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Preface 

 
 
This book is designed as a reference for reinforced concrete design of structures. This book has 
seventeen chapters which cover the main aspects of reinforced concrete design in a simple way. The 
chapters of this reference discuss the analysis and design of reinforced concrete sections for flexure, 
shear, torsion and axial forces. Also, they include the analysis and design of one-way and two-way slab 
systems including solid, ribbed, waffle and voided slabs. This reference illustrates the analysis and 
design of footing systems, retaining walls, water tanks and shells. Spherical domes and conical shells 
are illustrated. Also, this reference introduces the main principles for seismic design of reinforced 
concrete structures based on the international codes IBC, ASCE and UBC. The analysis and design of 
reinforced concrete sections is based on the American concrete Institute ACI.  
 
This reference is very valuable for design engineers in the design industry, as it contains practical 
examples on the analysis and design of reinforced concrete elements and systems like beams, columns, 
slabs, footings, retaining walls, water tanks, and shell structures. 
 
 
Ibrahim Mohammad Arman 
12-1-2019 
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Chapter 1: Introduction 

 

This chapter introduces the main structural properties of concrete and reinforcing bars. In 
addition, it illustrates concrete cover and bars spacings in the structural members. Also, it 
discusses the loads and the main reinforced concrete design methods. The following points 
illustrate these subjects.  

1. Definition of Reinforced concrete:  It is a mixture of concrete and steel. Such a 
mixture combines the best properties of both materials to overcome their deficiencies. 

2. Main concrete properties: 

A. Good in compression 
B. Low tensile strength 
C. Good in fire resistance 

3. Reinforcing steel: 

A. High tensile strength 
B. Low fire resistance 

4. Concrete compressive strength: 

The compressive strength, f'c, is based on using uniaxial compression test, which 150mm 
diameter and 300mm height concrete cylinder is tested after cured under standard laboratory 
conditions and tested at a specified rate of loading at 28 days of age. From this test, the stress-
strain curves of concrete cylinders are obtained. 

Figures 1.1 and 1.2 show the typical concrete stress-strain curves for concrete in compression. 
From these figures, the following notes can be stated: 

A. The lower the strength of concrete, the higher the failure strain 
B. The length of the initial relatively linear portion increases with the increase in the 

compressive strength 
C. The first portion of the curve to about 40% of the ultimate strength, f'c, can be 

considered linear for all practical purposes 
D. There is apparent reduction in ductility with increased strength 
E. After approximately 70% of the ultimate stress, the material loses a large portion 

of its stiffness, thereby increasing the curvilinearity of the stress-strain diagram 
F. Usually concrete can reach a strain of 0.003 or larger before actual crushing occurs 
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Figure 1.1: Typical concrete stress-strain curves in compression "REINFORCED 
CONCRETE Mechanics and Design by JAMES K. WIGHT and JAMES G. MACGREGOR". 
1.0 psi=0.007MPa. 

 

Figure 1.2: Typical stress-strain curve for concrete in compression 
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Figure 1.3: Simplified stress-strain curve for concrete in compression "Park and 
Pauly" 

 

Equation 1:  

𝑓𝑓𝑐𝑐 = 𝑓𝑓′′𝑐𝑐 �
2 ∈ 𝑐𝑐
∈ 𝑜𝑜

− �
∈ 𝑐𝑐
∈ 𝑜𝑜�

2
� 

Equation 2: 

𝑓𝑓𝑐𝑐 = 𝑓𝑓′′𝑐𝑐�1 − 100(∈ 𝑐𝑐−∈ 𝑜𝑜)� 

f''c= f'c in the concrete stress-strain curve and it equals 0.85 f'c for concrete member to 
account for the differences between cylinder strength and member strength. These 
differences result from different curing and placing, which give rise to different water-gain 
effects due to vertical migration of bleed water, and differences between the strengths of 
rapidly loaded cylinders and the strength of the same concrete loaded more slowly 

Based on ACI code, the maximum strain in concrete "ultimate crushing strain" is equal to 
0.003 

Based on British Standards, the concrete strength is based on testing a cube of 150mm side 
length at 28 days. The cylinder compressive strength equals about 0.80 the cube compressive 
strength. 

Minimum concrete strength: 

Special moment frames and special structural walls with Grade 60 or 80 reinforcement:  

𝑓𝑓′𝑐𝑐 ≥ 21𝑀𝑀𝑀𝑀𝑀𝑀 

Special structural walls with Grade 100 reinforcement:  
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𝑓𝑓′𝑐𝑐 ≥ 35𝑀𝑀𝑀𝑀𝑀𝑀 

Other structures: 

𝑓𝑓′𝑐𝑐 ≥ 17.5𝑀𝑀𝑀𝑀𝑀𝑀 

5. Concrete modulus of elasticity, Ec: 

The concrete has no well-defined modulus of elasticity. It depends on concrete compressive 
strength and varies with time. 

The ACI 318-19 code "American Concrete Institute" gives the following equation for Ec: 

𝐸𝐸𝐶𝐶 = 0.043𝑤𝑤𝑐𝑐1.5�𝑓𝑓′𝑐𝑐 

Where:  

wc= concrete density in kg/m3 

wc varies between 1440 to 2560 kg/m3 

Ec and f'c  are in MPa 

For normal weight concrete, substitute wc=2300kg/m3 in the above equation, this gives: 

𝐸𝐸𝐶𝐶 = 4700�𝑓𝑓′𝑐𝑐 

6. Concrete tensile strength: 

The tensile strength of concrete is relatively low. It is approximately equals to about 0.1 f’c. 

Based on ACI 209R-92: the tensile strength for pure tension is given by:  

𝑓𝑓𝑡𝑡 = 0.33𝜆𝜆�𝑓𝑓′𝑐𝑐                      𝑖𝑖𝑖𝑖 𝑀𝑀𝑀𝑀𝑀𝑀 

The tensile strength of concrete can be determined using the split cylinder test. Figure 1.4 
summarizes the split cylinder test. 
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Figure 1.4: Split cylinder test 

For members subjected to bending, the tensile strength of concrete can be determined by 
bending test on plain concrete beam. The tensile capacity then can be found using the 
following equation: 

𝑓𝑓𝑟𝑟 = 0.62𝜆𝜆�𝑓𝑓′𝑐𝑐                       𝑖𝑖𝑖𝑖 𝑀𝑀𝑀𝑀𝑀𝑀 

The factor λ is used to consider the type of concrete. λ= 1 for normal weight concrete. 

λ is less than 1.0 for light weight concrete. 

From fr, the cracked moment, Mcr, of a concrete cross section can be computed as follows: 

𝜎𝜎 =
𝑀𝑀𝑦𝑦𝑡𝑡
𝐼𝐼𝑔𝑔

= 𝑓𝑓𝑟𝑟  → 𝑀𝑀 =
𝑓𝑓𝑟𝑟𝐼𝐼𝑔𝑔
𝑦𝑦𝑡𝑡

= 𝑀𝑀𝑐𝑐𝑟𝑟 

Ig= the uncracked moment of inertia of the cross section. Reinforcing steel can be neglected. 

yt= distance from extreme tension fibers to centroidal axis. 

7. Reinforcing steel strength: 

- The modulus of elasticity of steel is equal to 200 000 MPa 
- Steel grade 60. ASTM A615 and ASTM A706 
- The main difference between steel A615 and A706, is that the steel A706 is more 

ductile and they both have the same yield strength 
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- Grade 40: fy= 40ksi= 280MPa 
- Grade 60: fy= 60ksi= 420MPa 
- Grade 80: fy= 80ksi= 560MPa 
- Grade 100: fy= 100ksi= 700MPa 
- Based on ACI 318-19, the ratio of actual tensile strength to actual yield strength, 

minimum: 1.10 for steel A615 and 1.17 for steel A706. 
- There are limitations on steel yield strength for seismic design especially in special 

moment resisting frames to provide ductility provisions (Refer to ACI 318-19 chapter 
20). 

- In steel bars, sometimes, the ultimate strength of steel, fu= 1.25-1.5 fy. 
- Stress – strain of steel is as follows, Figure 1.5: 

 

 

Figure 1.5: Stress-strain curve of reinforcing steel- typical 

 

8. Reinforcing steel bars: 

- The bar area is given by: 

𝐴𝐴𝑏𝑏 =
𝜋𝜋
4
𝑑𝑑𝑏𝑏

2                        𝐴𝐴𝑏𝑏:𝑚𝑚𝑚𝑚2,   𝑑𝑑𝑏𝑏:𝑚𝑚𝑚𝑚 

- Bar weight “mass” per meter: 

𝑊𝑊 = 𝑏𝑏𝑀𝑀𝑏𝑏 𝑀𝑀𝑏𝑏𝑎𝑎𝑀𝑀 𝑥𝑥 𝑜𝑜𝑖𝑖𝑎𝑎 𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑏𝑏 𝑥𝑥 𝑠𝑠𝑚𝑚𝑎𝑎𝑎𝑎𝑠𝑠 𝑑𝑑𝑎𝑎𝑖𝑖𝑠𝑠𝑖𝑖𝑚𝑚𝑦𝑦 =
𝜋𝜋
4
𝑑𝑑𝑏𝑏

2(10)−6(1) �
7850𝑘𝑘𝑘𝑘
𝑚𝑚3 � =

𝑑𝑑𝑏𝑏
2

162
= 0.0062𝑑𝑑𝑏𝑏

2 
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- Bar types: plain, deformed 
- Yield strength of undeformed bars, fy= 250MPa 
- Bar diameter in mm: 6, 8, 10, 12, 14, 16, 18, 20, 22, 25, 32 

9. Bar spacing and concrete cover: 

- It is necessary to guard against honeycombing and ensure that the concrete mix 
passes through the reinforcing steel without separation. 

- Cover protect steel from corrosion. 
- Concrete protect steel from fire. 
- Codes specify a minimum required concrete cover. 
- Some of the major requirements of ACI 318-19 (Section 25.2) code are: 

• In beams, clear distance between parallel bars in a layer shall be not less than the 
maximum of the bar diameter, db, 25mm and 4/3 times the maximum size of the 
aggregate. 

• In beams, clear distance between layer of bars shall be not less than 25mm. 
• In columns, clear distance between parallel bars in a layer shall be not less than 

the maximum of 1.5 times the bar diameter, 40mm and 4/3 times the maximum 
size of the aggregate. 

• Minimum clear cover shall be as follows: 

** columns, beams: 40mm 

** slabs, walls, joists, shells: 20mm for bars with diameter less than 35mm 

** members cast against soil: 75mm 

** members subjected to drink water:  50mm 

10. Loads: 

- Gravity loads:  

• Dead: own weight of structural elements 
• Superimposed dead: weight of nonstructural elements 
• Live: people + furniture 
• Snow 
• Soil weight 
• Water weight 

- lateral loads: 

• Earthquake  
• Wind 
• Water 
• Soil 
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• Blast 

- Static loads 
- Dynamic loads 

Weight of beam per meter= cross section area x unit weight of concrete 

Weight of column per meter= cross section  area x unit weight of concrete 

Weight of solid slab- m2= thickness of slab x unit weight of concrete 

Weight of solid concrete wall- m2= thickness of wall x unit weight of concrete 

Superimposed dead loads: 

- Brick wall: w= thickness of bricks x unit weight of bricks + thickness of plastering x unit 
weight of plain concrete 

- Tiles: w= thickness of each layer x unit weight of the layer 
- Unit weights: 

• Reinforced concrete: 25kN/m3  
• Plain concrete: 23kN/m3  
• Masonry stone: 27kN/m3  
• Concrete blocks: 12-15kN/m3 , take 15kN/m3  
• Fill under tiles: 18kN/m3  
• Plastering: 23kN/m3  

For example: 

- Brick wall: 200mm bricks + 20mm plastering + 20mm plastering: w= 3.92kN/m2  
- Brick wall: 100mm bricks + 20mm plastering + 20mm plastering: w= 2.42kN/m2 
- Masonry wall: 50mm stone + 120mm plain concrete + 0.03 insulation + 100mm bricks 

+ 20mm plastering: w= 6.07kN/m2  
- Tiles: 30mm marble tiles + 20mm plain concrete + 100mm fill + 10mm plastering at 

bottom surface of slab: w= 3.3kN/m2 
- One can add 1-1.5kN/m2 to account for 100mm brick partitions, this value can be 

added to the tiles loads to have a complete superimposed dead load on the slab. 

Live loads: 

Codes: IBC-2012, IBC-2015, IBC-2018, ASCE 7-10, ASCE 7-16, UBC 97 (IBC: International 
Building Code. ASCE: American Society of Civil Engineers. UBC: Uniform Building Code) 

11. Design methods: 

- Working design method: allowable stress method 
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• Here, in this textbook, it will be used to check stress only. 
• Its principles are: 

- use of actual, working, unfactored or service loads 
- use of allowable stresses in concrete and steel:  

 Concrete allowable strength; compression: 𝑓𝑓𝑐𝑐,𝑎𝑎𝑎𝑎𝑎𝑎 = 0.45𝑓𝑓′𝑐𝑐 

 Steel allowable strength; tension: 𝑓𝑓𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎 = 0.4𝑓𝑓𝑦𝑦 

- Ultimate strength method: 

• Use of ultimate loads: use load combinations: magnified loads: load factors 
• Use of section capacity. 

Required strength: required internal forces to be resisted by using load combinations (like 
Mu).  

Nominal strength: strength of a member or a section calculated in accordance with provisions 
and assumptions of the strength design method of code (like Mn). 

Design strength: nominal strength x strength reduction factor (like ∅𝑀𝑀𝑛𝑛) 

∅= 0.9 flexure- tension controlled 

∅= 0.75 shear 

∅= 0.75 torsion 

∅= 0.65 axial- tied column 

∅= 0.75 axial- spiral column 

 Purpose of the strength reduction factor: 

- To allow slight variations of material strengths. 
- To allow slight variations in dimensions. 
- To allow inaccuracies in the design equations. 
- To reflect the degree of ductility. 
- To reflect the importance of the member in the structure. 

Purpose of load factors: 

- To account for inaccuracy in load calculations. 
- To account for slight variations in loads during lifetime of the structure. 
- To account for variability is structural analysis. 
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In design, use the critical load combinations. 

12. Structural analysis and modeling: 

- One dimensional structural modeling: beam, truss. 
- Two-dimensional structural modeling: plane frame. 
- Three-dimensional structural modeling: space frame. 

Slabs: one way, two way. 

Slabs: solid, waffle, ribbed, voided. 

In general, for very stiff supports, when L/B > 2, the solid slab can be assumed to be one-way.  

L and B are the panel dimensions. 

Figures 1.6 and 1.7 show general components of a building structure. 

 

 

Figure 1.6: Building components-1 
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Figure 1.7: Building components-2 

Notes on one-way slab system: 

- The beams in one-way slab system are distributed in one direction. 
- Align beams in the long direction (maximum column spacings) and align the slab in the 

short direction to have a smaller slab thickness. 
- The loads on the beams are determined from slab reactions or an approximate 

method can be used which is the tributary area or distance method. In this method, 
each beam carries the direct load on it plus the load from half the distance to the next 
beam. 

- Grid and space frame structural models are the best way to analyze the slab systems. 

Figure 1.8 shows a plan of a reinforced concrete building. It is required to draw the structural 
models of slab strips and beams. 
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Figure 1.8: Beams layout 

Given: 

- The slab is solid with thickness, h= 200mm 
- Superimposed dead load on slab, WSD= 3kN/m2 
- Live load on slab, WL= 4kN/m2  
- All beams have width, bw= 400mm and thickness, h= 600mm 
- Perimeter wall weight= 10 kN/m  

The beams are aligned in x-direction and the slab is aligned in y-direction. 

Slab own weight = 0.20 (25)= 5kN/m2 

Slab ultimate load, Wu= 1.2(5+3)+1.6(4)= 16kN/m2  

There are two slab strips 

- Strip 1, S1: between gridlines A and B 
- Strip 2, S2: between gridlines B and D 

Load on beam B1, Wu1= weight of beam + weight of wall + loads from slab 

Wu1= (0.4x0.60x25x1.2) + (10)(1.2) + (5/2)(16)= 59.2kN/m  

Load on beam B2, Wu2A= weight of beam + weight of wall + loads from slab 

Wu2A= (0.4x0.60x25x1.2) + (10)(1.2) + (5/2)(16)= 59.2kN/m  

Load on beam B2, Wu2B= weight of beam + loads from slab 

Wu2B= (0.4x0.60x25x1.2) + (5)(16)= 87.2kN/m  

Load on beam B3, Wu3= weight of beam + weight of wall + loads from slab 
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Wu3= (0.4x0.60x25x1.2) + (10)(1.2) + (5/2)(16)= 59.2kN/m  

Load on beams B4, B5 and B6= weight of beam + weight of wall  

Wu4= Wu5= Wu6= (0.4x0.60x25x1.4) + (10)(1.4)= 22.4kN/m  

Figures 1.9 and 1.10 show the slab strips and beams structural models. 

 

Figure 1.9: Slabs and beams structural models -1 
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Figure 1.10: Slabs and beams structural models-2 
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Figure 1.11: Reinforcing bars-picture 1 

 

 

Figure 1.12: Reinforcing bars- picture 2 

 

Figure 1.13: Steel reinforcement- picture 1 
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Figure 1.14: Steel reinforcement- picture 2 

 

Figure 1.15: Steel reinforcement- picture 3 

 

Figure 1.16: Steel reinforcement- picture 4 
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Figure 1.17: Steel reinforcement- picture 5 

 

Figure 1.18: Steel reinforcement- picture 6 
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Chapter 2: Working Design Method 

 

The importance of this chapter is as follows: 

1. Determine the stresses in concrete and steel due to service loads, this is very 
important in the design of water tanks to control cracks of sections designed by the 
ultimate design method 

2. Determine the cracked moment of inertia of a member, this is very important in 
calculating the deflections in beams 

By this method, structural elements are designed assuming linear stress-strain behavior, such 
that, at service loads the stresses in steel and concrete do not exceed a specified working 
stress. This working stress is taken as a certain proportion of the ultimate strength of concrete 
or yield strength of steel. 

In this method (working design method: ASD, allowable stress design), the allowable stresses 
in concrete and reinforcing steel are:  

fs,all= 0.4 fy 

fc,all= 0.45 f’c 

The concrete sections are classified into: 

- Uncracked sections 
- Cracked sections 

For uncracked sections, the stresses in concrete and steel are calculated using the formula, 

𝜎𝜎 =
𝑀𝑀𝑀𝑀
𝐼𝐼

 

Where: 

M: the applied service moment 

y: distance from the centroid of section to the point at which the stresses are to be calculated 

I: gross moment of inertia 

So, 

𝑓𝑓𝑐𝑐 =
𝑀𝑀𝑀𝑀𝑐𝑐
𝐼𝐼𝑔𝑔

              𝑓𝑓𝑡𝑡 =
𝑀𝑀𝑀𝑀𝑡𝑡
𝐼𝐼𝑔𝑔

            𝑓𝑓𝑠𝑠 =
𝑀𝑀𝑀𝑀𝑠𝑠
𝐼𝐼𝑔𝑔

𝑛𝑛 

Where: 



Design of Reinforced Concrete Structures: A practical Approach                           IBRAHIM ARMAN 
 

19 
 

Yc: distance from the extreme fibers at the compression edge to the centroid of the section 

Yt: distance from the extreme fibers at the tension edge to the centroid of the section 

Ys: distance from centroid of tension reinforcement to the centroid of the section 

Ig: gross moment of inertia 

Here, the strain and stress diagrams are linear as follows: Figure 2.1  

 

Figure 2.1: uncracked section 

If the moment of inertia, Ig is computed neglecting reinforcing steel, yc=h/2=yt in a 
rectangular section. 

For cracked section: Figure 2.2. Note: kd can be denoted by x. 

 

Figure 2.2: Stress, strain and forces in concrete section based on the working design 
method- cracked section 

n: modular ratio= Es/Ec 
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The neutral axis or line of zero strain is located by considering the equilibrium of forces acting 
on cross section, C=T, 

𝑏𝑏𝑏𝑏𝑏𝑏
𝑓𝑓𝑐𝑐
2

= 𝐴𝐴𝑠𝑠𝑓𝑓𝑠𝑠         
To determine the unknown stresses fc and fs, utilize the relationship between the stresses, 
from similar triangles in the stress diagram, 

𝑓𝑓𝑐𝑐
𝑏𝑏𝑏𝑏

=
𝑓𝑓𝑠𝑠/𝑛𝑛
𝑏𝑏 − 𝑏𝑏𝑏𝑏

            
Let, 

𝜌𝜌 =
𝐴𝐴𝑠𝑠
𝑏𝑏𝑏𝑏

           

From the three equations, above, 

𝑏𝑏 = −𝑛𝑛𝜌𝜌 + �(𝑛𝑛𝜌𝜌)2 + 2𝑛𝑛𝜌𝜌 

For a given bending moment, M, the maximum concrete and steel stresses are: 

𝑓𝑓𝑐𝑐 =
𝑀𝑀𝑏𝑏𝑏𝑏
𝐼𝐼𝑐𝑐𝑐𝑐

 

𝑓𝑓𝑠𝑠 =
𝑀𝑀(𝑏𝑏 − 𝑏𝑏𝑏𝑏)

𝐼𝐼𝑐𝑐𝑐𝑐
𝑛𝑛 

The moment of inertia, Icr is given by: neglecting concrete in tension zone. 

𝐼𝐼𝑐𝑐𝑐𝑐 =
𝑏𝑏(𝑏𝑏𝑏𝑏)3

3
+ 𝑛𝑛𝐴𝐴𝑠𝑠(𝑏𝑏 − 𝑏𝑏𝑏𝑏)2 

fc and fs can be determined using another procedure, as follows: 

𝑀𝑀 = 𝐶𝐶𝐶𝐶𝑏𝑏 = 𝑇𝑇𝐶𝐶𝑏𝑏 

𝐶𝐶𝑏𝑏 = 𝑏𝑏 −
𝑏𝑏𝑏𝑏
3

           𝐶𝐶 = 1 −
𝑏𝑏
3

 

𝑀𝑀 = 𝐶𝐶𝐶𝐶𝑏𝑏 = 𝑏𝑏𝑏𝑏𝑏𝑏 �
𝑓𝑓𝑐𝑐
2�

𝐶𝐶𝑏𝑏                  →    𝑓𝑓𝑐𝑐 =
2𝑀𝑀
𝑏𝑏𝑏𝑏2𝑏𝑏𝐶𝐶

 

And 

𝑀𝑀 = 𝑇𝑇𝐶𝐶𝑏𝑏 = 𝐴𝐴𝑠𝑠𝑓𝑓𝑠𝑠𝐶𝐶𝑏𝑏      →   𝑓𝑓𝑠𝑠 =
𝑀𝑀
𝐴𝐴𝑠𝑠𝐶𝐶𝑏𝑏
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Example 2.1: 

Given:              F’c= 24MPa                      fy= 420MPa 

 

Figure 2.3: Section for example 1 

Rectangular section: b= 300mm, h= 600mm, d= 540mm, bottom bars: 4F20 (1256mm2) 

1. Determine stresses in concrete and steel for service moment, M= 50 kN.m 
2. Determine stresses in concrete and steel for service moment, M= 160kN.m 
3. Determine the service moment that the section can carry. 

Solution: 

1. For M= 50kN.m: 

Check cracked section: 

Es= 200000MPa                       𝐸𝐸𝑐𝑐 = 4700�𝑓𝑓′𝑐𝑐 = 4700√24 = 23000𝑀𝑀𝑀𝑀𝑀𝑀 

n= Es/Ec= 200000/23000= 8.7 

neglect reinforcement, Ig= bh3/12= 300(600)3/12= 5.4x109 mm4 

𝑓𝑓𝑐𝑐 = 0.62𝜆𝜆�𝑓𝑓′𝑐𝑐 = 0.62(1)√24 = 3.04𝑀𝑀𝑀𝑀𝑀𝑀 

Tensile stress in concrete, ft: 

𝑓𝑓𝑡𝑡 =
𝑀𝑀𝑀𝑀𝑡𝑡
𝐼𝐼𝑔𝑔

=
(50𝑥𝑥106)(300)

5.4𝑥𝑥109
= 2.78𝑀𝑀𝑀𝑀𝑀𝑀 < 𝑓𝑓𝑐𝑐                𝑢𝑢𝑛𝑛𝑢𝑢𝑢𝑢𝑀𝑀𝑢𝑢𝑏𝑏𝑢𝑢𝑏𝑏 𝑠𝑠𝑢𝑢𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛 

So, ft= 2.78MPa               and from symmetry, fc= 2.78MPa 

Tensile stress in steel, fs: 

𝑓𝑓𝑠𝑠 =
𝑀𝑀𝑀𝑀𝑠𝑠
𝐼𝐼𝑔𝑔

𝑛𝑛 =
(50𝑥𝑥106)(300 − 60)

5.4𝑥𝑥109
𝑥𝑥8.7 = 19.3𝑀𝑀𝑀𝑀𝑀𝑀 
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Figure 2.4: Transformed section 

If reinforcing steel is considered (Take the reference line from the top face of section): 

𝑀𝑀− =
∑𝐴𝐴𝑖𝑖𝑀𝑀𝑖𝑖
∑𝐴𝐴𝑖𝑖

=
𝑏𝑏ℎ �ℎ2� + (𝑛𝑛 − 1)(𝐴𝐴𝑠𝑠)(𝑏𝑏)

𝑏𝑏ℎ + (𝑛𝑛 − 1)(𝐴𝐴𝑠𝑠) = 312𝑚𝑚𝑚𝑚 

𝐼𝐼𝑔𝑔 =
𝑏𝑏ℎ3

12
+ 𝑏𝑏ℎ �𝑀𝑀− −

ℎ
2�

2

+ (𝑛𝑛 − 1)(𝐴𝐴𝑠𝑠)(𝑏𝑏 − 𝑀𝑀−)2 = 5.93𝑥𝑥109𝑚𝑚𝑚𝑚4 

𝑀𝑀𝑐𝑐 = 312𝑚𝑚𝑚𝑚, 𝑀𝑀𝑡𝑡 = 600 − 312 = 288𝑚𝑚𝑚𝑚,𝑀𝑀𝑠𝑠 = 288 − 60 = 228𝑚𝑚𝑚𝑚. 

So,  

fc= 2.63MPa                              Ratio= 2.63/2.78= 0.95 

ft= 2.43MPa                              Ratio= 2.43/2.78= 0.87 

fs= 16.7MPa                              Ratio= 16.7/19.3= 0.87 

2. For M= 160MPa 

Check cracked section: 

Tensile stress in concrete, ft: 

𝑓𝑓𝑡𝑡 =
𝑀𝑀𝑀𝑀𝑡𝑡
𝐼𝐼𝑔𝑔

=
(160𝑥𝑥106)(300)

5.4𝑥𝑥109
= 8.89𝑀𝑀𝑀𝑀𝑀𝑀 > 𝑓𝑓𝑐𝑐                𝑢𝑢𝑢𝑢𝑀𝑀𝑢𝑢𝑏𝑏𝑢𝑢𝑏𝑏 𝑠𝑠𝑢𝑢𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛 

So,  

𝑓𝑓𝑐𝑐 =
2𝑀𝑀
𝑏𝑏𝑏𝑏2𝑏𝑏𝐶𝐶

 𝑠𝑠𝑢𝑢    𝑓𝑓𝑐𝑐 =
𝑀𝑀𝑏𝑏𝑏𝑏
𝐼𝐼𝑐𝑐𝑐𝑐
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𝑓𝑓𝑠𝑠 =
𝑀𝑀
𝐴𝐴𝑠𝑠𝐶𝐶𝑏𝑏

   𝑠𝑠𝑢𝑢  𝑓𝑓𝑠𝑠 =
𝑀𝑀(𝑏𝑏 − 𝑏𝑏𝑏𝑏)

𝐼𝐼𝑐𝑐𝑐𝑐
𝑛𝑛 

𝑏𝑏 = −𝑛𝑛𝜌𝜌 + �(𝑛𝑛𝜌𝜌)2 + 2𝑛𝑛𝜌𝜌 

  𝐶𝐶 = 1 −
𝑏𝑏
3

 

𝜌𝜌 =
𝐴𝐴𝑠𝑠
𝑏𝑏𝑏𝑏

 

As= 1256mm2  

b=300mm 

d= 540mm                      ρ= 0.007753 

n= 8.7                 k= 0.306                      j= 0.898                fc= 13.3MPa              fs= 262.7MPa 

“note: assume linear stress up to 0.7 f’c” 

3. Compute M: 

Fc,all= 0.45 f’c= 0.45 x 24= 10.8MPa 

Fs,all= 0.40 fy= 0.40 x 420= 168MPa 

𝑓𝑓𝑐𝑐 =
2𝑀𝑀
𝑏𝑏𝑏𝑏2𝑏𝑏𝐶𝐶

    →   10.8 =
2𝑀𝑀𝑥𝑥106

300(540)2(0.306)(0.898)  → 𝑀𝑀 = 130𝑏𝑏𝑘𝑘.𝑚𝑚  

𝑓𝑓𝑠𝑠 =
𝑀𝑀
𝐴𝐴𝑠𝑠𝐶𝐶𝑏𝑏

  → 168 =
𝑀𝑀𝑥𝑥106

1256(0.898)(540)  → 𝑀𝑀 = 102.3𝑏𝑏𝑘𝑘.𝑚𝑚 

Take, M= 102.3 kN.m  
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 Example 2.2: 

Given: F’c= 28MPa                      fy= 420MPa 

 

Figure 2.5: Section for example 2.2 

Compute fc and fs for service moment, M= 200kN.m 

Solution: 

As= 8 x 491 = 3928 mm2 

Check cracked section: 

 

Figure 2.6: Section for example 2.2- Ig 

At first, ft shall be computed at the bottom edge of section. 

𝑀𝑀− =
(250)(800)(400) + (350)(100)(50)

(250)(800) + (350)(100) = 348𝑚𝑚𝑚𝑚 𝑓𝑓𝑢𝑢𝑠𝑠𝑚𝑚 𝑠𝑠𝑠𝑠𝑡𝑡 𝑓𝑓𝑀𝑀𝑢𝑢𝑢𝑢 𝑠𝑠𝑓𝑓 𝑠𝑠𝑢𝑢𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛. 
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𝐼𝐼𝑔𝑔 =
(250)(800)3

12
+ (250)(800)(400 − 348)2 +

(350)(100)3

12
+ (350)(100)(348 − 50)2

= 1.43𝑥𝑥1010𝑚𝑚𝑚𝑚4 

𝑓𝑓𝑡𝑡 =
𝑀𝑀𝑀𝑀𝑡𝑡
𝐼𝐼𝑔𝑔

=
200𝑥𝑥106𝑥𝑥(800 − 348)

1.43𝑥𝑥1010
= 6.32𝑀𝑀𝑀𝑀𝑀𝑀 

𝑓𝑓𝑐𝑐 = 0.62(1)√28 = 3.28𝑀𝑀𝑀𝑀𝑀𝑀 < 6.32𝑀𝑀𝑀𝑀𝑀𝑀          𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒔𝒔𝒄𝒄𝒄𝒄𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 

Now compute the cracked moment of inertia, Icr: 

At first, determine the location of the neutral axis: 

Assume that the depth of the neutral axis, x from the top edge of section is equal to the flange 
thickness. So, 

The moment of area of the zone above the neutral axis (flange): 

𝑀𝑀𝑐𝑐 = (600)(100)(50) = 3𝑥𝑥106𝑚𝑚𝑚𝑚3 

The moment of area of the zone below the neutral axis: 

𝑀𝑀𝑇𝑇 = 𝑛𝑛𝐴𝐴𝑠𝑠(𝑏𝑏 − 𝑥𝑥) = 8(3928)(700 − 100) = 18.9𝑥𝑥106𝑚𝑚𝑚𝑚4 

MT > MC, so X >100mm 

 

Figure 2.7: Section for example 2.2- Icr 

Compute X: 

Moment of area above the neutral axis= moment of area below the neutral axis 

(350)(100)(𝑥𝑥 − 50) + 250
𝑥𝑥2

2
= (8)(3928)(700 − 𝑥𝑥) → 𝑥𝑥 = 245𝑚𝑚𝑚𝑚 
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𝐼𝐼𝑐𝑐𝑐𝑐 = �
1

12�
(350)(100)3 + (350)(100)(245 − 50)2 +

(250)(245)3

3
+ (8)(3928)(700 − 245)2 = 9.09𝑥𝑥109𝑚𝑚𝑚𝑚4 

Stress in concrete, fc: 

𝑓𝑓𝑐𝑐 =
𝑀𝑀𝑀𝑀
𝐼𝐼𝑐𝑐𝑐𝑐

=
(200𝑥𝑥106)(245)

9.09𝑥𝑥109
= 5.4𝑀𝑀𝑀𝑀𝑀𝑀 

Stress in steel, fs: 

𝑓𝑓𝑠𝑠 =
𝑀𝑀(𝑏𝑏 − 𝑀𝑀)

𝐼𝐼𝑐𝑐𝑐𝑐
𝑛𝑛 =

(200𝑥𝑥106)(700 − 245)
9.09𝑥𝑥109

(8) = 80.1𝑀𝑀𝑀𝑀𝑀𝑀 

 



Design of Reinforced Concrete Structures: A Practical Approach                            IBRAHIM ARMAN 
 

27 
 

Chapter 3: Ultimate Design Method: Flexure in Beams 

 

This chapter introduces beam section analysis and design; doubly and singly using the 
ultimate strength method. Based on this method, structural elements are designed taking 
inelastic strains into account to reach the maximum strength (concrete at ultimate strength 
and steel at yielding). 

Some of the reasons for the trend towards ultimate strength design are as follows: 

1. Reinforced concrete sections behave inelastically at high loads. Thus, the working 
stress method based on elastic stress-strain curve, cannot give a reliable prediction of 
the ultimate strength of the member. 

2. Ultimate strength allows separate load factors to different types of service loads. 
3. Ultimate strength design does not require a knowledge of the modular ratio. The 

concrete modulus of elasticity is not predicted well. 

Structures should be designed for: 

1. Adequate strength at ultimate loads. 
2. Limited and accepted deflections at service loads. 
3. Limited crack widths. 
4. Ductility provisions: the deflection at ultimate loads should be large enough to give 

warning of failure so that the total collapse could be prevented. To ensure ductile 
behavior, the designers should give special attention to reinforcement ratios and 
details. 

The following assumptions are made in defining the behavior of beam section: 

1. Strain distribution is assumed to be linear. This assumption is based on Bernoulli’s 
hypothesis that plane sections before bending remain plane and perpendicular to the 
neutral axis after bending. 

2. Strain in the steel and the surrounding concrete is the same prior to cracking of the 
concrete or yielding of the steel. 

3. Concrete is weak in tension. It cracks at early stages of loading. Consequently, 
concrete in tension zone of the section is neglected in the flexural analysis and design 
computations, and the tension reinforcement is assumed to take the total tensile 
force. 
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3.1 Analysis of singly reinforced beam sections: 

Figure 3.1 shows section, strain, stress and forces in a general reinforced concrete section 
using the ultimate design method. 

 

Figure 3.1: Section, strain, stress and forces- ultimate design method 

The location of the compressive force, C, is the centroid of the concrete area that is subjected 
to the stress 0.85 f’c and has a depth a. 

The depth of the compressive force from the extreme compression fibers is a- for a general 
section and it is a/2 for a rectangular compression zone and for a rectangular beam section. 

The tension force, T = The compression force, C         so, 

𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦 = 0.85𝑓𝑓′𝑐𝑐𝐴𝐴𝑐𝑐𝑐𝑐 

Acc: area of the compression zone and can be computed from the above equation (T=C) 

The nominal resisting moment, Mn will be: 

𝑀𝑀𝑛𝑛 = 𝑇𝑇 𝑜𝑜𝑜𝑜 𝐶𝐶 (𝑑𝑑 − 𝑎𝑎−) 

So, 

𝑀𝑀𝑛𝑛 = 𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦(𝑑𝑑 − 𝑎𝑎−)        𝑜𝑜𝑜𝑜 𝑀𝑀𝑛𝑛 = 0.85𝑓𝑓′𝑐𝑐𝐴𝐴𝑐𝑐𝑐𝑐(𝑑𝑑 − 𝑎𝑎−) 

For rectangular sections: 

𝑀𝑀𝑛𝑛 = 𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦 �𝑑𝑑 −
𝑎𝑎
2
�         𝑜𝑜𝑜𝑜 𝑀𝑀𝑛𝑛 = 0.85𝑓𝑓′𝑐𝑐𝑏𝑏𝑎𝑎 �𝑑𝑑 −

𝑎𝑎
2
� 

Where b is the width of the compression zone. 
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The depth of the compression zone, a in rectangular sections can be computed as above; T=C, 
so: 

𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦 = 0.85𝑓𝑓′𝑐𝑐𝑏𝑏𝑎𝑎 → 𝑎𝑎 =
𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦

0.85𝑓𝑓′𝑐𝑐𝑏𝑏
 

The design moment, ∅𝑀𝑀𝑛𝑛 is computed by multiplying the strength reduction factor, F by the 
nominal flexural strength, Mn. 

The strength reduction factor, ∅ can be computed using the figure below, Figure 3.2 

 

 

Figure 3.2: Strength reduction factor (ACI 318-19), ∅,  

Figure 3.2 can be done using the ratio C/d instead of 𝜀𝜀𝑡𝑡 as follows: 

For 𝜀𝜀𝑡𝑡=0.002 for fy= 420MPa: 

For strain 0.002, c/d= 0.6                                 For strain 0.005, c/d= 0.375 

These values can be obtained using Figure 3.3 by applying equations for similar triangles. 

 

Figure 3.3: Strain diagram for flexure 



Design of Reinforced Concrete Structures: A Practical Approach                            IBRAHIM ARMAN 
 

30 
 

For beams, the ACI 318-14 specifies that the minimum strain in steel at crushing of concrete 
is not less than 0.004 (∅ = 0.817). But it is recommended to use a strain of 0.005 instead of 
0.004 to have larger ductility and to simply use 𝜙𝜙 = 0.9. In ACI 318-19, the minimum strain in 
steel at crushing of concrete shall be not less than 0.005. 

In section analysis, 𝜙𝜙 can be between 0.65 and 0.9, but in design, do not use a strain that gives 
𝜙𝜙 not equal to 0.9.  

Interpolation can be used to determine the values of ∅ between 0.65 and 0.90, or the 
following table can be used. (ACI 318-19 Table 21.2.2). 

Table 3.1: ACI 318-19 Table 21.2.2—Strength reduction factor 𝜙𝜙 for moment, axial force, or 
combined moment and axial force 

 

tNet tensile stain ε 

 

Classification 

𝜙𝜙 

Type of transverse reinforcement 

Spirals conforming to 25.7.3 Other 

ty≤ εt ε Compression-
controlled 

0.75 (a) 0.65 (b) 

 tyε <t < εty ε
+0.003 

[1]Transition 0.75 + 0.15
(𝜖𝜖𝑡𝑡 − 𝜖𝜖𝑡𝑡𝑦𝑦)

(0.003)  
(c) 

0.65 + 0.25
(𝜖𝜖𝑡𝑡 − 𝜖𝜖𝑡𝑡𝑦𝑦)

(0.003)  
(d) 

30.00+ tyε ≥t ε Tension-
controlled 

0.90 (e) 0.90 (f) 

 [1] For sections classified as transition, it shall be permitted to use ϕ corresponding to compression-controlled sections. 

 

The equivalent depth of compression zone a is given by: 

𝑎𝑎 = 𝛽𝛽1𝑐𝑐 

 

𝛽𝛽1 = 0.85       𝑓𝑓𝑜𝑜𝑜𝑜        17𝑀𝑀𝑀𝑀𝑎𝑎 ≤ 𝑓𝑓′𝑐𝑐 ≤ 28𝑀𝑀𝑀𝑀𝑎𝑎 

𝛽𝛽1 = 0.85 − 0.05
𝑓𝑓′𝑐𝑐 − 28

7
       𝑓𝑓𝑜𝑜𝑜𝑜        28𝑀𝑀𝑀𝑀𝑎𝑎 < 𝑓𝑓′𝑐𝑐 < 56𝑀𝑀𝑀𝑀𝑎𝑎 

𝛽𝛽1 = 0.65       𝑓𝑓𝑜𝑜𝑜𝑜        56𝑀𝑀𝑀𝑀𝑎𝑎 ≤ 𝑓𝑓′𝑐𝑐 
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Reinforced concrete beam sections can be classified into: 

- Under reinforced sections: yielding of steel occurs before crushing of concrete: strain 
in steel at crushing of concrete > yield strain of steel. 

- Balanced sections: yielding of steel occurs at the same time of crushing of concrete: 
strain in steel at crushing of concrete = yield strain of steel. 

- Over reinforced sections: crushing of concrete occurs without yielding of steel: strain 
in steel at crushing of concrete < yield strain of steel. 
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Example 3.1: 

Determine the design moment, ∅𝑀𝑀𝑀𝑀 for the rectangular section shown in Figure 3.4 below. 

Given: f’c= 24 MPa            fy= 420MPa. 

 

Figure 3.4: Section for Example 3.1 

Solution: 

As= 4 x 314= 1256 mm2 

d= 540mm 

𝑇𝑇 = 𝐶𝐶 → 𝑎𝑎 =
𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦

0.85𝑓𝑓′𝑐𝑐𝑏𝑏
=

(1256)(420)
0.85(24)(300) = 86.2𝑚𝑚𝑚𝑚 

𝑐𝑐 =
𝑎𝑎
𝛽𝛽1

=
86.2
0.85

= 101.4𝑚𝑚𝑚𝑚 

 

From similar triangles: 

0.003
𝑐𝑐

=
∈𝑡𝑡

𝑑𝑑 − 𝑐𝑐
   →  𝜖𝜖𝑡𝑡 = 0.013 > 0.005           ∅ = 0.9 

𝑀𝑀𝑛𝑛 = 𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦 �𝑑𝑑 −
𝑎𝑎
2
� =

(1256)(420) �540 − 86.2
2 �

106
= 262𝑘𝑘𝑘𝑘.𝑚𝑚 

The design moment, 𝜙𝜙𝑀𝑀𝑛𝑛= 0.90 x 262= 236kN.m 
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Example 3.2: 

Determine the design moment, 𝜙𝜙𝑀𝑀𝑛𝑛 for the T- section shown in Figure 3.5 below. 

Given: f’c= 28 MPa            fy= 420MPa 

As: 8F25 

 

Figure 3.5: Section for Example 3.2 

Solution: 

As= 8 x 491= 3928mm2 

Determine the depth of the compression zone, a: 

Tension force, T= As fy = 3928(420)/1000= 1649.76kN 

Assume that a= 60mm, then,  

Compression force, C= 0.85 f’c x area of the flange= (0.85)(28)(1000)(60)/1000= 1428kN < 
1649.76kN, so a>60mm 

Compression force, C1= 0.85(28)(1000-250)(60)/1000= 1071kN 

Compression force, C2= T-C1= 1649.76-1071= 578.76kN 

C2= (0.85)(28)(250)(a)/1000= 578.76kN     so, a= 97.3kN 

The nominal moment can be computed by taking the moments of forces C1 and C2 about the 
location of steel; at T force. 

Distance from C1 force to to T force= d- hf/2 

Distance from C2 force to T force= d- a/2 
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𝑀𝑀𝑛𝑛 = 𝐶𝐶1 �𝑑𝑑 −
ℎ𝑓𝑓
2
� + 𝐶𝐶2 �𝑑𝑑 −

𝑎𝑎
2
� =

�1071 �420 − 60
2 � + 578.76 �420 − 97.3

2 ��
1000

= 632.6𝑘𝑘𝑘𝑘.𝑚𝑚 

𝑐𝑐 =
𝑎𝑎
𝛽𝛽1

=
97.3
0.85

= 114.47𝑚𝑚𝑚𝑚 

𝑐𝑐
𝑑𝑑

=
114.47

420
= 0.27 < 0.375             ∅ = 0.9 

The design moment, ∅𝑀𝑀𝑛𝑛= 0.90 x 632.6= 569.34kN.m 

Another solution:  

𝑇𝑇 = 𝐶𝐶 → 𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦 = 0.85𝑓𝑓′𝑐𝑐𝐴𝐴𝑐𝑐𝑐𝑐 → (3928)(420) = 0.85(28)(𝐴𝐴𝑐𝑐𝑐𝑐) → 𝐴𝐴𝑐𝑐𝑐𝑐 = 69317.6𝑚𝑚𝑚𝑚2 

𝐴𝐴𝑜𝑜𝐴𝐴𝑎𝑎 𝑜𝑜𝑓𝑓 𝑓𝑓𝑓𝑓𝑎𝑎𝑀𝑀𝑓𝑓𝐴𝐴 = (1000)(60) = 60000𝑚𝑚𝑚𝑚2 < 𝐴𝐴𝑐𝑐𝑐𝑐 

𝑆𝑆𝑜𝑜,𝐴𝐴𝑐𝑐𝑐𝑐 = (1000 − 250)(60) + 250𝑎𝑎 → 𝑎𝑎 = 97.3𝑚𝑚𝑚𝑚 

Determine centroid of Acc: 

𝑎𝑎− =
(750)(60)(30) + (250)(97.3)(97.3/2)

(750)(60) + (250)(97.3)
= 36.54𝑚𝑚𝑚𝑚 

𝑀𝑀𝑛𝑛 = 𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦(𝑑𝑑 − 𝑎𝑎−) = (3928)(420)(420 − 36.54)/106 = 632.6𝑘𝑘𝑘𝑘.𝑚𝑚 

∅𝑀𝑀𝑛𝑛 = (0.9)(632.6) = 569.34𝑘𝑘𝑘𝑘.𝑚𝑚 

Example 3.3: 

Given:  f’c= 28MPa          fy= 420MPa       As= 600mm2  

Compute 𝜙𝜙𝑀𝑀𝑛𝑛 for the beam section in Figure 3.6 below. 

 

Figure 3.6: Reinforced concrete section for Example 3.3 
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Solution: 

Depth of compression zone is a. 

From similar triangles: 

𝑎𝑎
𝑥𝑥1

=
700
200

               → 𝑥𝑥1 = 0.286𝑎𝑎 

Tension, T = Compression, C 

(600)(420)=0.85(28)(0.286a2) 

a = 192.4mm 

c= 192.4/0.85 = 226.4mm 

c/d= 226.4/630 = 0.36 < 0.375, so F= 0.9 

∅𝑀𝑀𝑛𝑛 = 0.9𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦 �𝑑𝑑 −
2
3
𝑎𝑎� =

0.9(600)(420)�630 − 2
3 (192.4)�

106
= 113.8𝑘𝑘𝑘𝑘.𝑚𝑚 
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3.2 Design of singly reinforced concrete rectangular beam sections: 

For design, 

∅𝑀𝑀𝑛𝑛 ≥ 𝑀𝑀𝑢𝑢 

∅𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦 �𝑑𝑑 −
𝑎𝑎
2
� = 𝑀𝑀𝑢𝑢               𝑎𝑎 =

𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦
0.85𝑓𝑓′𝑐𝑐𝑏𝑏

 

This gives: 

𝑏𝑏𝑑𝑑2 =
𝑀𝑀𝑢𝑢

∅𝜌𝜌𝑓𝑓𝑦𝑦 �1 −
𝜌𝜌𝑓𝑓𝑦𝑦

1.7𝑓𝑓′𝑐𝑐
�

 

And 

𝜌𝜌 =
0.85𝑓𝑓′𝑐𝑐
𝑓𝑓𝑦𝑦

�1 −�1 −
2.35𝑀𝑀𝑢𝑢

∅𝑏𝑏𝑑𝑑2𝑓𝑓′𝑐𝑐
� ,    𝜌𝜌 =

0.85𝑓𝑓′𝑐𝑐
𝑓𝑓𝑦𝑦

�1 −�1 −
2.61𝑀𝑀𝑢𝑢

𝑏𝑏𝑑𝑑2𝑓𝑓′𝑐𝑐
�   ℎ𝐴𝐴𝑜𝑜𝐴𝐴,∅ = 0.9 

Where: 

ρ: steel ratio. 𝜌𝜌 = 𝐴𝐴𝑠𝑠
𝑏𝑏𝑏𝑏

 

Mu: ultimate applied bending moment, N.mm  

b: width of compression zone, width of section, mm 

d= effective depth of section, mm 

f’c: compressive strength of concrete, cylinder test, at 28 days, MPa 

fy: yield strength of reinforcing steel, MPa 

3.3  Minimum thickness of beams and one way slabs: 

Note: Beam width: 

The width of beam shall be determined using the following hints: 

- Section width, b ≥ 200mm to have a space for reinforcement 
- Section width, b ≈ L/20 
- Section width, b ≈ (0.3-0.5)h, where h is the thickness of cross section 
- For seismic design, beams of special moment resisting frame: the section width shall 

be not less than the minimum of 250mm and 0.3 h. 



Design of Reinforced Concrete Structures: A Practical Approach                            IBRAHIM ARMAN 
 

37 
 

- For seismic design, beams of special moment resisting frame: Projection of the beam 
width beyond the width of the Supporting column on each side shall not exceed the 
lesser of c2 and 0.75 c1. Where c1 is the width of column in direction of beam and c2 
is the width of column transverse to beam. 

Beam and one way slab thickness: 

This section gives preliminary thickness of beams and one-way slabs based on ACI 318-19. The 
designed sections shall be adequate for shear and torsion strength in addition to be checked 
for deflection. 

Table 3.2: ACI 318-19 Table 7.3.1.1—Minimum thickness of solid nonprestressed one-way 
slabs 

Support condition Minimum h[1] 
Simply supported L/20 

One end continuous L/24 

Both ends continuous L/28 

Cantilever L/10 

shall be h = 420 MPa. For other cases, minimum y fExpression applicable for normal weight concrete and [1] 
modified in accordance with 7.3.1.1.1 through 7.3.1.1.3, as appropriate. 

[1] Expression applicable for normal weight concrete and fy = 420 MPa. For other cases, 
minimum h shall be modified in accordance with 7.3.1.1.1 through 7.3.1.1.3, as appropriate. 

ACI 318-19 section 7.3.1.1.1:  For fy other than 420 MPa, the expressions in Table 7.3.1.1 shall 
be multiplied by (0.4 + fy/700). 

ACI 318-19 section 7.3.1.1.2: For nonprestressed slabs made of lightweight concrete having 
Wc in the range of 1440 to 1840 kg/m3, the expressions in Table 7.3.1.1 shall be multiplied by 
the greater of (a) and (b): 

(a) 1.65 – 0.0003Wc 

(b) 1.09 
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Table 3.3: ACI 318-19 Table 9.3.1.1—Minimum depth of nonprestressed beams 

Support condition Minimum h[1] 
Simply supported L/16 
One end continuous L/18.5 
Both ends continuous L/21 
Cantilever L/8 

[1] Expressions applicable for normal weight concrete and Grade 420 reinforcement. For other cases, 
minimum h shall be modified in accordance with 9.3.1.1.1 through 9.3.1.1.3, as appropriate. 

[1] Expressions applicable for normal weight concrete and Grade 420 reinforcement. For 
other cases, minimum h shall be modified in accordance with 9.3.1.1.1 through 9.3.1.1.3, as 
appropriate. 

ACI 318-19 section 9.3.1.1.1:  For fy other than 420 MPa, the expressions in Table 9.3.1.1 shall 
be multiplied by (0.4 + fy/700). 

ACI 318-19 section 9.3.1.1.2:  For nonprestressed beams made of lightweight concrete having 
Wc in the range of 1440 to 1840 kg/m3, the expressions in Table 9.3.1.1 shall be multiplied by 
the greater of (a) and (b): 

(a) 1.65 – 0.0003Wc 

(b) 1.09 

3.4  Minimum reinforcement of flexural members: 

Based on ACI 318-19, the following points can be stated: 

1. At every section of a flexural member where tensile reinforcement is required by 
analysis, except as provided in 2, 3 and 4, As provided shall not be less than given by: 

 

𝐴𝐴𝑠𝑠,𝑚𝑚𝑚𝑚𝑛𝑛 =
0.25�𝑓𝑓′𝑐𝑐

𝑓𝑓𝑦𝑦
𝑏𝑏𝑤𝑤𝑑𝑑 ≥

1.4
𝑓𝑓𝑦𝑦

𝑏𝑏𝑤𝑤𝑑𝑑   𝑜𝑜𝑜𝑜 

𝜌𝜌𝑚𝑚𝑚𝑚𝑛𝑛 =
0.25�𝑓𝑓′𝑐𝑐

𝑓𝑓𝑦𝑦
 ≥

1.4
𝑓𝑓𝑦𝑦

 

2. For statically determinate members with a flange in tension, As,min shall not be less 
than the value given in 1, except that bw is replaced by either 2 bw or width of the 
flange, bf whichever is smaller. 

3. The requirements of 1 and 2 need not be applied if As provided is at least 4/3 As 
required by analysis. 
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4. For structural slabs and footings of uniform thickness, As,min shall be not less than 
0.0018𝐴𝐴𝑔𝑔. 

In slabs, the maximum spacing between bars is the smaller of three times the slab thickness 
and 450mm. 

For shrinkage steel, the maximum spacing between bars is the smaller of five times the slab 
thickness and 450mm. 

To control cracks, the maximum spacing of bars in beams and slabs is given by (ACI 318-19 
section 24.3.2): 

𝑠𝑠 ≤ 380 �
280
𝑓𝑓𝑠𝑠
� − 2.5𝐶𝐶𝑐𝑐 

𝑠𝑠 ≤ 300 �
280
𝑓𝑓𝑠𝑠
� 

fs = tensile stress in reinforcement at service loads, MPa. fs can be taken equal to 2/3 times 
fy 

Cc = clear cover of reinforcement, mm 

For fy= 420MPa, and for slabs, cover, Cc=20mm, Smax= 300mm 

For fy= 420MPa, and for beams, cover, Cc= 52mm, Smax= 250mm    (Clear cover= 40mm + 
12mm stirrup) 

One can use the following criteria for center to center bars,  

Slabs: Smax= 250mm           Smin= 100mm 

Beams: Smax= 150mm        Smin= 65mm 

In general, the minimum area of steel is required to resist a moment equal at least the 
cracking moment of the concrete section (moment capacity of unreinforced section, using 
maximum concrete stress in tension equal to modulus of rupture, fr= 0.62𝜆𝜆�𝑓𝑓′𝑐𝑐), 𝑠𝑠𝑜𝑜 

𝑀𝑀𝑐𝑐𝑐𝑐 =
𝑓𝑓𝑐𝑐𝐼𝐼𝑔𝑔
𝑦𝑦𝑡𝑡

≈ 𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦𝑑𝑑 → 𝐴𝐴𝑠𝑠 =
𝑓𝑓𝑐𝑐𝐼𝐼𝑔𝑔
𝑦𝑦𝑡𝑡𝑑𝑑𝑓𝑓𝑦𝑦

 

𝐼𝐼𝑔𝑔 =
𝑏𝑏ℎ3

12
        𝑦𝑦𝑡𝑡 =

ℎ
2

 

𝐼𝐼𝑔𝑔
𝑦𝑦𝑡𝑡

=
2𝑏𝑏ℎ3

12ℎ
=
𝑏𝑏ℎ2

6
≈
𝑏𝑏𝑑𝑑2

6
 



Design of Reinforced Concrete Structures: A Practical Approach                            IBRAHIM ARMAN 
 

40 
 

𝐴𝐴𝑠𝑠 =
𝑓𝑓𝑐𝑐𝐼𝐼𝑔𝑔
𝑦𝑦𝑡𝑡𝑑𝑑𝑓𝑓𝑦𝑦

=
𝑓𝑓𝑐𝑐𝑏𝑏𝑑𝑑2

6𝑑𝑑𝑓𝑓𝑦𝑦
=

0.62�𝑓𝑓′𝑐𝑐𝑏𝑏𝑑𝑑
6𝑓𝑓𝑦𝑦

 

Using factor of safety of 2.4: 

𝐴𝐴𝑠𝑠 =
0.62�𝑓𝑓′𝑐𝑐𝑏𝑏𝑑𝑑

6𝑓𝑓𝑦𝑦
𝑥𝑥2.4 =

0.25�𝑓𝑓′𝑐𝑐
𝑓𝑓𝑦𝑦

𝑏𝑏𝑑𝑑 

3.5  Maximum steel ratio for singly reinforced beam sections: 

From previous sections, the minimum strain in tensile steel at crushing of concrete is 0.005 
which corresponds to C/d= 0.375 (Strain in concrete= 0.003 and strain in steel= 0.005). 

𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 = 0.375𝑑𝑑 

Compression force= Tension force 

0.85𝑓𝑓′𝑐𝑐𝐴𝐴𝑐𝑐𝑐𝑐 = 𝐴𝐴𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑦𝑦  →  𝐴𝐴𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 =
0.85𝑓𝑓′𝑐𝑐𝐴𝐴𝑐𝑐𝑐𝑐

𝑓𝑓𝑦𝑦
 

Acc is computed using: 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛽𝛽1𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 

For rectangular sections: 

0.85𝑓𝑓′𝑐𝑐𝑏𝑏𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐴𝐴𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑦𝑦 = 0.85𝑓𝑓′𝑐𝑐𝑏𝑏𝛽𝛽10.375𝑑𝑑 

Divide the above equation by bd, 

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚,𝑠𝑠𝑚𝑚𝑛𝑛𝑔𝑔𝑠𝑠𝑦𝑦,∈𝑡𝑡=0.005 = 0.375𝛽𝛽1
0.85𝑓𝑓′𝑐𝑐
𝑓𝑓𝑦𝑦

 

Using the previous procedure, the balanced steel ratio and steel area can be determined using 
strain in steel at crushing of concrete equals to ∈𝑦𝑦= 𝑓𝑓𝑦𝑦

𝐸𝐸𝑠𝑠
. 

The balanced steel ratio can be determined by assuming that the tensile strain in steel at 
crushing of concrete equals to the yield strain which is equal to 0.002 for steel yield strength, 
𝑓𝑓𝑦𝑦 = 420𝑀𝑀𝑀𝑀𝑎𝑎, so: 

𝜌𝜌𝑏𝑏𝑚𝑚𝑠𝑠𝑚𝑚𝑛𝑛𝑐𝑐𝑏𝑏𝑏𝑏,𝑠𝑠𝑚𝑚𝑛𝑛𝑔𝑔𝑠𝑠𝑦𝑦,∈𝑡𝑡=0.002 = 0.6𝛽𝛽1
0.85𝑓𝑓′𝑐𝑐
𝑓𝑓𝑦𝑦
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The maximum area of steel for any beam section can be determined using the depth of the 
compression zone given by: 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛽𝛽1𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛽𝛽10.375𝑑𝑑 

From this formula, the area of the compression zone is determined and then: 

𝐶𝐶𝑜𝑜𝑚𝑚𝐶𝐶𝑜𝑜𝐴𝐴𝑠𝑠𝑠𝑠𝐶𝐶𝑜𝑜𝑀𝑀 𝑓𝑓𝑜𝑜𝑜𝑜𝑐𝑐𝐴𝐴 = 𝑇𝑇𝐴𝐴𝑀𝑀𝑠𝑠𝐶𝐶𝑜𝑜𝑀𝑀 𝑓𝑓𝑜𝑜𝑜𝑜𝑐𝑐𝐴𝐴 

0.85𝑓𝑓′𝑐𝑐𝐴𝐴𝑐𝑐𝑐𝑐 = 𝐴𝐴𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑦𝑦               ℎ𝐴𝐴𝑜𝑜𝐴𝐴 𝐴𝐴𝑐𝑐𝑐𝑐 𝐶𝐶𝑠𝑠 𝑐𝑐𝑜𝑜𝑚𝑚𝐶𝐶𝑐𝑐𝑐𝑐𝐴𝐴𝑑𝑑 𝑐𝑐𝑠𝑠𝐶𝐶𝑀𝑀𝑓𝑓 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 

 

Notes:  

1. For design, it is recommended to have the steel ratio, 𝝆𝝆 = (𝟎𝟎.𝟎𝟎𝟎𝟎 − 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎) for 
economical purpose and to control deflection. 

2. It is not recommended to have the steel ratio, 𝝆𝝆 > 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 even using compression 
steel for fy= 420MPa and it is not recommended to have a steel ratio, 𝝆𝝆 > 𝟎𝟎.𝟎𝟎𝟎𝟎 for 
fy= 560Mpa. 

3. The designer can choose a steel ratio, then the sections dimensions will be 
determined using the equation of bd2.  

4. In previous codes, the maximum steel ratio for singly reinforced sections was 0.75 
time the balanced steel ratio 

5. To have a specified strain in tension steel, the value of a can be determined from the 
strain diagram, then the steel ratio or the steel area can be derived from 
compression force equals to tension force. 

 

Example 3.4 shows the analysis and design of one-way solid slab. The slab is considered as 
singly reinforced rectangular beam section of 1000mm width.  

The one-way solid slab can be designed using strips perpendicular to beams with 1000mm 
width. 

When the slab strip modeled as a continuous beam structure (line element) with pin-ends, 
the beams will be designed for flexure and shear, and when the continuity between the slab 
strips and the beams is considered, the beam shall be designed for flexure, shear and torsion.    
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Example 3.4: 

Given: 

f’c= 28Mpa 

fy= 420Mpa 

All columns are 400mm x400mm 

Live load on slab= 16kN/m2 

Design the beams and the slab (one-way solid) for the plan shown in Figure 3.7. Assume that 
beams have rectangular sections. 

 

Figure 3.7: Plan for Example 3.4 

Solution: 

There are two options for one-way slab system as shown below in Figure 3.8. 

Option 2 will be adopted as the slab thickness will be minimum. 

 

Figure 3.8: Slab options for Example 3.4 

Design of slab: see Figure 3.9: slab structural model 
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Minimum slab thickness, h= L/20= 5/20= 0.25m 

Slab own weight, WD= 0.25 x 25 = 6.25kN/m2  

The slab is a strip of one-meter width, so, the line load will be, WD= 6.25kN/m  

The live load is given, WL= 16kN/m 

The ultimate loads are: 

Wu1= 1.4(6.25) = 8.75kN/m 

Wu2= 1.2(6.25) +1.6(16) = 33.1kN/m 

 

 

Figure 3.9: Structural model of slab 

Reaction due to dead load= 15.6kN.  

Reaction due to live load= 40kN. 

The maximum ultimate bending moment at mid span, Mu= WuL2/8= 33.1(5)2/8= 103.4kN.m 

Cross section: rectangle: b= 1000mm, h= 250mm, d= 250-40= 210mm 

The steel ratio is given by: 

𝜌𝜌 =
0.85𝑓𝑓′𝑐𝑐
𝑓𝑓𝑦𝑦

�1 −�1 −
2.61𝑀𝑀𝑢𝑢

𝑏𝑏𝑑𝑑2𝑓𝑓′𝑐𝑐
� =     

0.85(28)
420 �1 −�1 −

2.61(103.4𝑥𝑥106)
1000(210)2(28)�

= 0.0066   

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚,𝑠𝑠𝑚𝑚𝑛𝑛𝑔𝑔𝑠𝑠𝑦𝑦,∈𝑡𝑡=0.005 = 0.375𝛽𝛽1
0.85𝑓𝑓′𝑐𝑐
𝑓𝑓𝑦𝑦

= 0.375(0.85)
0.85(28)

420
= 0.01806 > 0.0066   𝑜𝑜𝑘𝑘 

Required area of steel, As= 0.0066(1000)(210)= 1386mm2  

Minimum area of steel, As, min= 0.0018(1000)(250)= 450mm2 < 1386mm2 ok 
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Take, As= 1386mm2 (7F16/m) 

The shrinkage steel in the transverse direction; x-direction, As= 450mm2, 4F12/m  

Design of beam: Figure 3.10 

Assume that width of beam, b= 400mm 

Minimum thickness of beam, h: 

h1= L/18.5= 8/18.5= 0.43m 

h2= 2/8= 0.25m 

Try, h= 700mm         d= 640mm 

Weight of beam, WD1= (0.4)(0.7)(25)= 7kN/m 

Dead load on beam from the slab, WD2= (5/2)(6.25)= 15.6kN.m 

Live load on beam from slab, WL= (5/2)(16)= 40kN/m 

Ultimate load on beam: 

Wu1= 1.4(7+15.6)= 31.64kN/m 

Wu2= 1.2(7+15.6)+1.6(40)= 91.12kN/m 

Take Wu= 91.12kN/m 

 

Figure 3.10: Structural model and bending moment diagram of the beam 
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Left reaction= 341.7kN. Right reaction= 569.5kN. 

For maximum positive moment, Mu= 640.7kN.m: 

𝜌𝜌 =
0.85𝑓𝑓′𝑐𝑐
𝑓𝑓𝑦𝑦

�1 −�1 −
2.61𝑀𝑀𝑢𝑢

𝑏𝑏𝑑𝑑2𝑓𝑓′𝑐𝑐
� =     

0.85(28)
420 �1 −�1 −

2.61(640.7𝑥𝑥106)
400(640)2(28) �

= 0.0115   

Maximum steel ratio= 0.01806 > 0.0115    ok 

Minimum steel ratio: 

 

𝜌𝜌𝑚𝑚𝑚𝑚𝑛𝑛 =
0.25�𝑓𝑓′𝑐𝑐

𝑓𝑓𝑦𝑦
 ≥

1.4
𝑓𝑓𝑦𝑦

            𝜌𝜌𝑚𝑚𝑚𝑚𝑛𝑛 =
0.25√28

420
= 0.00315 ≥

1.4
420

= 0.00333           

Use ρmin= 0.00333 <0.0115      ok 

So, As= 0.0115(400)(640)= 2944mm2                6𝜙𝜙25 

 

For maximum negative moment, Mu= 182.2kN.m: 

𝜌𝜌 =
0.85𝑓𝑓′𝑐𝑐
𝑓𝑓𝑦𝑦

�1 −�1 −
2.61𝑀𝑀𝑢𝑢

𝑏𝑏𝑑𝑑2𝑓𝑓′𝑐𝑐
� =     

0.85(28)
420 �1 −�1 −

2.61(182.2𝑥𝑥106)
400(640)2(28) �

= 0.00302   

Maximum steel ratio= 0.01806 > 0.00302    ok 

Minimum steel ratio: 

 

𝜌𝜌𝑚𝑚𝑚𝑚𝑛𝑛 =
0.25�𝑓𝑓′𝑐𝑐

𝑓𝑓𝑦𝑦
 ≥

1.4
𝑓𝑓𝑦𝑦

            𝜌𝜌𝑚𝑚𝑚𝑚𝑛𝑛 =
0.25√28

420
= 0.00315 ≥

1.4
420

= 0.00333           

Use ρmin= 0.00333 > 0.00302 

So, use the minimum of 0.00333 and 4/3 x 0.00302= 0.00403                     

Use ρ= 0.00333 

So, As= 0.00333(400)(640)= 852mm2                4𝜙𝜙18 
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Figure 3.11: Bars layout in the beam 

3.6  Design of singly reinforced concrete irregular beam sections: 

The T and L sections are commonly found in slabs. Based on ACI 318-14, the width of the 
flange, bf or be, is given as below. 

ACI 318-14 section 6.3.2.1:  For nonprestressed T-beams supporting monolithic or composite 
slabs, the effective flange width bf shall include the beam web width bw plus an effective 
overhanging flange width in accordance with Table 6.3.2.1, where h is the slab thickness and 
Sw is the clear distance to the adjacent web. 

Isolated nonprestressed T-beams in which the flange is used to provide additional 
compression area shall have a flange thickness greater than or equal to 0.5bw and an effective 
flange width less than or equal to 0.4bw.  

Table 3.4: ACI 318-19 Table 6.3.2.1—Dimensional limits for effective overhanging flange 
width for T-beam 

 

  

Effective overhanging flange width, beyond 
face 

  
Each side of 

web 
 

Least of: 

8h 
sw/2 
Ln/8 

One side of 
web 

 

Least of: 

6h 
sw/2 
Ln/12 

Ln: clear span length 

Sw: clear distance to adjacent web (beam) 

h: slab thickness= thickness of flange 

Example 3.5: 

Given: 

f’c= 21MPa 
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fy= 420MPa 

Mu= 840kN.m 

Determine the required area of steel to resist Mu. 

 

Figure 3.12: Reinforced concrete section- Example 3.5 

Solution: 

Assume that depth of compression block, a= 100mm, then compute the moment capacity of 
the flange, FMnf as follows: 

∅𝑀𝑀𝑛𝑛𝑓𝑓 = ∅0.85𝑓𝑓′𝑐𝑐𝑏𝑏𝑓𝑓𝑎𝑎 �𝑑𝑑 −
𝑎𝑎
2
� =

0.9(0.85)(21)(850)(100)(570 − 50)
106

= 710𝑘𝑘𝑘𝑘.𝑚𝑚
< 𝑀𝑀𝑐𝑐 = 840𝑘𝑘𝑘𝑘.𝑚𝑚 

So, a>100mm, then divide the compression zone to two zones; one within the flange and 
the other within the web, see Figure 3.13. 

 

Figure 3.13: Reinforced concrete section- Example 3.5- compression zones 

The moment capacity of zone 1 is given by: 

∅𝑀𝑀𝑛𝑛1 = ∅0.85𝑓𝑓′𝑐𝑐(𝑏𝑏𝑓𝑓 − 𝑏𝑏𝑤𝑤)ℎ𝑓𝑓 �𝑑𝑑 −
ℎ𝑓𝑓
2
� =

0.9(0.85)(21)(850 − 350)(100)(570 − 50)
106

= 417.69𝑘𝑘𝑘𝑘.𝑚𝑚 
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The needed area of steel for 𝜙𝜙𝑀𝑀𝑀𝑀1 is given by: 

∅𝑀𝑀𝑛𝑛1 = ∅0.85𝑓𝑓′𝑐𝑐(𝑏𝑏𝑓𝑓 − 𝑏𝑏𝑤𝑤)ℎ𝑓𝑓 �𝑑𝑑 −
ℎ𝑓𝑓
2
� = ∅𝐴𝐴𝑠𝑠1𝑓𝑓𝑦𝑦(𝑑𝑑 −

ℎ𝑓𝑓
2

) 

𝐴𝐴𝑠𝑠1 =
∅𝑀𝑀𝑛𝑛1

∅𝑓𝑓𝑦𝑦 �𝑑𝑑 −
ℎ𝑓𝑓
2 �

= 2125𝑚𝑚𝑚𝑚2 

∅𝑀𝑀𝑛𝑛2 = 𝑀𝑀𝑐𝑐 − ∅𝑀𝑀𝑛𝑛1 = 840 − 417.69 = 422.31𝑘𝑘𝑘𝑘.𝑚𝑚 

The moment 𝜙𝜙𝑀𝑀𝑛𝑛2= 𝑀𝑀𝑢𝑢2 and will be resisted by compression zone 2. The required area of 
steel is determined by applying the formula for steel ratio ρ for a rectangular section. 

𝜌𝜌 =
0.85𝑓𝑓′𝑐𝑐
𝑓𝑓𝑦𝑦

�1 −�1 −
2.61𝑀𝑀𝑢𝑢

𝑏𝑏𝑑𝑑2𝑓𝑓′𝑐𝑐
� =     

0.85(21)
420 �1 −�1 −

2.61(422.31𝑥𝑥106)
350(570)2(21) �

= 0.01131 

This value of ρ is less than maximum ρ for singly reinforced section, or a<amax 

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚,𝑠𝑠𝑚𝑚𝑛𝑛𝑔𝑔𝑠𝑠𝑦𝑦,∈𝑡𝑡=0.005 = 0.375𝛽𝛽1
0.85𝑓𝑓′𝑐𝑐
𝑓𝑓𝑦𝑦

= 0.375(0.85)
0.85(21)

420
= 0.0135 > 0.01131   𝑜𝑜𝑘𝑘 

Or: 

As2= 0.01131(350)(570)= 2256mm2  

𝑎𝑎 =
𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦

0.85𝑓𝑓′𝑐𝑐𝑏𝑏
=

2256(420)
0.85(21)(350) = 152𝑚𝑚𝑚𝑚 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛽𝛽10.375𝑑𝑑 = 0.85(0.375)(570) = 181.7𝑚𝑚𝑚𝑚 > 152𝑚𝑚𝑚𝑚 

Total area of steel, As= As1+As2= 2125 + 2256 = 4381 mm2  

Additional checks: 

Minimum area of steel: 

𝐴𝐴𝑠𝑠,𝑚𝑚𝑚𝑚𝑛𝑛 = 0.00333𝑏𝑏𝑤𝑤𝑑𝑑 = 0.00333(350)(570) = 664𝑚𝑚𝑚𝑚2 < 4381𝑚𝑚𝑚𝑚2   𝑜𝑜𝑘𝑘 

Maximum area of steel is checked above. If maximum steel area is needed, it will be 
calculated as follows: 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛽𝛽10.375𝑑𝑑 = 0.85(0.375)(570) = 181.7𝑚𝑚𝑚𝑚 

Compression force = Tension force 
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0.85𝑓𝑓′𝑐𝑐𝐴𝐴𝑐𝑐𝑐𝑐 = 𝐴𝐴𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑦𝑦 

0.85(21)�(850 − 350)(100) + 181.7(350)� = 𝐴𝐴𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚(420) →  𝐴𝐴𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 = 4828𝑚𝑚𝑚𝑚2

> 4381𝑚𝑚𝑚𝑚2     𝑜𝑜𝑘𝑘 

Example 3.6: 

Given: 

f’c= 28MPa 

fy= 420MPa 

Mu= 180kN.m 

Determine the required area of bottom steel to resist Mu. 

 

Figure 3.14: Reinforced concrete section- Example 3.6 

Solution: 

 

Figure 3.15: Compression zone of depth, a 

Check singly or doubly: 

The maximum compression block depth, amax is given by: 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛽𝛽10.375𝑑𝑑 = (0.85)(0.375)(720) = 229.5𝑚𝑚𝑚𝑚 
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From similar triangles: 

𝑎𝑎
𝑥𝑥1

=
800
300

→ 𝑥𝑥1 = 0.375𝑎𝑎 

So, x1= 0.375(229.5)=86mm. The compression force in concrete, Cc is given by: 

𝐶𝐶𝑐𝑐 =
0.85(28)(86)(229.5)

1000
= 469.7𝑘𝑘𝑘𝑘 

The compression force= the tension force 

469.7𝑥𝑥1000 = 𝐴𝐴𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑦𝑦 = 𝐴𝐴𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚(420) → 𝐴𝐴𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 = 1118𝑚𝑚𝑚𝑚2 

The design moment, ∅𝑀𝑀𝑛𝑛, is given by: 

∅𝑀𝑀𝑛𝑛 = ∅𝐶𝐶𝑐𝑐 �𝑑𝑑 −
2
3
𝑎𝑎� =

0.9(469.7)�720 − �2
3� (229.5)�

1000
= 239.7𝑘𝑘𝑘𝑘.𝑚𝑚

> 180𝑘𝑘𝑘𝑘.𝑚𝑚      𝑠𝑠𝐶𝐶𝑀𝑀𝑓𝑓𝑓𝑓𝑦𝑦 𝑜𝑜𝐴𝐴𝐶𝐶𝑀𝑀𝑓𝑓𝑜𝑜𝑜𝑜𝑐𝑐𝐴𝐴𝑑𝑑 𝑠𝑠𝐴𝐴𝑐𝑐𝑐𝑐𝐶𝐶𝑜𝑜𝑀𝑀 

Compute area of tension steel: 

𝑀𝑀𝑢𝑢 = ∅𝑀𝑀𝑛𝑛 

180𝑥𝑥106 = 0.9(0.85)(28)(0.375𝑎𝑎)(𝑎𝑎)(720 −
2
3
𝑎𝑎) 

Simplifying, 

𝑎𝑎3 − 1080𝑎𝑎2 + 33.6𝑥𝑥106 = 0.0 → 𝑎𝑎 = 194.8𝑚𝑚𝑚𝑚 

The compression force= the tension force 

0.85(28)(0.375)(194.8)2 = 𝐴𝐴𝑠𝑠(420) → 𝐴𝐴𝑠𝑠 = 806𝑚𝑚𝑚𝑚2 

Example 3.7: 

Given: 

f’c= 28MPa 

fy= 420MPa 

Mu= 700kN.m 

Determine the required area of bottom steel to resist Mu. 
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Figure 3.16: Reinforced concrete section- Example 3.7 

 

Solution: 

 

Figure 3.17: Compression zone of depth, a 

 

Check singly or doubly: 

The maximum compression block depth, amax is given by: 

 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛽𝛽10.375𝑑𝑑 = (0.85)(0.375)(620) = 197.6𝑚𝑚𝑚𝑚 

From similar triangles: 

𝑎𝑎
𝑥𝑥1

=
700
250

→ 𝑥𝑥1 = 0.357𝑎𝑎 

The compression force in concrete, Cc1 is given by: 

𝐶𝐶𝑐𝑐1 =
0.85(28)(500)(197.6)

1000
= 2351.4𝑘𝑘𝑘𝑘 
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The compression force in concrete, Cc2 is given by: 

𝐶𝐶𝑐𝑐1 =
0.85(28)(0.357)(197.6)2

1000
= 331.8𝑘𝑘𝑘𝑘 

The total compression force, Cc= Cc1 + Cc2=2683.2kN 

The compression force= the tension force 

2683.2𝑥𝑥1000 = 𝐴𝐴𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑦𝑦 = 𝐴𝐴𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚(420) → 𝐴𝐴𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 = 6389𝑚𝑚𝑚𝑚2 

The design moment, ∅𝑀𝑀𝑛𝑛, is given by: 

∅𝑀𝑀𝑛𝑛 =
∅

1000
�𝐶𝐶𝑐𝑐1 �620 −

197.6
2 � + 𝐶𝐶𝑐𝑐2(620 − (

2
3

)(197.6)� = 1249𝑘𝑘𝑘𝑘.𝑚𝑚
> 700𝑘𝑘𝑘𝑘.𝑚𝑚   𝑠𝑠𝐶𝐶𝑀𝑀𝑓𝑓𝑓𝑓𝑦𝑦 𝑜𝑜𝐴𝐴𝐶𝐶𝑀𝑀𝑓𝑓𝑜𝑜𝑜𝑜𝑐𝑐𝐴𝐴𝑑𝑑 𝑠𝑠𝐴𝐴𝑐𝑐𝑐𝑐𝐶𝐶𝑜𝑜𝑀𝑀  

Compute area of tension steel: 

𝑀𝑀𝑢𝑢 = ∅𝑀𝑀𝑛𝑛 

700𝑥𝑥106 = 0.9 �(0.85)(28)(0.357𝑎𝑎)(𝑎𝑎) �620 −
2
3
𝑎𝑎� + (0.85)(28)(500𝑎𝑎)(620 −

𝑎𝑎
2

)� 

Simplifying, 

5.664𝑎𝑎3 + 682𝑎𝑎2 − 7378000𝑎𝑎 + 777.78𝑥𝑥106 = 0.0 → 𝑎𝑎 = 107.4𝑚𝑚𝑚𝑚 

The compression force= the tension force 

0.85(28)(0.357)(194.8)2 + 0.85(28)(500)(194.8) = 𝐴𝐴𝑠𝑠(420) → 𝐴𝐴𝑠𝑠 = 3276𝑚𝑚𝑚𝑚2 

3.7 Analysis of doubly reinforced concrete beam sections: 

The basic principle of analysis of doubly reinforced concrete beam section is based on 
assuming a trial value of compression depth, a, then checking that the compression force, C 
is equal to the tension force T, then the moment capacity, 𝜙𝜙𝑀𝑀𝑛𝑛 will be determined. 

- Assume a value for a. 
- Compute the compression force in concrete: Cc=0.85 f’c Acc. 
- Compute the compression force in compression steel: Cs= As’ fs’. 
- Compute the tension force in tension steel: T= As fs. 
- The values of fs’ and fs are computed by multiplying the strain values by the steel 

modulus of elasticity, Es. 
- The values of strains in tension steel and compression steel are computed from the 

strain diagram based on the value of C= a/β1. 
- If T is approximately equal Cc+ Cs, stop, so the value of a is appropriate. 
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- Compute the moment capacity by multiplying Cc and Cs with their distances from 
the tension steel location. 

0.85𝑓𝑓′𝑐𝑐𝐴𝐴𝑐𝑐𝑐𝑐 + 𝐴𝐴𝑠𝑠′𝑓𝑓𝑠𝑠
′ = 𝐴𝐴𝑠𝑠𝑓𝑓𝑠𝑠 

For rectangular section: 

0.85𝑓𝑓′𝑐𝑐𝑏𝑏𝑎𝑎 + 𝐴𝐴𝑠𝑠′𝑓𝑓𝑠𝑠
′ = 𝐴𝐴𝑠𝑠𝑓𝑓𝑠𝑠 

𝑎𝑎 =
𝐴𝐴𝑠𝑠𝑓𝑓𝑠𝑠 − 𝐴𝐴𝑠𝑠′𝑓𝑓𝑠𝑠

′

0.85𝑓𝑓′𝑐𝑐𝑏𝑏
=

𝑇𝑇 − 𝐶𝐶𝑠𝑠
0.85𝑓𝑓′𝑐𝑐𝑏𝑏

 

Assuming than the tension and compression steel yield, then: 

𝑎𝑎 =
(𝐴𝐴𝑠𝑠 − 𝐴𝐴𝑠𝑠′)𝑓𝑓𝑦𝑦

0.85𝑓𝑓′𝑐𝑐𝑏𝑏
 

For section analysis, one can start with this value. If a is not appropriate, the new value of a 
will be: 

𝑎𝑎 =
𝑇𝑇 − 𝐶𝐶𝑠𝑠

0.85𝑓𝑓′𝑐𝑐𝑏𝑏
                 𝑇𝑇 𝑎𝑎𝑀𝑀𝑑𝑑 𝐶𝐶𝑠𝑠  𝑎𝑎𝑜𝑜𝐴𝐴 𝑐𝑐𝑜𝑜𝑚𝑚𝐶𝐶𝑐𝑐𝑐𝑐𝐴𝐴𝑑𝑑 𝑓𝑓𝑜𝑜𝑜𝑜𝑚𝑚 𝑐𝑐ℎ𝐴𝐴 𝐶𝐶𝑜𝑜𝐴𝐴𝑝𝑝𝐶𝐶𝑜𝑜𝑐𝑐𝑠𝑠 𝑠𝑠𝑐𝑐𝐴𝐴𝐶𝐶 

Example 3.8: 

Given:          f’c= 24MPa               fy= 420MPa           Compute FMn. 

