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2.1

Slender Columns

INTRODUCTION

The material presented in Chapter 8 pertained to concentrically or eccentrically loaded
short columns, for which the strength is governed entirely by the strength of the mate-
rials and the geometry of the cross section. Most columns in present-day practice fall
in that category. However, with the increasing use of high-strength materials and
improved methods of dimensioning members, it is now possible, for a given value of
axial load, with or without simultaneous bending, to design a much smaller cross
section than in the past. This clearly makes for more slender members. It is because
of this, together with the use of more innovative structural concepts, that rational and
reliable design procedures for slender columns have become increasingly important.

A column is said to be slender if its cross-sectional dimensions are small
compared with its length. The degree of slenderness is generally expressed in terms of
the slenderness ratio I/r, where [ is the unsupported length of the member and r is the
radius of gyration of its cross section, equal to \/I/A. For square or circular members,
the value of r is the same about either axis; for other shapes r is smallest about the
minor principal axis, and it is generally this value that must be used in determining the
slenderness ratio of a freestanding column.

It has long been known that a member of great slenderness will collapse under a
smaller compression load than a stocky member with the same cross-sectional dimen-
sions. When a stocky member, say with //r = 10 (e.g., a square column of length equal
to about 3 times its cross-sectional dimension %), is loaded in axial compression, it will
fail at the load given by Eq. (8.3), because at that load both concrete and steel are
stressed to their maximum carrying capacity and give way, respectively, by crushing
and by yielding. If a member with the same cross section has a slenderness ratio
I/r = 100 (e.g., a square column hinged at both ends and of length equal to about
30 times its section dimension), it may fail under an axial load equal to one-half or
less of that given by Eq. (8.3). In this case, collapse is caused by buckling, i.e., by
sudden lateral displacement of the member between its ends, with consequent over-
stressing of steel and concrete by the bending stresses that are superimposed on the
axial compressive stresses.

Most columns in practice are subjected to bending moments as well as axial
loads, as was made clear in Chapter 8. These moments produce lateral deflection
of a member between its ends and may also result in relative lateral displacement
of joints. Associated with these lateral displacements are secondary moments that
add to the primary moments and that may become very large for slender columns,
leading to failure. A practical definition of a slender column is one for which there
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is a significant reduction in axial load capacity because of these secondary moments.
In the development of ACI Code column' provisions, for example, any reduction
greater than about 5 percent is considered significant, requiring consideration of
slenderness effects.

The ACI Code and Commentary contain detailed provisions governing the design
of slender columns. ACI Code 10.10.5, 10.10.6, and 10.10.7 present approximate
methods for accounting for slenderness through the use of moment magnification
factors. The provisions are quite similar to those used for many years for steel columns
designed under the American Institute of Steel Construction (AISC) Specification.
Alternatively, in ACI Code 10.10.3 and 10.10.4, a more fundamental approach is
endorsed, in which the effect of lateral displacements is accounted for directly in the
frame analysis. The latter approach, known as second-order analysis, is often incor-
porated as a feature in commercially available structural analysis software.

As noted, most columns in practice continue to be short columns. Simple expres-
sions are included in the ACI Code to determine whether slenderness effects must be
considered. These will be presented in Section 9.4 following the development of
background information in Sections 9.2 and 9.3 relating to column buckling and
slenderness effects.

'CONCENTRICALLY LOADED COLUMNS

The basic information on the behavior of straight, concentrically loaded slender
columns was developed by Euler more than 200 years ago. In generalized form, it
states that such a member will fail by buckling at the critical load

5 = mEl
Ty

It is seen that the buckling load decreases rapidly with increasing slenderness ratio
kl/r (Ref. 9.1).

For the simplest case of a column hinged at both ends and made of elastic mate-
rial, E, simply becomes Young’s modulus and ki is equal to the actual length [ of the
column. At the load given by Eq. (9.1), the originally straight member buckles into a
half sine wave, as shown in Fig. 9.1a. In this bent configuration, bending moments
Py act at any section such as a; y is the deflection at that section. These deflections
continue to increase until the bending stress caused by the increasing moment, together
with the original compression stress, overstresses and fails the member.

