the same about either axis; for other shapes r is smallest about the
minor principal axis, and it is generally this value that must be used in determining the

. slenderness ratio of a freestanding column.
It has long been known that a member of great slenderness will collapse under a

smaller compression load than a stocky member with the same cross-sectional dimen-
sions. When a stocky member, say with lf r : l0 (e.9., a square column of length equal
to about 3 times its cross-sectional dimension h), is loaded in axial compression, it will
fail at the load given by Eq. (8.3), because at that load both concrete and steel are

stressed to their maximum carrying capaciry and give way, respectively, by crushing
and by yielding. If a mernber with the same cross section has a slenderness ratio
llr : 100 (e.g., a square column hinged at both ends and of length equal to about
30 times its section dimension), it may fail under an axial load equal to one-half or
less of that given by Eq. (8.3). In this case, collapse is caused by buckling, i.e., by
sudden lateral displacement of the member between its ends, with consequent over-
stressing of steel and concrete by the bending stresses that are superimposed on the
axial compressive stresses.

Most columns in practice are subjected to bending moments as well as axial
loads, as was made clear in Chapter 8. These moments produce lateral deflection
of a member between its ends and may also result in relative lateral displacement
of joints. Associated with these lateral displacements are secondary.momenls that
add to the primary moments and that may become very large for slender columns,
leading to failure. A practical definition of a slender column is one for which there
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is a significant reduction in axial load capacity because of these secondary rrroments.

In the development of ACI Code columnnprovisionp, for example, any reduction
greater than about 5 percent is considered significant, requiring consideration of
slenderness effects.

The ACI Code and Commentary contaln detailedprovisions governing the design

of slender columns. ACI Code 10.10.5, 10.10.6, and 10.10.7 present approximate

methods for accounting for slendemess through the use of moment magnification

factors.The provisions are quite similar to those used for many years for steel columns

designed under the American Institute of Steel Construction (AISC) Specification.

Alternatively, in ACI Code 10.10.3 and 10.10.4, a more fundamental approach is

endorsed, in which the effect of lateral displacements is accounted for directly in the

frame analysis. The latter approach, known as second-order analysis, is often incor-

porated as a feature in commercially available structural analysis software.

As noted, most columns in practice continue to be short columns. Simple expres-

sions are included in the ACI Code to determine whether slenderness effects must be

considered. These will be presented in Section 9.4 following the development of
background information in Sections 9.2 and 9.3 relating to column buckling and

slenderness effects.

9.2 CONCENTRICALLY LOADED COLUMNS

The basic hforrnation on the behavior of straight, concentrically loaded slender

columns was developed by Euler more than 200 years ago. In generalized forrn, it
states tlat such a member willfail by buckling at the critical load

rzE,I
D ---Lt c (kt)'

(e.1)

It is seen that the buckling load decreases rapidly with increasing slenderness ratio
kllr (Ret.9.L).

For the simplest case of a column hinged at both ends and made of elastic mate-

ial, 1simply becomes Young's modulus and kl is equal to the actual length / of the

column. At the load given by Eq. (9.1), the originally straight member buckles into a

half sine wave, as shown in Fig. 9.ta.In this bent configuration, bending moments

Py act at any section such as a;y is the deflection at that section. These deflections

continue to increase until the bending stress caused by the increasing moment, together

with the original compression skess, overstresses and fails the member.
If the stress-sffain curve of a short piece of the given rnember has the shape

shown in Fig. 9.2a, as it would be for reinforced concrete colurnns, E, is equal to

Young's modulus, provided that the buckling stress P"/A is below the proportional

limitfr.If the strain is larger thanf* bucHing occurs in the inelastic range. In this

case, i'n Eq. (9.1), E, is the tangent modulus, i.e., the siope of the tangent to the stress-

strain curve, As the stress increases, .8, decreases. A plot of the buckling load vs. the

slendemess ratio, the so-called column curve, therefore has the shape given in
Fig.9.2b, which shows the reduction i:r buckling strength with increasing slenderness'