 

Figure 3.18: Reinforced concrete section for example 3.8 

Solution: 

As= 7x491= 3437mm2 

As’= 5x201= 1005mm2  

Assume that both steel yield, so 
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𝑎𝑎 =
(𝐴𝐴𝑠𝑠 − 𝐴𝐴𝑠𝑠′)𝑓𝑓𝑦𝑦

0.85𝑓𝑓′𝑐𝑐𝑏𝑏
=

(3437 − 1005)(420)
0.85(24)(350) = 143.1𝑚𝑚𝑚𝑚 

𝑐𝑐 =
𝑎𝑎
𝛽𝛽1

=
143.1
0.85

= 168.2𝑚𝑚𝑚𝑚 

 

From similar triangles: 

𝜖𝜖𝑠𝑠 = 0.00556           𝜖𝜖𝑠𝑠′ = 0.00175                 

  

𝑓𝑓𝑠𝑠 = 𝜖𝜖𝑠𝑠𝐸𝐸𝑠𝑠 = 0.00556(200000) = 1112𝑀𝑀𝑀𝑀𝑎𝑎      >  𝑓𝑓𝑦𝑦    𝑐𝑐𝑠𝑠𝐴𝐴 𝑓𝑓𝑠𝑠 = 𝑓𝑓𝑦𝑦 = 420𝑀𝑀𝑀𝑀𝑎𝑎 

𝑓𝑓𝑠𝑠
′ = 𝜖𝜖𝑠𝑠′𝐸𝐸𝑠𝑠 = 0.00175(200000) = 350𝑀𝑀𝑀𝑀𝑎𝑎       

𝑐𝑐𝑜𝑜𝑚𝑚𝐶𝐶𝑜𝑜𝐴𝐴𝑠𝑠𝑠𝑠𝐶𝐶𝑜𝑜𝑀𝑀 𝐶𝐶𝑀𝑀 𝑐𝑐𝑜𝑜𝑀𝑀𝑐𝑐𝑜𝑜𝐴𝐴𝑐𝑐𝐴𝐴,𝐶𝐶𝑐𝑐 = 0.85𝑓𝑓′𝑐𝑐𝑏𝑏𝑎𝑎 =
0.85(24)(350)(143.1)

1000
= 1021.7𝑘𝑘𝑘𝑘 

𝑐𝑐𝑜𝑜𝑚𝑚𝐶𝐶𝑜𝑜𝐴𝐴𝑠𝑠𝑠𝑠𝐶𝐶𝑜𝑜𝑀𝑀 𝐶𝐶𝑀𝑀 𝑠𝑠𝑐𝑐𝐴𝐴𝐴𝐴𝑓𝑓,𝐶𝐶𝑠𝑠 = 𝐴𝐴𝑠𝑠′𝑓𝑓𝑠𝑠
′ =

1005(350)
1000

= 351.8𝑘𝑘𝑘𝑘 

𝑐𝑐𝐴𝐴𝑀𝑀𝑠𝑠𝐶𝐶𝑜𝑜𝑀𝑀 𝐶𝐶𝑀𝑀 𝑠𝑠𝑐𝑐𝐴𝐴𝐴𝐴𝑓𝑓,𝑇𝑇 = 𝐴𝐴𝑠𝑠𝑓𝑓𝑠𝑠 =
3437(420)

1000
= 1443.5𝑘𝑘𝑘𝑘 

Total compression force= 1021.7 + 351.8 = 1373.5kN  

𝑇𝑇
𝐶𝐶

=
1443.5
1373.5

= 1.05            𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 5% 

Try a new value of a: 

𝑎𝑎 =
𝑇𝑇 − 𝐶𝐶𝑠𝑠

0.85𝑓𝑓′𝑐𝑐𝑏𝑏
=

1443.5 − 351.8
0.85(24)(350) = 152.9𝑚𝑚𝑚𝑚        

Resolve for a= 152.9mm: 
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C= 179.9mm 

Cc= 1091.7kN 

𝜖𝜖𝑠𝑠′ = 0.00183         𝑓𝑓𝑠𝑠
′ = 366𝑀𝑀𝑀𝑀𝑎𝑎        𝜖𝜖𝑠𝑠 = 0.005 

Cs= 367.8kN               C= 1459.5kN              T= 1443.5kN         C/T=1.01 

Error 1%, accepted. 

Since  𝜖𝜖𝑠𝑠 = 0.005,𝜙𝜙 = 0.9 

𝜙𝜙𝑀𝑀𝑛𝑛 = 𝜙𝜙 �𝐶𝐶𝑐𝑐 �𝑑𝑑 −
𝑎𝑎
2
� + 𝐶𝐶𝑠𝑠(𝑑𝑑 − 𝑑𝑑′)� =

0.9 �1091.7 �480 − 152.9
2 � + 367.8(480 − 70)�
106

= 528.8𝑘𝑘𝑘𝑘.𝑚𝑚 

 

Note: the procedure in Example 3.8 can be applied for any section shape other than 
rectangular sections. Students are responsible to solve for any shape especially flanged 
sections (T, L and I). For flanged sections, the compression zone of depth a may be composed 
of parts; each part has its own compression force. 

 

Example 3.9: 

Given:                     f’c= 20MPa                   fy=420MPa 

As= 7111mm2            As’= 1570mm2 

Concrete cover to tension steel = 80mm 

Concrete cover to compression steel = 60mm 

Compute the design moment, FMn for the section shown below in Figure 3.19. 
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Figure 3.19: Reinforced section for Example 3.9 

Solution: 

If the tension reinforcement yields, then 

Tension, T= As fy = 7111(420)/1000= 2986.62kN 

If the depth of compression zone, a= 150mm and the compression steel yields, then 

Compression, C= [0.85 (20)(800)(150) + 1570(420) ] / 1000 = 2699.4kN 

So, a > 150mm 

T= Cc + Cs 

2986.62 = 0.85(20)(300)(150)/1000 + 0.85(20)(500)(a)/1000 + 1570 (420)/1000  

So, a= 184mm 

Check a and stresses in tension and compression steel: 

Depth of neutral axis = a/β1 = 184/0.85 = 217mm 

From similar triangles in strain diagram: 

Strain in compression steel = 0.00217 > yield strain = 420/200000 = 0.0021     so, 
compression steel yield 

Stain in tension steel= 0.0056 > yield strain, so tension steel yield 

So, a= 184mm 
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 Tension force, T= 2987kN 

Compression force in flange, Cc1= 0.85(20)(300)(150)/1000 = 765kN 

Compression force in web, Cc2= 0.85(20)(500)(184)/1000 = 1564kN 

Compression force in compression steel, Cs= 1570(420)/1000 = 659kN 

The design moment, 𝜙𝜙𝑀𝑀𝑛𝑛 is given by: 

𝜙𝜙𝑀𝑀𝑛𝑛 = 0.90{Cc1(d-hf/2) + Cc2(d-a/2) + Cs(d-d’) = 1450kN.m 

3.8  Design of doubly reinforced concrete beam sections: 

- The main use of the compression steel is to keep the strain in the tensile steel not less 
than 0.005 to ensure ductility provisions for large values of moments. So, the 
maximum depth of the compression zone is 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛽𝛽1𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛽𝛽10.375𝑑𝑑. 

- The first step is to compute the needed steel area As1 which is equivalent to the 
maximum value of steel ratio or the maximum value of a. See Figure 3.13. For 
rectangular sections, the maximum steel ratio or a value less than it, can be used to 
determine As1. For non-rectangular sections, amax or a value less than it, can be used 
to determine As1.  

- Then, compute the moment capacity, FMn1 for As1. 
- Compute the moment to be resisted by As2 and As’ which is FMn2= Mu-FMn1 
- Compute As2 and As1 as follows: 
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Figure 3.20: Doubly reinforced beam section 

𝜙𝜙𝑀𝑀𝑛𝑛2 = 𝜙𝜙𝐴𝐴𝑠𝑠′𝑓𝑓𝑠𝑠
′(𝑑𝑑 − 𝑑𝑑′) = 𝜙𝜙𝐴𝐴𝑠𝑠2𝑓𝑓𝑦𝑦(𝑑𝑑 − 𝑑𝑑′) 

The stress in compression steel, fs’ is computed by multiplying the strain 𝜖𝜖𝑠𝑠′ by the modulus 
of elasticity of steel, Es. 

The total area of tension steel in the section will be: As= As1 + As2 

Example 3.10: 

Given:     f’c= 28MPa          fy= 420MPa 

Rectangular section: b= 350mm           h= 700mm    d= 640mm      d’= 60mm 

Determine the required area of steel to resist an ultimate bending moment, Mu= 1100kN.m. 

Solution: 

Determine steel ratio for Mu= 1100kN.m: 

𝜌𝜌 =
0.85𝑓𝑓′𝑐𝑐
𝑓𝑓𝑦𝑦

�1 −�1 −
2.61𝑀𝑀𝑢𝑢

𝑏𝑏𝑑𝑑2𝑓𝑓′𝑐𝑐
� =     

0.85(28)
420 �1 −�1 −

2.61(1100𝑥𝑥106)
350(640)2(28) � = 0.026 

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚,𝑠𝑠𝑚𝑚𝑛𝑛𝑔𝑔𝑠𝑠𝑦𝑦,∈𝑡𝑡=0.005 = 0.375𝛽𝛽1
0.85𝑓𝑓′𝑐𝑐
𝑓𝑓𝑦𝑦

= 0.375(0.85)
0.85(28)

420
= 0.01806 < 0.026 

So, there is a need for compression steel. 

The maximum steel ratio, ρ= 0.01806 requires As= 0.01806(350)(640)= 4045.4mm2  

𝑎𝑎 =
4045.4(420)

0.85(28)(350) = 204𝑚𝑚𝑚𝑚 

𝜙𝜙𝑀𝑀𝑛𝑛1 = 𝜙𝜙𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦 �𝑑𝑑 −
𝑎𝑎
2
� =

0.9(4045.4)(420) �640 − 204
2 �

106
= 822.7𝑘𝑘𝑘𝑘.𝑚𝑚 

𝜙𝜙𝑀𝑀𝑛𝑛2 = 1100 − 822.7 = 277.3𝑘𝑘𝑘𝑘.𝑚𝑚 

𝜙𝜙𝑀𝑀𝑛𝑛2 = 𝜙𝜙𝐴𝐴𝑠𝑠′𝑓𝑓𝑠𝑠
′(𝑑𝑑 − 𝑑𝑑′) = 𝜙𝜙𝐴𝐴𝑠𝑠2𝑓𝑓𝑦𝑦(𝑑𝑑 − 𝑑𝑑′) 

The depth of neutral axis, C= 204/0.85= 240mm 

From similar triangles, the strain in compression steel is equal to 0.00225 

So,  𝑓𝑓𝑠𝑠
′ = 0.00225(200000) = 450𝑀𝑀𝑀𝑀𝑎𝑎 >  𝑓𝑓𝑦𝑦,      𝑐𝑐𝑠𝑠𝐴𝐴 𝑓𝑓𝑠𝑠

′ = 420𝑀𝑀𝑀𝑀𝑎𝑎  
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Substitute in the above equation, As2= As’= 1265mm2  

 As= 4045.4 + 1265= 5311mm2     7∅32  

As’= 1265mm2      4∅20 

Example 3.11: 

Given:                     f’c= 20MPa                   fy=420MPa 

Concrete cover to tension steel= 80mm 

Concrete cover to compression steel if needed= 60mm 

Determine the required reinforcement for the section shown below in Figure 3.21 to resist a 
positive moment, Mu= 1450kN.m. 

 

Figure 3.21: Reinforced section for Example 3.11 

Solution: 

Assume depth of compression zone, a= hf= 150mm, so, the resisting moment of the flange 
will be: 

FMn= 0.9{0.85(20)(800)(150)(620-75)/106= 1000.62kN.m > Mu = 1450kN.m, then a > 
150mm 

The design moment of the overhangs is given by: 

FMn1 = 0.9(0.85)(20)(300)(150)(620-75)/106= 375.2 kN.m, this moment requires an area of 
steel determined as follows: 

FMn1= 375.2 kN.m = 0.90 As1 fy (d-hf/2)/106 , so  

As1= 1821 mm2  
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The design moment of the web will be 1450- 375.2 = 1074.8 kN.m= FMn2. This moment 
shall be resisted by a rectangular section of width, b= 500mm and thickness, h= 700mm, so: 

The steel ratio will be, ρ = 0.01944 > ρmax for singly reinforced section, then there is a need 
for compression steel. 

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚,𝑠𝑠𝑚𝑚𝑛𝑛𝑔𝑔𝑠𝑠𝑦𝑦,∈𝑡𝑡=0.005 = 0.375𝛽𝛽1
0.85𝑓𝑓′𝑐𝑐
𝑓𝑓𝑦𝑦

= 0.375(0.85)
0.85(20)

420
= 0.0129 < 0.01944 

For steel ratio, ρ = 0.012, the resisting moment can be computed as follows: 

As2 = 0.012 (500) (620) = 3720 mm2  

𝑎𝑎 =
3720(420)

0.85(20)(500) = 183.8𝑚𝑚𝑚𝑚 

FMn3= 0.9(3720)(420)(620-183.8/2)/106 = 742.5 kN.m 

FMn4 = FMn2 – FMn3 = 1074.8 – 742.5 = 332.3 kN.m = 0.9 As3 fy (d-d’) = 0.9 As’ fs’ (d-d’) 

The strain in compression steel is equal to 0.00217 > yielding strain, so, the compression 
steel yields.  

C= a/β1 = 217mm 

 

So, As3 = As’ = 1570 mm2 

The total tension steel, As = As1 + As2 + As3 = 1821 + 3720 + 1570 = 7111 mm2  

The compression steel, As’ = 1570mm2 

3.9  Load cases and moment envelope: 

- The design should consider the load cases on a structure 
- The live load is variable and movable 
- Span can have dead load only 
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- Span can have dead plus live loads 
- Moment envelope can be constructed by applying the dead loads to all spans and 

change the live loads from span to another. The maximum positive and negative 
moments can be found by using the following two principles – see Figure 3.22: 

• Load the two spans adjacent to the support to get the maximum negative 
moment at a support 

• Load the span itself and load alternative spans to get the maximum positive 
moment in a span 

- If the arrangement of L is known, the slab system shall be analyzed for that 
arrangement 

 

Figure 3.22: Load cases in a beam 
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3.10 Simplified method of analysis for nonprestressed continuous beams 
and one-way slabs: ACI coefficients 

- It shall be permitted to calculate Mu and Vu due to gravity loads in accordance with 
this section for continuous beams and one-way slabs satisfying (a) through (e): 

(a) Members are prismatic. 
(b) Loads are uniformly distributed. 
(c) L≤ 3D. 
(d) There are at least two spans. 
(e) The longer of two adjacent spans does not exceed the shorter by 20%. 

      -  Mu due to gravity loads shall be calculated in accordance with Table 6.5.2 in ACI 318-
19 as shown below: 

Table 3.5: ACI 318-19 Table 6.5.2—Approximate moments for nonprestressed continuous 
beams and one-way slabs 

 

- Vu due to gravity loads shall be calculated in accordance with Table 6.5.4 in ACI 318-
19 as shown below 

 

Table 3.6: ACI 318-19 Table 6.5.4—Approximate shears for nonpre- stressed continuous 
beams and one-way slabs 

Location Vu 
Exterior face of first interior 
support 

1.15wuLn/2 

Face of all other supports wuLn/2 
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Figure 3.23: Shear envelope 

 

Figure 3.24: Moment envelope for a beam 

Example 3.12: 

Given: 

F’c= 28MPa               fy= 420MPa 

Superimposed dead load, WSD= 4kN/m2 

Live load, WL= 6kN/m2 

Perimeter wall weight, WWALL= 10kN/m 

All columns are: 400mm x 400mm 

All beams are: 400mm x550mm 

Draw moment and shear forces envelopes for the slab and interior beam B2. See Figure 3.25 
below. 

 

Figure 3.25: Slab and beams layout- Example 3.12 
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Solution: 

Slab thickness: 

The slab has two spans of 4.5m length. Ln=4.5-0.4=4.10m. 

Minimum slab thickness, h= L/24 = 4.5/24= 0.19 m, try h= 0.20m 

Own weight of slab, WD= 0.20(25)= 5kN/m2  

Wu1= 1.4(5+4)= 12.6kN/m2  

Wu2= 1.2(5+4)+1.6(6)= 20.4kN/m2  

Take, Wu= 20.4kN/m2  

 

Figure 3.26: Shear envelope in slab- kN 

 

Figure 3.27: Bending moment envelope in slab- kN.m 

The ultimate load on beam B2 is given by: Wu= 1.2(0.40 x 0.55)(25)+4.5(20.4)(1.15)= 
112.17kN/m 

 

Figure 3.28: Shear envelope in beam B2- kN 
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Figure 3.29: Bending moment envelope in beam B2- kN.m 

3.11 Simplified flexural bars layout: 

For beams analyzed using the ACI coefficients, a simplified bars layout can be used. The main 
points of bars layout are as follows: 

1. In simple spans, at least 1/3 the bottom bars shall be extended into the supports with 
standard hooks. In continuous spans, at least ¼ the bottom bars shall be extended in 
the supports to develop fy at interior supports and will be with standard hooks at end 
supports. 

2. Top bars at interior supports can be extended to 1/3 the larger clear span at each side, 
while at exterior supports, top bars can be extended to ¼ the clear span. 

3.12 Beam section subjected to axial force:  

If the beam section is subjected to tension force, Pu, in addition to the bending moment, Mu, 
the required reinforcement to resist this axial tension force can be calculated by dividing the 
force, Pu by ∅𝑓𝑓𝑦𝑦, and this reinforcement can be distributed at top and bottom of section or 
at section perimeter (Top, bottom and sides).  

If the beam section is subjected to compression force, Pu, in addition to the bending moment, 
Mu, the required reinforcement to resist both the bending moment and the compression 
force can be calculated using the previous principles but the compression force is not equal 
to the tension force. The compression force is larger than the tension force by the value of Pu 
as follows (Singly reinforced rectangular section):  

0.85𝑓𝑓𝑐𝑐′𝑏𝑏𝑎𝑎 = 𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦 + 𝑀𝑀𝑢𝑢           𝑆𝑆𝑜𝑜,𝐴𝐴𝑠𝑠 =
0.85𝑓𝑓𝑐𝑐′𝑏𝑏𝑎𝑎 − 𝑀𝑀𝑢𝑢

𝑓𝑓𝑦𝑦
                 

The nominal moment capacity of the section, Mn is determined by summing the moment of 
the two forces C and T about point a in Figure 3.30. 
 

𝑀𝑀𝑛𝑛 = 0.85𝑓𝑓𝑐𝑐′𝑏𝑏𝑎𝑎 �
ℎ
2
−
𝑎𝑎
2�

+ 𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦 �
ℎ
2
− 𝑐𝑐𝑜𝑜𝑝𝑝�    

The following quadratic equation can be obtained by rearranging the above equations: 
 

0.425𝑓𝑓𝑐𝑐′𝑏𝑏𝑎𝑎2 − 0.85𝑓𝑓𝑐𝑐′𝑏𝑏𝑑𝑑𝑎𝑎 + (𝑀𝑀𝑛𝑛 + 0.5𝑀𝑀𝑢𝑢ℎ − 𝑐𝑐𝑜𝑜𝑝𝑝 𝑀𝑀𝑢𝑢) = 0.0      
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Figure 3.30: Internal forces in the beam section 

Solving the above equations for a:  

𝑎𝑎 =
−𝐵𝐵 − √𝐵𝐵2 − 4𝐴𝐴𝐶𝐶

2𝐴𝐴
  

 𝐴𝐴 = 0.425𝑓𝑓𝑐𝑐′𝑏𝑏   
      𝐵𝐵 = −0.85𝑓𝑓𝑐𝑐′𝑏𝑏𝑑𝑑    

   𝐶𝐶 = 𝑀𝑀𝑛𝑛 + 0.5𝑀𝑀𝑢𝑢ℎ − 𝑐𝑐𝑜𝑜𝑝𝑝 𝑀𝑀𝑢𝑢             
 
Then, the required area of steel can be obtained. 
Where: 
b: width of beam cross section. 
h: thickness of beam cross section. 
d: effective depth of beam cross section. 
𝑓𝑓′𝑐𝑐: cylinder concrete compressive strength at 28 days. 
𝑓𝑓𝑦𝑦: steel yielding strength. 
a: depth of the compression block. 
cov: concrete cover to the centroid of tension reinforcing steel. 
 
The above principle can be modified to determine the required reinforcing steel for the 
bending moment, Mu and the axial compression force, pu for other than rectangular beam 
sections like T or L shapes. 
 
Also, a section analysis can be done when the tension reinforcing steel and one of the forces 
is known (The axial compression or the bending moment) to determine the other force (The 
bending moment or the axial compression force).  
In general, it is recommended to design a beam as a column when subjected to an axial force 
especially when the compression force exceeds 0.1𝑓𝑓′𝑐𝑐𝐴𝐴𝑔𝑔, where 𝐴𝐴𝑔𝑔 is the area of the cross 
section. 
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Chapter 4: Design for Shear 

 

This chapter illustrates the principles and the procedure for analysis and design of reinforced 
concrete sections for shear forces. In a later chapter, the design for torsion will be introduced 
and combined with the design for shear.  

The design of cross sections subjected to shear shall be based on: 

∅𝑉𝑉𝑛𝑛 ≥ 𝑉𝑉𝑉𝑉   𝑜𝑜𝑜𝑜   𝑉𝑉𝑛𝑛 ≥
𝑉𝑉𝑢𝑢
∅

 

Where: 

𝑉𝑉𝑛𝑛= nominal shear strength 

𝑉𝑉𝑢𝑢= ultimate shear force 

∅= strength reduction factor= 0.75 

∅𝑉𝑉𝑛𝑛= design shear strength 

𝑉𝑉𝑛𝑛 = 𝑉𝑉𝑐𝑐 + 𝑉𝑉𝑠𝑠 

𝑉𝑉𝑐𝑐= nominal shear strength provided by concrete 

𝑉𝑉𝑠𝑠= nominal shear strength provided by shear reinforcement 

In determining Vc, the effect of any openings in members shall be considered. 

4.1  Shear strength provided by concrete: 

ACI 318-14: 

For members without axial loads, 𝑉𝑉𝑐𝑐 can be calculated as: 

𝑉𝑉𝑐𝑐 = 0.17𝜆𝜆�𝑓𝑓′𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 =
1
6
𝜆𝜆�𝑓𝑓′𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 

More detailed calculation can be made in accordance with Table 4.1 (Table 22.5.5.1 in ACI 
318-14). 
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                        Table 4.1: ACI 318-14 Table 22.5.5.1—Detailed method for calculating Vc 

Vc  
 

Least of (a), (b), 
and (c): 

�0.16𝜆𝜆�𝑓𝑓′𝑐𝑐 + 17𝜌𝜌𝑤𝑤
𝑉𝑉𝑢𝑢𝑑𝑑
𝑀𝑀𝑢𝑢

� 𝑏𝑏𝑤𝑤𝑑𝑑[1] 
 

(a) 

(0.16𝜆𝜆�𝑓𝑓′𝑐𝑐 + 17𝜌𝜌𝑤𝑤)𝑏𝑏𝑤𝑤𝑑𝑑 (b) 

0.29𝜆𝜆�𝑓𝑓′𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 (c) 

                                     [1] Mu occurs simultaneously with Vu at the section considered. 

The value ρw is the flexural steel ratio in a beam section. 

𝑀𝑀𝑢𝑢: the ultimate bending moment occurs with the shear Vu at the same section. 

For members subjected to axial compression force, 𝑉𝑉𝑐𝑐 is given by: 

𝑉𝑉𝑐𝑐 =
1
6
�1 +

𝑁𝑁𝑢𝑢
14𝐴𝐴𝑔𝑔

� 𝜆𝜆�𝑓𝑓′𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 

𝑁𝑁𝑢𝑢: axial compression force, positive sign, N. 

For members subjected to axial tension force, 𝑉𝑉𝑐𝑐 is given by: 

𝑉𝑉𝑐𝑐 =
1
6
�1 +

𝑁𝑁𝑢𝑢
3.5𝐴𝐴𝑔𝑔

�𝜆𝜆�𝑓𝑓′𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 

𝑁𝑁𝑢𝑢: axial tension force, negative sign, N. 𝑉𝑉𝑐𝑐 shall be not less than zero. 

𝐴𝐴𝑔𝑔: cross sectional area of member, mm2.  

For circular members, the area used to compute 𝑉𝑉𝑐𝑐 shall be taken as the product of the 
diameter and effective depth of the concrete section. It shall be permitted to take d as 0.8 
times the diameter of the concrete section. 

ACI 318-19: 

𝑉𝑉𝑐𝑐 can be calculated by: 

 𝐹𝐹𝑜𝑜𝑜𝑜 𝐴𝐴𝑣𝑣 ≥ 𝐴𝐴𝑣𝑣.𝑚𝑚𝑚𝑚𝑛𝑛 (𝑜𝑜𝑜𝑜 
𝐴𝐴𝑣𝑣
𝑠𝑠
≥ �

𝐴𝐴𝑣𝑣
𝑠𝑠 �𝑚𝑚𝑚𝑚𝑛𝑛

) 𝑉𝑉𝑠𝑠𝑢𝑢 𝑢𝑢𝑒𝑒𝑒𝑒ℎ𝑢𝑢𝑜𝑜 𝑜𝑜𝑓𝑓: 

𝑉𝑉𝑐𝑐 = �0.17𝜆𝜆�𝑓𝑓′𝑐𝑐 +
𝑁𝑁𝑢𝑢

6𝐴𝐴𝑔𝑔
� 𝑏𝑏𝑤𝑤𝑑𝑑     𝑎𝑎𝑎𝑎𝑑𝑑      𝑉𝑉𝑐𝑐 = �0.66𝜆𝜆(𝜌𝜌𝑤𝑤)1/3�𝑓𝑓′𝑐𝑐 +

𝑁𝑁𝑢𝑢
6𝐴𝐴𝑔𝑔

� 𝑏𝑏𝑤𝑤𝑑𝑑 

𝐹𝐹𝑜𝑜𝑜𝑜 𝐴𝐴𝑣𝑣 < 𝐴𝐴𝑣𝑣.𝑚𝑚𝑚𝑚𝑛𝑛  �𝑜𝑜𝑜𝑜 
𝐴𝐴𝑣𝑣
𝑠𝑠

< �
𝐴𝐴𝑣𝑣
𝑠𝑠 �𝑚𝑚𝑚𝑚𝑛𝑛

� 𝑉𝑉𝑠𝑠𝑢𝑢: 
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  𝑉𝑉𝑐𝑐 = �0.66𝜆𝜆𝑠𝑠𝜆𝜆(𝜌𝜌𝑤𝑤)1/3�𝑓𝑓′𝑐𝑐 +
𝑁𝑁𝑢𝑢

6𝐴𝐴𝑔𝑔
� 𝑏𝑏𝑤𝑤𝑑𝑑 

Where 𝐴𝐴𝑣𝑣 is the area of shear reinforcement within spacing s, mm2.  

And, 𝑉𝑉𝑐𝑐 shall not be taken greater than: 

𝑉𝑉𝑐𝑐 ≤ 0.42𝜆𝜆�𝑓𝑓′𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 

 

𝜆𝜆𝑠𝑠 = � 2
1 + 0.004 𝑑𝑑

≤ 1.0      

For 𝑑𝑑 ≤ 250𝑚𝑚𝑚𝑚, 𝜆𝜆𝑠𝑠 = 1.0 

𝑁𝑁𝑢𝑢
6𝐴𝐴𝑔𝑔

≤ 0.05𝑓𝑓′𝑐𝑐 

Axial load, Nu, is positive for compression and negative for tension. 

𝜌𝜌𝑤𝑤 =
𝐴𝐴𝑠𝑠
𝑏𝑏𝑤𝑤𝑑𝑑

 

The value of As to be used in the calculation of 𝜌𝜌𝑤𝑤 may be taken as the sum of the areas of 
longitudinal bars located more than two thirds of the overall member depth away from the 
extreme Compression fiber. 

The value of �𝑓𝑓’𝑐𝑐 used to calculate Vc for one-way shear shall not exceed 100 psi (8.3MPa), 
unless allowed in 22.5.3.2 (𝐴𝐴𝑣𝑣  ≥  𝐴𝐴𝑣𝑣,𝑚𝑚𝑚𝑚𝑛𝑛).  

Interaction of shear forces acting along orthogonal axes: 

The interaction of shear forces acting along orthogonal axes shall be permitted to be 
neglected if (a) or (b) is satisfied: 

(𝑎𝑎)     
𝑉𝑉𝑢𝑢,𝑥𝑥

∅𝑉𝑉𝑛𝑛,𝑥𝑥
≤ 0.5                (𝑏𝑏)     

𝑉𝑉𝑢𝑢,𝑦𝑦

∅𝑉𝑉𝑛𝑛,𝑦𝑦
≤ 0.5 

𝐼𝐼𝑓𝑓  
𝑉𝑉𝑢𝑢,𝑥𝑥

∅𝑉𝑉𝑛𝑛,𝑥𝑥
> 0.5   𝑎𝑎𝑎𝑎𝑑𝑑 

𝑉𝑉𝑢𝑢,𝑦𝑦

∅𝑉𝑉𝑛𝑛,𝑦𝑦
> 0.5 , 𝑒𝑒ℎ𝑢𝑢𝑎𝑎  

𝑉𝑉𝑢𝑢,𝑥𝑥

∅𝑉𝑉𝑛𝑛,𝑥𝑥
+

𝑉𝑉𝑢𝑢,𝑦𝑦

∅𝑉𝑉𝑛𝑛,𝑦𝑦
≤ 1.5 

4.2  Shear strength provided by shear reinforcement: 

The values of steel yield strength 𝑓𝑓𝑦𝑦𝑦𝑦 in design of shear reinforcement shall not exceed 
420MPa. 
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The shear reinforcement can be calculated using the following formula: 

𝐴𝐴𝑣𝑣
𝑠𝑠

=
𝑉𝑉𝑠𝑠
𝑓𝑓𝑦𝑦𝑦𝑦𝑑𝑑

              𝑉𝑉𝑠𝑠 =
𝑉𝑉𝑢𝑢
𝜙𝜙
− 𝑉𝑉𝑐𝑐 

𝐴𝐴𝑣𝑣: the area of vertical legs of stirrups (shear reinforcement), mm2   

S: spacing of stirrups, mm 

𝑓𝑓𝑦𝑦𝑦𝑦: yield strength of stirrups reinforcing bars, MPa 

d: effective depth of cross section, mm 

4.3  Spacing limits for shear reinforcement: 

- 𝐼𝐼𝑓𝑓 𝑉𝑉𝑠𝑠 ≤
1
3�𝑓𝑓

′
𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 → 𝑆𝑆𝑚𝑚𝑚𝑚𝑥𝑥 = 𝑚𝑚𝑒𝑒𝑎𝑎 �𝑑𝑑

2
, 600𝑚𝑚𝑚𝑚� 

- 𝐼𝐼𝑓𝑓 1
3�𝑓𝑓

′
𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 < 𝑉𝑉𝑠𝑠 ≤

2
3�𝑓𝑓

′
𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 → 𝑆𝑆𝑚𝑚𝑚𝑚𝑥𝑥 = 𝑚𝑚𝑒𝑒𝑎𝑎 �𝑑𝑑

4
, 300𝑚𝑚𝑚𝑚� 

- 𝐼𝐼𝑓𝑓 𝑉𝑉𝑠𝑠 > 2
3�𝑓𝑓

′
𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 → 𝐼𝐼𝑎𝑎𝑐𝑐𝑢𝑢𝑎𝑎𝑠𝑠𝑢𝑢 𝑠𝑠𝑢𝑢𝑐𝑐𝑒𝑒𝑒𝑒𝑜𝑜𝑎𝑎 𝑑𝑑𝑒𝑒𝑚𝑚𝑢𝑢𝑎𝑎𝑠𝑠𝑒𝑒𝑜𝑜𝑎𝑎𝑠𝑠 

So, cross-sectional dimensions shall be selected to satisfy: 

𝑉𝑉𝑢𝑢 ≤ ∅�𝑉𝑉𝑐𝑐 + 0.66�𝑓𝑓′𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑� 

These limitations are summarized in Table 9.7.6.2.2 in ACI 318-19 as shown below. 

Reduced stirrup spacing across the beam width provides a more uniform transfer of diagonal 
compression across the beam web, enhancing shear capacity. Laboratory tests of wide 
members with large spacing of legs of shear reinforcement across the member width indicate 
that nominal capacity is not always achieved. The intent of this provision is to provide multiple 
stirrup legs across wide beams and one-way slabs that require stirrups. In seismic design, the 
maximum spacing between bars restrained by legs of crossties or hoops is 350mm as shown 
in Figure 4.1. 

              Table 4.2: ACI 318-19 Table 9.7.6.2.2—Maximum spacing of shear reinforcement 

 

 

 

 

 

 
Required Vs 

Maximum s, mm 

 Nonprestressed beam Prestressed beam 
Along 
length 

Across 
width 

Along 
length 

Across 
width 

 
≤ 0.33 fc′ bwd 

Lesser of: d/2 d 3h/4 3h/2 

600 

 
> 0.33 fc′ bwd 

Lesser of: d/4 d/2 3h/8 3h/4 

300 
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Figure 4.1: ACI 318-19 Fig. R18.6. 

4.4  Minimum shear reinforcement: 

A minimum shear reinforcement (Av/s)min shall be provided where 𝑉𝑉𝑢𝑢  >  0.5 ∅ 𝑉𝑉𝑐𝑐, except in 
the following cases, ACI 318-19 Table 9.6.3.1 in addition to slabs and footings with uniform 
thickness. 

 Table 4.3: ACI 318-19: Table 9.6.3.1—Cases where Av,min is not required if 0.5ϕVc < Vu ≤ 
ϕVc 

Beam type Conditions 

Shallow depth h ≤ 250 mm 

 
Integral with slab 

h ≤ greater of 2.5tf or 0.5bw 
and 

h ≤ 600 mm 
Constructed with steel fiber-reinforced normal 
weight concrete conforming to 26.4.1.5.1(a), 
26.4.2.2(i), and 26.12.7.1(a) 
and with fc′ ≤ 40 MPa 

h ≤ 600 mm 
and 

Vu ≤ φ 0.17  fc′ bwd 

One-way joist system In accordance with 9.8 
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The minimum shear reinforcement is given by: 

�
𝐴𝐴𝑣𝑣
𝑠𝑠 �𝑚𝑚𝑚𝑚𝑛𝑛

= max 𝑜𝑜𝑓𝑓

⎣
⎢
⎢
⎢
⎡0.062�𝑓𝑓′𝑐𝑐

𝑏𝑏𝑤𝑤
𝑓𝑓𝑦𝑦𝑦𝑦

0.35
𝑏𝑏𝑤𝑤
𝑓𝑓𝑦𝑦𝑦𝑦 ⎦

⎥
⎥
⎥
⎤
 

4.5  Shear reinforcement details: 

In general: 

𝐼𝐼𝑓𝑓 
𝑉𝑉𝑢𝑢
∅

> 𝑉𝑉𝑐𝑐: 𝑇𝑇ℎ𝑢𝑢𝑜𝑜𝑢𝑢 𝑒𝑒𝑠𝑠 𝑎𝑎 𝑎𝑎𝑢𝑢𝑢𝑢𝑑𝑑 𝑓𝑓𝑜𝑜𝑜𝑜 𝑠𝑠ℎ𝑢𝑢𝑎𝑎𝑜𝑜 𝑜𝑜𝑢𝑢𝑒𝑒𝑎𝑎𝑓𝑓𝑜𝑜𝑜𝑜𝑐𝑐𝑢𝑢𝑚𝑚𝑢𝑢𝑎𝑎𝑒𝑒 

𝐼𝐼𝑓𝑓 
𝑉𝑉𝑐𝑐
2

<
𝑉𝑉𝑢𝑢
∅
≤ 𝑉𝑉𝑐𝑐: 𝑈𝑈𝑠𝑠𝑢𝑢 𝑚𝑚𝑒𝑒𝑎𝑎𝑒𝑒𝑚𝑚𝑉𝑉𝑚𝑚 𝑠𝑠ℎ𝑢𝑢𝑎𝑎𝑜𝑜 𝑜𝑜𝑢𝑢𝑒𝑒𝑎𝑎𝑓𝑓𝑜𝑜𝑜𝑜𝑐𝑐𝑢𝑢𝑢𝑢𝑚𝑚𝑎𝑎𝑒𝑒 𝑢𝑢𝑒𝑒𝑐𝑐𝑢𝑢𝑒𝑒𝑒𝑒 𝑒𝑒𝑎𝑎 𝑒𝑒ℎ𝑢𝑢 𝑎𝑎𝑏𝑏𝑜𝑜𝑎𝑎𝑢𝑢 𝑐𝑐𝑎𝑎𝑠𝑠𝑢𝑢𝑠𝑠 

𝐼𝐼𝑓𝑓
𝑉𝑉𝑢𝑢
∅
≤
𝑉𝑉𝑐𝑐
2

: 𝑁𝑁𝑜𝑜 𝑎𝑎𝑢𝑢𝑢𝑢𝑑𝑑 𝑓𝑓𝑜𝑜𝑜𝑜 𝑠𝑠ℎ𝑢𝑢𝑎𝑎𝑜𝑜 𝑜𝑜𝑢𝑢𝑒𝑒𝑎𝑎𝑓𝑓𝑜𝑜𝑜𝑜𝑐𝑐𝑢𝑢𝑚𝑚𝑢𝑢𝑎𝑎𝑒𝑒 

For beams built integrally with supports, Vu at the support shall be permitted to be calculated 
at the face of support. The critical section can be taken at distance d from face of support if: 

(a) Support reaction, in direction of applied shear, introduces compression into the end region 
of the beam 

(b) Loads are applied at or near the top surface of the beam 

(c) No concentrated load occurs between the face of support and critical section 

 

Figure 4.2: Critical sections for shear 
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Figure 4.2 continued: Critical sections for shear 

The hooks details for stirrups are as given in Table 4.4 (Table 25.3.2 in ACI 318-19). 

Table 4.4: ACI 318-19 Table 25.3.2—Minimum inside bend diameters 
and standard hook geometry for stirrups, ties, and hoops 

Type of 
standard hook 

 
Bar size 

Minimum 
inside bend 

diameter, mm 

Straight 
[1]extension 

, mmextℓ 

 
Type of standard hook 

 
90-degree 

hook 

No. 10 
through 
No. 16 

 
bd4 

andb dGreater of 6 
75 mm 

 

No. 19 
through 
No. 25 

 
bd6 

 
bd12 

 
135-degree 

hook 

No. 10 
through 
No. 16 

 
bd4 

 
andb dGreater of 6 

75 mm 

 

No. 19 
through 
No. 25 

 
bd6 

 
180-degree 

hook 

No. 10 
through 
No. 16 

 
bd4 

and   bd 4 Greater of
65 mm 

 

No. 19 
through 
No. 25 

 
bd6 

[1] A standard hook for stirrups, ties, and hoops includes the specific inside bend diameter and straight extension 
length. It shall be permitted to use a longer straight extension at the end of a hook. A longer extension shall not 
be considered to increase the anchorage capacity of the hook. 

Notes: 

Note1: Seismic hooks used to anchor stirrups, ties, hoops, and crossties shall be in 
accordance with (a) and (b): 

(a) Minimum bend of 90 degrees for circular hoops and 135 degrees for all other hoops. 

(b) Hook shall engage longitudinal reinforcement and the extension shall project into the 
interior of the stirrup or hoop. 
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Note 2: Crossties shall be in accordance with (a) through e: 

(a) Crosstie shall be continuous between ends. 

(b) There shall be a seismic hook at one end. 

(c) There shall be a standard hook at other end with minimum bend of 90 degrees. 

(d) Hooks shall engage peripheral longitudinal bars. 

(e) 90-degree hooks of two successive crossties engaging the same longitudinal bars shall be 
alternated end for end, unless crossties satisfy 18.6.4.3 or 25.7.1.6.1. 

 

Figure 4.3: Crosstie Fig. R25.3.5 ACI 318-19 

Note 3: Stirrups shall extend as close to the compression and tension surfaces of the 
member as cover requirements and proximity of other reinforcement permits and shall be 
anchored at both ends. Where used as shear reinforcement, stirrups shall extend a distance 
d from extreme compression fiber.  

Note 4: Anchorage of stirrup deformed bar shall be in accordance with (a), (b), or (c): 

(a) For ∅16 bar and smaller, and for ∅19 through ∅25 bars with 𝑓𝑓𝑦𝑦𝑦𝑦 ≤ 280𝑀𝑀𝑀𝑀𝑎𝑎, a 
standard hook around longitudinal reinforcement. 

(b) For ∅19 through ∅25 bars with 𝑓𝑓𝑦𝑦𝑦𝑦  >  280𝑀𝑀𝑀𝑀𝑎𝑎, a standard hook around a 
longitudinal bar plus an embedment between mid-height of the member and the 
outside end of the hook equal to or greater than  0.17𝑑𝑑𝑏𝑏𝑓𝑓𝑦𝑦𝑦𝑦/𝜆𝜆�𝑓𝑓′𝑐𝑐 .  

(c) In joist construction, for 𝜙𝜙13 bar and smaller, a standard hook. 

Note 5: Stirrups used for torsion or integrity reinforcement shall be closed stirrups 
perpendicular to the axis of the member. Where welded wire reinforcement is used, 
transverse wires shall be perpendicular to the axis of the member. Such stirrups shall be 
anchored by (a) or (b): refer to Figure 4.4. 

(a) Ends shall terminate with 135-degree standard hooks around a longitudinal bar. 
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(b) In accordance with 25.7.1.3(a) or (b) or 25.7.1.4 (Points in Note 4 above), where the 
concrete surrounding the anchorage is restrained against spalling by a flange or slab 
or similar member.  

Note 6: Except where used for torsion or integrity reinforcement, closed stirrups are 
permitted to be made using pairs of U-stirrups spliced to form a closed unit where lap lengths 
are at least 1.3𝑙𝑙𝑑𝑑𝑦𝑦. In members with a total depth of at least 450mm, such splices with  
𝐴𝐴𝑏𝑏𝑓𝑓𝑦𝑦𝑦𝑦 ≤ 40𝑘𝑘𝑁𝑁 per leg shall be considered adequate if stirrup legs extend the full available 
depth of member.  

 

Figure 4.4: Corner of a stirrup for torsion or integrity reinforcement 
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Figure 4.5: Splicing of closed stirrup 

Example 4.1: 

Given: f’c= 24MPa       fy= 420MPa 

Check slab thickness for shear. See Figure 4.4 

Slab width, b= 1000mm 

Slab thickness, h= 250mm 

Slab effective depth, d= 210mm 

Support (beam) width= 500mm 

 

Figure 4.4: Concrete slab for Example 4.1 
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Solution: 

The maximum ultimate shear force at distance d from face of support, Vu is given by: 

Vu= 64.32 – 17.22(0.25+0.21) = 56.4kN 

ACI 318-14: The concrete shear strength, ∅𝑉𝑉𝑐𝑐 is given by: 

∅𝑉𝑉𝑐𝑐 = ∅
1
6
𝜆𝜆�𝑓𝑓′𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 =

0.75 �1
6� (1)√24(1000)(210)

1000
= 128.6𝑘𝑘𝑁𝑁 > 56.4𝑘𝑘𝑁𝑁   𝑜𝑜𝑘𝑘 

ACI 318-19: The concrete shear strength, ∅𝑉𝑉𝑐𝑐 is given by: 

  ∅𝑉𝑉𝑐𝑐 = ∅�0.66𝜆𝜆𝑠𝑠𝜆𝜆(𝜌𝜌𝑤𝑤)1/3�𝑓𝑓′𝑐𝑐 +
𝑁𝑁𝑢𝑢

6𝐴𝐴𝑔𝑔
� 𝑏𝑏𝑤𝑤𝑑𝑑 

𝐿𝐿𝑢𝑢𝑒𝑒 𝜌𝜌𝑤𝑤 = 0.0018 �ℎ
𝑑𝑑
� = 0.0018 �250

210
� = 0.0021   

So, 

  ∅𝑉𝑉𝑐𝑐 = ∅�0.66𝜆𝜆𝑠𝑠𝜆𝜆(𝜌𝜌𝑤𝑤)
1
3�𝑓𝑓′𝑐𝑐 +

𝑁𝑁𝑢𝑢
6𝐴𝐴𝑔𝑔

� 𝑏𝑏𝑤𝑤𝑑𝑑

=
0.75 �0.66(1)(1)(0.0021)

1
3√24 + 0.0� (1000)(210)

1000
= 65.2𝑘𝑘𝑁𝑁

> 56.4𝑘𝑘𝑁𝑁.𝑂𝑂𝑂𝑂 

 

 

Example 4.2: 

Given: f’c= 24MPa       fy= 420MPa 

Design the beam for the maximum ultimate shear force. See Figure 4.5 

Beam width, b= 500mm 

Beam thickness, h= 900mm 

Beam effective depth, d= 810mm 

Support (column) width= 500mm 
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Figure 4.5: Concrete beam for Example 4.1 

Solution: 

The maximum ultimate shear force at distance d from face of support, Vu is given by: 

Vu= 724.6 – 131.75(0.25+0.81) = 585kN           𝑉𝑉𝑢𝑢/∅= 585/0.75 = 780kN 

The concrete shear strength, Vc is given by (𝐴𝐴𝑣𝑣
𝑠𝑠
≥ �𝐴𝐴𝑣𝑣

𝑠𝑠
�
𝑚𝑚𝑚𝑚𝑛𝑛

), no axial loads exist: 

𝑉𝑉𝑐𝑐 =
1
6
𝜆𝜆�𝑓𝑓′𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 =

�1
6� (1)√24(500)(810)

1000
= 330.7𝑘𝑘𝑁𝑁

< 780𝑘𝑘𝑁𝑁   𝑠𝑠ℎ𝑢𝑢𝑎𝑎𝑜𝑜 𝑜𝑜𝑢𝑢𝑒𝑒𝑎𝑎𝑓𝑓𝑜𝑜𝑜𝑜𝑐𝑐𝑢𝑢𝑚𝑚𝑎𝑎𝑒𝑒 𝑒𝑒𝑠𝑠 𝑜𝑜𝑢𝑢𝑟𝑟𝑉𝑉𝑒𝑒𝑜𝑜𝑢𝑢𝑑𝑑 

Vs = 780 – 330.7= 449.3 kN   

𝑉𝑉𝑠𝑠,𝑚𝑚𝑚𝑚𝑥𝑥 =
2
3�

𝑓𝑓′𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 =
2
3√24(500)(810)

1000
= 1322.8𝑘𝑘𝑁𝑁 > 𝑉𝑉𝑠𝑠 = 449.3𝑘𝑘𝑁𝑁    𝑜𝑜𝑘𝑘 

The shear reinforcement is given by: 

𝐴𝐴𝑣𝑣
𝑠𝑠

=
𝑉𝑉𝑠𝑠
𝑓𝑓𝑦𝑦𝑦𝑦𝑑𝑑

=
449.3𝑒𝑒1000

420(810)
=

1.3207𝑚𝑚𝑚𝑚2

𝑚𝑚𝑚𝑚
 

 Check minimum area of steel: 

�
𝐴𝐴𝑣𝑣
𝑠𝑠 �𝑚𝑚𝑚𝑚𝑛𝑛

= max 𝑜𝑜𝑓𝑓

⎣
⎢
⎢
⎢
⎡0.062�𝑓𝑓′𝑐𝑐

𝑏𝑏𝑤𝑤
𝑓𝑓𝑦𝑦𝑦𝑦

0.35
𝑏𝑏𝑤𝑤
𝑓𝑓𝑦𝑦𝑦𝑦 ⎦

⎥
⎥
⎥
⎤

= max  𝑜𝑜𝑓𝑓 �
0.062√24

500
420

= 0.36

0.35
500
420

= 0.42
� =

0.42𝑚𝑚𝑚𝑚2

𝑚𝑚𝑚𝑚
 

<
1.3207𝑚𝑚𝑚𝑚2

𝑚𝑚𝑚𝑚
       𝑜𝑜𝑘𝑘 
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Assume using ∅12𝑚𝑚𝑚𝑚 stirrups, Av= 2 x 113 = 226 mm2  - two legs stirrup  

So, 

S=226/1.3207 = 170mm 

Check maximum spacing of stirrups, Smax: 

1
3�

𝑓𝑓′𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 =
1
3√24(500)(810)

1000
= 661.4𝑘𝑘𝑁𝑁 > 𝑉𝑉𝑠𝑠 = 449.3𝑘𝑘𝑁𝑁 

So, 

Smax = min (d/2= 810/2= 405mm, 600mm)= 405mm > 170mm    ok 

Additional note: 

If it is required to determine the distance at which stirrups at spacing of d/2= 400mm can be 
used, so, the following calculations can be done: 

For stirrups: 1∅12/400𝑚𝑚𝑚𝑚: 

𝐴𝐴𝑣𝑣
𝑠𝑠

=
𝑉𝑉𝑠𝑠
𝑓𝑓𝑦𝑦𝑦𝑦𝑑𝑑

=
226
400

=
𝑉𝑉𝑠𝑠𝑒𝑒1000

420(810)
 →  𝑉𝑉𝑠𝑠 = 192.2𝑘𝑘𝑁𝑁 

∅𝑉𝑉𝑛𝑛 = ∅[𝑉𝑉𝑐𝑐 + 𝑉𝑉𝑠𝑠] = 0.75[330.7 + 192.2] = 392.18𝑘𝑘𝑁𝑁 

Vu= FVn, from the shear force diagram, the value of Vu = 392.18 kN is located, then its 
location from the left support can be determined from similar triangles. 

The distance from left or right support, X1= 2.5m 

 

Figure 4.6: Shear force diagram of beam 

So, the stirrups ∅12/400𝑚𝑚𝑚𝑚 can be used in the middle zone of the beam (11-2x2.5)= 6m 
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Chapter 5: Development, Anchorage and Splicing of Reinforcement 

 

In a reinforced concrete beam, the flexural compressive forces are resisted by concrete, while 
the flexural tensile forces are provided by reinforcement. For this process to exist, there must 
be a force transfer, or bond, between the two materials. For the bar to be in equilibrium, 
bond stresses must exist. If these disappear, the bar will pull out of the concrete and the 
tensile force, T, will drop to zero, causing the beam to fail.  

 

Figure 5.1: Forces in reinforcing bar 

The development length of a bar depends on: 

- Bar diameter 
- Yield strength of steel 
- Compressive strength of concrete 
- Force in bar, tension or compression 
- Spacing between bars 
- Concrete cover 
- Confinement of concrete 

A smooth bar embedded in concrete develops bond by adhesion between the concrete and 
the bar and by a small amount of friction. Both of these effects are quickly lost when the bar 
is loaded in tension, particularly because the diameter of the bar decreases slightly, due to 
Poisson’s ratio. For this reason, smooth bars are generally not used as reinforcement. In cases 
where smooth bars must be embedded in concrete (anchor bolts, stirrups made of small 
diameter bars, etc.), mechanical anchorage in the form of hooks, nuts, and washers on the 
embedded end (or similar devices) are used. 

Although adhesion and friction are present when a deformed bar is loaded for the first time, 
these bond-transfer mechanisms are quickly lost, leaving the bond to be transferred by 
bearing on the deformations of the bar. Equal and opposite bearing stresses act on the 
concrete. The forces on the concrete have both a longitudinal and a radial component. The 
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latter causes circumferential tensile stresses in the concrete around the bar. Eventually, the 
concrete will split parallel to the bar, and the resulting crack will propagate out toward the 
surface of the beam. The splitting cracks follow the reinforcing bars along the bottom or side 
surfaces of the beam. Once these cracks develop, the bond transfer drops rapidly unless 
reinforcement is provided to restrain the opening of the splitting crack.  

The load at which splitting failure develops is a function of:  

1. the minimum distance from the bar to the surface of the concrete or to the next bar—the 
smaller this distance, the smaller is the splitting load; 

2. the tensile strength of the concrete; and 

3. the average bond stress—as this increases, the wedging forces increase, leading to a 
splitting failure. 

The development length, Ld, is the shortest length of bar in which the bar stress can increase 
from zero to the yield strength, fy. If the distance from a point where the bar stress equals fy 
to the end of the bar is less than the development length, the bar will pull out of the concrete. 
The development lengths are different in tension and compression, because a bar loaded in 
tension is subject to in-and-out bond stresses and hence requires a considerably longer 
development length. Also, for a bar in compression, bearing stresses at the end of the bar will 
transfer part of the compression force into the concrete. 

5.1 Development of deformed bars in tension: 

The values of �𝒇𝒇′𝒄𝒄 used to calculate development length shall not exceed 8.3 MPa. 

 Table 5.1: ACI 318-19 Table 25.4.2.2—Development length for deformed bars and 
deformed wires in tension 

Spacing and cover No. 19 and smaller 
bars and deformed 

wires 

No. 22 and larger bars  

Clear spacing of bars or wires being developed 
or lap spliced not less than db, clear cover at 

least db, and stirrups or ties throughout ℓd not 
less than the Code minimum 

or 
Clear spacing of bars or wires being developed 

or lap spliced at least 2db and clear cover at 
least db 

 
 

�
𝑓𝑓𝑦𝑦𝜓𝜓𝑡𝑡𝜓𝜓𝑒𝑒𝜓𝜓𝑔𝑔
2.1𝜆𝜆�𝑓𝑓′𝑐𝑐

� 𝑑𝑑𝑏𝑏 

 
 

�
𝑓𝑓𝑦𝑦𝜓𝜓𝑡𝑡𝜓𝜓𝑒𝑒𝜓𝜓𝑔𝑔
1.7𝜆𝜆�𝑓𝑓′𝑐𝑐

� 𝑑𝑑𝑏𝑏 

Other cases 
�
𝑓𝑓𝑦𝑦𝜓𝜓𝑡𝑡𝜓𝜓𝑒𝑒𝜓𝜓𝑔𝑔
1.4𝜆𝜆�𝑓𝑓′𝑐𝑐

� 𝑑𝑑𝑏𝑏 �
𝑓𝑓𝑦𝑦𝜓𝜓𝑡𝑡𝜓𝜓𝑒𝑒𝜓𝜓𝑔𝑔
1.1𝜆𝜆�𝑓𝑓′𝑐𝑐

� 𝑑𝑑𝑏𝑏 
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Table 5.2: ACI 318-19 Table 25.4.2.5—Modification factors for development of deformed 
bars and deformed wires in tension 

Modification 
factor 

 
Condition 

Value of 
factor 

 
Lightweight 𝜆𝜆 

Lightweight concrete 0.75 

Normal weight concrete 1.0 

 
Reinforcement 

grade 𝜓𝜓𝑔𝑔  

Grade 40 or Grade 60 (280MPa or 
420MPa) 

1.0 

Grade 80 (560MPa) 1.15 

Grade 100 (700MPa) 1.3 
 

Epoxy[1] 𝜓𝜓𝑒𝑒  

Epoxy-coated or zinc and epoxy dual- 
coated reinforcement with clear cover 
less than 3db or clear spacing less than 

6db 

 
1.5 

Epoxy-coated or zinc and epoxy dual-
coated reinforcement for all other 

conditions 

 
1.2 

Uncoated or zinc-coated (galvanized) 
reinforcement 

 
1.0 

 
Size 𝜓𝜓𝑠𝑠  

No. 7 and larger bars (22mm) 1.0 

No. 6 and smaller bars and deformed 
wires (19mm) 

 
0.8 

 
Casting position[1] 𝜓𝜓𝑡𝑡  

More than 300mm of fresh concrete 
placed below horizontal reinforcement 

 
1.3 

Other 1.0 

[1] The product 𝜓𝜓𝑡𝑡  𝜓𝜓𝑒𝑒 need not exceed 1.7. 

The minimum development length in tension shall be not less than 300mm. 

The above values can be summarized as follows for normal concrete 
(𝝍𝝍𝒕𝒕,𝝍𝝍𝒆𝒆,𝝍𝝍𝒈𝒈 𝒂𝒂𝒂𝒂𝒂𝒂 𝝀𝝀 𝒂𝒂𝒂𝒂𝒆𝒆 𝒆𝒆𝒆𝒆𝒆𝒆𝒂𝒂𝒆𝒆 𝒕𝒕𝒕𝒕 𝟏𝟏.𝟎𝟎) and fy=420MPa: 

Clear spacing of bars or wires being developed or lap spliced not less than db, clear cover at 
least db, and stirrups or ties throughout Ld not less than the Code minimum or: 

Clear spacing of bars or wires being developed or lap spliced at least 2db and clear cover at 
least db: 

𝑙𝑙𝑑𝑑𝑡𝑡 =
0.48𝑓𝑓𝑦𝑦
�𝑓𝑓′𝑐𝑐

𝑑𝑑𝑏𝑏       𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏𝑏𝑏𝑓𝑓𝑏𝑏 𝑙𝑙𝑙𝑙𝑏𝑏𝑏𝑏 𝑡𝑡ℎ𝑏𝑏𝑎𝑎 20𝑚𝑚𝑚𝑚 

𝑙𝑙𝑑𝑑𝑡𝑡 =
0.59𝑓𝑓𝑦𝑦
�𝑓𝑓′𝑐𝑐

𝑑𝑑𝑏𝑏       𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏𝑏𝑏𝑓𝑓𝑏𝑏 𝑙𝑙𝑒𝑒𝑒𝑒𝑏𝑏𝑙𝑙𝑏𝑏 𝑏𝑏𝑎𝑎𝑑𝑑 𝑙𝑙𝑏𝑏𝑓𝑓𝑙𝑙𝑙𝑙𝑓𝑓 𝑡𝑡ℎ𝑏𝑏𝑎𝑎 20𝑚𝑚𝑚𝑚 
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In other cases: 

𝑙𝑙𝑑𝑑𝑡𝑡 =
0.71𝑓𝑓𝑦𝑦
�𝑓𝑓′𝑐𝑐

𝑑𝑑𝑏𝑏       𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏𝑏𝑏𝑓𝑓𝑏𝑏 𝑙𝑙𝑙𝑙𝑏𝑏𝑏𝑏 𝑡𝑡ℎ𝑏𝑏𝑎𝑎 20𝑚𝑚𝑚𝑚 

𝑙𝑙𝑑𝑑𝑡𝑡 =
0.91𝑓𝑓𝑦𝑦
�𝑓𝑓′𝑐𝑐

𝑑𝑑𝑏𝑏       𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏𝑏𝑏𝑓𝑓𝑏𝑏 𝑙𝑙𝑒𝑒𝑒𝑒𝑏𝑏𝑙𝑙𝑏𝑏 𝑏𝑏𝑎𝑎𝑑𝑑 𝑙𝑙𝑏𝑏𝑓𝑓𝑙𝑙𝑙𝑙𝑓𝑓 𝑡𝑡ℎ𝑏𝑏𝑎𝑎 20𝑚𝑚𝑚𝑚 

In all cases, 𝑙𝑙𝑑𝑑𝑡𝑡 ≥ 300mm. 

Modification factors: 

1. If there is more than 300 mm of fresh concrete placed below horizontal reinforcement, 
increase the above values by 30%.  

2. The use of excess reinforcement: multiply the above values by: 

 As, required/ As, provided  

5.2 Development of deformed bars in compression: 

The development length in compression can be calculated as follows: 

𝑙𝑙𝑑𝑑𝑐𝑐 =
0.24𝑓𝑓𝑦𝑦
𝜆𝜆�𝑓𝑓′𝑐𝑐

𝑑𝑑𝑏𝑏 

≥ 0.043𝑓𝑓𝑦𝑦𝑑𝑑𝑏𝑏 

≥ 200𝑚𝑚𝑚𝑚 

Modification factors: 

- If having spirals less or equals 100mm or having 𝜙𝜙13𝑚𝑚𝑚𝑚 or larger ties with spacing 
less than or equals 100mm, multiply the above values by 0.75 

- Excess reinforcement: multiply the above values by: As, required/ As, provided  

5.3 Development of standard hooks in tension: 

The development length for hooked bars in tension can be calculated as follows: 

𝑙𝑙𝑑𝑑ℎ ≥
𝑓𝑓𝑦𝑦Ψ𝑒𝑒Ψ𝑟𝑟Ψ𝑜𝑜Ψ𝑐𝑐

23𝜆𝜆�𝑓𝑓′𝑐𝑐
𝑑𝑑𝑏𝑏

1.5              ≥ 8𝑑𝑑𝑏𝑏            ≥ 150𝑚𝑚𝑚𝑚 

Use:  

Ψ𝑒𝑒 = 1.0,  Ψ𝑟𝑟 = 1.6,Ψ𝑜𝑜 = 1.25,Ψ𝑐𝑐 = 1.0 
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Then: 

𝑙𝑙𝑑𝑑ℎ ≥
0.087𝑓𝑓𝑦𝑦
𝜆𝜆�𝑓𝑓′𝑐𝑐

𝑑𝑑𝑏𝑏
1.5 

Refer to table below: ACI 318-19 Table 25.4.3.2. 

 

Table 5.3: ACI 318-19 Table 25.4.3.2—Modification factors for development of hooked bars 
in tension 

Modification 
factor 

Condition Value of factor 

Lightweight 𝜆𝜆 Lightweight concrete 0.75 
Normal weight concrete 1.0 

 
Epoxy  𝜓𝜓𝑒𝑒  

Epoxy-coated or zinc and epoxy dual-
coated reinforcement 

1.2 

Uncoated or zinc-coated (galvanized) 
reinforcement 

1.0 

Confining 
Reinforcement 

𝜓𝜓𝑟𝑟 

For No. 11 and smaller bars with 𝐴𝐴𝑡𝑡ℎ ≥
0.4𝐴𝐴ℎ𝑠𝑠 𝑓𝑓𝑓𝑓 𝑏𝑏[1]  ≥ 6𝑑𝑑𝑏𝑏

[2] 
1.0 

Other  1.6 
Location 𝜓𝜓𝑜𝑜  For No. 11 and smaller diameter hooked 

bars:  
(1) Terminating inside column core 

with side cover normal to plane of hook 
≥ 65mm, or 

(2) With side cover normal to plane of 
hook ≥ 6db 

 
1.0 

Other 1.25 
Concrete 

Strength 𝜓𝜓𝑐𝑐  
For fc' < 6000 psi (42MPa) fc'/15,000 + 0.6 in 

psi: 𝑓𝑓
′
𝑐𝑐

105
+

0.6 𝑖𝑖𝑎𝑎 𝑀𝑀𝑀𝑀𝑏𝑏 

For fc' ≥2 6000 psi (42MPa) 1.0 
[1] S is minimum center-to-center spacing of hooked bars. 
[2] db is nominal diameter of hooked bar. 
𝐴𝐴𝑡𝑡ℎ: total cross-sectional area of ties or stirrups confining hooked bars, mm2. 
𝐴𝐴ℎ𝑠𝑠: total cross-sectional area of hooked or headed bars being developed at a critical section, mm2.  
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Table 5.4: ACI 318-19 Table 25.3.1—Standard hook geometry for development of deformed 
bars in tension 

Type of 
standard 

hook 

 
Bar size 

 
Minimum 
inside bend 

diameter, mm 

Straight 
extension

, extℓ[1] 

mm 

 
Type of standard hook 

 
90-degree 

hook 

No. 10 
through 
No. 25 

bd6  
bd12 

 

 

No. 29 
through 
No. 36 

bd8 

No. 43 and 
No. 57 

 
bd10 

 
180-degree 

hook 

No. 10 
through 
No. 25 

bd6  
Greater of 

and 65 b d4
mm 

 
 

 

No. 29 
through 
No. 36 

bd8 

 
No. 43 and 

No. 57 

 
bd10 

[1] A standard hook for deformed bars in tension includes the specific inside bend diameter and straight 
extension length. It shall be permitted to use a longer straight extension at the end of a hook. A longer extension 
shall not be considered to increase the anchorage capacity of the hook. 

5.4 Development of bundled bars: 

Groups of parallel reinforcing bars bundled in contact to act as a unit shall be limited to four 
in any one bundle. 

Development length for individual bars within a bundle, in tension or compression, shall be 
that of the individual bar, increased 20 percent for a three-bar bundle, and 33 percent for a 
four-bar bundle.  

A unit of bundled bars shall be treated as a single bar with an area equivalent to that of the 
bundle and a centroid coinciding with that of the bundle. The diameter of the equivalent bar 
shall be used for db in spacing limitations, cover requirements and confinement. 

Bundled bars shall be enclosed within transverse reinforcement. Bundled bars in compression 
members shall be enclosed by transverse reinforcement at least No. 4 in size (12mm). Bars 
larger than a No. 11 (35mm) shall not be bundled in beams. 
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Individual bars within a bundle terminated within the span of flexural members shall 
terminate at different points with at least 40db stagger. 

5.5 Splicing methods for reinforcing bars: 

- Lap splice: for bars not larger than 36mm 

- Welding: weld splice shall develop at least 1.25 fy of the bars 

- Mechanical connection 

5.6 Splicing of tension bars: 

- Lap splice shall be not less than 300mm. 

- It is recommended to use class B splice which equals to 1.3 times the development 
length of a bar. 

- Splices shall be staggered at least 600mm. 

- For contact lap splices, minimum clear spacing between the contact lap splice and 
adjacent splices or bars shall be in accordance with the requirements for individual bars 
in ACI 318-19 section 25.2.1 (clear spacing shall be at least the greatest of 25 mm, db, 
and (4/3)d, aggregate. 

- For noncontact splices in flexural members, the transverse center-to-center spacing of 
spliced bars shall not exceed the lesser of one-fifth the required lap splice length and 150 
mm. 

5.7 Splicing of compression bars: 

- for fy≤ 420 MPa or less: 

𝑏𝑏𝑠𝑠𝑙𝑙𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑙𝑙 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑡𝑡ℎ, 𝑙𝑙𝑏𝑏 = 0.071𝑓𝑓𝑦𝑦𝑑𝑑𝑏𝑏 

- For 420𝑀𝑀𝑀𝑀𝑏𝑏 < 𝑓𝑓𝑦𝑦  ≤  560 𝑀𝑀𝑀𝑀𝑏𝑏: 

𝑏𝑏𝑠𝑠𝑙𝑙𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑙𝑙 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑡𝑡ℎ, 𝑙𝑙𝑏𝑏 = �0.13𝑓𝑓𝑦𝑦 − 24�𝑑𝑑𝑏𝑏 ≥ 300𝑚𝑚𝑚𝑚 

- For 𝑓𝑓𝑦𝑦 > 560𝑀𝑀𝑀𝑀𝑏𝑏:  

𝑇𝑇ℎ𝑙𝑙 𝑙𝑙𝑓𝑓𝑎𝑎𝑙𝑙𝑙𝑙𝑓𝑓 𝑓𝑓𝑓𝑓: 𝑏𝑏𝑠𝑠𝑙𝑙𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑙𝑙 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑡𝑡ℎ, 𝑙𝑙𝑏𝑏 = �0.13𝑓𝑓𝑦𝑦 − 24�𝑑𝑑𝑏𝑏 ,
𝑏𝑏𝑠𝑠𝑙𝑙𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑙𝑙 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑡𝑡ℎ 𝑖𝑖𝑎𝑎 𝑡𝑡𝑙𝑙𝑎𝑎𝑏𝑏𝑖𝑖𝑓𝑓𝑎𝑎 𝑠𝑠𝑙𝑙𝑓𝑓 𝑏𝑏𝑙𝑙𝑠𝑠𝑡𝑡𝑖𝑖𝑓𝑓𝑎𝑎 25.5.2.1 𝑖𝑖𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴 318 − 19 

The splicing length shall be not less than 300mm. 

Note: For f’c < 21 MPa, length of splicing shall be increased by one third. 
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5.8 Development of flexural reinforcement: 

1. Reinforcement shall extend beyond the point at which it is no longer required to resist 
flexure for a distance equal to the greater of d and 12db, except at supports of simply-
supported spans and at free ends of cantilevers 

2. Continuing flexural tension reinforcement shall have an embedment length at least ℓd 
beyond the point where bent or terminated tension reinforcement is no longer required to 
resist flexure. 

3. At simple supports, at least one-third of the maximum positive moment reinforcement shall 
extend along the beam bottom into the support at least 150 mm, except for precast beams 
where such reinforcement shall extend at least to the center of the bearing length. At other 
supports, at least one-fourth of the maximum positive moment reinforcement shall extend 
along the beam bottom into the support at least 150 mm and, if the beam is part of the 
primary lateral-load-resisting system, shall be anchored to develop fy at the face of the 
support. 

4. At least one-third of the negative moment reinforcement at a support shall have an 
embedment length beyond the point of inflection at least the greatest of d, 12db, and Ln/16. 

 

Figure 5.2: Continuity requirements for positive-moment reinforcement in continuous 
beams 

 

Figure 5.3: Continuity requirements for negative-moment reinforcement in continuous 
beams 
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Example 5.1: 

Given: 

- Materials: F’c= 28MPa             fy= 420MPa 
- Cross section: rectangle: b= 350mm, h= 700mm, d= 630mm 
- Support width= 0.50m 
- Structural model of beam is shown in Figure 5.4 below. The self-weight of beam is 

included in Wu.  

Design the beam for flexure and compute the required bars lengths. 

Solution: 

From structural analysis: 

- Reaction at Left support, R1= 424.11kN 
- Reaction at Right support, R2= 787.62kN 
- Distance to maximum positive moment from left support= 2.73m, shear is zero.  
- Distance to inflection point = 5.46m, moment is zero at this point. 

Let x is the distance from left support to maximum positive moment, so: 

-155.35 X + 424.11=0.0, this gives x= 2.73m, then take the moment at location of x, so: 

Mu= 424.11(2.73)-155.35(2.73)2/2= 578.92kN.m 

Determine location of inflection point: 

424.11X – 155.35 X2/2 = 0, this gives X= 5.46m 

 

 

Figure 5.4: Beam for Example 5.1  
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Figure 5.4 continued: Beam for Example 5.1  

Section reinforcement: 

- Maximum positive moment: 

Mu= 578.92kN.m    ρ= 0.01235 > ρmin= 0.00333       and less than ρmax, singly= 0.01548 

As= 0.01235(350)(630)= 2723mm2          9∅20 

- Maximum negative moment: 

Mu= 251.67kN.m            ρ= 0.005 > ρmin= 0.00333       and less than ρmax, singly= 0.01548 

As= 0.005(350)(630)= 1103mm2       4F20 

Distance, L1: 

L1 ≥ d= 0.63m 

L1 ≥ 12 db = 12(20/1000)= 0.24m 
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L1 ≥ Ln/16 = 5.5/16 = 0.344m        so, L1= 0.63m 

Length of top bars= 1.8 + 0.54 – 0.04 + 0.63 = 2.93m     (use 3m) 

Distances L2 and L3 for bottom bars: 

Three bars ∅20𝑚𝑚𝑚𝑚 (1/3 As) shall be extended into the supports a distance not less than 
150mm. The moment capacity of these three bars are calculated as follows: 

𝐴𝐴𝑠𝑠 = 3(314) = 942𝑚𝑚𝑚𝑚2 

𝑏𝑏 =
942(420)

0.85(28)(350)
= 47.5𝑚𝑚𝑚𝑚                  ∅ = 0.9 

∅𝑀𝑀𝑛𝑛 =
0.90(942)(420) �630 − 47.5

2 �
106

= 215.9𝑘𝑘𝑘𝑘.𝑚𝑚 

By applying summation of moment about a point with distance X from left support equals to 
215.9kN.m, the value of X will be calculated as follows: 

215.9= 424.11 X – 155.35 X2/2, X1= 0.57m, X2= 4.89m 

The length of extended bottom bars is = 5.50 + 2 (0.15) = 5.80m 

The short bars (6∅20) shall be extended beyond X1 and X2 a distance equals to the larger of 
12db and d. The value of d is larger than the value of db, so, L2= d= 0.63m 

The length of cut-off (short) bars is = 4.89 -0.10+0.63 = 5.42m, the left side of these bars 
starts extends 0.15m into the left support. So, these bars start from the same point as the 
extended bars (3∅20).  

The extended bars (3∅20) shall be extended a distance L3 beyond the theoretical cut-off point 
which is located at a distance 4.89m from the left support. 

L3 is equal to the development length of ∅20𝑚𝑚𝑚𝑚 bars which is given by: 

𝑙𝑙𝑑𝑑𝑡𝑡 =
0.59(420)

√28
(20𝑚𝑚𝑚𝑚) = 937𝑚𝑚𝑚𝑚 < 1.01𝑚𝑚     𝑓𝑓𝑘𝑘. 

The distance from the point of Mu= 215.9kN.m to the right support is equal to 6-4.89= 1.11m. 

The extended bars (3∅20) are extended into the support a distance equal to 0.15m, so the 
right end of these bars is located a distance 0.10m from the center of the right support, so, 
the available distance from the theoretical cut-off point for Mu= 215.9kN.m to the end of 
extended bars 3F20 will be 1.11-0.1=1.01m which is larger than the development length 
0.937m and this is adequate based on code specifications. Structural integrity can be achieved 
by extending the 3∅20 Ldt or Ldh into the supports. 
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5.9 Termination of flexural bars: 

Flexural tension reinforcement shall not be terminated in a tension zone unless (a), (b) or (c) 
are satisfied: 

(a) 𝑉𝑉𝑢𝑢 ≤ (2 3⁄ )∅𝑉𝑉𝑛𝑛 at the cut-off point. 

(b) For ∅35𝑚𝑚𝑚𝑚 bars and smaller, continuing reinforcement provides double the area required 
for flexure at the cut-off point and 𝑉𝑉𝑢𝑢 ≤ (3 4⁄ )∅𝑉𝑉𝑛𝑛. 

 (c) Stirrup or hoop area in excess of that required for shear and torsion is provided along each 
terminated bar over a distance (3 4⁄ )𝑑𝑑 from the cut-off point. Excess stirrup or hoop area 
shall be at least 0.41𝑏𝑏𝑤𝑤𝑆𝑆/𝑓𝑓𝑦𝑦𝑡𝑡. Spacing S shall not exceed 𝑑𝑑 8𝛽𝛽𝑏𝑏⁄ . Where 𝛽𝛽𝑏𝑏 is ratio of area 
reinforcement cut-off to total area of tension reinforcement at section.  

For simplicity. It is recommended to consider the first requirement in practice. 

5.10: Reinforcement continuity and structural integrity requirements: 

The primary purpose for both the continuity and structural integrity reinforcement 
requirements is to tie the structural elements together and prevent localized damage from 
spreading progressively to other parts of the structure. However, because of the limited 
amount of calculations required to select and detail this reinforcement, structures satisfying 
these requirements cannot be said to have been designed to resist progressive collapse.  

Joists: 

For joist construction, code requires that at least one bottom bar shall be continuous over all 
spans and through interior supports and shall be anchored to develop 𝑓𝑓𝑦𝑦 at the face of exterior 
supports. Continuity of the bar shall be achieved with either a Class B tension lap splice or a 
mechanical or welded splice satisfying ACI Code specifications. 

One-way slabs: 

At least one-quarter of the maximum positive moment reinforcement shall be continuous. 
Reinforcement at noncontinuous supports shall be anchored to develop 𝑓𝑓𝑦𝑦 at the face of the 
support. 

Beams: 

1. The continuous top reinforcement shall consist of at least one-sixth of the negative-
moment (top) reinforcement required at the face of the support, but shall not be less 
than two bars. 

2.  The continuous bottom reinforcement shall consist of at least one-fourth of the 
positive-moment (bottom) reinforcement required at midspan, but not less than two 
bars. 
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3. At noncontinuous supports (corners), all of the continuous bars must be anchored to 
develop 𝑓𝑓𝑦𝑦 at the face of the support. 

4. All of the continuous longitudinal bars must be enclosed by closed transverse 
reinforcement, as specified for torsional or integrity transverse reinforcement (Ends 
shall terminate with 135-degree standard hooks) around a longitudinal bar, and 
placed over the full clear span at a spacing not exceeding d/2. 

5. For interior beams, at least one-fourth of the positive-moment (bottom) 
reinforcement required at midspan, but not less than two bars shall be continuous. 
Longitudinal reinforcement shall be enclosed by closed stirrups in accordance with 
25.7.1.6 or hoops along the clear span of the beam. 

6. If splices are necessary in continuous structural integrity reinforcement, positive 
moment reinforcement shall be spliced at or near the support and negative moment 
reinforcement shall be spliced at or near midspan. 

 

Figure 5.5: Requirements for longitudinal structural-integrity reinforcement in perimeter 
beams. (Note: required closed transverse reinforcement not shown.) 

 

Figure 5.6: Requirements for longitudinal structural-integrity reinforcement for interior 
beams framing into columns. (Note: required closed transverse reinforcement not shown.) 
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Chapter 6: Combined Compression and Bending 

 

A column is a vertical structural member supporting axial compressive loads, with or without 
moments. The cross-sectional dimensions of a column are generally considerably less than its 
height. Columns support vertical loads from the floors and roof and transmit these loads to 
the foundations. 

The more general terms compression members and members subjected to combined axial 
load and bending are sometimes used to refer to columns, walls, and members in concrete 
trusses or frames. 

6.1 Types of columns: 

- Form or shape: Rectangle, circle, irregular, composite, …. 

- Position of loads: concentric and eccentric 

- Mode of failure: nonslender (short) and slender (long) 

Short column: failure starts by crushing of concrete, yielding of steel or both. 

Long column: failure starts by buckling. 

The term that is used to differentiate between short and long columns is called the 
slenderness ratio, KLu/r, where: 

K: effective length factor 

Lu: unsupported height of column 

R: radius of gyration which is the square root of the section moment of inertia divided by 
the section area. 

 6.2 Column reinforcement: 

1. Longitudinal reinforcement shall be at least 0.01Ag but shall not exceed 0.08Ag. 

2. Minimum number of bars in a rectangular tied column is four 

3. Minimum number of bars in a circular column is six 

4. Lateral reinforcement is required to prevent spalling of the concrete cover or local buckling 
of longitudinal bars. The vertical spacing of ties are the smaller of 48 ds, 16 db and the column 
least dimension. 
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Where: 

ds: diameter of the tie. 

db: diameter of the longitudinal bars. 

The ties shall be so arranged that every corner and alternate longitudinal bar shall have lateral 
support provided by the corner of a tie having an included angle of not more than 135 
degrees, and no bar shall be farther than 150mm clear on either side from such a laterally 
supported bar. Longitudinal bars spaced more than 150mm apart should be supported by 
lateral ties. 

The bottom tie or hoop shall be located not more than one-half the tie or hoop spacing above 
the top of footing or slab. 

ACI 318-19 section 10.7.4 Offset bent longitudinal reinforcement:  

ACI 318-19 section 10.7.4.1: The slope of the inclined portion of an offset bent longitudinal 
bar relative to the longitudinal axis of the column shall not exceed 1 in 6. Portions of bar above 
and below an offset shall be parallel to axis of column. 

ACI 318-19 section 10.7.4.2: If the column face is offset 75 mm or more, longitudinal bars 
shall not be offset bent and separate dowels, lap spliced with the longitudinal bars adjacent 
to the offset column faces, shall be provided. 

ACI 318-19 section 10.7.6.4: Lateral support of offset bent longitudinal bars: 

ACI318-19 section 10.7.6.4.1: Where longitudinal bars are offset, horizontal support shall be 
provided by ties, hoops, spirals, or parts of the floor construction and shall be designed to 
resist 1.5 times the horizontal component of the calculated force in the inclined portion of 
the offset bar. 

ACI 318-19 section 10.7.6.4.2: If transverse reinforcement is provided to resist forces that 
result from offset bends, ties, hoops, or spirals shall be placed not more than 150 mm from 
points of bend. 

Bars in compression shall be enclosed by transverse ties, at least No. 10 in size for longitudinal 
bars No. 32 or smaller, and at least No. 13 in size for No. 36, No. 43, No. 57, and bundled 
longitudinal bars. 

Note: It is recommended to have bars with spacing (clear) not larger than 150mm. 

 

6.3 Strength of nonslender concentrically loaded column: 

The column capacity is given by: 
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∅𝑃𝑃𝑛𝑛 = ∅𝜆𝜆�0.85𝑓𝑓′𝑐𝑐�𝐴𝐴𝑔𝑔 − 𝐴𝐴𝑠𝑠� + 𝑓𝑓𝑦𝑦𝐴𝐴𝑠𝑠� 

Where: 

∅: strength reduction factor. ∅=0.65 for tied column. ∅=0.75 for spiral column. 

λ: factor to consider minimum eccentricity. λ= 0.8 for tied column. λ= 0.85 for spiral column. 

𝐴𝐴𝑔𝑔: gross section area, mm2  

𝐴𝐴𝑠𝑠: area of longitudinal steel, mm2  

F’c and fy are in MPa 

So, ∅𝑃𝑃𝑛𝑛 will be in N. The value can be divided by 1000 to have ∅𝑃𝑃𝑛𝑛 in kN. 

 

Example 6.1: 

Design a rectangular tied column of h=2b that can carry an ultimate axial compression force, 
Pu= 5000kN. F’c= 28MPa. Fy= 420MPa. b and h are the column sides. Assume that the steel 
ratio is around 0.02. 

Solution: 

Steel ratio, ρ= 0.02.  

𝐴𝐴𝑠𝑠 = 𝜌𝜌𝐴𝐴𝑔𝑔 = 0.02𝐴𝐴𝑔𝑔 

𝑃𝑃𝑢𝑢 = ∅𝑃𝑃𝑛𝑛 = ∅𝜆𝜆�0.85𝑓𝑓′𝑐𝑐�𝐴𝐴𝑔𝑔 − 𝐴𝐴𝑠𝑠� + 𝑓𝑓𝑦𝑦𝐴𝐴𝑠𝑠� 

5000(1000) = 0.65(0.80) �0.85(28)�𝐴𝐴𝑔𝑔 − 0.02𝐴𝐴𝑔𝑔� + (420)�0.02𝐴𝐴𝑔𝑔�� 

So, Ag= 303.03x103 mm2  

𝐴𝐴𝑔𝑔= bh= b (2b) , so, b= 389mm 

So, use b= 400mm and h= 800mm, this gives steel ratio less than 0.02 

Or, b= 350mm and h= 700mm and this gives steel ratio greater than 0.02 

Try: b= 400mm and h= 800mm 

5000(1000) = 0.65(0.80)�0.85(28)(400𝑥𝑥800 − 𝐴𝐴𝑠𝑠) + (420)(𝐴𝐴𝑠𝑠)� 

This gives, As= 5047mm2, steel ratio= 5047/(400x800)= 0.016 < 0.02   ok 
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Try: 14∅22   As= 14 x 381= 5334mm2, see Figure 6.1. 