If the stress-strain curve of a short piece of the given member has the shape
shown in Fig. 9.2a, as it would be for reinforced concrete columns, E, is equal to
Young’s modulus, provided that the buckling stress P, /A is below the proportional
limit f,. If the strain is larger than f,, buckling occurs in the inelastic range. In this
case, in Eq. (9.1), E, is the tangent modulus i.e., the slope of the tangent to the stress-
strain curve. As the stress increases, E, decreases. A plot of the buckling load vs. the
slenderness ratio, the so-called column curve, therefore has the shape given in
Fig. 9.2b, which shows the reduction in buckling strength with i increasing slenderness.
For very stocky columns, the value of the buckling load, calculated from Eq. 9.1),
exceeds the direct crushing strength of the stocky column P,, given by Eq. (8.3). This
is also shown in Fig. 9.2b. Correspondingly, there is a limiting slenderness ratio
(kl/r)s For values smaller than this, failure occurs by simple crushing, regardless of

©.1



FIGURE 9.1
Buckling and effective length
of axially loaded columns.
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ki/r; for values larger than (kI/r),,,, failure occurs by buckling, the buckling load or
stress decreasing for greater slenderness.

If a member is fixed against rotation at both ends, it buckles in the shape of
Fig. 9.1b, with inflection points (IPs) as shown. The portion between the inflection
points is in precisely the same sitnation as the hinge-ended column of Fig. 9.1a, and
thus, the effective length kl of the fixed-fixed column, i.e., the distance between inflec-
tion points, is seen to be kI = 1/2. Equation (9.1) shows that an elastic column fixed at
both ends will carry 4 times as much load as when hinged.
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FIGURE 9.2

Effect of slenderness on
strength of axially loaded
columns.
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Columns in real structures are rarely either hinged or fixed but have ends
partially restrained against rotation by abutting members. This is shown schematically
in Fig. 9.1c, from which it is seen that for such members the effective length kl, ie.,
the distance between inflection points, has a value between [ and //2. The precise value
depends on the degree of end restraint, i.e., on the ratio of the stiffness EI/I of the
column to the sum of stiffnesses EI/I of the restraining members at both ends.

In the columns of Fig. 9.1a to c, it was assumed that one end was prevented from
moving laterally relative to the other end, by horizontal bracing or otherwise. In this
case, it is seen that the effective length / is always smaller than (or at most it is equal
to) the real length /.

If a column is fixed at one end and entirely free at the other (cantilever column
or flagpole), it buckles as shown in Fig. 9.1d. That is, the upper end moves laterally
with respect to the lower, a kind of deformation known as sidesway. It buckles into a
quarter of a sine wave and is therefore analogous to the upper half of the hinged
column in Fig. 9.1a. The inflection points, one at the end of the actual column and the
other at the imaginary extension of the sine wave, are a distance 2/ apart, so that the
effective length is &l = 21.

If the column is rotationally fixed at both ends but one end can move laterally
with respect to the other, it buckles as shown in Fig. 9.1e, with an effective length
kl = 1. If one compares this column, fixed at both ends but free to sidesway, with a
fixed-fixed column that is braced against sidesway (Fig. 9.15), one sees that the
effective length of the former is twice that of the latter. By Eq. (9.1), this means that
the buckling strength of an elastic fixed-fixed column that is free to sidesway is only
one-quarter that of the same column when braced against sidesway. This is an illus-
tration of the general fact that compression members free to buckle in a sidesway mode
are always considerably weaker than when braced against sidesway.

Again, the ends of columns in actual structures are rarely hinged, fixed, or
entirely free but are usually restrained by abutting members. If sidesway is not
prevented, buckling occurs as shown in Fig. 9.1f, and the effective length, as before,
depends on the degree of restraint. If the cross beams are very rigid compared with the
column, the case of Fig. 9.1e is approached and ! is only slightly larger than I. On the
other hand, if the restraining members are extremely flexible, a hinged condition is
approached at both ends. Evidently, a column hinged at both ends and free to sidesway
is unstable. It will simply topple, being unable to carry any load whatever.