For very stoclry columns, the value of the buckling load, calculated from Eq' (9.1),

exceeds the direct crushing strength of the stoclry column P,, given by Eq. (8.3). This

is also shown in Fig. 9.2b. Co*espondingly, there is a limiting slenderness ratio

(ktlr)y^. For values smaller than this, failure occurs by simple crushing, regardless of



F'IGURE 9.1
Buckling and effective length
of axially loaded columns.
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(b) k:tlz (c) tlz < k< 1

l1 kl <*

(/) 1<k<*

(d) k: 2 (e) k: 1

klfr; for values larger than {kllr)*,, tailure occurs by buckling, the buckling load or
stress decreasing for greater slenderness.

If a member is fixed against rotation at both ends, it buckles in the shape of
Fig.9.7b, with inflection points (IPs) as shown. The portion between the inflection
points is in precisely the same situation as the hinge-ended column of Fig. 9.1a, and
thus, the ffictive length kl of the fixed-fixed column, i.e., the distance between inflec-
tion points, is seen to be kl : UZ.Equation (9.1) shows that an elastic column fixed at
both ends will carry 4 times as much load as when hinged.
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FIGURE 9.2
Effect of slenderness on

strength of axially loaded
columns.
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(kllr)11^

Columns in real structures are lalely either hinged or fixed but have ends

partially restrained against rotation by abutting members. This is shown schematically

in Fig. 9.1c, from which it is seen that for such membffs the effective length kl, i.e',

the distance between inflection points, has a value between I and ll2. The precise value

depends on the degree of end restraint, i.e., on the ratio of the sffiness EIII of the

colurnn to the sum of stiffnesses EIll of the restraining members at both ends.

In the columns of Fig. 9.1.ato c, i[ was assumed that one end was prevented from

moving laterally relative to the other end, by horizontal bracing or otherwise. In this

case, it is seen that the effective length kl is always smaller than (or at most it is equal

Lo) the real length l.
If a column is fixed at one end and entirely free at the other (cantilever column

or flagpole), it buckles as shown in Fig. 9.1d.'I\at is, the upper end moves laterally

with respect to the lower, a kind of deformation known as sidesway.It buckles into a
quarter of a sine wave and is therefore analogous to the upper half of the hinged

Column in Fig. 9.La.The inflection points, one at the end of the actual column and the

other at the imaginary extension of the sine wave, are a distance 2l apart, so that the

effective length is kl:21.
If the column is rotationally fixed at both ends but one end can move laterally

with respect to the other, it buckles as shown in Fig. 9,1e, with an effective length

kl : l. ff or" compares this column, fixed at both ends but free to sidesway, with a
fixed-fixed column that is braced against sidesway (Fig. 9.1b), one sees that the

effective length of the former is twice that of the latter. By Eq. (9.1), this means that

the buckling strength of an elastic fixed-fixed colurnn that is free to sidesway is only

one-quarter that of the same column when braced against sidesway. This is an illus-
tration of the general factthat compression members free to buckle in a sidesway mode

are always considerably weaker than when braced against sidesway.
Again, the ends of columns in actual structures are rarely hinged, fixed, or

entirely free but are usual-ly restrained by abutting members' If sidesway is not

prevented, blckling occurs as shown in Fig. 9.1f, arLd the effective length, as before,

depends on the degree of restraint. If the cross beams are very rigid compared with the

"o1o1lo, 
ttre case of Fig. 9.le is approached aud k/ is only slightly larger than l. On the

other hand, if the restraining members are extremely flexible, a hinged condition is

approached at both ends. Evidently, a column hinged at both ends and free to sidesway

ii unstable. It will simply topple, being unable to carry any load whatever.