 

Figure 6.1: Column details- Example 6.1 

Here, the spacing between bars can be calculated as follows: 

Clear cover= 40mm 

Tie diameter= 10mm 

Distance from center of edge bar to edge of section= 40 + 10 + 11= 61mm 

Distance available for bars center to center in short direction of column= 400-2(61)= 278mm 

Distance between bars center to center= 278/2= 139mm < 150mm ok  

Distance available for bars center to center in long direction of column= 800-2(61)= 678mm 

Distance between bars center to center= 678/5= 136mm < 150mm ok 

Ties: 

Assume diameter of tie is 10mm 

S ≤ 48 x 10 = 480mm 

S ≤ 16 x 22 = 352mm 

Least column dimension= 400mm 

Use S= 350mm 

And there is a need for two ties to fix bar after another with corners of ties. 

6.4 Amount of spirals and spacing requirements: 

The minimum spiral reinforcement required by the ACI code was chosen so that the second 
maximum load of the core and the longitudinal reinforcement would roughly equal the initial 
maximum load of the entire column before the shell spalled off. 



Design of Reinforced Concrete Structures: A Practical Approach                                IBRAHIM ARMAN 
 

97 
 

Under a compressive load, the concrete in the column shortens longitudinally under the stress 
f1 and so, to satisfy poisson’s ratio, it expands laterally. This lateral expansion is especially 
pronounced at stresses in excess of the cylinder strength. In the spiral column, the lateral 
expansion of the concrete inside the spiral (referred to as the core) is restrained by the spiral. 
This stresses the spirals in tension. For equilibrium, the concrete is subjected to compressive 
stresses f2. From experiment, the triaxial compression was shown to increase the strength of 
concrete by: 

𝑓𝑓1 = 𝑓𝑓′𝑐𝑐 + 4.1𝑓𝑓2              (1) 

 

 

Figure 6.2: Triaxial stresses in core of spiral column 

The amount of spiral reinforcement is defined by using a spiral reinforcement ratio, ρs equal 
to the ratio of the volume of the spiral reinforcement to the volume of the core, measured 
out-to-out of the spirals, enclosed by the spiral. 

For one turn of the spiral, 

𝜌𝜌𝑠𝑠 =
𝐴𝐴𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠
𝐴𝐴𝑐𝑐ℎ𝑙𝑙𝑐𝑐

              (2) 

Where: 
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Asp= area of the spiral bar= (3.14/4)(dsp)2  

dsp= diameter of the spiral bar 

lsp= length of the turn of the spiral= 3.14 Dc 

Dc= diameter of the core, out-to-out of the spirals 

Ach= area of the core= 3.14 (Dc)2 /4  

Lc= spiral pitch= S 

Thus, 

𝜌𝜌𝑠𝑠 =
𝐴𝐴𝑠𝑠𝑠𝑠𝜋𝜋𝐷𝐷𝑐𝑐

�𝜋𝜋𝐷𝐷𝑐𝑐
2

4 � 𝑆𝑆
           (3) 

Or 

𝜌𝜌𝑠𝑠 =
4𝐴𝐴𝑠𝑠𝑠𝑠
𝑆𝑆𝐷𝐷𝑐𝑐

                           (4) 

From the horizontal force equilibrium of the free body diagram, 

2𝑓𝑓𝑠𝑠𝑠𝑠𝐴𝐴𝑠𝑠𝑠𝑠 = 𝑓𝑓2𝐷𝐷𝑐𝑐𝑆𝑆                            (5) 

From equations 4 and 5: 

𝑓𝑓2 =
𝑓𝑓𝑠𝑠𝑠𝑠𝜌𝜌𝑠𝑠

2
                (6) 

The strength of a column at the first maximum load before the shell spalls off is: 

𝑃𝑃𝑜𝑜 = �0.85𝑓𝑓′𝑐𝑐�𝐴𝐴𝑔𝑔 − 𝐴𝐴𝑠𝑠� + 𝑓𝑓𝑦𝑦𝐴𝐴𝑠𝑠�        (7) 

And the strength after the shell spalls is:  

𝑃𝑃2 = �0.85𝑓𝑓1(𝐴𝐴𝑐𝑐ℎ − 𝐴𝐴𝑠𝑠) + 𝑓𝑓𝑦𝑦𝐴𝐴𝑠𝑠�        (8) 

Thus, if P2= Po,  

0.85𝑓𝑓1(𝐴𝐴𝑐𝑐ℎ − 𝐴𝐴𝑠𝑠) = 0.85𝑓𝑓′𝑐𝑐�𝐴𝐴𝑔𝑔 − 𝐴𝐴𝑠𝑠� 

Because As is small compared with Ag or Ach, it can be disregarded, so 
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𝑓𝑓1 =
𝐴𝐴𝑔𝑔𝑓𝑓′𝑐𝑐
𝐴𝐴𝑐𝑐ℎ

                  (9) 

Substituting equations 1 and 6 into equation 9, taking fsp equal to the yield strength of the 
spiral bar, rearranging, and rounding down the coefficient gives: 

𝜌𝜌𝑠𝑠 = 0.45 �
𝐴𝐴𝑔𝑔
𝐴𝐴𝑐𝑐ℎ

− 1�
𝑓𝑓′𝑐𝑐
𝑓𝑓𝑦𝑦𝑦𝑦

                (10) 

There is experimental evidence that more spiral reinforcement may be needed in high-
strength concrete spiral columns than is given in this equation (10), to ensure that ductile 
behavior precedes any failure. 

From equation 4, 

Spiral spacing, S is given by: 

𝑠𝑠 =
4𝐴𝐴𝑠𝑠𝑠𝑠
𝜌𝜌𝑠𝑠𝐷𝐷𝑐𝑐

 ≤ 75𝑚𝑚𝑚𝑚 

Also, the clear spacing between the successive turns of the spiral must be spaced relatively 
close together. 

 

Notes: 

1. The clear spacing of the spirals is limited to 75mm 
2. The minimum clear spacing of the spirals is not less than 25mm but not less than 

(4/3) times the nominal size of the coarse aggregate, whichever is greater 
3. Spirals shall not be less than 10mm diameter 
4. Anchorage of spiral reinforcement shall be provided by 1.5 turns of spiral bar at each 

end of a spiral unit 
5. Spiral reinforcement shall be spliced if needed. Lap splices not less than the larger of 

300mm and 48 times the spiral diameter for deformed uncoated bars should be 
used. 

 

Example 6.2: 

Design a spiral column that can carry an ultimate axial compression force, Pu= 5000kN. F’c= 
28MPa. Fy= 420MPa. Assume that the steel ratio is around 0.02. 

Solution: 

Steel ratio, ρ= 0.02 
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𝑃𝑃𝑢𝑢 = ∅𝑃𝑃𝑛𝑛 = ∅𝜆𝜆�0.85𝑓𝑓′𝑐𝑐�𝐴𝐴𝑔𝑔 − 𝐴𝐴𝑠𝑠� + 𝑓𝑓𝑦𝑦𝐴𝐴𝑠𝑠� 

5000(1000) = 0.75(0.85) �0.85(28)�𝐴𝐴𝑔𝑔 − 0.02𝐴𝐴𝑔𝑔� + (420)�0.02𝐴𝐴𝑔𝑔�� 

So, Ag= 247230 mm2  

1.14 D2/4 = 247230, so D= 561mm 

Try column with D= 550mm 

Resolve and determine As.  

As= 5524mm2 

Steel ratio, ρ= 0.0233        12F25 

Spirals: 

𝜌𝜌𝑠𝑠 = 0.45 �
𝐴𝐴𝑔𝑔
𝐴𝐴𝑐𝑐ℎ

− 1�
𝑓𝑓′𝑐𝑐
𝑓𝑓𝑦𝑦𝑦𝑦

= 0.45�
(3.14

4 )(550)2

(3.14
4 )(470)2

− 1�
28

420
= 0.01108 

𝑠𝑠 =
4𝐴𝐴𝑠𝑠𝑠𝑠
𝜌𝜌𝑠𝑠𝐷𝐷𝑐𝑐

=
4(78.5)

0.01108(470) = 60.3𝑚𝑚𝑚𝑚 ≤ 75𝑚𝑚𝑚𝑚 

Use spirals F10mm/60mm 

 

6.5 Interaction diagrams for reinforced concrete columns: 

Interaction diagrams for columns are generally computed by assuming a series of strain 
distribution, each corresponding to a particular point on the interaction diagram, and 
computing the corresponding values of P and M. Once enough such points have been 
computed, the results are plotted as interaction diagram. 

Significant points on the column interaction diagram: 

1. Point A: pure axial load: This is the largest axial load the column can carry. The 
maximum usable axial load is limited to 0.8 and 0.85 times the pure axial load capacity 
for tied and spiral columns respectively. 

2. Point B: zero tension: onset of cracking: The strain distribution at this point 
corresponds to axial load and moment at the onset of crushing of the concrete just as 
the strains in the concrete on the opposite face of the column reach zero. This 
represents the onset of cracking of the least compressed side of the column. Here, 
𝜖𝜖𝑦𝑦 = 0.0 𝑜𝑜𝑜𝑜 𝜖𝜖𝑠𝑠1 = 0.0 
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3. Point C: Balanced failure: compression – controlled limit strain: This point corresponds 
to a strain distribution with a maximum compressive strain of 0.003 on one face of the 
section, and a tensile strain equals to the yield strain, in the layer of reinforcement 
farthest from the compression face of the column. Here, 𝜖𝜖𝑦𝑦 = 𝜖𝜖𝑦𝑦𝑜𝑜𝑜𝑜 𝜖𝜖𝑠𝑠1 = 𝜖𝜖𝑦𝑦 

4. Point D: Tension – controlled limit: This point corresponds to a strain distribution with 
a maximum compressive strain of 0.003 on one face of the section, and a tensile strain 
equals to 0.005, in the layer of reinforcement farthest from the compression face of 
the column. Here, 𝜖𝜖𝑦𝑦 = 0.005𝑜𝑜𝑜𝑜 𝜖𝜖𝑠𝑠1 = 0.005 

5. Point E: strain limit for beams:  here, the column section will have an axial capacity of 
zero. So, the tension force will be equal to the compression force as the case in beams. 
By applying this principle, the moment capacity will be calculated. One can use , 𝜖𝜖𝑦𝑦 =
4 𝜖𝜖𝑦𝑦𝑜𝑜𝑜𝑜 𝜖𝜖𝑠𝑠1 = 4𝜖𝜖𝑦𝑦 as approximation method to get the moment capacity for axial load 
equals to zero. One can use the procedure that was used in doubly reinforced beam 
sections 

6. Point F: column tension capacity:  

∅𝑃𝑃𝑛𝑛 = ∅𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦    𝑤𝑤ℎ𝑒𝑒𝑜𝑜𝑒𝑒 𝐴𝐴𝑠𝑠 𝑖𝑖𝑠𝑠 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑙𝑙 𝑡𝑡𝑜𝑜𝑒𝑒𝑡𝑡 𝑜𝑜𝑓𝑓 𝑠𝑠𝑡𝑡𝑒𝑒𝑒𝑒𝑙𝑙 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠 𝑠𝑠𝑒𝑒𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑖𝑖 

 

6.6  Derivation of computation method for interaction diagrams: 

The relationships needed to compute the various points on the interaction diagram are 
derived by using strain compatibility and mechanics. 

The general case of computations involves the calculation of Pn acting at the centroid and Mn 
acting about the centroid of the gross cross section, for an assumed strain distribution with 
crushing strain in concrete, 𝜖𝜖𝑐𝑐𝑢𝑢 = 0.003. 

Each layer of reinforcement in column section has an area of steel named As, so there are 
As1, As2, As3, …….. and each layer has a strain 𝜖𝜖𝑠𝑠, so there are 𝜖𝜖𝑠𝑠1, 𝜖𝜖𝑠𝑠2, 𝜖𝜖𝑠𝑠3, … …. 

Layer 1 is closest to the “least compressed” surface and it is at a distance d1 from the “most 
compressed” surface. Layer 1 is called the extreme tension layer. It has a depth d1 and a strain 
𝜖𝜖𝑠𝑠1 

The interaction diagram can be controlled by selecting a series of values for the neutral axis 
depth, c. Large values of c will give points high in the interaction diagram and low values of c 
will give points low in the interaction diagram. 
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Figure 6.3: Column section forces 
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Figure 6.4: Computations of column interaction diagram points 
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From similar triangles: 

0.003
𝑐𝑐

=
∈𝑠𝑠𝑠𝑠

𝑐𝑐 − 𝑑𝑑𝑠𝑠
 

𝑐𝑐 =
0.003

0.003 −∈𝑠𝑠1
𝑑𝑑1 

∈𝑠𝑠𝑠𝑠=
𝑐𝑐 − 𝑑𝑑𝑠𝑠
𝑐𝑐

0.003 

∈𝑠𝑠1:𝑝𝑝𝑜𝑜𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒 𝑓𝑓𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑚𝑚𝑝𝑝𝑜𝑜𝑒𝑒𝑠𝑠𝑠𝑠𝑖𝑖𝑜𝑜𝑖𝑖 𝑠𝑠𝑡𝑡𝑜𝑜𝑡𝑡𝑖𝑖𝑖𝑖 

∈𝑠𝑠1:𝑖𝑖𝑒𝑒𝑛𝑛𝑡𝑡𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒 𝑓𝑓𝑜𝑜𝑜𝑜 𝑡𝑡𝑒𝑒𝑖𝑖𝑠𝑠𝑖𝑖𝑜𝑜𝑖𝑖 𝑠𝑠𝑡𝑡𝑜𝑜𝑡𝑡𝑖𝑖𝑖𝑖 

So, the strain in each layer of reinforcement is determined from the strain diagram. 

Then, the stress in each layer of reinforcement is determined by: 

𝑓𝑓𝑠𝑠𝑠𝑠 =∈𝑠𝑠𝑠𝑠 𝐸𝐸𝑠𝑠 

The maximum absolute value of fsi shall be not larger than fy. 

The relation between the depth of the compression zone and the neutral axis of the section 
is given by: 

𝑡𝑡 = 𝛽𝛽1𝑐𝑐 

𝛽𝛽1 = 0.85       𝑓𝑓𝑜𝑜𝑜𝑜        17𝑀𝑀𝑃𝑃𝑡𝑡 ≤ 𝑓𝑓′𝑐𝑐 ≤ 28𝑀𝑀𝑃𝑃𝑡𝑡 

𝛽𝛽1 = 0.85 − 0.05
𝑓𝑓′𝑐𝑐 − 28

7
       𝑓𝑓𝑜𝑜𝑜𝑜        28𝑀𝑀𝑃𝑃𝑡𝑡 < 𝑓𝑓′𝑐𝑐 < 56𝑀𝑀𝑃𝑃𝑡𝑡 

𝛽𝛽1 = 0.65       𝑓𝑓𝑜𝑜𝑜𝑜        56𝑀𝑀𝑃𝑃𝑡𝑡 ≤ 𝑓𝑓′𝑐𝑐 

The compressive force in the concrete is given by: 

𝐶𝐶𝑐𝑐 = 0.85𝑓𝑓′𝑐𝑐𝐴𝐴𝑐𝑐𝑐𝑐 

For a rectangular zone, Acc= b a  

The force in each layer of reinforcement is determined as follows: 

If the depth of the compression zone, a less than depth of reinforcement layer, di, then 

𝐹𝐹𝑠𝑠𝑠𝑠 = 𝑓𝑓𝑠𝑠𝑠𝑠𝐴𝐴𝑠𝑠𝑠𝑠 
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And if the depth of the compression zone, a is greater than or equals to the depth of 
reinforcement layer, di, then 

𝐹𝐹𝑠𝑠𝑠𝑠 = (𝑓𝑓𝑠𝑠𝑠𝑠 − 0.85𝑓𝑓′𝑐𝑐)𝐴𝐴𝑠𝑠𝑠𝑠 

The nominal axial load capacity, Pn for assumed stress distribution is the summation of the 
axial forces: 

𝑃𝑃𝑛𝑛 = 𝐶𝐶𝑐𝑐 + �𝐹𝐹𝑠𝑠𝑠𝑠

𝑛𝑛

𝑠𝑠=1

 

The nominal moment capacity, Mn for the assumed strain distribution is found by summing 
the moments of all internal forces about the centroid of the column. So, 

𝑀𝑀𝑛𝑛 = 𝐶𝐶𝑐𝑐(𝑦𝑦− − 𝑡𝑡−) + �𝐹𝐹𝑠𝑠𝑠𝑠(𝑦𝑦− − 𝑑𝑑𝑠𝑠)
𝑛𝑛

𝑠𝑠=1

 

Where y- is the distance from the extreme compression fiber to the centroid of the section. 

 

Example 6.3: 

Draw the moment-axial force interaction diagram for the column shown in Figure 6.5   
below. 

Given:      f’c= 28MPa         fy= 420MPa 

Cover to bars centroid= 60mm. 

 

Figure 6.5: Column cross section for Example 6.3 
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Solution: 

As= 12(491) = 5892 mm2  

Point A: 

Pure compression axial force capacity. 

𝑃𝑃𝑛𝑛 = �0.85𝑓𝑓′𝑐𝑐�𝐴𝐴𝑔𝑔 − 𝐴𝐴𝑠𝑠� + 𝑓𝑓𝑦𝑦𝐴𝐴𝑠𝑠� =
[0.85(28)(500𝑥𝑥500 − 5892) + 420(5892)]

1000
= 8284.4𝑘𝑘𝑘𝑘 

∅𝑃𝑃𝑛𝑛 = 0.65(8284.4) = 5384.86𝑘𝑘𝑘𝑘 

𝜆𝜆∅𝑃𝑃𝑛𝑛 = 0.8(5384.86) = 4307.89𝑘𝑘𝑘𝑘 

Point B: 

Pn and Mn at strain in tensile steel, 𝜖𝜖𝑠𝑠1 = 0.0 

 

 

Figure 6.6: Section and strains for point B 

C= 440mm 

𝑡𝑡 = 𝛽𝛽1𝑐𝑐 = 0.85(440) = 374𝑚𝑚𝑚𝑚 

𝐶𝐶𝑐𝑐 =
0.85(28)(500)(374)

1000
= 4450.6𝑘𝑘𝑘𝑘 

Fs1= 0.0kN 
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Fs2: 

∈𝑠𝑠2=
𝑐𝑐 − 𝑑𝑑2
𝑐𝑐

0.003 =
440 − 313.33

440
0.003 = 0.0008636 

𝑓𝑓𝑠𝑠2 =∈𝑠𝑠2 𝐸𝐸𝑠𝑠 = 0.0008636(200000) = 172.72𝑀𝑀𝑝𝑝𝑡𝑡 

Since a>d2: 

𝐹𝐹𝑠𝑠2 = (𝑓𝑓𝑠𝑠2 − 0.85𝑓𝑓′𝑐𝑐)𝐴𝐴𝑠𝑠2 = (172.72 − 0.85𝑥𝑥28)(982)/1000 = 146.24𝑘𝑘𝑘𝑘 

Fs3: 

∈𝑠𝑠3=
𝑐𝑐 − 𝑑𝑑3
𝑐𝑐

0.003 =
440 − 186.67

440
0.003 = 0.001727 

𝑓𝑓𝑠𝑠3 =∈𝑠𝑠3 𝐸𝐸𝑠𝑠 = 0.001727(200000) = 345.4𝑀𝑀𝑝𝑝𝑡𝑡 

Since a>d3: 

𝐹𝐹𝑠𝑠3 = (𝑓𝑓𝑠𝑠3 − 0.85𝑓𝑓′𝑐𝑐)𝐴𝐴𝑠𝑠3 = (345.4 − 0.85𝑥𝑥28)(982)/1000 = 315.81𝑘𝑘𝑘𝑘 

Fs4: 

∈𝑠𝑠4=
𝑐𝑐 − 𝑑𝑑4
𝑐𝑐

0.003 =
440 − 60

440
0.003 = 0.002591 

𝑓𝑓𝑠𝑠4 =∈𝑠𝑠4 𝐸𝐸𝑠𝑠 = 0.002591(200000) = 518.2𝑀𝑀𝑝𝑝𝑡𝑡 ,𝑢𝑢𝑠𝑠𝑒𝑒 𝑓𝑓𝑠𝑠4 = 420𝑀𝑀𝑃𝑃𝑡𝑡 

Since a>d4: 

𝐹𝐹𝑠𝑠4 = (𝑓𝑓𝑠𝑠4 − 0.85𝑓𝑓′𝑐𝑐)𝐴𝐴𝑠𝑠4 = (420 − 0.85𝑥𝑥28)(1962)/1000 = 778.1𝑘𝑘𝑘𝑘 

 

𝑃𝑃𝑛𝑛 = 𝐶𝐶𝑐𝑐 + �𝐹𝐹𝑠𝑠𝑠𝑠

𝑛𝑛

𝑠𝑠=1

= 4450.60 + 0.0 + 146.24 + 315.81 + 778.1 = 5690.75𝑘𝑘𝑘𝑘 

𝑀𝑀𝑛𝑛 = 𝐶𝐶𝑐𝑐(𝑦𝑦− − 𝑡𝑡−) + �𝐹𝐹𝑠𝑠𝑠𝑠(𝑦𝑦− − 𝑑𝑑𝑠𝑠)
𝑛𝑛

𝑠𝑠=1

= 𝐶𝐶𝑐𝑐 �
ℎ
2
−
𝑡𝑡
2�

+ 𝐹𝐹𝑠𝑠1 �
ℎ
2
− 𝑑𝑑1� + 𝐹𝐹𝑠𝑠2 �

ℎ
2
− 𝑑𝑑2� + 𝐹𝐹𝑠𝑠3 �

ℎ
2
− 𝑑𝑑3� + 𝐹𝐹𝑠𝑠4(

ℎ
2
− 𝑑𝑑4) 

 

Mn= [4450.6(250-374/2)+ 0.0 + (146.24)(250-313.33)+315.81(250-186.67)+778.1(250-60)]= 
439kN.m 
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∅𝑃𝑃𝑛𝑛 = 0.65(5690.75) = 3699𝑘𝑘𝑘𝑘 

∅𝑀𝑀𝑛𝑛 = 0.65(439) = 285.35𝑘𝑘𝑘𝑘 

Point C: 

Pn and Mn at strain in tensile steel, 𝜖𝜖𝑠𝑠1 = −∈𝑦𝑦= −0.0021 

 

Figure 6.7: Section and strains for point C 

 

𝑐𝑐 =
0.003

0.003 −∈𝑠𝑠1
𝑑𝑑1 =

0.003
0.003 + 0.0021

440 = 258.8𝑘𝑘𝑘𝑘 

𝑡𝑡 = 𝛽𝛽1𝑐𝑐 = 0.85(258.8) = 220𝑚𝑚𝑚𝑚 

𝐶𝐶𝑐𝑐 =
0.85(28)(500)(220)

1000
= 2618𝑘𝑘𝑘𝑘 

Fs1: 

∈𝑠𝑠1= −0.0021 

𝑓𝑓𝑠𝑠1 = −420𝑀𝑀𝑃𝑃𝑡𝑡 

𝐹𝐹𝑠𝑠1 = 𝑓𝑓𝑠𝑠1𝐴𝐴𝑠𝑠1 = −
420(1964)

1000
= −824.88𝑘𝑘𝑘𝑘 

Fs2: 

∈𝑠𝑠2=
𝑐𝑐 − 𝑑𝑑2
𝑐𝑐

0.003 =
258.8 − 313.33

258.8
0.003 = −0.000632 

𝑓𝑓𝑠𝑠2 =∈𝑠𝑠2 𝐸𝐸𝑠𝑠 = −0.000632(200000) = −126.4𝑀𝑀𝑝𝑝𝑡𝑡 
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Since a<d2: 

𝐹𝐹𝑠𝑠2 = 𝑓𝑓𝑠𝑠2𝐴𝐴𝑠𝑠2 =
(−126.4)(982)

1000
= −124.1𝑘𝑘𝑘𝑘 

Fs3: 

∈𝑠𝑠3=
𝑐𝑐 − 𝑑𝑑3
𝑐𝑐

0.003 =
258.8 − 186.67

258.8
0.003 = 0.000836 

𝑓𝑓𝑠𝑠3 =∈𝑠𝑠3 𝐸𝐸𝑠𝑠 = 0.000836(200000) = 167.2𝑀𝑀𝑝𝑝𝑡𝑡 

Since a>d3: 

𝐹𝐹𝑠𝑠3 = (𝑓𝑓𝑠𝑠3 − 0.85𝑓𝑓′𝑐𝑐)𝐴𝐴𝑠𝑠3 =
(167.2 − 0.85𝑥𝑥28)(982)

1000
= 140.82𝑘𝑘𝑘𝑘 

Fs4: 

∈𝑠𝑠4=
𝑐𝑐 − 𝑑𝑑4
𝑐𝑐

0.003 =
258.8 − 60

258.8
0.003 = 0.0023 

𝑓𝑓𝑠𝑠4 =∈𝑠𝑠4 𝐸𝐸𝑠𝑠 = 0.0023(200000) = 460𝑀𝑀𝑝𝑝𝑡𝑡    𝑢𝑢𝑠𝑠𝑒𝑒 𝑓𝑓𝑠𝑠4 = 420𝑀𝑀𝑃𝑃𝑡𝑡 

Since a>d4: 

𝐹𝐹𝑠𝑠4 = (𝑓𝑓𝑠𝑠4 − 0.85𝑓𝑓′𝑐𝑐)𝐴𝐴𝑠𝑠4 =
(420 − 0.85𝑥𝑥28)(1964)

1000
= 778.1𝑘𝑘𝑘𝑘 

𝑃𝑃𝑛𝑛 = 𝐶𝐶𝑐𝑐 + �𝐹𝐹𝑠𝑠𝑠𝑠

𝑛𝑛

𝑠𝑠=1

= 2618 + (−824.88) + (−124.1) + (140.82) + (778.1) = 2587.94𝑘𝑘𝑘𝑘 

𝑀𝑀𝑛𝑛 = 𝐶𝐶𝑐𝑐(𝑦𝑦− − 𝑡𝑡−) + �𝐹𝐹𝑠𝑠𝑠𝑠(𝑦𝑦− − 𝑑𝑑𝑠𝑠)
𝑛𝑛

𝑠𝑠=1

= 𝐶𝐶𝑐𝑐 �
ℎ
2
−
𝑡𝑡
2�

+ 𝐹𝐹𝑠𝑠1 �
ℎ
2
− 𝑑𝑑1� + 𝐹𝐹𝑠𝑠2 �

ℎ
2
− 𝑑𝑑2� + 𝐹𝐹𝑠𝑠3 �

ℎ
2
− 𝑑𝑑3� + 𝐹𝐹𝑠𝑠4(

ℎ
2
− 𝑑𝑑4) 

 

Mn= [2618(250-220/2)+ (-824.88)(250-440) + (-124.1)(250-313.33)+140.82(250-
186.67)+778.1(250-60)]/1000= 687.86kN.m 

∅𝑃𝑃𝑛𝑛 = 0.65(2587.94) = 1682.2𝑘𝑘𝑘𝑘 

∅𝑀𝑀𝑛𝑛 = 0.65(687.86) = 447.1𝑘𝑘𝑘𝑘 

 



Design of Reinforced Concrete Structures: A Practical Approach                                IBRAHIM ARMAN 
 

110 
 

Point D: 

Pn and Mn at strain in tensile steel, 𝜖𝜖𝑠𝑠1 = −0.005 

C= 165mm 

A= 140.25mm 

Cc= 1669kN 

Fs1= -824.88kN 

Fs2= -412.44kN 

Fs3=-77.38kN 

Fs4= 703.5kN 

Pn= 1057.8kN 

Mn= 611.8kN.m 

∅𝑃𝑃𝑛𝑛 = 0.9(1057.8) = 952.02𝑘𝑘𝑘𝑘 

∅𝑀𝑀𝑛𝑛 = 0.9(611.8) = 550.62𝑘𝑘𝑘𝑘 

Point E: 

Pn and Mn at strain in tensile steel, 𝜖𝜖𝑠𝑠1 = −4𝑥𝑥0.0021 = −0.0084 

Pn= 94.58kN 

Mn= 494.2kN.m 

∅𝑃𝑃𝑛𝑛 = 0.9(94.58) = 85.1𝑘𝑘𝑘𝑘 

∅𝑀𝑀𝑛𝑛 = 0.9(494.2) = 444.78𝑘𝑘𝑘𝑘 

Point F: 

Tensile capacity of the column: 

∅𝑃𝑃𝑛𝑛 = −
0.9(5892)(420)

1000
=  −2227𝑘𝑘𝑘𝑘 
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Figure 6.8: Moment- Axial force interaction diagram  

 

6.7  Moment- Axial force interaction diagram sheets: 

There are sheets for Moment- Axial force diagrams for rectangular and circular columns in 
appendices of many textbooks.  

The main points of these sheets are as follows: 

- Material strengths; f’c and fy 
- Shape of section, rectangle or circle 
- Type of reinforcement in rectangular column: distributed bars or bars at two edges 

only 
- Factor gama, 𝛾𝛾,  which expresses the effectiveness of section to resist moment, this 

factor is given by: 

𝛾𝛾 =
ℎ − 2 𝑐𝑐𝑜𝑜𝑝𝑝𝑒𝑒𝑜𝑜𝑠𝑠

ℎ
, 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑜𝑜𝑝𝑝𝑒𝑒𝑜𝑜 𝑐𝑐𝑡𝑡𝑖𝑖 𝑏𝑏𝑒𝑒 𝑒𝑒𝑒𝑒𝑢𝑢𝑡𝑡𝑙𝑙 𝑡𝑡𝑜𝑜: 40𝑚𝑚𝑚𝑚 𝑐𝑐𝑙𝑙𝑒𝑒𝑡𝑡𝑜𝑜 𝑐𝑐𝑜𝑜𝑝𝑝𝑒𝑒𝑜𝑜

+ 10𝑚𝑚𝑚𝑚 𝑑𝑑𝑖𝑖𝑡𝑡𝑚𝑚𝑒𝑒𝑡𝑡𝑒𝑒𝑜𝑜 𝑜𝑜𝑓𝑓 𝑡𝑡𝑖𝑖𝑒𝑒 + 10𝑚𝑚𝑚𝑚 (ℎ𝑡𝑡𝑙𝑙𝑓𝑓 𝑏𝑏𝑡𝑡𝑜𝑜 𝑑𝑑𝑖𝑖𝑡𝑡𝑚𝑚𝑒𝑒𝑡𝑡𝑒𝑒𝑜𝑜) = 60𝑚𝑚𝑚𝑚 

- Section dimensions 
- The terms that determines the axial force and the bending moment which are:  

∅𝑃𝑃𝑛𝑛
𝑏𝑏ℎ

      𝑡𝑡𝑖𝑖𝑑𝑑   
∅𝑀𝑀𝑛𝑛

𝑏𝑏ℎ2
 

The available sheets here are in units of ksi (kips per square inches), so to convert from Mpa 
to ksi, divide by 7.0. 
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Figure 6.9: Moment- Axial force interaction diagram for gama= 0.60  
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Figure 6.10: Moment- Axial force interaction diagram for gama= 0.75  
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Figure 6.11: Moment- Axial force interaction diagram for gama= 0.90  
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Example 6.4: 

Given: 

F’c= 28MPa        fy= 420MPa 

Section: rectangle: b= 400mm        h= 800mm 

Loads: Pu= 383.3kN              Mu= 690kN.m  (The moment acts along h=800mm) 

Determine the required area of longitudinal steel needed to resist these loads. 

 

Solution: 

𝛾𝛾 =
ℎ − 2 𝑐𝑐𝑜𝑜𝑝𝑝𝑒𝑒𝑜𝑜𝑠𝑠

ℎ
=

800 − 2(60)
800

= 0.85 

∅𝑃𝑃𝑛𝑛
𝑏𝑏ℎ

=
383.3(1000)
400(800)(7) = 0.17𝑘𝑘𝑠𝑠𝑖𝑖 

∅𝑀𝑀𝑛𝑛

𝑏𝑏ℎ2
=

690(10)6

400(800)2(7)
= 0.39𝑘𝑘𝑠𝑠𝑖𝑖 

Using column moment- axial force interaction diagram sheets: 

For 𝛾𝛾 = 0.75 → 𝜌𝜌 = 0.017 

For 𝛾𝛾 = 0.9 → 𝜌𝜌 = 0.014 

By interpolation for  𝛾𝛾 = 0.85 → 𝜌𝜌 = 0.015 

As= 0.015(400)(800)= 4800mm2        16∅20 

Ties: 

Spacing of ties: 

𝑆𝑆 ≤ 16𝑑𝑑𝑏𝑏 = 16(20) = 320𝑚𝑚𝑚𝑚 

𝑆𝑆 ≤ 48𝑑𝑑𝑠𝑠 = 48(10) = 480𝑚𝑚𝑚𝑚 

𝑆𝑆 ≤ 𝑙𝑙𝑒𝑒𝑡𝑡𝑠𝑠𝑡𝑡 𝑐𝑐𝑜𝑜𝑙𝑙𝑢𝑢𝑚𝑚𝑖𝑖 𝑠𝑠𝑒𝑒𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑖𝑖 𝑑𝑑𝑖𝑖𝑚𝑚𝑒𝑒𝑖𝑖𝑠𝑠𝑖𝑖𝑜𝑜𝑖𝑖 = 400𝑚𝑚𝑚𝑚 

So, use S= 300mm 
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Figure 6.12: Reinforcement details for column in Example 6.4 

 

6.8  Design of biaxially loaded columns- simplified method: 

It is not unusual for columns to support axial forces and bending about two perpendicular 
axes. One common example is a corner column in a structure.  

For a given cross section and reinforcing pattern, one can draw an interaction diagram for 
axial load and bending about either principal axes. These two interaction diagrams form two 
edges of a three- dimensional interaction surface for axial load and bending about two axes. 
The calculation of each point on such a surface involves a double integration: 

1. The strain gradient across the section is varied 
2. The angle of the neutral axis is varied 

A horizontal section through such a diagram resembles a quadrant of a circle or an ellipse at 
high axial loads, and depending on the arrangement of bars, it becomes considerably less 
circular near the balanced load. 
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Figure 6.13: Interaction surface for axial load and biaxial bending. 

 

A common simplified method for analysis and design of column section loaded biaxially, is 
Bresler Reciprocal Load Method. 

ACI commentary gives the following equation, originally presented by Bresler, for calculating 
the capacity of a column under biaxial bending: 

1
∅𝑃𝑃𝑛𝑛

=
1

∅𝑃𝑃𝑛𝑛𝑛𝑛
+

1
∅𝑃𝑃𝑛𝑛𝑦𝑦

−
1

∅𝑃𝑃𝑛𝑛𝑜𝑜
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Definitions of variables: 

Pu= factored axial load 

ex= eccentricity of applied load measured parallel to the x- axis 

ey= eccentricity of applied load measured parallel to y- axis 

𝑀𝑀𝑢𝑢𝑛𝑛= factored moment about x-axis equals to Pu ey 

𝑀𝑀𝑢𝑢𝑦𝑦= factored moment about x-axis equals to Pu ex 

∅𝑃𝑃𝑛𝑛𝑛𝑛 = reduced nominal axial load capacity for the moment about y- axis; Muy using ex. 

∅𝑃𝑃𝑛𝑛𝑦𝑦 = reduced nominal axial load capacity for the moment about x- axis; Mux using ey. 

∅𝑃𝑃𝑛𝑛𝑜𝑜 = reduced nominal axial load capacity for ex and ey equal to zero 

∅𝑃𝑃𝑛𝑛 = design axial load capacity for the moments about the two axes; Mux and Muy.  

Lx= length of side of column section parallel to x- axis 

Ly= length of side of column section parallel to y- axis 

 

Example 6.5: 

Given: 

Column section: 400mm x 400mm 

Longitudinal bars: 8∅25 

Loads: Pu= 1130kN           Mux= 75kN.m            Muy= 150kN.m 

f’c= 28MPa            fy= 420MPa 

Concrete cover to bars centroid= 60mm 

Check the adequacy of the column section to carry the applied loads 
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Solution: 

Compute ∅𝑷𝑷𝒏𝒏𝒏𝒏:  

∅𝑃𝑃𝑛𝑛𝑜𝑜 = ∅𝜆𝜆�0.85𝑓𝑓′𝑐𝑐�𝐴𝐴𝑔𝑔 − 𝐴𝐴𝑠𝑠� + 𝑓𝑓𝑦𝑦𝐴𝐴𝑠𝑠�

=
(0.65)(0.8)[0.85(28)(400𝑥𝑥400 − 3928) + 420(3928)]

1000
= 2789𝑘𝑘𝑘𝑘 

Compute ∅𝑷𝑷𝒏𝒏𝒏𝒏:  Axial load capacity for ex (𝑴𝑴𝒖𝒖𝒖𝒖) 

Factored axial load capacity corresponding to ex and 𝜌𝜌.  

𝜌𝜌 =
3928

400(400)
= 0.0246 = 0.025 

𝑒𝑒𝑛𝑛
𝑙𝑙𝑛𝑛

=
𝑀𝑀𝑢𝑢𝑦𝑦

𝑃𝑃𝑢𝑢𝑙𝑙𝑛𝑛
=

150
1130(0.4)

= 0.33 

From the interaction diagram and for  
𝑒𝑒
ℎ

=
𝑒𝑒𝑛𝑛
𝑙𝑙𝑛𝑛

= 0.33 𝑡𝑡𝑖𝑖𝑑𝑑 𝜌𝜌 = 0.025 

 

 
∅𝑃𝑃𝑛𝑛
𝑏𝑏ℎ

= 1.3𝑘𝑘𝑠𝑠𝑖𝑖     𝑓𝑓𝑜𝑜𝑜𝑜 𝛾𝛾 = 0.6 

∅𝑃𝑃𝑛𝑛
𝑏𝑏ℎ

= 1.4𝑘𝑘𝑠𝑠𝑖𝑖     𝑓𝑓𝑜𝑜𝑜𝑜 𝛾𝛾 = 0.75 

For 

𝛾𝛾 =
400 − 120

400
= 0.7 ∶ 

   
∅𝑃𝑃𝑛𝑛
𝑏𝑏ℎ(7)

= 1.36𝑘𝑘𝑠𝑠𝑖𝑖      𝜙𝜙𝑃𝑃𝑛𝑛𝑛𝑛 =
𝑏𝑏ℎ(1.36)(7)

1000
= 1523𝑘𝑘𝑘𝑘 

 

Compute ∅𝑷𝑷𝒏𝒏𝒖𝒖:  Axial load capacity for ey (𝑴𝑴𝒖𝒖𝒏𝒏) 

Factored axial load capacity corresponding to ey and 𝜌𝜌.  

𝜌𝜌 =
3928

400(400)
= 0.0246 = 0.025 
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𝑒𝑒𝑦𝑦
𝑙𝑙𝑦𝑦

=
𝑀𝑀𝑢𝑢𝑛𝑛

𝑃𝑃𝑢𝑢𝑙𝑙𝑦𝑦
=

75
1130(0.4)

= 0.166 

From the interaction diagram and for  

 
𝑒𝑒
ℎ

=
𝑒𝑒𝑦𝑦
𝑙𝑙𝑦𝑦

= 0.166 𝑡𝑡𝑖𝑖𝑑𝑑 𝜌𝜌 = 0.025 

 
∅𝑃𝑃𝑛𝑛𝑦𝑦
𝑏𝑏ℎ

= 2.1𝑘𝑘𝑠𝑠𝑖𝑖     𝑓𝑓𝑜𝑜𝑜𝑜 𝛾𝛾 = 0.6 

∅𝑃𝑃𝑛𝑛𝑦𝑦
𝑏𝑏ℎ

= 2.2𝑘𝑘𝑠𝑠𝑖𝑖     𝑓𝑓𝑜𝑜𝑜𝑜 𝛾𝛾 = 0.75 

For                   

𝛾𝛾 =
400 − 120

400
= 0.7   ∶  

   

∅𝑃𝑃𝑛𝑛𝑦𝑦
𝑏𝑏ℎ(7)

= 2.16𝑘𝑘𝑠𝑠𝑖𝑖      𝜙𝜙𝑃𝑃𝑛𝑛𝑦𝑦 =
𝑏𝑏ℎ(2.16)(7)

1000
= 2419𝑘𝑘𝑘𝑘 

Apply the formula: 

 

1
∅𝑃𝑃𝑛𝑛

=
1

∅𝑃𝑃𝑛𝑛𝑛𝑛
+

1
∅𝑃𝑃𝑛𝑛𝑦𝑦

−
1

∅𝑃𝑃𝑛𝑛𝑜𝑜
=

1
1523

+
1

2419
−

1
2789

 

So, 

𝜙𝜙𝑃𝑃𝑛𝑛 = 1406𝑘𝑘𝑘𝑘 > 1130𝑘𝑘𝑘𝑘             𝑜𝑜𝑘𝑘 

So, the column section and reinforcement is adequate. 

 

6.9  Loads on Columns: 

The columns are subjected to axial forces and bending moments about the two principal axes 
of the cross section. 

The column loads are computed using the following procedures: 

1. Tributary area principle: the column carry axial load from the slab and from the direct 
loads which it is subjected to. The column carry dead loads from the slab, beams 
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weights, walls weights in addition to its self-weight. Also, it carries a live load from the 
slab. The tributary area is computed by taking half the distances to adjacent columns 
from all sides. This method is approximate and can be applied for approximate equal 
spans. It has large errors if the spans varied largely. The moments on the columns can 
be determined by using the ACI coefficients for moments. 

2. Reactions from beams using ACI coefficients: the beams are supported by columns, so 
the reactions (vertical forces and moments) of the beams are loads on the columns. 
The vertical reaction at a support is equal to the summation of shear forces at the 
support. The end moments in the beam are moments on the columns. 

3. Analysis of continuous beams: the reactions on the beam are loads on the columns. 
The end supports of the beam can be treated as hinges in a model and as fixed in 
another model and the average values of end moments will be applied to the columns.  

4. Analysis of plane frames 
5. Analysis of space frames 

Many examples can be solved using the above principles. 

 

Note: 

Based on the course “Design of Reinforced Concrete I”, an additional chapter shall 
be covered which is the design of single concentric footings; footings which are 
subjected to axial compression force only. 
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Chapter 7: One Way Slab Systems 

 

This chapter introduces the analysis and design of one-way slab systems; solid and ribbed in 
addition to beam- girder systems. Voided slabs are considered implicitly. 

In one-way slabs, the load is assumed to be transferred in one direction. Usually, one-way 
slabs are concrete structures for which the ratio of the long span to the short span equals or 
exceeds a value of 2, when this ratio is less than 2, the floor panel becomes two-way slab. 
Pure one-way slabs are available when there are supports in one direction only or when the 
section moment of inertia in a direction is very large comparing with the section moment of 
inertia in the perpendicular direction, otherwise, all slabs can be treated as two way.  

7.1 One-way solid slabs:  

7.1.1 Basic principles: 

A. A one-way solid slab is designed as singly reinforced 1000mm wide beam strip using the 
same design and analysis procedure for singly reinforced beams. 

B. One-way solid slabs usually have a thickness that is adequate for shear strength; no shear 
reinforcement is used; 𝑉𝑉𝑢𝑢 ≤ ∅𝑉𝑉𝑐𝑐 . Generally, shear reinforcement can be used. 

C. Transverse reinforcement has to be provided perpendicular to the direction of bending in 
order to resist shrinkage, temperature stresses and load distribution which is 0.0018𝐴𝐴𝑔𝑔, 
where 𝐴𝐴𝑔𝑔 is the gross sectional area. 

D. Preliminary thickness of one-way slabs and beams can be determined using ACI 318-19 
code provisions (Minimum thickness of slabs and beams).  

E. The exterior beams have L-sections and the interior beams have T-sections. The section 
effective width (flange width) for flexure is stated in ACI 318-19 code section 6.3.2. 

F.   Structural modeling:  

Beams and slabs can be modeled as one-dimensional structures (line structure). Here, the 
slab and the beam are modeled as line (frame member) and with pined or hinged supports. 
In this model, the end moments (exterior negative moments) are equal to zero. Note that, 
here, torsion on beams is not considered, it will be discussed in next chapters. 

The slab and the beams are casted monolithically, so torsion will develop in beams as the slab 
rotates under load, especially edge beams. 

Column strips in one-way slabs exist when the slab is modeled as a three-dimensional 
structure; space frame. The slab strips which are aligned at column lines will have larger 
internal forces. 

G. Beam size: For the initial analysis- design cycle, preliminary member sizes can be selected 
on prior experience with similar floor systems. Total beams depth, h, are typically in the range 
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of L/18 to L/12, where L is the span length center to center of supports (other than cantilever). 
One may use bw= 0.5 h for typical drop beams. Beam width shall be not less than 200mm for 
practical purposes. Beam width can be equal to about L/20, where L is the span length. In 
seismic special frames, width of beam, bw, shall be at least 0.3 section thickness, h, and 
250mm and its projection beyond the supporting column shall not exceed the lesser of c2 and 
0.75c1. C1 is the width of column in direction of beam and c2 is the transverse width of column. 

Beam size is controlled by: 

 1. Deflection criteria (Code limitations, deflection calculations) 

 2. Flexural design (economical section, steel ratio = 0.01-0.014, singly reinforced  

                      section) 

 3. Shear design  

 4. Architectural purposes 

Beams can be dropped or inverted with different shapes. 

H. Distribution of flexural reinforcement in beams and one- way slabs: 

The flexural reinforcement shall be distributed to control flexural cracking. The spacing of 
reinforcement closest to the tension face, s, shall not exceed that given by: 

𝑠𝑠 = 380 �
280
𝑓𝑓𝑠𝑠
� − 2.5𝑐𝑐𝑐𝑐 ≤ 300 �

280
𝑓𝑓𝑠𝑠
� 

Where:  

f
s
= calculated tensile stress in reinforcement at service loads, MPa (refer to working design 

method). It shall be permitted to take 𝑓𝑓𝑠𝑠 = 2
3
𝑓𝑓𝑦𝑦. 

𝐶𝐶𝑐𝑐= the least distance from surface of flexural reinforcement to the tension face. 

Generally, the maximum spacing of reinforcing bars is 250mm and 150mm in slabs and beams 
respectively. 

According to ACI 318-19 Section (7.7.2), the maximum spacing between bars in one-way solid 
slabs is the smaller of 3h and 450mm and the maximum spacing of shrinkage steel shall be 
the smaller of 5h and 450mm. Where h is the slab thickness. 

I. Structural integrity: 

• Longitudinal structural integrity reinforcement consisting of at least one-quarter of 
the maximum positive moment reinforcement shall be continuous. 
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• Longitudinal structural integrity reinforcement at noncontinuous supports shall be 
anchored to develop 𝑓𝑓𝑦𝑦 at the face of the support. 

• If splices are necessary in continuous structural integrity reinforcement, the 
reinforcement shall be spliced near supports. Splices shall be mechanical or welded in 
accordance with 25.5.7 or Class B tension lap splices in accordance with 25.5.2. 

More details on structural integrity can be found in chapter 5. 

7.1.2 Example: One-way solid slab 

Given: 

Concrete, f’c= 24MPa. 

Steel, fy= 420MPa. 

Superimposed dead load, WSD= 4.5kN/m2. 

Live load, WL= 2.5kN/m2. 

Perimeter wall weight= 21kN/m. 

All columns are 300x600mm. 

Design the slab strip and draw the structural models for all required beams. 

 

Figure 7.1: Columns layout 
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Solution: 

Analysis and design steps for one-way slab systems: 

1. Structural system and beams layout. 
2. Slab thickness. 
3. Loads (slab load kN/m2, wall weight). 
4. Analysis and design of slab strips. 
5. Analysis of beams using preliminary dimensions. 
6. Design of beams. 
7. Structural drawings. 

Notes: 1. Here, no torsion is considered. 

             2. It is considered that a strip represents the whole slab. In reality, a slab strip at 
column lines has larger moments than strips between column lines. 

 3. Beams parallel to slab strip carry no load from the slab. 

 Step 1: Slab system 

- One-way solid slab. 
- Beams are distributed in y- direction (to have the smallest slab thickness). 

Step 2: Slab thickness 

ℎ𝑚𝑚𝑚𝑚𝑚𝑚 =
𝐿𝐿

24
=

5.0
24

= 0.21𝑚𝑚 

              Try h= 200mm 

Step 3: Loads 

Slab own weight, WD= 0.20(25kN/m3)= 5kN/m2 

ultimate load on the slab, Wu1= 1.4(WD +WSD)  

                                     or      Wu2= 1.2(WD+WSD)+1.6WL 

                                                which is larger 

Wu1= 1.4(5+4.5)=  13.3kN/m2      

Wu2= 1.2(5+4.5)+1.6(2.5)= 15.4kN/m2  

Use Wu= 15.4kN/m2 
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Step 4: Slab analysis and design 

A one-meter strip perpendicular to the supporting beams can be taken to represent the whole 
slab. 

Assume that width of supporting beams= 0.3m. 

Clear span for the slab, 𝐿𝐿𝑚𝑚 = 5 − 0.3 = 4.7𝑚𝑚. 

 

Figure 7.2: Beams layout 

 

Main beams which are B1 and B2 are in y-direction. 

B3; the perimeter beam is used to carry the external wall. 

B1: Carries its own weight + load from slab + wall weight 

B2: Carries its own weight + load from slab 

B3: Carries its own weight + wall weight 

 



Design of Reinforced Concrete Structures: A Practical Approach                                     IBRAHIM ARMAN 
 

127 
 

 

Figure 7.3: Structural model of slab 

 

 

Figure 7.4: Shear envelope of slab 

The slab thickness shall be adequate to resist shear. 

Check slab for shear:  

The maximum ultimate shear force at face of support (Beam) is given by: 

𝑉𝑉𝑢𝑢 = 1.15𝑤𝑤𝑢𝑢
𝐿𝐿𝑚𝑚
2

= 1.15(15.4)
4.7
2

= 41.6𝑘𝑘𝑘𝑘 

ACI 318-19: 

Effective depth of slab= 200-40=160mm. 

𝑉𝑉𝑐𝑐 can be calculated by: 

 𝐹𝐹𝐹𝐹𝐹𝐹 𝐴𝐴𝑣𝑣 ≥ 𝐴𝐴𝑣𝑣.𝑚𝑚𝑚𝑚𝑚𝑚 (𝐹𝐹𝐹𝐹 
𝐴𝐴𝑣𝑣
𝑠𝑠
≥ �

𝐴𝐴𝑣𝑣
𝑠𝑠 �𝑚𝑚𝑚𝑚𝑚𝑚

) 𝑢𝑢𝑠𝑠𝑢𝑢 𝑢𝑢𝑒𝑒𝑒𝑒ℎ𝑢𝑢𝐹𝐹 𝐹𝐹𝑓𝑓: 

𝑉𝑉𝑐𝑐 = �0.17𝜆𝜆�𝑓𝑓′𝑐𝑐 +
𝑘𝑘𝑢𝑢

6𝐴𝐴𝑔𝑔
� 𝑏𝑏𝑤𝑤𝑑𝑑     𝑎𝑎𝑎𝑎𝑑𝑑      𝑉𝑉𝑐𝑐 = �0.66𝜆𝜆(𝜌𝜌𝑤𝑤)1/3�𝑓𝑓′𝑐𝑐 +

𝑘𝑘𝑢𝑢
6𝐴𝐴𝑔𝑔

� 𝑏𝑏𝑤𝑤𝑑𝑑 

𝐹𝐹𝐹𝐹𝐹𝐹 𝐴𝐴𝑣𝑣 < 𝐴𝐴𝑣𝑣.𝑚𝑚𝑚𝑚𝑚𝑚  �𝐹𝐹𝐹𝐹 
𝐴𝐴𝑣𝑣
𝑠𝑠

< �
𝐴𝐴𝑣𝑣
𝑠𝑠 �𝑚𝑚𝑚𝑚𝑚𝑚

� 𝑢𝑢𝑠𝑠𝑢𝑢: 
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  𝑉𝑉𝑐𝑐 = �0.66𝜆𝜆𝑠𝑠𝜆𝜆(𝜌𝜌𝑤𝑤)1/3�𝑓𝑓′𝑐𝑐 +
𝑘𝑘𝑢𝑢

6𝐴𝐴𝑔𝑔
� 𝑏𝑏𝑤𝑤𝑑𝑑 

Where 𝐴𝐴𝑣𝑣 is the area of shear reinforcement within spacing s, mm2.  

And, 𝑉𝑉𝑐𝑐 shall not be taken greater than: 

𝑉𝑉𝑐𝑐 ≤ 0.42𝜆𝜆�𝑓𝑓′𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 

𝑆𝑆𝑒𝑒𝑆𝑆𝑢𝑢 𝑓𝑓𝑎𝑎𝑐𝑐𝑒𝑒𝐹𝐹𝐹𝐹, 𝜆𝜆𝑠𝑠 = � 2
1 + 0.004 𝑑𝑑

≤ 1.0 

For 𝑑𝑑 ≤ 250𝑚𝑚𝑚𝑚, 𝜆𝜆𝑠𝑠 = 1.0 

𝑘𝑘𝑢𝑢
6𝐴𝐴𝑔𝑔

≤ 0.05𝑓𝑓′𝑐𝑐 

Axial load, Nu, is positive for compression and negative for tension. 

𝜌𝜌𝑤𝑤 =
𝐴𝐴𝑠𝑠
𝑏𝑏𝑤𝑤𝑑𝑑

 

∅𝑉𝑉𝑐𝑐 = ∅�0.66𝜆𝜆𝑠𝑠𝜆𝜆(𝜌𝜌𝑤𝑤)1/3�𝑓𝑓′𝑐𝑐 +
𝑘𝑘𝑢𝑢

6𝐴𝐴𝑔𝑔
�𝑏𝑏𝑤𝑤𝑑𝑑 

𝐿𝐿𝑢𝑢𝑒𝑒 𝜌𝜌𝑤𝑤 = 0.0018 �
ℎ
𝑑𝑑�

= 0.0018 �
200
160�

= 0.00225 

 
 So, 

  ∅𝑉𝑉𝑐𝑐 = ∅�0.66𝜆𝜆𝑠𝑠𝜆𝜆(𝜌𝜌𝑤𝑤)
1
3�𝑓𝑓′𝑐𝑐 +

𝑘𝑘𝑢𝑢
6𝐴𝐴𝑔𝑔

� 𝑏𝑏𝑤𝑤𝑑𝑑

=
0.75 �0.66(1)(1)(0.00225)

1
3√24 + 0.0� (1000)(160)

1000
= 50.85𝑘𝑘𝑘𝑘

> 41.6𝑘𝑘𝑘𝑘       𝑂𝑂𝑂𝑂 

ACI 318-14: 

∅𝑉𝑉𝑐𝑐 = ∅
1
6
𝜆𝜆�𝑓𝑓′𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 =

0.75 �1
6� (1)√24(1000)(160)

1000
= 98𝑘𝑘𝑘𝑘 > 41.6𝑘𝑘𝑘𝑘      𝑂𝑂𝑂𝑂. 
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Figure 7.5: Moment envelope of slab 

 

Flexural design: 

The minimum area of steel in slabs is:    0.0018 b h    Where:   b= section width=1000mm and 
h= slab thickness=200mm.  

Here, As,min= 0.0018 x 1000 x 200 = 360 mm
2  

  (1𝛷𝛷12/300𝑚𝑚𝑚𝑚) 

(Here, 1𝛷𝛷12/250 is used instead of 1𝛷𝛷12/300 to have better bars arrangement) 

As an example: calculations for steel area, As for Mu=34kN.m: 

bw= 1000mm      h=200mm      d= 160mm      f’c= 24MPa       fy= 420MPa 

𝜌𝜌 =
0.85𝑓𝑓′𝑐𝑐
𝑓𝑓𝑦𝑦

�1 −�1 −
2.61𝑀𝑀𝑢𝑢

𝑏𝑏𝑑𝑑2𝑓𝑓′𝑐𝑐
� =

0.85(24)
420 �1 −�1 −

2.61(34𝑥𝑥106)
(1000)(160)2(24)�

= 0.00364 

𝐴𝐴𝑠𝑠 = 𝜌𝜌𝑏𝑏𝑤𝑤𝑑𝑑 = (0.00364)(1000)(160) = 582𝑚𝑚𝑚𝑚2 > 𝐴𝐴𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 

And this steel ratio is less than the maximum allowed for singly reinforced section, 
𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚,𝑠𝑠𝑚𝑚𝑚𝑚𝑔𝑔𝑠𝑠𝑦𝑦 = 0.375𝛽𝛽1

0.85𝑓𝑓′𝑐𝑐
𝑓𝑓𝑦𝑦

. 

Number of bars per meter width= 582/154=3.78 bars ,   spacing= 1000/3.78= 264mm      Use 
1𝛷𝛷14/250𝑚𝑚𝑚𝑚    or  use 4 𝛷𝛷14/𝑚𝑚 

 

Figure 7.6: Flexural reinforcement in slab 
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Figure 7.7: Bars layout in slab 

Step 5: Analysis and design of beams: 

Beam width, bw= 300mm.  

Generally, it is preferred to use beam width less than column width to facilitate bars layout.  

According to ACI 318 -19, the minimum thickness of beam is L/18.5; one end continuous span. 

L= 6.5m, then  h= 6.5/18.5= 0.35m 

Loads on beams are usually large, so this depth will lead to have doubly reinforced section, or 
in general, not adequate section especially for deflection. So, it is recommended to increase 
it, say, h= 1.5 x 0.35 = 0.55m. 

Try h=600mm and bw= 300mm 

B1 and B3 are L-section and B2 is T- section beams. 

Use the ACI code limitations to compute width of flange (bf or be).  

B1:  

𝑏𝑏𝑒𝑒 ≤ 𝑏𝑏𝑤𝑤 +
1
2
𝑐𝑐𝑐𝑐𝑢𝑢𝑎𝑎𝐹𝐹 𝑒𝑒𝐹𝐹𝑎𝑎𝑎𝑎𝑠𝑠𝑡𝑡𝑢𝑢𝐹𝐹𝑠𝑠𝑢𝑢 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 = 300 + 0.5(4700) = 2650𝑚𝑚𝑚𝑚 

𝑏𝑏𝑒𝑒 ≤ 𝑏𝑏𝑤𝑤 + 6ℎ𝑓𝑓 = 300 + 6(200) = 1500𝑚𝑚𝑚𝑚 

𝑏𝑏𝑒𝑒 ≤ 𝑏𝑏𝑤𝑤 +
𝐿𝐿𝑚𝑚
12

= 300 +
6500 − 600

12
= 792𝑚𝑚𝑚𝑚 

Use flange width, be= 800mm 

B2:  

𝑏𝑏𝑒𝑒 ≤ 𝑏𝑏𝑤𝑤 + 2
1
2
𝑐𝑐𝑐𝑐𝑢𝑢𝑎𝑎𝐹𝐹 𝑒𝑒𝐹𝐹𝑎𝑎𝑎𝑎𝑠𝑠𝑡𝑡𝑢𝑢𝐹𝐹𝑠𝑠𝑢𝑢 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 = 300 + 2(0.5)(4700) = 5000𝑚𝑚𝑚𝑚 

𝑏𝑏𝑒𝑒 ≤ 𝑏𝑏𝑤𝑤 + 2(8)ℎ𝑓𝑓 = 300 + 16(200) = 3500𝑚𝑚𝑚𝑚 
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𝑏𝑏𝑒𝑒 ≤ 𝑏𝑏𝑤𝑤 + 2
𝐿𝐿𝑚𝑚
8

= 300 +
6500 − 600

4
= 1775𝑚𝑚𝑚𝑚 

Use flange width, be= 1775mm 

B3:  

Use rectangular section: bw= 300mm, h= 600mm 

Loads on beams: (The thickness of slab is subtracted from beam thickness; 0.6-0.2=0.4m) 

Wu1= 0.3(0.4)(25)(1.2)+(5/2)(15.4)+(21)(1.2)= 67.3kN/m 

Wu2= (0.3)(0.4)(25)(1.2)+(5)(15.4)= 80.6kN/m  (Notice that the factor 1.15 is not used as an 
approximation) 

Wu3= (0.3)(0.4)(25)(1.4)+(21)(1.4)= 33.6kN/m 

 

Figure 7.8: Structural model of beam B1 

 

 

Figure 7.9: Structural model of beam B2 

 

Figure 7.10: Structural model of beam B3 
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Design of beam B2 for flexure:  

 

Figure 7.11: Bending moment envelope for beam B2 

For Mu= 311.7kN.m: 

𝑏𝑏𝑤𝑤= 300mm    h= 600mm      

d= 540mm 

→ ρ= 0.0106 

→ As= 1717mm2 

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑎𝑎𝑥𝑥 �
1.4
𝑓𝑓𝑦𝑦

,
0.25�𝑓𝑓′𝑐𝑐

𝑓𝑓𝑦𝑦
� = 0.00333 < 0.0106      𝐹𝐹𝑘𝑘. 

This As is distributed in the flange width. 2/3 As in 300mm and 1/3 As in (1925-300)mm 

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚,𝑠𝑠𝑚𝑚𝑚𝑚𝑔𝑔𝑠𝑠𝑦𝑦 = 0.375𝛽𝛽1
0.85𝑓𝑓′𝑐𝑐
𝑓𝑓𝑦𝑦

= 0.015548 > 0.0106      𝐹𝐹𝑘𝑘. 

For Mu= 200.4mm:  

Assume rectangular compression zone; a< hf=200mm 

Use the formula for ρ with b=1775mm 

→ρ = 0.00103 

→ 𝐴𝐴𝑠𝑠 = 𝜌𝜌𝑏𝑏𝑑𝑑 = (0.00103)(1775)(540) = 988 𝑚𝑚𝑚𝑚2    (4𝛷𝛷20) 

Check a: (a is less than amax= 0.375𝛽𝛽1𝑑𝑑 = 0.375(0.85)(540) = 172𝑚𝑚𝑚𝑚) 

𝑎𝑎 =
𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦

0.85𝑓𝑓′𝑐𝑐𝑏𝑏
=

(988)(420)
0.85(24)(1775)

= 11.5𝑚𝑚𝑚𝑚 < 200𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑑𝑑 < 172𝑚𝑚𝑚𝑚         𝐹𝐹𝑘𝑘. 
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Figure 7.12: Flexural steel for beam B2 

 

 

Figure 7.13: Flexural reinforcing bars in beam B2 

 

Design of beam B2 for shear:  

 

Figure 7.14: Shear envelope for beam B2 

For Vu= 273.4kN: 

𝑉𝑉𝑢𝑢/𝛷𝛷= 273.4/0.75= 364.5kN 

𝑉𝑉𝑐𝑐 =
1
6
𝜆𝜆�𝑓𝑓′𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 =

1
6 (1)√24(300)(540)

1000
= 132.3𝑘𝑘𝑘𝑘 

𝑉𝑉𝑠𝑠 =  𝑉𝑉𝑢𝑢/𝛷𝛷 – 𝑉𝑉𝑐𝑐 =  232.2𝑘𝑘𝑘𝑘 

𝑉𝑉𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 =
2
3
�𝑓𝑓′𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 = 529.1𝑘𝑘𝑘𝑘 > 232.2𝑘𝑘𝑘𝑘         𝑆𝑆𝑢𝑢𝑐𝑐𝑒𝑒𝑒𝑒𝐹𝐹𝑎𝑎 𝑠𝑠𝑒𝑒𝑆𝑆𝑢𝑢 𝑒𝑒𝑠𝑠 𝑎𝑎𝑑𝑑𝑢𝑢𝑎𝑎𝑎𝑎𝑢𝑢𝑒𝑒𝑢𝑢 
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𝐴𝐴𝑣𝑣
𝑠𝑠

=
𝑉𝑉𝑠𝑠
𝑓𝑓𝑦𝑦𝑦𝑦𝑑𝑑

= 1.02𝑚𝑚𝑚𝑚2/𝑚𝑚𝑚𝑚 

�
𝐴𝐴𝑣𝑣
𝑠𝑠 �𝑚𝑚𝑚𝑚𝑚𝑚

= 𝑚𝑚𝑎𝑎𝑥𝑥 �
0.062�𝑓𝑓′𝑐𝑐𝑏𝑏𝑤𝑤

𝑓𝑓𝑦𝑦𝑦𝑦
,
0.35𝑏𝑏𝑤𝑤
𝑓𝑓𝑦𝑦𝑦𝑦

� = 𝑚𝑚𝑎𝑎𝑥𝑥[0.22,0.25] = 0.25𝑚𝑚𝑚𝑚2/𝑚𝑚𝑚𝑚 

Av/s > (Av/s) min      ok       → use Av/s= 1.02 mm2/mm 

Try Φ10mm stirrups, two legs → s= (2x78.5)/1.02= 154mm  

Check stirrups spacing:  

- 𝐼𝐼𝑓𝑓 𝑉𝑉𝑠𝑠 ≤
1
3�𝑓𝑓

′
𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 → 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑒𝑒𝑎𝑎 �𝑑𝑑

2
, 600𝑚𝑚𝑚𝑚� 

- 𝐼𝐼𝑓𝑓 1
3�𝑓𝑓

′
𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 < 𝑉𝑉𝑠𝑠 ≤

2
3�𝑓𝑓

′
𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 → 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑒𝑒𝑎𝑎 �𝑑𝑑

4
, 300𝑚𝑚𝑚𝑚� 

- 𝐼𝐼𝑓𝑓 𝑉𝑉𝑠𝑠 > 2
3�𝑓𝑓

′
𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 → 𝐼𝐼𝑎𝑎𝑐𝑐𝑢𝑢𝑎𝑎𝑠𝑠𝑢𝑢 𝑠𝑠𝑢𝑢𝑐𝑐𝑒𝑒𝑒𝑒𝐹𝐹𝑎𝑎 𝑑𝑑𝑒𝑒𝑚𝑚𝑢𝑢𝑎𝑎𝑠𝑠𝑒𝑒𝐹𝐹𝑎𝑎𝑠𝑠 

 

1
3�

𝑓𝑓′𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 = 264.5𝑘𝑘𝑘𝑘 > 232.2𝑘𝑘𝑘𝑘 

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑒𝑒𝑎𝑎 �
𝑑𝑑
2

, 600𝑚𝑚𝑚𝑚� = 𝑚𝑚𝑒𝑒𝑎𝑎 �
540

2
= 270𝑚𝑚𝑚𝑚, 600𝑚𝑚𝑚𝑚� = 270𝑚𝑚𝑚𝑚 

270mm> 154mm      →  use s= 150mm      2 legs   𝛷𝛷10mm stirrups 

 

Note: 

The maximum transverse spacing of stirrup legs are given by (Section 9.7.6.2.2 in ACI 318-
19): 

- 𝐼𝐼𝑓𝑓 𝑉𝑉𝑠𝑠 ≤
1
3�𝑓𝑓

′
𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 → 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑒𝑒𝑎𝑎[𝑑𝑑, 600𝑚𝑚𝑚𝑚] 

- 𝐼𝐼𝑓𝑓 1
3�𝑓𝑓

′
𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 < 𝑉𝑉𝑠𝑠 ≤

2
3�𝑓𝑓

′
𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 → 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑒𝑒𝑎𝑎 �𝑑𝑑

2
, 300𝑚𝑚𝑚𝑚� 

 

𝐻𝐻𝑢𝑢𝐹𝐹𝑢𝑢,𝑉𝑉𝑠𝑠 <
1
3�

𝑓𝑓′𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑                 𝑠𝑠𝐹𝐹, 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑒𝑒𝑎𝑎[𝑑𝑑, 600𝑚𝑚𝑚𝑚] = 540𝑚𝑚𝑚𝑚 

And the value 540mm is larger than the width of the beam, so, two - legs stirrup can be used 
for this cross section. 
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7.2 One-way ribbed (joist) slabs:  

 

 

Figure 7.15: One-way ribbed slab picture 

 

Figure 7.16: One-way ribbed slab layout 

 

7.2.1 Basic principles: 

A. Joist construction can be used as a slab system for light loads and it can be with drop or 
hidden beams. 

B. Joist construction with blocks can be used for spans up to about 7 meters. 
C. Joist construction with removable metal or plastic forms can be used for medium spans 

from 7 to 12 meters. 
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D. The most economical forming results if joists and supporting beams have the same 
depth. This will involve beams considerably wider than columns. Such a system is 
referred to as joist- band system. 

E.  Joist dimensions: 

𝑏𝑏𝑤𝑤 ≥ 100mm 

h ≤ 3.5 bw  

S ≤ 750mm 

ℎ𝑓𝑓  ≥ 50mm 

      ≥ S/12 

 

Figure 7.17: Section in rib 

 

F. Ribbed slab not meeting the above requirements for the rib dimensions are designed as 
slabs and beams – Figure 7.18. 

G. The rib shear capacity can be increased by 10%  if the previous dimensions are used. 

 

Figure 7.18: Slab layout 

H. The overall depth of slab is governed by deflection and shear. 

 



Design of Reinforced Concrete Structures: A Practical Approach                                     IBRAHIM ARMAN 
 

137 
 

I.  Load distributing rib – Figure 7.19 

 - span < 6m : no distributing ribs 

 -  6m ≤ span < 9m : one distributing rib 

 -  9m ≤  span : two distributing ribs     

 

                            Figure 7.19: Load distributing rib 

J. Block size: 

 * Normal weight concrete blocks:  

  S= 400mm 

  hw= 140, 170, 200, 240, 300, 320           b1= 200, 250 

 * Ytong blocks (Light weight): 

  S= 500, 550, 600 

  hw= as required. 

  b1= 300mm usually, or as required. 

 

Figure 7.20: Block dimensions 
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*   Light weight concrete blocks:  as for normal concrete blocks 

*   Concrete blocks + polystyrene: concrete blocks, hw= 70mm, S= 400mm 

*   Polystyrene blocks: variable dimensions 

• Block unit weights:  

      Normal weight concrete:     12kN/m3 

Light weight concrete:         6kN/m3 

Ytong:                                     5kN/m3 

Polystyrene:                          0.3kN/m3 

 

7.2.2 Example: 

Resolve the Example 7.1.2 using one-way ribbed slab system with hidden beams. Use light 
weight concrete blocks, 𝛾𝛾 = 6𝑘𝑘𝑘𝑘/𝑚𝑚3. 

 

Figure 7.21: Slab layout for example 7.2.2. 
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Solution: 

Step 1: Slab system: 

- One-way ribbed slab. 
- Main hidden beams are distributed in x- direction. 

Step 2: Slab thickness: 

6.5/18.5= 0.35m 

Check rib dimensions:  

bw=150mm > 100mm                 ok 

h=360 < 3.5 x 150= 525mm       ok 

 s = 400mm < 750mm                 ok 

Hf= 60mm > 50mm        and > 400/12=33mm             ok                                                                                                        

Try h= 360mm - Figure 7.22 

Step 3: Loads: 

Slab own weight, WD= {(0.55) (0.06) +(0.15) (0.30)} (25kN/m3) + (0.40) (0.30) (6kN/m3) = 
2.67kN/rib       → WD= 2.67/0.55= 4.90kN/m2 

 

Figure 7.22: Section in slab 
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Figure 7.23: Section in rib 

 

Ultimate load on the slab, Wu1= 1.4(WD +WSD)     or      Wu2= 1.2(WD+WSD)+1.6WL which is 
larger.  

Wu1= 1.4(4.9+4.5)=  13.2kN/m2      

Wu2= 1.2(4.9+4.5)+1.6(2.5)= 15.3kN/m2  

Use Wu= 15.3kN/m2 

Or Wu= 15.3 x 0.55= 8.4kN/m  for a rib. 

 

Step 4: Slab analysis and design: 

A rib strip can be taken to represent the whole slab. Assume support widths are 0.60m which 
are the width of the main beams. 

 

 

Figure 7.24: Structural model of the rib 
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Figure 7.25: Shear envelope of the rib 

 

 

Figure 7.26: Bending moment envelope of the rib 

 

 

Figure 7.27: Flexural reinforcement of the rib 

 

 

Figure 7.28: Bars layout in the rib 
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Check slab for shear: (Maximum shear force at interior support) 

ACI 318-14: 

𝑉𝑉𝑢𝑢,𝑓𝑓𝑚𝑚𝑐𝑐𝑒𝑒 = 1.15𝑤𝑤𝑢𝑢
𝐿𝐿𝑚𝑚
2

= 1.15(8.4)
5.9
2

= 28.5𝑘𝑘𝑘𝑘 

𝑉𝑉𝑢𝑢 𝑚𝑚𝑦𝑦 𝑑𝑑 = 28.5 − 𝑤𝑤𝑢𝑢𝑑𝑑 = 28.5 − (8.4)(0.31) = 25.9𝑘𝑘𝑘𝑘 

∅𝑉𝑉𝑐𝑐 = 1.1∅𝜆𝜆
1
6
�𝑓𝑓′𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 = 1.1

(0.75)(1) �1
6�√24(150)(310)

1000
= 31.3𝑘𝑘𝑘𝑘 > 25.9𝑘𝑘𝑘𝑘   𝑂𝑂𝑂𝑂. 

No need for shear reinforcement. 

ACI 318-19: 

𝐼𝐼𝑓𝑓 𝑠𝑠ℎ𝑢𝑢𝑎𝑎𝐹𝐹 𝐹𝐹𝑢𝑢𝑒𝑒𝑎𝑎𝑓𝑓𝐹𝐹𝐹𝐹𝑐𝑐𝑢𝑢𝑚𝑚𝑢𝑢𝑎𝑎𝑒𝑒 𝑒𝑒𝑠𝑠 𝑎𝑎𝐹𝐹𝑒𝑒 𝑢𝑢𝑠𝑠𝑢𝑢𝑑𝑑:  ∅𝑉𝑉𝑐𝑐 = 1.1∅�0.66𝜆𝜆𝑠𝑠𝜆𝜆(𝜌𝜌𝑤𝑤)1/3�𝑓𝑓′𝑐𝑐 +
𝑘𝑘𝑢𝑢

6𝐴𝐴𝑔𝑔
�𝑏𝑏𝑤𝑤𝑑𝑑 

𝐹𝐹𝐹𝐹𝐹𝐹 𝑚𝑚𝑒𝑒𝑎𝑎𝑒𝑒𝑚𝑚𝑢𝑢𝑚𝑚 𝑠𝑠𝑒𝑒𝑢𝑢𝑢𝑢𝑐𝑐 𝐹𝐹𝑎𝑎𝑒𝑒𝑒𝑒𝐹𝐹,𝜌𝜌𝑤𝑤 = 0.00333:   

𝜆𝜆𝑠𝑠 = � 2
1 + 0.004 𝑑𝑑

≤ 1.0 → �
2

1 + 0.004(310) = 0.94 

  ∅𝑉𝑉𝑐𝑐 = 1.1∅�0.66𝜆𝜆𝑠𝑠𝜆𝜆(𝜌𝜌𝑤𝑤)
1
3�𝑓𝑓′𝑐𝑐 +

𝑘𝑘𝑢𝑢
6𝐴𝐴𝑔𝑔

� 𝑏𝑏𝑤𝑤𝑑𝑑

= 1.1
0.75 �0.66(0.94)(1)(0.00333)

1
3√24 + 0.0� (150)(310)

1000
= 17.4𝑘𝑘𝑘𝑘

< 25.9𝑘𝑘𝑘𝑘             𝑘𝑘.𝐺𝐺. 

At interior support, 𝜌𝜌 = 0.00637,∅𝑉𝑉𝑐𝑐 = 21.6𝑘𝑘𝑘𝑘 < 25.9𝑘𝑘𝑘𝑘    𝑘𝑘.𝐺𝐺 

So, shear reinforcement shall be used, and the value of ∅𝑉𝑉𝑐𝑐 is taken equal to 
21.6kN/0.94=23.0kN (Notice that the factor 𝜆𝜆𝑠𝑠 is not used in Vc when shear reinforcement is 
used). The old equation of Vc can be used.  

𝑉𝑉𝑐𝑐 =
23.0
0.75

= 30.67𝑘𝑘𝑘𝑘 

𝑉𝑉𝑠𝑠 =
𝑉𝑉𝑢𝑢
∅
− 𝑉𝑉𝑐𝑐 =

25.9
0.75

− 30.67 = 3.86𝑘𝑘𝑘𝑘 

𝐴𝐴𝑣𝑣
𝑠𝑠

=
𝑉𝑉𝑠𝑠
𝑓𝑓𝑦𝑦𝑦𝑦𝑑𝑑

=
3.86(1000)
(420)(310)

= 0.03𝑚𝑚𝑚𝑚2/𝑚𝑚𝑚𝑚 
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�
𝐴𝐴𝑣𝑣
𝑠𝑠 �𝑚𝑚𝑚𝑚𝑚𝑚

= max 𝐹𝐹𝑓𝑓

⎣
⎢
⎢
⎢
⎡0.062�𝑓𝑓′𝑐𝑐

𝑏𝑏𝑤𝑤
𝑓𝑓𝑦𝑦𝑦𝑦

0.35
𝑏𝑏𝑤𝑤
𝑓𝑓𝑦𝑦𝑦𝑦 ⎦

⎥
⎥
⎥
⎤

=
0.125𝑚𝑚𝑚𝑚2

𝑚𝑚𝑚𝑚
  > 0.03𝑚𝑚𝑚𝑚2/𝑚𝑚𝑚𝑚 

𝐴𝐴𝑠𝑠 𝑎𝑎 𝑚𝑚𝑒𝑒𝑎𝑎𝑒𝑒𝑚𝑚𝑢𝑢𝑚𝑚 𝑡𝑡𝑎𝑎𝑐𝑐𝑢𝑢𝑢𝑢,𝑢𝑢𝑠𝑠𝑢𝑢 1∅8/150𝑚𝑚𝑚𝑚 (𝐴𝐴𝑣𝑣
𝑠𝑠

= 2(50)
150

= 0.67𝑚𝑚𝑚𝑚2/𝑚𝑚𝑚𝑚  > 0.125𝑚𝑚𝑚𝑚2/𝑚𝑚𝑚𝑚 
at ends of each rib for one quarter of clear span.    

Note: For shear at exterior support, Vu=24.8kN, Vu at distance d from face of support is 
22.2kN which is less than 𝜙𝜙𝑉𝑉𝑐𝑐 = 17.4𝑘𝑘𝑘𝑘, so shear reinforcement is required, same as it is at 
the interior support.  

Design slab for flexure:  

The cross section of slab is T- section. For positive moment, Mu= 20.9kN.m: Assume a < hf= 
60mm, then  apply formula of ρ with b= 550mm. 

→ ρ = 0.00106     → As= 0.00106 x 550 x 310 = 181mm2   (2Φ12) 

𝑎𝑎 =
𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦

0.85𝑓𝑓′𝑐𝑐𝑏𝑏
=

(181)(420)
(0.85)(24)(550)

= 7𝑚𝑚𝑚𝑚 < 60𝑚𝑚𝑚𝑚          𝐹𝐹𝑘𝑘. 

A s, min= 0.00333(150)(310)= 155mm2 < 181mm2 ok.  

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 0.375𝛽𝛽1𝑑𝑑 = (0.375)(0.85)(310) = 99𝑚𝑚𝑚𝑚
> 7𝑚𝑚𝑚𝑚: 𝑆𝑆𝑢𝑢𝑐𝑐𝑒𝑒𝑒𝑒𝐹𝐹𝑎𝑎 𝑒𝑒𝑠𝑠 𝑠𝑠𝑒𝑒𝑎𝑎𝑠𝑠𝑐𝑐𝑠𝑠 𝐹𝐹𝑢𝑢𝑒𝑒𝑎𝑎𝑓𝑓𝐹𝐹𝐹𝐹𝑐𝑐𝑢𝑢𝑑𝑑.  

Slab shrinkage steel:  

𝐴𝐴𝑠𝑠 = 0.0018𝑏𝑏ℎ = 0.0018(1000)(60) = 108𝑚𝑚𝑚𝑚2.  

𝑆𝑆𝑠𝑠𝑎𝑎𝑐𝑐𝑒𝑒𝑎𝑎𝑠𝑠 𝑏𝑏𝑢𝑢𝑒𝑒𝑤𝑤𝑢𝑢𝑢𝑢𝑎𝑎 𝑏𝑏𝑎𝑎𝐹𝐹𝑠𝑠, 𝑠𝑠 =
1000
108
50

= 463𝑚𝑚𝑚𝑚 

𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 = min(5ℎ, 450𝑚𝑚𝑚𝑚) = 300𝑚𝑚𝑚𝑚.𝑈𝑈𝑠𝑠𝑢𝑢 ∅8/300𝑚𝑚𝑚𝑚 each way (E.W.). 

Step 5: Analysis and design of beams: 

For analysis, assume that: 

Width of B1 and B2 is 600mm             Width of B3 is 400mm 

Wu1= 0.60(0.36)(25)(1.2)+(6.5/2)(15.3)+(21)(1.2)= 81.4kN/m 

Wu2= (0.60)(0.36)(25)(1.2)+(6.5)(15.3)= 106kN/m. More accurate solution:  Wu2= 
(0.60)(0.36)(25)(1.2)+(6.5)(15.3)(1.15)= 120.8kN/m 
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Wu3= (0.40)(0.36)(25)(1.4)+(21)(1.4)= 34.4kN/m 

 

Figure 7.29:  Structural model of beam B1 

 

Figure 7.30:  Structural model of beam B2 

 

Figure 7.31:  Structural model of beam B3 

 

7.3 Beam and girder system – one-way slab (solid, ribbed) 

7.3.1 Basic principles: 

Beam and girder system can be used to decrease the span of slabs to minimize slab thickness. 

7.3.2 Example: 

Given:  

Concrete compressive strength, f’c=32MPa 

Steel yield strength, fy= 420MPa 

Superimposed dead load, WSD=3kN/m2 

Live load, WL=5kN/m2 
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Perimeter wall weight= 2kN/m2 

Floor height= 4m 

No. of floors= 4 

All columns are 800mm x 800mm  

Determine slab thickness. Draw the structural model of the solid slab and beams 

 

Figure 7.32: Slab layout, example 7.3.2 

Solution: 

 Step 1: Slab system: 

-  One-way solid slab in y-direction 
-  Main beams are distributed in x- direction 

-             Girders are distributed in y-direction  
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Step 2: Slab thickness: 

4.5/24= 0.19m 

Try h= 200mm 

 

Step 3: Loads: 

WD= (0.2)(25)=5kN/m2 

Wu= 1.2(5+3)+1.6(5)=17.6kN/m2 

Wall weight= 2x4=8kN/m 

 

Figure 7.33: Beams layout, example 7.3.2 

Step 4: Slab and beams structural models: 

Beam depth, h ≥ L/18.5= 9/18.5= 0.50m     
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or    h ≥ L/21= 11/21= 0.52m  

Try h= 750mm, bw= 500mm for beams B1, B2 and B3. 

Try h= 900mm, bw= 500mm for girders G1 and G2.  

Interior beams are T- sections and exterior beams are L- sections. 