FIGURE 9.3
Rigid-frame buckling:
(a) laterally braced;
(b) unbraced.
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In reinforced concrete structures, one is rarely concerned with single members
but rather with rigid frames of various configurations. The manner in which the rela-
tionships just described affect the buckling behavior of frames is illustrated by the
simple portal frame shown in Fig. 9.3, with loads applied concentrically to the
columns. If sidesway is prevented, as indicated schematically by the brace in Fig. 9.3a4,
the buckling configuration will be as shown. The buckled shape of the column corre-
sponds to that in Fig. 9.1c¢, except that the lower end is hinged. It is seen that the effec-
tive length kI is smaller than [. On the other hand, if no sidesway bracing is provided
to an otherwise identical frame, buckling occurs as shown in Fig. 9.3b. The column is
in a sitnation similar to that shown in Fig. 9.1d, upside down, except that the upper end
is not fixed but only partially restrained by the girder. It is seen that the effective length
kl exceeds 2/ by an amount depending on the degree of restraint. The buckling strength
depends on kI/r in the manner shown in Fig. 9.2b. As a consequence, even though they
are dimensionally identical, the unbraced frame will buckle at a radically smaller load
than the braced frame.

In summary, the following can be noted:

1. The strength of concentrically loaded columns decreases with increasing slen-
derness ratio kl/r.

2. In columns that are braced against sidesway or that are parts of frames braced
against sidesway, the effective length kI, i.e., the distance between inflection
points, falls between /2 and [, depending on the degree of end restraint.

3. The effective lengths of columns that are not braced against sidesway or that are
parts of frames not so braced are always larger than /, the more so the smaller the
end restraint. In consequence, the buckling load of a frame not braced against
sidesway 1s always substantially smaller than that of the same frame when braced.

COMPRESSION PLUS BENDING

Most reinforced concrete compression members are also subject to simultaneous flex-

ure, caused by transverse loads or by end moments owing to continuity. The behavior of
members subject to such combined loading also depends greatly on their slenderness.
Figure 9.4a shows such a member, axially loaded by P and bent by equal end
moments M,. If no axial load were present, the moment M, in the member would be
constant throughout and equal to the end moments M,. This is shown in Fig. 9.4b. In
this situation, i.e., in simple bending without axial compression, the member deflects
as shown by the dashed curve of Fig. 9.4a, where y, represents the deflection at any
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FIGURE 9.4

Moments in slender members
with compression plus
bending, bent in single
curvature.
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point caused by bending only. When P is applied, the moment at any point increases
by an amount equal to P times its lever arm. The increased moments cause additional
deflections, so that the deflection curve under the simultaneous action of P and M, is
the solid curve of Fig. 9.4a. At any point, then, the total moment is now

M= M,+ Py 9.2)

i.e., the total moment consists of the moment M, that acts in the presence of P and the
additional moment caused by P, equal to P times the deflection. This is one illustra-
tion of the so-called P-A effect.

A similar situation is shown in Fig. 9.4c, where bending is caused by the
transverse load H. When P is absent, the moment at any point x is M, = Hx/2, with a
maximum value at midspan equal to HI/4. The corresponding M, diagram is shown in
Fig. 9.4d. When P is applied, additional moments Py are caused again, distributed as
shown, and the total moment at any point in the member consists of the same two parts
as in Eq. (9.2).

The deflections y of elastic columns of the type shown in Fig. 9.4 can be calcu-
lated from the deflections y,, that is, from the deflections of the corresponding beam
without axial load, using the following expression (see, for example, Ref. 9.1).

_r
°1— P/P,

If A is the deflection at the point of maximum moment M, as shown in
Fig. 9.4, M_,, can be calculated using Egs. (9.2) and (9.3).

y=y 9.3)

1
M_. =M,+PA=M,+ PNy ———— 9.4
max 0 0 Ol—P/PC ( )
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