(b)



FIGURE 9.3
Rigid-frame buckling:
(a) laterally braced;
(D) unbraced.
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P62.i4 Pr1

In reinforced concrete structures, one is rarely concemed with single members
but rather with rigid frames of various configurations. The manner in which the rela-
tionships just described affect the buckling behavior of frames is illustrated by the
simple portal frame shown in Fig. 9.3, with loads applied concentrically to the
columns. If sidesway is prevented, as indicated schematically by the brace inFig. 9.3a,
the buckling confi.guration will be as shown. The buckled shape of the column corre-
sponds to that in Fig. 9.1c, except that the lower end is hinged. I1 is seen that the effec-
tive length k/ is smaller than /. On the other hand, if no sidesway bracing is provided
to an otherwise identical frame, buckling occurs as shown in Fig. 9.3b.The column is
in a situation similar to that shown in Fig.9.ld, upside down, except that the upper end
is not fixed but only partially restained by the girder. It is seen that the effective length
ftl exceeds 2lby an amount depending on the degree ofrestraint. The buckling strength
depends onklf rinthe manner shown in Fig. 9.2b. As a consequence, even though they
are dimensionally identical, the unbraced frame will buckle at a radicaily smaller load
than the braced frame.

In summary, the following can be noted:

1, The strength of concenhically loaded columls decreases with increasing slen-
derness ratio klfr.

2, In columns that are braced against sidesway or that are parts of frames braced
against sidesway, the effective length kl, i.e., the distance between inflection
points, falls between Il2 and /, depending on the degree of end restraint.

3. The effective lengths of columns that are not braced against sidesway $ that are
parts of frames not so braced are always larger than l, the more so the smaller the
end restraint. In consequence, the buckling load of a frame not braced against
sidesway is always substantially smaller than that of the same frame when braced.

9.3 COMPRESSION PLUS BENDING

Most reinforced concrete compression members are also subject to simultaneous flex-
ure, caused by transverse loads or by end moments owing to continuity. The behavior of
members subject to such combined loading also depends greatly on their slendemess.

Figure 9.4a shows such a member, axially loaded by P and bent by equal end
moments Mr.ff no axial load were present, the moment Mol,:nthe member would be
constant throughout and equal to the end moments M 

". 
This is shown in Fig. 9 .4b. In

this situation, i.e., in simple bending without axial cornpression, the member deflects
as shown by the dashed curve of Fig. 9,4a, where yo represents the deflection at any

\ Brace
\

\
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r'IGURE 9.4
Moments in slender members

with compression plus
bending, bent in single
curvature.

P< Pc

Sdueto Mo+ P

A due to M6

P< P"

(a)

poixt caused by bending only. When P is applied, the moment at any point increases

by an amount equal to P times its lever arm. The increased moments cause additional
deflections, so that the deflection curve under the simultaneous action of P and Mois
the solid curve of Fig.9.4a. At any point, then, the total moment is now

M:MoiPy (e.2)

i.e., the total moment consists of the moment Mothat acts in the presence of P and the

additional moment caused by P, equal to P times the deflection. This is one illustra-
tion of the so-called P-A effect.

A similar situation is shown in Fig. 9.4c, where bending is caused by the

transverse load If. When P is absent, the moment at any point x is Ms: HxfZ, with a
maximum value at midspan equal to HllL.The corresponding Modragram is shown in
Fig.9.4d. When P is applied, additional moments Py arc caused again, distributed as

shown, and the total moment at any point in the member consists of the same two parts

as in Eq. (9.2).
The deflections y of elastic columns of the type shown in Fig. 9.4 can be calcu-

lated from the deflections ys, that is, from the deflections of the corresponding beam

without axial load, using the following expression (see, for example, Ref. 9.1).

(d)(b)

!: ro=-rt"
lf A is the deflection at the point of maximum moment M^*, as

Fig.9.4, M^*can be calculated using Eqs. (9.2) and (9.3).

(e.3)

shown in

(e.4)M^*: Mo + PL: Mo * Piriplp"

H/2

Mo,max:

+Hl2

P<P"
(c)
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