 

Figure 7.34: Structural model of slab 

 

Figure 7.35: Structural model of beam B1 

 

 

Figure 7.36: Structure model of beam B2 

 

 

Figure 7.37: Structural model of beam B3 
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Figure 7.38: Structural model of beam (Girder) G1 

 

Figure 7.39: Structural model of beam (Girder) G2 

 

Load calculations: 

𝑤𝑤𝑢𝑢1= 17.6(4.5/2)+0.50(0.75-0.20)(25)(1.2)+8(1.2)= 57.5kN/m 

𝑤𝑤𝑢𝑢2= 17.6(4.5)+0.50(0.75-0.20)(25)(1.2)= 87.5kN/m (Notice that, the factor 1.15 is not used 
as approximation) 

𝑤𝑤𝑢𝑢3= Wu2 

𝑅𝑅1= (9/2)(87.5)= 394kN 

𝑅𝑅2= (9/2 + 11/2)(87.5)= 875kN 

 

Notes: 

The previous calculations and models are applicable for very rigid beams and girders or for 
very thin slabs. When the slab-stiffness ratio is taken into account, the beam loads will differ.  

The following points shall be considered in the design: 

1. Torsion on beams and girders. 
2. Stiffness of beams affects the internal forces in the slabs. 
3. Slab strips at column lines and between column lines. 
4. The supports of beams which are the girders act like springs. 
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Chapter 8: Two- Way Slab Systems 

 

In two-way slab systems, the load is assumed to be transferred in two directions. Generally, 
two-way slabs are used to decrease the slab thickness for large spans. Also, the slab forms 
the diaphragm that transmits the horizontal loads to the vertical elements of the lateral forces 
resisting system, so, its strength is very important.  

8.1  Types of two-way slabs: 

1. Flat plate: 

- It has uniform thickness. 
- It is used for light loads; live load is less than 5kN/m2, as in residential and office 

buildings. 
- There are no interior beams between columns. 
- Exterior (perimeter) beams can be used. 
- The punching shear capacity is achieved by slab thickness. Punching shear reinforcement 

can be used. 
- It is economical for spans up to 7.0m 

2. Flat slab: 

- There are no interior beams between columns. 
- Exterior (perimeter) beams can be used. 
- The punching shear capacity is achieved by using drop panels and/ or column capitals. 
- In drop panels: the projection below the slab is at least one-quarter of the adjacent slab 

thickness and the drop panel extends in each direction from centerline of a support a 
distance not less than one-sixth the span length measured from center- to- center of 
supports in that direction. 

- It can be used for live loads more than 5kN/m2. 
- It is economical for spans up to 9.0m 

3. Two-way slab with beams between all columns: 

- There are beams between all supports (columns). 
- They are used for heavy loads. 
- They are economical for spans up to 12m. 

The previous types can be: 

• Solid 
• Voided 
• Waffle 
• Ribbed 
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The following pictures show the different slab systems. 

 

Figure 8.1: Flat plate 

 

Figure 8.2: Flat slab 

 

 

Figure 8.3: Two-way slab with beams 
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Figure 8.4: Waffle slab-1 

 

 

Figure 8.5: Waffle slab-2 

 

 

Figure 8.6: Voided slab – U Boot-1 
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Figure 8.7: Voided slab - Cobiax -1 

 

 

Figure 8.8: Voided slab - Cobiax -2 

 

Figure 8.9: Forms of waffle slab 
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8.2  Design methods: 

There are different ways and methods for two-way slabs analysis and design. Two procedures 
for analysis and design of two-way floor systems are presented in detail in ACI code. These 
are: 

1. Direct design method: 

The calculation of moments is based on the total statical moment, Mo. This moment is divided 
between positive and negative moment in a span. These moments are further divided 
between middle and column strips. 

2. Equivalent frame method: 

The slab is divided into series of two-dimensional frames in each direction, and the positive 
and negative moments are computed by an elastic frame analysis. Then, these moments are 
divided between middle and column strips 

Computer programs are available that are based on finite element method and equivalent 
frame method. So, the slab system is analyzed as three-dimensional structure (space frame). 

8.3  Beam to slab flexural stiffness ratio, 𝜶𝜶𝒇𝒇: 

It is the flexural stiffness, 
4𝐸𝐸𝐸𝐸
𝐿𝐿

 , of the beam divided by the flexural stiffness of a width of slab 
bounded laterally by the center lines of the adjacent panels on each side of the beam:  

∝𝑓𝑓=
4𝐸𝐸𝑐𝑐𝑐𝑐𝐼𝐼𝑐𝑐/𝐿𝐿
4𝐸𝐸𝑐𝑐𝑐𝑐𝐼𝐼𝑐𝑐/𝐿𝐿

 

Since, Ecb = Ecs and L of the beam is the same for the slab, so 

∝𝑓𝑓=
𝐼𝐼𝑐𝑐
𝐼𝐼𝑐𝑐
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Figure 8.10: Beam and slab sections for calculations of ∝𝑓𝑓 

 

Figure 8.11: Cross section of beams in two-way slab systems 
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8.4  Minimum thickness of slabs: 

ACI 318-19 defines minimum thicknesses that generally are sufficient to limit slab deflections 
to acceptable values. Thinner slabs can be used if it can be shown that the computed slab 
deflections will not be excessive. 

The slab minimum thickness for two-way slabs can be summarized as follows: 

1. For slabs without beams between interior columns and for slabs with beams and 
∝𝑓𝑓𝑓𝑓≤ 0.2, the slab minimum thickness can be determined using Table 8.1 (18.3.1.1 
ACI 318-19).  

The slab thickness shall be not less than 125mm in slabs without drop panels or 
100mm in slabs with drop panels having dimensions defined in ACI code. 

The edge beam defined in ACI 318-19 Table 8.3.1.1 has a value of ∝𝑓𝑓 not less than 0.8. 
In general, a beam with height of at least 2h and of gross area 4h2 shall have ∝𝑓𝑓≥ 0.8, 
h is the thickness of the slab. 

As a recommendation, one shall use a slab thickness at least 10% thicker than the ACI 
code minimum values to avoid excessive deflections. 
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Table 8.1: Minimum thickness of two-way slabs without interior beams 

 

2. For slabs of beams with: 

0.2 < 𝛼𝛼𝑓𝑓𝑓𝑓 < 2 

The slab thickness is given by: 

ℎ =
𝐿𝐿𝑛𝑛 �0.8 +

𝑓𝑓𝑦𝑦
1400�

36 + 5𝛽𝛽(𝛼𝛼𝑓𝑓𝑓𝑓 − 0.2)
≥ 125𝑚𝑚𝑚𝑚 

3. For slabs of beams with: 

𝛼𝛼𝑓𝑓𝑓𝑓 ≥ 2 

The slab thickness is given by: 

ℎ =
𝐿𝐿𝑛𝑛 �0.8 +

𝑓𝑓𝑦𝑦
1400�

36 + 9𝛽𝛽
≥ 90𝑚𝑚𝑚𝑚 

 

 

 

Table 8.3.1.1—Minimum thickness of nonprestressed two-way slabs without interior beams 
(mm)[1] 

 
fy, MPa[2] 

Without drop panels [3] With drop panels [3] 

Exterior panels  
Interior 
panels 

Exterior panels  
Interior 
panels Without 

edge 
beams 

With 
edge 

beams[4] 

Without edge 
beams 

With edge 
beams[4] 

280 Ln/33 Ln/36 Ln/36 Ln/ 36 Ln/40 Ln/40 

420 Ln/30 Ln/33 Ln/33 Ln/33 Ln/36 Ln/36 

560 Ln/27 Ln/30 Ln/30 Ln/30 Ln/33 Ln/33 

[1]ln is the clear span in the long direction, measured face-to-face of supports (mm). 
[2]For fy between the values given in the table, minimum thickness shall be calculated by linear 
interpolation. 
[3]Drop panels as given in 8.2.4. 
[4]Slabs with beams between columns along exterior edges. Exterior panels shall be considered to be  
without edge beams if 𝛼𝛼𝑓𝑓 is less than 0.8. 
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Where: 

h: thickness of slab 

𝐿𝐿𝑛𝑛: Clear span of the slab panel under consideration, measured in the longer direction 

𝛼𝛼𝑓𝑓𝑓𝑓: The average of the values of 𝛼𝛼𝑓𝑓 for the four sides of the panel 

𝛽𝛽: Longer clear span divided by shorter clear span of the panel 

Table 8.2: ACI 318-19 Table 8.3.1.2—Minimum thickness of nonprestressed two-way slabs 
with beams spanning between supports on all sides 

𝜶𝜶𝒇𝒇𝒇𝒇[𝟏𝟏] Minimum h, mm  
𝛼𝛼𝑓𝑓𝑓𝑓  ≤  0.2 8.3.1.1 applies (a) 

 
0.2 <  𝛼𝛼𝑓𝑓𝑓𝑓  ≤  2.0 

 
Greater of: 𝐿𝐿𝑛𝑛 �0.8 +

𝑓𝑓𝑦𝑦
1400�

36 + 5𝛽𝛽(𝛼𝛼𝑓𝑓𝑓𝑓 − 0.2)
 

 
(b)[1],[2] 

125 (c) 

 
𝛼𝛼𝑓𝑓𝑓𝑓  >  2.0 

 
Greater of: 𝐿𝐿𝑛𝑛 �0.8 +

𝑓𝑓𝑦𝑦
1400�

36 + 9𝛽𝛽
 

 
(d) 

90 (e) 

[1]𝛼𝛼𝑓𝑓𝑓𝑓 is the average value of 𝛼𝛼𝑓𝑓 for all beams on edges of a panel. 

[2]Ln is the clear span in the long direction, measured face-to-face of beams (in.). 

[3]𝛽𝛽 is the ratio of clear spans in long to short directions of slab. 

8.5  Direct design method limitations: 

1. There shall be a minimum of three continuous spans in each direction 
2. Panels shall be rectangular, with a ratio of longer to shorter span center to center of 

supports within a panel less than 2.0 
3. Successive span lengths center to center of supports in each direction shall not differ 

by more than one-third the longer span 
4. Offset of columns by a maximum of 10% of the span in the direction of offset from 

either axis between centerlines of successive columns shall be permitted 
5. All loads shall be due to gravity only and uniformly distributed over an entire panel.  
6. The unfactored live load shall not exceed two times the unfactored dead load, 

𝑊𝑊𝐿𝐿/𝑊𝑊𝐷𝐷 ≤ 2.  
7. For a panel with beams between supports on all sides, the following equation shall be 

satisfied for beams in the two perpendicular directions: 
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0.2 ≤
𝛼𝛼𝑓𝑓1𝑙𝑙2

2

𝛼𝛼𝑓𝑓2𝑙𝑙1
2 ≤ 5 

Where 𝛼𝛼𝑓𝑓1𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼𝑓𝑓2 are calculated as follows: 

𝛼𝛼𝑓𝑓1 = 𝛼𝛼𝑓𝑓𝑓𝑓 + 𝛼𝛼𝑓𝑓𝑓𝑓                      𝛼𝛼𝑓𝑓2 = 𝛼𝛼𝑓𝑓𝑓𝑓 + 𝛼𝛼𝑓𝑓𝐷𝐷 

𝛼𝛼𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼𝑓𝑓𝑓𝑓are 𝛼𝛼𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑒𝑒𝑎𝑎𝑚𝑚𝑏𝑏 𝑖𝑖𝑎𝑎 𝑎𝑎𝑖𝑖𝑓𝑓𝑒𝑒𝑑𝑑𝑡𝑡𝑖𝑖𝑓𝑓𝑎𝑎 1 

𝛼𝛼𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼𝑓𝑓𝐷𝐷are 𝛼𝛼𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑒𝑒𝑎𝑎𝑚𝑚𝑏𝑏 𝑖𝑖𝑎𝑎 𝑎𝑎𝑖𝑖𝑓𝑓𝑒𝑒𝑑𝑑𝑡𝑡𝑖𝑖𝑓𝑓𝑎𝑎 2 

L1 and L2 are spans of the panel in directions 1 and 2 respectively. 

 

 

Figure 8.12: Panel with beams between all supports 

 

8.6  Definition of column and middle strips: 

The moments vary continuously across the width of the slab panel. To aid in steel placement, 
the design moments are averaged over the width of column strips over the columns and 
middle strips between the column strips. 

The column strips in both directions extend one fourth of the smaller panel, Lmin, each way 
from the column centerline. 
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Figure 8.13: Definitions of column and middle strips 

8.7  Steps of the direct design method: 

The following steps are done to each frame in the slab system. 

1. Calculate the total statical moment, Mo for each span. Mo is given by: 

𝑀𝑀𝑜𝑜 =
𝑞𝑞𝑢𝑢𝑙𝑙2𝑙𝑙𝑛𝑛

2

8
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Where Ln is the length of the clear span that the moments are being determined. Clear span 
Ln shall extend from face to face of columns, capitals, brackets, or walls. The value of Ln shall 
not be less than 0.65 L1. L1 is the length of the span center to center of supports (columns). 

L2 is the frame width and qu is the uniform load on the slab. 

Circular or regular polygon-shaped supports shall be treated as square supports with the 
same area. 

2. Determine the negative and positive factored moments in the span. 

Negative factored moments shall be located at face of rectangular supports. Circular or 
regular polygon-shaped supports shall be treated as square supports with the same area. 

In an interior span, total statical moment, Mo, shall be distributed as follows: 

- Negative factored moment= 0.65 Mo 
- Positive factored moment= 0.35 Mo 

In an end span, total statical moment, Mo, shall be distributed as shown in Table below 
(ACI 318-14). The direct design and the equivalent frame methods are deleted from ACI 
318-19.  

Table 8.3: ACI 318-14 Table 8.10.4.2—Distribution coefficients for end spans 

 Exterior edge 
unrestrained 

Slab with 
beams 

between all 
supports 

Slab without beams between 
interior supports 

Exterior 
edge fully 
restrained Without edge 

beam 
With edge 

beam 

Interior 
negative 

0.75 0.70 0.70 0.70 0.65 

Positive 0.63 0.57 0.52 0.50 0.35 
Exterior 
negative 

0 0.16 0.26 0.30 0.65 

Edge of beams or edges of slab shall be proportioned to resist in torsion their share 
of exterior negative factored moments. 

The gravity load moment to be transferred between slab and edge column shall be 
0.3Mo in slabs without beams. This moment shall be used in shear- moment transfer 
at exterior column. 

3. Determine factored moments in column strip. 

See Tables below from ACI 318-14. 
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Table 8.4: ACI 318-14 Table 8.10.5.1—Portion of interior negative Mu in column strip 

𝛂𝛂𝐟𝐟 𝐋𝐋𝐋𝐋/𝐋𝐋𝟏𝟏 L2/L1 

0.5 1.0 2.0 

0 0.75 0.75 0.75 

≥1.0 0.90 0.75 0.45 

Note: Linear interpolations shall be made between values shown. 

 

Table 8.5: ACI 318-14 Table 8.10.5.2—Portion of exterior negative Mu in column strip 

𝛂𝛂𝐟𝐟 𝐋𝐋𝐋𝐋/𝐋𝐋𝟏𝟏  
βt 

L2/L1 

0.5 1.0 2.0 

0 0 1.0 1.0 1.0 

≥2.5 0.75 0.75 0.75 

≥1.0 0 1.0 1.0 1.0 

≥2.5 0.90 0.75 0.45 

Note: Linear interpolations shall be made between values shown. βt is calculated using 

Eq. (8.10.5.2a), where C is calculated using Eq. (8.10.5.2b). 

βt =
Torsional stiffness of transverse beam

Flexural stiffness of slab
=

GC
EI

=
�E

2�C
EI

=
EbC

2EsIs
 

𝐺𝐺 =
𝐸𝐸

2(1 + 𝜈𝜈)               𝑙𝑙𝑒𝑒𝑡𝑡 𝜈𝜈 = 0.0                    𝐺𝐺 =
𝐸𝐸
2

 

C = ��1 − 0.63
x
y�

x3y
3

 

 

               Table 8.6:  ACI 318-14 Table 8.10.5.5—Portion of positive Mu in column strip 

𝜶𝜶𝒇𝒇 𝑳𝑳𝐋𝐋/𝑳𝑳𝟏𝟏 L2/L1 
0.5 1.0 2.0 

0 0.60 0.60 0.60 
≥1.0 0.90 0.75 0.45 

                            Note: Linear interpolations shall be made between values shown. 
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4. Determine the factored moments in beams: 

The moments in beams shall be based on Table 8.7 (ACI 318-14 Table 8.10.5.7.1). 

 

     Table 8.7: ACI 318-14 Table 8.10.5.7.1—Portion of column strip Mu in beams 

𝜶𝜶𝒇𝒇𝑳𝑳𝐋𝐋/𝑳𝑳𝟏𝟏 Distribution Coefficient 

0.0 0.0 
≥ 1.0 0.85 

Note: Linear interpolation shall be made between values shown. 

 

The beam also shall carry any direct load on it. 

The rest of the moments shall be resisted by the slab in the column strip. 

5. Determine the factored moments in the middle strip. 

That portion of negative and positive factored moments of the frame not resisted by the 
column strips shall be proportionately assigned to corresponding half middle strips 

Each middle strip shall be proportioned to resist the sum of the moments assigned to its two 
half middle strips. 

A middle strip adjacent to and parallel with a wall-supported edge shall be assigned to half 
middle strip corresponding to the first row of interior supports. 

8.8  Factored shear in slab systems with beams: 

Beams between supports shall resist the portion of shear in accordance with ACI 318-14 Table 
8.10.8.1 caused by factored loads on tributary areas in accordance with Figure 2.12 below. 

 

                     Table 8.8: ACI 318-14 Table 8.10.8.1—Portion of shear resisted by beam 

𝜶𝜶𝒇𝒇𝑳𝑳𝐋𝐋/𝑳𝑳𝟏𝟏 Distribution coefficient 

0 0 
≥1.0 1.0 

Note: Linear interpolation shall be made between values shown. 
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Figure 8.14: Tributary area for shear on an interior beam. 

In addition to shears calculated according to 45 degrees principle, beams shall resist shears 
caused by factored loads applied directly to the beams, including the weight of the beam stem 
above and below the slab.  

8.9  Factored moments in columns and walls: 

Columns and walls built integrally with slab system shall resist moments caused by factored 
loads on the slab system. 

At interior support, supporting elements above and below the slab shall resist the factored 
moment specified by the following equation (ACI 318-14 equation 8.10.7.2) in direct 
proportion to their stiffnesses unless a general analysis is made. 

𝑀𝑀𝑐𝑐𝑐𝑐 = 0.07�(𝑞𝑞𝐷𝐷𝑢𝑢 + 0.5𝑞𝑞𝐿𝐿𝑢𝑢)𝑙𝑙2𝑙𝑙𝑛𝑛
2 − 𝑞𝑞𝐷𝐷𝑢𝑢′𝑙𝑙2

′(𝑙𝑙𝑛𝑛
′)2� 

where qDu′, L2′, and Ln′ refer to the shorter span. 

8.10 Notes on slab reinforcement: 

- For nonprestressed solid slabs, maximum spacing, s, of deformed longitudinal 
reinforcement shall be the lesser of 2h and 450 mm at critical sections. 

- Minimum steel is 𝐴𝐴𝑐𝑐,𝑓𝑓𝑚𝑚𝑛𝑛 = 0.0018𝐴𝐴𝑔𝑔 

Corner reinforcement: 

At exterior corners of slabs supported by edge walls or where one or more edge beams have 
a value of 𝛼𝛼𝑓𝑓 greater than 1.0, reinforcement at top and bottom of slab shall be designed to 
resist Mu per unit width due to corner effects equal to the maximum positive Mu per unit 
width in the slab panel.  
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Factored moment due to corner effects, Mu, shall be assumed to be about an axis 
perpendicular to the diagonal from the corner in the top of the slab and about an axis parallel 
to the diagonal from the corner in the bottom of the slab. 

Reinforcement shall be provided for a distance in each direction from the corner equal to one-
fifth the longer span. 

Reinforcement shall be placed parallel to the diagonal in the top of the slab and perpendicular 
to the diagonal in the bottom of the slab. Alternatively, reinforcement shall be placed in two 
layers parallel to the sides of the slab in both the top and bottom of the slab. 

 

 

Figure 8.15: Corner reinforcement 
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Flexural reinforcement: 

The reinforcement of two-way slab without beams is shown in Figure 8.16 ACI 318-19 Figure 
8.7.4.1.3. 

 

 

Figure 8.16: Minimum extensions for deformed bars in two-way slabs without beams 

Structural integrity: 

1. All bottom deformed bars within the column strip, in each direction, shall be continuous 
or spliced with full mechanical, full welded, or Class B tension splices at or near the 
supports. 

2. At least two of the column strip bottom bars or wires in each direction shall pass within 
the region bounded by the longitudinal reinforcement of the column and shall be 
anchored at exterior supports.  
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8.11 Shear – Moment transfer: 

The punching shear stress resistance of the slab is given by: 

𝑣𝑣𝑐𝑐 ≤ 0.33𝜆𝜆𝑐𝑐𝜆𝜆�𝑓𝑓′𝑐𝑐 

𝑣𝑣𝑐𝑐 ≤ 0.17𝜆𝜆𝑐𝑐𝜆𝜆 �1 +
2
𝛽𝛽��

𝑓𝑓′𝑐𝑐 

𝑣𝑣𝑐𝑐 ≤ 0.083𝜆𝜆𝑐𝑐𝜆𝜆 �2 +
𝛼𝛼𝑐𝑐𝑎𝑎
𝑏𝑏𝑜𝑜

��𝑓𝑓′𝑐𝑐 

Where: 

𝑏𝑏𝑜𝑜: The perimeter length of the critical zone 

𝛽𝛽:𝑅𝑅𝑎𝑎𝑡𝑡𝑖𝑖𝑓𝑓 𝑓𝑓𝑓𝑓 
𝑙𝑙𝑓𝑓𝑎𝑎𝑙𝑙 𝑏𝑏𝑖𝑖𝑎𝑎𝑒𝑒
𝑏𝑏ℎ𝑓𝑓𝑓𝑓𝑡𝑡 𝑏𝑏𝑖𝑖𝑎𝑎𝑒𝑒

 𝑓𝑓𝑓𝑓 𝑑𝑑𝑓𝑓𝑙𝑙𝑐𝑐𝑚𝑚𝑎𝑎 

𝛼𝛼𝑐𝑐: Factor describes the location of the column 

𝛼𝛼𝑐𝑐 = 40         𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑎𝑎𝑡𝑡𝑒𝑒𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓 𝑑𝑑𝑓𝑓𝑙𝑙𝑐𝑐𝑚𝑚𝑎𝑎 

𝛼𝛼𝑐𝑐 = 30         𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑎𝑎𝑙𝑙𝑒𝑒 𝑑𝑑𝑓𝑓𝑙𝑙𝑐𝑐𝑚𝑚𝑎𝑎 

𝛼𝛼𝑐𝑐 = 20         𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑓𝑓𝑓𝑓𝑎𝑎𝑒𝑒𝑓𝑓 𝑑𝑑𝑓𝑓𝑙𝑙𝑐𝑐𝑚𝑚𝑎𝑎 

𝜆𝜆𝑐𝑐:𝐹𝐹𝑎𝑎𝑑𝑑𝑡𝑡𝑓𝑓𝑓𝑓 𝑐𝑐𝑏𝑏𝑒𝑒𝑎𝑎 𝑡𝑡𝑓𝑓 𝑚𝑚𝑓𝑓𝑎𝑎𝑖𝑖𝑓𝑓𝑚𝑚 𝑏𝑏ℎ𝑒𝑒𝑎𝑎𝑓𝑓 𝑏𝑏𝑡𝑡𝑓𝑓𝑒𝑒𝑎𝑎𝑙𝑙𝑡𝑡ℎ 𝑏𝑏𝑎𝑎𝑏𝑏𝑒𝑒𝑎𝑎 𝑓𝑓𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑓𝑓𝑓𝑓𝑒𝑒𝑑𝑑𝑡𝑡𝑏𝑏 𝑓𝑓𝑓𝑓 𝑚𝑚𝑒𝑒𝑚𝑚𝑏𝑏𝑒𝑒𝑓𝑓 𝑎𝑎𝑒𝑒𝑑𝑑𝑡𝑡ℎ,  

𝑑𝑑𝑓𝑓𝑚𝑚𝑚𝑚𝑓𝑓𝑎𝑎𝑙𝑙𝑚𝑚 𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑓𝑓𝑓𝑓𝑒𝑒𝑎𝑎 𝑡𝑡𝑓𝑓 𝑎𝑎𝑏𝑏 𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑖𝑖𝑠𝑠𝑒𝑒 𝑒𝑒𝑓𝑓𝑓𝑓𝑒𝑒𝑑𝑑𝑡𝑡 𝑓𝑓𝑎𝑎𝑑𝑑𝑡𝑡𝑓𝑓𝑓𝑓. 

𝜆𝜆𝑐𝑐 = � 2
1 + 0.004 𝑎𝑎

≤ 1.0 

For 𝑎𝑎 ≤ 250𝑚𝑚𝑚𝑚, 𝜆𝜆𝑐𝑐 = 1.0 

𝜆𝜆𝑐𝑐 𝑑𝑑𝑎𝑎𝑎𝑎 𝑏𝑏𝑒𝑒 𝑡𝑡𝑎𝑎𝑡𝑡𝑒𝑒𝑎𝑎 𝑒𝑒𝑞𝑞𝑐𝑐𝑎𝑎𝑙𝑙 𝑡𝑡𝑓𝑓 1.0 𝑖𝑖𝑓𝑓 𝑎𝑎 𝑓𝑓𝑓𝑓 𝑏𝑏 𝑖𝑖𝑏𝑏 𝑎𝑎𝑑𝑑𝑑𝑑𝑙𝑙𝑖𝑖𝑒𝑒𝑎𝑎: 

𝑎𝑎:       
𝐴𝐴𝑣𝑣
𝑆𝑆
≥ 0.17�𝑓𝑓′𝑐𝑐

𝑏𝑏𝑜𝑜
𝑓𝑓𝑦𝑦𝑦𝑦

 

𝑏𝑏:       𝑣𝑣𝑢𝑢 ≤ ∅0.5�𝑓𝑓′𝑐𝑐 

𝑣𝑣𝑐𝑐 for two-way shear with shear reinforcement (closed stirrups) is given by: 
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𝑣𝑣𝑐𝑐 ≤ 0.17𝜆𝜆𝑐𝑐𝜆𝜆�𝑓𝑓′𝑐𝑐 

For shear capacity: 

∅𝑉𝑉𝑛𝑛 ≥ 𝑉𝑉𝑢𝑢 

∅𝑉𝑉𝑛𝑛 = ∅(𝑉𝑉𝑐𝑐 + 𝑉𝑉𝑐𝑐) 

Where: 

𝑉𝑉𝑐𝑐= shear resistance attributed to the concrete 

𝑉𝑉𝑐𝑐= shear resistance attributed to the steel reinforcement 

𝑉𝑉𝑢𝑢= factored or ultimate shear force due to the applied loads 

𝑉𝑉𝑛𝑛= nominal shear resistance of the slab 

Two-way shear is assumed to be critical on a vertical section through the slab extending 
around the column. According to ACI code, this section is chosen so that it is never less than 
d/2 from the face of column so that its length bo, is a minimum. 

For two-way members with shear reinforcement, effective depth shall be selected such that 
𝑣𝑣𝑢𝑢 calculated at critical sections does not exceed the values in ACI 318-19 Table 22.6.6.3. 

Table 8.8: Table 22.6.6.3—Maximum vu for two-way members with shear 
reinforcement 

Type of shear 
reinforcement 

Maximum vu at critical sections 
defined in 22.6.4.1 

 

Stirrups ∅0.50�𝑓𝑓′𝑑𝑑 (a) 

Headed shear stud 
reinforcement 

∅0.667�𝑓𝑓′𝑑𝑑 (b) 

Single- or multiple-leg stirrups fabricated from bars or wires shall be permitted to be used as 
shear reinforcement in slabs and footings satisfying (a) and (b): 

(a) d is at least 150mm. 

(b) d is at least 16db, where db is the diameter of the stirrups  

For two-way members with stirrups, vs shall be calculated by: 

𝑣𝑣𝑐𝑐 =
𝐴𝐴𝑣𝑣𝑓𝑓𝑦𝑦𝑦𝑦
𝑏𝑏𝑜𝑜𝑏𝑏

→
𝐴𝐴𝑣𝑣
𝑏𝑏

=
𝑣𝑣𝑐𝑐𝑏𝑏𝑜𝑜
𝑓𝑓𝑦𝑦𝑦𝑦
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where Av is the sum of the area of all legs of reinforcement on one peripheral line that is 
geometrically similar to the perimeter of the column section, and s is the spacing of the 
peripheral lines of shear reinforcement in the direction perpendicular to the column face. 

If 𝑣𝑣𝑢𝑢𝑣𝑣 > ∅ 0.17 𝜆𝜆𝑐𝑐𝜆𝜆�𝑓𝑓′𝑐𝑐  on the critical section for two-way shear surrounding a column, 
concentrated load, or reaction area, As,min, provided over the width 𝑏𝑏𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐, shall satisfy the 
following equation: 

𝐴𝐴𝑐𝑐,𝑓𝑓𝑚𝑚𝑛𝑛 =
5𝑣𝑣𝑢𝑢𝑣𝑣𝑏𝑏𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝑏𝑏𝑜𝑜
𝜙𝜙𝛼𝛼𝑐𝑐𝑓𝑓𝑦𝑦

 

bslab = 1.5h + 1.5h + column width for interior column 

bslab = 1.5h + column width for edge and corner column 

Where h is the thickness of the slab or the thickness of the drop panel if exists.  

For slab with openings, refer to ACI 318-19 section 8.5.4. 

“Tests on interior column-to-slab connections with lightly reinforced slabs with and without 
shear reinforcement have shown that yielding of the slab flexural tension reinforcement in 
the vicinity of the column or loaded area leads to increased local rotations and opening of any 
inclined crack existing within the slab. In such cases, sliding along the inclined crack can cause 
a flexure-driven punching failure at a shear force less than the strength calculated by the two-
way shear equations of Table 22.6.5.2 for slabs without shear reinforcement and less than 
the strength calculated in accordance with 22.6.6.3 for slabs with shear reinforcement. 
 
Tests of slabs with flexural reinforcement less than As,min have shown that shear 
reinforcement does not increase the punching shear strength. However, shear reinforcement 
may increase plastic rotations prior to the flexure-driven punching failure. 
 
Inclined cracking develops within the depth of the slab at a shear stress of approximately 
0.17𝜆𝜆𝜆𝜆𝑐𝑐�𝑓𝑓𝑐𝑐′ . At higher shear stresses, the possibility of a flexure-driven punching failure 
increases if As,min is not satisfied. As,min was developed for an interior column, such that the 
factored shear force on the critical section for shear equals the shear force associated with 
local yielding at the column faces. 
To derive Eq. (8.6.1.2) the shear force associated with local yielding was taken as 
8𝐴𝐴𝑐𝑐,𝑓𝑓𝑚𝑚𝑛𝑛 𝑓𝑓𝑦𝑦𝑎𝑎/𝑏𝑏𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 for an interior column connection (Hawkins and Ospina 2017) and 
generalized as (α𝑐𝑐/5)A𝑐𝑐,𝑓𝑓𝑚𝑚𝑛𝑛 f𝑦𝑦d/b𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 to account for edge and corner conditions. 𝐴𝐴𝑐𝑐,𝑓𝑓𝑚𝑚𝑛𝑛 also 
needs to be provided at the periphery of drop panels and shear caps.” ACI 318-19 section 
8.6.1.2.  
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Figure 8.17: Slab shear reinforcement- stirrups (ACI 318-14) 
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Figure 8.18: Shear reinforcement at interior column (ACI 318-14) 
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Figure 8.19: Shear reinforcement at edge column (ACI 318-14) 

 

 

Picture 8.1: Punching shear failure 
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Picture 8.1- continued: Punching shear failure 
 
 

Picture 1 shows the punching shear failure in a flat plate slab. On the basis of these 
observations, ACI 352.1 recommends structural integrity reinforcement in the form of 
continuous bottom reinforcement passing through the column core at every slab-column 
connection. The amount of reinforcement is calculated from equilibrium considerations. The 
total load to be resisted at an interior connection is taken equal to 𝑤𝑤𝑢𝑢𝐴𝐴𝑦𝑦, where At is the 
column tributary area. Defining the area of reinforcement along each principal direction as 
As,min, the total available steel area at an interior connection is 4As,min (area As,min enters each 
of four faces of the column). Assuming the catenary effective at an angle of 30° with respect 
to horizontal, the total resistance at yield stress is 2𝐴𝐴𝑐𝑐,𝑓𝑓𝑚𝑚𝑛𝑛𝑓𝑓𝑦𝑦. Equating demand and capacity, 
and using a strength reduction factor of ∅ = 0.9, the design recommendation is to provide 
continuous bottom slab reinforcement passing within the column core in each principal 
direction (These bottom bars shall have at least development length into the slab in all 
directions from face of column) satisfying:  

𝐴𝐴𝑐𝑐,𝑓𝑓𝑚𝑚𝑛𝑛 =
𝑤𝑤𝑢𝑢𝐴𝐴𝑦𝑦
2∅𝑓𝑓𝑦𝑦

 

 
Where As,min is the area of steel that passes in the column core at each face of column 
(4As,min for an interior column).  
 
For an edge column: 

𝐴𝐴𝑐𝑐,𝑓𝑓𝑚𝑚𝑛𝑛 =
𝑤𝑤𝑢𝑢𝐴𝐴𝑦𝑦

1.5∅𝑓𝑓𝑦𝑦
 

 
And for a corner column: 
  

𝐴𝐴𝑐𝑐,𝑓𝑓𝑚𝑚𝑛𝑛 =
𝑤𝑤𝑢𝑢𝐴𝐴𝑦𝑦

1.0∅𝑓𝑓𝑦𝑦
 

 
ACI 318-19 section 8.7.5.6.3.1 states equations for the bottom bars through column core for 
prestressed concrete slabs if tendons are not provided through the column core to achieve 
structural integrity.  
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Figure 8.20: Shear reinforcement at corner column (ACI 318-19) 

 

 

Figure 8.21: Distribution of shear stress for shear-moment transfer (ACI 318-14) 
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Figure 8.22: Value of 𝛽𝛽 for a nonrectangular loaded area (ACI 318-19) 

 

Figure 8.23: Arrangement of minimum reinforcement near the top of a two-way slab (ACI 
318-19) 

The maximum shear stress on the critical section surrounding the column for slab- column 
connections transferring shear and moment is given by: 

𝑣𝑣𝑢𝑢 =
𝑉𝑉𝑢𝑢
𝑏𝑏𝑜𝑜𝑎𝑎

+
𝛾𝛾𝑣𝑣1𝑀𝑀𝑢𝑢1𝑑𝑑1′

𝐽𝐽𝑐𝑐1
+
𝛾𝛾𝑣𝑣2𝑀𝑀𝑢𝑢2𝑑𝑑2′

𝐽𝐽𝑐𝑐2
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Where: 

Vu= the factored shear being transferred from the slab to the column, and it is assumed to 
act through the centroid of the critical section for shear. It equals to column load considering 
loads outside the critical zone for punching. 

Mu= the factored moment being transferred at the connection (unbalanced moment). 

𝑏𝑏𝑜𝑜= the length of the critical shear perimeter. 

𝐽𝐽𝑐𝑐= property of assumed critical section analogous to polar moment of inertia. 

𝑑𝑑′= the measurement from the centroid of the critical shear perimeter to the edge of the 
perimeter where the stress, vu, is being calculated. 

𝛾𝛾𝑣𝑣= the fraction of the moment that is transferred by shear stresses on the critical section and 
is defined as: 

𝛾𝛾𝑣𝑣 = 1 − 𝛾𝛾𝑓𝑓 

𝛾𝛾𝑓𝑓 =
1

1 + 2
3�

𝑏𝑏1
𝑏𝑏2

 

𝛾𝛾𝑓𝑓= the fraction of the moment that is transferred by direct flexure. Reinforcement already 
designed for flexure in this region can be used to satisfy all or part of this strength 
requirement. 

𝑏𝑏1= the total width of the critical section in direction of frame, or perpendicular to the axis 
about which the moment acts. 

𝑏𝑏2= the total width of the critical section perpendicular to the frame direction. 

The value of 𝛾𝛾𝑓𝑓𝑀𝑀𝑢𝑢 shall be resisted by the slab at a section of width equal to the column side 
length c2 + 1.5 h at each side for a column in an interior frame or to a section width of c2 + 
1.5h at one side for column in an exterior frame. 

For interior column: 

The centroid of the critical section is located at the center of the columns and at the center 
distances of b1 and b2. Jc is given by: 

𝐽𝐽𝑐𝑐 = 2�
𝑏𝑏1

3𝑎𝑎
12

+
𝑏𝑏1𝑎𝑎3

12
+ 𝑏𝑏2𝑎𝑎 �

𝑏𝑏1
2 �

2

� 

𝑏𝑏1 = 𝑑𝑑1 + 𝑎𝑎          𝑏𝑏2 = 𝑑𝑑2 + 𝑎𝑎                     
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For edge column of frame in x- direction or direction 1: 

In direction 1, Jc is given by: 

𝐽𝐽𝑐𝑐1 = 2�
𝑏𝑏1

3𝑎𝑎
12

+
𝑏𝑏1𝑎𝑎3

12
+ 𝑏𝑏1𝑎𝑎 �𝑥𝑥′ −

𝑏𝑏1
2 �

2

� + 𝑏𝑏2𝑎𝑎𝑥𝑥′
2 

𝑏𝑏1 = 𝑑𝑑1 + 𝑎𝑎/2          𝑏𝑏2 = 𝑑𝑑2 + 𝑎𝑎                     

The value x’ which is the distance from the centroid of the critical section to the right edge is 
given by: 

𝑥𝑥′ =
2𝑏𝑏1 �

𝑏𝑏1
2 �

2𝑏𝑏1 + 𝑏𝑏2
 

In direction 2, Jc is given by: 

𝐽𝐽𝑐𝑐2 = �
𝑏𝑏1

3𝑎𝑎
12

+
𝑏𝑏1𝑎𝑎3

12
� + 2𝑏𝑏2𝑎𝑎 �

𝑏𝑏1
2 �

2

 

The unbalanced moment, Mu, in direction 1, can be determined by: 

𝑀𝑀𝑐𝑐1 =  (𝑀𝑀𝑢𝑢𝑓𝑓 −𝑀𝑀𝑢𝑢𝑓𝑓) + (
𝑉𝑉𝑢𝑢𝑓𝑓𝑑𝑑1

2
−
𝑉𝑉𝑢𝑢𝑓𝑓𝑑𝑑1

2
) 

Where: 

MuA= moment at column left face 

MuB= moment at column right face 

VuA= shear at column left face 

VuB= shear at column right face 

C1= length of column side in direction 1 

One can neglect  

(
𝑉𝑉𝑢𝑢𝑓𝑓𝑑𝑑1

2
−
𝑉𝑉𝑢𝑢𝑓𝑓𝑑𝑑1

2
) 
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8.12 Notes on ribbed, waffle and voided slabs: 

1. Slab thickness: The slab thickness is determined based on 𝛼𝛼𝑓𝑓𝑓𝑓. The calculated value is for 
a solid slab. A ribbed, waffle or voided slab can be proposed which has a moment of inertia 
greater than or equals that for solid slab.  

2. Slab self-weight: The slab self-weight shall account for the voids and blocks in the slab. 
3. Slab shear capacity: The shear strength is provided by the width of web in addition to web 

shear reinforcement. It is not recommended (Shear reinforcement shall be used if 
required) to use shear reinforcement in U-Boot and Cobiax voided slab systems. Shear 
reinforcement can be used for large thickness ribbed and waffle slabs. The shear capacity 
of the rib can be increased by 10%. 

4. Slab- beam stiffness, 𝛼𝛼𝑓𝑓: The beam can be considered as rectangle, L-shape or T-shape. 
The moment of inertia of the slab must take the voids into account  

5. Slab flexural design: The U-Boot and Cobiax slabs can be designed for flexure as solid slab 
since the depth of the compression zone is within the flange. The waffle and the ribbed 
slabs are designed as T- sections. The moment of a rib can be determined by: 

𝑀𝑀𝑟𝑟𝑚𝑚𝑐𝑐 =
𝑀𝑀𝑐𝑐𝑦𝑦𝑟𝑟𝑚𝑚𝑠𝑠

𝑏𝑏𝑐𝑐𝑦𝑦𝑟𝑟𝑚𝑚𝑠𝑠
𝑏𝑏𝑓𝑓 

Where: 

𝑀𝑀𝑟𝑟𝑚𝑚𝑐𝑐: bending moment in a strip; column strip or middle strip 

𝑏𝑏𝑐𝑐𝑦𝑦𝑟𝑟𝑚𝑚𝑠𝑠: width of strip; column strip or middle strip 

𝑏𝑏𝑓𝑓: width of flange of the rib 
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Example 1: Two-way solid slab with beams 

 

 

Figure 8.24: Plan for example 1 

 

Given: 

- Concrete, f’c= 24MPa 
- Steel, fy= 420MPa 
- Superimposed dead load, WSD= 4kN/m2  
- Live load, WL= 5kN/m2 
- Perimeter wall weight, WWALL= 21kN/m  
- All columns are 0.50m x 0.50m 
- Column height, h= 3.50m 
- All beams are 400mm width and 600mm thickness 

Determine slab thickness and design frame (strip) 2. 

Solution: 

Slab thickness: 

Assume that 𝛼𝛼𝑓𝑓𝑓𝑓 ≥ 2, so: 

ℎ =
𝑙𝑙𝑛𝑛 �0.8 +

𝑓𝑓𝑦𝑦
1400�

36 + 9𝛽𝛽
=

7.1 �0.8 + 420
1400�

36 + 9(1.273)
= 0.165𝑚𝑚 ≥ 0.09𝑚𝑚    𝑓𝑓𝑡𝑡 
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where: Ln= 7.50-0.40=7.10m 

𝛽𝛽 =
𝑙𝑙𝑓𝑓𝑎𝑎𝑙𝑙 𝑑𝑑𝑙𝑙𝑒𝑒𝑎𝑎𝑓𝑓 𝑏𝑏𝑑𝑑𝑎𝑎𝑎𝑎
𝑏𝑏ℎ𝑓𝑓𝑓𝑓𝑡𝑡 𝑑𝑑𝑙𝑙𝑒𝑒𝑎𝑎𝑓𝑓 𝑏𝑏𝑑𝑑𝑎𝑎𝑎𝑎

=
7.5 − 0.4
6 − 0.4

= 1.27 

Try slab thickness, h= 200mm 

 

Figure 8.25: Exterior and interior beams in the slab 

 

The moments of inertias are calculated for the two sections, they are: 

Edge (Exterior) beam: I= 9.867x10-3m4 

Interior beam: I= 11.573x10-3m4  

The distribution of 𝛼𝛼𝑓𝑓 is shown in Figure 8.26. 

 

Figure 8.26: Distribution of 𝛼𝛼𝑓𝑓for the beams 
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𝛼𝛼𝑓𝑓1 =
𝐼𝐼 − 𝑒𝑒𝑎𝑎𝑙𝑙𝑒𝑒 𝑏𝑏𝑒𝑒𝑎𝑎𝑚𝑚

𝐼𝐼 − 𝑏𝑏𝑙𝑙𝑎𝑎𝑏𝑏 𝑓𝑓𝑓𝑓 3𝑚𝑚 𝑤𝑤𝑖𝑖𝑎𝑎𝑡𝑡ℎ
=

9.867𝑥𝑥10−3

1
12 𝑥𝑥3𝑥𝑥0.23

= 4.93 

𝛼𝛼𝑓𝑓2 =
𝐼𝐼 − 𝑖𝑖𝑎𝑎𝑡𝑡𝑒𝑒𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓 𝑏𝑏𝑒𝑒𝑎𝑎𝑚𝑚

𝐼𝐼 − 𝑏𝑏𝑙𝑙𝑎𝑎𝑏𝑏 𝑓𝑓𝑓𝑓 6𝑚𝑚 𝑤𝑤𝑖𝑖𝑎𝑎𝑡𝑡ℎ
=

11.573𝑥𝑥10−3

1
12 𝑥𝑥6𝑥𝑥0.23

= 2.89 

𝛼𝛼𝑓𝑓3 =
𝐼𝐼 − 𝑒𝑒𝑎𝑎𝑙𝑙𝑒𝑒 𝑏𝑏𝑒𝑒𝑎𝑎𝑚𝑚

𝐼𝐼 − 𝑏𝑏𝑙𝑙𝑎𝑎𝑏𝑏 𝑓𝑓𝑓𝑓 3.75𝑚𝑚 𝑤𝑤𝑖𝑖𝑎𝑎𝑡𝑡ℎ
=

9.867𝑥𝑥10−3

1
12 𝑥𝑥3.75𝑥𝑥0.23

= 3.95 

𝛼𝛼𝑓𝑓4 =
𝐼𝐼 − 𝑖𝑖𝑎𝑎𝑡𝑡𝑒𝑒𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓 𝑏𝑏𝑒𝑒𝑎𝑎𝑚𝑚

𝐼𝐼 − 𝑏𝑏𝑙𝑙𝑎𝑎𝑏𝑏 𝑓𝑓𝑓𝑓 7.5𝑚𝑚 𝑤𝑤𝑖𝑖𝑎𝑎𝑡𝑡ℎ
=

11.573𝑥𝑥10−3

1
12 𝑥𝑥7.5𝑥𝑥0.23

= 2.31 

Since all values of 𝛼𝛼𝑓𝑓 are greater than 2.0, the average of any four values shall be not less 
than 2.0. So, 𝛼𝛼𝑓𝑓𝑓𝑓for each panel is greater than 2.0. 

Slab self-weight, 𝑤𝑤𝐷𝐷= 0.2(25)=5kN/m2 

Slab ultimate load, 𝑤𝑤𝑢𝑢= 1.2(5+4)+1.6(5)= 18.8kN/m2  

Check wide beam shear (one-way shear): for stiff beams, the shear can be calculated 
considering the short direction of the largest panel. Here, the short span, L= 6.0m. 

Shear can be calculated at distance d from face of beam, so: 

𝑉𝑉𝑢𝑢 = 𝑊𝑊𝑢𝑢 �
𝐿𝐿
2
−
𝑏𝑏1
2
− 𝑎𝑎� = 18.8 �

6
2
−

0.4
2
− 0.16� = 49.6𝑡𝑡𝑘𝑘 

The shear strength capacity of the slab is given by: 

𝑨𝑨𝑨𝑨𝑨𝑨 𝟑𝟑𝟏𝟏𝟑𝟑 − 𝟏𝟏𝟏𝟏:∅𝑉𝑉𝑐𝑐 = ∅
1
6
𝜆𝜆�𝑓𝑓′𝑐𝑐𝑏𝑏𝑤𝑤𝑎𝑎 =

0.75 �1
6� (1)√24(1000)(160)

1000
= 98𝑡𝑡𝑘𝑘

> 49.6𝑡𝑡𝑘𝑘    𝑓𝑓𝑡𝑡 

𝑨𝑨𝑨𝑨𝑨𝑨 𝟑𝟑𝟏𝟏𝟑𝟑 − 𝟏𝟏𝟏𝟏: 

𝐿𝐿𝑒𝑒𝑡𝑡 𝜌𝜌𝑤𝑤 = 0.0018 �
ℎ
𝑎𝑎�

= 0.0018 �
200
160�

= 0.00225            𝜆𝜆𝑐𝑐 = 1.0 
 

 ∅𝑉𝑉𝑐𝑐 = ∅�0.66𝜆𝜆𝑐𝑐𝜆𝜆(𝜌𝜌𝑤𝑤)
1
3�𝑓𝑓′𝑐𝑐 +

𝑘𝑘𝑢𝑢
6𝐴𝐴𝑔𝑔

� 𝑏𝑏𝑤𝑤𝑎𝑎

=
0.75 �0.66(1)(1)(0.00225)

1
3√24 + 0.0� (1000)(160)

1000
= 50.85𝑡𝑡𝑘𝑘

> 49.6𝑡𝑡𝑘𝑘       𝑂𝑂𝑂𝑂 
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Analysis and design of frame 2: 

1. Compute the total statical moment, Mo for each span. Here the three spans are equal. 

𝑀𝑀𝑜𝑜 =
𝑞𝑞𝑢𝑢𝑙𝑙2𝑙𝑙𝑛𝑛

2

8
=

18.8(6)(7)2

8
+

0.4(0.4)(25)(1.2)(7)2

8
= 720.3𝑡𝑡𝑘𝑘 

2. Compute positive and negative moments in the span: 

 

Figure 8.27: Frame bending moment diagram- kN.m 

 

3. Compute the moments in the column strip (slab + beam) 

Frame width= 6.0m 

Column strip width= 3.0m 

Middle strip width= 3.0m 

𝛼𝛼𝑓𝑓𝐿𝐿2
𝐿𝐿1

=
2.89(6)

7.5
= 2.3 > 1 

𝐿𝐿2
𝐿𝐿1

=
6

7.5
= 0.8 

From ACI 318-14 Table 8.10.5.5, for positive moment, the ratio = 81% 

From ACI 318-14 Table 8.10.5.1, for interior negative moment, the ratio = 81% 
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Calculations for 𝜷𝜷𝒕𝒕: 

 

Figure 8.28: Edge beam parts for 𝛽𝛽𝑦𝑦 computations 

C = ��1 − 0.63
x
y�

x3y
3

= �1 − 0.63
0.4
0.6�

0.43(0.6)
3

+ �1 − 0.63
0.2
0.4�

0.23(0.4)
3

= 8.155𝑥𝑥10−3𝑚𝑚4 

 

βt =
EcbC

2EcsIs
=

𝐶𝐶
2𝐼𝐼𝑐𝑐

=
8.155(10)−3

2( 1
12)(6)(0.2)3

= 1.02 

𝛼𝛼𝑓𝑓𝐿𝐿2
𝐿𝐿1

=
2.89(6)

7.5
= 2.3 > 1 

𝐿𝐿2
𝐿𝐿1

=
6

7.5
= 0.8 

From ACI 318-14 Table 8.10.5.2, for exterior negative moment, the ratio = 92% 

 

 

Figure 8.29: Column strip bending moment diagram- kN.m 

4. Compute moments in beam: 

Since 
𝛼𝛼𝑓𝑓𝐿𝐿2
𝐿𝐿1

> 1.0, 0.85 of column strip moments are transferred to the beams. 

Figure 8.30 below shows the bending moment diagram of the beam in frame 2. 
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Figure 8.30: Beam bending moment diagram- kN.m 

The beam section is shown above, so the steel area can be computed. 

Beam section effective depth, d= 600-60=540mm 

5. Compute moments in slab column strip: 

The slab column strip moment = the column strip moment – the beam moment 

Figure 8.31 shows the moments in the slab column strip. 

 

Figure 8.31: Slab column strip bending moment diagram- kN.m 

 

Slab column strip width = 3000mm – 400mm = 2600mm 

Effective depth, d= 160mm 

Then the steel area can be computed. 

6. Compute moments in slab middle strip: 

The slab middle strip moment = the frame moment – the column strip moment. 

Figure 8.32 shows the moments in the slab middle strip. 
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Figure 8.32: Slab middle strip bending moment diagram- kN.m 

 

Slab middle strip width = 3000mm  

Effective depth, d= 160mm 

Then the steel area can be computed. 

7. Compute ultimate shear in the beam: 

Beam weight = 0.4(0.4)(25)(1.2)= 4.8kN/m 

Exterior span end moments: ML= 90.1kN.m and MR= 347kN.m 

Load on the beam from slab = 6m x 18.8 = 112.8kN/m 

 

Figure 8.33: Free body diagram for the exterior span in beam in frame 2 

 

The shear values at left and right ends of span are computed as follows: 

𝑉𝑉𝑢𝑢𝐿𝐿 = 112.8(2.75)(0.50) + �
1.5
2 �112.8 + �

7
2�

(4.8) −
(347.1 − 90.1)

7
= 220𝑡𝑡𝑘𝑘 
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𝑉𝑉𝑢𝑢𝑢𝑢 = 112.8(2.75)(0.50) + �
1.5
2 �112.8 + �

7
2�

(4.8) +
(347.1 − 90.1)

7
= 293.2𝑡𝑡𝑘𝑘 

For the interior span, the end moments are equal, so they can be cancelled, then: 

𝑉𝑉𝑢𝑢𝐿𝐿 = 𝑉𝑉𝑢𝑢𝑢𝑢 = 112.8(2.75)(0.50) + �
1.5
2 �112.8 + �

7
2�

(4.8) = 256.5𝑡𝑡𝑘𝑘 

So, the shear reinforcement can be computed. 

 

Example 2: Flat plate 

 

Figure 8.34: Slab layout for Example 2 

 

Given: 

- Slab system: flat plate- no beams 
- Concrete, f’c= 28MPa 
- Steel, fy= 420MPa 
- Superimposed dead load, WSD= 3.5kN/m2  
- Live load, WL= 3kN/m2 
- Perimeter wall weight, WWALL= 5kN/m  
- Interior columns are 0.60m x 0.60m 
- Corner columns are 0.50m x 0.50m 
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- Edge columns are 0.50m x 0.60m 
- Column height, h= 3.00m 
- Slab thickness, h= 230mm, d=180mm 

Check shear-moment transfer at column A-3. 

 

Solution: 

Slab loads: 

Slab self-weight, WD= 0.23(25)=5.75kN/m2  

Slab ultimate load, Wu= 1.2(5.75+3.5)+1.6(3)= 15.9kN/m2 

Load on column, Vu= 15.9[(1.15x5.5/2 + 5.5/2)(6/2 + 0.25) – 0.59 x 0.78] + 1.2(5)(1.15x5.5/2 
+ 5.5/2 -0.78)= 329kN 

Critical section properties- Frame 3- Direction 1:  

𝑀𝑀𝑜𝑜 =
𝑊𝑊𝑢𝑢𝐿𝐿2𝐿𝐿𝑛𝑛2

8
=

15.9(5.5)(5.45)2

8
= 325𝑡𝑡𝑘𝑘.𝑚𝑚 

𝑀𝑀𝑢𝑢1 = 0.3𝑀𝑀𝑜𝑜 = 0.3(325) = 97.5𝑡𝑡𝑘𝑘.𝑚𝑚 

𝑏𝑏1 = 𝑑𝑑1 +
𝑎𝑎
2

= 0.59𝑚𝑚          𝑏𝑏2 = 𝑑𝑑2 + 𝑎𝑎 = 0.78𝑚𝑚                     

𝑥𝑥′ =
2𝑏𝑏1 �

𝑏𝑏1
2 �

2𝑏𝑏1 + 𝑏𝑏2
=

2(0.59)(0.59
2 )

2(0.59) + (0.78)
= 0.178𝑚𝑚 

𝐽𝐽𝑐𝑐1 = 2�
𝑏𝑏1

3𝑎𝑎
12

+
𝑏𝑏1𝑎𝑎3

12
+ 𝑏𝑏1𝑎𝑎 �𝑥𝑥′ −

𝑏𝑏1
2 �

2

� + 𝑏𝑏2𝑎𝑎𝑥𝑥′
2 = 14.091𝑥𝑥10−3𝑚𝑚4 

𝛾𝛾𝑓𝑓1 =
1

1 + 2
3�

𝑏𝑏1
𝑏𝑏2

= 0.633 

𝛾𝛾𝑣𝑣1 = 1 − 𝛾𝛾𝑓𝑓1 = 1 − 0.633 = 0.367 

𝑏𝑏𝑜𝑜 = 2𝑏𝑏1 + 𝑏𝑏2 = 2(0.59) + 0.78 = 1.96𝑚𝑚   (1960𝑚𝑚𝑚𝑚) 
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Figure 8.35: Critical section for the column 

 

Critical section properties- Frame A- Direction 2: 

𝑏𝑏1 = 𝑑𝑑2 + 𝑎𝑎 = 0.78𝑚𝑚          𝑏𝑏2 = 𝑑𝑑1 + 𝑎𝑎/2 = 0.59𝑚𝑚                     

𝐽𝐽𝑐𝑐2 = �
𝑏𝑏1

3𝑎𝑎
12

+
𝑏𝑏1𝑎𝑎3

12
� + 2𝑏𝑏2𝑎𝑎 �

𝑏𝑏1
2 �

2

= 39.8𝑥𝑥10−3𝑚𝑚4 

𝛾𝛾𝑓𝑓2 =
1

1 + 2
3�

𝑏𝑏1
𝑏𝑏2

= 0.566 

𝛾𝛾𝑣𝑣2 = 1 − 𝛾𝛾𝑓𝑓2 = 1 − 0.566 = 0.434 

𝑀𝑀𝑢𝑢2 = 0.07 �(𝑞𝑞𝐷𝐷𝑢𝑢 + 0.5𝑞𝑞𝐿𝐿𝑢𝑢)𝐿𝐿2𝐿𝐿𝑛𝑛2 − 𝑞𝑞𝐷𝐷𝑢𝑢′𝐿𝐿2′𝐿𝐿𝑛𝑛′
2� = 14.6𝑡𝑡𝑘𝑘.𝑚𝑚 

Where: 

𝑞𝑞𝐷𝐷𝑢𝑢 = 𝑞𝑞𝐷𝐷𝑢𝑢′ = 1.2(5.75 + 3.5) =
11.1𝑡𝑡𝑘𝑘
𝑚𝑚2  

𝑞𝑞𝐿𝐿𝑢𝑢 = 1.6(3) =
4.8𝑡𝑡𝑘𝑘
𝑚𝑚2  

𝐿𝐿2 = 3.25𝑚𝑚         𝐿𝐿𝑛𝑛 = 4.95𝑚𝑚      𝐿𝐿2′ = 3.25𝑚𝑚   𝐿𝐿𝑛𝑛′ = 4.90𝑚𝑚      

Check stress: 

𝑑𝑑1′ = 0.178𝑚𝑚    𝑑𝑑2′ = 0.39𝑚𝑚  
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𝑣𝑣𝑢𝑢 =
𝑉𝑉𝑢𝑢
𝑏𝑏𝑜𝑜𝑎𝑎

+
𝛾𝛾𝑣𝑣1𝑀𝑀𝑢𝑢1𝑑𝑑1′

𝐽𝐽𝑐𝑐1
+
𝛾𝛾𝑣𝑣2𝑀𝑀𝑢𝑢2𝑑𝑑2′

𝐽𝐽𝑐𝑐2
= 1.447𝑀𝑀𝑀𝑀𝑎𝑎 

𝑣𝑣𝑢𝑢
∅

=
1.447
0.75

= 1.93𝑀𝑀𝑀𝑀𝑎𝑎 

𝑣𝑣𝑐𝑐 ≤ 0.33𝜆𝜆𝑐𝑐𝜆𝜆�𝑓𝑓′𝑐𝑐 = 1.75𝑀𝑀𝑀𝑀𝑎𝑎 

𝑣𝑣𝑐𝑐 ≤ 0.17𝜆𝜆𝑐𝑐𝜆𝜆 �1 +
2
𝛽𝛽��

𝑓𝑓′𝑐𝑐 = 2.4𝑀𝑀𝑀𝑀𝑎𝑎 

𝑣𝑣𝑐𝑐 ≤ 0.083𝜆𝜆𝑐𝑐𝜆𝜆 �2 +
𝛼𝛼𝑐𝑐𝑎𝑎
𝑏𝑏𝑜𝑜

��𝑓𝑓′𝑐𝑐 = 2.1𝑀𝑀𝑀𝑀𝑎𝑎 

1.75MPa < 1.93MPa     so, shear reinforcement is required. 

𝐶𝐶ℎ𝑒𝑒𝑑𝑑𝑡𝑡 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑣𝑣𝑢𝑢 ≤ ∅0.50�𝑓𝑓′𝑑𝑑:              1.447𝑀𝑀𝑀𝑀𝑎𝑎 ≤ (0.75)(0.5)√28 = 1.984𝑀𝑀𝑀𝑀𝑎𝑎      𝑓𝑓𝑡𝑡. 

𝑎𝑎 = 180𝑚𝑚𝑚𝑚 > 150𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎 > 16𝑎𝑎𝑐𝑐 = 16(10) = 160𝑚𝑚𝑚𝑚 

𝑣𝑣𝑐𝑐 = 0.17𝜆𝜆𝑐𝑐𝜆𝜆�𝑓𝑓′𝑐𝑐 = 0.88𝑀𝑀𝑀𝑀𝑎𝑎 

𝑣𝑣𝑐𝑐 =
𝑣𝑣𝑢𝑢
∅
− 𝑣𝑣𝑐𝑐 = 1.93 − 0.88 = 1.05𝑀𝑀𝑀𝑀𝑎𝑎 

𝑉𝑉𝑐𝑐 = 𝑣𝑣𝑐𝑐𝑏𝑏𝑜𝑜𝑎𝑎 =
1.05(1960)(180)

1000
= 370.44𝑡𝑡𝑘𝑘 

𝐴𝐴𝑣𝑣
𝑏𝑏

=
𝑉𝑉𝑐𝑐
𝑓𝑓𝑦𝑦𝑦𝑦𝑎𝑎

=
370440

420(180) = 4.9𝑚𝑚𝑚𝑚2/𝑚𝑚𝑚𝑚 

𝑏𝑏𝑑𝑑𝑎𝑎𝑑𝑑𝑖𝑖𝑎𝑎𝑙𝑙 𝑓𝑓𝑓𝑓 𝑏𝑏𝑡𝑡𝑖𝑖𝑓𝑓𝑓𝑓𝑐𝑐𝑑𝑑𝑏𝑏, 𝑏𝑏 =
6(78.5)

4.9
= 96𝑚𝑚𝑚𝑚 

𝑎𝑎
2

=
180

2
= 90𝑚𝑚𝑚𝑚 < 96𝑚𝑚𝑚𝑚 𝑐𝑐𝑏𝑏𝑒𝑒 𝑏𝑏𝑡𝑡𝑖𝑖𝑓𝑓𝑓𝑓𝑐𝑐𝑑𝑑𝑏𝑏   3𝜙𝜙10/90𝑚𝑚𝑚𝑚 

 

Flexural stresses: 

Direction 1:  

γ𝑓𝑓1𝑀𝑀𝑢𝑢1 = 0.633(97.5) = 61.7𝑡𝑡𝑘𝑘.𝑚𝑚 
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In X-direction, the moment shall be resisted by a cross section of thickness, h= 230mm with 
d= 180mm and a width equals to column width plus 1.5h from each side, so, width of section 
is given by: 

b= 600 + 2(1.5 x 230) = 1300mm 

This moment requires:  

𝑏𝑏𝑡𝑡𝑒𝑒𝑒𝑒𝑙𝑙 𝑓𝑓𝑎𝑎𝑡𝑡𝑖𝑖𝑓𝑓, 𝜌𝜌 = 0.00401, 𝑏𝑏𝑡𝑡𝑒𝑒𝑒𝑒𝑙𝑙 𝑎𝑎𝑓𝑓𝑒𝑒𝑎𝑎,𝐴𝐴𝑏𝑏 = 0.00401(1300)(180) = 938𝑚𝑚𝑚𝑚2 

This area of steel should be available in 1.30m width at column centerline. 

Check: 

 𝐼𝐼𝑓𝑓 𝑣𝑣𝑢𝑢𝑣𝑣 > ∅ 0.17 𝜆𝜆𝑐𝑐𝜆𝜆�𝑓𝑓′𝑐𝑐 ,      𝐴𝐴𝑐𝑐,𝑓𝑓𝑚𝑚𝑛𝑛 =
5𝑣𝑣𝑢𝑢𝑣𝑣𝑏𝑏𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝑏𝑏𝑜𝑜
𝜙𝜙𝛼𝛼𝑐𝑐𝑓𝑓𝑦𝑦

 

1.447𝑀𝑀𝑀𝑀𝑎𝑎  >      (0.75)(0.17)(1)(1)√28 = 0.675𝑀𝑀𝑀𝑀𝑎𝑎  

𝐴𝐴𝑐𝑐,𝑓𝑓𝑚𝑚𝑛𝑛 =
5𝑣𝑣𝑢𝑢𝑣𝑣𝑏𝑏𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝑏𝑏𝑜𝑜
𝜙𝜙𝛼𝛼𝑐𝑐𝑓𝑓𝑦𝑦

=
5(1.447)(1300)(1960)

(0.75)(30)(420)
= 1951𝑚𝑚𝑚𝑚2 > 938𝑚𝑚𝑚𝑚2 . 

𝑈𝑈𝑏𝑏𝑒𝑒 𝐴𝐴𝑐𝑐,𝑓𝑓𝑚𝑚𝑛𝑛 = 1951𝑚𝑚𝑚𝑚2 

This reinforcement shall be checked if it is provided in a width of 1.30m in the column strip. 
If not, additional steel shall be provided.  
 
Direction 2:  
 
The moment can be neglected because it is very small and the minimum steel shall be used. 
 
γ𝑓𝑓2𝑀𝑀𝑢𝑢2 = 0.566(14.6) = 8.3𝑡𝑡𝑘𝑘.𝑚𝑚 

Width of strip, bslab= 500+1.5(230)=845mm. 

𝐴𝐴𝑐𝑐,𝑓𝑓𝑚𝑚𝑛𝑛 =
5𝑣𝑣𝑢𝑢𝑣𝑣𝑏𝑏𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝑏𝑏𝑜𝑜
𝜙𝜙𝛼𝛼𝑐𝑐𝑓𝑓𝑦𝑦

=
5(1.447)(845)(1960)

(0.75)(30)(420)
= 1268𝑚𝑚𝑚𝑚2 

This reinforcement shall be checked if it is provided in a width of 0.845m in the column strip. 
If not, additional steel shall be provided.  

Notes:  

• Based on ACI 318-19, the shear stress can be calculated for each direction alone. In 
direction 1, Vu and Mu1 are used and in direction 2, Vu and Mu2 are used.  

• If Vu, Mu1 and Mu2 are used in shear stress calculations, the punching shear capacity, 
vc can be increased by a ratio like 20%.  
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Example 3: U- Boot voided slab: 

 

Figure 8.36: Slab layout for Example 3 

Given: 

- Slab system: voided- U Boot 
- Concrete, f’c= 32MPa 
- Steel, fy= 420MPa 
- Superimposed dead load, WSD= 4kN/m2  
- Live load, WL= 2.5kN/m2 
- Perimeter wall weight, WWALL= 15kN/m  
- All columns are 0.60m x 0.60m 
- Column height, h= 3.80m 
- Design frame (strip) 2. 

 

Solution: 

Dimensions of beams:  

Width, b= L/20 = 9/20= 0.45m         Try, b= 0.40m 

Thickness, h= L/18.5=9/18.5= 0.49m   Try, h= 0.70m 

Slab thickness: 

Assume that 𝛼𝛼𝑓𝑓𝑓𝑓 ≥ 2, so: 
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ℎ =
𝑙𝑙𝑛𝑛 �0.8 +

𝑓𝑓𝑦𝑦
1400�

36 + 9𝛽𝛽
=

8.6 �0.8 + 420
1400�

36 + 9(1.21)
= 0.2𝑚𝑚 ≥ 0.09𝑚𝑚    𝑓𝑓𝑡𝑡 

 

Where: Ln= 9.0-0.40=8.40m 

𝛽𝛽 =
𝑙𝑙𝑓𝑓𝑎𝑎𝑙𝑙 𝑑𝑑𝑙𝑙𝑒𝑒𝑎𝑎𝑓𝑓 𝑏𝑏𝑑𝑑𝑎𝑎𝑎𝑎
𝑏𝑏ℎ𝑓𝑓𝑓𝑓𝑡𝑡 𝑑𝑑𝑙𝑙𝑒𝑒𝑎𝑎𝑓𝑓 𝑏𝑏𝑑𝑑𝑎𝑎𝑎𝑎

=
9 − 0.4

7.5 − 0.4
= 1.21 

Try voided slab thickness, h= 320mm: 

Check 𝛼𝛼𝑓𝑓: 

The distribution of 𝛼𝛼𝑓𝑓 is shown in Figure 8.37 below. 

 

Figure 8.37: Distribution of 𝛼𝛼𝑓𝑓for the beams 

The moment of inertia of the beam, Ib is given by: 

𝐼𝐼𝑐𝑐𝑏𝑏𝑠𝑠𝑓𝑓 =
(0.4)(0.7)3

12
= 0.011433𝑚𝑚4 

The flange width of a voided slab unit ( I- section), bf= 520mm + 150mm = 670mm 
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Figure 8.38: Cross section in slab 

The moment of inertia of one unit of width 670mm is given by: 

𝐼𝐼 =
0.67(0.32)3

12
−

0.52(0.2)3

12
= 1.4828𝑥𝑥10−3𝑚𝑚4 

𝛼𝛼𝑓𝑓1 =
𝐼𝐼 − 𝑒𝑒𝑎𝑎𝑙𝑙𝑒𝑒 𝑏𝑏𝑒𝑒𝑎𝑎𝑚𝑚

𝐼𝐼 − 𝑏𝑏𝑙𝑙𝑎𝑎𝑏𝑏 𝑓𝑓𝑓𝑓 3.75𝑚𝑚 𝑤𝑤𝑖𝑖𝑎𝑎𝑡𝑡ℎ
=

0.011433
3.75
0.67 𝑥𝑥1.4828𝑥𝑥10−3

= 1.38 

𝛼𝛼𝑓𝑓2 =
𝐼𝐼 − 𝑖𝑖𝑎𝑎𝑡𝑡𝑒𝑒𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓 𝑏𝑏𝑒𝑒𝑎𝑎𝑚𝑚

𝐼𝐼 − 𝑏𝑏𝑙𝑙𝑎𝑎𝑏𝑏 𝑓𝑓𝑓𝑓 7.5𝑚𝑚 𝑤𝑤𝑖𝑖𝑎𝑎𝑡𝑡ℎ
=

0.011433
7.5

0.67 𝑥𝑥1.4828𝑥𝑥10−3
= 0.69 

𝛼𝛼𝑓𝑓3 =
𝐼𝐼 − 𝑒𝑒𝑎𝑎𝑙𝑙𝑒𝑒 𝑏𝑏𝑒𝑒𝑎𝑎𝑚𝑚

𝐼𝐼 − 𝑏𝑏𝑙𝑙𝑎𝑎𝑏𝑏 𝑓𝑓𝑓𝑓 4.5𝑚𝑚 𝑤𝑤𝑖𝑖𝑎𝑎𝑡𝑡ℎ
=

0.011433
4.5

0.67 𝑥𝑥1.4828𝑥𝑥10−3
= 1.15 

𝛼𝛼𝑓𝑓4 =
𝐼𝐼 − 𝑖𝑖𝑎𝑎𝑡𝑡𝑒𝑒𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓 𝑏𝑏𝑒𝑒𝑎𝑎𝑚𝑚

𝐼𝐼 − 𝑏𝑏𝑙𝑙𝑎𝑎𝑏𝑏 𝑓𝑓𝑓𝑓 9𝑚𝑚 𝑤𝑤𝑖𝑖𝑎𝑎𝑡𝑡ℎ
=

0.011433
9.0

0.67 𝑥𝑥1.4828𝑥𝑥10−3
= 0.57 

Value of 𝛼𝛼𝑓𝑓𝑓𝑓for interior panel is given by: 

𝛼𝛼𝑓𝑓𝑓𝑓 =
2𝛼𝛼𝑓𝑓2 + 2𝛼𝛼𝑓𝑓4

4
= 0.63 < 2 

So, slab thickness is given by: 

ℎ =
𝑙𝑙𝑛𝑛 �0.8 +

𝑓𝑓𝑦𝑦
1400�

36 + 5𝛽𝛽(𝛼𝛼𝑓𝑓𝑓𝑓 − 0.2)
=

8.4 �0.8 + 420
1400�

36 + 5(1.22)(0.63 − 0.2)
= 0.24𝑚𝑚 

 

the moment of inertia of the solid slab of 0.24m thickness and 0.67m width is given by: 
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𝐼𝐼 =
0.67(0.24)3

12
= 0.77𝑥𝑥10−3𝑚𝑚4 < 1.4828𝑥𝑥10−3𝑚𝑚4             𝑓𝑓𝑡𝑡 

 

Slab self-weight, WD= [0.67x0.67x0.32-0.52x0.52x0.2]x25 / (0.67x0.67)=5kN/m2 

Slab ultimate load, Wu= 1.2(5+4)+1.6(2.5)= 14.8kN/m2  

Check wide beam shear (one-way shear):  

Here, the short span, L= 7.50m 

Load on one unit of slab= 14.8(0.67)=9.92kN/m  

Shear can be calculated at distance d from face of beam, so: 

𝑉𝑉𝑢𝑢 = 𝑊𝑊𝑢𝑢 �
𝐿𝐿
2
−
𝑏𝑏1
2
− 𝑎𝑎� = 9.92 �

7.6
2
−

0.4
2
− 0.28� = 32.9𝑡𝑡𝑘𝑘 

The shear strength capacity of the slab is given by: 

𝐴𝐴𝐶𝐶𝐼𝐼 318 − 14: ∅𝑉𝑉𝑐𝑐 = ∅
1
6
𝜆𝜆�𝑓𝑓′𝑐𝑐𝑏𝑏𝑤𝑤𝑎𝑎 =

0.75 �1
6� (1)√32(150)(280)(1.1)

1000
= 32.7𝑡𝑡𝑘𝑘

≈ 32.9𝑡𝑡𝑘𝑘    𝑓𝑓𝑡𝑡 

𝑆𝑆𝑖𝑖𝑠𝑠𝑒𝑒 𝑓𝑓𝑎𝑎𝑑𝑑𝑡𝑡𝑓𝑓𝑓𝑓, 𝜆𝜆𝑐𝑐 = � 2
1 + 0.004 𝑎𝑎

≤ 1.0 → 𝜆𝜆𝑐𝑐 = �
2

1 + 0.004 (280) = 0.97 

𝐿𝐿𝑒𝑒𝑡𝑡 𝜌𝜌𝑤𝑤 = 0.0018 �
ℎ
𝑎𝑎�

= 0.0018 �
320
280�

= 0.002 

 
 So, 

𝐴𝐴𝐶𝐶𝐼𝐼 318 − 19: ∅𝑉𝑉𝑐𝑐 = ∅�0.66𝜆𝜆𝑐𝑐𝜆𝜆(𝜌𝜌𝑤𝑤)
1
3�𝑓𝑓′𝑐𝑐 +

𝑘𝑘𝑢𝑢
6𝐴𝐴𝑔𝑔

� 𝑏𝑏𝑤𝑤𝑎𝑎

=
(1.1)(0.75) �0.66(0.97)(1)(0.002)

1
3√32 + 0.0� (150)(280)

1000
= 15.8𝑡𝑡𝑘𝑘 < 32.9𝑡𝑡𝑘𝑘       𝑘𝑘.𝐺𝐺. 

 

So, use minimum shear reinforcement in the ribs at least for ¼ the clear span at each end. 

𝑈𝑈𝑏𝑏𝑒𝑒 1∅8/140𝑚𝑚𝑚𝑚, 𝐴𝐴𝑣𝑣/𝑏𝑏 = (2(50))/140 = 0.71𝑚𝑚𝑚𝑚2/𝑚𝑚𝑚𝑚 
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�
𝐴𝐴𝑣𝑣
𝑏𝑏 �𝑓𝑓𝑚𝑚𝑛𝑛

= 𝑚𝑚𝑎𝑎𝑥𝑥 �
0.062�𝑓𝑓′𝑐𝑐𝑏𝑏𝑤𝑤

𝑓𝑓𝑦𝑦𝑦𝑦
,
0.35𝑏𝑏𝑤𝑤
𝑓𝑓𝑦𝑦𝑦𝑦

� = 𝑚𝑚𝑎𝑎𝑥𝑥[0.13,0.125] = 0.13𝑚𝑚𝑚𝑚2/𝑚𝑚𝑚𝑚 

< 0.71𝑚𝑚𝑚𝑚2/𝑚𝑚𝑚𝑚 ok. 

Analysis and design of frame 2: 

1. Compute the total statical moment, Mo for the span. Here the three spans are equal. 

𝑀𝑀𝑜𝑜 =
𝑞𝑞𝑢𝑢𝑙𝑙2𝑙𝑙𝑛𝑛

2

8
=

14.8(7.5)(8.4)2

8
+

0.4(0.7)(25)(1.2)(8.4)2

8
= 1053.108𝑡𝑡𝑘𝑘.𝑚𝑚 

2. Compute positive and negative moments in the span: 

 

Figure 8.39: Frame bending moment diagram- kN.m 

 

3. Compute the moments in the column strip (slab + beam) 

Frame width= 7.5m 

Column strip width= 3.75m 

Middle strip width= 3.75m 

𝛼𝛼𝑓𝑓𝐿𝐿2
𝐿𝐿1

=
0.69(7.5)

9
= 0.575 < 1 

𝐿𝐿2
𝐿𝐿1

=
7.5
9

= 0.83 

From ACI 318-14 Table 8.10.5.5, for positive moment, the ratio = 71.6% 

From ACI 318-14 Table 8.10.5.1, for interior negative moment, the ratio = 77.9% 

Calculations for 𝜷𝜷𝒕𝒕: 

Rectangular section:           b= 0.4m       h=0.7m 
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C = ��1 − 0.63
x
y�

x3y
3

= �1 − 0.63
0.4
0.7�

0.43(0.7)
3

= 0.00955733𝑚𝑚4 

βt =
EcbC

2EcsIs
=

𝐶𝐶
2𝐼𝐼𝑐𝑐

=
0.00955733

2 7.5
0.67 (1.4828𝑥𝑥10−3)

= 0.29 

𝛼𝛼𝑓𝑓𝐿𝐿2
𝐿𝐿1

= 0.575 

𝐿𝐿2
𝐿𝐿1

= 0.83 

From ACI 318-14 Table 8.10.5.2, for exterior negative moment, the ratio = 97.4% 

 

Figure 8.40: Column strip bending moment diagram- kN.m 

 

4. Compute moments in beam: 

Since 
𝛼𝛼𝑓𝑓𝐿𝐿2
𝐿𝐿1

= 0.575, the ratio of moments that are transferred to beams is: 

0.575 (0.85)=0.49 

Figure 8.41 shows the bending moment diagram of the beam in frame 2. 

 

Figure 8.41: Beam bending moment diagram- kN.m 
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5. Compute moments in slab column strip: 

The slab column strip moment = the column strip moment – the beam moment 

Figure 8.42 shows the moments in the slab column strip. 

 

Figure 8.42: Slab- column strip bending moment diagram- kN.m 

Slab column strip width = 3750mm 

Effective depth, d= 280mm 

Then the steel area can be computed. 

6. Compute moments in slab middle strip: 

The slab middle strip moment = the frame moment – the column strip moment 

Figure 8.43 shows the moments in the slab column strip. 

 

Figure 8.43: Slab middle strip bending moment diagram- kN.m 

Slab middle strip width = 3750mm  

Effective depth, d= 280mm 

Then the steel area can be computed. 

The flexural steel can be determined assuming a solid slab. 

For example: the maximum bending moment in the column strip, Mu= 292.89kN.m 

Section width, b= 3750mm 
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Section thickness, h= 320mm 

Section effective depth, d= 280mm 

Then, 

𝜌𝜌 =
0.85𝑓𝑓′𝑐𝑐
𝑓𝑓𝑦𝑦

�1 −�1 −
2.61𝑀𝑀𝑢𝑢

𝑏𝑏𝑎𝑎2𝑓𝑓′𝑐𝑐
� =

0.85(32)
420 �1 −�1 −

2.61(292.89𝑥𝑥106

3750(280)2(32)�
= 0.00269 

𝐴𝐴𝑐𝑐 = 0.00269(3750)(280) = 2825𝑚𝑚𝑚𝑚2     𝐴𝐴𝑐𝑐 =
2825
3.75

=
753𝑚𝑚𝑚𝑚2

𝑚𝑚
 

Minimum area of steel is given by: 

𝐴𝐴𝑐𝑐,𝑓𝑓𝑚𝑚𝑛𝑛 = 0.0018(1000)(320) = 576𝑚𝑚𝑚𝑚2 < 753𝑚𝑚𝑚𝑚2 

Use 1∅14/200𝑚𝑚𝑚𝑚 

 

Example 4: Waffle slab: 

 

Figure 8.44: Slab layout for Example 4 
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Given: 

- Slab system: Waffle 
- Concrete, f’c= 32MPa 
- Steel, fy= 420MPa 
- Superimposed dead load, WSD= 4kN/m2  
- Live load, WL= 2.5kN/m2 
- Perimeter wall weight, WWALL= 15kN/m  
- All columns are 0.60m x 0.60m 
- Column height, h= 3.80m 
- Determine Mo for spans in frame (strip) 2. 

Solution: 

Dimensions of beams:  

Width, b= L/20 = 9/20= 0.45m         Try, b= 0.40m 

Thickness, h= L/18.5=9/18.5= 0.49m   Try, h= 0.70m 

 

Slab thickness: 

Assume that 𝛼𝛼𝑓𝑓𝑓𝑓 ≥ 2, so: 

ℎ =
𝑙𝑙𝑛𝑛 �0.8 +

𝑓𝑓𝑦𝑦
1400�

36 + 9𝛽𝛽
=

8.6 �0.8 + 420
1400�

36 + 9(1.21)
= 0.2𝑚𝑚 ≥ 0.09𝑚𝑚    𝑓𝑓𝑡𝑡 

where: Ln= 9.0-0.60=8.40m 

𝛽𝛽 =
𝑙𝑙𝑓𝑓𝑎𝑎𝑙𝑙 𝑑𝑑𝑙𝑙𝑒𝑒𝑎𝑎𝑓𝑓 𝑏𝑏𝑑𝑑𝑎𝑎𝑎𝑎
𝑏𝑏ℎ𝑓𝑓𝑓𝑓𝑡𝑡 𝑑𝑑𝑙𝑙𝑒𝑒𝑎𝑎𝑓𝑓 𝑏𝑏𝑑𝑑𝑎𝑎𝑎𝑎

=
9 − 0.4

7.5 − 0.4
= 1.21 

Try waffle slab thickness, h= (4/3)(0.20)= 0.27m: 

Check 𝛼𝛼𝑓𝑓: 

The distribution of 𝛼𝛼𝑓𝑓 is shown in the Figure 8.45 below. 
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Figure 8.45: Distribution of 𝛼𝛼𝑓𝑓for the beams 

The moment of inertia of the beam is given by: 

𝐼𝐼𝑐𝑐𝑏𝑏𝑠𝑠𝑓𝑓 =
(0.4)(0.7)3

12
= 0.011433𝑚𝑚4 

The flange width of the waffle slab unit ( T- section), bf= 600mm + 150mm = 750mm 

 

 

Figure 8.46: Cross section in slab 

The moment of inertia of one unit of width 750mm is equal to 4.935x10-4 mm4.  

𝛼𝛼𝑓𝑓1 =
𝐼𝐼 − 𝑒𝑒𝑎𝑎𝑙𝑙𝑒𝑒 𝑏𝑏𝑒𝑒𝑎𝑎𝑚𝑚

𝐼𝐼 − 𝑏𝑏𝑙𝑙𝑎𝑎𝑏𝑏 𝑓𝑓𝑓𝑓 3.75𝑚𝑚 𝑤𝑤𝑖𝑖𝑎𝑎𝑡𝑡ℎ
=

0.011433
3.75
0.75 𝑥𝑥4.935𝑥𝑥10−4

= 4.6 
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𝛼𝛼𝑓𝑓2 =
𝐼𝐼 − 𝑖𝑖𝑎𝑎𝑡𝑡𝑒𝑒𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓 𝑏𝑏𝑒𝑒𝑎𝑎𝑚𝑚

𝐼𝐼 − 𝑏𝑏𝑙𝑙𝑎𝑎𝑏𝑏 𝑓𝑓𝑓𝑓 7.5𝑚𝑚 𝑤𝑤𝑖𝑖𝑎𝑎𝑡𝑡ℎ
=

0.011433
7.5

0.75 𝑥𝑥4.935𝑥𝑥10−4
= 2.3 

𝛼𝛼𝑓𝑓3 =
𝐼𝐼 − 𝑒𝑒𝑎𝑎𝑙𝑙𝑒𝑒 𝑏𝑏𝑒𝑒𝑎𝑎𝑚𝑚

𝐼𝐼 − 𝑏𝑏𝑙𝑙𝑎𝑎𝑏𝑏 𝑓𝑓𝑓𝑓 4.5𝑚𝑚 𝑤𝑤𝑖𝑖𝑎𝑎𝑡𝑡ℎ
=

0.011433
4.5

0.75 𝑥𝑥4.935𝑥𝑥10−4
= 3.8 

𝛼𝛼𝑓𝑓4 =
𝐼𝐼 − 𝑖𝑖𝑎𝑎𝑡𝑡𝑒𝑒𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓 𝑏𝑏𝑒𝑒𝑎𝑎𝑚𝑚

𝐼𝐼 − 𝑏𝑏𝑙𝑙𝑎𝑎𝑏𝑏 𝑓𝑓𝑓𝑓 9𝑚𝑚 𝑤𝑤𝑖𝑖𝑎𝑎𝑡𝑡ℎ
=

0.011433
9.0

0.75 𝑥𝑥4.935𝑥𝑥10−4
= 1.93 

 

Minimum value of 𝛼𝛼𝑓𝑓𝑓𝑓for interior panel is given by: 

𝛼𝛼𝑓𝑓𝑓𝑓 =
2𝛼𝛼𝑓𝑓2 + 2𝛼𝛼𝑓𝑓4

4
= 2.1 > 2      𝑂𝑂𝑂𝑂 

 
 Slab self-weight, 𝑤𝑤𝐷𝐷= {[0.75x0.75x0.27-0.575x0.575x0.2]x25}/(0.75x0.75)= 3.8kN/m2 

Slab ultimate load, 𝑤𝑤𝑢𝑢= 1.2(3.8+4)+1.6(2.5)= 13.4kN/m2  

Check wide beam shear (one-way shear):  

Here, the short span, L= 7.50m 

Load on one unit of slab= 13.4(0.75)=10.05kN/m  

Shear can be calculated at distance d from face of beam, so: 

 

𝑉𝑉𝑢𝑢 = 𝑊𝑊𝑢𝑢 �
𝐿𝐿
2
−
𝑏𝑏1
2
− 𝑎𝑎� = 10.05 �

7.6
2
−

0.4
2
− 0.22� = 34.0𝑡𝑡𝑘𝑘 

The shear strength capacity of the slab is given by: 

𝐴𝐴𝐶𝐶𝐼𝐼 318 − 14: ∅𝑉𝑉𝑐𝑐 = ∅
1
6
𝜆𝜆�𝑓𝑓′𝑐𝑐𝑏𝑏𝑤𝑤𝑎𝑎 =

0.75 �1
6� (1)√32(150)(220)(1.1)

1000
= 23.3𝑡𝑡𝑘𝑘

< 33.5𝑡𝑡𝑘𝑘    𝑈𝑈𝑏𝑏𝑒𝑒 𝑏𝑏𝑡𝑡𝑖𝑖𝑓𝑓𝑓𝑓𝑐𝑐𝑑𝑑𝑏𝑏. 

𝑉𝑉𝑐𝑐 = 31.1𝑡𝑡𝑘𝑘.𝑚𝑚 

𝑉𝑉𝑐𝑐 = �
34.0
0.75�

− 31.1 = 14.2𝑡𝑡𝑘𝑘.𝑚𝑚 
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𝐴𝐴𝑣𝑣
𝑏𝑏

=
14.2𝑥𝑥1000
420𝑥𝑥220

= 0.154𝑚𝑚𝑚𝑚2/𝑚𝑚𝑚𝑚 

�
𝐴𝐴𝑣𝑣
𝑏𝑏 �𝑓𝑓𝑚𝑚𝑛𝑛

= 𝑚𝑚𝑎𝑎𝑥𝑥 �
0.062�𝑓𝑓′𝑐𝑐𝑏𝑏𝑤𝑤

𝑓𝑓𝑦𝑦𝑦𝑦
,
0.35𝑏𝑏𝑤𝑤
𝑓𝑓𝑦𝑦𝑦𝑦

� =
0.13𝑚𝑚𝑚𝑚2

𝑚𝑚𝑚𝑚
< 0.154𝑚𝑚𝑚𝑚2/𝑚𝑚𝑚𝑚      𝑂𝑂𝑂𝑂 

𝑈𝑈𝑏𝑏𝑒𝑒 
𝐴𝐴𝑣𝑣
𝑏𝑏

= 0.154𝑚𝑚𝑚𝑚2/𝑚𝑚𝑚𝑚 

For ∅8𝑚𝑚𝑚𝑚 stirrups:  

𝑏𝑏 =
100
0.15

= 667𝑚𝑚𝑚𝑚 >  𝑏𝑏𝑓𝑓𝑠𝑠𝑚𝑚 =
𝑎𝑎
2

= 100𝑚𝑚𝑚𝑚 

So, use closed stirrups at ends of ribs for one quarter the clear span (The accurate distance 
can be specified).  

This shear design is applicable for ACI 318-19. 

Analysis of frame 2: 

Compute the total statical moment, Mo for the span. Here the three spans are equal. 

𝑀𝑀𝑜𝑜 =
𝑞𝑞𝑢𝑢𝑙𝑙2𝑙𝑙𝑛𝑛

2

8
=

13.4(7.5)(8.4)2

8
+

0.4(0.7)(25)(1.2)(8.4)2

8
= 960.5𝑡𝑡𝑘𝑘.𝑚𝑚 

Note: 

The moments in the frame, beam, slab column strip and slab middle strip can be found 
using the same procedure in the previous examples. 

The moment in the rib is given by: 

𝑀𝑀𝑟𝑟𝑚𝑚𝑐𝑐,𝑐𝑐𝑜𝑜𝑠𝑠𝑢𝑢𝑓𝑓𝑛𝑛 𝑐𝑐𝑦𝑦𝑟𝑟𝑚𝑚𝑠𝑠 =
𝑀𝑀𝑐𝑐𝑜𝑜𝑠𝑠𝑢𝑢𝑓𝑓𝑛𝑛 𝑐𝑐𝑦𝑦𝑟𝑟𝑚𝑚𝑠𝑠

𝑤𝑤𝑖𝑖𝑎𝑎𝑡𝑡ℎ 𝑓𝑓𝑓𝑓 𝑑𝑑𝑓𝑓𝑙𝑙𝑐𝑐𝑚𝑚𝑎𝑎 𝑏𝑏𝑡𝑡𝑓𝑓𝑖𝑖𝑑𝑑
 𝑥𝑥 𝑓𝑓𝑙𝑙𝑎𝑎𝑎𝑎𝑙𝑙𝑒𝑒 𝑤𝑤𝑖𝑖𝑎𝑎𝑡𝑡ℎ; 0.75𝑚𝑚 

𝑀𝑀𝑟𝑟𝑚𝑚𝑐𝑐,𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑏𝑏 𝑐𝑐𝑦𝑦𝑟𝑟𝑚𝑚𝑠𝑠 =
𝑀𝑀𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑏𝑏 𝑐𝑐𝑦𝑦𝑟𝑟𝑚𝑚𝑠𝑠

𝑤𝑤𝑖𝑖𝑎𝑎𝑡𝑡ℎ 𝑓𝑓𝑓𝑓 𝑚𝑚𝑖𝑖𝑎𝑎𝑎𝑎𝑙𝑙𝑒𝑒 𝑏𝑏𝑡𝑡𝑓𝑓𝑖𝑖𝑑𝑑
 𝑥𝑥 𝑓𝑓𝑙𝑙𝑎𝑎𝑎𝑎𝑙𝑙𝑒𝑒 𝑤𝑤𝑖𝑖𝑎𝑎𝑡𝑡ℎ; 0.75𝑚𝑚 

And the cross section is T for the rib. 
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Chapter 9: Design for Shear and Torsion 

 

9.1  Introduction: 

A torque, a twisting moment or a torsional moment is a moment that acts about the 
longitudinal axis of a member. 

In a circular member, the shearing stresses are zero at the axis of the member and increase 
linearly to a maximum stress at the outside of the member as shown in Figure 9.1. 

In a rectangular member, the shearing stresses vary from zero at the center to a maximum at 
the centers of the long sides. Around the perimeter of a square member, the shearing stresses 
vary from zero at the corners to a maximum at the center of each side, as shown in Figure 9.1 

 

 

Figure 9.1: Distribution of torsional shear stresses 
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Figure 9.1- continued: Distribution of torsional shear stresses  

In structures, torsion results from: 

1. Eccentric loading of beams. 
2. Deformations resulting from continuity of beams or similar members that join at an 

angle to each other. 
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Figure 9.2: Torsion in structures 
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Torsion can be classified into two types:  

1. Equilibrium torsion: affects equilibrium. 
2. Compatibility torsion: does not affect equilibrium. 

 

 

 

 

Figure 9.3: Compatibility torsion 

 



Design of Reinforced Concrete Structures: A Practical Approach                              IBRAHIM ARMAN 
 

206 
 

9.2 Behavior of reinforced concrete members subjected to torsion: 

When a concrete member is loaded in pure torsion, shearing stresses develop. One or more 
cracks (inclined) develop when the maximum principal tensile stress reaches the tensile 
strength of the concrete. The onset of cracking failure of unreinforced concrete. 

Furthermore, the addition of longitudinal steel without stirrups has little effect on the 
strength of the beam loaded in pure torsion because it is effective only in increasing the 
longitudinal component of the diagonal tension forces. 

A rectangular beam with longitudinal bars in the corners and closed stirrups can resist 
increased load after cracking. 

 

Figure 9.4: Torque twist curve for a rectangular beam 

At the cracking load, point A, the angle of twist increases without an increase in torque as 
some of the forces formerly in the uncracked concrete are distributed to the reinforcement.  

After the cracking of a reinforced concrete beam, failure may occur in several ways. The 
stirrups, or longitudinal reinforcement, or both, may yield, or, for beams that are over- 
reinforced in torsion, the concrete between the inclined cracks may be crushed by the 
principal compression stresses prior to yield of the steel. The more ductile behavior results 
when both reinforcements yield prior to crushing of the concrete. 
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9.3  Combined shear and torsion: 

In combined shear and torsion, the cracking load follows a circular interaction diagram as in 
Figure 9.6.  

In Figure 9.6: 

𝑉𝑉𝑐𝑐𝑐𝑐= the cracking shear in the absence of torque. 

𝑇𝑇𝑐𝑐𝑐𝑐= the cracking torque in the absence of shear. 

 

Figure 9.5 Interaction of torsion and shear 

�
𝑇𝑇𝑐𝑐
𝑇𝑇𝑐𝑐𝑐𝑐

�
2

+ �
𝑉𝑉𝑐𝑐
𝑉𝑉𝑐𝑐𝑐𝑐

�
2

= 1 

 

9.4 Design methods for torsion: 

*  Skew bending theory: (1971- 1981) ACI CODES. It assumes that the shear and torsion are 
resisted by concrete (Vc and Tc) and the reinforcing steel (Vs and Ts). 

* Thin-walled tube/ plastic space truss model: in European codes and in ACI code since 1995. 
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Assumptions of thin-walled tube/ plastic space truss:  

1. Both solid and hollow members are considered as tubes: tests for solid and hollow beams 
suggest that, once the torsional cracking has occurred, the concrete in the center of the 
member has little effect on the torsional strength of the cross section and hence can be 
ignored. This, in effect, produce an equivalent tubular member. 

2. After cracking the tube is idealized as a hollow truss consisting of closed stirrups, 
longitudinal bars in the corners, and compression diagonals approximately centered on the 
stirrups. The diagonals are idealized as being between the cracks that are at angle θ, generally 
taken as 45 degrees for reinforced concrete. 

 

 

Figure 9.6: Thin-walled tube analogy and space truss analogy. 
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Figure 9.7: Combined shear and torsion 

 

 

Figure 9.8: Part of overhanging flange effective for torsion 
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Note:  

The cracking torque, the threshold torsion, area of stirrups for torsion and the area of the 
longitudinal steel needed for torsion resistance can be derived. For details refer to 
textbook. 

The cracking torsion: 

From mechanics of materials principles and from ACI assumptions, the cracking torsion, Tcr, 
is given by: 

𝑇𝑇𝑐𝑐𝑐𝑐 =
1
3
�𝑓𝑓′𝑐𝑐

𝐴𝐴𝑐𝑐𝑐𝑐2

𝑃𝑃𝑐𝑐𝑐𝑐
 

This formula is derived based on that the torsional cracking is assumed to occur when the 
principal tensile stress reaches the tensile strength of concrete in biaxial tension- compression 
which is: 

𝜎𝜎𝑡𝑡 =
1
3
�𝑓𝑓′𝑐𝑐 

Also,  

�
𝑇𝑇𝑐𝑐
𝑇𝑇𝑐𝑐𝑐𝑐

�
2

+ �
𝑉𝑉𝑐𝑐
𝑉𝑉𝑐𝑐𝑐𝑐

�
2

= 1 

𝐼𝐼𝑓𝑓 𝑇𝑇𝑐𝑐 =  0.25 𝑇𝑇𝑐𝑐𝑐𝑐, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒: 

𝑉𝑉𝑐𝑐
𝑉𝑉𝑐𝑐𝑐𝑐

= �1 − �
0.25𝑇𝑇𝑐𝑐𝑐𝑐
𝑇𝑇𝑐𝑐𝑐𝑐

� → 𝑉𝑉𝑐𝑐 = 0.97𝑉𝑉𝑐𝑐𝑐𝑐 

So, the existence of a torque equal to 0.25 of the cracking torque will reduce the cracking 
shear by only 3%. This is deemed to be negligible. In ACI code, the threshold torsion, ∅𝑻𝑻𝒕𝒕𝒕𝒕, 
below which torsion can be neglected in a solid section is given by:  

∅𝑇𝑇𝑡𝑡ℎ = ∅𝜆𝜆
1

12
�𝑓𝑓′𝑐𝑐

𝐴𝐴𝑐𝑐𝑐𝑐2

𝑃𝑃𝑐𝑐𝑐𝑐
 

Tables 9.1 and 9.2 show 𝑇𝑇𝑡𝑡ℎ equations. 

Table 9.3 shows 𝑇𝑇𝑐𝑐𝑐𝑐 equations. 
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Table 9.1: ACI 318-19 Table 22.7.4.1(a)—Threshold torsion for solid cross sections 

Type of member  
𝑻𝑻𝒕𝒕𝒕𝒕 

 

Nonprestressed 
member 

1
12

𝜆𝜆�𝑓𝑓′𝑐𝑐
𝐴𝐴𝑐𝑐𝑐𝑐2

𝑃𝑃𝑐𝑐𝑐𝑐
 

 

 
(a) 

 
Prestressed 

member 

1
12

𝜆𝜆�𝑓𝑓′𝑐𝑐
𝐴𝐴𝑐𝑐𝑐𝑐2

𝑃𝑃𝑐𝑐𝑐𝑐
�1 +

𝑓𝑓𝑐𝑐𝑐𝑐
0.33𝜆𝜆�𝑓𝑓′𝑐𝑐

 

 

 
(b) 

Nonprestressed 
member subjected 

to axial force 

1
12

𝜆𝜆�𝑓𝑓′𝑐𝑐
𝐴𝐴𝑐𝑐𝑐𝑐2

𝑃𝑃𝑐𝑐𝑐𝑐
�1 +

𝑁𝑁𝑐𝑐
0.33𝐴𝐴𝑔𝑔𝜆𝜆�𝑓𝑓′𝑐𝑐

 

 

 
(c) 

 

 

Table 9.2: ACI 318-19 Table 22.7.4.1(b)—Threshold torsion for hollow cross 
sections 

Type of member  
𝑻𝑻𝒕𝒕𝒕𝒕 

 

 
Nonprestressed 

member 

1
12

𝜆𝜆�𝑓𝑓′𝑐𝑐
𝐴𝐴𝑔𝑔2

𝑃𝑃𝑐𝑐𝑐𝑐
 

 

 
(a) 

 
Prestressed 

member 

1
12

𝜆𝜆�𝑓𝑓′𝑐𝑐
𝐴𝐴𝑔𝑔2

𝑃𝑃𝑐𝑐𝑐𝑐
�1 +

𝑓𝑓𝑐𝑐𝑐𝑐
0.33𝜆𝜆�𝑓𝑓′𝑐𝑐

 

 

 
(b) 

Nonprestressed 
member subjected 

to axial force 

1
12

𝜆𝜆�𝑓𝑓′𝑐𝑐
𝐴𝐴𝑔𝑔2

𝑃𝑃𝑐𝑐𝑐𝑐
�1 +

𝑁𝑁𝑐𝑐
0.33𝐴𝐴𝑔𝑔𝜆𝜆�𝑓𝑓′𝑐𝑐

 

 

 
(c) 
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Table 9.3: ACI 318-19 Table 22.7.5.1—Cracking torsion 

Type of member  
𝑻𝑻𝒄𝒄𝒄𝒄 

 

Nonprestressed 
member 

1
3
𝜆𝜆�𝑓𝑓′𝑐𝑐

𝐴𝐴𝑐𝑐𝑐𝑐2

𝑃𝑃𝑐𝑐𝑐𝑐
 

 

 
(a) 

 
Prestressed 

member 

1
3
𝜆𝜆�𝑓𝑓′𝑐𝑐

𝐴𝐴𝑐𝑐𝑐𝑐2

𝑃𝑃𝑐𝑐𝑐𝑐
�1 +

𝑓𝑓𝑐𝑐𝑐𝑐
0.33𝜆𝜆�𝑓𝑓′𝑐𝑐

 

 

 
(b) 

Nonprestressed 
member subjected 

to axial force 

1
3
𝜆𝜆�𝑓𝑓′𝑐𝑐

𝐴𝐴𝑐𝑐𝑐𝑐2

𝑃𝑃𝑐𝑐𝑐𝑐
�1 +

𝑁𝑁𝑐𝑐
0.33𝐴𝐴𝑔𝑔𝜆𝜆�𝑓𝑓′𝑐𝑐

 

 

 
(c) 

 

Where: 

𝐴𝐴𝑔𝑔: gross area of concrete section, 𝑚𝑚𝑚𝑚2 . For a hollow section, 𝐴𝐴𝑔𝑔 is the area of the 
concrete only and does not include the area of the void(s). 

𝐴𝐴𝑐𝑐𝑐𝑐: area enclosed by outside perimeter of concrete cross section, 𝑚𝑚𝑚𝑚2. 

𝑃𝑃𝑐𝑐𝑐𝑐: outside perimeter of concrete cross section, in. 

𝑓𝑓𝑐𝑐𝑐𝑐: compressive stress in concrete, after allowance for all prestress losses, at centroid of 
cross section, MPa. 

𝑁𝑁𝑐𝑐: factored axial force normal to cross section occurring simultaneously with Vu or Tu; to 
be taken as positive for compression and negative for tension, N. 

Maximum shear and torsion: 

A serviceability failure may occur if the inclined cracks are too wide at service loads. The limit 
on combined shear and torsion in ACI code was derived to limit the service load crack width. 

 

 

 

 

9.5  Torsion diagrams: 
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Figure 9.9: Torsion diagrams 

9.6  ACI design method for shear and torsion: 
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1. Calculate Vu and Tu at a section. Usually, the critical section is located at distance d from 
face of support. 

2. Determine whether torsion is compatibility or equilibrium. For compatibility torsion, the 
calculated torsion can be reduced to the cracking torsion ∅𝑇𝑇𝑐𝑐𝑐𝑐. 

If Tu is reduced to ∅𝑇𝑇𝑐𝑐𝑐𝑐, moment redistribution shall be applied. 

3. Design for torsion if 𝑇𝑇𝑐𝑐 >  ∅𝑇𝑇𝑡𝑡ℎ. 

4.  Check whether section is large enough for torsion design (check section adequacy). 

For solid sections: 

 

��
𝑉𝑉𝑐𝑐
𝑏𝑏𝑤𝑤𝑑𝑑

�
2

+ �
𝑇𝑇𝑐𝑐𝑃𝑃ℎ

1.7 𝐴𝐴𝑜𝑜ℎ2
�
2

≤ ∅
5
6
�𝑓𝑓′𝑐𝑐 

Where: 

𝑉𝑉𝑐𝑐= ultimate shear force, N.               

𝑉𝑉𝑐𝑐= ultimate torsion, N.mm. 

𝑃𝑃ℎ= perimeter of centerline of outermost closed transverse torsional reinforcement, mm. 

𝐴𝐴𝑜𝑜ℎ= area enclosed by centerline of the outermost closed transverse torsional reinforcement, 
mm2. 

𝑏𝑏𝑤𝑤= width of web.                          

d= effective depth. 

 

For hollow sections: 

𝑉𝑉𝑐𝑐
𝑏𝑏𝑤𝑤𝑑𝑑

+
𝑇𝑇𝑐𝑐𝑃𝑃ℎ

1.7 𝐴𝐴𝑜𝑜ℎ2
≤ ∅

5
6�

𝑓𝑓′𝑐𝑐 

 

For hollow sections where the wall thickness is less than 𝐴𝐴𝑜𝑜ℎ/𝑃𝑃ℎ, the term (𝑇𝑇𝑐𝑐𝑃𝑃ℎ/1.7𝐴𝐴𝑜𝑜ℎ2) 
shall be taken as (𝑇𝑇𝑐𝑐/1.7𝐴𝐴𝑜𝑜ℎ𝑡𝑡), where t is the thickness of the wall of the hollow section at 
the location where the stresses are being checked. 

5. Compute the area of stirrups required for shear, Av/S, mm2/mm. 
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6. Compute the area of stirrups required for torsion, At/S , mm2/mm, using the following 
equation: 

𝐴𝐴𝑡𝑡
𝑠𝑠

=
𝑇𝑇𝑛𝑛

2𝐴𝐴𝑜𝑜𝑓𝑓𝑦𝑦𝑡𝑡
          𝑇𝑇𝑛𝑛 =

𝑇𝑇𝑐𝑐
𝜙𝜙

           𝐴𝐴𝑜𝑜 = 0.85𝐴𝐴𝑜𝑜ℎ 

Where Ao= gross area enclosed by shear flow path, mm2. 

7. Add the required stirrup amounts together: 

𝐴𝐴𝑣𝑣+𝑡𝑡
𝑠𝑠

=
𝐴𝐴𝑣𝑣
𝑠𝑠

+ 2
𝐴𝐴𝑡𝑡
𝑠𝑠

              𝑓𝑓𝑓𝑓𝑓𝑓 2 𝑙𝑙𝑒𝑒𝑙𝑙𝑠𝑠 𝑐𝑐𝑙𝑙𝑓𝑓𝑠𝑠𝑒𝑒𝑑𝑑 𝑠𝑠𝑡𝑡𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠. 

𝐴𝐴𝑣𝑣+𝑡𝑡
𝑠𝑠

=
𝐴𝐴𝑣𝑣
𝑠𝑠

+ 4
𝐴𝐴𝑡𝑡
𝑠𝑠

              𝑓𝑓𝑓𝑓𝑓𝑓 4 𝑙𝑙𝑒𝑒𝑙𝑙𝑠𝑠 𝑐𝑐𝑙𝑙𝑓𝑓𝑠𝑠𝑒𝑒𝑑𝑑 𝑠𝑠𝑡𝑡𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠. 

𝐴𝐴𝑣𝑣+𝑡𝑡
𝑠𝑠

≥ 𝑚𝑚𝑚𝑚𝑚𝑚 �0.062�𝑓𝑓′𝑐𝑐
𝑏𝑏𝑤𝑤
𝑓𝑓𝑦𝑦𝑡𝑡

,
0.35𝑏𝑏𝑤𝑤
𝑓𝑓𝑦𝑦𝑡𝑡

� 

The maximum spacing between the closed stirrups is the smaller of 
Ph
8

   and 300mm. 

8. Determine the longitudinal reinforcement for torsion:  

𝐴𝐴𝑙𝑙 =
𝑇𝑇𝑛𝑛𝑃𝑃ℎ

2𝐴𝐴𝑜𝑜𝑓𝑓𝑦𝑦
= �

𝐴𝐴𝑡𝑡
𝑠𝑠 �

𝑃𝑃ℎ �
𝑓𝑓𝑦𝑦𝑡𝑡
𝑓𝑓𝑦𝑦
� 

𝐴𝐴𝑙𝑙,𝑚𝑚𝑚𝑚𝑛𝑛 =
5�𝑓𝑓′𝑐𝑐
12𝑓𝑓𝑦𝑦

𝐴𝐴𝑐𝑐𝑐𝑐 − �
𝐴𝐴𝑡𝑡
𝑠𝑠 �

𝑃𝑃ℎ �
𝑓𝑓𝑦𝑦𝑡𝑡
𝑓𝑓𝑦𝑦
�                 𝑚𝑚𝑒𝑒𝑑𝑑 

𝐴𝐴𝑡𝑡
𝑠𝑠
≥

0.175𝑏𝑏𝑤𝑤
𝑓𝑓𝑦𝑦𝑡𝑡

 

9.7  Notes: 

1. Torsional reinforcement shall continue a distance (𝑏𝑏𝑡𝑡 +  𝑑𝑑) past the point where the 
torque is less than the threshold torsion. Where 𝑏𝑏𝑡𝑡 is the width of that part of cross section 
containing the closed stirrups resisting torsion, mm. 

2. The stirrups must be closed. 

3. Longitudinal torsion reinforcement shall be developed at both ends. 

4. The longitudinal reinforcement shall be distributed around the perimeter of the closed 
stirrups with a maximum spacing of 300mm. 

5.   The longitudinal bars shall be inside the closed stirrups. 

6.    There shall be at least one longitudinal bar in each corner of the stirrups. 

7.    Longitudinal bars shall have a diameter at least 1/24 (0.042) times the stirrup spacing, but 
not less than 10mm. 
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Example 1: 

Given: 

f’c= 28MPa 

fy= 420MPa 

Rectangular section: bw= 350mm     h=600mm 

Clear cover to stirrup= 40mm 

Assume 𝛷𝛷12𝑚𝑚𝑚𝑚 stirrups and 𝛷𝛷25𝑚𝑚𝑚𝑚 longitudinal bars 

Mu (negative moment) = 310kN.m 

Vu= 260kN 

Tu= 38kN.m 

 

Solution 

Step 1: Determine the flexural reinforcement:  

For Mu= 310kN.m,  bw=350mm and  h=600mm: 

d= 600- ( 40+12+25/2)= 600-65=535mm 

→ 𝜌𝜌 =  0.00887 

𝜌𝜌𝑚𝑚𝑚𝑚𝑛𝑛 =  0.00333                                 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚,𝑠𝑠𝑚𝑚𝑛𝑛𝑔𝑔𝑙𝑙𝑦𝑦 = 0.375𝛽𝛽1
0.85𝑓𝑓′𝑐𝑐
𝑓𝑓𝑦𝑦

= 0.01806 

𝜌𝜌𝑚𝑚𝑚𝑚𝑛𝑛  <  𝜌𝜌 <  𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚,𝑠𝑠𝑚𝑚𝑛𝑛𝑔𝑔𝑙𝑙𝑦𝑦       𝑓𝑓𝑜𝑜 

𝐴𝐴𝑠𝑠 =  0.00887(350)(535) = 1661𝑚𝑚𝑚𝑚2  

Step 2:  Check torsion:  𝑇𝑇𝑐𝑐 =  38𝑜𝑜𝑁𝑁.𝑚𝑚 

∅𝑇𝑇𝑡𝑡ℎ = ∅
1

12
�𝑓𝑓′𝑐𝑐

𝐴𝐴𝑐𝑐𝑐𝑐2

𝑃𝑃𝑐𝑐𝑐𝑐
 

𝐴𝐴𝑐𝑐𝑐𝑐 =  350(600) =  210 000𝑚𝑚𝑚𝑚2 

𝑃𝑃𝑐𝑐𝑐𝑐 =  2(350 + 600) =  1900𝑚𝑚𝑚𝑚 
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∅𝑇𝑇𝑡𝑡ℎ = ∅𝜆𝜆
1

12
�𝑓𝑓′𝑐𝑐

𝐴𝐴𝑐𝑐𝑐𝑐2

𝑃𝑃𝑐𝑐𝑐𝑐
=

(0.75)(1) 1
12√28 (210000)2

1900
106

= 7.68𝑜𝑜𝑁𝑁.𝑚𝑚 

So, consider torsion. 

Step 3:  Check section adequacy: check section dimensions: 

��
𝑉𝑉𝑐𝑐
𝑏𝑏𝑤𝑤𝑑𝑑

�
2

+ �
𝑇𝑇𝑐𝑐𝑃𝑃ℎ

1.7 𝐴𝐴𝑜𝑜ℎ2
�
2

≤ ∅
5
6
�𝑓𝑓′𝑐𝑐 

𝑉𝑉𝑐𝑐 =  260 𝑚𝑚 103 𝑁𝑁      𝑇𝑇𝑐𝑐 =  38 𝑚𝑚 106 𝑁𝑁.𝑚𝑚𝑚𝑚 

𝑏𝑏𝑤𝑤 =  350𝑚𝑚𝑚𝑚   𝑑𝑑 =  535𝑚𝑚𝑚𝑚 

 𝑚𝑚1  =  350 − (40 + 12/2)(2)   =  350 − 92 =  258𝑚𝑚𝑚𝑚 

𝑦𝑦1 =  600 − 92 =  508𝑚𝑚𝑚𝑚 

𝐴𝐴𝑜𝑜ℎ =  𝑚𝑚1𝑦𝑦1  =  258(508)  =  131064𝑚𝑚𝑚𝑚2                

𝑃𝑃ℎ =  2(258 + 508) =  1532𝑚𝑚𝑚𝑚 

Applied stress (left side of the equation) = 2.43MPa  

Allowed stress (right side of the equation) = 3.31MPa 

→ Section dimensions are ok. 

Step 4:  Compute shear reinforcement: Applicable for ACI 318-14 and ACI 318-19: 

𝑉𝑉𝑐𝑐 =  260𝑜𝑜𝑁𝑁          
𝑉𝑉𝑐𝑐
𝛷𝛷

=  346.7𝑜𝑜𝑁𝑁 

𝑉𝑉𝑐𝑐 =
1
6
𝜆𝜆�𝑓𝑓′𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 =

1
6 (1)√28(350)(535)

1000
= 165𝑜𝑜𝑁𝑁 

 

𝑉𝑉𝑠𝑠 =  346.7 −  165 =  181.7𝑜𝑜𝑁𝑁 

𝐴𝐴𝑣𝑣
𝑠𝑠

=
𝑉𝑉𝑠𝑠
𝑓𝑓𝑦𝑦𝑡𝑡𝑑𝑑

=
181700

(420)(535) = 0.81𝑚𝑚𝑚𝑚2/𝑚𝑚𝑚𝑚 

Step 5:  Compute torsion transverse reinforcement: 
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𝐴𝐴𝑡𝑡
𝑠𝑠

=
𝑇𝑇𝑐𝑐/∅

2𝐴𝐴𝑜𝑜𝑓𝑓𝑦𝑦𝑡𝑡
=

(38𝑚𝑚106)/0.75
(2)(0.85)(131064)(420)

=
0.541𝑚𝑚𝑚𝑚2

𝑚𝑚𝑚𝑚
 

Step 6: Add shear and torsion transverse reinforcement: 

𝐴𝐴𝑣𝑣+𝑡𝑡
𝑠𝑠

=
𝐴𝐴𝑣𝑣
𝑠𝑠

+ 2
𝐴𝐴𝑡𝑡
𝑠𝑠

= 0.81 + 2(0.541) = 1.892𝑚𝑚𝑚𝑚2/𝑚𝑚𝑚𝑚 

𝐴𝐴𝑣𝑣+𝑡𝑡
𝑠𝑠

≥ 𝑚𝑚𝑚𝑚𝑚𝑚 �0.062�𝑓𝑓′𝑐𝑐
𝑏𝑏𝑤𝑤
𝑓𝑓𝑦𝑦𝑡𝑡

,
0.35𝑏𝑏𝑤𝑤
𝑓𝑓𝑦𝑦𝑡𝑡

� =
0.29𝑚𝑚𝑚𝑚2

𝑚𝑚𝑚𝑚
<

1.892𝑚𝑚𝑚𝑚2

𝑚𝑚𝑚𝑚
     𝑓𝑓𝑜𝑜. 

Stirrups spacing, S= 113x2/1.892= 119mm 

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑃𝑃ℎ
8

=
1532

8
=  192𝑚𝑚𝑚𝑚 < 300𝑚𝑚𝑚𝑚 

Use S= 100mm 

Step 6:  compute torsion longitudinal reinforcement: 

𝐴𝐴𝑙𝑙 =
𝑇𝑇𝑛𝑛𝑃𝑃ℎ

2𝐴𝐴𝑜𝑜𝑓𝑓𝑦𝑦
= �

𝐴𝐴𝑡𝑡
𝑠𝑠 �

𝑃𝑃ℎ �
𝑓𝑓𝑦𝑦𝑡𝑡
𝑓𝑓𝑦𝑦
� 

𝐴𝐴𝑙𝑙,𝑚𝑚𝑚𝑚𝑛𝑛 =
5�𝑓𝑓′𝑐𝑐
12𝑓𝑓𝑦𝑦

𝐴𝐴𝑐𝑐𝑐𝑐 − �
𝐴𝐴𝑡𝑡
𝑠𝑠 �

𝑃𝑃ℎ �
𝑓𝑓𝑦𝑦𝑡𝑡
𝑓𝑓𝑦𝑦
�   𝑚𝑚𝑒𝑒𝑑𝑑     

𝐴𝐴𝑡𝑡
𝑠𝑠
≥

0.175𝑏𝑏𝑤𝑤
𝑓𝑓𝑦𝑦𝑡𝑡

=
0.175(350)

420
=

0.15𝑚𝑚𝑚𝑚2

𝑚𝑚𝑚𝑚
. 

𝐴𝐴𝑡𝑡
𝑠𝑠

=
0.541𝑚𝑚𝑚𝑚2

𝑚𝑚𝑚𝑚
>

0.15𝑚𝑚𝑚𝑚2

𝑚𝑚𝑚𝑚
             𝑃𝑃ℎ =  1532𝑚𝑚𝑚𝑚 

𝐴𝐴𝑐𝑐𝑐𝑐 =  210 000𝑚𝑚𝑚𝑚2    

→  𝐴𝐴𝑙𝑙 =  829𝑚𝑚𝑚𝑚2        𝐴𝐴𝑙𝑙,𝑚𝑚𝑠𝑠𝑒𝑒 =  126𝑚𝑚𝑚𝑚2   

𝑈𝑈𝑠𝑠𝑒𝑒 𝐴𝐴𝑙𝑙 =  829𝑚𝑚𝑚𝑚2 

Step 7:  Bars distribution: 

Torsion longitudinal bars: they can be divided into three layers to have maximum spacing 
between bars not larger than 300mm; bottom, middle and top.  

So, 

𝐴𝐴𝑠𝑠 =
829

3
= 276𝑚𝑚𝑚𝑚2 

Top bars, 𝐴𝐴𝑠𝑠 = 1661 + 276 = 1937𝑚𝑚𝑚𝑚2    4𝜙𝜙25 
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Middle bars, 𝐴𝐴𝑠𝑠 = 276𝑚𝑚𝑚𝑚2    (2𝜙𝜙14) 

Bottom bars, 𝐴𝐴𝑠𝑠 = 276𝑚𝑚𝑚𝑚2  (2𝜙𝜙14) 

 

 

Figure 9.10: Beam cross section 
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Chapter 10: Deflection of Beams and One-Way Slabs 

 

10.1  Structures should be designed for: 

- Adequate strength at ultimate loads. 
- Limited and accepted deflections at service loads. 
- Limited crack widths.  
- Ductility provisions: the deflection at ultimate loads should be large enough to give 

warning of failure so that the total collapse could be prevented 

10.2 Behavior of beams: 

When a beam is subjected to load, it is subjected to bending moment, Ma. The beam will be 
subjected to the following stages: 

Stage 1: Pre-cracking stage 

𝑀𝑀𝑎𝑎 < 𝑀𝑀𝑐𝑐𝑐𝑐             

𝑀𝑀𝑢𝑢 ≤ ∅𝑀𝑀𝑛𝑛 

𝑀𝑀𝑐𝑐𝑐𝑐 =
𝑓𝑓𝑐𝑐𝐼𝐼𝑔𝑔
𝑦𝑦𝑡𝑡

 

𝑓𝑓𝑐𝑐 = 0.62𝜆𝜆�𝑓𝑓′𝑐𝑐 

 

Where:  

𝑀𝑀𝑎𝑎: Service bending moment. 

𝑀𝑀𝑐𝑐𝑐𝑐: Cracked moment. 

𝑀𝑀𝑢𝑢: Ultimate moment. 

∅𝑀𝑀𝑛𝑛: Design strength for flexure. 

𝐼𝐼𝑔𝑔: Gross moment of inertia. 

𝑓𝑓𝑐𝑐: Modulus of rupture, MPa. 

𝜆𝜆: Modification factor reflecting the reduced mechanical properties of lightweight concrete, 

all relative to normal weight concrete of the same compressive strength. 
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𝑦𝑦𝑡𝑡:  Distance from centroidal axis of gross section, neglecting reinforcement, to tension face, 
mm. 

 

Stage 2: Post-cracking stage 

𝑀𝑀𝑎𝑎 ≥ 𝑀𝑀𝑐𝑐𝑐𝑐  

𝑀𝑀𝑢𝑢 ≤ ∅𝑀𝑀𝑛𝑛 

 

Stage 3: Post-serviceability 

Where the stress in the tension reinforcement reaches the limit state of yielding, then a 
failure will develop. 

𝑀𝑀𝑢𝑢 > ∅𝑀𝑀𝑛𝑛 

 

10.3  Effective moment of inertia: 

ACI 318-14: 

For nonprestressed members, effective moment of inertia, 𝐼𝐼𝑒𝑒, shall be calculated by Eq. 
(24.2.3.5a) unless obtained by a more comprehensive analysis, but 𝐼𝐼𝑒𝑒 shall not be greater than 
𝐼𝐼𝑔𝑔.  

𝐼𝐼𝑒𝑒 = �
𝑀𝑀𝑐𝑐𝑐𝑐

𝑀𝑀𝑎𝑎
�
3

𝐼𝐼𝑔𝑔 + �1 − �
𝑀𝑀𝑐𝑐𝑐𝑐

𝑀𝑀𝑎𝑎
�
3

� 𝐼𝐼𝑐𝑐𝑐𝑐               𝐴𝐴𝐴𝐴𝐼𝐼318 − 14 𝑒𝑒𝑒𝑒. (24.2.3.5𝑎𝑎) 

Where 𝐼𝐼𝑐𝑐𝑐𝑐 is the section cracked moment of inertia.  

𝐼𝐼𝑓𝑓 𝑀𝑀𝑎𝑎 < 𝑀𝑀𝑐𝑐𝑐𝑐 → 𝐼𝐼𝑒𝑒 = 𝐼𝐼𝑔𝑔 

𝐼𝐼𝑓𝑓 3𝑀𝑀𝑐𝑐𝑐𝑐 ≥ 𝑀𝑀𝑎𝑎 ≥ 𝑀𝑀𝑐𝑐𝑐𝑐 → 𝐼𝐼𝑒𝑒    𝐴𝐴𝐴𝐴𝐼𝐼318 − 14 𝑒𝑒𝑒𝑒. (24.2.3.5𝑎𝑎) 

𝐼𝐼𝑓𝑓 𝑀𝑀𝑎𝑎 > 3𝑀𝑀𝑐𝑐𝑐𝑐 → 𝐼𝐼𝑒𝑒 = 𝐼𝐼𝑐𝑐𝑐𝑐 

ACI 318-19: 

For nonprestressed members, unless obtained by a more comprehensive analysis, effective 
moment of inertia, 𝐼𝐼𝑒𝑒 shall be calculated in accordance with Table 24.2.3.5. 
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Table 10.1: ACI 318-19 Table 24.2.3.5—Effective moment of inertia, Ie 

Service moment Effective moment of inertia, 𝐈𝐈𝐞𝐞 mm4  

Ma ≤
2
3

Mcr  
𝐼𝐼𝑔𝑔  (a) 

Ma >
2
3

Mcr 
 

𝐼𝐼𝑒𝑒 =
𝐼𝐼𝑐𝑐𝑐𝑐

1 − �
�2

3�𝑀𝑀𝑐𝑐𝑐𝑐

𝑀𝑀𝑎𝑎
�

2

�1 − 𝐼𝐼𝑐𝑐𝑐𝑐
𝐼𝐼𝑔𝑔
�

 

 

 
(b) 

 

10.4  Deflection computations: 

The deflection value depends on: 

- Span 
- Loads 
- Supports 
- Modulus of elasticity 
- Moment of inertia 

The deflection can be divided into: 

- Immediate (instantaneous) deflection 
- Long term deflection (due to creep and shrinkage) 

The total long-term deflection, ∆𝑳𝑳𝑳𝑳 is given by:  

𝛥𝛥𝐿𝐿𝐿𝐿 =  𝛥𝛥𝐿𝐿  +  𝜆𝜆∞ 𝛥𝛥𝐷𝐷  +  𝜆𝜆 𝑡𝑡 𝛥𝛥𝐿𝐿𝐿𝐿 

 where:  

ΔL: immediate live load deflection. 

ΔD : immediate dead load deflection. 

ΔLS : immediate sustained live load deflection. 

λ Δ: multiplier for additional deflection due to long-term effects 

𝜆𝜆∆ =
𝜉𝜉

1 + 50𝜌𝜌′
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where 𝜌𝜌′ (compression steel ratio) shall be the value at midspan for simple and continuous 
spans, and at support for cantilevers.  

It shall be permitted to assume ξ, the time-dependent factor for sustained loads, to be equal 
to: 

5 years or more ..................... 2.0 

12 months.............................. 1.4 

6  months............................... 1.2 

3 months................................ 1.0 

 

 

Figure 10.1: Multipliers for long-term deflections 

 

10.5  Member effective moment of inertia 

Computations of 𝑰𝑰𝒆𝒆 (option 1):  

For continuous members, 𝐼𝐼𝑒𝑒 shall be permitted to be taken as the average of values for the 
critical positive and negative moment sections.  

Computations of 𝑰𝑰𝒆𝒆 (option 2):  

For prismatic members,𝐼𝐼𝒆𝒆 shall be permitted to be taken as the value at midspan for simple 
and continuous spans, and at support for cantilevers. 
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Computations of 𝑰𝑰𝒆𝒆 (option 3):  

Or, one can use the following formulas to compute 𝐼𝐼𝑒𝑒 in beams:  

𝐹𝐹𝐹𝐹𝐹𝐹 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒 𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠: 𝐼𝐼𝑒𝑒 = 𝐼𝐼𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑛𝑛 

𝐹𝐹𝐹𝐹𝐹𝐹 𝑐𝑐𝑎𝑎𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒𝐹𝐹: 𝐼𝐼𝑒𝑒 = 𝐼𝐼𝑒𝑒,𝑓𝑓𝑚𝑚𝑓𝑓𝑒𝑒𝑚𝑚 𝑒𝑒𝑛𝑛𝑚𝑚 

𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹𝑠𝑠𝑒𝑒 𝑒𝑒𝑠𝑠𝑒𝑒 𝑐𝑐𝐹𝐹𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝐹𝐹𝑐𝑐𝑠𝑠 𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠: 𝐼𝐼𝑒𝑒 = 0.85𝐼𝐼𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑛𝑛 + 0.15𝐼𝐼𝑒𝑒,𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡𝑚𝑚𝑛𝑛𝑢𝑢𝑐𝑐𝑢𝑢𝑚𝑚 𝑒𝑒𝑛𝑛𝑚𝑚 

𝐹𝐹𝐹𝐹𝐹𝐹 𝑐𝑐𝑡𝑡𝐹𝐹 𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠 𝑐𝑐𝐹𝐹𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝐹𝐹𝑐𝑐𝑠𝑠 𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠: 

 𝐼𝐼𝑒𝑒 = 0.7𝐼𝐼𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑛𝑛 + 0.15𝐼𝐼𝑒𝑒,𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡𝑚𝑚𝑛𝑛𝑢𝑢𝑐𝑐𝑢𝑢𝑚𝑚 𝑒𝑒𝑛𝑛𝑚𝑚−1 + 0.15𝐼𝐼𝑒𝑒,𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡𝑚𝑚𝑛𝑛𝑢𝑢𝑐𝑐𝑢𝑢𝑚𝑚 𝑒𝑒𝑛𝑛𝑚𝑚−2 

10.6  Allowable deflections: 

The minimum thickness stipulated in ACI 318-19 code Tables 7.3.1.1, 9.3.1.1 shall apply for 
one-way construction not supporting or attached to partitions or other construction likely to 
be damaged by large deflections, unless computation of deflection indicates a lesser thickness 
can be used without adverse effects. 

Table 10.2: ACI 318-19 Table 24.2.2—Maximum permissible calculated deflections 

 
Member 

 
Condition 

 
Deflection to be considered 

Deflection 
limitation 

Flat roofs Not supporting or attached to 
nonstructural elements likely to be 
damaged by large deflections 
Immediate deflection due to L 

Immediate deflection due to 
maximum of 𝐿𝐿𝑐𝑐, S, and R 

L/180[1] 

Floors L/360  

 
 Roof or 
 floors 

 
Supporting or 
attached to 
nonstructural 
elements 

Likely to be 
damaged 
by 
large 
deflections 

That part of the total deflection 
occurring after attachment of 
nonstructural elements, which is 
the sum of the time- dependent 
deflection due to all sustained 
loads and the immediate 
deflection due to any additional 
live load [2] 

L/480[3] 

Not likely to 
be 
damaged 
by large 
deflections 

L/240[4] 

[1] Limit not intended to safeguard against ponding. Ponding shall be checked by calculations of 
deflection, including added deflections due to ponded water, and considering time- dependent effects of 
sustained loads, camber, construction tolerances, and reliability of provisions for drainage. 
[2] Time-dependent deflection shall be calculated in accordance with 24.2.4, but shall be permitted to be 
reduced by amount of deflection calculated to occur before attachment of nonstructural elements. This 
amount shall be calculated on basis of accepted engineering data relating to time-deflection characteristics 
of members similar to those being considered. 
[3] Limit shall be permitted to be exceeded if measures are taken to prevent damage to supported or 
attached elements. 
[4] Limit shall not exceed tolerance provided for nonstructural elements. 
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10.7  Note: 

 

 

 

 

 

 

Figure 10.2: Deflection at mid span 
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The midspan deflection for a continuous beam with uniform loads and unequal end moments 
can be computed with the use of superposition as follows (notice the signs of deflections): 

Δ = Δ𝑐𝑐 − Δ1 − Δ2 

Δ =
5𝑀𝑀𝑐𝑐𝐿𝐿2

48𝐸𝐸𝐼𝐼
−

3𝑀𝑀1𝐿𝐿2

48𝐸𝐸𝐼𝐼
−

3𝑀𝑀2𝐿𝐿2

48𝐸𝐸𝐼𝐼
 

Where: 

𝑀𝑀𝑐𝑐: The moment at midspan due to uniform loads on a simple span. 

𝑀𝑀1 and 𝑀𝑀2: The span end moments. 

Example 1: 

Calculate the immediate and long-term deflections for the beam shown in Figure 10.3 below 
assuming half the live load is sustained forever and compare with code allowable values. 

Given: f’c= 24MPa    

     fy= 420MPa 

 

 

Figure 10.3: Beam model and section for example 1 
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Solution: 

Immediate deflection due to dead load: 

𝑀𝑀𝑎𝑎 =  𝑀𝑀𝐷𝐷 =  
𝑡𝑡𝐷𝐷𝐿𝐿2

8
=  

(40)(8)2

8
=  320𝑘𝑘𝑘𝑘.𝑠𝑠 

𝐼𝐼𝑔𝑔 =
𝑏𝑏ℎ3

12
=

(400)(800)3

12
= 1.707𝑥𝑥1010𝑠𝑠𝑠𝑠4 

𝑓𝑓𝑐𝑐 = 0.62𝜆𝜆�𝑓𝑓′𝑐𝑐 = 0.62(1)√24 = 3.037𝑀𝑀𝑀𝑀𝑎𝑎 

𝑀𝑀𝑐𝑐𝑐𝑐 =
𝑓𝑓𝑐𝑐𝐼𝐼𝑔𝑔
𝑦𝑦𝑡𝑡

=
(3.037)(1.707𝑥𝑥1010)

800/2
/106 = 129.6𝑘𝑘𝑘𝑘.𝑠𝑠 

Since 𝑀𝑀𝑎𝑎 > 𝑀𝑀𝑐𝑐𝑐𝑐 , 𝑐𝑐ℎ𝑒𝑒 𝑠𝑠𝐹𝐹𝑠𝑠𝑒𝑒𝑠𝑠𝑐𝑐 𝐹𝐹𝑓𝑓 𝑠𝑠𝑠𝑠𝑒𝑒𝐹𝐹𝑐𝑐𝑠𝑠𝑎𝑎 𝑠𝑠ℎ𝑎𝑎𝑠𝑠𝑠𝑠 𝑏𝑏𝑒𝑒 𝐹𝐹𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒. 

Calculations of 𝑰𝑰𝒄𝒄𝒄𝒄: 

 

Figure 10.4: Cracked section for the beam 

 

Since As’ is very small comparing with As, so it will be neglected. 

The location of the neutral axis can be calculated as follows: 

𝑏𝑏𝑐𝑐
𝑐𝑐
2

= 𝑠𝑠𝐴𝐴𝑚𝑚(𝑒𝑒 − 𝑐𝑐) 

𝐸𝐸𝑐𝑐 = 4700�𝑓𝑓′𝑐𝑐 = 4700√24 = 23000𝑀𝑀𝑀𝑀𝑎𝑎 

𝑠𝑠 =
𝐸𝐸𝑚𝑚
𝐸𝐸𝑐𝑐

=
200000
23000

= 8.7 
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𝐴𝐴𝑚𝑚 = 8(491) = 3928𝑠𝑠𝑠𝑠2 

𝑏𝑏𝑐𝑐
𝑐𝑐
2

= 𝑠𝑠𝐴𝐴𝑚𝑚(𝑒𝑒 − 𝑐𝑐) = (400)(𝑐𝑐) �
𝑐𝑐
2
� = (8.7)(3928)(720 − 𝑐𝑐) 

𝑐𝑐2 + 171𝑐𝑐 − 123000 = 0 → 𝑐𝑐 = 275𝑠𝑠𝑠𝑠 

𝐼𝐼𝑐𝑐𝑐𝑐 =
𝑏𝑏𝑐𝑐3

3
+ 𝑠𝑠𝐴𝐴𝑚𝑚(𝑒𝑒 − 𝑐𝑐)2 = 9.54𝑥𝑥109𝑠𝑠𝑠𝑠4 

ACI 318-14: 

3𝑀𝑀𝑐𝑐𝑐𝑐 ≥ 𝑀𝑀𝑎𝑎 ≥ 𝑀𝑀𝑐𝑐𝑐𝑐 

𝐼𝐼𝑒𝑒 = �
𝑀𝑀𝑐𝑐𝑐𝑐

𝑀𝑀𝑎𝑎
�
3

𝐼𝐼𝑔𝑔 + �1 − �
𝑀𝑀𝑐𝑐𝑐𝑐

𝑀𝑀𝑎𝑎
�
3

� 𝐼𝐼𝑐𝑐𝑐𝑐 = 1𝑥𝑥1010𝑠𝑠𝑠𝑠4   

∆=
5𝑡𝑡𝐷𝐷𝐿𝐿4

384𝐸𝐸𝑐𝑐𝐼𝐼𝑒𝑒
=

(5)(40)(8000)4

(384)(23000)(1𝑥𝑥1010)
= 9.3𝑠𝑠𝑠𝑠 

ACI 318-19: 

𝐼𝐼𝑒𝑒 =
𝐼𝐼𝑐𝑐𝑐𝑐

1 − �
�2

3�𝑀𝑀𝑐𝑐𝑐𝑐

𝑀𝑀𝑎𝑎
�

2

�1 − 𝐼𝐼𝑐𝑐𝑐𝑐
𝐼𝐼𝑔𝑔
�

=
9.54𝑥𝑥109

1 − �
2
3 (129.6)

320 �

2

�1 − 9.54𝑥𝑥109
1.707𝑥𝑥1010�

= 9.86𝑥𝑥109𝑠𝑠𝑠𝑠4 

 

∆=
5𝑡𝑡𝐷𝐷𝐿𝐿4

384𝐸𝐸𝑐𝑐𝐼𝐼𝑒𝑒
=

(5)(40)(8000)4

(384)(23000)(9.86𝑥𝑥109)
= 9.4𝑠𝑠𝑠𝑠 

Immediate deflection due to dead + live load: 

𝑀𝑀𝑎𝑎 =  𝑀𝑀𝐷𝐷+𝐿𝐿 =  
𝑡𝑡𝐷𝐷+𝐿𝐿𝐿𝐿2

8
=  

(70)(8)2

8
=  560𝑘𝑘𝑘𝑘.𝑠𝑠 

ACI 318-14: 

𝑀𝑀𝑎𝑎 ≥ 3𝑀𝑀𝑐𝑐𝑐𝑐 → 𝐼𝐼𝑒𝑒 = 𝐼𝐼𝑐𝑐𝑐𝑐 = 9.54𝑥𝑥109𝑠𝑠𝑠𝑠4 

∆=
5𝑡𝑡𝐷𝐷+𝐿𝐿𝐿𝐿4

384𝐸𝐸𝑐𝑐𝐼𝐼𝑒𝑒
=

(5)(70)(8000)4

(384)(23000)(9.54𝑥𝑥109)
= 17𝑠𝑠𝑠𝑠 
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ACI 318-19: 

𝐼𝐼𝑒𝑒 =
𝐼𝐼𝑐𝑐𝑐𝑐

1 − �
�2

3�𝑀𝑀𝑐𝑐𝑐𝑐

𝑀𝑀𝑎𝑎
�

2

�1 − 𝐼𝐼𝑐𝑐𝑐𝑐
𝐼𝐼𝑔𝑔
�

=
9.54𝑥𝑥109

1 − �
2
3 (129.6)

560 �

2

�1 − 9.54𝑥𝑥109
1.707𝑥𝑥1010�

= 9.64𝑥𝑥109𝑠𝑠𝑠𝑠4 

 𝐹𝐹𝐹𝐹         𝑀𝑀𝑎𝑎 ≥ 3𝑀𝑀𝑐𝑐𝑐𝑐 → 𝐼𝐼𝑒𝑒 = 𝐼𝐼𝑐𝑐𝑐𝑐 = 9.54𝑥𝑥109𝑠𝑠𝑠𝑠4 

∆=
5𝑡𝑡𝐷𝐷+𝐿𝐿𝐿𝐿4

384𝐸𝐸𝑐𝑐𝐼𝐼𝑒𝑒
=

(5)(70)(8000)4

(384)(23000)(9.54𝑥𝑥109)
= 17𝑠𝑠𝑠𝑠 

𝐴𝐴𝐴𝐴𝐼𝐼 318 − 19:          ∆𝐿𝐿= ∆𝐷𝐷+𝐿𝐿 − ∆𝐷𝐷= 17 − 9.4 = 7.6𝑠𝑠𝑠𝑠 

Immediate deflection due to dead + sustained live load: 

𝑀𝑀𝑎𝑎 =  𝑀𝑀𝐷𝐷+𝐿𝐿𝑚𝑚 =  
𝑡𝑡𝐷𝐷+𝐿𝐿𝑚𝑚𝐿𝐿2

8
=  

(55)(8)2

8
=  440𝑘𝑘𝑘𝑘.𝑠𝑠 > 3𝑀𝑀𝑐𝑐𝑐𝑐 

𝐼𝐼𝑒𝑒 = 𝐼𝐼𝑐𝑐𝑐𝑐 = 9.54𝑥𝑥109𝑠𝑠𝑠𝑠4 

∆=
5𝑡𝑡𝐷𝐷+𝐿𝐿𝑚𝑚𝐿𝐿4

384𝐸𝐸𝑐𝑐𝐼𝐼𝑒𝑒
=

(5)(55)(8000)4

(384)(23000)(9.54𝑥𝑥109)
= 13.4𝑠𝑠𝑠𝑠 

𝐴𝐴𝐴𝐴𝐼𝐼 318 − 19:          ∆𝐿𝐿𝑚𝑚= ∆𝐷𝐷+𝐿𝐿𝑚𝑚 − ∆𝐷𝐷= 13.4 − 9.4 = 4.0𝑠𝑠𝑠𝑠 

𝐴𝐴𝐴𝐴𝐼𝐼 318 − 19:          ∆𝐿𝐿,𝑢𝑢𝑛𝑛𝑚𝑚𝑢𝑢𝑚𝑚𝑡𝑡𝑎𝑎𝑚𝑚𝑛𝑛𝑒𝑒𝑚𝑚= ∆𝐷𝐷+𝐿𝐿 − ∆𝐷𝐷+𝐿𝐿𝑚𝑚= 17 − 13.4 = 3.6𝑠𝑠𝑠𝑠 

 

Total long-term deflection: 

ΔLT =  ΔL  +  λ∞ ΔD  +  λ t ΔLS 

𝜌𝜌′ =
𝐴𝐴𝑚𝑚′

𝑏𝑏𝑤𝑤𝑒𝑒
=

(4)(113)
(400)(740)

= 0.00153 

𝜆𝜆∆ =
𝜉𝜉

1 + 50𝜌𝜌′
=

2
1 + (50)(0.00153)

= 1.86 

∆𝐿𝐿𝐿𝐿=  3.6 + (1.86) (9.4)  +  (1.86) (4.0) =  28.5𝑠𝑠𝑠𝑠 

Compare deflections with ACI allowable values: 

L/180= 44mm        >       ∆L= 7.6mm           OK 

L/360= 22mm        >       ∆L= 7.6mm           OK 
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L/480= 16.7mm    <        ∆LT= 28.5mm       N.G 

L/240= 33.3mm    >        ∆LT= 28.5mm       OK 

 

So, this beam is not applicable for: 

Roof or floor construction supporting or attached to nonstructural elements likely to be 
damaged by large deflections. 

 

Example 2: 

Calculate 𝐼𝐼𝑔𝑔 and 𝐼𝐼𝑐𝑐𝑐𝑐 for the section shown in Figure 10.5 below.  

Given: n= 8.72 

 

Figure 10.5: Beam section for example 2 

Solution: 

Gross moment of inertia: 

Calculate location of centroid (take the reference line at top edge of section):  

(750-300)(75)(75/2)+ (300)(550)(550/2)= y’ ((750-300)(75)+ (300)(550))   

 →  y’= 234.7mm 

Ig= (1/12)(750-300)(75)3 + (750-300)(75)(234.7-75/2)2  + (1/12)(300)(550)3 
+(300)(550)(234.7-55/2)2 = 5.76 x 109 mm4  
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Cracked moment of inertia: 

The centroid is not clear, it is within the flange or within the web. So, assume that the 
centroid is located at the web- flange junction, c= 75mm, so: 

(750)(75)(75/2)  < ?    (8.72)(1847)(486-75) 

210 9375       <        661 9500    →   c > 75mm 

 

Figure 10.6: Cracked section 

Calculate c:  

(750-300)(75)(c-75/2) + (300)( c ) ( c/2 ) = (8.72) (1847)(486- c ) → c= 126 mm 

Icr = (1/12)(750-300)(75)3 + (750-300)(75)(126-75/2)2 + (1/3)(300)(126)3 + (8.72)(1847)(486-
126)2 = 2.4 x 10 9 mm4 

𝐼𝐼𝑐𝑐𝑐𝑐
𝐼𝐼𝑔𝑔

= 0.42 
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Chapter 11: Slender Columns 

 

11.1 Introduction: 

If the column fails due to initial material failure, it is classified as a short column. As the length 
of the column increases, the probability that failure will occur by buckling also increases. 
Therefore, the transition from the short column to the long column is defined using the 
slenderness ratio which is given by: 

KLu/r 

Where: 

K= effective length factor that depends on end or support conditions of the column  

Lu= unsupported length of the column 

r= radius of gyration of the section 

𝑟𝑟 = �𝐼𝐼
𝐴𝐴

 

I= column moment of inertia in the direction of buckling 

A= column section area 

r= 0.3 h   for rectangular column 

r= 0.25 D for circular column 
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Figure 11.1: Unbraced length factors for columns 
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Figure 11.1 - continued: Unbraced length factors for columns  
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Figure 11.1- continued: Unbraced length factors for columns   

 

Calculations of K:  

K can be calculated from monographs for effective length factors using the factor Ψ as 
follows:  

𝜓𝜓 =
∑𝐸𝐸𝐼𝐼𝐿𝐿  𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∑𝐸𝐸𝐼𝐼𝐿𝐿   𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐
 

L= length of member center to center of the joints. 

E= modulus of elasticity of concrete. 

I= section moment of inertia.  
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Ψ= 0 if the column is fully fixed at that end. 

Ψ= infinity   if the column end is perfect hinge. 

In practical structures, there is no such thing as truly fixed end or truly hinged end 

Reasonable upper and lower limits on Ψ are 20 and 0.2. 

Note:  For columns in nonsway frames, k should never be taken less than 0.6 

 

 

Figure 11.2: ACI 318-19 Fig. R6.2.5.1 Effective length factor k 

 

11.2 P – delta moments: 

P-δ moments (member P- delta): these moments result from deflections of the axis of bent 
column away from the chord joining the ends of column. The slenderness effects in pin- ended 
columns and in nonsway frames result from P-δ effects. 

 P-Δ moments (structure P- delta): these moments result from lateral deflections of the 
beam- column joints from their original undeflected locations. The slenderness effects in sway 
frames result from P-Δ effects. 
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Figure 11.3: Unbraced length factors in braced frame  

 

 

Figure 11.4: Unbraced length factors in unbraced frame with fixed supports 
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Figure 11.5: Unbraced length factors in unbraced frame with pin supports 

11.3 First and second order analyses: 

A. In a first order analysis, the equations of equilibrium are derived by assuming that 
deflections have a negligible effect on the internal forces in the members 

B. In a second order analysis, the equations of equilibrium considered the deformed shape of 
the structure 

C. Instability can be investigated only via a second order analysis, because it is the loss of 
equilibrium of the deformed structure that causes instability 

D. However, because many engineers’ calculations and computer programs are based on first 
order analysis, methods have been derived to modify the results of a first order analysis 
to approximate the second order effects. 

11.4 Braced frames (columns): 

It shall be permitted to analyze columns and stories in structures as nonsway frames if a, b 
or c is satisfied: 

(a) If bracing elements resisting lateral movement of a story have a total stiffness of at 
least 12 times the gross lateral stiffness of the columns in the direction considered.   

(b) The increase in column end moments due to second- order effects does not exceed 
5% of the first – order end moments. 

(c) Q (Stability index) in accordance with ACI 318-19 section 6.6.4.4.1 does not exceed 
0.05. 

𝑄𝑄 =
∑𝑃𝑃𝑢𝑢Δ𝑜𝑜
𝑉𝑉𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐

 

where ∑𝑃𝑃𝑢𝑢 and 𝑉𝑉𝑢𝑢𝑢𝑢 are the total factored vertical load and horizontal story shear, 
respectively, in the story being evaluated, and Δ𝑜𝑜 is the first order relative lateral deflection 
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between the top and bottom of that story due to 𝑉𝑉𝑢𝑢𝑢𝑢. 𝑐𝑐𝑐𝑐 is the length of compression member, 
measured center to- center of the joints. 

11.5 Moment computations in slender columns: 

1. Second order analysis 
2. Moment magnification for first order analysis for K Lu/r ≤ 100 

11.6  Moment magnification in nonsway (braced) frames: 

For columns braced against sidesway, slenderness effects shall be permitted to be neglected 
if: 

𝑘𝑘𝑐𝑐𝑢𝑢
𝑟𝑟
≤ 34 + 12

𝑀𝑀1

𝑀𝑀2
≤ 40 

where 𝑀𝑀1/𝑀𝑀2 is negative if the column is bent in single curvature, and positive for double 
curvature.  𝑀𝑀1 and 𝑀𝑀2 are the smaller and larger end column moments respectively.  

The magnified moment is given as:  

𝑀𝑀𝑐𝑐 = 𝛿𝛿𝑛𝑛𝑢𝑢𝑀𝑀2 

𝛿𝛿𝑛𝑛𝑢𝑢 =
𝐶𝐶𝑚𝑚

1 − 𝑃𝑃𝑢𝑢
0.75𝑃𝑃𝑐𝑐

≥ 1.0 

𝑃𝑃𝑐𝑐 =
𝜋𝜋2(𝐸𝐸𝐼𝐼)𝑒𝑒𝑒𝑒𝑒𝑒

(𝑘𝑘𝑐𝑐𝑢𝑢)2  

(𝐸𝐸𝐼𝐼)𝑒𝑒𝑒𝑒𝑒𝑒 =
0.4𝐸𝐸𝑐𝑐𝐼𝐼𝑔𝑔

1 + 𝛽𝛽𝑑𝑑𝑛𝑛𝑢𝑢 
        (1) 

(𝐸𝐸𝐼𝐼)𝑒𝑒𝑒𝑒𝑒𝑒 =
�0.2𝐸𝐸𝑐𝑐𝐼𝐼𝑔𝑔 + 𝐸𝐸𝑢𝑢𝐼𝐼𝑢𝑢𝑒𝑒�

1 + 𝛽𝛽𝑑𝑑𝑛𝑛𝑢𝑢
        (2) 

(𝐸𝐸𝐼𝐼)𝑒𝑒𝑒𝑒𝑒𝑒 =
𝐸𝐸𝑐𝑐𝐼𝐼

1 + 𝛽𝛽𝑑𝑑𝑛𝑛𝑢𝑢
        (3) 

𝐶𝐶𝑚𝑚 = 0.6 − 0.4
𝑀𝑀1

𝑀𝑀2
 

where βdns shall be the ratio of maximum factored sustained axial load to maximum factored 
axial load associated with the same load combination and I is calculated according to ACI 318-
19 Table 6.6.3.1.1(b) for columns and walls. For equation 3, table 11.1 shall be used. 

For columns with transverse loads applied between supports, 𝐶𝐶𝑚𝑚 = 1.0. 
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Table 11.1: ACI 318-19 Table 6.6.3.1.1(b) Alternative moments of inertia for elastic analysis 
at factored loads 

 

The factor Cm is a correction factor relating the actual moment diagram to an equivalent 
uniform moment diagram. The derivation of the moment magnifier assumes that the 
maximum moment is at or near midheight of the column. If the maximum moment occurs at 
one end of the column, design should be based on an equivalent uniform moment 𝐶𝐶𝑚𝑚𝑀𝑀2 that 
leads to the same maximum moment at or near midheight of the column when magnified 
(MacGregor et al. 1970). 

Where: 

δns= nonsway moment magnification factor. 

Pu= ultimate axial compression on the column. 

Pc= Euler buckling load for pin- ended column. 

Ig= gross moment of inertia of the concrete section about its centroidal  axis ignoring 
reinforcement. 

Ise= moment of inertia of reinforcement about the centroidal axis of concrete section. 

M2 must be greater than 𝑀𝑀𝑚𝑚𝑚𝑚𝑛𝑛. 

𝑀𝑀𝑚𝑚𝑚𝑚𝑛𝑛 = 𝑃𝑃𝑢𝑢𝑏𝑏𝑚𝑚𝑚𝑚𝑛𝑛 

𝑏𝑏𝑚𝑚𝑚𝑚𝑛𝑛 = 0.015 + 0.03ℎ 
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Where h is the side length of section in meters and 𝑏𝑏𝑚𝑚𝑚𝑚𝑛𝑛 is the minimum eccentricity. 

If 𝑀𝑀 𝑚𝑚𝑚𝑚𝑛𝑛 exceeds 𝑀𝑀2, 𝐶𝐶𝑚𝑚 shall be taken equal to 1.0 or calculated based on the ratio of the 
calculated end moments 𝑀𝑀1/𝑀𝑀2, using the considered equation. 

Note: The cross-sectional dimensions of each member used in an analysis shall be within 10 
percent of the specified member dimensions in construction documents or the analysis shall 
be repeated. If the stiffnesses of Table 6.6.3.1.1(b) are used in an analysis, the assumed 
member reinforcement ratio shall also be within 10 percent of the specified member 
reinforcement in construction documents. 

Unless slenderness effects are neglected, the design of columns, restraining beams, and other 
supporting beams shall be based on the factored forces and moments considering second-
order effects. 𝑀𝑀𝑢𝑢 including second-order effects shall not exceed 1.4𝑀𝑀𝑢𝑢 due to first- order 
effects. So, if  𝜹𝜹𝒏𝒏𝒏𝒏  is greater than 1.4 enlarge section.  

11.7  Moment magnification in sway (unbraced) frames: 

Slenderness effects can be ignored if:  

𝑘𝑘𝑐𝑐𝑢𝑢
𝑟𝑟
≤ 22 

The end moments will be:  

𝑀𝑀1 = 𝑀𝑀1𝑛𝑛𝑢𝑢 + 𝛿𝛿𝑢𝑢𝑀𝑀1𝑢𝑢 

𝑀𝑀2 = 𝑀𝑀2𝑛𝑛𝑢𝑢 + 𝛿𝛿𝑢𝑢𝑀𝑀2𝑢𝑢 

Where: 

δs= sway moment magnification factor. 

The magnified moment is given as:  

𝑀𝑀𝑐𝑐 = 𝛿𝛿𝑛𝑛𝑢𝑢𝑀𝑀2 

The sway moment magnification factor δs, can be computed using the following procedures: 

A. Second order analysis: ACI code allows the use of second order analysis to compute 𝛿𝛿𝑢𝑢 
𝑀𝑀𝑢𝑢.  

B. Moment magnification procedure. 

Elastic second-order analysis shall consider section properties determined taking into account 
the influence of axial loads, the presence of cracked regions along the length of the member, 
and the effects of load duration. 
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In elastic analysis, it shall be permitted to use the following properties for the members in the 
structure as shown in Table 11.2 below. 

Table 11.2: Table 6.6.3.1.1(a)—Moments of inertia and cross- sectional areas permitted for 
elastic analysis at factored load level 

 
Member and 

condition 

 
Moment of 

inertia 

Cross- sectional 
area for axial 
deformations 

Cross- sectional 
area for shear 
deformations 

Columns 0.70Ig  
1.0Ag 

 
bwh  

Walls 
Uncracked 0.70Ig 

Cracked 0.35Ig 

Beams 0.35Ig 

Flat plates and flat slabs 0.25Ig 

 

The moment magnification factor, 𝛿𝛿𝑢𝑢 is given by: 

(𝑏𝑏)      𝛿𝛿𝑢𝑢 =
1

1 − 𝑄𝑄
≥ 1 

Or 

(𝑏𝑏)      𝛿𝛿𝑢𝑢 =
1.0

1 − ∑𝑃𝑃𝑢𝑢
0.75∑𝑃𝑃𝑐𝑐

≥ 1.0 

If 𝛿𝛿𝑢𝑢 exceeds 1.5, δs shall be calculated using second order elastic analysis or from equation 
(b). 

Where: 

Σ Pu= The summation for all the factored vertical loads in a story. 

Σ Pc= the summation of Pc for all columns in the story. 

When sustained lateral loads are present, I for compression members shall be divided by (1 + 
βds). The term βds shall be taken as the ratio of maximum factored sustained shear within a 
story to the maximum factored shear in that story associated with the same load 
combination, but shall not be taken greater than 1.0. 

Notes: ACI 318-19 

6.6.3.1.2 For factored lateral load analysis, it shall be permitted to assume I = 0.5Ig for all 
members or to calculate I by more detailed analysis, considering the effective stiffness of all 
members under the loading conditions. 
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6.6.3.2.2 It shall be permitted to calculate immediate lateral deflections using a moment of 
inertia of 1.4 times I defined in 6.6.3.1, or using a more detailed analysis, but the value shall 
not exceed Ig.  

11.8 Moment – axial force interaction diagrams: 

Column design for axial force and a moment can be achieved by: 

1. Try a section with a specific steel ratio, draw P-M interaction diagram then check the 
location of P and M in the diagram 

2. Try a section and use P-M interaction diagram sheets 

In this chapter, P-M interaction diagram sheets are used. 

P-M interaction diagram sheets: 

- Section shape (rectangular or circular) 
- Concrete strength, f’c 
- Steel strength, fy 
- Factor γ 

𝛾𝛾 =
ℎ − 2 𝑐𝑐𝑜𝑜𝑐𝑐𝑏𝑏𝑟𝑟𝑐𝑐 𝑡𝑡𝑜𝑜 𝑏𝑏𝑏𝑏𝑟𝑟𝑐𝑐 𝑐𝑐𝑏𝑏𝑐𝑐𝑡𝑡𝑟𝑟𝑜𝑜𝑐𝑐𝑐𝑐

ℎ
 

- Bars distribution (at two sides/ distributed at 4 sides) 
- 𝐷𝐷𝑏𝑏𝑡𝑡𝑏𝑏𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏   ∅𝑃𝑃𝑛𝑛/𝑏𝑏ℎ  𝑏𝑏𝑐𝑐𝑐𝑐  ∅𝑀𝑀𝑛𝑛/𝑏𝑏ℎ2  

 

 



Design of Reinforced Concrete Structures: A Practical Approach                         IBRAHIM ARMAN 
 

244 
 

 

Figure 11.6: Moment- Axial force interaction diagram for rectangular column with 𝛾𝛾=0.6 
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Figure 11.7: Moment- Axial force interaction diagram for rectangular column with 𝛾𝛾=0.75 
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Figure 11.8: Moment- Axial force interaction diagram for rectangular column with 𝛾𝛾=0.9 
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Example 1: 

Design a 6m tall column to support an unfactored dead load of 410kN and unfactored live 
load of 340kN. 

F’c= 28MPa 

Fy= 420MPa 

Assume that the column braced and K=1.0. 

The bending moment diagram for the column is shown in Figure 11.9. 

 

 

Figure 11.9: Bending moment diagram for the column in example 1 

 

Solution: 

Step1 : Compute ultimate loads: 

Pu= 1.2 PD + 1.6 PL 

Pu= 1.2 (410) + 1.6 (340)= 1036 kN 

Mu1= 1.2 MD1 + 1.6 ML1 

Mu1= 1.2 (21) + 1.6 (17)= 52.4 kN.m 

Mu2= 1.2 MD2+ 1.6 ML2 

Mu2= 1.2 (31) + 1.6 (26)= 78.8 kN.m   
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Step2 : Estimate column size: 

Assume steel ratio, ρ= 0.01. Assume Mu= 0.0 

∅𝑃𝑃𝑛𝑛 = ∅𝜆𝜆�0.85𝑜𝑜′𝑐𝑐�𝐴𝐴𝑔𝑔 − 𝐴𝐴𝑢𝑢� + 𝑜𝑜𝑦𝑦𝐴𝐴𝑢𝑢� 

𝛷𝛷= 0.65 

𝜆𝜆= 0.8 

f’c= 28MPa 

fy= 420MPa 

𝐴𝐴𝑢𝑢 =  𝜌𝜌 𝐴𝐴𝑔𝑔  =  0.01 𝐴𝐴𝑔𝑔 

Substitute in above equation → Ag= 71764mm2 

(270mm x 270mm)     try: 400mm x 400mm 

Step 3: Check slenderness 

𝑘𝑘𝑐𝑐𝑢𝑢
𝑟𝑟
≤ 34 + 12

𝑀𝑀1

𝑀𝑀2
≤ 40 

K= 1            Lu= 6m 

r= 0.3 h = 0.3 (0.4)= 0.12  

kLu/r= 50 

M1= 52.4 kN.m 

M2= 78.8 kN.m  

M1/M2   Negative        single curvature 

34-12(M1/M2)= 26 < 50    consider slenderness 

Step 4: Compute moment magnification factor 

𝑀𝑀𝑐𝑐 = 𝛿𝛿𝑛𝑛𝑢𝑢𝑀𝑀2 

𝛿𝛿𝑛𝑛𝑢𝑢 =
𝐶𝐶𝑚𝑚

1 − 𝑃𝑃𝑢𝑢
0.75𝑃𝑃𝑐𝑐

≥ 1.0 
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𝑃𝑃𝑐𝑐 =
𝜋𝜋2(𝐸𝐸𝐼𝐼)𝑒𝑒𝑒𝑒𝑒𝑒

(𝑘𝑘𝑐𝑐𝑢𝑢)2  

(𝐸𝐸𝐼𝐼)𝑒𝑒𝑒𝑒𝑒𝑒 =
0.4𝐸𝐸𝑐𝑐𝐼𝐼𝑔𝑔

1 + 𝛽𝛽𝑑𝑑𝑛𝑛𝑢𝑢
 

𝐶𝐶𝑚𝑚 = 0.6 − 0.4
𝑀𝑀1

𝑀𝑀2
 

𝐶𝐶𝑚𝑚= 0.866 

Pu= 1036 kN 

K=1  

Lu= 6000mm 

𝐸𝐸𝑐𝑐 = 4700√28 = 24870𝑀𝑀𝑃𝑃𝑏𝑏 

𝐼𝐼𝑔𝑔= (1/12)(400)4= 2.133 x 10 9 mm4  

𝛽𝛽𝑑𝑑𝑛𝑛𝑢𝑢 =
1.2𝑃𝑃𝐷𝐷

1.2𝑃𝑃𝐷𝐷 + 1.6𝑃𝑃𝐿𝐿
 

PD= 410kN  

PL= 340kN 

Pu= 1036kN 

→  𝛽𝛽𝑑𝑑𝑛𝑛𝑢𝑢 =  0.475    

EI= 1.439 x 10 13 N.mm2 

Pc= 3945kN 

→    δns= 1.333 

Mu2= 78.8kN.m 

𝑀𝑀𝑚𝑚𝑚𝑚𝑛𝑛 = 𝑃𝑃𝑢𝑢𝑏𝑏𝑚𝑚𝑚𝑚𝑛𝑛 

𝑏𝑏𝑚𝑚𝑚𝑚𝑛𝑛 = 0.015 + 0.03ℎ 

h= 0.4m  →  𝑏𝑏𝑚𝑚𝑚𝑚𝑛𝑛= 0.027m 

Mmin= 1036 (0.027)= 28kN.m < Mu2= 78.8kN.m  
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OK 

Mc= (1.333)(78.8)= 105kN.m 

Step 5: Section design 

Column dimensions:  400 x 400 mm 

b= 400mm                          h= 400mm 

Pu= 1036kN                     Mu= 105kN.m 

Concrete cover= 60mm 

𝛾𝛾 =  (400 −  2 𝑥𝑥 60)/400 =  0.7 

𝜙𝜙𝑃𝑃𝑛𝑛
𝑏𝑏ℎ

=
(1036)(1000)
(400)(400)(7) = 0.93𝑘𝑘𝑐𝑐𝑐𝑐 

𝜙𝜙𝑀𝑀𝑛𝑛

𝑏𝑏ℎ2
=

(105)(1000 000)
(400)(400)2(7) = 0.23𝑘𝑘𝑐𝑐𝑐𝑐 

Using column design aids: P-M interaction diagrams    

  → Steel ratio, ρ= 0.01           As= 0.01(400)(400)= 1600mm2        Use 8Φ16 reinforcing bars 

 

Figure 11.10: Section in column 

Ties: 

𝑐𝑐 ≤ 48𝑐𝑐𝑢𝑢 = 48(10) = 480𝑐𝑐𝑐𝑐 

                   𝑐𝑐 ≤ 16𝑐𝑐𝑏𝑏 = 16(16) = 256𝑐𝑐𝑐𝑐                       𝑐𝑐𝑜𝑜𝑐𝑐𝑡𝑡𝑟𝑟𝑜𝑜𝑐𝑐𝑐𝑐     

                𝑐𝑐 ≤ 𝑐𝑐𝑏𝑏𝑏𝑏𝑐𝑐𝑡𝑡 𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑐𝑐 = 400𝑐𝑐𝑐𝑐 
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Example 2: 

Design the column shown in the frame in Figure 11.11. 

The axial force and the bending moment diagrams are shown in Figure 11.12. 

Given: 

f’c= 28MPa 

fy= 420MPa  

Load combination:   U= 1.2D + 1.0L + 1.6W 

 

 

Figure 11.11: Frame and sections for example 2 
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Figure 11.12: Bending moment and axial force diagram for the column for example 2 

 

Solution: 

Step1: Compute ultimate axial loads: 

Pu= 1.2 PD + 1.0 PL + 1.6W 

Pu= 1.2 (273) + 1.0 (52) + 1.6 (2.3)= 383.3 kN 

Step 2: Check slenderness 

𝑘𝑘𝑐𝑐𝑢𝑢
𝑟𝑟
≤ 22 

𝜓𝜓 =
∑𝐸𝐸𝐼𝐼𝐿𝐿  𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∑𝐸𝐸𝐼𝐼𝐿𝐿   𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐
 

I column= 1.707 x 10 10 mm4  (0.0171 m4) 

I beam= 2.89 x 10 10 mm4  (0.0289 m4) 

Modified I: 

I column= 0.7 I = 0.01197 m4 

I beam= 0.35 I = 0.01012 m4 

𝜓𝜓𝐴𝐴 = 0   (fixed end) 
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𝜓𝜓𝐵𝐵= (0.01197/7)/(0.01012/15) = 2.54 

Using monograph for effective length factor of sway frames:  

K= 1.35 

Radius of gyration, r= o.3h = 0.3 (0.8) = 0.24m 

𝑘𝑘𝑐𝑐𝑢𝑢
𝑟𝑟

=  
(1.35)(7 − 0.4)

0.24
= 37.1 >  22 

→ consider slenderness 

Step 3: Calculate moment magnification factor, δs: 

 𝛿𝛿𝑢𝑢 =
1.0

1 − ∑𝑃𝑃𝑢𝑢
0.75∑𝑃𝑃𝑐𝑐

≥ 1.0 

𝑃𝑃𝑐𝑐 =
𝜋𝜋2(𝐸𝐸𝐼𝐼)𝑒𝑒𝑒𝑒𝑒𝑒

(𝑘𝑘𝑐𝑐𝑢𝑢)2  

(𝐸𝐸𝐼𝐼)𝑒𝑒𝑒𝑒𝑒𝑒 =
0.4𝐸𝐸𝑐𝑐𝐼𝐼𝑔𝑔
1 + 𝛽𝛽𝑑𝑑𝑢𝑢

 

𝛽𝛽𝑑𝑑𝑢𝑢 =  0.0 

K= 1.35 

Lu= 6600mm 

EI= 1.7 x 10 14 N.mm2 

Pc= 21111kN 

ΣPu= 2(1.2 x 273 + 1 x 52) = 759.2 kN 

(note ΣPW=0 ) 

δs= 1.025 

𝑀𝑀1 = 𝑀𝑀1𝑛𝑛𝑢𝑢 + 𝛿𝛿𝑢𝑢𝑀𝑀1𝑢𝑢 

𝑀𝑀2 = 𝑀𝑀2𝑛𝑛𝑢𝑢 + 𝛿𝛿𝑢𝑢𝑀𝑀2𝑢𝑢 

M2 is larger than M1, so 

M2ns= 1.2 MD + 1.0 ML 
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M2ns= 1.2 (460) + 1.0 (110) = 662 kN.m 

M2s= 1.6 MW 

M2s= 1.6 (17) = 27.2 kN.m 

M2= 662 + 1.025 (27.2) = 690 kN.m 

M1ns= 1.2 MD + 1.0 ML 

M1ns= 1.2 (224) + 1.0 (53) = 321.8 kN.m 

M1s= 1.6 MW 

M1s= 1.6 (32) = 51.2 kN.m 

M1= 321.8 + 1.025 (51.2) = 374.28 kN.m 

Step 4: Calculate moment magnification factor, δns: 

𝑀𝑀𝑐𝑐 = 𝛿𝛿𝑛𝑛𝑢𝑢𝑀𝑀2 

𝛿𝛿𝑛𝑛𝑢𝑢 =
𝐶𝐶𝑚𝑚

1 − 𝑃𝑃𝑢𝑢
0.75𝑃𝑃𝑐𝑐

≥ 1.0 

𝑃𝑃𝑐𝑐 =
𝜋𝜋2(𝐸𝐸𝐼𝐼)𝑒𝑒𝑒𝑒𝑒𝑒

(𝑘𝑘𝑐𝑐𝑢𝑢)2  

(𝐸𝐸𝐼𝐼)𝑒𝑒𝑒𝑒𝑒𝑒 =
0.4𝐸𝐸𝑐𝑐𝐼𝐼𝑔𝑔

1 + 𝛽𝛽𝑑𝑑𝑛𝑛𝑢𝑢
 

𝐶𝐶𝑚𝑚 = 0.6 − 0.4
𝑀𝑀1

𝑀𝑀2
 

     M1= 374.28kN.m 

M2= 690kN.m  

Double curvature. 
𝑀𝑀1
𝑀𝑀2

  is positive. 

K=1 

→   Cm= 0.38  
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𝛽𝛽𝑑𝑑𝑛𝑛𝑢𝑢 =
1.2𝑃𝑃𝐷𝐷

1.2𝑃𝑃𝐷𝐷 + 1.0𝑃𝑃𝐿𝐿 + 1.6𝑃𝑃𝑤𝑤
=

1.2𝑃𝑃𝐷𝐷
𝑃𝑃𝑢𝑢

=
(1.2)(273)

383.3
= 0.85 

EI= 9.18 x 10 13 mm4 

Pc= 20778 kN 

Pu= 383.3 kN  

δ ns= 0.39 < 1.0       use    δ ns= 1.0    

So, the design moment will be, 

Mc= 1 x 690= 690 kN.m 

Step 5: Section design: 

b= 400mm 

h= 800mm 

Pu= 383.3 k.N 

Mu= 690 kN.m 

𝛾𝛾 =  (800 −  2 𝑥𝑥 60)/800 =  0.85 

𝜙𝜙𝑃𝑃𝑛𝑛
𝑏𝑏ℎ

=
(383.3)(1000)
(400)(800)(7) = 0.17𝑘𝑘𝑐𝑐𝑐𝑐 

𝜙𝜙𝑀𝑀𝑛𝑛

𝑏𝑏ℎ2
=

(690)(1000 000)
(400)(800)2(7) = 0.39𝑘𝑘𝑐𝑐𝑐𝑐 

Using column design aids: P-M interaction diagrams     →  

For γ = 0.75  → ρ = 0.017 

For γ = 0.9    → ρ = 0.014 

→ ρ = 0.015 

As= 0.015(400)(800)= 4800mm2 

Use 16Φ20 reinforcing bars 

Ties: 

S ≤ 16 (20) = 320 mm 
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S ≤ 48 (10) = 480 mm 

S ≤ 400 mm 

So,  

Use s= 300mm 

 

Figure 11.13: Section in column 
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Chapter 12: Introduction to Seismic Design 

 

12.1  Introduction: 

Earthquakes result from the sudden movement of tectonic plates in earth’s crust. The 
movement takes place at fault lines, and the energy released is transmitted through the earth 
in the form of waves that cause ground motion many kilometers from the epicenter. 

The mapped values, expressed as a percent of gravity, represent the expected peak 
acceleration of a single-degree-of-freedom system with 0.2 seconds period and 5% of critical 
damping, known as the 0.2 sec. spectral response acceleration Ss (Subscript s for short 
period), it is used along with 1.0 second spectral response acceleration S1, to establish the 
loading criteria for seismic design based on IBC 2012/ ASCE 7-10. 

Accelerations Ss and S1 are based on historical records and local geology. They represent 
earthquake ground motion with a likelihood of exceedance of 2% in 50 years, a value that is 
equivalent to a return period of about 2500 years. Refer to Figure 12.1 for single degree of 
freedom system. 

 

 

Figure 12.1: Single degree of freedom system 

 

−kx − cx. + f(t) = mx.. 

kx + cx. + mx.. = f(t)                             

 (Second order nonhomogeneous ordinary differential equation) 
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Note: 

The return period 1/r can be computed from the mathematical following equation: 

1 − Po = e−yr 

Where: 

Po= Probability of exceedance, 2% 

y: number of years, 50 years 

1 − 0.02 = e−50r = 0.98 

Ln(0.98) = −50r = −0.0202 → r =
1

2475
→

1
r

= 2475 years 

Or: 

1 − Po = e−y/r 

 

Here, the return period is r. 

As experienced by structures, earthquakes consist of random horizontal and vertical 
movements of the earth’s surface. As the ground moves, inertia tends to keep structures in 
place, resulting in the imposition of displacements and forces that can have catastrophic 
results. The purpose of the seismic design is to proportion structures so that they withstand 
the displacements and the forces induced by the ground motion. 

12.2  Structure response: 

Design of earthquakes differ from design for gravity and wind loads in the relatively greater 
sensitivity of earthquake-induced forces to the geometry of the structures. 

A. Structural considerations: 

• The closer the frequency of the ground motion to one of the natural frequencies of a 
structure, the greater the likelihood of the structure experiencing resonance, resulting 
in an increase in displacement and damage. 

• Earthquake response depends on the geometric properties of a structure, especially 
height. The building has many mode shapes. The relative contribution of each mode 
to the lateral displacement of the structure depends on the frequency characteristics 
of the ground motion. 

• The configuration of the structure has major effect on its response to an earthquake. 
Structures with a discontinuity in stiffness or geometry can be subjected to high 
displacements or forces. 
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• Stiffer members tend to pick up a greater portion of the load like the existence of 
shear walls. However, when the effects of higher stiffness members, such as masonry 
infill walls, are not considered in the design, unexpected and often undesirable results 
can occur. 

• There is a need to provide an adequate separation between structures. Spacing 
requirements to ensure that adjacent structures do not come into contact as the result 
of earthquake induced motion are specified in codes. 

B. Member considerations: 

• Members must perform in a ductile fashion and dissipate energy. 
• The principal method of ensuring ductility in members subject to shear and bending 

is to provide confinement for the concrete by using closed stirrups (hoops) in beams 
and columns. So, beams and columns can undergo nonlinear cyclic bending while 
maintaining their flexural strength and without deteriorating due to diagonal tension 
cracking. The formation of ductile (plastic) hinges allow reinforced concrete frames to 
dissipate energy. Hinges will form in the beams rather than in columns, minimizing the 
portion of the structure affected by nonlinear behavior and maintaining the overall 
vertical load capacity. So, the “weak beam-strong column” approach is used to design 
reinforced concrete frames subjected to seismic loading. The ends of the beam must 
be designed to resist maximum shear that can be developed. Refer to Figures 12.2 and 
12.3.  
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Figure 12.2: Design shears for intermediate moment 

Frames 
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Figure 12.3: Design shears for special moment 

Frames 
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Where: 

Mn = Nominal flexural strength at section. 

Mpr = Probable flexural strength of members, with or without axial load, determined using 
the properties of the member at joint faces assuming a tensile stress in the longitudinal bars 
of at least 1.25fy and a strength reduction factor ∅ of 1.0. 

D= Dead load 

L= Live load 

S= Snow load 

Ln= length of clear span measured face-to-face of supports 

Lu= unsupported length of column or wall 

• Two-way systems without beams are especially vulnerable because of low ductility at the 
slab-column intersection. 

12.3  Load combinations: 

Table 12.1: ACI 318-19 Table R5.2.2—Correlation between seismic-related terminology in 
model codes 

 
Code, standard, or resource 

document and edition 

Level of seismic risk or assigned seismic performance or 
design categories as 
defined in the Code 

ACI 318-08, ACI 318-11, ACI 318-14, 
ACI 318-19; IBC of 2000, 2003, 

2006, 2009, 2012, 2015, 2018; NFPA 
5000 of 2003, 2006, 2009, 2012, 

2015, 2018; ASCE 7-98, 7-02, 7-05, 7-
10, 7-16; NEHRP 1997, 2000, 

2003, 2009, 2015 

 
SDC[1] A, B 

 
SDC C 

 
SDC D, E, F 

ACI 318-05 and previous editions Low seismic risk Moderate/intermediat
e seismic risk 

High seismic 
risk 

BOCA National Building Code 1993, 
1996, 1999; Standard Building 

Code 1994, 1997, 1999; ASCE 7-93, 
7-95; NEHRP 1991, 1994 

SPC[2] A, B  
SPC C 

 
SPC D, E 

Uniform Building Code 1991, 1994, 
1997 

Seismic Zone 0, 
1 

Seismic Zone 2 Seismic Zone 
3, 4 

[1] SDC = seismic design category as defined in code, standard, or resource document. 
[2] SPC = seismic performance category as defined in code, standard, or resource document. 
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The seismic design category in IBC 2012/ ASCE 7-10 depends on the values of SD1 and SDS and 
the risk category. (Tables 11.6-1 and 11.6-2 in ASCE 7-10) 

Based on seismic design category, the lateral forces resisting system is selected and the 
reinforcement details are specified based on ACI code.  

Refer to Table 12.2 for load combinations in ACI 318-19. 

 

      Table 12.2: ACI 318-19 Table 5.3.1 Load combinations 

Load combination Equation Primary load 
U = 1.4D (5.3.1a) D 
U = 1.2D + 1.6L + 0.5(Lr or S or R) (5.3.1b) L 
U = 1.2D + 1.6(Lr or S or R) + (1.0L or 0.5W) (5.3.1c) Lr or S or R 
U = 1.2D + 1.0W + 1.0L + 0.5(Lr or S or R) (5.3.1d) W 
U = 1.2D + 1.0E + 1.0L + 0.2S (5.3.1e) E 
U = 0.9D + 1.0W (5.3.1f) W 
U = 0.9D + 1.0E (5.3.1g) E 

Where: 

D= Dead loads 

L= Live loads 

Lr= Roof live loads 

S= Snow loads 

R= Rain loads 

W= wind loads 

E= Earthquake loads 

Load combinations in ASCE 7-10 section 2.3.2: 

1. 1.4D 

2. 1.2D + 1.6L + 0.5(Lr or S or R) 

3. 1.2D + 1.6(Lr or S or R) + (L or 0.5W) 

4. 1.2D + 1.0W + L + 0.5(Lr or S or R) 

5. 1.2D + 1.0E + L + 0.2S 
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6. 0.9D + 1.0W 

7. 0.9D + 1.0E 

Where fluid loads F are present, they shall be included with the same load factor as dead load 
D in combinations 1 through 5 and 7.  

Where load H (Soil pressure) are present, they shall be included as follows: 

1. where the effect of H adds to the primary variable load effect, include H with a load factor 
of 1.6; 

2. where the effect of H resists the primary variable load effect, include H with a load factor 
of 0.9 where the load is permanent or a load factor of 0 for all other conditions. 

Seismic Load Effect: ASCE 7-10  

The seismic load effect, E, shall be determined in accordance with the following: 

• For use in load combination 5, E shall be determined in accordance with: 

E =  Eℎ  + E𝑣𝑣 

• For use in load combination 7, E shall be determined in accordance with:  

E =  Eℎ – E𝑣𝑣 

Where: 

E = seismic load effect 

Eh = effect of horizontal seismic forces 

Ev = effect of vertical seismic forces 

Horizontal Seismic Load Effect:  

The horizontal seismic load effect, Eh, shall be determined in accordance with: 

Eh =  ρQE   
       Where: 

QE = effects of horizontal seismic forces  

ρ = redundancy factor. In general, it equals to 1.0 for seismic design categories B and C and it 
equals 1.30 for seismic design categories D, E and F.  
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Vertical Seismic Load Effect: 

The vertical seismic load effect, Ev, shall be determined in accordance with: 

E𝑣𝑣  =  0.2SDSD          

Where: 

SDS = design spectral response acceleration parameter at short periods  

D = effect of dead load 

Seismic Load Effect Including Overstrength Factor:  

Where specifically required, conditions requiring overstrength factor applications shall be 
determined in accordance with the following: 

• For use in load combination 5, E shall be taken equal to Em as determined in 
accordance with:  

E𝑚𝑚  =  E𝑚𝑚ℎ  +  E𝑣𝑣  

• For use in load combination, E shall be taken equal to Em as determined in accordance 
with: 

𝐸𝐸𝑚𝑚  =  E𝑚𝑚ℎ – E𝑉𝑉 

Where:  

Em = seismic load effect including overstrength factor 

Emh = effect of horizontal seismic forces including overstrength factor 

Ev = vertical seismic load effect  

Horizontal Seismic Load Effect with Overstrength Factor:  

The horizontal seismic load effect with overstrength factor, Emh, shall be determined in 
accordance with: 

Emh  =  ΩoQE 

Where: 

QE = effects of horizontal seismic forces  

Ω𝑜𝑜 = overstrength factor 
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EXCEPTION: The value of Emh need not exceed the maximum force that can develop in the 
element as determined by a rational, plastic mechanism analysis or nonlinear response 
analysis utilizing realistic expected values of material strengths. 

12.4  Equivalent lateral forces procedure: 

The seismic base shear, V, in a given direction shall be determined in accordance with the 
following equation: 

V = CsW 

Where:  

𝐶𝐶𝑠𝑠 = the seismic response coefficient  

W = the effective seismic weight  

The seismic response coefficient, 𝐶𝐶𝑠𝑠, shall be determined in accordance with: 

Cs =
SDS
R/Ie

 

Where: 

SDS = the design spectral response acceleration parameter in the short period 

R = the response modification factor in Table 12.2-1 ASCE 7-10 

𝐼𝐼𝑒𝑒 = the importance factor determined in accordance with Section 11.5.1 ASCE 7-10 

The value of Cs need not exceed the following: 

Cs,max =
SD1

T �R
Ie
�

  for T ≤ TL 

           

Cs,max =
SD1TL

T2 �R
Ie
�

  for T > TL 

Cs shall not be less than: 

Cs,min = 0.044SDSIe  ≥ 0.01 
         

Cs,min =
0.5S1
R/Ie

 if S1 ≥ 0.6g 

SD1 = the design spectral response acceleration parameter at a period of 1.0 s. 
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T = the fundamental period of the structure in seconds. 

𝑇𝑇𝐿𝐿= long-period transition period in seconds. 

SS = mapped MCER (Maximum Considered Earthquake), 5 percent damped, spectral response 
acceleration parameter at short period of 0.2 second. 

S1 = mapped MCER, 5 percent damped, spectral response acceleration parameter at a period 
of 1.0 second. 

Effective Seismic Weight: 

The effective seismic weight, W, of a structure shall include the dead load above the base and 
other loads above the base as listed below: 

1. In areas used for storage, a minimum of 25 percent of the floor live load shall be included. 

2. Where provision for partitions is required in the floor load design, the actual partition 
weight or a minimum weight of 0.48 kN/m2 of floor area, whichever is greater. 

3. Total operating weight of permanent equipment. 

4. Where the flat roof snow load, Pf, exceeds 1.44 kN/m2, 20 percent of the uniform design 
snow load, regardless of actual roof slope. 

5. Weight of landscaping and other materials at roof gardens and similar areas. 

Site Class:  

Based on the site soil properties, the site shall be classified as Site Class A, B, C, D, E, or F in 
accordance with Chapter 20 in ASCE 7-10. Where the soil properties are not known in 
sufficient detail to determine the site class, Site Class D shall be used unless the authority 
having jurisdiction or geotechnical data determines Site Class E or F soils are present at the 
site. 

Site Coefficients and Risk-Targeted Maximum Considered Earthquake (MCER) Spectral 
Response Acceleration Parameters:  

The MCER spectral response acceleration parameter for short periods (SMS) and at 1 s (SM1), 
adjusted for Site Class effects, shall be determined by: 

𝑆𝑆𝑀𝑀𝑀𝑀 = 𝐹𝐹𝑎𝑎𝑆𝑆𝑀𝑀   

𝑆𝑆𝑀𝑀1 = 𝐹𝐹𝑣𝑣𝑆𝑆1  

Where: site coefficients Fa and Fv are defined in Tables 11.4-1 and 11.4-2 in ASCE 7-10, 
respectively.  
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Design Spectral Acceleration Parameters:  

Design earthquake spectral response acceleration parameter at short period, SDS, and at 1 s 
period, SD1, shall be determined from: 

𝑆𝑆𝐷𝐷𝑀𝑀 =
2
3
𝑆𝑆𝑀𝑀𝑀𝑀 

𝑆𝑆𝐷𝐷1 =
2
3
𝑆𝑆𝑀𝑀1 

Risk category: 

Buildings and other structures shall be classified, based on the risk to human life, health, and 
welfare associated with their damage or failure by nature of their occupancy or use, according 
to Table 1.5-1 in ASCE 7-10 for the purposes of applying flood, wind, snow, earthquake, and 
ice provisions. Each building or other structure shall be assigned to the highest applicable risk 
category or categories. Minimum design loads for structures shall incorporate the applicable 
importance factors given in Table 1.5-2 in ASCE 7-10, as required by other sections of this 
Standard (ASCE 7-10). Assignment of a building or other structure to multiple risk categories 
based on the type of load condition being evaluated (e.g., snow or seismic) shall be permitted. 
When the building code or other referenced standard specifies an Occupancy Category, the 
Risk Category shall not be taken as lower than the Occupancy Category specified therein. 

Approximate Fundamental Period: 

The approximate fundamental period (Ta), in seconds, shall be determined from the following 
equation: 

𝑇𝑇𝑎𝑎 = 𝐶𝐶𝑡𝑡ℎ𝑛𝑛
𝑥𝑥     

Where:  hn is the structural height as defined in Section 11.2 (ASCE 7-10: STRUCTURAL HEIGHT: 
The vertical distance from the base to the highest level of the seismic force-resisting system 
of the structure. For pitched or sloped roofs, the structural height is from the base to the 
average height of the roof.) and the coefficients Ct and x are determined from Table 12.8-2. 

The general equation for the period T (Frequency= 1/Period) is given by: 

𝑇𝑇 = 2𝜋𝜋�
𝑚𝑚
𝑘𝑘

 

                

𝑓𝑓 =
1

2𝜋𝜋
�𝑘𝑘
𝑚𝑚
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Where:  

m= mass 

k= stiffness 

f= frequency 

 

12.5 Distribution of base shear to floors: 

The lateral seismic force, Fx induced at any level shall be determined from the following 
equations: 

𝐹𝐹𝑥𝑥 = 𝐶𝐶𝑣𝑣𝑥𝑥𝑉𝑉 

𝐶𝐶𝑣𝑣𝑥𝑥 =
𝑤𝑤𝑥𝑥ℎ𝑥𝑥

𝑘𝑘

∑ 𝑤𝑤𝑖𝑖ℎ𝑖𝑖
𝑘𝑘𝑛𝑛

𝑖𝑖=1
   

      𝑘𝑘 = 1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑇𝑇 ≤ 0.5 sec
   

        𝑘𝑘 = 2  𝑓𝑓𝑓𝑓𝑓𝑓 𝑇𝑇 ≥ 2.5𝑠𝑠𝑠𝑠𝑠𝑠 

Where:  

𝐶𝐶𝑣𝑣𝑥𝑥 = vertical distribution factor 

V = total design lateral force or shear at the base of the structure (kN) 

wi and wx = the portion of the total effective seismic weight of the structure (W) located or 
assigned to Level i or x 

hi and hx = the height from the base to Level i or x. 

12.6  UBC 97 code provisions: 

𝑉𝑉 =
𝐶𝐶𝑣𝑣𝐼𝐼
𝑅𝑅𝑇𝑇

𝑊𝑊 

       

𝑉𝑉𝑚𝑚𝑎𝑎𝑥𝑥 =
2.5𝐶𝐶𝑎𝑎𝐼𝐼
𝑅𝑅

𝑊𝑊 

 

𝑉𝑉𝑚𝑚𝑖𝑖𝑛𝑛 = 0.11𝐶𝐶𝑎𝑎𝐼𝐼𝑊𝑊 
     

𝑇𝑇 = 𝐶𝐶𝑡𝑡ℎ𝑛𝑛
3
4  
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𝐶𝐶𝑡𝑡 = 0.0853 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑓𝑓𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 𝑓𝑓𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑠𝑠𝑠𝑠 

𝐶𝐶𝑡𝑡 = 0.0731 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑚𝑚𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑓𝑓𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 𝑓𝑓𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑠𝑠𝑠𝑠 

𝐶𝐶𝑡𝑡 = 0.0488 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑠𝑠𝑠𝑠 𝑓𝑓𝑠𝑠ℎ𝑠𝑠𝑓𝑓 𝑏𝑏𝑏𝑏𝑟𝑟𝑠𝑠𝑏𝑏𝑟𝑟𝑚𝑚𝑟𝑟𝑠𝑠 

𝐸𝐸𝑣𝑣 = 0.5𝐶𝐶𝑎𝑎𝐼𝐼𝐼𝐼                   𝐸𝐸 = 𝜌𝜌𝑄𝑄𝐸𝐸 + 𝐸𝐸𝑣𝑣 

𝑉𝑉 = 𝐹𝐹𝑡𝑡 + ∑ 𝐹𝐹𝑖𝑖𝑛𝑛
𝑖𝑖=1            

𝐹𝐹𝑡𝑡 = 0.07𝑇𝑇𝑉𝑉 ≤ 0.25𝑉𝑉       𝑓𝑓𝑓𝑓𝑓𝑓 𝑇𝑇 > 0.7 sec   𝑓𝑓𝑚𝑚𝑏𝑏 𝐹𝐹𝑡𝑡 = 0.0      𝑓𝑓𝑓𝑓𝑓𝑓 𝑇𝑇 ≤ 0.7𝑠𝑠𝑠𝑠𝑠𝑠 

𝐹𝐹𝑥𝑥 =
(𝑉𝑉 − 𝐹𝐹𝑡𝑡)𝑤𝑤𝑥𝑥ℎ𝑥𝑥
∑ 𝑤𝑤𝑖𝑖ℎ𝑖𝑖𝑛𝑛
𝑖𝑖=1

 

𝑈𝑈𝑈𝑈𝐶𝐶 𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑠𝑠 𝑧𝑧𝑓𝑓𝑚𝑚𝑠𝑠𝑠𝑠 0,1    𝑏𝑏𝑠𝑠𝑠𝑠   𝑆𝑆𝐼𝐼𝐶𝐶:𝐴𝐴,𝑈𝑈  

𝑈𝑈𝑈𝑈𝐶𝐶 𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑠𝑠 𝑧𝑧𝑓𝑓𝑚𝑚𝑠𝑠 2  𝑏𝑏𝑠𝑠𝑠𝑠    𝑆𝑆𝐼𝐼𝐶𝐶:𝐶𝐶 

𝑈𝑈𝑈𝑈𝐶𝐶 𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑚𝑚𝑟𝑟𝑠𝑠 𝑧𝑧𝑓𝑓𝑚𝑚𝑠𝑠𝑠𝑠 3, 4    𝑏𝑏𝑠𝑠𝑠𝑠      𝑆𝑆𝐼𝐼𝐶𝐶:𝐼𝐼,𝐸𝐸,𝐹𝐹 

Where:  

W: seismic effective weight 

I: importance factor, Table 16-K 

R: response factor, Table 16-N 

Ca: seismic factor, Table 16-Q 

Cv: seismic factor, Table 16-R 

Soil profile as stated in Table 16-J 

T: approximate period in seconds. 

The calculated structural period from structural analysis shall be less than 1.3 T from method 
A (The above equation) if the structure exists in seismic zone 4 and 1.4 T from method A if the 
structure exists in seismic zones 1,2 and 3.  

The redundancy factor, 𝜌𝜌 is equal to 1.0 for seismic zones 0, 1 and 2 and it equals 1.5 for 
seismic zone 3. In general, it can be calculated based on code provisions. 

Ev: vertical seismic force component 

wi and wx : The portion of the total effective seismic weight of the structure (W) located or 
assigned to Level i or x  



Design of Reinforced Concrete Structures: A Practical Approach                                    IBRAHIM ARMAN 
 

271 
 

hi and hx = the height (ft or m) from the base to Level i or x. 

Ft: the concentrated force at the top 

Moment resisting frames: 

For seismic zones 3 and 4, the lateral forces resisting system shall be special moment resisting 
frames and for seismic zone 2, it shall be intermediate moment resisting frames. 

Example 1:  

Given: 

- Concrete strength, f’c= 28MPa 
- Steel strength, fy= 420MPa 
- Office building 
- Five floors 
- Floor height= 4m 
- Live load, WL= 3kN/m2  
- Superimposed dead load, WSD= 4kN/m2  
- Perimeter wall weight= 6kN/m 
- Slab system: Two way solid. Slab thickness, t= 0.17m. 
- All columns are 0.60m x 0.60m 
- All beams are 0.30m (Width) x 0.55m (Depth) 
- Location: Ss= 1.12g, S1=0.53g, z=0.3 
- Soil class= C or Sc 

Determine the base shear and its distribution to the floors. 

 

Figure 12.4: Building plan for the example 
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Solution: 

ASCE 7-10 / IBC 2012 codes: 

From ASCE Table 11.4.1, Fa= 1.0 

From ASCE Table 11.4-2, Fv=1.30 

𝑆𝑆𝑀𝑀𝑀𝑀 = 𝐹𝐹𝑎𝑎𝑆𝑆𝑀𝑀 = (1)(1.12) = 1.12 
         
𝑆𝑆𝑀𝑀1 = 𝐹𝐹𝑣𝑣𝑆𝑆1 = (1.30)(0.53) = 0.689 
         

𝑆𝑆𝐷𝐷𝑀𝑀 =
2
3
𝑆𝑆𝑀𝑀𝑀𝑀 = (2/3)(1.12) = 0.75 

             

𝑆𝑆𝐷𝐷1 =
2
3
𝑆𝑆𝑀𝑀1 = (2/3)(0.689) = 0.46 

Risk category: III         ASCE 7-10 Table 1.5-1 

𝐼𝐼𝑒𝑒= 1.25 ASCE Table 1.5-2 

Seismic design category: D Table 11.6-1 ASCE 7-10 

Seismic design category: D Table 11.6-2 ASCE 7-10 

So, the seismic design category is D. 

Seismic force resisting system: Special reinforced concrete moment frames. 

From ASCE 7-10 Table 12.2-1: 

𝑅𝑅 = 8 

Ω𝑜𝑜 = 3 

𝐶𝐶𝑑𝑑 = 5.5 

Period: 

 𝑇𝑇𝑎𝑎 = 𝐶𝐶𝑡𝑡ℎ𝑛𝑛
𝑥𝑥 = (0.0466)(5𝑥𝑥4)0.9 = 0.69 𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑚𝑚𝑏𝑏𝑠𝑠 

If structural analysis is done, the period is limited to Ta Cu= (0.69)(1.4)=0.97 seconds. 

Building effective weight: 

Slab: (21)(18)(0.17)(25)=1606.5kN 
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Beams: {(21)(4)+(18)(4)}(0.3)(0.55)(25)=643.5kN 

Columns: (16)(0.6)(0.6)(4)(25)=576kN 

Walls: {(21)(2)+(18)(2)}(6)=468kN 

Superimposed dead load: (21)(18)(4)=1512kN 

0.25 of Live loads: (0.25)(21)(18)(3)=283.5kN 

Weight of one floor= 5089.5kN 

Weight of five floors= (5)(5089.5)=25447.5kN 

𝐶𝐶𝑠𝑠 =
𝑆𝑆𝐷𝐷𝑀𝑀
𝑅𝑅/𝐼𝐼𝑒𝑒

=
0.75

(8/1.25)
= 0.117 

𝐶𝐶𝑠𝑠,𝑚𝑚𝑎𝑎𝑥𝑥 =
𝑆𝑆𝐷𝐷1

𝑇𝑇 �𝑅𝑅𝐼𝐼𝑒𝑒
�

=
0.46

(0.69)(8/1.25)
= 0.104       𝑠𝑠𝑓𝑓𝑚𝑚𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠𝑏𝑏𝑠𝑠 

𝐶𝐶𝑠𝑠,𝑚𝑚𝑖𝑖𝑛𝑛 = 0.044𝑆𝑆𝐷𝐷𝑀𝑀𝐼𝐼𝑒𝑒 = 0.044(0.75)(1.25) = 0.041 ≥ 0.01 

So, use 𝐶𝐶𝑠𝑠 = 0.104 

𝑉𝑉 = 𝐶𝐶𝑠𝑠𝑊𝑊 = (0.104)(25447.5) = 2647𝑘𝑘𝑘𝑘 

Distribution of base shear to floors: 

K=1.095 

𝐶𝐶𝑣𝑣𝑥𝑥 =
𝑤𝑤𝑥𝑥ℎ𝑥𝑥

𝑘𝑘

∑ 𝑤𝑤𝑖𝑖ℎ𝑖𝑖
𝑘𝑘𝑛𝑛

𝑖𝑖=1
 

Table 12.3: Floor forces – ASCE 7-10/ IBC 2012 

Floor Height (m) 
hi 

Weight (kN) 
Wi 

Wi hi k Cvx Force to 
floor Fx (kN) 

5 20 5089.5 135301.6 0.346 916 
4 16 5089.5 105970.9 0.271 717 
3 12 5089.5 77335.4 0.198 524 
2 8 5089.5 49608.8 0.127 336 
1 4 5089.5 23223.7 0.059 156 
   391440.4 1.001 2649 
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UBC 97 code: 

Effective weight, W= 25447.5kN 

I=1.0         Table 16-K 

Seismic zone: 3    Z=0.3 

Special moment resisting frame. 

𝑅𝑅 = 8.5          Ω𝑜𝑜 = 2.8             

Soil profile: Sc: given 

Ca= 0.33       Table 16-Q                        Cv= 0.45        Table 16-R 

𝑇𝑇 = 𝐶𝐶𝑡𝑡ℎ𝑛𝑛
3
4 = (0.0731)(20)3/4 = 0.69 𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑚𝑚𝑏𝑏𝑠𝑠 

𝑉𝑉 =
𝐶𝐶𝑣𝑣𝐼𝐼
𝑅𝑅𝑇𝑇

𝑊𝑊 =
(0.45)(1)

(8.5)(0.69)
(25447.5) = 1953𝑘𝑘𝑘𝑘 

      

𝑉𝑉𝑚𝑚𝑎𝑎𝑥𝑥 =
2.5𝐶𝐶𝑎𝑎𝐼𝐼
𝑅𝑅

𝑊𝑊 =
(2.5)(0.33)(1)

8.5
(25447.5) = 2470𝑘𝑘𝑘𝑘 > 1953𝑘𝑘𝑘𝑘 

      
𝑉𝑉𝑚𝑚𝑖𝑖𝑛𝑛 = 0.11𝐶𝐶𝑎𝑎𝐼𝐼𝑊𝑊 = (0.11)(0.33)(1)(25447.5) = 924𝑘𝑘𝑘𝑘 

Use V= 1953kN 

Distribution of base shear to floors: 

Since T< 0.7 seconds, 𝐹𝐹𝑡𝑡=0.0 kN 

𝐹𝐹𝑥𝑥 =
(𝑉𝑉 − 𝐹𝐹𝑡𝑡)𝑤𝑤𝑥𝑥ℎ𝑥𝑥
∑ 𝑤𝑤𝑖𝑖ℎ𝑖𝑖𝑛𝑛
𝑖𝑖=1

 

Table 6.4: Floor forces – UBC 97 

Floor Height (m) 
hi 

Weight (kN) 
Wi 

Wi hi k Cvx Force to 
floor Fx (kN) 

5 20 5089.5 101790 0.333 650 
4 16 5089.5 81432 0.267 521 
3 12 5089.5 61074 0.200 391 
2 8 5089.5 40716 0.133 260 
1 4 5089.5 20358 0.067 131 
   305370 1.000 1953 
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12.7  Seismic response spectrum: 

The effect of the size and type of vibration waves released during a given earthquake can be 
organized so as to be more useful in design in terms of a response spectrum for a given 
earthquake or family of earthquakes. Figure 5a shows a family of inverted, damped 
pendulums, each of which has a different period of vibration, T. To derive a point on a 
response spectrum, one of these hypothetical pendulum structures is analytically subjected 
to the vibrations recorded during a particular earthquake. The largest acceleration of this 
pendulum structure during the entire record of a particular earthquake can be plotted as 
shown in Figure 6.5b. Repeating this for each of the other pendulum structures shown in 
Figure 6.5a and plotting the peak values for each of the pendulum structures produces an 
acceleration response spectrum. 

Generally, the vertical axis of the spectrum is normalized by expressing the computed 
accelerations in terms of the acceleration due to gravity. If, for example, the ordinate of a 
point on the response spectrum is 2 for a given period T, it means that the peak acceleration 
of the pendulum structure for that value of T and for that earthquake was twice that due to 
gravity. The random wave content of an earthquake causes the derived acceleration response 
spectrum to plot as a jagged line, as shown in Figure 6.6c. The spectra in Figure 6.5b has been 
smoothed. 
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Figure 12.5: Earthquake response spectrum 

 

Velocity and Displacement Spectra: 

Following the procedure used to obtain an acceleration spectrum, but plotting the peak 
velocity relative to the ground during the entire earthquake against the periods of the family 
of pendulum structures, gives a velocity response spectrum. A plot of the maximum 
displacements of the structure relative to the ground during the entire earthquake is called a 
displacement response spectrum. These three spectra for a particular earthquake measured 
on rock or firm soil sites are shown in Figure 6. 
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Figure 12.6: Displacement, velocity, and acceleration spectra for a given earthquake 
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Response spectrum analysis:  

An elastic dynamic analysis of a structure utilizing the peak dynamic response of all modes 
having a significant contribution to total structural response. Peak modal responses are 
calculated using the ordinates of the appropriate response spectrum curve which correspond 
to the modal periods. Maximum modal contributions are combined in a statistical manner to 
obtain an approximate total structural response. 

Time-history analysis:  

An analysis of the dynamic response of a structure at each increment of time when the base 
is subjected to a specific ground motion time history.  
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Chapter 13: Design of Footings 

 

This chapter illustrates the design of the following types of footings: 

- Wall footing 
- Single footing 
- Combined footing 
- Strap footing 
- Mat foundation 
- Pile foundation 

 

Figure 13.1: Wall, single and combined footings 
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Figure 13.2: Mat foundation 

 

13.1 Design of Wall Footing: 

Design steps: 

1. Determine footing width, B: 

𝐴𝐴𝑓𝑓 =
𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎

 

Where: 

Af= area of footing= B x 1m 

B= width of footing, m 

1 m= unit length of wall footing 

Pservice= summation of service compression axial force, kN/m 

qall= allowable soil bearing capacity, kN/m2  

So, 

𝐵𝐵 =
𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎
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2.  Determine footing thickness, h: 

Footing thickness, h= d + cov 

d= footing effective depth, mm 

cov= concrete cover to flexural bars centroid = clear concrete cover + half bar diameter, mm 

Clear cover= 75mm if the footing is casted directly on soil. 

Clear cover= 40mm if the footing is casted on plain concrete. 

d>= 150mm for footing on soil. 

d>= 300mm for footing on piles. 

It is recommended to use the thickness of the footing not less than 300mm to take into 
account environmental conditions to protect concrete. 

Footing effective depth, d can be determined from wide beam shear strength (one-way 
shear), as follows:  

The ultimate shear force, 𝑉𝑉𝑢𝑢 should be less than or equals the section shear strength, ∅𝑉𝑉𝑠𝑠. 

𝑉𝑉𝑢𝑢 ≤ ∅𝑉𝑉𝑠𝑠 

ACI 318 − 14: ∅𝑉𝑉𝑠𝑠 =  ∅ 1
6
𝜆𝜆�𝑓𝑓′𝑠𝑠𝑏𝑏𝑤𝑤𝑑𝑑                    

 

ACI 318-19: 

𝑉𝑉𝑠𝑠 can be calculated by: 

 𝐹𝐹𝐹𝐹𝐹𝐹 𝐴𝐴𝑠𝑠 ≥ 𝐴𝐴𝑠𝑠.𝑚𝑚𝑠𝑠𝑚𝑚 (𝐹𝐹𝐹𝐹 
𝐴𝐴𝑠𝑠
𝑠𝑠
≥ �

𝐴𝐴𝑠𝑠
𝑠𝑠 �𝑚𝑚𝑠𝑠𝑚𝑚

) 𝑢𝑢𝑠𝑠𝑢𝑢 𝑢𝑢𝑒𝑒𝑒𝑒ℎ𝑢𝑢𝐹𝐹 𝐹𝐹𝑓𝑓: 

𝑉𝑉𝑠𝑠 = �0.17𝜆𝜆�𝑓𝑓′𝑠𝑠 +
𝑁𝑁𝑢𝑢

6𝐴𝐴𝑔𝑔
� 𝑏𝑏𝑤𝑤𝑑𝑑     𝑎𝑎𝑎𝑎𝑑𝑑      𝑉𝑉𝑠𝑠 = �0.66𝜆𝜆(𝜌𝜌𝑤𝑤)1/3�𝑓𝑓′𝑠𝑠 +

𝑁𝑁𝑢𝑢
6𝐴𝐴𝑔𝑔

� 𝑏𝑏𝑤𝑤𝑑𝑑 

𝐹𝐹𝐹𝐹𝐹𝐹 𝐴𝐴𝑠𝑠 < 𝐴𝐴𝑠𝑠.𝑚𝑚𝑠𝑠𝑚𝑚  �𝐹𝐹𝐹𝐹 
𝐴𝐴𝑠𝑠
𝑠𝑠

< �
𝐴𝐴𝑠𝑠
𝑠𝑠 �𝑚𝑚𝑠𝑠𝑚𝑚

� 𝑢𝑢𝑠𝑠𝑢𝑢: 

  𝑉𝑉𝑠𝑠 = �0.66𝜆𝜆𝑠𝑠𝜆𝜆(𝜌𝜌𝑤𝑤)1/3�𝑓𝑓′𝑠𝑠 +
𝑁𝑁𝑢𝑢

6𝐴𝐴𝑔𝑔
� 𝑏𝑏𝑤𝑤𝑑𝑑 

Where 𝐴𝐴𝑠𝑠 is the area of shear reinforcement within spacing s, mm2.  
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And, 𝑉𝑉𝑠𝑠 shall not be taken greater than: 

𝑉𝑉𝑠𝑠 ≤ 0.42𝜆𝜆�𝑓𝑓′𝑠𝑠𝑏𝑏𝑤𝑤𝑑𝑑 

 

𝑆𝑆𝑒𝑒𝑆𝑆𝑢𝑢 𝑓𝑓𝑎𝑎𝑓𝑓𝑒𝑒𝐹𝐹𝐹𝐹, 𝜆𝜆𝑠𝑠 = � 2
1 + 0.004 𝑑𝑑

≤ 1.0 

For 𝑑𝑑 ≤ 250𝑚𝑚𝑚𝑚, 𝜆𝜆𝑠𝑠 = 1.0 

𝑁𝑁𝑢𝑢
6𝐴𝐴𝑔𝑔

≤ 0.05𝑓𝑓′𝑠𝑠 

Axial load, Nu, is positive for compression and negative for tension. 

𝜌𝜌𝑤𝑤 =
𝐴𝐴𝑠𝑠
𝑏𝑏𝑤𝑤𝑑𝑑

 

The value of 𝐴𝐴𝑠𝑠 to be used in the calculation of 𝜌𝜌𝑤𝑤 may be taken as the sum of the areas of 
longitudinal bars located more than two thirds of the overall member depth away from the 
extreme compression fiber. 

The value of �𝑓𝑓’𝑓𝑓 used to calculate Vc for one-way shear shall not exceed 100 psi (8.3MPa), 
unless allowed in 22.5.3.2 (𝐴𝐴𝑠𝑠  ≥  𝐴𝐴𝑠𝑠,𝑚𝑚𝑠𝑠𝑚𝑚). 

When no shear reinforcement is used, the ACI 318-19 equation of 𝑉𝑉𝑠𝑠 will give the same value 
as in ACI 318-14 if the steel ratio, 𝜌𝜌𝑤𝑤 = 0.017. In footings, this ratio is high and will not be 
obtained, so, the controlling equation will be that of ACI 318-19. 

𝑉𝑉𝑢𝑢 = 𝑞𝑞𝑢𝑢(𝑙𝑙1 − 𝑑𝑑)                            

𝑏𝑏𝑤𝑤 = 1000𝑚𝑚𝑚𝑚 

𝑞𝑞𝑢𝑢 = ultimate stress under the footing, kN/m2  

𝑞𝑞𝑢𝑢 =
𝑃𝑃𝑢𝑢
𝐵𝐵

 

            

𝑃𝑃𝑢𝑢= ultimate axial downward load on the footing in kN/m 

L1= clear distance from face of wall (support) to edge of footing 

3. Determine flexural steel: 

 The moment at face of the wall, 𝑀𝑀𝑢𝑢 is given by: 
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𝑀𝑀𝑢𝑢 =  𝑞𝑞𝑢𝑢𝑎𝑎1
2

2
                       : cantilever of span L1 

The steel ratio, ρ is given by:  

𝜌𝜌 =
0.85𝑓𝑓′𝑠𝑠
𝑓𝑓𝑦𝑦

�1 −�1 −
2.61𝑀𝑀𝑢𝑢

𝑏𝑏𝑑𝑑2𝑓𝑓′𝑠𝑠
� 

Where: 

f’c= concrete compressive strength, Mpa 

fy= steel yield strength, Mpa 

Mu= ultimate moment at face of wall, N.mm 

b= width of section= 1000mm 

d= effective depth of section, mm 

The flexural steel area, As= ρbd  ≥ 𝐴𝐴𝑠𝑠,𝑚𝑚𝑠𝑠𝑚𝑚 

𝐴𝐴𝑠𝑠,𝑚𝑚𝑠𝑠𝑚𝑚  = 𝜌𝜌𝑠𝑠ℎ𝑠𝑠𝑠𝑠𝑚𝑚𝑟𝑟𝑎𝑎𝑔𝑔𝑠𝑠 x b x h         b=1000mm 

𝜌𝜌𝑠𝑠ℎ𝑠𝑠𝑠𝑠𝑚𝑚𝑟𝑟𝑎𝑎𝑔𝑔𝑠𝑠 = 0.0018 

Shrinkage steel should be used in the longitudinal direction of footing. 

The flexural steel is used in the transverse direction of footing. 

It is recommended to use top reinforcement equals to half the shrinkage steel if the thickness 
of footing is large (may be larger than 500mm). 

Check development of flexural bars: 

The length of bar from face of wall to the end of footing should be larger than or equal to the 
bar development length, 𝐿𝐿𝑑𝑑𝑑𝑑 𝐹𝐹𝐹𝐹 𝐿𝐿𝑑𝑑ℎ. 

The development length in tension, 𝐿𝐿𝑑𝑑𝑑𝑑 is given by: 

𝐿𝐿𝑑𝑑𝑑𝑑 ≥  
0.48𝑓𝑓𝑦𝑦
𝜆𝜆�𝑓𝑓′𝑠𝑠

𝑑𝑑𝑏𝑏 ≥ 300𝑚𝑚𝑚𝑚  𝑓𝑓𝐹𝐹𝐹𝐹 𝑑𝑑𝑏𝑏 < 20𝑚𝑚𝑚𝑚 

𝐿𝐿𝑑𝑑𝑑𝑑 ≥  
0.59𝑓𝑓𝑦𝑦
𝜆𝜆�𝑓𝑓′𝑠𝑠

𝑑𝑑𝑏𝑏 ≥ 300𝑚𝑚𝑚𝑚  𝑓𝑓𝐹𝐹𝐹𝐹 𝑑𝑑𝑏𝑏 ≥ 20𝑚𝑚𝑚𝑚 
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For top bars and d>= 300mm, increase these values by 30%. 

The development length for hooked bars, 𝐿𝐿𝑑𝑑ℎ is given by: 

𝐴𝐴𝐴𝐴𝐴𝐴 318 − 14: 𝐿𝐿dℎ ≥  
0.24𝑓𝑓𝑦𝑦
𝜆𝜆�𝑓𝑓′𝑠𝑠

𝑑𝑑𝑏𝑏 

𝐴𝐴𝐴𝐴𝐴𝐴 318 − 19: 𝑙𝑙𝑑𝑑ℎ ≥
0.087𝑓𝑓𝑦𝑦
𝜆𝜆�𝑓𝑓′𝑠𝑠

𝑑𝑑𝑏𝑏
1.5 

≥ 8𝑑𝑑𝑏𝑏 

≥ 150𝑚𝑚𝑚𝑚 

 

Example (wall footing): 

Given: 

Concrete f’c= 24MPa 

Steel yield strength, fy= 420MPa 

Soil allowable bearing capacity, qall= 300kN/m2 

Wall thickness= 0.25m 

Dead load, PD= 300kN/m 

Live load, PL= 200kN/m 

Design the required wall footing? 

 

Solution:  

1. Footing width, B: 

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠= PD+ PL= 300 + 200= 500kN 

𝑃𝑃𝑢𝑢𝑎𝑎𝑑𝑑𝑠𝑠𝑚𝑚𝑎𝑎𝑑𝑑𝑠𝑠= 1.2 PD + 1.6 PL= 1.2(300) + 1.6(200) = 680kN 

𝐵𝐵 =
𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎

=
500
300

= 1.7𝑚𝑚 
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2. Footing thickness, h: 

𝑞𝑞𝑢𝑢 =  
𝑃𝑃𝑢𝑢𝑎𝑎t𝑠𝑠𝑚𝑚𝑎𝑎𝑑𝑑𝑠𝑠

𝐵𝐵
=  

680
1.7

= 400𝑘𝑘𝑁𝑁/𝑚𝑚2 

The distance from face of wall to the edge of footing, L1 is: 

𝑙𝑙1 =
1.7 − 0.25

2
= 0.725𝑚𝑚 

The ultimate shear at distance d from face of wall is given by: 

𝑉𝑉𝑢𝑢 = 𝑞𝑞𝑢𝑢(𝑙𝑙1 − 𝑑𝑑) = 400(0.725 − 𝑑𝑑) = 290 − 400d 

ACI 318-14:  

The concrete shear capacity, ∅𝑉𝑉𝑠𝑠  is: 

∅𝑉𝑉𝑠𝑠 =  ∅
1
6
𝜆𝜆�𝑓𝑓′𝑠𝑠𝑏𝑏𝑤𝑤𝑑𝑑 =

(0.75) �1
6� (1)√24(1000)(𝑑𝑑𝑑𝑑1000)

1000
 

𝑉𝑉𝑢𝑢 = ∅𝑉𝑉𝐶𝐶 → 𝑑𝑑 = 0.29𝑚𝑚 

Footing thickness, h = d + cover to bars centroid= 0.29+0.05= 0.34m   Use h=0.35 for practical 
purposes. 

 

ACI 318-19:  

The concrete shear capacity, ∅𝑉𝑉𝑠𝑠  is: 

  ∅𝑉𝑉𝑠𝑠 = ∅�0.66𝜆𝜆𝑠𝑠𝜆𝜆(𝜌𝜌𝑤𝑤)1/3�𝑓𝑓′𝑠𝑠 +
𝑁𝑁𝑢𝑢

6𝐴𝐴𝑔𝑔
� 𝑏𝑏𝑤𝑤𝑑𝑑 

𝐿𝐿𝑢𝑢𝑒𝑒 𝜌𝜌𝑤𝑤 = 0.0018 �ℎ
𝑑𝑑
� = 0.0018(1.1) = 0.00198   

Based on ACI 318-19 section 13.2.6.2, the size factor in footings can be neglected. 

0.75 �0.66(1)(1)(0.00198)
1
3√24 + 0.0� (1000)(𝑑𝑑 𝑋𝑋1000)

1000
= 290 − 400𝑑𝑑 

305𝑑𝑑 = 290 − 400𝑑𝑑 → 𝑑𝑑 =
290
705

= 0.41𝑚𝑚 → ℎ = 0.41 + 0.05 = 0.46𝑚𝑚 → 𝑢𝑢𝑠𝑠𝑢𝑢 ℎ
= 0.50𝑚𝑚. 
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3. Design for flexure: 

The ultimate bending moment at face of wall, Mu is given by: 

𝑀𝑀𝑢𝑢 =
𝑞𝑞𝑢𝑢 𝑙𝑙12

2
=

(400)(0.725)2

2
= 105𝑘𝑘𝑁𝑁.𝑚𝑚 

ACI 318-14: Footing thickness, h= 350mm, d= 300mm. 

Steel ratio, ρ is: 

𝜌𝜌 =
0.85(24)

420 �1 −�1 −
2.61(105𝑑𝑑106)

(1000)(300)2(24) �
= 0.0032 

Steel area (bottom), As= ρbd= 0.0032(1000) (300) = 960mm2 

Minimum area of steel (bottom), As,min= As,shrinkage = 0.0018bh= 0.0018(1000)(350)= 
630mm2 < 960mm2. 

Use As= 960mm2/m. Use ∅16/200𝑚𝑚𝑚𝑚 

Longitudinal bars: As, shrinkage = 630mm2/m. Use ∅16/300𝑚𝑚𝑚𝑚 

 

ACI 318-19: Footing thickness, h= 500mm, d= 450mm. 

Steel ratio, ρ is: 

𝜌𝜌 =
0.85(24)

420 �1 −�1 −
2.61(105𝑑𝑑106)

(1000)(450)2(24) �
= 0.0014 

Steel area (bottom), As= ρbd= 0.0014(1000) (450) = 630mm2 

Minimum area of steel (bottom), As,min= As,shrinkage = 0.0018bh= 0.0018(1000)(500)= 
900mm2 > 630mm2. 

Use As= 900mm2/m. Use ∅16/200𝑚𝑚𝑚𝑚 

Longitudinal bars: As, shrinkage = 900mm2/m. Use ∅16/200𝑚𝑚𝑚𝑚 

As the footing has large thickness, it is recommended to use top bars not less than half the 
shrinkage steel.  

𝐴𝐴𝑠𝑠 = 0.5(900) = 450𝑚𝑚𝑚𝑚2                        𝑢𝑢𝑠𝑠𝑢𝑢 1∅12/200𝑚𝑚𝑚𝑚 
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Check development of flexural bars: 

The bars are extended to the end of the cantilever (footing), so, the length of bar after the 
critical section extends a distance of: 

L= 0.725 – 0.05 = 0.675m 

The development length in tension, Ldt is: 

𝐿𝐿𝑑𝑑𝑑𝑑 ≥  
0.48𝑓𝑓𝑦𝑦
𝜆𝜆�𝑓𝑓′𝑠𝑠

𝑑𝑑𝑏𝑏 ≥ 300𝑚𝑚𝑚𝑚 

𝐿𝐿𝑑𝑑𝑑𝑑 ≥  
0.48(420)

(1)√24
(16) = 658𝑚𝑚 ≥ 300𝑚𝑚𝑚𝑚 

So, 675mm > 658mm, there is no need for standard hook. 

As a common practice and for bars fixation, hooks can be used. 

𝐴𝐴𝐴𝐴𝐴𝐴 318 − 14: 𝐿𝐿dℎ ≥  
0.24𝑓𝑓𝑦𝑦
𝜆𝜆�𝑓𝑓′𝑠𝑠

𝑑𝑑𝑏𝑏 =
(0.24)(420)

(1)√24
(16) = 330𝑚𝑚𝑚𝑚 

𝐴𝐴𝐴𝐴𝐴𝐴 318 − 19: 𝑙𝑙𝑑𝑑ℎ ≥
0.087𝑓𝑓𝑦𝑦
𝜆𝜆�𝑓𝑓′𝑠𝑠

𝑑𝑑𝑏𝑏
1.5 =

0.087(420)
(1)√24

(16)1.5 = 477𝑚𝑚𝑚𝑚 

 

≥ 8𝑑𝑑𝑏𝑏 = (8)(16) = 128𝑚𝑚𝑚𝑚 

≥ 150𝑚𝑚𝑚𝑚 
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Figure 13.3: Section in wall footing – ACI 318-14 

 

Figure 13.4: Section in wall footing – ACI 318-19 
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13.2 Design of single footing 

Design steps: 

1. Determine footing area:  

𝐴𝐴𝑓𝑓 =
𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎

 

Where: 

𝐴𝐴𝑓𝑓= area of footing= B x L 

B= width of footing 

L= length of footing 

It is preferred to have the distance from the column edge to the four footing edges constant, 
so the shear and moment have the same values. 

 

Figure 13.5: Footing layout 

2.  Determine footing thickness, h: 

Footing thickness, h= d + cov 

d= footing effective depth, mm 

cov= concrete cover to flexural bars centroid = clear concrete cover + half bar diameter, mm 
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Clear cover= 75mm if the footing is casted directly on soil 

Clear cover= 40mm if the footing is casted on plain concrete 

d>= 150mm for footing on soil 

d>= 300mm for footing on piles 

 

Figure 13.6: Section in footing  

 

Wide beam shear (or one-way shear): 

Footing effective depth, d can be determined from wide beam shear strength. 

𝑉𝑉𝑢𝑢 ≤ ∅𝑉𝑉𝑠𝑠 

ACI 318 − 14: ∅𝑉𝑉𝑠𝑠 =  ∅
1
6
𝜆𝜆�𝑓𝑓′𝑠𝑠𝑏𝑏𝑤𝑤𝑑𝑑 

                   

 𝐴𝐴𝐴𝐴𝐴𝐴 318 − 19:  ∅𝑉𝑉𝑠𝑠 = ∅�0.66𝜆𝜆𝑠𝑠𝜆𝜆(𝜌𝜌𝑤𝑤)1/3�𝑓𝑓′𝑠𝑠 +
𝑁𝑁𝑢𝑢

6𝐴𝐴𝑔𝑔
�𝑏𝑏𝑤𝑤𝑑𝑑 

𝑉𝑉𝑢𝑢 = 𝑞𝑞𝑢𝑢(𝐿𝐿′ − 𝑑𝑑)                           

𝑏𝑏𝑤𝑤 = 1000𝑚𝑚𝑚𝑚 

𝑞𝑞𝑢𝑢 =
𝑃𝑃𝑢𝑢
𝐵𝐵𝐿𝐿
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Pu= ultimate axial downward load on the footing in kN/m 

L1= the larger distance from face of column to edge of footing 

 

Punching shear (or two-way shear): 

∅𝑉𝑉𝑠𝑠 ≤ ∅0.33𝜆𝜆𝑠𝑠𝜆𝜆�𝑓𝑓′𝑠𝑠𝑏𝑏𝑜𝑜𝑑𝑑 

∅𝑉𝑉𝑠𝑠 ≤ ∅0.17𝜆𝜆𝑠𝑠𝜆𝜆 �1 +
2
𝛽𝛽��

𝑓𝑓′𝑠𝑠𝑏𝑏𝑜𝑜𝑑𝑑 

∅𝑉𝑉𝑠𝑠 ≤ ∅0.083𝜆𝜆𝑠𝑠𝜆𝜆 �2 +
𝛼𝛼𝑠𝑠𝑑𝑑
𝑏𝑏𝑜𝑜

��𝑓𝑓′𝑠𝑠𝑏𝑏𝑜𝑜𝑑𝑑 

Where: 

𝑏𝑏𝑜𝑜: The perimeter length of the critical zone 

𝛽𝛽:𝑅𝑅𝑎𝑎𝑒𝑒𝑒𝑒𝐹𝐹 𝐹𝐹𝑓𝑓 
𝑙𝑙𝐹𝐹𝑎𝑎𝑙𝑙 𝑠𝑠𝑒𝑒𝑑𝑑𝑢𝑢
𝑠𝑠ℎ𝐹𝐹𝐹𝐹𝑒𝑒 𝑠𝑠𝑒𝑒𝑑𝑑𝑢𝑢

 𝐹𝐹𝑓𝑓 𝑓𝑓𝐹𝐹𝑙𝑙𝑢𝑢𝑚𝑚𝑎𝑎 

𝛼𝛼𝑠𝑠: Factor describes the location of the column 

𝛼𝛼𝑠𝑠 = 40         𝑓𝑓𝐹𝐹𝐹𝐹 𝑒𝑒𝑎𝑎𝑒𝑒𝑢𝑢𝐹𝐹𝑒𝑒𝐹𝐹𝐹𝐹 𝑓𝑓𝐹𝐹𝑙𝑙𝑢𝑢𝑚𝑚𝑎𝑎 

𝛼𝛼𝑠𝑠 = 30         𝑓𝑓𝐹𝐹𝐹𝐹 𝑢𝑢𝑑𝑑𝑙𝑙𝑢𝑢 𝑓𝑓𝐹𝐹𝑙𝑙𝑢𝑢𝑚𝑚𝑎𝑎 

𝛼𝛼𝑠𝑠 = 20         𝑓𝑓𝐹𝐹𝐹𝐹 𝑓𝑓𝐹𝐹𝐹𝐹𝑎𝑎𝑢𝑢𝐹𝐹 𝑓𝑓𝐹𝐹𝑙𝑙𝑢𝑢𝑚𝑚𝑎𝑎 

d: effective depth of section 

The punching shear force, Vup= Pu- qu A1 

Pu= ultimate load on column, kN 

qu= ultimate pressure at footing, kN/m2  

A1= area inside the critical section, m2 

The critical section is located at minimum of d/2 from face of column and maximum of d. Use 
d/2 to be conservative. 
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3. Determine flexural steel: 

The bending moments in the two directions are computed based on a cantilever span of L1 
and L2. 

                     

𝑀𝑀𝑢𝑢1 =
𝑞𝑞𝑢𝑢 𝐿𝐿12

2
 

 

  𝑀𝑀𝑢𝑢2 =
𝑞𝑞𝑢𝑢 𝐿𝐿22

2
 

Then area of steel is computed and compared with As,min which is As,shrinkage as discussed 
in design of wall footings. 

Note:  

In rectangular footings of dimensions L and B, where L is larger than B, determine the portion 
of As1 of the total steel area As for the short direction to be uniformly distributed over the 
central band. The central band has a width B.  

𝐴𝐴𝑆𝑆1 =
2

𝛽𝛽 + 1
𝐴𝐴𝑆𝑆  

Where: β is the long side divided by the short side of footing 

And the remainder of steel As-As1, will be distributed out the central band. 

 

Figure 13.7: Band reinforcement 
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Check development of flexural bars: 

The length of bar from face of wall to the end of footing should be larger than or equal to the 
bar development length, 𝐿𝐿𝑑𝑑𝑑𝑑 𝐹𝐹𝐹𝐹 𝐿𝐿𝑑𝑑ℎ. 

 

Example (single footing): 

Given: 

-    Column: 0.50 x 0.50m 

-    Square footing 

-   Concrete f’c= 24MPa 

-   Steel yield strength, fy= 420MPa 

-  Soil allowable bearing capacity, qall= 350kN/m2 

-  Dead load, PD= 1500kN 

-  Live load, PL= 1000kN 

Design the square footing. 

 

Solution: 

1. Footing area: 

Total service axial compression force, Pservice= PD+ PL 

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 1500 + 1000= 2500kN 

𝑃𝑃𝑢𝑢𝑎𝑎𝑑𝑑𝑠𝑠𝑚𝑚𝑎𝑎𝑑𝑑𝑠𝑠= 1.2 PD + 1.6 PL = 1.2(1500) +1.6(1000) =3400kN 

𝐴𝐴𝑓𝑓 = 2500/350 = 7.14 m2   

Footing side length = √7.14 = 2.70𝑚𝑚 

B=L= 2.70m 
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Figure 13.8: Footing plan 

 

2. Footing thickness: 

Wide beam shear: 

𝑞𝑞𝑢𝑢 =
𝑃𝑃𝑢𝑢
𝐴𝐴𝑓𝑓

=
3400

2.70𝑑𝑑2.70
= 466.4𝑘𝑘𝑁𝑁/𝑚𝑚2 

L1 = L2 = (2.70-0.5)/2= 1.10m 

𝑉𝑉𝑢𝑢 = 𝑞𝑞𝑢𝑢(𝐿𝐿′ − 𝑑𝑑) = 466.4(1.10 − 𝑑𝑑) 

The concrete shear capacity, ∅Vc is: 

ACI 318-14: 

Wide beam shear:  

∅𝑉𝑉𝑠𝑠 =  ∅
1
6
𝜆𝜆�𝑓𝑓′𝑠𝑠𝑏𝑏𝑤𝑤𝑑𝑑 =

(0.75) �1
6� (1)√24(1000)(𝑑𝑑𝑑𝑑1000)

1000
 

 

From Vu = ΦVc →  d=0.48m 

 



Design of Reinforced Concrete Structures: A Practical Approach                               IBRAHIM ARMAN 
 

312 
 

Check punching shear: 

d= 0.48m  (480mm) 

bo= 4(column side + d/2) = 4(500+480) = 3920mm2 

𝛽𝛽 = 1 

𝛼𝛼𝑠𝑠 =  40 

𝛾𝛾 =  1    normal weight concrete 

Pu= 3400kN 

A1= (0.5+0.48)2= 0.9604m2 

Then   Vup= 2952kN           ∅𝑉𝑉𝑠𝑠,𝑝𝑝 =  2281𝑘𝑘𝑁𝑁    𝑁𝑁.𝐺𝐺 

Try d= 0.58m 

So, Vup= 2856kN        ∅𝑉𝑉𝑠𝑠,𝑝𝑝 =  3038𝑘𝑘𝑁𝑁       𝑂𝑂.𝐾𝐾. 

Footing thickness, h= 0.58+0.06=0.64 m   use h=0.65m. 

ACI 318-19: 

𝑉𝑉𝑢𝑢 = 𝑞𝑞𝑢𝑢(𝐿𝐿′ − 𝑑𝑑) = 466.4(1.10 − 𝑑𝑑) = 513.04 − 466.4d 

𝐿𝐿𝑢𝑢𝑒𝑒 𝜌𝜌𝑤𝑤 = 0.0018 �ℎ
𝑑𝑑
� = 0.0018(1.1) = 0.00198   

Based on ACI 318-19 section 13.2.6.2, the size factor in footings can be neglected. 

0.75 �0.66(1)(1)(0.00198)
1
3√24 + 0.0� (1000)(𝑑𝑑 𝑋𝑋1000)

1000
= 513.04 − 466.4𝑑𝑑 

305𝑑𝑑 = 513.04 − 466.4𝑑𝑑 → 𝑑𝑑 =
513.04
771.4

= 0.67𝑚𝑚 → ℎ = 0.67 + 0.06 = 0.73𝑚𝑚 → 𝑢𝑢𝑠𝑠𝑢𝑢 ℎ
= 0.75𝑚𝑚. 

 

Check punching shear: 

d= 750-60=690mm. 

bo= 4(column side + d/2) = 4(500+690) = 4760mm2 
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𝛽𝛽 = 1 

𝛼𝛼𝑠𝑠 =  40 

𝛾𝛾 =  1    normal weight concrete 

Pu= 3400kN 

A1= (0.5+0.69)2= 1.416m2 

Then   Vup= 3400-(466.4)(1.416)=2740kN           ∅𝑉𝑉𝑠𝑠,𝑝𝑝 =  4023𝑘𝑘𝑁𝑁    𝐹𝐹𝑘𝑘. 

 

3. Flexural steel: 

𝑀𝑀𝑢𝑢1 =
𝑞𝑞𝑢𝑢 𝐿𝐿′2

2
=  

466.4(1.1)2

2
= 282.2𝑘𝑘𝑁𝑁.𝑚𝑚/𝑚𝑚 

ACI 318-14: h= 650mm, d= 580mm 

Steel ratio = 0.00227        As= 1317mm2 

As,min= 0.0018(1000)(650)= 1170mm2  < 1317mm2 

Use As= 1317mm2     ∅16𝑚𝑚𝑚𝑚/150𝑚𝑚𝑚𝑚  in each direction bottom bars. 

Top bars for shrinkage can be used with As= 1170/2= 585mm2      ∅12/150𝑚𝑚𝑚𝑚 𝐹𝐹𝐹𝐹 ∅16/
300𝑚𝑚𝑚𝑚  

ACI 318-19: h= 750mm, d= 690mm 

Steel ratio = 0.0016        As= 1104mm2 

As,min= 0.0018(1000)(750)= 1350mm2  > 1104mm2 

Use As= 1350mm2     ∅16𝑚𝑚𝑚𝑚/150𝑚𝑚𝑚𝑚  in each direction bottom bars. 

Top bars for shrinkage can be used with As= 1350/2= 675mm2      ∅12/150𝑚𝑚𝑚𝑚 𝐹𝐹𝐹𝐹 ∅16/
300𝑚𝑚𝑚𝑚  

Check development of bars: 

L= 1.1 – 0.05 = 1.05m 

The development length in tension, 𝐿𝐿𝑑𝑑𝑑𝑑 is: 
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𝐿𝐿𝑑𝑑𝑑𝑑 ≥  
0.48𝑓𝑓𝑦𝑦
𝜆𝜆�𝑓𝑓′𝑠𝑠

𝑑𝑑𝑏𝑏 ≥ 300𝑚𝑚𝑚𝑚 

𝐿𝐿𝑑𝑑𝑑𝑑 ≥  
0.48(420)

(1)√24
(16) = 658𝑚𝑚 ≥ 300𝑚𝑚𝑚𝑚 

So, 1050mm > 658mm. 

 

Figure 13.9: Footing details – ACI318-14 
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Figure 13.10: Footing details – ACI318-19 

 

13.3 Design of single footing with combined compression and bending 
moments: 

The stress at the footing is determined from the known formula: 

𝜎𝜎 =
𝑃𝑃
𝐴𝐴

± �
𝑀𝑀𝑀𝑀
𝐴𝐴 �1

± �
𝑀𝑀𝑀𝑀
𝐴𝐴 �2

 

Where: 

P= compression force on footing 

A= area of footing 

M= applied moment in a direction 

I = moment of inertia in a direction 

y= distance from centroidal axis to a point where pressure will be computed 

The pressure under the footing is variable.  

For simplicity, the maximum pressure can be used for flexural design, wide beam shear and 
punching shear computations. The punching shear force can be computed by multiplying the 
maximum stress by the footing area to approximately taking into account shear- moment 
transfer. 
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So, 

𝑉𝑉𝑢𝑢𝑝𝑝 = 𝑞𝑞𝑢𝑢,𝑚𝑚𝑎𝑎𝑚𝑚𝐴𝐴𝑓𝑓 
       

𝑀𝑀𝑢𝑢,𝑚𝑚𝑎𝑎𝑚𝑚 =
𝑞𝑞𝑢𝑢,𝑚𝑚𝑎𝑎𝑚𝑚 l1

2

2
 

𝑉𝑉𝑢𝑢,𝑚𝑚𝑎𝑎𝑚𝑚 = 𝑞𝑞𝑢𝑢,𝑚𝑚𝑎𝑎𝑚𝑚(𝑙𝑙1 − 𝑑𝑑) 

Af= area of footing    

L1= distance from face of column to edge of footing 

 

Note:  

The known equation of stress calculation is used when there is no tension at soil when the 
eccentricity, e, is less than or equals to footing length divided by 6. 

But, when tension exists; eccentricity larger than L/6, the minimum stress is zero. And the 
maximum stress is computed by: 

𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚 =
(4/3)𝑃𝑃

𝐵𝐵(𝐿𝐿 − 2𝑢𝑢)
 

Where: 

P= axial compression force 

L= footing side in direction of moment 

B= footing transverse direction 

e= eccentricity= M/P 
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Figure 13.11: Stresses under footing with e >L/6 

 

Derivation: 

 

R = P = 𝜎𝜎𝑚𝑚𝑎𝑎𝑚𝑚
𝑋𝑋
2

 

𝑋𝑋 = 3𝑓𝑓 = 3 �
𝐵𝐵
2
− 𝑢𝑢� 
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𝜎𝜎𝑚𝑚𝑎𝑎𝑚𝑚 =
2𝑃𝑃
𝑋𝑋

=
2
3

𝑃𝑃

�𝐵𝐵2 − 𝑢𝑢�
=

4𝑃𝑃
3(𝐵𝐵 − 2𝑢𝑢)

=
(4/3)𝑃𝑃

(𝐵𝐵 − 2𝑢𝑢) 

Note that when a footing is subjected to an axial compression force and a bending moment 
on a wall or a column, the footing can be shifted with an eccentricity equals to the bending 
moment divided by the axial compression force to have a uniform pressure under the footing. 

 

Example: (single footing with combined compression and moment) 

Given:  

-    Column: 0.40 x 0.80m 

-    Rectangular footing. 

-   Concrete f’c= 28MPa 

-   Steel yield strength, fy= 420MPa 

-   Soil allowable bearing capacity, qall= 400kN/m2 

-   Dead load, PD= 1700kN 

-   Live load, PL= 1300kN 

-   Moments: MD= 255kN.m        ML= 195kN.m  in long direction of column 

-   Assume that weight of footing, backfill and surcharge equal to 10% of total compression 
load on footing. 

Design the required rectangular footing? 

 

Solution: 

1. Footing area: 

Total service load, P= 1.1(1700+1300) = 3300kN 

Total service moment, M= 255+ 195= 450kN 

Pu= 1.1(1.2x1700+1.6x1300) = 4532kN 

Mu= 618kN 



Design of Reinforced Concrete Structures: A Practical Approach                               IBRAHIM ARMAN 
 

319 
 

If the total service moment, M=0.0, then, the area of footing will be: 

𝐴𝐴𝐹𝐹𝑢𝑢𝑎𝑎 𝐹𝐹𝑓𝑓 𝑓𝑓𝐹𝐹𝐹𝐹𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙,𝐴𝐴𝑓𝑓 =
𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑞𝑞𝑎𝑎𝑎𝑎

=
3300
400

= 8.25𝑚𝑚2 

𝐹𝐹𝐹𝐹𝐹𝐹𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙 𝑠𝑠𝑒𝑒𝑑𝑑𝑢𝑢, 𝐿𝐿 = 𝐵𝐵 = √8.25 = 2.90𝑚𝑚 

So, the footing will be larger than 2.90m x 2.90m. 

Assume length of footing = 3.5m in direction of column long side, so: 

𝜎𝜎 =
𝑃𝑃
𝐴𝐴

± �
𝑀𝑀𝑀𝑀
𝐴𝐴 �

= 400 =  
3300
3.5𝐵𝐵

+
450(3.5

2 )
1

12 3.53𝐵𝐵
 

 

B= 3.0m 

So, use footing 3m x 3.5m 

 

Figure 13.12: Footing layout 

 

The stresses at the footing should be checked to check the existence of tension stress. 

So, 

Minimum stress= 240.82kN/m2     compression 
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Maximum stress= 387.76kN/m2     compression 

Or the eccentricity, e can be computed as follows: 

𝑢𝑢 =
𝑀𝑀
𝑃𝑃

=
450

3300
= 0.136𝑚𝑚 <

𝐿𝐿
6

=
3.50

6
= 0.583𝑚𝑚, 𝑠𝑠𝐹𝐹 𝑎𝑎𝐹𝐹 𝑒𝑒𝑢𝑢𝑎𝑎𝑠𝑠𝑒𝑒𝐹𝐹𝑎𝑎 𝑢𝑢𝑑𝑑𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠 𝑎𝑎𝑒𝑒 𝑓𝑓𝐹𝐹𝐹𝐹𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙. 

 

Figure 13.13: ultimate stresses under the footing 

 

2. Footing thickness: 

Apply the equation of stress computation using ultimate loads: 

𝜎𝜎 =
𝑃𝑃𝑢𝑢
𝐴𝐴

±
𝑀𝑀𝑢𝑢  𝑀𝑀
𝐴𝐴

 

Maximum ultimate stress, qu,max= 532.5kN/m2  

Minimum ultimate stress, qu,min= 330.7kN/m2 

Assume d= 0.62m and h= 0.70m 

The length of cantilevers in the two directions are: 

𝑙𝑙1 =
3.5 − 0.8

2
= 1.35𝑚𝑚 

𝑙𝑙2 =
3.0 − 0.4

2
= 1.30𝑚𝑚 
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So, the maximum cantilever distance is L1= 1.35m. 

Ultimate shear at distance d from face of column, Vu: 

𝑉𝑉𝑢𝑢 = 𝑞𝑞𝑢𝑢(𝑙𝑙1 − 𝑑𝑑) = 532.5(1.35 − 0.62) = 388.7𝑘𝑘𝑁𝑁 

ACI 318-14: Concrete shear capacity, ∅𝑉𝑉𝑓𝑓: 

∅𝑉𝑉𝑠𝑠 =
0.75 �1

6�√28(1000)(620)

1000
= 410𝑘𝑘𝑁𝑁 > 388.7𝑘𝑘𝑁𝑁 

Check punching shear: 

𝑉𝑉𝑢𝑢,𝑝𝑝 = (3)(3.5)(532.5) = 5591.25𝑘𝑘𝑁𝑁 

∅𝑉𝑉𝑓𝑓,𝑝𝑝 =  3962 𝑘𝑘𝑁𝑁 <  5591.25𝑘𝑘𝑁𝑁     𝑁𝑁.𝐺𝐺 

Assume h= 0.90m and d= 0.82m:  

∅𝑉𝑉𝑓𝑓, 𝑝𝑝 =  6161𝑘𝑘𝑁𝑁 >  5591.25𝑘𝑘𝑁𝑁       𝑂𝑂.𝐾𝐾 

ACI 318-19: Concrete shear capacity, ∅𝑉𝑉𝑓𝑓: 

0.75 �0.66(1)(1)(0.00198)
1
3√28 + 0.0� (1000)(820 𝑋𝑋1000)

1000
= 270𝑘𝑘𝑁𝑁 

𝑉𝑉𝑢𝑢 = 𝑞𝑞𝑢𝑢(𝑙𝑙1 − 𝑑𝑑) = 532.5(1.35 − 0.82) = 282.2𝑘𝑘𝑁𝑁 > 270𝑘𝑘𝑁𝑁   𝑁𝑁.𝐺𝐺 

Increase footing thickness, h= 950mm, d= 870mm, so: 

𝜙𝜙𝑉𝑉𝑠𝑠 = 286.5𝑘𝑘𝑁𝑁 

𝑉𝑉𝑢𝑢 = 255.6𝑘𝑘𝑁𝑁 < 286.5𝑘𝑘𝑁𝑁     𝐹𝐹𝑘𝑘. 

 

3. Design for flexure: 

h=950mm, d=870mm. 

The ultimate moment, Mu= 532.2(1.35)2/2= 485. 2kN.m 

This moment is the maximum in the two directions of footing. 

Steel ratio, 𝜌𝜌 = 0.00172         𝐴𝐴𝑠𝑠 = 1496𝑚𝑚𝑚𝑚2 

This moment requires minimum area of steel: 
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𝐴𝐴𝑠𝑠,𝑚𝑚𝑒𝑒𝑎𝑎 =  0.0018(1000)(950) =  1710𝑚𝑚𝑚𝑚2 

Use 1∅20/150𝑚𝑚𝑚𝑚 bottom bars in each direction. 

Use 1∅14/150𝑚𝑚𝑚𝑚 top bars shrinkage in each direction or use 1∅20/300𝑚𝑚𝑚𝑚 bars. 

 

 

Figure 13.14: Footing reinforcement 

 

13.4 Design of combined footing: 

• Combined footing is a footing that is used to support more than one column; usually 
two.  

• In general, the combined footing has a uniform width or it has a trapezoidal area. 
• It is recommended to have the centroid of forces coincides with the centroid of footing 

area especially when considering the footing rigid.  
• Combined footing is recommended to be used to have a uniform pressure under the 

footings when one column is located at edge of a single footing, so, this column is 
connected with another column in a combined footing with uniform pressure. 

• Also, combined footing is used to support two columns when the areas of single 
footings for these columns are large and the clear distance between these footings is 
small. 

 

Steps: 
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1. Determine footing area and its dimensions: it is recommended to have the centre of area 
to coincide with the centroid of loads to have uniform pressure as the footing is considered 
rigid. 

2. Determine footing thickness based on wide beam shear and punching shear. Shear 
reinforcement can be used. The combined footing that supports two columns can be modeled 
as a beam element. The column loads are downward point loads and the line soil pressure is 
the uniformly distributed line load. The downward point loads are equal to the upward line 
load multiplied by the beam element length. The shear force diagram can be constructed to 
this model.  

Also, the footing thickness must be determined or checked based on punching shear or 
moment- transfer strength. 

3. Determine flexural reinforcement in longitudinal direction. Analyze and design the footing 
as a beam element. The bending moment diagram can be constructed to the beam (footing) 
structural model. 

4. Determine flexural reinforcement in the transverse direction. It is considered that there 
is a strip in the transverse direction under the column of width equals column side plus d/2 
at each side of column, so strip width equals:    c2 + d/2  for exterior column and c2 + d for 
interior column where c2 is the transverse dimension of column. 

 

Example (combined footing): 

Given: 

- Refer to Figure 13.15 below. 
- Concrete strength, f’c= 21MPa 
- Steel strength, fy= 420MPa 
- Soil allowable bearing capacity, qall= 180kN/m2 
- Column C1: 0.35 m x 0.35m   PD1= 580kN    PL1= 312kN 
- Column C2: 0.40m x 0.40m    PD2= 670kN   PL2= 423kN 
- Distance between the two columns, L= 4.85m 

Design a combined footing to support the two columns. 
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                                               Figure 13.15: Columns layout- combined footing 

 

Solution: 

1. Footing area: 

The centroid of the footing area shall coincide with the centre of the loads. 

To locate the center of the loads, the moments of loads about point A at the centroid of left 
column is calculated as follows: refer to Figure 13.16: 

(PD1+PL1) (0.0) +(PD2+PL2) (L)= R X               x=2.67m. 

Where: 

R= resultant of vertical loads 

X= distance from the resultant force R to the centroid of the left column, C1 

 

                                                              Figure 13.16: Resultant force 
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Distance from the resultant force to the edge of column C1, L1= 0.35/2 + 2.67 = 2.845m 

Length of footing, L= 2(L1) = 5.70m 

Total force= resultant= R= PD1+ PL1+ PD2+ PL2= 1985kN 

Area of footing, Af= 1985/180= 11.03m2 

Width of footing, B= 11.03/5.70= 1.93 m (2.00m) 

 

Figure 13.17: Footing layout 

 

2. Footing thickness 

Average load factor =  

∑𝑢𝑢𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚𝑎𝑎𝑒𝑒𝑢𝑢 𝑙𝑙𝐹𝐹𝑎𝑎𝑑𝑑𝑠𝑠
∑ 𝑠𝑠𝑢𝑢𝐹𝐹𝑠𝑠𝑒𝑒𝑓𝑓𝑢𝑢 𝑙𝑙𝐹𝐹𝑎𝑎𝑑𝑑𝑠𝑠

=  
1.2(580 + 670) + 1.6(312 + 423)

(580 + 670 + 312 + 423)
= 1.348 

Pu1= 1.348(580+312) = 1202.4kN 

Pu2= 1.348(670+423) = 1473.4kN 

 

Ultimate load at footing = (Pu1+ Pu2)/5.7= 469.4kN/m 

Which equals to 234.7kN/m2 
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Figure 13.18 shows the structural model, shear force diagram and bending moment diagram 
for the combined footing.  

 

Figure 13.18: Footing shear and moment diagrams 

 

The maximum shear force at support, Vu= 1156.3kN 

The maximum shear force at distance d from face of column, Vu1= 1156.3-469.4(0.4/2+d) 

ACI 318-14: 

∅𝑉𝑉𝑠𝑠 =
0.75 �1

6�√21(2000)(𝑑𝑑𝑋𝑋1000)

1000
 

𝑉𝑉𝑢𝑢1 =  ∅𝑉𝑉𝑓𝑓 →  𝑑𝑑 = 0.66𝑚𝑚 

ACI 318-19: 

0.75 �0.66(1)(1)(0.00198)
1
3√21 + 0.0� (2000)(𝑑𝑑 𝑋𝑋1000)

1000
= 1156.3 − 469.4(0.4/2 + 𝑑𝑑) 

569.8𝑑𝑑 = 1156.3 − 93.88 − 469.4𝑑𝑑 → 569.8𝑑𝑑 = 1062.42 − 469.4𝑑𝑑 → 𝑑𝑑 =
1062.42
1039.2

= 1.02𝑚𝑚 

𝐴𝐴𝑓𝑓 𝜌𝜌𝑤𝑤 = 0.00333 → 676.7𝑑𝑑 = 1062.42 − 469.4𝑑𝑑 → 𝑑𝑑 =
1062.42
1146.1

= 0.93𝑚𝑚 
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ACI 318-14: Check punching shear – column C1: d=660mm: 

The critical section is located at distance d/2 from face of column. 

Vu,p= 1202.4-234.7{(0.35+0.66)(0.35+0.66/2)}= 1041.2kN 

∅𝑉𝑉𝑠𝑠,𝑝𝑝 =
0.75(0.33)√21�350 + 660 + 2 �350 + 660

2 �� (660)

1000
= 1774𝑘𝑘𝑁𝑁

> 1041.2𝑘𝑘𝑁𝑁   𝐹𝐹𝑘𝑘 

ACI 318-14: Check punching shear – column c2: d=660mm:  

The critical section is located at distance d/2 from face of column. 

Vu,p= 1473.4-234.7{0.4+0.66}2= 1209.7kN 

∅𝑉𝑉𝑠𝑠,𝑝𝑝 =
0.75(0.33)√21(400 + 660)(4)(660)

1000
= 3174𝑘𝑘𝑁𝑁 > 1209.7𝑘𝑘𝑁𝑁   𝐹𝐹𝑘𝑘 

ACI 318-19: Check punching shear – column C1: d=1020mm: 

The critical section is located at distance d/2 from face of column. 

Vu,p= 1202.4-234.7{(0.35+1.02)(0.35+1.02/2)}= 926kN 

∅𝑉𝑉𝑠𝑠,𝑝𝑝 =
0.75(0.33)√21�350 + 1020 + 2 �350 + 1020

2 �� (1020)

1000
= 3607𝑘𝑘𝑁𝑁

> 926𝑘𝑘𝑁𝑁   𝐹𝐹𝑘𝑘 

ACI 318-19: Check punching shear – column C2: d=1020mm: 

The critical section is located at distance d/2 from face of column. 

Vu,p= 1473.4-234.7{0.4+1.02}2= 1000kN 

∅𝑉𝑉𝑠𝑠,𝑝𝑝 =
0.75(0.33)√21(400 + 1020)(4)(1020)

1000
= 6571𝑘𝑘𝑁𝑁 > 1000𝑘𝑘𝑁𝑁   𝐹𝐹𝑘𝑘 
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If it is suggested to use �𝐴𝐴𝑣𝑣
𝑠𝑠
�
𝑚𝑚𝑠𝑠𝑚𝑚

, then the thickness will be reduced as follows: 

�
𝐴𝐴𝑠𝑠
𝑠𝑠 �𝑚𝑚𝑠𝑠𝑚𝑚

= 𝑚𝑚𝑎𝑎𝑑𝑑 𝐹𝐹𝑓𝑓

⎣
⎢
⎢
⎢
⎡0.062�𝑓𝑓′𝑠𝑠

𝑏𝑏𝑤𝑤
𝑓𝑓𝑦𝑦𝑑𝑑

0.35
𝑏𝑏𝑤𝑤
𝑓𝑓𝑦𝑦𝑑𝑑 ⎦

⎥
⎥
⎥
⎤

= 𝑚𝑚𝑎𝑎𝑑𝑑[1.35,1.67] = 1.67𝑚𝑚𝑚𝑚2/𝑚𝑚𝑚𝑚 

Spacing of stirrups, s=d/2 in the long direction and it is d across the section. 

The maximum shear force at distance d from face of column, Vu1= 1156.3-469.4(0.4/2+d) 

∅𝑉𝑉𝑠𝑠 =
0.75 �1

6�√21(2000)(𝑑𝑑𝑋𝑋1000)

1000
 

𝑉𝑉𝑢𝑢1 =  ∅𝑉𝑉𝑓𝑓 →  𝑑𝑑 = 0.66𝑚𝑚 

Try h=600mm, d= 520mm. 

Check punching shear – column C1: d=520mm: 

The critical section is located at distance d/2 from face of column. 

Vu,p= 1202.4-234.7{(0.35+0.52)(0.35+0.52/2)}= 1078kN 

∅𝑉𝑉𝑠𝑠,𝑝𝑝 =
0.75(0.33)√21�350 + 520 + 2 �350 + 520

2 �� (520)

1000
= 1233𝑘𝑘𝑁𝑁 > 1078𝑘𝑘𝑁𝑁   𝐹𝐹𝑘𝑘 

Check punching shear – column C2: d=520mm:  

The critical section is located at distance d/2 from face of column. 

Vu,p= 1473.4-234.7{0.4+0.52}2= 1275kN 

∅𝑉𝑉𝑠𝑠,𝑝𝑝 =
0.75(0.33)√21(400 + 520)(4)(520)

1000
= 2170𝑘𝑘𝑁𝑁 > 1275𝑘𝑘𝑁𝑁   𝐹𝐹𝑘𝑘 

 

𝑉𝑉𝑠𝑠 =
�1

6�√21(2000)(520𝑋𝑋1000)

1000
= 794.3𝑘𝑘𝑁𝑁 

𝑉𝑉𝑢𝑢 = 1156.3 − 469.4 �
0.4
2

+ 0.52� = 818.3𝑘𝑘𝑁𝑁 > 𝑉𝑉𝑠𝑠 
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𝑉𝑉𝑠𝑠 =
𝑉𝑉𝑢𝑢
∅
− 𝑉𝑉𝑠𝑠 =

818.3
0.75

− 794.3 = 296.8𝑘𝑘𝑁𝑁 <
1
3√21(2000)(420)

1000
= 1282𝑘𝑘𝑁𝑁 

𝑆𝑆𝐹𝐹, 𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚 = 𝑚𝑚𝑒𝑒𝑎𝑎 �
𝑑𝑑
2

, 600𝑚𝑚𝑚𝑚� = 210𝑚𝑚𝑚𝑚 

𝐴𝐴𝑠𝑠
𝑠𝑠

=
𝑉𝑉𝑠𝑠
𝑓𝑓𝑦𝑦𝑑𝑑𝑑𝑑

=
296800

(420)(420)
=

1.68𝑚𝑚𝑚𝑚2

𝑚𝑚𝑚𝑚
≈    �

𝐴𝐴𝑠𝑠
𝑠𝑠 �𝑚𝑚𝑠𝑠𝑚𝑚

          𝐹𝐹𝑘𝑘. 

𝑑𝑑 = 520𝑚𝑚𝑚𝑚,
𝑑𝑑
2

= 260𝑚𝑚𝑚𝑚 

Section width, b=2000mm. Section effective width=2000-150=1850mm. 

Number of     =1850/520=3.6                   4 spacings; 5 legs. 

So, 

𝐹𝐹𝐹𝐹𝐹𝐹 ∅12 𝑓𝑓𝑙𝑙𝐹𝐹𝑠𝑠𝑢𝑢𝑑𝑑 𝑠𝑠𝑒𝑒𝑒𝑒𝐹𝐹𝐹𝐹𝑢𝑢𝑝𝑝𝑠𝑠: 𝐴𝐴𝑠𝑠 = 113(5) = 565𝑚𝑚𝑚𝑚2         
𝐴𝐴𝑠𝑠
𝑠𝑠

=
565
250

= 2.825𝑚𝑚𝑚𝑚2

> 1.68𝑚𝑚𝑚𝑚2/𝑚𝑚𝑚𝑚 

𝐹𝐹𝐹𝐹𝐹𝐹 ∅10 𝑓𝑓𝑙𝑙𝐹𝐹𝑠𝑠𝑢𝑢𝑑𝑑 𝑠𝑠𝑒𝑒𝑒𝑒𝐹𝐹𝐹𝐹𝑢𝑢𝑝𝑝𝑠𝑠: 𝐴𝐴𝑠𝑠 = 78.5(5) = 392.5𝑚𝑚𝑚𝑚2         
𝐴𝐴𝑠𝑠
𝑠𝑠

=
392.5
250

= 1.57𝑚𝑚𝑚𝑚2

< 1.68𝑚𝑚𝑚𝑚2/𝑚𝑚𝑚𝑚 

𝑈𝑈𝑠𝑠𝑢𝑢 ∅
12

250𝑚𝑚𝑚𝑚
𝑓𝑓𝑙𝑙𝐹𝐹𝑠𝑠𝑢𝑢𝑑𝑑 𝑠𝑠𝑒𝑒𝑒𝑒𝐹𝐹𝐹𝐹𝑢𝑢𝑝𝑝𝑠𝑠 5𝑙𝑙𝑢𝑢𝑙𝑙𝑠𝑠. 

 

3. Flexural reinforcement in longitudinal direction: 

ACI 318-14: d=660mm, h=750mm 

Section width, b= 2000mm 

Section thickness, h= 750mm 

Section effective depth, d= 660mm 

For Mu= 1329.6 KN.m: 

Steel ratio, 𝜌𝜌= 0.00424   As= 0.00424(2000) (660) = 5600mm2. Use 12∅25  

For the other moment values, use minimum steel area. 

𝐴𝐴𝑠𝑠,𝑚𝑚𝑠𝑠𝑚𝑚 = 𝐴𝐴𝑠𝑠,𝑠𝑠ℎ𝑠𝑠𝑠𝑠𝑚𝑚𝑟𝑟𝑎𝑎𝑔𝑔𝑠𝑠 = 0.0018(2000)(750) = 2700𝑚𝑚𝑚𝑚2  (12∅18) 
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ACI 318-19: d=520mm, h=600mm 

Section width, b= 2000mm 

Section thickness, h= 600mm 

Section effective depth, d= 520mm 

For Mu= 1329.6 KN.m: 

Steel ratio, 𝜌𝜌= 0.0071   As= 0.0071(2000) (520) = 7384mm2. Use 15∅25  

For the other moment values, use minimum steel area. 

Shrinkage steel, 𝐴𝐴𝑠𝑠,𝑠𝑠ℎ𝑠𝑠𝑠𝑠𝑚𝑚𝑟𝑟𝑎𝑎𝑔𝑔𝑠𝑠 = 0.0018(2000)(600) =  2160𝑚𝑚𝑚𝑚2 (12∅16) 

 

4. Flexural reinforcement in transverse direction:  

𝒅𝒅 = 𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔: 

Left column, C1: 

𝑏𝑏𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑓𝑓𝐹𝐹𝑙𝑙𝑢𝑢𝑚𝑚𝑎𝑎 𝑤𝑤𝑒𝑒𝑑𝑑𝑒𝑒ℎ + 𝑑𝑑/2 = 0.35 + (0.66/2) = 0.68𝑚𝑚 

𝑞𝑞𝑢𝑢 =
1202.4
0.68𝑑𝑑2

= 884𝑘𝑘𝑁𝑁/𝑚𝑚2 

𝑙𝑙1 =
2 − 0.35

2
= 0.825 

𝑀𝑀𝑢𝑢 = 884(0.825)2/2 = 301𝑘𝑘𝑁𝑁.𝑚𝑚/𝑚𝑚 

For strip of 1000mm width, steel ratio, 𝜌𝜌 = 0.00186, As= 0.00186(1000) (660) =1227.6mm2/m 

For width of 680mm, As= 0.68(1227.6) = 835mm2 

𝐴𝐴𝑠𝑠,𝑚𝑚𝑠𝑠𝑚𝑚 = 0.0018(680)(750) = 918𝑚𝑚𝑚𝑚2         3∅20     𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 

Right column, C2: 

𝑏𝑏𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑓𝑓𝐹𝐹𝑙𝑙𝑢𝑢𝑚𝑚𝑎𝑎 𝑤𝑤𝑒𝑒𝑑𝑑𝑒𝑒ℎ + 𝑑𝑑 = 0.40 + 0.66 = 1.06𝑚𝑚 

𝑞𝑞𝑢𝑢 =
1473.4
1.06𝑑𝑑2

= 695𝑘𝑘𝑁𝑁/𝑚𝑚2 



Design of Reinforced Concrete Structures: A Practical Approach                               IBRAHIM ARMAN 
 

331 
 

𝑀𝑀𝑢𝑢 = 695
(2 − 0.40)2

2
= 222.4𝑘𝑘𝑁𝑁.𝑚𝑚/𝑚𝑚 

For strip of 1000mm width, steel ratio, 𝜌𝜌 = 0.00137, As= 0.00137(1000) (660) =904mm2/m 

For width of 1060mm, As= 1.06(904) = 958mm2 

𝐴𝐴𝑠𝑠,𝑚𝑚𝑠𝑠𝑚𝑚 = 0.0018(1060)(750) = 1431𝑚𝑚𝑚𝑚2      5∅20        𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 

The steel area in the transverse direction top and bottom in other zones will be half the 
shrinkage steel. 

𝐴𝐴𝑠𝑠 = 0.0018(1000)(750)(0.5) = 675𝑚𝑚𝑚𝑚2          1∅16/300 

Figure 13.18 shows the reinforcement details for the combined footing.  

 

𝒅𝒅 = 𝟓𝟓𝟓𝟓𝟔𝟔𝟔𝟔𝟔𝟔: 

Left column, C1: 

𝑏𝑏𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑓𝑓𝐹𝐹𝑙𝑙𝑢𝑢𝑚𝑚𝑎𝑎 𝑤𝑤𝑒𝑒𝑑𝑑𝑒𝑒ℎ + 𝑑𝑑/2 = 0.35 + (0.52/2) = 0.61𝑚𝑚 

𝑞𝑞𝑢𝑢 =
1202.4
0.61𝑑𝑑2

= 986𝑘𝑘𝑁𝑁/𝑚𝑚2 

𝑙𝑙1 =
2 − 0.35

2
= 0.825 

𝑀𝑀𝑢𝑢 = 986(0.825)2/2 = 335.5𝑘𝑘𝑁𝑁.
𝑚𝑚
𝑚𝑚

 

For strip of 1000mm width, steel ratio, 𝜌𝜌 = 0.00342, As= 0.00342(1000) (520) =1778mm2/m 

For width of 610mm, As= 0.61(1778) = 1085mm2 

𝐴𝐴𝑠𝑠,𝑚𝑚𝑠𝑠𝑚𝑚 = 0.0018(610)(600) = 659𝑚𝑚𝑚𝑚2  < 1085𝑚𝑚𝑚𝑚2       4∅20   

Right column, C2: 

𝑏𝑏𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑓𝑓𝐹𝐹𝑙𝑙𝑢𝑢𝑚𝑚𝑎𝑎 𝑤𝑤𝑒𝑒𝑑𝑑𝑒𝑒ℎ + 𝑑𝑑 = 0.40 + 0.61 = 1.01𝑚𝑚 

𝑞𝑞𝑢𝑢 =
1473.4
1.01𝑑𝑑2

= 729𝑘𝑘𝑁𝑁/𝑚𝑚2 

𝑙𝑙1 =
2 − 0.4

2
= 0.8 
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𝑀𝑀𝑢𝑢 =
729(0.8)2

2
= 233.3𝑘𝑘𝑁𝑁.

𝑚𝑚
𝑚𝑚

 

 

For strip of 1000mm width, steel ratio, 𝜌𝜌 = 0.00234, As= 0.00234(1000) (520) =1217mm2/m 

For width of 1010mm, As= 1.01(1217) = 1219mm2 

𝐴𝐴𝑠𝑠,𝑚𝑚𝑠𝑠𝑚𝑚 = 0.0018(1010)(600) = 1091𝑚𝑚𝑚𝑚2      

𝑢𝑢𝑠𝑠𝑢𝑢  4∅20         

The steel area in the transverse direction top and bottom in other zones will be half the 
shrinkage steel. 

𝐴𝐴𝑠𝑠 = 0.0018(1000)(600)(0.5) = 540𝑚𝑚𝑚𝑚2          1∅12/200 

𝑇𝑇ℎ𝑢𝑢 𝑢𝑢𝑠𝑠𝑢𝑢𝑑𝑑 𝑠𝑠𝑒𝑒𝑒𝑒𝐹𝐹𝐹𝐹𝑢𝑢𝑝𝑝𝑠𝑠 𝑎𝑎𝐹𝐹𝑢𝑢 ∅12/250  which are less than ∅12/200mm, so use ∅12/200mm to 
serve as shear reinforcement and shrinkage steel. 

Figure 13.19 shows the reinforcement details for the combined footing using h=750mm. And 
Figure 13.20 shows the reinforcement details using h=600mm. 

 

 

Figure 13.19: Combined footing details, h=750mm 
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Figure 13.20: Combined footing details, h=600mm 

 

13.5 Design of cantilever or strap footing: 

The strap footing is a footing that combines two columns in one footing. It is composed of 
two single footings for the two columns and a connecting beam between them. One of the 
single footings is eccentric. The connecting beam (strap beam) is not supported on soil. The 
major purpose of using this type of footing is to have uniform pressure under the footing 
system. So, the two single footings and the connecting beam form one structure.  

 

Example (strap footing): 

Given: 

- Refer to Figure 13.21. 
- Left column, C1: exterior: 0.30m x0.30m. PD1= 320kN, PL1= 250kN 
- Right column, C2: interior: 0.35m x 0.35m. PD2= 600kN, PL2= 360kN 
- Soil allowable bearing capacity, qall= 160Kn/M2 
- Concrete strength, f’c= 21MPa 
- Steel strength, fy= 420MPa 
- Distance between the centerlines of the two columns, L= 5.50m 

Design a strap footing to carry the columns C1 and C2.  
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Figure 13.21: Strap footing 

 

Solution: 

1. Determine area of the two footings: 

Service load on left column, C1, P1= 320 + 250 = 570kN 

Service load on right column, C2, P2= 600 + 360 = 960kN 

Total service loads, P= P1 + P2 = 1530kN 

Assume that width of left footing, F1, b = 1.40m. 

Take summation of moments about a point located at center of column C2: 

�𝑀𝑀𝐴𝐴 = 0             𝑃𝑃1(5.5) = 𝑅𝑅1(4.95)               𝑠𝑠𝐹𝐹, 𝑅𝑅1 = 633.3𝑘𝑘𝑁𝑁 

𝑅𝑅1 + 𝑅𝑅2 = 𝑃𝑃             𝑠𝑠𝐹𝐹, 𝑅𝑅2 = 𝑃𝑃 − 𝑅𝑅1 = 1530 − 633.3 = 896.7𝑘𝑘𝑁𝑁 

Area of footing F1 is: 

𝐴𝐴1 =
633.3
160

= 3.96𝑚𝑚2 

Width of footing, B= 1.40m 

Length of footing = 3.96/1.40 = 2.83m (use 3.00m) 

Area of footing F2 is: 

𝐴𝐴2 =
896.7
160

= 5.60𝑚𝑚2 
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𝐵𝐵 = 𝐿𝐿 = √5.60 = 2.40𝑚𝑚 

2. Ultimate loads and structural model: 

𝐴𝐴𝑠𝑠𝑢𝑢𝐹𝐹𝑎𝑎𝑙𝑙𝑢𝑢 𝑙𝑙𝐹𝐹𝑎𝑎𝑑𝑑 𝑓𝑓𝑎𝑎𝑓𝑓𝑒𝑒𝐹𝐹𝐹𝐹,𝐹𝐹 =  
𝑠𝑠𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑒𝑒𝑒𝑒𝐹𝐹𝑎𝑎 𝐹𝐹𝑓𝑓 𝑢𝑢𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚𝑎𝑎𝑒𝑒𝑢𝑢 𝑙𝑙𝐹𝐹𝑎𝑎𝑑𝑑𝑠𝑠
𝑠𝑠𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑒𝑒𝑒𝑒𝐹𝐹𝑎𝑎 𝐹𝐹𝑓𝑓 𝑠𝑠𝑢𝑢𝐹𝐹𝑠𝑠𝑒𝑒𝑓𝑓𝑢𝑢 𝑙𝑙𝐹𝐹𝑎𝑎𝑑𝑑𝑠𝑠

  

𝐴𝐴𝑠𝑠𝑢𝑢𝐹𝐹𝑎𝑎𝑙𝑙𝑢𝑢 𝑙𝑙𝐹𝐹𝑎𝑎𝑑𝑑 𝑓𝑓𝑎𝑎𝑓𝑓𝑒𝑒𝐹𝐹𝐹𝐹,𝐹𝐹 =  
1.2(320 + 600) + 1.6(250 + 360)

(320 + 600 + 250 + 360)
 = 1.36 

So, 

Ultimate load on column C1, Pu1 = 1.36(320+250) = 775.2kN 

Ultimate load on column C2, Pu2= 1.36(600+360) = 1305.6kN 

Ultimate load (reaction) on footing F1, Ru1= 1.36(633.3) = 861.3kN 

Ultimate load (reaction) on footing F2, Ru2= 1.36(896.7) = 1219.5kN 

 

𝑈𝑈𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚𝑎𝑎𝑒𝑒𝑢𝑢 𝑝𝑝𝐹𝐹𝑢𝑢𝑠𝑠𝑠𝑠𝑢𝑢𝐹𝐹𝑢𝑢 𝑎𝑎𝑒𝑒 𝑓𝑓𝐹𝐹𝐹𝐹𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙 𝐹𝐹1, 𝑞𝑞𝑢𝑢1 =
861.3
1.4𝑑𝑑3

= 205.1𝑘𝑘𝑁𝑁/𝑚𝑚2  

𝑈𝑈𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚𝑎𝑎𝑒𝑒𝑢𝑢 𝑝𝑝𝐹𝐹𝑢𝑢𝑠𝑠𝑠𝑠𝑢𝑢𝐹𝐹𝑢𝑢 𝑎𝑎𝑒𝑒 𝑓𝑓𝐹𝐹𝐹𝐹𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙 𝐹𝐹2, 𝑞𝑞𝑢𝑢2 =
1219.5
2.4𝑑𝑑2.4

= 211.7𝑘𝑘𝑁𝑁/𝑚𝑚2  

Note that, the pressures qu1 and qu2 must be equal. Here, these two numbers are not equal 
due to numerical approximations. 

𝑢𝑢𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚𝑎𝑎𝑒𝑒𝑢𝑢 𝑙𝑙𝑒𝑒𝑎𝑎𝑢𝑢𝑎𝑎𝐹𝐹 𝑙𝑙𝐹𝐹𝑎𝑎𝑑𝑑 𝑎𝑎𝑒𝑒 𝑓𝑓𝐹𝐹𝐹𝐹𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙 𝐹𝐹1, 𝑞𝑞𝑢𝑢1′ =
861.3

1.4
= 615.2𝑘𝑘𝑁𝑁/𝑚𝑚 

𝑢𝑢𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚𝑎𝑎𝑒𝑒𝑢𝑢 𝑙𝑙𝑒𝑒𝑎𝑎𝑢𝑢𝑎𝑎𝐹𝐹 𝑙𝑙𝐹𝐹𝑎𝑎𝑑𝑑 𝑎𝑎𝑒𝑒 𝑓𝑓𝐹𝐹𝐹𝐹𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙 𝐹𝐹2, 𝑞𝑞𝑢𝑢2′ =
1219.5

2.4
= 508.1𝑘𝑘𝑁𝑁/𝑚𝑚 
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Figure 13.22: Footing model and loads 

 

3. Design of strap beam: 

Assume that the strap beam has a width, b= 600mm and thickness, h= 500mm. effective 
depth, d= 430mm. 

Length of strap beam= 3.05m. 

𝐿𝐿𝑢𝑢𝑓𝑓𝑒𝑒 𝑠𝑠ℎ𝑢𝑢𝑎𝑎𝐹𝐹,𝑉𝑉𝑢𝑢𝑢𝑢 = 615.2(1.4) − 775.2 = 86.1𝑘𝑘𝑁𝑁 

𝑅𝑅𝑒𝑒𝑙𝑙ℎ𝑒𝑒 𝑠𝑠ℎ𝑢𝑢𝑎𝑎𝐹𝐹,𝑉𝑉𝑢𝑢𝑢𝑢 = 86.1𝑘𝑘𝑁𝑁 

𝐿𝐿𝑢𝑢𝑓𝑓𝑒𝑒 𝑚𝑚𝐹𝐹𝑚𝑚𝑢𝑢𝑎𝑎𝑒𝑒,𝑀𝑀𝑢𝑢𝑢𝑢 = 775.2(1.4 − 0.15) − 615.2(1.4)2(0.5) = 366.1𝑘𝑘𝑁𝑁.𝑚𝑚 

𝑅𝑅𝑒𝑒𝑙𝑙ℎ𝑒𝑒 𝑚𝑚𝐹𝐹𝑚𝑚𝑢𝑢𝑎𝑎𝑒𝑒,𝑀𝑀𝑢𝑢𝑢𝑢 = 775.2(3.05 + 1.4 − 0.15) − 615.2(1.4)(3.05 + 0.7)
= 103.6𝑘𝑘𝑁𝑁.𝑚𝑚 

𝑆𝑆ℎ𝑢𝑢𝑎𝑎𝐹𝐹 𝑠𝑠𝑒𝑒𝐹𝐹𝑢𝑢𝑎𝑎𝑙𝑙𝑒𝑒ℎ,𝑉𝑉𝑠𝑠 = 0.75(1/6)√21(600)(430)/1000 = 197𝑘𝑘𝑁𝑁 

𝑉𝑉𝑢𝑢
∅

=
86.1
0.75

= 114.8𝑘𝑘𝑁𝑁 

𝑉𝑉𝑢𝑢
∅

>
𝑉𝑉𝑠𝑠
2

 𝑢𝑢𝑠𝑠𝑢𝑢 �
𝐴𝐴𝑠𝑠
𝑆𝑆 �𝑚𝑚𝑠𝑠𝑚𝑚

=
0.35(600)

420
= 0.5𝑚𝑚𝑚𝑚2/𝑚𝑚𝑚𝑚 

𝐹𝐹𝐹𝐹𝐹𝐹 ∅10𝑚𝑚𝑚𝑚 𝑠𝑠𝑒𝑒𝑒𝑒𝐹𝐹𝐹𝐹𝑢𝑢𝑝𝑝𝑠𝑠, 𝑠𝑠 =
157
0.5

= 314𝑚𝑚𝑚𝑚        𝑢𝑢𝑠𝑠𝑢𝑢 𝑠𝑠𝑒𝑒𝑒𝑒𝐹𝐹𝐹𝐹𝑢𝑢𝑝𝑝𝑠𝑠 𝑎𝑎𝑒𝑒 𝑑𝑑/2 =  200𝑚𝑚𝑚𝑚 

For left moment, Mu = 366.1KN.m: 
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𝜌𝜌 = 0.00986,𝐴𝐴𝑠𝑠 = 0.00986(600)(430) =  2544𝑚𝑚𝑚𝑚2       8∅20 

For right moment, Mu = 103.6KN.m: 

𝜌𝜌 = 0.0025,  𝑢𝑢𝑠𝑠𝑢𝑢 𝜌𝜌𝑚𝑚𝑠𝑠𝑚𝑚 = 0.00333,𝐴𝐴𝑠𝑠 = 0.00333(600)(430) =  859𝑚𝑚𝑚𝑚2       5∅16 

 

4. Design of left footing, F1: 

Let the footing thickness is 0.60m which is 0.10m larger than the thickness of the strap beam. 
Note that this beam should not be supported on soil. h= 0.60m. d= 0.53m.  

 

Check punching: 

𝑞𝑞𝑢𝑢 = 205.1𝑘𝑘𝑁𝑁/𝑚𝑚2 

𝑉𝑉𝑢𝑢,𝑝𝑝 = 205.1(1.4𝑑𝑑3 − 0.565𝑑𝑑0.830 = 765.2𝑘𝑘𝑁𝑁 

∅𝑉𝑉𝑠𝑠 = 0.75(0.33)�𝑓𝑓𝑠𝑠′𝑏𝑏𝑜𝑜𝑑𝑑 = 0.75(0.33)√21(565𝑑𝑑2 + 830)(530)/1000 = 1178𝑘𝑘𝑁𝑁 
>  765.2𝑘𝑘𝑁𝑁    𝑂𝑂𝐾𝐾 

 

 

Figure 13.23: Footings dimensions 
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Check wide beam shear: 

In longitudinal direction: 

𝑉𝑉𝑢𝑢 = 615.2(0.3 + 0.53) − 775.2 = −264.6𝑘𝑘𝑁𝑁 

And 

𝑉𝑉𝑢𝑢 =
264.6

3
= 88.2𝑘𝑘𝑁𝑁/𝑚𝑚 

In transverse direction: 

𝑉𝑉𝑢𝑢 = 205.1(
3 − 0.3

2
− 0.53) = 168.2𝑘𝑘𝑁𝑁/𝑚𝑚 

∅𝑉𝑉𝑠𝑠 = 0.75(1/6)√21(1000)(530)/1000 = 303.6𝑘𝑘𝑁𝑁 >  168.2𝑘𝑘𝑁𝑁 

Design for flexure: 

In longitudinal direction: at face of column: 

𝑀𝑀𝑢𝑢 = 615.2(0.3)2/2 − 775.2(0.15) = −88.6𝑘𝑘𝑁𝑁.𝑚𝑚    𝑇𝑇𝑢𝑢𝑎𝑎𝑠𝑠𝑒𝑒𝐹𝐹𝑎𝑎 𝑎𝑎𝑒𝑒 𝑒𝑒𝐹𝐹𝑝𝑝  

Or:  

𝑀𝑀𝑢𝑢 = 88.6/3 = 30𝑘𝑘𝑁𝑁.𝑚𝑚/𝑚𝑚 

In transverse direction: 

𝑀𝑀𝑢𝑢 = 205.1 �
3 − 0.3

2 �
2

/2 = 187𝑘𝑘𝑁𝑁.𝑚𝑚/𝑚𝑚 

Mu in the longitudinal direction at the end of the footing is: 

𝑀𝑀𝑢𝑢 = 615.2(1.4)2/2 − 775.2(1.4 − 0.15) = −366.1𝑘𝑘𝑁𝑁.𝑚𝑚   𝑇𝑇𝑢𝑢𝑎𝑎𝑠𝑠𝑒𝑒𝐹𝐹𝑎𝑎 𝑎𝑎𝑒𝑒 𝑒𝑒𝐹𝐹𝑝𝑝 𝑓𝑓𝑎𝑎𝑓𝑓𝑢𝑢. 

Or: 

𝑀𝑀𝑢𝑢 = 366.1/3 = 122𝑘𝑘𝑁𝑁.𝑚𝑚/𝑚𝑚 

𝐴𝐴𝑠𝑠,𝑚𝑚𝑠𝑠𝑚𝑚 = 0.0018(1000)(600) = 1080𝑚𝑚𝑚𝑚2           1∅16/180𝑚𝑚𝑚𝑚 

𝑎𝑎 =
𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦

0.85𝑓𝑓𝑠𝑠′𝑏𝑏
=

1080(420)
0.85(21)(1000)

= 25.4𝑚𝑚𝑚𝑚 
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∅𝑀𝑀𝑚𝑚 = ∅𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦(𝑑𝑑 −
𝑎𝑎
2

) = 0.9(1080)(420)(530 −
25.4

2
)/106 = 211𝑘𝑘𝑁𝑁.𝑚𝑚 

>  𝑀𝑀𝑢𝑢,𝑚𝑚𝑎𝑎𝑚𝑚 𝑒𝑒𝑎𝑎 𝑢𝑢𝑎𝑎𝑓𝑓ℎ 𝑑𝑑𝑒𝑒𝐹𝐹𝑢𝑢𝑓𝑓𝑒𝑒𝑒𝑒𝐹𝐹𝑎𝑎 

Use As,min top and bottom in the longitudinal direction and bottom in the transverse 
direction. 

5. Design of right footing, F2: 

Let the thickness of the footing is 0.60m as for the left footing, F1. 

 

Check punching: 

𝑞𝑞𝑢𝑢 = 211.7𝑘𝑘𝑁𝑁/𝑚𝑚2 

𝑉𝑉𝑢𝑢𝑝𝑝 = 211.7(2.42 − 0.882) = 1055.5𝑘𝑘𝑁𝑁 

∅𝑉𝑉𝑠𝑠𝑝𝑝 = 0.75(0.33)√21(880𝑑𝑑4)(530)/1000 = 2116𝑘𝑘𝑁𝑁 

 

Check wide beam shear: 

In longitudinal direction: 

𝑉𝑉𝑢𝑢,𝑢𝑢 = 508.1 �
2.4 − 0.35

2
− 0.53� = 251.5𝑘𝑘𝑁𝑁 

Or: 

𝑉𝑉𝑢𝑢,𝑢𝑢 =
251.5

2.4
= 104.8𝑘𝑘𝑁𝑁/𝑚𝑚 

𝑉𝑉𝑢𝑢,𝑢𝑢 =  508.1(1.025 + 0.35 + 0.53) − 1305.6 = 338𝑘𝑘𝑁𝑁 

Or: 

𝑉𝑉𝑢𝑢,𝑢𝑢 =
338
2.4

= 161.7𝑘𝑘𝑁𝑁/𝑚𝑚 

In transverse direction: 

𝑉𝑉𝑢𝑢 = 211.7 �
2.4 − 0.35

2
− 0.53� = 104.8𝑘𝑘𝑁𝑁 

∅𝑉𝑉𝑠𝑠 = 303.6𝑘𝑘𝑁𝑁 >  161.7𝑘𝑘𝑁𝑁     𝑂𝑂𝐾𝐾 
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Design for flexure: 

In longitudinal direction: 

𝑀𝑀𝑢𝑢,𝑢𝑢 = 508.1(1.025)2/2 = 267𝑘𝑘𝑁𝑁.𝑚𝑚 

Or: 

𝑀𝑀𝑢𝑢,𝑢𝑢 =
267
2.4

= 111.25𝑘𝑘𝑁𝑁/𝑚𝑚 

𝑀𝑀𝑢𝑢,𝑢𝑢 = 508.1(1.025 + 0.35)2 − 1305.6 �
0.35

2 � = 251.8𝑘𝑘𝑁𝑁.𝑚𝑚 

Or: 

𝑀𝑀𝑢𝑢,𝑢𝑢 =
251.8

2.4
= 104.9𝑘𝑘𝑁𝑁/𝑚𝑚 

In transverse direction: 

𝑀𝑀𝑢𝑢 = 211.7 �
2.4 − 0.35

2 �
2

/2 = 111.2𝑘𝑘𝑁𝑁.𝑚𝑚/𝑚𝑚 

∅𝑀𝑀𝑚𝑚,𝐴𝐴𝑠𝑠,𝑚𝑚𝑠𝑠𝑚𝑚 = 211𝑘𝑘𝑁𝑁.𝑚𝑚/𝑚𝑚 >  111.2𝑘𝑘𝑁𝑁.𝑚𝑚    𝑂𝑂𝐾𝐾 

 

ACI 318-19: 

∅𝑉𝑉𝑠𝑠 =
0.75 �0.66(1)(1)(0.00198)

1
3√21 + 0.0� (1000)(530)

1000
= 151.3𝑘𝑘𝑁𝑁 < 𝑉𝑉𝑢𝑢,𝑚𝑚𝑎𝑎𝑚𝑚

= 168.2𝑘𝑘𝑁𝑁 

So, the footings shall be increased by a small amount like 100mm. 

 



Design of Reinforced Concrete Structures: A Practical Approach                               IBRAHIM ARMAN 
 

341 
 

 

Figure 13.24: Strap footing reinforcement 

Cross sections in the two footing and in the strap beam can be constructed. 

 

 

13.6  Design of mat foundation: 

A mat foundation, which sometimes referred to as a raft foundation, is a combined footing 
that may cover the whole area under a structure supporting several columns and walls.  

In some conditions where spread footings may cover more than half the building area, mat 
foundations may prove to be more economical. 

Some of the common types of mat foundations are: 

• Flat plate: uniform thickness mat 
• Flat slab: mat with drop panels to resist punching shear upward or downward 
• Mat with beams: one way or two way 
• Slab (mat) with basement walls as part of the mat 
• Voided mat 
• Mat on piles 

Mats are sometimes supported on piles. The piles help in reducing the settlement of the 
structure located over highly compressive soil. where the ground water table is high, mats are 
often placed over piles to control buoyancy. 
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The structural design of mat foundation can be carried by two conventional methods: the 
conventional rigid method and the approximate flexible method. Finite difference and finite 
element methods can be used; however, this section will cover the basic concepts of the 
conventional rigid method. 

Steps of conventional rigid method: 

1. Determine area of mat: check stresses under the mat:  

The maximum compression stress under the mat should be less than the soil allowable 
bearing capacity and there is no tension under the mat, this is the typical case. If tension 
exists, this should be taken into account and part of the area is excluded. Nonlinear analysis 
is recommended for the case of tension stresses under the mat.  

The procedure here assumes that the mat is rigid. In general, finite element analysis is 
recommended for analysis of mat foundations. Also, soil – structure interaction is 
recommended to be used if it is required to know the effect of soil settlements on the 
superstructure. 

The stress under the mat is given by:  

𝑞𝑞 = −
𝑃𝑃
𝐴𝐴

±
𝑀𝑀𝑦𝑦𝑋𝑋
𝐴𝐴𝑦𝑦

±
𝑀𝑀𝑚𝑚𝑌𝑌
𝐴𝐴𝑚𝑚

 

Where: 

P= summation of column (walls) loads, kN 

A= area of mat, m2 

My= bending moment about Y axis, kN.m 

Mx= bending moment about X axis, kN.m 

Iy= moment of inertia about Y axis, m4 

Ix= moment of inertia about X axis, m4  

X= distance from the point at which stress will be computed to the Y axis, m 

Y= distance from the point at which stress will be computed to the X axis, m 

X and Y are the axes that pass through the centroid of the mat area. 

2. Determine thickness of mat: 

The thickness of mat is controlled by wide beam shear and punching shear (shear- moment 
transfer). 
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3. Design the mat for flexure: 

The mat should be analyzed using structural analysis principles. For a two-way mat like flat 
plate, the mat should be divided into strips (frames) in the two directions.  

The following procedure is usually used for analysis of a strip in flat plate mat foundation: 

• The pressure (stress) on soil shall be computed for at least two points; at the start and 
at the end of the strip q1 and q2. 

• The average soil pressure in the strip will be:  

𝑞𝑞𝑎𝑎𝑠𝑠 =
𝑞𝑞1 + 𝑞𝑞2

2
 

• The total soil reaction in the strip will be: 

𝑅𝑅 = 𝑞𝑞𝑎𝑎𝑠𝑠 𝑑𝑑 𝑠𝑠𝑒𝑒𝐹𝐹𝑒𝑒𝑝𝑝 𝑤𝑤𝑒𝑒𝑑𝑑𝑒𝑒ℎ 𝑑𝑑 𝑠𝑠𝑒𝑒𝐹𝐹𝑒𝑒𝑝𝑝 𝑙𝑙𝑢𝑢𝑎𝑎𝑙𝑙𝑒𝑒ℎ 

• Usually for a strip, the sum of the column loads are not equal to the soil reaction, R. 
This will be a problem in drawing shear and bending moment diagrams, so this 
problem must be solved by modifying column loads and pressure on soil to be equal. 
So: 

𝑄𝑄𝑎𝑎𝑠𝑠 =
𝑅𝑅 + 𝑠𝑠𝑢𝑢𝑚𝑚 𝐹𝐹𝑓𝑓 𝑓𝑓𝐹𝐹𝑙𝑙𝑢𝑢𝑚𝑚𝑎𝑎 𝑙𝑙𝐹𝐹𝑎𝑎𝑑𝑑𝑠𝑠

2
 

• The soil pressure under the strip shall be modified to: 

𝑞𝑞𝑎𝑎𝑠𝑠𝑚𝑚 = 𝑞𝑞𝑎𝑎𝑠𝑠 �
𝑄𝑄𝑎𝑎𝑠𝑠
𝑅𝑅 � 

• The column loads shall be multiplied by load modification factor, F, which is: 

𝐹𝐹 =
𝑄𝑄𝑎𝑎𝑠𝑠

𝑠𝑠𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑒𝑒𝑒𝑒𝐹𝐹𝑎𝑎 𝐹𝐹𝑓𝑓 𝑓𝑓𝐹𝐹𝑙𝑙𝑢𝑢𝑚𝑚𝑎𝑎 𝑙𝑙𝐹𝐹𝑎𝑎𝑑𝑑𝑠𝑠
 

• A structural model shall be constructed for the strip with modified column loads 
downward and with line upward load which is equal to qavm multiplied by width of 
strip. Then the shear and bending moment diagrams can be constructed. 
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Example (Mat foundation): 

Given:  

- Mat foundation plan is shown in Figure 13.25 
- All given loads are service (unfactored) 
- All columns are 0.50 m x0.50 m 
- Concrete strength, f’c= 20MPa 
- Steel strength, fy= 420MPa 
- Soil allowable bearing capacity, qall= 60kN/m2 
- Ultimate load factor= 1.4 
- Check mat area and design the interior strip in Y direction. 

 

 

Figure 13.25: Mat layout 

Solution: 

1. Footing (Mat) area and stresses: 

The stress at a point is given by: 
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𝑞𝑞 = −
𝑃𝑃
𝐴𝐴

±
𝑀𝑀𝑦𝑦𝑋𝑋
𝐴𝐴𝑦𝑦

±
𝑀𝑀𝑚𝑚𝑌𝑌
𝐴𝐴𝑚𝑚

 

P= summation of column loads = 11000kN 

A= area of mat = BL= (16.5) (21.5) =354.75kN 

Ix= moment of inertia about X axis which passes through centroid of mat area, it is given by: 

𝐴𝐴𝑚𝑚 =
𝐵𝐵𝐿𝐿3

12
=

(16.5)(21.5)3

12
= 13655𝑚𝑚4 

Iy= moment of inertia about Y axis which passes through centroid of mat area, it is given by: 

𝐴𝐴𝑦𝑦 =
𝐿𝐿𝐵𝐵3

12
=

(21.5)(16.5)3

12
= 8048𝑚𝑚4 

Mx= bending moment about X axis= P ey 

My= bending moment about Y axis= P ex 

The eccentricity of loads in X direction is ex and it is given by: 

𝑢𝑢𝑚𝑚 =
∑𝑄𝑄𝑠𝑠𝑑𝑑𝑠𝑠
∑𝑄𝑄𝑠𝑠

−
𝐵𝐵
2

 

𝑢𝑢𝑚𝑚 = {[(400 + 1500 + 1500 + 400)(0.25) + (500 + 1500 + 1500 + 500)(8.25) + (450
+ 1200 + 1200 + 350)(16.25)]/11000} − (16.5/2) = −0.436𝑚𝑚 

The eccentricity of loads in Y direction is ey and it is given by: 

𝑢𝑢𝑦𝑦 =
∑𝑄𝑄𝑠𝑠𝑀𝑀𝑠𝑠
∑𝑄𝑄𝑠𝑠

−
𝐿𝐿
2

 

𝑢𝑢𝑦𝑦 = {[(400 + 500 + 350)(0.25) + (1500 + 1500 + 1200)(7.25)(1500 + 1500
+ 1200)(14.25) + (400 + 500 + 450)(21.25)]/11000} − (21.5/2)
= 0.095𝑚𝑚 

 

So, 

Mx= (11000) (0.095) =1045kN.m 

My= (11000) (0.436) =4800kN.m 
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Figure 13.26: Eccentricity and moments in mat foundation 

 

The maximum pressure under the area of mat is located at point A and the minimum 
pressure under the area of mat is located at point B.  

𝑞𝑞𝐴𝐴 = −
11000
354.75

−
4800(8.25)

8048
−

1045(10.75)
13655

= −36.8𝑘𝑘𝑁𝑁/𝑚𝑚2 

𝑞𝑞𝐵𝐵 = −
11000
354.75

+
4800(8.25)

8048
+

1045(10.75)
13655

= −25.26𝑘𝑘𝑁𝑁/𝑚𝑚2 

These stresses are less than qall and there is no tension under the mat. 
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2. Mat thickness: 

Try thickness of mat, h= 800mm and d= 700mm. 

𝑉𝑉𝑢𝑢,𝑝𝑝 = 1500(1.4) = 2100𝑘𝑘𝑁𝑁 

∅𝑉𝑉𝑠𝑠,𝑝𝑝 = 0.75(0.333)√20((500 + 350)(2) + (500 + 700))(700)/1000 = 2247𝑘𝑘𝑁𝑁 
>  2100𝑘𝑘𝑁𝑁. 

 

Figure 13.27: Critical section for punching shear 

 

Note: Shear – moment transfer should be done for columns for axial force and moments. 

3. Flexural design of the interior strip in Y direction: 

Strip width, L2= 8.0m 

Strip length, L= 21.5m 

𝑞𝑞𝐶𝐶 = −
11000
354.75

+
1045(10.75)

13655
= −30.2𝑘𝑘𝑁𝑁/𝑚𝑚2 

𝑞𝑞𝐷𝐷 = −
11000
354.75

−
1045(10.75)

13655
= −31.8𝑘𝑘𝑁𝑁/𝑚𝑚2 

𝑞𝑞𝑎𝑎𝑠𝑠 =
𝑞𝑞𝐶𝐶 + 𝑞𝑞𝐷𝐷

2
= 31𝑘𝑘𝑁𝑁/𝑚𝑚2 

 

Total soil reaction, R= 𝑞𝑞𝑎𝑎𝑠𝑠(8)(21.5) = 5332𝑘𝑘𝑁𝑁 
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Total column loads in the strip, Q1= 4000kN 

Average load, Qav: 

𝑄𝑄𝑎𝑎𝑠𝑠 =
𝑅𝑅 + 𝑄𝑄1

2
=

5332 + 4000
2

= 4666𝑘𝑘𝑁𝑁 

Average pressure in the strip is given by:  

𝑞𝑞𝑎𝑎𝑠𝑠𝑚𝑚 = 𝑞𝑞𝑎𝑎𝑠𝑠 �
𝑄𝑄𝑎𝑎𝑠𝑠
𝑅𝑅 � = 31 �

4666
5332�

= 27.13𝑘𝑘𝑁𝑁/𝑚𝑚2 

Column loads modification factor, F1 is given by: 

𝐹𝐹1 =
𝑄𝑄𝑎𝑎𝑠𝑠
𝑄𝑄1

=  
4666
4000

= 1.1665 

So, the line load on the strip will be: 

𝑞𝑞 = (8)(27.13) = 217𝑘𝑘𝑁𝑁/𝑚𝑚 

Figure 13.28 shows the structural model, the shear force and the bending moment diagrams 
for the strip. 
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Figure 13.28: Structural model, shear force diagram and bending moment diagram for the 
interior strip in Y direction in the mat 

The strip (frame) can be divided into column and middle strips based on ACI code 
specifications. The moments in the column strip are about 2/3 the moments of the frame. 

As an example: for Mu= 1620.3 kN.m x 1.4 = 2268 kN.m: 

Moment in column strip = 0.6667 (2268) = 1512kN.m. b= 3500mm, d= 700mm, 𝜌𝜌 =
0.0024,𝐴𝐴𝑠𝑠 = 0.0024(3500)(700) = 5880𝑚𝑚𝑚𝑚2 𝐹𝐹𝐹𝐹 𝐴𝐴𝑠𝑠 = 5880/3.5 = 1680𝑚𝑚𝑚𝑚2/𝑚𝑚 

Moment in middle strip = 2268-1512 = 756kN.m. b= 4500mm, d= 700mm, 𝜌𝜌 =
0.00092,𝐴𝐴𝑠𝑠 = 0.00092(4500)(700) = 2898𝑚𝑚𝑚𝑚2 𝐹𝐹𝐹𝐹 𝐴𝐴𝑠𝑠 = 2898/4.5 =  644𝑚𝑚𝑚𝑚2/𝑚𝑚 

Minimum steel area= shrinkage steel area= 0.0018(1000) (800) = 1440mm2/m 

So, for column strip, use As= 1680mm2/m 1∅22/200𝑚𝑚𝑚𝑚 

For middle strip, use As= 1440mm2/m 1∅20/200𝑚𝑚𝑚𝑚 
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13.7  Pile foundations 

Pile foundation is used to transmit structure loads to deeper soil stratum. They are used if the 
soil is weak and having low bearing capacity and so spread foundation is not practical. They 
are effective to minimize structure settlement especially when water is found in the site. 

Piles can be divided into two types:  

• Bearing piles 
• Friction piles 

The bearing pile develops its capacity by the bearing end of the pile. These piles usually 
supported on rock. 

The friction pile develops its capacity by the friction between its surface and the surrounding 
soil or rock. 

There are equations to compute the pile strength whether it is bearing or friction pile. 

In general, pile construction is fast in construction and practical and provide stability for the 
structure more than spread or shallow foundation. 

The minimum distance between piles centerlines is three times the pile diameter, d.  

When the distance between piles centerlines is less than 3d, the pile efficiency shall be 
determined, as there is overlap between the soil area affected by pile load. More detailed are 
found in Foundation Design references. 

The column can be supported on one pile or on group of piles which depends on the load 
value and the pile capacity. The group of piles shall be connected by a pile cap. The pile cap 
thickness shall be determined from punching and one-way shear. Also, the cap shall be 
designed for flexure in each direction. In general, the pile cap can be considered rigid.  

The minimum steel in the cap is similar to than in a footing which is the value specified for 
shrinkage. 

Group of piles supported by a cap can be subjected to a vertical eccentric or concentric force 
in addition to moments about the two axes. 

 

Example 1 (Pile foundation): 

Design a pile system to carry a column load of PD= 500kN and PL= 300kN. The pile can carry a 
load of 450kN. The pile is 800mm diameter. Concrete strength, f’c= 24MPa and steel strength, 
fy= 420MPa. The column is 350mm x 350mm. Assume the pile cap weight is 5% of the total 
applied loads. 
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Solution: 

Load, P= (1.05) (500+300) =840kN 

Number of piles, N= 840/450=1.87 (Two piles) 

Figure 13.29 shows the pile foundation. 

 

Figure 13.29: Pile foundation  
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Ultimate column load, Pu= 1.05(1.2(500) +1.6(300)) =1134kN 

𝑀𝑀𝑢𝑢 =
𝑃𝑃𝑢𝑢𝐿𝐿

4
=

1134(2.4)
4

= 680𝑘𝑘𝑁𝑁.𝑚𝑚 

𝑉𝑉𝑢𝑢 =
𝑃𝑃𝑢𝑢
2

=
1134

2
= 567𝑘𝑘𝑁𝑁 

At least a minimum transverse reinforcement shall be used that resists shear and 
shrinkage.so, 

∅𝑉𝑉𝑠𝑠 = (0.75)(1/6)√24(1100)(𝑑𝑑)/1000 

𝑉𝑉𝑢𝑢 = ∅𝑉𝑉𝑠𝑠        𝑑𝑑 =  842𝑚𝑚𝑚𝑚 

 

h= d+ cover = 842 + 200 = 1042mm  

Try h= 900mm, d= 700mm. 

𝑉𝑉𝑠𝑠 =
(0.17)(1)√24(1100)(700)

1000
= 641.3𝑘𝑘𝑁𝑁 

𝑉𝑉𝑠𝑠 =
𝑉𝑉𝑢𝑢
∅
− 𝑉𝑉𝑠𝑠 =

567
0.75

− 641.3 = 114.7𝑘𝑘𝑁𝑁 <
1
3√

24(1100)(700) = 1257.4𝑘𝑘𝑁𝑁 

𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚 = 𝑚𝑚𝑒𝑒𝑎𝑎 �600𝑚𝑚𝑚𝑚,
𝑑𝑑
2
� = min �600𝑚𝑚𝑚𝑚,

700
2

= 350𝑚𝑚𝑚𝑚� = 350𝑚𝑚𝑚𝑚 

𝐴𝐴𝑠𝑠
𝑠𝑠

=
𝑉𝑉𝑠𝑠
𝑓𝑓𝑦𝑦𝑑𝑑𝑑𝑑

=
114700

(420)(700)
=

0.39𝑚𝑚𝑚𝑚2

𝑚𝑚𝑚𝑚
. 

 

�
𝐴𝐴𝑠𝑠
𝑠𝑠 �𝑚𝑚𝑠𝑠𝑚𝑚

= 𝑚𝑚𝑎𝑎𝑑𝑑 𝐹𝐹𝑓𝑓

⎣
⎢
⎢
⎢
⎡0.062�𝑓𝑓′𝑠𝑠

𝑏𝑏𝑤𝑤
𝑓𝑓𝑦𝑦𝑑𝑑

0.35
𝑏𝑏𝑤𝑤
𝑓𝑓𝑦𝑦𝑑𝑑 ⎦

⎥
⎥
⎥
⎤

= 𝑚𝑚𝑎𝑎𝑑𝑑[0.74,0.92] = 0.92𝑚𝑚𝑚𝑚2/𝑚𝑚𝑚𝑚 

𝑢𝑢𝑠𝑠𝑢𝑢 
𝐴𝐴𝑠𝑠
𝑠𝑠

=
0.92𝑚𝑚𝑚𝑚2

𝑚𝑚𝑚𝑚
 

𝑈𝑈𝑠𝑠𝑢𝑢 ∅12 𝑓𝑓𝑙𝑙𝐹𝐹𝑠𝑠𝑢𝑢𝑑𝑑 𝑠𝑠𝑒𝑒𝑒𝑒𝐹𝐹𝐹𝐹𝑢𝑢𝑝𝑝𝑠𝑠, 4 𝑙𝑙𝑢𝑢𝑙𝑙𝑠𝑠: 𝐴𝐴𝑠𝑠 = (4)(113) = 452𝑚𝑚𝑚𝑚2 

𝑆𝑆𝑝𝑝𝑎𝑎𝑓𝑓𝑒𝑒𝑎𝑎𝑙𝑙, 𝑠𝑠 =
452
0.92

= 491𝑚𝑚𝑚𝑚 > 350𝑚𝑚𝑚𝑚,𝑢𝑢𝑠𝑠𝑢𝑢 𝑠𝑠 = 350𝑚𝑚𝑚𝑚 
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Shrinkage steel in the transverse direction = 0.0018(1000)(900)(0.5)=810mm2/m. So, 

𝑈𝑈𝑠𝑠𝑢𝑢 
810
113

= 7.2
𝑏𝑏𝑎𝑎𝐹𝐹𝑠𝑠
𝑚𝑚

.             

𝑈𝑈𝑠𝑠𝑢𝑢 ∅12/120𝑚𝑚𝑚𝑚  𝑙𝑙𝑎𝑎𝐹𝐹𝑙𝑙𝑢𝑢 𝑠𝑠𝑒𝑒𝑒𝑒𝐹𝐹𝐹𝐹𝑢𝑢𝑝𝑝 𝑎𝑎𝑎𝑎𝑑𝑑 ∅12/360𝑚𝑚𝑚𝑚 𝑒𝑒𝑎𝑎𝑒𝑒𝑢𝑢𝐹𝐹𝑒𝑒𝐹𝐹𝐹𝐹 𝑠𝑠𝑚𝑚𝑎𝑎𝑙𝑙𝑙𝑙 𝑠𝑠𝑒𝑒𝑒𝑒𝐹𝐹𝐹𝐹𝑢𝑢𝑝𝑝.  

d= 900mm              b= 700mm         Mu= 680kN.m        steel ratio, 𝜌𝜌=0.0035>0.00333 

As= 0.0035(1100) (700) =2690mm2             (6∅25) 

Top bars, As= 0.0018(1100) (900)/2= 891mm2           (6∅14) 

 

 

Note: See Figure 13.30. 

 

 

Figure 13.30: Piles group 

 

 

Example 2 (Pile foundation):   

Calculate the maximum and the minimum pile load for the pile foundation shown in Figure 
13.31 if the column load, P= 2500kN.  
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Figure 13.31: Pile group with cap 

Solution: 

P= 2500kN 

Mx= 2500(0.5) =1250kN.m                

My= 2500(0.75) =1875kN.m 

Ix= 6(1.5)2= 13.5m4 

Iy= 6(2)2= 24m4  

𝑃𝑃𝑒𝑒𝑙𝑙𝑢𝑢 𝑙𝑙𝐹𝐹𝑎𝑎𝑑𝑑,𝑃𝑃 =  
𝑃𝑃
𝑁𝑁

±
𝑀𝑀𝑚𝑚𝑀𝑀
𝐴𝐴𝑚𝑚

±
𝑀𝑀𝑦𝑦𝑑𝑑
𝐴𝐴𝑦𝑦

 

𝑃𝑃𝑒𝑒𝑙𝑙𝑢𝑢 𝑙𝑙𝐹𝐹𝑎𝑎𝑑𝑑,𝑃𝑃 =  
−2500

9
±

1250𝑀𝑀
13.5

±
1875𝑑𝑑

24
 

𝑀𝑀𝑎𝑎𝑑𝑑𝑒𝑒𝑚𝑚𝑢𝑢𝑚𝑚 𝑝𝑝𝑒𝑒𝑙𝑙𝑢𝑢 𝑙𝑙𝐹𝐹𝑎𝑎𝑑𝑑,  𝑃𝑃𝑚𝑚𝑎𝑎𝑚𝑚  =  
−2500

9
−

1250(1.5)
13.5

−
1875(2)

24
= −573𝑘𝑘𝑁𝑁   (𝐴𝐴𝐹𝐹𝑚𝑚𝑝𝑝𝐹𝐹𝑢𝑢𝑠𝑠𝑠𝑠𝑒𝑒𝐹𝐹𝑎𝑎) 

𝑀𝑀𝑒𝑒𝑎𝑎𝑒𝑒𝑚𝑚𝑢𝑢𝑚𝑚 𝑝𝑝𝑒𝑒𝑙𝑙𝑢𝑢 𝑙𝑙𝐹𝐹𝑎𝑎𝑑𝑑,  𝑃𝑃𝑚𝑚𝑠𝑠𝑚𝑚  =  
−2500

9
+

1250(1.5)
13.5

+
1875(2)

24
= +17.3𝑘𝑘𝑁𝑁   (𝑇𝑇𝑢𝑢𝑎𝑎𝑠𝑠𝑒𝑒𝐹𝐹𝑎𝑎) 
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Chapter 14: Design of Retaining Walls 

 

• Gravity retaining wall 
• Cantilever retaining wall 
• Counterfort retaining wall 
• Basement wall 
• Special retaining walls 

 

14.1 Introduction 

- The coefficient of lateral pressure is based on soil type and compaction. It is 
determined from backfill soil properties. In general, there are three types: static, 
active and passive. Static: if the retaining wall is stiff and difficult to move away from 
soil. Active: if the retaining wall can deflect and move away from the soil. Passive: if 
the retaining wall is inclined toward or moves toward the soil. 

- In this chapter, the backfill soil has uniform properties (one type of soil). More details 
are found in soil mechanics and foundations textbooks and references for backfill 
composed of soil layers with different properties and soil with water. 

- The design of a retaining wall is composed of two stages: 

o Design for serviceability: Preliminary dimensions: Check stability of 
retaining wall structure. 

o Design for strength: Shear, moment, axial, ……….. . The stem and the 
base thicknesses are controlled by shear.  

- The retaining wall stability includes: Overturning, sliding and bearing. 
- The factor of safety against overturning should be not less than 2.0 
- The factor of safety against sliding should be not less than 1.5 
- The pressure under the base of the retaining wall (footing) should be less than the soil 

allowable bearing capacity. Tension pressure under the footing shall be considered. 
The footing of the retaining wall can be supported on piles.  

- The retaining wall should be designed for the most critical cases. Construction phases 
control the design of the retaining walls.  

- Retaining walls shall be designed for soil lateral pressure, self-weight, surcharge on 
soil surfaces, wind loads and seismic forces. 

- Refer to geotechnical references for computations of seismic forces due to soil effects. 
- For a cantilever retaining wall, the preliminary dimensions are as follows: 

 Stem thickness at top is not less than 200mm. Minimum of 250mm and 
300mm are recommended. 

 Stem thickness at bottom (at base) is about 0.10 the height of the wall 
from top surface of soil fill to bottom of footing, h. 
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 Base thickness is about 0.10 the height, h. 
 Base length is about 0.33 to 0.75 the height, h. 
 The length of the heel is not less than 1.5 times the length of the toe. 
 A key can be used to increase sliding resistance. 
 Refer to Figure 14.1. 

- The surcharge on backfill soil for vehicle movement is not less than 12kN/m2. Refer to 
AASHTO for more details. 

 

Figure 14.1: Cantilever retaining wall  

 

Example: Cantilever retaining wall: 

Given:  

- Refer to Figure 14.2. 
- Concrete strength, f’c= 28MPa 
- Steel yield strength, fy= 420MPa 
- Soil allowable bearing capacity, qall= 400kN/m2 
- Soil unit weight, 𝛾𝛾𝑠𝑠= 19.2kN/m3  
- Soil friction internal angle, ∅= 30 degrees 
- Base friction coefficient, F1= 0.5 

Check retaining wall dimensions and design it. 
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Figure 14.2: Cantilever retaining wall for the example 

 

Solution: 

Step 1: Check stability 

• Check overturning of the retaining wall: refer to Figure 14.3. 
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Figure 14.3: Soil pressure on wall 

𝑞𝑞1 = 𝛾𝛾ℎ𝑘𝑘 

𝐾𝐾𝑎𝑎 =
1 − 𝑠𝑠𝑠𝑠𝑠𝑠∅
1 + 𝑠𝑠𝑠𝑠𝑠𝑠∅

= 0.333 

𝑞𝑞1 = (19.2)(4.55)(0.333) = 29.1𝑘𝑘𝑘𝑘/𝑚𝑚2 

𝑞𝑞2 = 𝑤𝑤𝐾𝐾𝑎𝑎 = (20)(0.333) = 6.66𝑘𝑘𝑘𝑘/𝑚𝑚2 

𝑃𝑃1 =
1
2
𝑞𝑞1ℎ =

1
2

(29.1)(4.55) = 66.2𝑘𝑘𝑘𝑘 

𝑃𝑃2 = 𝑞𝑞2ℎ = (6.66)(4.55) = 30.3𝑘𝑘𝑘𝑘 

𝑃𝑃 = 𝑃𝑃1 + 𝑃𝑃2 = 66.2 + 30.3 = 96.5𝑘𝑘𝑘𝑘 

𝑀𝑀𝑜𝑜𝑜𝑜 = 𝑃𝑃1(
4.55

3
) + 𝑃𝑃2(

4.55
2

) = 169.3𝑘𝑘𝑘𝑘.𝑚𝑚 

Figure 14.4 shows the weight zones for the retaining wall to compute the resisting moment. 
Table 14.1 shows calculations for weight and moments of the zones. 
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Figure 14.4: Weight zones for the retaining wall 

 

Table 14.1: Weight and resisting moments in the cantilever retaining wall 

Part Weight (kN) Moment arm 
(m) 

Moment 
(kN.m) 

W1 (0.45)(3.1)(25)=34.88 1.55 54.06 
W2 (0.4)(0.4)(25)=4.0 1.4 5.6 
W3 (0.2)(4.10)(25)=20.5 1.3 26.65 
W4 (0.5)(0.2)(4.1)(25)=10.25 1.47 15.07 
W5 (0.5)(0.2)(4.1)(19.2)=7.87 1.53 12.04 
W6 (1.5)(4.1)(19.2)=118.08 2.35 277.49 
W7 (1.2)(0.6)(19.2)=13.82 0.6 8.29 
W8 (20)(1.7)=34 2.25 76.5 
 W=243.4kN  MR=475.7kN.m 

 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹𝑜𝑜 𝑠𝑠𝐹𝐹𝑜𝑜𝑠𝑠𝐹𝐹𝑠𝑠 𝐹𝐹𝑎𝑎𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝐹𝐹 𝐹𝐹𝑜𝑜𝑠𝑠𝐹𝐹𝐹𝐹𝑜𝑜𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎,𝐹𝐹. 𝑆𝑆. =  
𝑀𝑀𝑅𝑅

𝑀𝑀𝑜𝑜𝑜𝑜
=

475.7
169.3

= 2.8 > 2    𝑂𝑂𝐾𝐾. 

• Check sliding of the retaining wall: Refer to Figure 14.5. 
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Figure 14.5: Soil lateral pressure for computing sliding force 

 

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑃𝑃1 + 𝑃𝑃2 = (0.5)(4.95)(19.2𝑥𝑥4.95𝑥𝑥0.333) + (20𝑥𝑥0.333)(4.95)
= 78.33 + 32.97 = 111.3𝑘𝑘𝑘𝑘 

𝑃𝑃𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑊𝑊𝑜𝑜 +
1
2
𝛾𝛾𝑠𝑠ℎ2𝐾𝐾𝑝𝑝 = (243.4)(0.5) +

1
2

(19.2)(1.45)2(3) = 121.7 + 60.552
= 182.25𝑘𝑘𝑘𝑘 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹𝑜𝑜 𝑠𝑠𝐹𝐹𝑜𝑜𝑠𝑠𝐹𝐹𝑠𝑠 𝐹𝐹𝑎𝑎𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝐹𝐹 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎,𝐹𝐹. 𝑆𝑆. =  
𝐹𝐹𝑅𝑅𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠
𝐹𝐹𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

=
182.25
111.3

= 1.64 > 1.5    𝑂𝑂𝐾𝐾. 

 

• Check bearing: check pressure under the base of the retaining wall: Refer to Figure 14.6. 
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Figure 14.6: Forces at the base of the retaining wall 

 

 

𝐹𝐹 =
∆𝑀𝑀
𝑊𝑊

=
475.7 − 169.3

243.4
= 1.26𝑚𝑚 

𝑀𝑀𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑟𝑟 𝑐𝑐𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠 = �
3.1
2
− 1.26� (243.4) = 0.29(243.4) = 70.6𝑘𝑘𝑘𝑘,𝑚𝑚 

𝑞𝑞1 =
−𝑃𝑃
𝐴𝐴
−
𝑀𝑀𝐹𝐹
𝐼𝐼

=
−243.4
1(3.1)

−
70.6(1.55)
1

12 (1)(3.1)3
= −122.62𝑘𝑘𝑘𝑘/𝑚𝑚2 

𝑞𝑞2 =
−𝑃𝑃
𝐴𝐴

+
𝑀𝑀𝐹𝐹
𝐼𝐼

=
−243.4
1(3.1)

+
70.6(1.55)
1

12 (1)(3.1)3
= −34.42𝑘𝑘𝑘𝑘/𝑚𝑚2 

See Figure 14.7. 
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Figure 14.7: Pressure under the base of retaining wall 

 

Note that q1 and q2 are compression. 

The eccentricity is located in the middle third of the base length. The eccentricity is given by: 

𝑠𝑠 =
𝑀𝑀
𝑊𝑊

=
70.6

243.4
= 0.29𝑚𝑚 <  

3.1
6

= 0.517𝑚𝑚 

Step 2: Strength design: 

• Design of the stem: 

Height, h= 4.10m 

Thickness at base, t= 0.40m    d= 0.33m    section width= one unit = 1.0m 

See Figure 14.8. 
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Figure 14.8: Soil lateral pressure for computing internal forces in the stem of the cantilever 
retaining wall 

𝑞𝑞1 = 𝛾𝛾ℎ𝑘𝑘𝑎𝑎 = (19.2)(4.1)(0.333) = 26.21𝑘𝑘𝑘𝑘/𝑚𝑚2 

𝑞𝑞2 = 𝑤𝑤𝑘𝑘𝑎𝑎 = (20)(0.333) = 6.66𝑘𝑘𝑘𝑘/𝑚𝑚2 

 

𝑃𝑃1 =
1
2
𝑞𝑞1ℎ =

1
2

(26.21)(4.1) = 53.73𝑘𝑘𝑘𝑘 

𝑃𝑃2 = 𝑞𝑞2ℎ = (6.66)(4.1) = 27.31𝑘𝑘𝑘𝑘 

𝑃𝑃 = 𝑉𝑉 = 𝑃𝑃1 + 𝑃𝑃2 = (53.73) + (27.31) = 81.04𝑘𝑘𝑘𝑘 

𝑀𝑀 = 𝑃𝑃1 �
ℎ
3�

+ 𝑃𝑃2 �
ℎ
2�

= (53.73) �
4.1
3 � + (27.31) �

4.1
2 � = 129.43𝑘𝑘𝑘𝑘 

𝑉𝑉𝑎𝑎 = (1.6)(81.04) = 129.7𝑘𝑘𝑘𝑘 

𝑀𝑀𝑎𝑎 = (1.6)(129.43) = 207.1𝑘𝑘𝑘𝑘.𝑚𝑚 

𝐴𝐴𝐴𝐴𝐼𝐼 318 − 14: ∅𝑉𝑉𝑐𝑐 = (0.75)(1/6)√28(1000)(330)/1000 = 218.3𝑘𝑘𝑘𝑘   >  129.7𝑘𝑘𝑘𝑘    𝑂𝑂𝐾𝐾 

𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚 𝑀𝑀𝑜𝑜 = 207.1𝑘𝑘𝑘𝑘.𝑚𝑚 ,     𝑠𝑠𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠 𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝐹𝐹,𝜌𝜌 = 0.0053,𝐴𝐴𝑠𝑠 = (0.0053)(1000)(330) =
1749𝑚𝑚𝑚𝑚2             𝑜𝑜𝑠𝑠𝑠𝑠 1∅20/150𝑚𝑚𝑚𝑚   
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ACI 318-19: shear design 

𝑉𝑉𝑐𝑐 can be calculated by: 

 𝐹𝐹𝐹𝐹𝐹𝐹 𝐴𝐴𝑜𝑜 ≥ 𝐴𝐴𝑜𝑜.𝑚𝑚𝑠𝑠𝑠𝑠 (𝐹𝐹𝐹𝐹 
𝐴𝐴𝑜𝑜
𝑠𝑠
≥ �

𝐴𝐴𝑜𝑜
𝑠𝑠 �𝑚𝑚𝑠𝑠𝑠𝑠

) 𝑜𝑜𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝐹𝐹ℎ𝑠𝑠𝐹𝐹 𝐹𝐹𝑜𝑜: 

𝑉𝑉𝑐𝑐 = �0.17𝜆𝜆�𝑜𝑜′𝑐𝑐 +
𝑘𝑘𝑎𝑎

6𝐴𝐴𝑠𝑠
� 𝑏𝑏𝑤𝑤𝑠𝑠     𝐹𝐹𝑠𝑠𝑠𝑠      𝑉𝑉𝑐𝑐 = �0.66𝜆𝜆(𝜌𝜌𝑤𝑤)1/3�𝑜𝑜′𝑐𝑐 +

𝑘𝑘𝑎𝑎
6𝐴𝐴𝑠𝑠

� 𝑏𝑏𝑤𝑤𝑠𝑠 

𝐹𝐹𝐹𝐹𝐹𝐹 𝐴𝐴𝑜𝑜 < 𝐴𝐴𝑜𝑜.𝑚𝑚𝑠𝑠𝑠𝑠  �𝐹𝐹𝐹𝐹 
𝐴𝐴𝑜𝑜
𝑠𝑠

< �
𝐴𝐴𝑜𝑜
𝑠𝑠 �𝑚𝑚𝑠𝑠𝑠𝑠

� 𝑜𝑜𝑠𝑠𝑠𝑠: 

  𝑉𝑉𝑐𝑐 = �0.66𝜆𝜆𝑠𝑠𝜆𝜆(𝜌𝜌𝑤𝑤)1/3�𝑜𝑜′𝑐𝑐 +
𝑘𝑘𝑎𝑎

6𝐴𝐴𝑠𝑠
� 𝑏𝑏𝑤𝑤𝑠𝑠 

Where 𝐴𝐴𝑜𝑜 is the area of shear reinforcement within spacing s, mm2.  

And, 𝑉𝑉𝑐𝑐 shall not be taken greater than: 

𝑉𝑉𝑐𝑐 ≤ 0.42𝜆𝜆�𝑜𝑜′𝑐𝑐𝑏𝑏𝑤𝑤𝑠𝑠 

 

𝜆𝜆𝑠𝑠 = � 2
1 + 0.004 𝑠𝑠

≤ 1.0 

For 𝑠𝑠 ≤ 250𝑚𝑚𝑚𝑚, 𝜆𝜆𝑠𝑠 = 1.0 

𝑘𝑘𝑎𝑎
6𝐴𝐴𝑠𝑠

≤ 0.05𝑜𝑜′𝑐𝑐 

Axial load, Nu, is positive for compression and negative for tension. 

𝜌𝜌𝑤𝑤 =
𝐴𝐴𝑠𝑠
𝑏𝑏𝑤𝑤𝑠𝑠

 

The value of As to be used in the calculation of 𝜌𝜌𝑤𝑤 may be taken as the sum of the areas of 
longitudinal bars located more than two thirds of the overall member depth away from the 
extreme Compression fiber. 

The value of �𝑜𝑜’𝐹𝐹 used to calculate Vc for one-way shear shall not exceed 100 psi (8.3MPa), 
unless allowed in 22.5.3.2 (𝐴𝐴𝑜𝑜  ≥  𝐴𝐴𝑜𝑜,𝑚𝑚𝑠𝑠𝑠𝑠). 
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𝜆𝜆𝑠𝑠 = � 2
1 + 0.004 𝑠𝑠

≤ 1.0 → 𝜆𝜆𝑠𝑠 = �
2

1 + 0.004 (330) = 0.928 

𝜌𝜌𝑤𝑤 =
(6.67 𝑏𝑏𝐹𝐹𝐹𝐹𝑠𝑠) (314)

(1000)(330) = 0.0063 

 ∅ 𝑉𝑉𝑐𝑐 = 0.75
�0.66(0.928)(1)(0.0063)

1
3√28 + 0.0� (1000)(330)

1000
= 148.4𝑘𝑘𝑘𝑘

> 129.7𝑘𝑘𝑘𝑘   𝐹𝐹𝑘𝑘. 

At exterior face of wall, one can use steel ratio= 0.0025/2 if the wall is interior and is not 
subjected to environmental hazards. 

If the wall can be subjected to environmental hazards, one can use steel ratio based on ACI 
350, and steel ratio= 0.003/2. 

Here, use steel ratio= 0.003/2 

𝐴𝐴𝑠𝑠 = (0.003/2)(1000)(400) =  600𝑚𝑚𝑚𝑚2        𝑜𝑜𝑠𝑠𝑠𝑠 1∅12/150  

For horizontal steel, one can use steel ratio= 0.0025/2 if the wall is interior and is not 
subjected to environmental hazards. 

If the wall can be subjected to environmental hazards, one can use steel ratio based on ACI 
350, and steel ratio= 0.003/2 if expansion joints are used with spacing not larger than 9.0m.  

Here, use steel ratio= 0.003/2 

𝐴𝐴𝑠𝑠 = (0.003/2)(1000)(400) =  600𝑚𝑚𝑚𝑚2        𝑜𝑜𝑠𝑠𝑠𝑠 1∅12/150 𝐹𝐹𝐹𝐹  1∅14/250  

 

Check shear key: Refer to Figure 14.9.  

 

Figure 14.9: Shear key at base of the cantilever retaining wall 

 

Check that: 
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𝑉𝑉𝑎𝑎
𝐴𝐴𝑘𝑘𝑟𝑟𝑘𝑘

≤ ∅(0.2𝑜𝑜′𝑐𝑐)  ≤ 5.5𝑀𝑀𝑃𝑃𝐹𝐹 

            
129.7(1000)
1000(100)

= 1.3𝑀𝑀𝑃𝑃𝐹𝐹  <  0.75(0.20)(28) = 4.2𝑀𝑀𝑃𝑃𝐹𝐹 

• Design of the toe: Refer to Figure 14.10. 

 

Figure 14.10: Loads at the base of the cantilever retaining wall 

𝑞𝑞6 = 𝛾𝛾𝑠𝑠ℎ = (19.2)(4.1) = 78.72𝑘𝑘𝑘𝑘/𝑚𝑚2 

𝑞𝑞7 = 𝛾𝛾𝑠𝑠ℎ = (19.2)(0.6) = 11.52𝑘𝑘𝑘𝑘/𝑚𝑚2 

𝑞𝑞8 = 𝛾𝛾𝑐𝑐ℎ = (25)(0.45) = 11.25𝑘𝑘𝑘𝑘/𝑚𝑚2 
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Use an average load factor of 1.4 for shear and moment computations. 

 

𝑉𝑉 = �
(122.62 + 88.5)

2 � (1.2) − (11.52)(1.2) − (11.25)(1.2) = 99.35𝑘𝑘𝑘𝑘 

𝑉𝑉𝑎𝑎 = (1.4)(99.35) = 139.1𝑘𝑘𝑘𝑘 

𝑀𝑀 = (88.5)(1.2)(0.6) + (122.62 − 88.5)(0.5)(1.2)(0.667)(1.2) − (11.52)(0.5)(1.2)2
− (11.25)(0.5)(1.2)2 = 63.71𝑘𝑘𝑘𝑘.𝑚𝑚 

𝑀𝑀𝑎𝑎 = (1.4)(63.71) = 89.2𝑘𝑘𝑘𝑘.𝑚𝑚 

 

𝐴𝐴𝐴𝐴𝐼𝐼 318 − 14: ∅𝑉𝑉𝑐𝑐 = (0.75)(1/6)√21(1000)(380)/1000 = 218𝑘𝑘𝑘𝑘   >  139.1𝑘𝑘𝑘𝑘    𝑂𝑂𝐾𝐾 

Flexure: 

𝜌𝜌 = 0.001664         𝐴𝐴𝑠𝑠 = 0.001664(1000)(380) = 632𝑚𝑚𝑚𝑚2 

𝐴𝐴𝑠𝑠,𝑚𝑚𝑠𝑠𝑠𝑠 = 0.0018(1000)(450) = 810𝑚𝑚𝑚𝑚2     𝑜𝑜𝑠𝑠𝑠𝑠 1∅20/300𝑚𝑚𝑚𝑚 

ACI 318-19: shear: 

𝜆𝜆𝑠𝑠 = � 2
1 + 0.004 𝑠𝑠

≤ 1.0 → 𝜆𝜆𝑠𝑠 = �
2

1 + 0.004 (380) = 0.89 

𝜌𝜌𝑤𝑤 =
(3.3 𝑏𝑏𝐹𝐹𝐹𝐹𝑠𝑠) (314)

(1000)(380) = 0.0027 

 ∅ 𝑉𝑉𝑐𝑐 = 0.75
�0.66(0.89)(1)(0.0027)

1
3√28 + 0.0� (1000)(380)

1000
= 138.6𝑘𝑘𝑘𝑘

≈ 139.1𝑘𝑘𝑘𝑘   𝐹𝐹𝑘𝑘. 

• Design of heel: Refer to Figure 14.10 above: 

Use an average load factor of 1.4 for shear and moment computations. 

𝑉𝑉 = (20)(1.5) + (78.72)(1.5) + (11.25)(1.5) − (34.42 + 77.1)(0.5)(1.5) = 81.32𝑘𝑘𝑘𝑘 

𝑉𝑉𝑎𝑎 = (1.4)(81.32) = 113.85𝑘𝑘𝑘𝑘 

𝑀𝑀 =
(20)(1.5)2

2
+

(78.72)(1.5)2

2
+

11.25(1.5)2

2
−

(34.42)(1.5)2

2
− (77.1

− 34.42)(0.5)(1.5)(1.5/3) = 69𝑘𝑘𝑘𝑘.𝑚𝑚 



Design of Reinforced Concrete Structures: A Practical Approach                            IBRAHIM ARMAN 
 

368 
 

𝑀𝑀𝑎𝑎 = (1.4)(69) = 96.6𝑘𝑘𝑘𝑘 

Flexure: 

𝜌𝜌 = 0.001805         𝐴𝐴𝑠𝑠 = 0.001664(1000)(380) = 686𝑚𝑚𝑚𝑚2 

𝐴𝐴𝑠𝑠,𝑚𝑚𝑠𝑠𝑠𝑠 = 0.0018(1000)(450) = 810𝑚𝑚𝑚𝑚2     𝑜𝑜𝑠𝑠𝑠𝑠 1∅20/300𝑚𝑚𝑚𝑚 

𝐴𝐴𝐴𝐴𝐼𝐼 318 − 14: ∅𝑉𝑉𝑐𝑐 = 218𝑘𝑘𝑘𝑘 >  𝑉𝑉𝑎𝑎 = 113.85𝑘𝑘𝑘𝑘    𝐹𝐹𝑘𝑘. 

𝐴𝐴𝐴𝐴𝐼𝐼 318 − 19: ∅𝑉𝑉𝑐𝑐 = 138.6𝑘𝑘𝑘𝑘 >  𝑉𝑉𝑎𝑎 = 113.85𝑘𝑘𝑘𝑘     𝐹𝐹𝑘𝑘. 

 

Shrinkage steel in the base:  𝑜𝑜𝑠𝑠𝑠𝑠 810/2 =  405𝑚𝑚𝑚𝑚2        𝑜𝑜𝑠𝑠𝑠𝑠 1∅12/250𝑚𝑚𝑚𝑚 

 

 

 

Figure 14.11: Cantilever wall reinforcement details 
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14.2  Design of counterfort retaining wall: 

The counterfort retaining walls are composed of slabs and counterforts. 

The toe slab represents a cantilever built in a long the front face of the wall, loaded upward 
by the bearing pressure, exactly as the cantilever walls. 

The panel of the vertical wall between two counterforts is a slab acted upon by the horizontal 
earth pressure and supported along three sides; the two counterforts and the base slab, while 
the fourth side; the top edge, is not supported. Slab moments are determined for strips one 
meter wide spanning horizontally, usually for the strip at the bottom of the wall and for other 
strips at higher elevations. 

The heel slab is supported as in the wall slab; by counterforts and at the wall (stem). It is 
loaded downward by the weight of the fill resting on it, its own weight, and surcharge as there 
may be. This load is partially counteracted by the bearing pressure. Horizontal strips are taken 
with the corresponding loads; the top and downward loads. 

The counterforts are wedge-shaped cantilevers built in the base slab. They support the wall 
slab (stem) and therefore are loaded by the total soil pressure over a length equal to the 
distance center to center between counterforts. 

 

Example: (counterfort wall): 

Given: 

- Refer to Figure 14.12 
- Concrete strength, f’c= 32MPa 
- Steel yield strength, fy= 420MPa 
- Soil unit weight, 𝛾𝛾𝑠𝑠=20kN/m3 
- Soil internal friction angle, ∅=30 degrees 
- Clear distance between counterforts is 2.50m 
- Thickness of counterfort wall is 0.30m 

Design the stem and the counterfort wall. 
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Figure 14.12: Counterfort retaining wall 

Solution: 

• Design of wall (stem): 

𝑞𝑞 = 𝛾𝛾𝑠𝑠ℎ𝑘𝑘𝑎𝑎 = (20)(7.5)(0.333) = 50𝑘𝑘𝑘𝑘/𝑚𝑚2 

𝑞𝑞𝑎𝑎 = (1.6)(50) = 80𝑘𝑘𝑘𝑘/𝑚𝑚2 

Clear span length, Ln= 2.50m 

Load, qu= 80kN/m on a horizontal strip of 1.0m width at the base.  

𝑉𝑉𝑎𝑎 = 1.15
𝑞𝑞𝑎𝑎𝐿𝐿𝑠𝑠

2
= 1.15

(80)(2.5)
2

= 115𝑘𝑘𝑘𝑘 

𝑀𝑀𝑎𝑎,𝑚𝑚𝑎𝑎𝑚𝑚 =
𝑞𝑞𝑎𝑎𝐿𝐿𝑠𝑠2

10
=

(80)(2.5)2

10
= 50𝑘𝑘𝑘𝑘.𝑚𝑚 

Effective depth, d= 350-60=290mm. 

𝐴𝐴𝐴𝐴𝐼𝐼 318 − 14: ∅𝑉𝑉𝑐𝑐 = (0.75)(1/6)√32(1000)(290)/1000 = 205𝑘𝑘𝑘𝑘   >  115𝑘𝑘𝑘𝑘    𝑂𝑂𝐾𝐾 

𝑆𝑆𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠 𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝐹𝐹,𝜌𝜌 = 0.0016 < 0.00333       𝐴𝐴𝑠𝑠 = (0.00333)(1000)(290) =
966𝑚𝑚𝑚𝑚2    𝑜𝑜𝑠𝑠𝑠𝑠 1∅16/200𝑚𝑚𝑚𝑚  
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ACI 318-19: shear: 

𝜆𝜆𝑠𝑠 = � 2
1 + 0.004 𝑠𝑠

≤ 1.0 → 𝜆𝜆𝑠𝑠 = �
2

1 + 0.004 (290) = 0.96 

𝜌𝜌𝑤𝑤 =
(5 𝑏𝑏𝐹𝐹𝐹𝐹𝑠𝑠) (201)
(1000)(290) = 0.0035 

 ∅ 𝑉𝑉𝑐𝑐 = 0.75
�0.66(0.96)(1)(0.0035)

1
3√32 + 0.0� (1000)(290)

1000
= 118.6𝑘𝑘𝑘𝑘

> 115𝑘𝑘𝑘𝑘   𝐹𝐹𝑘𝑘. 

Vertical steel in the wall = (0.003/2)(1000)(350)=525mm2. Use 1∅12/200𝑚𝑚𝑚𝑚. 

• Design of the counterfort wall: 

𝑞𝑞𝑎𝑎 = (80)(2.8) = 224𝑘𝑘𝑘𝑘/𝑚𝑚 . Triangular load.  

𝑉𝑉𝑎𝑎 = (0.5)(224)(7.5) = 840𝑘𝑘𝑘𝑘 

𝑀𝑀𝑎𝑎 = (840)(7.5/3) = 2100𝑘𝑘𝑘𝑘.𝑚𝑚 

 

Figure 14.13: Counterfort wall 

𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼 =
𝐿𝐿

3.1
=  

7.5
8.1

 → 𝐿𝐿 = 2.87𝑚𝑚 

∅𝑀𝑀𝑠𝑠 = ∅𝐴𝐴𝑠𝑠𝑜𝑜𝑘𝑘𝑗𝑗𝑠𝑠 
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2100(10)6 = (0.9)(𝐴𝐴𝑠𝑠)(420)(0.9)(0.8𝑥𝑥2870)  →  𝐴𝐴𝑠𝑠 = 2689𝑚𝑚𝑚𝑚2 𝑜𝑜𝑠𝑠𝑠𝑠 9∅20 

 

Shear: 

𝑉𝑉𝑐𝑐 = (1/6)√32(300)(0.8𝑥𝑥2870)/1000 = 649𝑘𝑘𝑘𝑘   

𝑉𝑉𝑎𝑎
∅

=
840
0.75

= 1120𝑘𝑘𝑘𝑘 

𝑉𝑉𝑠𝑠 = 1120 − 649 = 471𝑘𝑘𝑘𝑘 

𝐴𝐴𝑜𝑜
𝑠𝑠

=
𝑉𝑉𝑠𝑠
𝑜𝑜𝑘𝑘𝑟𝑟𝑠𝑠

=
471000

(420)(0.8𝑥𝑥2870)
= 0.49𝑚𝑚𝑚𝑚2/𝑚𝑚 

�
𝐴𝐴𝑜𝑜
𝑠𝑠 �𝑚𝑚

= 𝑚𝑚𝐹𝐹𝑥𝑥 �
0.35𝑏𝑏𝑤𝑤
𝑜𝑜𝑘𝑘𝑟𝑟

,
0.062�𝑜𝑜′𝑐𝑐𝑏𝑏𝑤𝑤

𝑜𝑜𝑘𝑘𝑟𝑟
� = 0.25𝑚𝑚𝑚𝑚2/𝑚𝑚 

𝑜𝑜𝑠𝑠𝑠𝑠 
𝐴𝐴𝑜𝑜
𝑠𝑠

=
0.49𝑚𝑚𝑚𝑚2

𝑚𝑚
→  𝑠𝑠 =

113𝑥𝑥2
0.49

= 461𝑚𝑚𝑚𝑚             ∅12/450𝑚𝑚𝑚𝑚 

𝑆𝑆ℎ𝐹𝐹𝑠𝑠𝑠𝑠𝑘𝑘𝐹𝐹𝑎𝑎𝑠𝑠 𝑠𝑠𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠 =
0.003

2
(1000)(300) = 450𝑚𝑚𝑚𝑚2/𝑚𝑚       

  𝑈𝑈𝑠𝑠𝑠𝑠 1∅12/250𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠 ℎ𝐹𝐹𝐹𝐹𝑠𝑠𝑜𝑜𝐹𝐹𝑠𝑠𝐹𝐹𝐹𝐹𝑠𝑠 𝐹𝐹𝑠𝑠𝑠𝑠 𝑜𝑜𝑠𝑠𝐹𝐹𝐹𝐹𝑠𝑠𝐹𝐹𝐹𝐹𝑠𝑠 𝑠𝑠𝑠𝑠𝐹𝐹𝑠𝑠𝐹𝐹𝐹𝐹𝑠𝑠𝐹𝐹𝑠𝑠𝑠𝑠 
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Chapter 15: Design of Water Tanks 

 

15.1  Design of rectangular water tanks: 

- Tanks can be divided to:  
o On-ground tanks 
o Underground tanks 
o Elevated tanks 

- Tanks can be of different shapes: 
o Rectangular 
o Circular 
o Irregular 

- Based on load transfer, water tanks can be divided to: 
o Shallow tanks 
o Medium tanks 
o Deep tanks 

Shallow water tanks: 

In shallow tanks, mainly, water loads are transferred in walls in the vertical direction. So, walls 
can be designed for one meter strip in the central zone of wall. 

- For tanks without roof: 𝐿𝐿/𝐻𝐻 ≥  4 
- For tanks with roof:  𝐿𝐿/𝐻𝐻 ≥  2 

Where L is the side length and H is the side height. 

Figure 15.1 shows the shear and moments for a wall. 

Here, w= unit weight of water= 10kN/m3. 
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Figure 15.1: Shear and moments in a wall of shallow tank in the vertical direction 

 

Horizontal forces in walls of shallow tanks (At corners of tank): 

Loads are transferred to walls at corners by the 45 degrees load distribution principle. 

Refer to Figure 15.2. 

 

Figure 15.2: Water loads distribution in walls of shallow water tank 

 

Tank with roof: 

𝐹𝐹 =
1
2
𝐻𝐻
𝐻𝐻
2
𝑤𝑤𝐻𝐻

2
=
𝑤𝑤𝐻𝐻3

8
 

𝑀𝑀 = 𝐹𝐹 ∗  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
𝑤𝑤𝐻𝐻3

8 �
1
2
𝐻𝐻
2�

=
𝑤𝑤𝐻𝐻4

32
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Force (tension force on the perpendicular wall= shear force in this wall) per meter height is 
given by: 

𝐹𝐹 =
𝑤𝑤𝐻𝐻3

8
/𝐻𝐻 =

𝑤𝑤𝐻𝐻2

8
 

Moment per meter height is given by: 

𝑀𝑀 =
𝑤𝑤𝐻𝐻4

32
/𝐻𝐻 =

𝑤𝑤𝐻𝐻3

32
 

Tank without roof: 

𝐹𝐹 =
1
2
𝐻𝐻𝐻𝐻

𝑤𝑤𝐻𝐻
2

=
𝑤𝑤𝐻𝐻3

4
 

𝑀𝑀 = 𝐹𝐹 ∗  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
𝑤𝑤𝐻𝐻3

4 �
𝐻𝐻
2�

=
𝑤𝑤𝐻𝐻4

8
 

Force (tension force on the perpendicular wall= shear force in this wall) per meter height is 
given by: 

𝐹𝐹 =
𝑤𝑤𝐻𝐻3

4
/𝐻𝐻 =

𝑤𝑤𝐻𝐻2

4
 

Moment per meter height is given by: 

𝑀𝑀 =
𝑤𝑤𝐻𝐻4

8
/𝐻𝐻 =

𝑤𝑤𝐻𝐻3

8
 

Medium water tanks: 

In medium tanks, water loads are transferred in walls in the vertical and horizontal directions. 
Here L/H or H/L is between 1 and 2. In general, the wall shall be analyzed as two-way slab 
subjected to triangular surface load. 

Deep water tanks: 

In deep water tanks, mainly, water loads are transferred in walls in the horizontal direction. 
Here, 𝐻𝐻/𝐿𝐿 ≥ 2. 

Refer to Figure 15.3. 
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Figure 15.3: Load and moments in horizontal direction of deep water tank 

𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇𝐷𝐷 𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝑠𝑠𝐷𝐷 𝐵𝐵 =
𝑞𝑞𝐿𝐿
2

 

𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇𝐷𝐷 𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝑠𝑠𝐷𝐷 𝐿𝐿 =
𝑞𝑞𝐵𝐵
2

 

𝑇𝑇ℎ𝐷𝐷 𝐷𝐷𝐷𝐷𝑛𝑛𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛𝐷𝐷 𝑚𝑚𝑇𝑇𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷 𝐷𝐷𝑇𝑇𝑐𝑐𝐷𝐷𝐷𝐷𝑐𝑐 𝐷𝐷𝐷𝐷 𝑛𝑛𝐷𝐷𝑛𝑛𝐷𝐷𝐷𝐷 𝑏𝑏𝑏𝑏: 𝑀𝑀− =
𝑞𝑞(𝐿𝐿3 + 𝐵𝐵3)
12(𝐿𝐿 + 𝐵𝐵)

 

And the span moments will be: 

𝐴𝐴𝐷𝐷 𝐷𝐷𝐷𝐷𝑠𝑠𝐷𝐷 𝐿𝐿,𝑀𝑀+ =
𝑞𝑞𝐿𝐿2

8
− (𝑀𝑀−) 

𝐴𝐴𝐷𝐷 𝐷𝐷𝐷𝐷𝑠𝑠𝐷𝐷 𝐵𝐵,𝑀𝑀+ =
𝑞𝑞𝐵𝐵2

8
− (𝑀𝑀−) 

Design methods: 

• Working design method: Allowable stress method. 
• Ultimate design method with serviceability check. 

In this chapter, the ultimate design method is used. 

The environmental durability factor, Sd will be used in the design for moment, tension, shear 
and torsion. It is given by: 

𝑆𝑆𝑑𝑑 =
∅𝑓𝑓𝑦𝑦
𝛾𝛾𝑓𝑓𝑠𝑠
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𝛾𝛾 =
𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇𝑐𝑐𝐷𝐷𝑠𝑠 𝑙𝑙𝑇𝑇𝐷𝐷𝑠𝑠
𝑢𝑢𝐷𝐷𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇𝑐𝑐𝐷𝐷𝑠𝑠 𝑙𝑙𝑇𝑇𝐷𝐷𝑠𝑠

 

Note that Sd is equal to 1.0 for seismic forces and for compression. 

The allowable stress in steel, fs is discussed below. 

Flexure: 

For normal exposure: 

𝑓𝑓𝑠𝑠 =
2200𝑀𝑀𝑀𝑀𝐷𝐷

𝛽𝛽�𝑆𝑆2 + 4 �50 + 𝑠𝑠𝑏𝑏
2 �

2
/25.4

=
55880

𝛽𝛽�𝑆𝑆2 + 4 �50 + 𝑠𝑠𝑏𝑏
2 �

2
𝑀𝑀𝑀𝑀𝐷𝐷 

𝑓𝑓𝑠𝑠 ≤ 250𝑀𝑀𝑀𝑀𝐷𝐷 

𝑓𝑓𝑠𝑠 ≥ 138𝑀𝑀𝑀𝑀𝐷𝐷 𝑓𝑓𝑇𝑇𝑐𝑐 𝑇𝑇𝐷𝐷𝐷𝐷 𝑤𝑤𝐷𝐷𝑏𝑏 𝑚𝑚𝐷𝐷𝑚𝑚𝑏𝑏𝐷𝐷𝑐𝑐𝐷𝐷. 

𝑓𝑓𝑠𝑠 ≥ 165𝑀𝑀𝑀𝑀𝐷𝐷 𝑓𝑓𝑇𝑇𝑐𝑐 𝐷𝐷𝑤𝑤𝑇𝑇 𝑤𝑤𝐷𝐷𝑏𝑏 𝑚𝑚𝐷𝐷𝑚𝑚𝑏𝑏𝐷𝐷𝑐𝑐𝐷𝐷. 

For severe exposure: 

𝑓𝑓𝑠𝑠 =
1794𝑀𝑀𝑀𝑀𝐷𝐷

𝛽𝛽�𝑆𝑆2 + 4 �50 + 𝑠𝑠𝑏𝑏
2 �

2
/25.4

=
45560

𝛽𝛽�𝑆𝑆2 + 4 �50 + 𝑠𝑠𝑏𝑏
2 �

2
𝑀𝑀𝑀𝑀𝐷𝐷 

𝑓𝑓𝑠𝑠 ≤ 250𝑀𝑀𝑀𝑀𝐷𝐷 

𝑓𝑓𝑠𝑠 ≥ 117𝑀𝑀𝑀𝑀𝐷𝐷 𝑓𝑓𝑇𝑇𝑐𝑐 𝑇𝑇𝐷𝐷𝐷𝐷 𝑤𝑤𝐷𝐷𝑏𝑏 𝑚𝑚𝐷𝐷𝑚𝑚𝑏𝑏𝐷𝐷𝑐𝑐𝐷𝐷. 

𝑓𝑓𝑠𝑠 ≥ 138𝑀𝑀𝑀𝑀𝐷𝐷 𝑓𝑓𝑇𝑇𝑐𝑐 𝐷𝐷𝑤𝑤𝑇𝑇 𝑤𝑤𝐷𝐷𝑏𝑏 𝑚𝑚𝐷𝐷𝑚𝑚𝑏𝑏𝐷𝐷𝑐𝑐𝐷𝐷. 

 

Where: 

S= spacing between bars, mm 

db= diameter of bar, mm 

𝛽𝛽 =
ℎ − 𝐷𝐷
𝑠𝑠 − 𝐷𝐷

 

h= overall thickness of member 

d= effective depth of section 
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C= distance from extreme compression fiber to neutral axis. It is calculated at service loads 
for cracked section. 

For simplicity: 

𝛽𝛽 = 1.2 𝑓𝑓𝑇𝑇𝑐𝑐 ℎ ≥ 400𝑚𝑚𝑚𝑚 

𝛽𝛽 = 1.35 𝑓𝑓𝑇𝑇𝑐𝑐 ℎ < 400𝑚𝑚𝑚𝑚 

 

Tension: 

𝑓𝑓𝑠𝑠 = 138𝑀𝑀𝑀𝑀𝐷𝐷 𝑓𝑓𝑇𝑇𝑐𝑐 𝐷𝐷𝑇𝑇𝑐𝑐𝑚𝑚𝐷𝐷𝑙𝑙 𝐷𝐷𝑒𝑒𝑒𝑒𝑇𝑇𝐷𝐷𝑢𝑢𝑐𝑐𝐷𝐷 

𝑓𝑓𝑠𝑠 = 117𝑀𝑀𝑀𝑀𝐷𝐷 𝑓𝑓𝑇𝑇𝑐𝑐 𝐷𝐷𝐷𝐷𝑛𝑛𝐷𝐷𝑐𝑐𝐷𝐷 𝐷𝐷𝑒𝑒𝑒𝑒𝑇𝑇𝐷𝐷𝑢𝑢𝑐𝑐𝐷𝐷 

 

Shear: 

𝑓𝑓𝑠𝑠 = 165𝑀𝑀𝑀𝑀𝐷𝐷 𝑓𝑓𝑇𝑇𝑐𝑐 𝐷𝐷𝑇𝑇𝑐𝑐𝑚𝑚𝐷𝐷𝑙𝑙 𝐷𝐷𝑒𝑒𝑒𝑒𝑇𝑇𝐷𝐷𝑢𝑢𝑐𝑐𝐷𝐷 

𝑓𝑓𝑠𝑠 = 138𝑀𝑀𝑀𝑀𝐷𝐷 𝑓𝑓𝑇𝑇𝑐𝑐 𝐷𝐷𝐷𝐷𝑛𝑛𝐷𝐷𝑐𝑐𝐷𝐷 𝐷𝐷𝑒𝑒𝑒𝑒𝑇𝑇𝐷𝐷𝑢𝑢𝑐𝑐𝐷𝐷 

It is not recommended to use shear reinforcement in walls and base of tank, so: 

∅𝑉𝑉𝑐𝑐 ≥ 𝑉𝑉𝑢𝑢 

The environmental durability factor, Sd will be multiplied by Vs if shear reinforcement is used 
in the member like for beams. 

In walls and base of water tank, the minimum steel ratio is similar to beams. 

The shrinkage steel area in the vertical direction of walls shall be not less than 0.003 multiplied 
by the gross sectional area. 

The minimum shrinkage steel ratio in the horizontal direction is given in Table 3.1 based on 
ACI 350-06. 
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Table 15.1: Minimum shrinkage and temperature reinforcement in environmental structures 

Length between movement joints, 
L, m 

Steel ratio for fy= 
280MPa 

Steel ratio for fy= 
420MPa 

𝐿𝐿 < 6 0.003 0.003 
6 ≤ 𝐿𝐿 < 9 0.004 0.003 

9 ≤ 𝐿𝐿 < 12 0.005 0.004 
12 ≤ 𝐿𝐿 0.006 0.005 

Notes:  

- For underground water tanks, major two loading cases shall be taken into account: 

o The tank is full of water and no backfill: this case happens mainly during water 
tightness test. 

o The tank is empty and there is backfill. 

- The minimum concrete strength is 28MPa. 
- The minimum thickness of buried wall or wall subjected to water and its height is more 

than 3.0m, is 300mm. 

In addition to that, construction method shall be considered in the design stage.  

The design of a water tank for seismic loads can be done with the reference to ACI 350.3-06; 
Seismic Design of Liquid-Containing Concrete Structures and Commentary. 

 

 Example: Rectangular on-ground water tank: 

Given: 

- Concrete strength, f’c= 28MPa 
- Steel yield strength, fy= 420MPa 
- Rectangular on-ground tank.  
- No roof. 
- Tank area dimensions: 25m  x 25m 
- Tank height= 5.0m 
- Soil allowable bearing capacity, qall= 340kN/m2  
- Assume severe exposure. 

Solution: 

𝐿𝐿
𝐻𝐻

=
25
5

> 5 

So, the tank is shallow.  
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Figure 15.4: Load on wall of tank - example 

Vertical direction: 

Shear= reaction = area under the load diagram = (0.5)(5)(50)=125kN 

Moment = shear x (h/3)=125(5/3)=208.33kN.m 

Load combination: U=1.4D+1.4F 

𝑉𝑉𝑢𝑢 = (1.4)(125) = 175𝑘𝑘𝑘𝑘 

𝑀𝑀𝑢𝑢 = (1.4)(208.33) = 291.66𝑘𝑘𝑘𝑘.𝑚𝑚 

Try wall thickness at top= 300mm 

Try wall thickness at bottom= 500mm    d= 430mm 

Check shear in walls: 

∅𝑉𝑉𝑐𝑐 = (0.75)(1/6)√28(1000)(430)/1000 = 284𝑘𝑘𝑘𝑘 >  175𝑘𝑘𝑘𝑘    𝑂𝑂𝑂𝑂 
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Figure 15.5: Section in wall of the rectangular tank - example 

 

Design for flexure: 

Let S=150mm  

Let db=25mm 

𝛽𝛽 = 1.2 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 500𝑚𝑚𝑚𝑚 >  400𝑚𝑚𝑚𝑚 

𝑓𝑓𝑠𝑠 =
45560

𝛽𝛽�𝑆𝑆2 + 4 �50 + 𝑠𝑠𝑏𝑏
2 �

2
𝑀𝑀𝑀𝑀𝐷𝐷 =

45560

(1.2)�(150)2 + 4 �50 + 25
2 �

2
= 194𝑀𝑀𝑀𝑀𝐷𝐷  

< 250𝑀𝑀𝑀𝑀𝐷𝐷 

And > 117MPa for one-way member – sever exposure  

𝑆𝑆𝑑𝑑 =
∅𝑓𝑓𝑦𝑦
𝛾𝛾𝑓𝑓𝑠𝑠

=
(0.9)(420)
(1.4)(194)

= 1.4 

𝑀𝑀𝑢𝑢
′ = (1.4)(291.66) = 408.3𝑘𝑘𝑘𝑘.𝑚𝑚 

𝜌𝜌 = 0.0062  >  0.00333  𝑂𝑂𝑂𝑂 ,𝐴𝐴𝑠𝑠 = (0.0062)(1000)(430) = 2666𝑚𝑚𝑚𝑚2   1∅25/150𝑚𝑚𝑚𝑚) 
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Check stress in reinforcing steel at service load: 

𝐴𝐴𝑠𝑠 = 3273𝑚𝑚𝑚𝑚2           𝑓𝑓𝑇𝑇𝑐𝑐 1∅25/150𝑚𝑚𝑚𝑚 

𝐷𝐷 =
𝐸𝐸𝑠𝑠
𝐸𝐸𝑐𝑐

=
200000

4700√28
= 8 

𝜌𝜌 =
3273

(1000)(430)
= 0.00761 

𝑘𝑘 = −𝐷𝐷𝜌𝜌 + �(𝐷𝐷𝜌𝜌)2 + 2𝐷𝐷𝜌𝜌 = 0.2934 

𝑗𝑗 = 1 −
𝑘𝑘
3

= 0.902 

𝑓𝑓𝑠𝑠 =
𝑀𝑀
𝐴𝐴𝑠𝑠𝑗𝑗𝑠𝑠

=
208.33(10)6

(3273)(0.902)(430)
= 164𝑀𝑀𝑀𝑀𝐷𝐷 < 194𝑀𝑀𝑀𝑀𝐷𝐷     𝑂𝑂𝑂𝑂 

ACI 318-19: shear: 

𝜆𝜆𝑠𝑠 = � 2
1 + 0.004 𝑠𝑠

≤ 1.0 → 𝜆𝜆𝑠𝑠 = �
2

1 + 0.004 (430) = 0.86 

𝜌𝜌𝑤𝑤 = 0.0076 

  ∅𝑉𝑉𝑐𝑐 = ∅�0.66𝜆𝜆𝑠𝑠𝜆𝜆(𝜌𝜌𝑤𝑤)1/3�𝑓𝑓′𝑐𝑐 +
𝑘𝑘𝑢𝑢

6𝐴𝐴𝑔𝑔
�𝑏𝑏𝑤𝑤𝑠𝑠 

 ∅ 𝑉𝑉𝑐𝑐 = 0.75
�0.66(0.86)(1)(0.0076)

1
3√28 + 0.0� (1000)(430)

1000
= 191𝑘𝑘𝑘𝑘 > 175𝑘𝑘𝑘𝑘   𝑇𝑇𝑘𝑘. 

 

Horizontal direction: 

Total force = (0.5)(5)(5)(10x5/2)=312.5kN 

Total moment= Total shear x Distance = 312.5(0.5x5)=781.25kN.m 

Force/m= 312.5/5= 62.5kN 

Moment/m= 781.25/5=156.25kN.m 

𝑀𝑀𝑢𝑢 = (1.4)(156.25) = 218.75𝑘𝑘𝑘𝑘.𝑚𝑚 

𝑀𝑀𝑢𝑢 = (1.4)(62.5) = 87.5𝑘𝑘𝑘𝑘 
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Design for flexure: 

𝑀𝑀𝑢𝑢
′ = (218.75)(1.4) = 306.3𝑘𝑘𝑘𝑘.𝑚𝑚 

b= 1000mm 

h= 400mm 

d= 330mm 

𝜌𝜌 = 0.008   >  0.00333 𝑂𝑂𝑂𝑂       ,𝐴𝐴𝑠𝑠 = (0.008)(1000)(330) = 2640𝑚𝑚𝑚𝑚2 

Use the above procedure to check fs at service loads. 

 

Design for tension: 

𝑆𝑆𝑑𝑑 =
∅𝑓𝑓𝑦𝑦
𝛾𝛾𝑓𝑓𝑠𝑠

=
(0.9)(420)
(1.4)(117)

= 2.31 

𝑀𝑀𝑢𝑢′ = (2.31)(87.5) = 202.125𝑘𝑘𝑘𝑘 

𝐴𝐴𝑠𝑠 =
𝑀𝑀𝑢𝑢
∅𝑓𝑓𝑦𝑦

=
𝑀𝑀
𝑓𝑓𝑠𝑠

=
202.125(1000)

(0.9)(420)
= 535𝑚𝑚𝑚𝑚2 

Total horizontal steel at side of water= 2665 + (535/2) = 2933mm2    (1∅25/150𝑚𝑚𝑚𝑚) 

Minimum horizontal steel at a side = (0.005/2)(1000)(400)=1000mm2 < 2933mm2   OK 

Horizontal steel at outer side of wall = 1000mm2            (1∅14/150𝑚𝑚𝑚𝑚) 

Vertical steel at outer side of wall = (0.003/2)(1000)(500)= 750mm2 (1∅14/200𝑚𝑚𝑚𝑚) 

 

See Figure 15.6. 
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Figure 15.6: Horizontal cross section in tank 
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15.2  Design of circular water tanks: 

The loads are transferred in the horizontal direction as hoop tension in the cylindrical walls. 
When there are no restraints at the wall ends, the total load is transferred to the walls as 
tension. But when there are restraints at top and or at bottom ends, bending moments 
developed and the tension in the walls decreased at these regions. 

Cylindrical tanks can be divided into: 

- Free base: tension only in the walls 
- Fixed base: tension, moment and shear in the walls 

 

Figure 15.7: Loads at ring (horizontal section in cylindrical wall) 

 

Figure 15.8: Loads at cylindrical walls – vertical distribution 

�𝐹𝐹𝑌𝑌 = 0 →  2𝑇𝑇 =  𝑞𝑞𝐷𝐷 →  𝑇𝑇 =
1
2
𝑞𝑞𝐷𝐷 = 𝑞𝑞𝑐𝑐 = 𝑤𝑤𝐻𝐻𝑐𝑐 

The hoop tension in concrete must be checked to be less than ft. 

𝑓𝑓𝑡𝑡 = 0.333𝜆𝜆�𝑓𝑓′𝑐𝑐 

The stress in concrete is given by: 



Design of Reinforced Concrete Structures: A Practical Approach                            IBRAHIM ARMAN 
 

386 
 

𝑓𝑓𝑐𝑐 =
𝐶𝐶𝐸𝐸𝑠𝑠𝐴𝐴𝑠𝑠 + 𝑇𝑇
𝐴𝐴𝑔𝑔 + 𝐷𝐷𝐴𝐴𝑠𝑠

 

Where: 

C= coefficient of shrinkage of reinforced concrete. It is in the range of 0.0002 and 0.0004. It 
can be taken equal to 0.0003. (3x10-4).  

When the bottom of walls is fixed, moments and shears are developed and the maximum 
tensile force in the walls will be less than that for free base.  

The following tables show the tension, moments and shear in walls of cylindrical tank with 
fixed base. 

 

 



Design of Reinforced Concrete Structures: A Practical Approach                            IBRAHIM ARMAN 
 

387 
 

 

 



Design of Reinforced Concrete Structures: A Practical Approach                            IBRAHIM ARMAN 
 

388 
 

 

 

 

 



Design of Reinforced Concrete Structures: A Practical Approach                            IBRAHIM ARMAN 
 

389 
 

Example 1: 

Design the walls of a circular water tank with free base for capacity of 1000m3 and height of 
6.0m with free board of 0.25m. Concrete strength, f’c= 28MPa and steel strength, fy= 
420MPa. Assume sever exposure. 

Solution: 

• Determine diameter of tank: 

𝑇𝑇𝐷𝐷𝐷𝐷𝑘𝑘 𝑛𝑛𝑇𝑇𝑙𝑙𝑢𝑢𝑚𝑚𝐷𝐷,𝑉𝑉 =
𝜋𝜋
4
𝐷𝐷2𝐻𝐻 = 1000 =

𝜋𝜋
4
𝐷𝐷2(6 − 0.25) → 𝐷𝐷 = 15𝑚𝑚 

• Forces in the wall: 

𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇𝐷𝐷,𝑇𝑇 = 𝑞𝑞𝑐𝑐 = (6)(10)(15/2) = 450𝑘𝑘𝑘𝑘 

• Design the wall: 

𝑇𝑇𝑢𝑢′ = 𝑆𝑆𝑑𝑑𝑇𝑇𝑢𝑢 

𝑇𝑇𝑢𝑢 = (1.4)(450) = 630𝑘𝑘𝑘𝑘 

𝑆𝑆𝑑𝑑 =
∅𝑓𝑓𝑦𝑦
𝛾𝛾𝑓𝑓𝑠𝑠

=
(0.9)(420)
(1.4)(117)

= 2.31 

𝑇𝑇𝑢𝑢′ = (2.31)(630) = 1455.3𝑘𝑘𝑘𝑘 

𝐴𝐴𝑠𝑠 =
𝑇𝑇𝑢𝑢′
∅𝑓𝑓𝑦𝑦

=
(1455.3)(1000)

(0.90)(420)
= 3850𝑚𝑚𝑚𝑚2/𝑚𝑚 

Or: 

𝐴𝐴𝑠𝑠 =
𝑇𝑇
𝑓𝑓𝑠𝑠

=
(450)(1000)

117
= 3850𝑚𝑚𝑚𝑚2/𝑚𝑚 

Use 1∅18/125𝑚𝑚𝑚𝑚. As= 4064mm2.  

This reinforcement is for the maximum tension in the walls at bottom of wall. The tensile 
force can be calculated at different heights and then the required reinforcing steel can be 
calculated. This can be done for economical purposes. 

The minimum horizontal reinforcing steel is 0.005Ag and the minimum vertical reinforcing 
steel is 0.003Ag. 

The stress in concrete is given by: 
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𝑓𝑓𝑐𝑐 =
𝐶𝐶𝐸𝐸𝑠𝑠𝐴𝐴𝑠𝑠 + 𝑇𝑇
𝐴𝐴𝑔𝑔 + 𝐷𝐷𝐴𝐴𝑠𝑠

=
(0.0003)(200000)(4064) + 450(1000)

(1000)(𝐷𝐷) + 200000
4700√28

(4064)
= 0.333(1)√28  → 𝐷𝐷

= 400𝑚𝑚𝑚𝑚 

𝐴𝐴𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢𝑚𝑚 = (0.005)(1000)(400) = 2000𝑚𝑚𝑚𝑚2 > 3850𝑚𝑚𝑚𝑚2      𝑂𝑂𝑂𝑂 

Vertical reinforcement:  

𝐴𝐴𝑠𝑠 = 0.003(1000)(400) = 1200𝑚𝑚𝑚𝑚2.        (600𝑚𝑚𝑚𝑚2  𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷ℎ 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷: 1∅14/250𝑚𝑚𝑚𝑚) 

 

Example 2: 

Resolve the previous example assuming fixed base. 

Solution: 

Assume wall thickness, t= 0.30m 

𝐻𝐻2

𝐷𝐷𝐷𝐷
=

(6)2

(15)(0.3)
= 8 

Tension: 

Maximum hoop tension occurs at 0.6H from top. 

Maximum hoop tension is: 

𝑇𝑇 = 0.575𝑤𝑤𝐻𝐻𝑤𝑤 = (0.575)(10)(6)(7.5) = 259𝑘𝑘𝑘𝑘 

𝑇𝑇𝑢𝑢′ = 𝑆𝑆𝑑𝑑𝑇𝑇𝑢𝑢 

𝑇𝑇𝑢𝑢 = (1.4)(259) = 362.6𝑘𝑘𝑘𝑘 

𝑆𝑆𝑑𝑑 =
∅𝑓𝑓𝑦𝑦
𝛾𝛾𝑓𝑓𝑠𝑠

=
(0.9)(420)
(1.4)(117)

= 2.31 

𝑇𝑇𝑢𝑢′ = (2.31)(362.6) = 838𝑘𝑘𝑘𝑘 

𝐴𝐴𝑠𝑠 =
𝑇𝑇𝑢𝑢′
∅𝑓𝑓𝑦𝑦

=
(838)(1000)
(0.90)(420)

= 2217𝑚𝑚𝑚𝑚2/𝑚𝑚          𝑢𝑢𝐷𝐷𝐷𝐷  1∅14/125𝑚𝑚𝑚𝑚,𝐴𝐴𝑠𝑠 = 2464𝑚𝑚𝑚𝑚2  

 𝑂𝑂𝑐𝑐 𝑢𝑢𝐷𝐷𝐷𝐷 1∅16/150𝑚𝑚𝑚𝑚,𝐴𝐴_𝐷𝐷 = 2680𝑚𝑚𝑚𝑚2 

𝐴𝐴𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢𝑚𝑚 = 0.005(1000)(300) = 1500𝑚𝑚𝑚𝑚2 < 2217𝑚𝑚𝑚𝑚2            𝑂𝑂𝑂𝑂 
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Wall thickness: 

The stress in concrete is given by: 

𝑓𝑓𝑐𝑐 =
𝐶𝐶𝐸𝐸𝑠𝑠𝐴𝐴𝑠𝑠 + 𝑇𝑇
𝐴𝐴𝑔𝑔 + 𝐷𝐷𝐴𝐴𝑠𝑠

=
(0.0003)(200000)(2464) + (259)(1000)

(1000)(300) + 200000
4700√28

(2464)
= 1.27𝑀𝑀𝑀𝑀𝐷𝐷  

< 0.333(1)√28 = 1.75𝑀𝑀𝑀𝑀𝐷𝐷       𝑂𝑂𝑂𝑂 

Shear: 

Maximum shear is located at bottom of wall: 

𝑉𝑉 = 0.174𝑤𝑤𝐻𝐻2 = (0.174)(10)(6)2 = 62.64𝑘𝑘𝑘𝑘 

𝑉𝑉𝑢𝑢 = (1.4)(62.64) = 88𝑘𝑘𝑘𝑘 

∅𝑉𝑉𝑐𝑐 = (0.75) �
1
6�√

28(1000)(230)/1000 = 152𝑘𝑘𝑘𝑘 > 88𝑘𝑘𝑘𝑘               𝑂𝑂𝑂𝑂 

  𝐴𝐴𝐶𝐶𝐴𝐴 318 − 19: ∅𝑉𝑉𝑐𝑐 = ∅�0.66𝜆𝜆𝑠𝑠𝜆𝜆(𝜌𝜌𝑤𝑤)1/3�𝑓𝑓′𝑐𝑐 +
𝑘𝑘𝑢𝑢

6𝐴𝐴𝑔𝑔
� 𝑏𝑏𝑤𝑤𝑠𝑠 

  ∅𝑉𝑉𝑐𝑐 =
0.75 �0.66(1)(1)(0.00333)

1
3√28 + 0.0� (1000)(230)

1000
= 90.1𝑘𝑘𝑘𝑘 > 88𝑘𝑘𝑘𝑘   𝑇𝑇𝑘𝑘 

 

Flexure: 

Maximum positive moment is located at 0.7H: 

𝑀𝑀+ = 0.0038𝑤𝑤𝐻𝐻3 = (0.0038)(10)(6)3 = 8.21𝑘𝑘𝑘𝑘.𝑚𝑚 

Maximum negative moment is located at bottom of wall: 

𝑀𝑀− = 0.0146𝑤𝑤𝐻𝐻3 = (0.0146)(10)(6)3 = 31.5𝑘𝑘𝑘𝑘.𝑚𝑚 

For negative moment: 

𝑀𝑀𝑢𝑢′ = 𝑆𝑆𝑑𝑑𝑀𝑀𝑢𝑢 

𝑓𝑓𝑠𝑠 =
45560

𝛽𝛽�𝑆𝑆2 + 4 �50 + 𝑠𝑠𝑏𝑏
2 �

2
𝑀𝑀𝑀𝑀𝐷𝐷 =

45560

(1.35)�(150)2 + 4 �50 + 14
2 �

2
= 179𝑀𝑀𝑀𝑀𝐷𝐷  

< 250𝑀𝑀𝑀𝑀𝐷𝐷 
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> 138𝑀𝑀𝑀𝑀𝐷𝐷      𝑓𝑓𝑇𝑇𝑐𝑐 𝐷𝐷𝑤𝑤𝑇𝑇 𝑤𝑤𝐷𝐷𝑏𝑏 𝑚𝑚𝐷𝐷𝑚𝑚𝑏𝑏𝐷𝐷𝑐𝑐. 

𝑆𝑆𝑑𝑑 =
∅𝑓𝑓𝑦𝑦
𝛾𝛾𝑓𝑓𝑠𝑠

=
(0.9)(420)
(1.4)(179)

= 1.51 

𝑀𝑀𝑢𝑢′ = 𝑆𝑆𝑑𝑑𝑀𝑀𝑢𝑢 = (1.51)(1.4)(31.5) = 68𝑘𝑘𝑘𝑘.𝑚𝑚 

𝜌𝜌 = 0.0035 >  0.00333,𝐴𝐴𝑠𝑠 = (0.0035)(1000)(230) = 805𝑚𝑚𝑚𝑚2    𝑢𝑢𝐷𝐷𝐷𝐷 1∅14/150𝑚𝑚𝑚𝑚 

The stress in this steel can be checked using the service design method as shown in the 
example of rectangular tank.  

For positive moment of 8. 21kN.m, one can use minimum steel of 𝜌𝜌 = 0.00333.  

𝐴𝐴𝑠𝑠 = 0.00333(1000)(230) = 766𝑚𝑚𝑚𝑚2    𝑢𝑢𝐷𝐷𝐷𝐷 1∅14/200𝑚𝑚𝑚𝑚 
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Chapter 16: Design of Shell Structures: Spherical domes and 

Conical shells 

 

16.1  Design of spherical domes: 

The internal forces, the dome geometry and the normal distributed force are related 
together by the following equation: 

𝑁𝑁∅
𝑅𝑅1

+
𝑁𝑁𝜃𝜃
𝑅𝑅2

= 𝑝𝑝𝑟𝑟 

Where: 

R1: the radius of curvature of the meridian, m 

R2: the radius of curvature of the second principal curve (horizontal direction), m 

𝑁𝑁∅: the meridian force, kN/m 

𝑁𝑁𝜃𝜃: the hoop (horizontal) force, kN/m 

𝑃𝑃𝑟𝑟: the normal force (distributed) on the shell surface toward the center, kN/m2 

Surface loads: 

The surface load on the dome is defined as g in kN/m2 downward (-Z direction).  

The internal force 𝑁𝑁∅ can be determined as follows: 

The load on surface area is given by: 

𝑊𝑊𝑜𝑜 = � 𝑔𝑔2𝜋𝜋𝜋𝜋𝑅𝑅𝜋𝜋∅1
∅

0
 

𝑊𝑊𝑜𝑜 = � 2𝜋𝜋𝑔𝑔𝑅𝑅2𝑠𝑠𝑠𝑠𝑠𝑠∅1𝜋𝜋∅1
∅

0
 

= −2𝜋𝜋𝑔𝑔𝑅𝑅2𝑐𝑐𝑐𝑐𝑠𝑠∅1
∅
0 

= −2𝜋𝜋𝑔𝑔𝑅𝑅2(cos∅ − 1) 

= 2𝜋𝜋𝑔𝑔𝑅𝑅2(1 − 𝑐𝑐𝑐𝑐𝑠𝑠∅) 
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𝑉𝑉𝑉𝑉𝜋𝜋𝑉𝑉𝑠𝑠𝑐𝑐𝑉𝑉𝑉𝑉 𝜋𝜋𝑉𝑉𝑉𝑉𝑐𝑐𝑉𝑉𝑠𝑠𝑐𝑐𝑠𝑠 =  2𝜋𝜋𝜋𝜋𝑁𝑁∅𝑠𝑠𝑠𝑠𝑠𝑠∅ = 2𝜋𝜋(𝑅𝑅 𝑠𝑠𝑠𝑠𝑠𝑠∅)𝑁𝑁∅𝑠𝑠𝑠𝑠𝑠𝑠∅ = 2𝜋𝜋𝑅𝑅 𝑠𝑠𝑠𝑠𝑠𝑠2∅𝑁𝑁∅ 

Surface load = reaction 

2𝜋𝜋𝑔𝑔𝑅𝑅2(1 − 𝑐𝑐𝑐𝑐𝑠𝑠∅) = 2𝜋𝜋𝑅𝑅 𝑠𝑠𝑠𝑠𝑠𝑠2∅𝑁𝑁∅ 

𝑔𝑔𝑅𝑅(1 − 𝑐𝑐𝑐𝑐𝑠𝑠∅) = 𝑠𝑠𝑠𝑠𝑠𝑠2∅𝑁𝑁∅              (𝐷𝐷𝑠𝑠𝐷𝐷𝑠𝑠𝜋𝜋𝑉𝑉𝜋𝜋 𝑏𝑏𝑏𝑏 2𝜋𝜋𝑅𝑅) 

𝑁𝑁∅ =
𝑔𝑔𝑅𝑅(1 − 𝑐𝑐𝑐𝑐𝑠𝑠∅)

𝑠𝑠𝑠𝑠𝑠𝑠2∅
=
𝑔𝑔𝑅𝑅(1 − 𝑐𝑐𝑐𝑐𝑠𝑠∅)
(1 − 𝑐𝑐𝑐𝑐𝑠𝑠2∅)

=
𝑔𝑔𝑅𝑅(1 − 𝑐𝑐𝑐𝑐𝑠𝑠∅)

(1 − 𝑐𝑐𝑐𝑐𝑠𝑠∅)(1 + 𝑐𝑐𝑐𝑐𝑠𝑠∅)
=

𝑔𝑔𝑅𝑅
1 + 𝑐𝑐𝑐𝑐𝑠𝑠∅

 

 

 

Figure 16.1: Spherical dome – derivation for 𝑁𝑁∅ 

 

 

Figure 16.2: Internal forces in spherical dome  
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Figure 16.3: Components of 𝑁𝑁∅ in spherical dome 

 

The normal component of g is g cos∅ as shown in Figure 16.4. 

 

 

Figure 16.4: Pr in spherical dome due to load g 

 

In spherical domes, R1=R2=R 

𝑁𝑁∅
𝑅𝑅

+
𝑁𝑁𝜃𝜃
𝑅𝑅

= 𝑃𝑃𝑟𝑟 

𝑔𝑔𝑅𝑅
(1 + 𝑐𝑐𝑐𝑐𝑠𝑠∅)𝑅𝑅

+
𝑁𝑁𝜃𝜃
𝑅𝑅

= 𝑔𝑔𝑐𝑐𝑐𝑐𝑠𝑠∅ 

𝑁𝑁𝜃𝜃
𝑅𝑅

= 𝑔𝑔 𝑐𝑐𝑐𝑐𝑠𝑠∅ −
𝑔𝑔

1 + 𝑐𝑐𝑐𝑐𝑠𝑠∅
 

𝑁𝑁𝜃𝜃 = 𝑔𝑔𝑅𝑅(𝑐𝑐𝑐𝑐𝑠𝑠∅ −
1

1 + 𝑐𝑐𝑐𝑐𝑠𝑠∅
) 

𝐴𝐴𝑉𝑉 ∅ = 51𝑜𝑜50′,𝑁𝑁𝜃𝜃 = 0 
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Figure 16.5: Variation of 𝑁𝑁∅ 𝑉𝑉𝑠𝑠𝜋𝜋 𝑁𝑁𝜃𝜃 𝜋𝜋𝑑𝑑𝑉𝑉 𝑉𝑉𝑐𝑐 𝑠𝑠𝑑𝑑𝜋𝜋𝑠𝑠𝑉𝑉𝑐𝑐𝑉𝑉 𝑉𝑉𝑐𝑐𝑉𝑉𝜋𝜋 𝑠𝑠𝑠𝑠 𝑠𝑠𝑝𝑝ℎ𝑉𝑉𝜋𝜋𝑠𝑠𝑐𝑐𝑉𝑉𝑉𝑉 𝜋𝜋𝑐𝑐𝑑𝑑𝑉𝑉 

 

Projected loads: 

Total live load on the section= 𝑞𝑞𝜋𝜋𝜋𝜋2 

Reaction= 2𝜋𝜋𝜋𝜋𝑁𝑁∅𝑠𝑠𝑠𝑠𝑠𝑠∅ 

Total live load = Reaction 

𝑞𝑞𝜋𝜋𝜋𝜋2 = 2𝜋𝜋𝜋𝜋𝑁𝑁∅𝑠𝑠𝑠𝑠𝑠𝑠∅ 

𝑁𝑁∅ =
𝑞𝑞𝜋𝜋

2 𝑠𝑠𝑠𝑠𝑠𝑠∅
=
𝑞𝑞 𝑅𝑅 𝑠𝑠𝑠𝑠𝑠𝑠∅

2 𝑠𝑠𝑠𝑠𝑠𝑠∅
=
𝑞𝑞𝑅𝑅
2

 

𝑁𝑁∅
𝑅𝑅

+
𝑁𝑁𝜃𝜃
𝑅𝑅

= 𝑃𝑃𝑟𝑟 

 

𝑞𝑞𝑅𝑅
2𝑅𝑅

+
𝑁𝑁𝜃𝜃
𝑅𝑅

= 𝑞𝑞 𝑐𝑐𝑐𝑐𝑠𝑠2∅ 

Where: 𝑃𝑃𝑟𝑟 = 𝑠𝑠𝑑𝑑𝜋𝜋𝑠𝑠𝑉𝑉𝑐𝑐𝑉𝑉 𝑉𝑉𝑉𝑉𝑐𝑐𝜋𝜋 𝑥𝑥 𝑐𝑐𝑐𝑐𝑠𝑠∅ =  𝑝𝑝𝜋𝜋𝑐𝑐𝑝𝑝𝑉𝑉𝑐𝑐𝑉𝑉𝑉𝑉𝜋𝜋 𝑉𝑉𝑐𝑐𝑉𝑉𝜋𝜋 𝑥𝑥 𝑐𝑐𝑐𝑐𝑠𝑠∅ 𝑥𝑥 𝑐𝑐𝑐𝑐𝑠𝑠∅ 

𝑁𝑁𝜃𝜃
𝑅𝑅

= 𝑞𝑞 𝑐𝑐𝑐𝑐𝑠𝑠2∅ −
𝑞𝑞
2

 

𝑁𝑁𝜃𝜃 = 𝑞𝑞𝑅𝑅(𝑐𝑐𝑐𝑐𝑠𝑠2∅ −
1
2

) =
𝑞𝑞𝑅𝑅
2

(2 𝑐𝑐𝑐𝑐𝑠𝑠2∅ − 1) =
𝑞𝑞𝑅𝑅
2
𝑐𝑐𝑐𝑐𝑠𝑠 2∅ 

Figure 16.6 shows the distributions of 𝑁𝑁∅ 𝑉𝑉𝑠𝑠𝜋𝜋 𝑁𝑁𝜃𝜃  for the angles from zero to 90 degrees.  
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Figure 16.6: Variation of 𝑁𝑁∅ 𝑉𝑉𝑠𝑠𝜋𝜋 𝑁𝑁𝜃𝜃 𝜋𝜋𝑑𝑑𝑉𝑉 𝑉𝑉𝑐𝑐 𝑉𝑉𝑠𝑠𝐷𝐷𝑉𝑉 𝑉𝑉𝑐𝑐𝑉𝑉𝜋𝜋 𝑠𝑠𝑠𝑠 𝑠𝑠𝑝𝑝ℎ𝑉𝑉𝜋𝜋𝑠𝑠𝑐𝑐𝑉𝑉𝑉𝑉 𝜋𝜋𝑐𝑐𝑑𝑑𝑉𝑉 

 

𝑁𝑁𝜃𝜃 = 0 𝑉𝑉𝑉𝑉 𝑉𝑉𝑠𝑠𝑔𝑔𝑉𝑉𝑉𝑉,∅ = 45 𝜋𝜋𝑉𝑉𝑔𝑔𝜋𝜋𝑉𝑉𝑉𝑉𝑠𝑠 

 

Load on the ring beam: 

The dome is attached to a ring beam in many structures. There are two cases: 

Case 1: the ring beam is attached to walls. Here, there are no spans for this beam, and so no 
shear or moment is developed. The main internal force in the ring beam in this case is tension. 
Torsion may be developed. 

Case 2: the ring beam is supported on columns. Here, there are spans to the beam, and so, 
internal forces of shear, moments and torsion are developed in addition to the tensile force.  

 

The vertical load on the ring beam is: 𝑁𝑁∅𝑠𝑠𝑠𝑠𝑠𝑠∅ 

The horizontal load on the ring beam is: 𝑁𝑁∅𝑐𝑐𝑐𝑐𝑠𝑠∅ 

The tension force in the ring beam is given by:  

𝑇𝑇𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠,𝑇𝑇 = 𝑁𝑁∅𝑐𝑐𝑐𝑐𝑠𝑠∅ 𝜋𝜋  

Where: r is the radius of the ring beam. 

For the beam in case 2, the vertical load causes the internal forces of shear, moment and 
torsion. 

Table 16.1 shows the internal forces in the ring beam that is supported by columns. Here, 
the vertical load on the ring beam is denoted by q and the radius of the ring beam is 
denoted by r. 
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Table 16.1: Internal forces in ring beam supported by columns 

No. of 
columns 

Load on 
column 

shear Moment at 
midspan 

Moment at 
support 

Torsion 

4 2𝜋𝜋𝜋𝜋𝑞𝑞/4 2𝜋𝜋𝜋𝜋𝑞𝑞/8 0.11𝑞𝑞𝜋𝜋2 0.22𝑞𝑞𝜋𝜋2 0.033𝑞𝑞𝜋𝜋2 
6 2𝜋𝜋𝜋𝜋𝑞𝑞/6 2𝜋𝜋𝜋𝜋𝑞𝑞/12 0.047𝑞𝑞𝜋𝜋2 0.1𝑞𝑞𝜋𝜋2 0.0088𝑞𝑞𝜋𝜋2 
8 2𝜋𝜋𝜋𝜋𝑞𝑞/8 2𝜋𝜋𝜋𝜋𝑞𝑞/16 0.026𝑞𝑞𝜋𝜋2 0.052𝑞𝑞𝜋𝜋2 0.0038𝑞𝑞𝜋𝜋2 
12 2𝜋𝜋𝜋𝜋𝑞𝑞/12 2𝜋𝜋𝜋𝜋𝑞𝑞/24 0.012𝑞𝑞𝜋𝜋2 0.023𝑞𝑞𝜋𝜋2 0.0013𝑞𝑞𝜋𝜋2 

 

Example: 

Given: 

- Spherical dome 
- It is a roof for cylindrical tank. Tank diameter= 25m 
- Dome height= 4m 
- Dome thickness, t= 0.12m 
- Concrete strength, f’c=28MPa 
- Steel strength, fy= 420MPa 
- Live load (projected)= 1.5kN/m2 

Design the dome and the ring beam. 

Solution: 

The radius, R and the inclination angle, ∅ are determined as follows: 

Refer to Figure 16.7. 

 

 

 

Figure 16.7: Dome properties 
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(12.5)2 + (𝑅𝑅 − 4)2 = 𝑅𝑅2 = 156.25 + 𝑅𝑅2 + 16 − 8𝑅𝑅 

172.25 = 8𝑅𝑅 → 𝑅𝑅 = 21.531𝑑𝑑 

𝑠𝑠𝑠𝑠𝑠𝑠 ∅ =
12.5

21.531
= 0.5806 → ∅ = 35.5𝑜𝑜 

Loads: 

Weight of dome, WD=0.12(25)=3.0kN/m2  

Live load, WL= 1.5kN/m2  

 

𝑵𝑵∅ 𝒂𝒂𝒂𝒂𝒂𝒂 𝑵𝑵𝜽𝜽 from dead load: 

𝑁𝑁∅ =
𝑔𝑔𝑅𝑅

1 + 𝑐𝑐𝑐𝑐𝑠𝑠∅
 

𝑁𝑁𝜃𝜃 = 𝑔𝑔𝑅𝑅(𝑐𝑐𝑐𝑐𝑠𝑠∅ −
1

1 + 𝑐𝑐𝑐𝑐𝑠𝑠∅
) 

𝑁𝑁∅,∅=0.0 = −32.3𝑘𝑘𝑁𝑁/𝑑𝑑 

𝑁𝑁∅,∅=35.5 = −35.6𝑘𝑘𝑁𝑁/𝑑𝑑 

𝑁𝑁𝜃𝜃,∅=0.0 = −32.3𝑘𝑘𝑁𝑁/𝑑𝑑 

𝑁𝑁𝜃𝜃,∅=35.5 = −16.98𝑘𝑘𝑁𝑁/𝑑𝑑 

 

𝑵𝑵∅ 𝒂𝒂𝒂𝒂𝒂𝒂 𝑵𝑵𝜽𝜽 from live load: 

𝑁𝑁∅ =
𝑞𝑞𝑅𝑅
2

 

𝑁𝑁𝜃𝜃 =
𝑞𝑞𝑅𝑅
2
𝑐𝑐𝑐𝑐𝑠𝑠 2∅ 

𝑁𝑁∅,∅=0.0 = −16.1𝑘𝑘𝑁𝑁/𝑑𝑑 

𝑁𝑁∅,∅=35.5 = −16.1𝑘𝑘𝑁𝑁/𝑑𝑑 

𝑁𝑁𝜃𝜃,∅=0.0 = −16.1𝑘𝑘𝑁𝑁/𝑑𝑑 

𝑁𝑁𝜃𝜃,∅=35.5 = −5.3𝑘𝑘𝑁𝑁/𝑑𝑑 
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Note that 𝑁𝑁∅ 𝑉𝑉𝑠𝑠𝜋𝜋 𝑁𝑁𝜃𝜃 are compression. 

𝑁𝑁∅,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑁𝑁∅,𝑑𝑑𝑑𝑑𝑚𝑚𝑑𝑑  +  𝑁𝑁∅,𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑 

𝑁𝑁∅,𝑚𝑚𝑚𝑚𝑚𝑚 = 35.6 + 16.1 = 51.7𝑘𝑘𝑁𝑁/𝑑𝑑 

𝑁𝑁∅,𝑚𝑚𝑚𝑚𝑚𝑚,𝑢𝑢𝑙𝑙𝑢𝑢𝑙𝑙𝑚𝑚𝑚𝑚𝑢𝑢𝑑𝑑 = 1.2(35.6) + 1.6(16.1) = 68.48𝑘𝑘𝑁𝑁/𝑑𝑑         𝑉𝑉𝑉𝑉 ∅ = 35.5 𝜋𝜋𝑉𝑉𝑔𝑔𝜋𝜋𝑉𝑉𝑉𝑉𝑠𝑠 

𝑁𝑁𝜃𝜃,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑁𝑁𝜃𝜃,𝑑𝑑𝑑𝑑𝑚𝑚𝑑𝑑  +  𝑁𝑁𝜃𝜃,𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑 

𝑁𝑁𝜃𝜃,𝑚𝑚𝑚𝑚𝑚𝑚 = 32.3 + 16.1 = 48.4𝑘𝑘𝑁𝑁/𝑑𝑑 

𝑁𝑁𝜃𝜃,𝑚𝑚𝑚𝑚𝑚𝑚,𝑢𝑢𝑙𝑙𝑢𝑢𝑙𝑙𝑚𝑚𝑚𝑚𝑢𝑢𝑑𝑑 = 1.2(32.3) + 1.6(16.1) = 64.52𝑘𝑘𝑁𝑁/𝑑𝑑      𝑉𝑉𝑉𝑉 ∅ = 0.0 𝜋𝜋𝑉𝑉𝑔𝑔𝜋𝜋𝑉𝑉𝑉𝑉𝑠𝑠 

 

The compressive capacity of section is given by: 

∅𝑃𝑃𝑛𝑛 = (0.65)(0.80)(0.85𝑠𝑠′𝑐𝑐(𝐴𝐴𝑔𝑔 − 𝐴𝐴𝑠𝑠) + 𝑠𝑠𝑦𝑦𝐴𝐴𝑠𝑠) 

∅𝑃𝑃𝑛𝑛 = (0.65)(0.80)(0.85)𝑠𝑠′𝑐𝑐 𝐴𝐴𝑔𝑔 = (0.442)(28)(1000)(120)/1000 = 1485𝑘𝑘𝑁𝑁
≫ 68.48𝑘𝑘𝑁𝑁   𝑂𝑂𝑂𝑂. 

Use minimum steel area in the dome, As= 0.003(1000)(120)=360mm2. Use 1∅10/200𝑑𝑑𝑑𝑑.  

 

Ring beam: 

The ring beam is supported on the walls of tank.  

Horizontal force on the ring beam, P=𝑁𝑁∅ 𝑐𝑐𝑐𝑐𝑠𝑠 ∅ =  (51.7)(𝑐𝑐𝑐𝑐𝑠𝑠 35.5) = 42.09𝑘𝑘𝑁𝑁/𝑑𝑑  

Tension in the ring beam, T= P.r= (42.09)(12.5)=526kN 

The required reinforcement is given by: 

𝐴𝐴𝑠𝑠 =
𝑇𝑇
𝑠𝑠𝑠𝑠

=
526000

117
= 4496𝑑𝑑𝑑𝑑2 

The tensile stress in the ring beam is given by: 

𝑠𝑠𝑐𝑐 =
𝐶𝐶𝐸𝐸𝑠𝑠𝐴𝐴𝑠𝑠 + 𝑇𝑇
𝐴𝐴𝑔𝑔 + 𝑠𝑠𝐴𝐴𝑠𝑠

=
(0.0003)(200000)(4496) + (526)(1000)

(𝐴𝐴𝑔𝑔) + 200000
4700√28

(4496)
= 0.333(1)√28

= 1.75𝑀𝑀𝑃𝑃𝑉𝑉      → 𝐴𝐴𝑔𝑔 = 416194𝑑𝑑𝑑𝑑2 

Use square section with side length= 650mm. 
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Use 15∅20 

 

16.2  Design of Conical Shells: 

The following paragraphs illustrate the calculations of the membrane forces for a conical 
shell that is supported at its bottom end. 

The surface downward load is P in kN/m2.  

If the load P is the self-weight, then it is equal to 𝛾𝛾𝑐𝑐  𝑉𝑉, where 𝛾𝛾𝑐𝑐 is the unit weight of concrete 
and t is the thickness of the shell.  

Figure 16.8 shows a section in a conical shell. 

 

Figure 16.8: Conical shell 

 

Weight of the conical shell is given by:  

𝑊𝑊 = 2𝜋𝜋
𝜋𝜋
2
𝑆𝑆𝑃𝑃 

The reaction or the internal force is given by:  

𝑅𝑅 = 2𝜋𝜋𝜋𝜋 𝑁𝑁𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼  

𝑊𝑊 = 𝑅𝑅 = 2𝜋𝜋
𝜋𝜋
2
𝑆𝑆𝑃𝑃 = 2𝜋𝜋𝜋𝜋 𝑁𝑁𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼 → 𝑁𝑁𝑠𝑠 =

−𝑆𝑆𝑃𝑃
2𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼
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The hoop force 𝑁𝑁𝜃𝜃 can be determined as follows: 

𝑁𝑁𝜃𝜃 = 𝑃𝑃𝑟𝑟 𝜋𝜋2 

Refer to Figure 16.9.  

𝑉𝑉𝑉𝑉𝑠𝑠 𝛼𝛼 =
𝑆𝑆
𝜋𝜋2
→ 𝜋𝜋2 =

𝑆𝑆
𝑉𝑉𝑉𝑉𝑠𝑠 𝛼𝛼

= 𝑆𝑆 𝑐𝑐𝑐𝑐𝑉𝑉 𝛼𝛼 

And, 

𝑃𝑃𝑟𝑟 = 𝑃𝑃 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼 

𝑁𝑁𝜃𝜃 = 𝑃𝑃𝑟𝑟 𝜋𝜋2 = 𝑃𝑃 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼 𝑆𝑆 𝑐𝑐𝑐𝑐𝑉𝑉 𝛼𝛼 

 

 

Figure 16.9: Conical shell, determination of 𝑁𝑁𝜃𝜃 

Example 1: 

Given: 

- Conical shell 
- It is a roof for a circular tank. Diameter of tank= 25m. 
- Height of shell=4m 
- Shell thickness, t= 0.12m 
- Live load on surface= 1.5kN/m2 
- Concrete strength, f’c= 28MPa 
- Steel strength, fy= 420MPa 

Design the shell and the ring beam. 
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Solution: 

𝑃𝑃𝐷𝐷 = (0.12)(25) = 3𝑘𝑘𝑁𝑁/𝑑𝑑2  

 

𝑃𝑃𝐿𝐿 = 1.5𝑘𝑘𝑁𝑁/𝑑𝑑2  

𝑃𝑃 = 𝑃𝑃𝐷𝐷 + 𝑃𝑃𝐿𝐿 = 3 + 1.5 = 4.5𝑘𝑘𝑁𝑁/𝑑𝑑2  

𝑃𝑃𝑢𝑢 = 1.2𝑃𝑃𝐷𝐷 + 1.6𝑃𝑃𝐿𝐿 = 1.2(3) + 1.6(1.5) = 6𝑘𝑘𝑁𝑁/𝑑𝑑2  

𝑁𝑁𝜃𝜃 = 𝑃𝑃𝑟𝑟 𝜋𝜋2 = 𝑃𝑃 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼 𝑆𝑆 𝑐𝑐𝑐𝑐𝑉𝑉 𝛼𝛼 

𝑁𝑁𝑠𝑠 =
𝑆𝑆𝑃𝑃

2𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼
 

 

Figure 16.10: Conical shell example 

𝑉𝑉𝑉𝑉𝑠𝑠 𝛼𝛼 =
4

12.5
→ 𝛼𝛼 = 17.74 𝜋𝜋𝑉𝑉𝑔𝑔𝜋𝜋𝑉𝑉𝑉𝑉𝑠𝑠 

𝑆𝑆 = 𝐿𝐿 = �42 + 12.52 = 13.12𝑑𝑑 

 

Substitute in the previous equations: 

𝑁𝑁𝜃𝜃 = 𝑃𝑃𝑟𝑟 𝜋𝜋2 = 𝑃𝑃 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼 𝑆𝑆 𝑐𝑐𝑐𝑐𝑉𝑉 𝛼𝛼 = (4.5)(13.12)(𝑐𝑐𝑐𝑐𝑠𝑠 17.74)(𝑐𝑐𝑐𝑐𝑉𝑉 17.74)
= 175.8𝑘𝑘𝑁𝑁/𝑑𝑑   𝑐𝑐𝑐𝑐𝑑𝑑𝑝𝑝𝜋𝜋𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠 

𝑁𝑁𝜃𝜃,𝑢𝑢 = 𝑃𝑃𝑟𝑟 𝜋𝜋2 = 𝑃𝑃 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼 𝑆𝑆 𝑐𝑐𝑐𝑐𝑉𝑉 𝛼𝛼 = (6)(13.12)(𝑐𝑐𝑐𝑐𝑠𝑠 17.74)(𝑐𝑐𝑐𝑐𝑉𝑉 17.74)
= 234.4𝑘𝑘𝑁𝑁/𝑑𝑑   𝑐𝑐𝑐𝑐𝑑𝑑𝑝𝑝𝜋𝜋𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠 

𝑁𝑁𝑠𝑠 =
𝑆𝑆𝑃𝑃

2𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼
=

(13.12)(4.5)
2 𝑠𝑠𝑠𝑠𝑠𝑠 17.74

= 97𝑘𝑘𝑁𝑁/𝑑𝑑  𝑐𝑐𝑐𝑐𝑑𝑑𝑝𝑝𝜋𝜋𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠 

𝑁𝑁𝑠𝑠,𝑢𝑢 =
𝑆𝑆𝑃𝑃

2𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼
=

(13.12)(6)
2 𝑠𝑠𝑠𝑠𝑠𝑠 17.74

= 129.2𝑘𝑘𝑁𝑁/𝑑𝑑  𝑐𝑐𝑐𝑐𝑑𝑑𝑝𝑝𝜋𝜋𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠 

The tension in the ring beam is given by:  
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𝑇𝑇 = 𝑁𝑁𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼 𝑉𝑉 = (97)(𝑐𝑐𝑐𝑐𝑠𝑠 17.74)(12.5) = 1155𝑘𝑘𝑁𝑁 

The required reinforcement is given by: 

𝐴𝐴𝑠𝑠 =
𝑇𝑇
𝑠𝑠𝑠𝑠

=
1155000

117
= 9872𝑑𝑑𝑑𝑑2 

The tensile stress in the ring beam is given by: 

𝑠𝑠𝑐𝑐 =
𝐶𝐶𝐸𝐸𝑠𝑠𝐴𝐴𝑠𝑠 + 𝑇𝑇
𝐴𝐴𝑔𝑔 + 𝑠𝑠𝐴𝐴𝑠𝑠

=
(0.0003)(200000)(9872) + (1155)(1000)

(𝐴𝐴𝑔𝑔) + 200000
4700√28

(9872)
= 0.333(1)√28

= 1.75𝑀𝑀𝑃𝑃𝑉𝑉      → 𝐴𝐴𝑔𝑔 = 912258𝑑𝑑𝑑𝑑2 

Use square section with side length= 1000mm. 

Use 26∅22 

 

 

Example 2: 

Determine the membrane forces in the concrete umbrella shown in Figure 16.11 at point A. 

 

Figure 16.11: Reinforced concrete umbrella 
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Solution: 

𝑃𝑃 = (0.15)(25) = 3.75𝑘𝑘𝑁𝑁/𝑑𝑑2 

𝑉𝑉𝑉𝑉𝑠𝑠 𝛼𝛼 =
4

7.5
→ 𝛼𝛼 = 28.07 𝜋𝜋𝑉𝑉𝑔𝑔𝜋𝜋𝑉𝑉𝑉𝑉𝑠𝑠 

𝑥𝑥1
5

= 𝑐𝑐𝑐𝑐𝑠𝑠 ∝→ 𝑥𝑥1 = 4.41𝑑𝑑 → 𝑥𝑥2 = 7.5 − 4.41 = 3.09𝑑𝑑 

(3.75)(5)(2𝜋𝜋)(
7.5 + 3.09

2
) = 𝑁𝑁𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼 (2𝜋𝜋)(3.09) → 𝑁𝑁𝑠𝑠 = 68.3𝑘𝑘𝑁𝑁/𝑑𝑑  𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠 

𝑁𝑁𝜃𝜃 = 𝑃𝑃𝑟𝑟𝜋𝜋2 = 𝑃𝑃 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼 𝜋𝜋2                             𝑉𝑉𝑉𝑉𝑠𝑠 28.07 =  
3.5
𝜋𝜋2

→ 𝜋𝜋2 = 6.56𝑑𝑑 

𝑁𝑁𝜃𝜃 = 𝑃𝑃 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼 𝜋𝜋2  =  (3.75)(𝑐𝑐𝑐𝑐𝑠𝑠 28.07)(6.56) = 21.7 𝑘𝑘𝑁𝑁/𝑑𝑑      𝑐𝑐𝑐𝑐𝑑𝑑𝑝𝑝𝜋𝜋𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠    

Example 3: 

For the reinforced concrete tank shown in Figure 16.12, determine the membrane forces at 
point A due to: 

- Dome loads 
- Tank self-weight 
- Water loads 

 

Figure 16.12: Reinforced concrete conical tank 
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Solution: 

Membrane forces due to dome loads: 

Refer to Figure 16.13 below. 

The horizontal force 𝑁𝑁∅ 𝑐𝑐𝑐𝑐𝑠𝑠∅ will be taken by a ring beam. 

Dome radius, R= 8.49m 

𝑁𝑁∅ =
𝑔𝑔𝑅𝑅

1 + 𝑐𝑐𝑐𝑐𝑠𝑠 ∅
=

(4)(8.49)
1 + 𝑐𝑐𝑐𝑐𝑠𝑠 45

= 20𝑘𝑘𝑁𝑁/𝑑𝑑 

 

Figure 16.13: Dome loads on the conical shell 

 

Vertical reaction on the conical shell= 𝑁𝑁∅ 𝑠𝑠𝑠𝑠𝑠𝑠 ∅ = (20)(𝑠𝑠𝑠𝑠𝑠𝑠 45) = 14.1𝑘𝑘𝑁𝑁 

(14.1)(2𝜋𝜋)(6) = 𝑁𝑁𝑠𝑠 𝑐𝑐𝑐𝑐𝑠𝑠∅ (2𝜋𝜋)(4.586) → 𝑁𝑁𝑠𝑠 = 26.1𝑘𝑘𝑁𝑁/𝑑𝑑 

 

Membrane forces due to tank self-weight: 

Refer to Figure 16.14. 

Dead load (self-weight) = (0.15)(25)=3.75kN/m2  

(3.75)(2)(2𝜋𝜋)(6 −
1.414

2
) = 𝑁𝑁𝑠𝑠 𝑐𝑐𝑐𝑐𝑠𝑠∅ (2𝜋𝜋)(6 − 1.414) → 𝑁𝑁𝑠𝑠 = 12.25𝑘𝑘𝑁𝑁/𝑑𝑑 

𝑁𝑁𝜃𝜃 = 𝑃𝑃𝑟𝑟 . 𝜋𝜋2 = 𝑃𝑃 𝑠𝑠𝑠𝑠𝑠𝑠∅ 𝜋𝜋2 = (3.75)(𝑠𝑠𝑠𝑠𝑠𝑠 45)(6.485) = 17.2𝑘𝑘𝑁𝑁/𝑑𝑑 
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Figure 16.14: Effect of self-weight of tank 

Membrane forces due to water loads: 

Refer to Figure 16.15 below.  

(
1
2

)(1.414)(1.414)(10)(2𝜋𝜋)(6 −
2
3

(1.414)) = 𝑁𝑁𝑠𝑠 𝑐𝑐𝑐𝑐𝑠𝑠∅ (2𝜋𝜋)(4.586) → 𝑁𝑁𝑠𝑠
= 15.6𝑘𝑘𝑁𝑁/𝑑𝑑   𝑐𝑐𝑐𝑐𝑑𝑑𝑝𝑝𝜋𝜋𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠 

𝑁𝑁𝜃𝜃 = 𝑃𝑃𝑟𝑟 . 𝜋𝜋2 = 𝛾𝛾𝑤𝑤ℎ 𝜋𝜋2 = (10)(1.414)(6.485) = 91.7𝑘𝑘𝑁𝑁/𝑑𝑑   𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠 

 

Figure 16.15: Water loads on the conical shell 
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Chapter 17: Design of Shell Roofs Using Beam Theory 

 

It is known that cylindrical shells with large (L/a) values, spanning between diaphragm 
supports, tend to behave as simply supported beams. Folded plates, which are composed of 
interconnected plates, can be considered to span as beams between diaphragm supports. 

This leads to consider that the longitudinal stresses in a folded plate or cylindrical shell could 
be obtained by using simple formula of beam theory; 𝜎𝜎𝑥𝑥 = 𝑀𝑀𝑀𝑀

𝐼𝐼
, where M is the bending 

moment and I is the moment of inertia of the cross section about the neutral axis. For 
symmetrical sections, the neutral axis is horizontal.  

In a folded plate or a shell, there are also transverse bending moments, shears and in plane 
forces (𝑀𝑀∅,𝑄𝑄∅ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁∅) which are generally not considered for simple beams. These have to 
be found by a secondary analysis called arch analysis, in the case of shells and folded plates. 
The analysis of shells by this simple combined procedure is called beam theory.  

Deformations of the cross section are not considered when deriving formulas for beams in 
strength of materials. For shells or folded plates, such deformations of the cross section in the 
transverse direction do take place, and they can change the resultants 𝑀𝑀∅ and 𝑁𝑁∅ obtained 
from simple beam theory.  

 Transverse deformations and forces can be neglected for: 

Single shells: 𝐿𝐿
𝑎𝑎
≥ 5 

Single shells with edge beams: 𝐿𝐿
𝑎𝑎
≥ 3 

Internal shell of multi-barrel shell structures: 𝐿𝐿
𝑎𝑎
≥ 1.67 

 

Selection of shell configuration and dimensions: 

Although smaller column spacings generally result in economical structure, the requirement 
for spacing of columns; in both the longitudinal and transverse directions; is usually directed 
by the client, depending on what size of column – free bays he can work with. 

The loads from the shell are transmitted to the diaphragm beams, which span on columns in 
the transverse direction. Hence the width of each bay of multi-bay shell need not have any 
relation to the column spacing in the transvers direction, since each span of the diaphragm 
beam can carry loads from one or more shell bays, or from any fractions thereof. 
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The depth of the shell can be: 

𝐿𝐿
8

 𝑡𝑡𝑡𝑡 
𝐿𝐿

12
 

The thickness of the cylindrical shell can be: 

𝐿𝐿
160

 𝑡𝑡𝑡𝑡 
𝐿𝐿

200
 

The thickness of the folded plate can be: 

𝐿𝐿
80

 𝑡𝑡𝑡𝑡 
𝐿𝐿

120
 

 

Thus, the choice of using a folded plate or a barrel shell cross section for a given span would 
thus depend on the relative saving in cost of concrete and steel compared to the added cost 
of preparing formwork for the curved barrels. These costs vary from country to country, as 
well as within a country.  

For barrel shells, the angle ∅𝑘𝑘 is kept between 20 degrees and 45 degrees. Angles between 
30 degrees and 40 degrees are preferred. Angles greater than 45 degrees are not used, so as 
to avoid double formwork when pouring concrete, and also because a larger perimeter is 
required to cover the same bay width. If the depth of the curved cross section of the shell 
itself is less than L/8 to L/12, the balance should be made up by the provision of sufficiently 
deep edge beams. 

 

Figure 17.1: Cross section in a cylindrical shell 
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17.1  Application of Beam Theory for cylindrical shell: 

Refer to Figure 17.2 below. 

 

Figure 17.2: Cylindrical shell parameters 

 

Figure 17.3: Structural model of a shell unit 

 

1. Calculate the load per unit length, q, along the span, for the given distributed loading 
P per unit area: 

𝑞𝑞 = 2𝑎𝑎𝑎𝑎∅𝑘𝑘 

2. Find the location of the neutral axis and the moment of inertia about the neutral axis 
for the cross section: 

𝑍𝑍𝑜𝑜 =
𝑎𝑎 𝑠𝑠𝑠𝑠𝑎𝑎∅𝑘𝑘
∅𝑘𝑘

 

𝐼𝐼 = 𝑎𝑎3𝑡𝑡 �∅𝑘𝑘 + 𝑠𝑠𝑠𝑠𝑎𝑎 ∅𝑘𝑘 �𝑐𝑐𝑡𝑡𝑠𝑠 ∅𝑘𝑘 −
2 𝑠𝑠𝑠𝑠𝑎𝑎 ∅𝑘𝑘
∅𝑘𝑘

�� 

3. Find the maximum stresses in the cross section: 

𝜎𝜎𝑡𝑡𝑜𝑜𝑡𝑡 =
𝑀𝑀𝑍𝑍𝑡𝑡𝑜𝑜𝑡𝑡
𝐼𝐼

   𝑎𝑎𝑎𝑎𝑎𝑎         𝜎𝜎𝑏𝑏𝑜𝑜𝑡𝑡𝑡𝑡𝑜𝑜𝑏𝑏 =
𝑀𝑀𝑍𝑍𝑏𝑏𝑜𝑜𝑡𝑡𝑡𝑡𝑜𝑜𝑏𝑏

𝐼𝐼
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4. Compare the maximum compression stress to the allowable concrete strength which 
is 0.45 f’c. 

5. Find the tensile force from the tensile stress multiplied by the area of section in 
tension. Then, the area of steel can be calculated. 

𝑐𝑐𝑡𝑡𝑠𝑠 ∅1 =
𝑍𝑍𝑜𝑜
𝑎𝑎
→  𝑓𝑓𝑠𝑠𝑎𝑎𝑎𝑎 ∅1 

∅2 = ∅𝑘𝑘 − ∅1 

𝑇𝑇𝑇𝑇𝑎𝑎𝑠𝑠𝑠𝑠𝑡𝑡𝑎𝑎 𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑇𝑇,𝑇𝑇 =  𝑡𝑡𝑇𝑇𝑎𝑎𝑠𝑠𝑠𝑠𝑡𝑡𝑇𝑇 𝑎𝑎𝑓𝑓𝑇𝑇𝑎𝑎   𝑥𝑥 𝑎𝑎𝑎𝑎𝑇𝑇𝑓𝑓𝑎𝑎𝑎𝑎𝑇𝑇 𝑡𝑡𝑇𝑇𝑎𝑎𝑠𝑠𝑠𝑠𝑡𝑡𝑇𝑇 𝑠𝑠𝑡𝑡𝑓𝑓𝑇𝑇𝑠𝑠𝑠𝑠 =  ∅2 𝑎𝑎 𝑡𝑡 
𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡

2
 

𝑅𝑅𝑇𝑇𝑠𝑠𝑎𝑎𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑠𝑠𝑎𝑎𝑎𝑎 𝑠𝑠𝑡𝑡𝑇𝑇𝑇𝑇𝑡𝑡 𝑎𝑎𝑓𝑓𝑇𝑇𝑎𝑎,𝐴𝐴𝑡𝑡 =
𝑇𝑇
𝑓𝑓𝑡𝑡

 

𝐴𝐴𝑡𝑡,𝑏𝑏𝑡𝑡𝑡𝑡 = 0.003𝐴𝐴𝑔𝑔 = 0.003(𝑏𝑏)(ℎ) 

 

17.2 Application of Beam Theory for folded plate: 

Use the same procedure as for cylindrical shells. The neutral axis and the moment of inertia 
can be determined using simple principles in statics.   

 

Figure 17.4: Folded plate unit 

 

For the folded plate in Figure 17.4, the moment of inertia is given by: 

𝐼𝐼 = 2�
𝑡𝑡𝑎𝑎3

12
� 𝑠𝑠𝑠𝑠𝑎𝑎2𝛼𝛼 

𝑍𝑍𝑡𝑡𝑜𝑜𝑡𝑡 = 𝑍𝑍𝑏𝑏𝑜𝑜𝑡𝑡𝑡𝑡𝑜𝑜𝑏𝑏 =
ℎ
2
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Example 1: 

Given: 

- Refer to Figure 17.5 
- Cylindrical shell 
- Shell thickness, t= 0.12m 
- Span, L=20m 
- Concrete strength, f’c= 28MPa 
- Steel strength, fy= 420MPa 
- Surface live load, WL= 0.8kN/m2  

 

 

Figure 17.5: Cylindrical shell -1 

 

Design the cylindrical shell. 

 

Solution: 

𝑞𝑞 = 2𝑎𝑎𝑎𝑎∅𝑘𝑘                                    𝑎𝑎 = (0.12)(25) + 0.8 = 3.8𝑘𝑘𝑁𝑁/𝑚𝑚2 

 

Refer to Figure 17.6 below.  

 

Figure 17.6: Cylindrical shell-2 
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𝑎𝑎2 = 2.52 + (𝑎𝑎 − 1.80)2 = 6.25 + 𝑎𝑎2 − 3.6 𝑎𝑎 +  3.24 → 𝑎𝑎 = 2.64𝑚𝑚 

𝑠𝑠𝑠𝑠𝑎𝑎 ∅𝑘𝑘 =
2.5
𝑎𝑎
→ ∅𝑘𝑘 = 71.26𝑜𝑜   (

71.26(𝜋𝜋)
180

= 1.243 𝑓𝑓𝑎𝑎𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠) 

𝑞𝑞 = (2)(1.243)(2.64)(3.8) = 24.94𝑘𝑘𝑁𝑁/𝑚𝑚 

𝑀𝑀 =
𝑞𝑞𝐿𝐿2

8
=

(24.94)(20)2

8
= 1247𝑘𝑘𝑁𝑁.𝑚𝑚 

𝑍𝑍𝑜𝑜 =
𝑎𝑎 𝑠𝑠𝑠𝑠𝑎𝑎∅𝑘𝑘
∅𝑘𝑘

=
(2.64)(𝑠𝑠𝑠𝑠𝑎𝑎 71.26)

1.243
= 2.01𝑚𝑚 

𝐼𝐼 = 𝑎𝑎3𝑡𝑡 �∅𝑘𝑘 + 𝑠𝑠𝑠𝑠𝑎𝑎 ∅𝑘𝑘 �𝑐𝑐𝑡𝑡𝑠𝑠 ∅𝑘𝑘 −
2 𝑠𝑠𝑠𝑠𝑎𝑎 ∅𝑘𝑘
∅𝑘𝑘

�� = 0.23𝑚𝑚4 

Refer to Figure 17.7 below. 

 

Figure 17.7: Cylindrical shell-3 

 

𝜎𝜎𝑡𝑡𝑜𝑜𝑡𝑡 =
𝑀𝑀𝑍𝑍𝑡𝑡𝑜𝑜𝑡𝑡
𝐼𝐼

=
(1247)(0.63)

0.23
= 3416𝑘𝑘𝑁𝑁/𝑚𝑚2 = 3.416𝑀𝑀𝑎𝑎𝑎𝑎    < 0.45(28) = 12.6𝑀𝑀𝑎𝑎𝑎𝑎    

𝜎𝜎𝑏𝑏𝑜𝑜𝑡𝑡𝑡𝑡𝑜𝑜𝑏𝑏 =
𝑀𝑀𝑍𝑍𝑏𝑏𝑜𝑜𝑡𝑡𝑡𝑡𝑜𝑜𝑏𝑏

𝐼𝐼
=

(1247)(1.17)
0.23

= 6343𝑘𝑘𝑁𝑁/𝑚𝑚2 

𝑐𝑐𝑡𝑡𝑠𝑠 ∅1 =
2.01
2.64

→ ∅1 = 40.4 𝑎𝑎𝑇𝑇𝑎𝑎𝑓𝑓𝑇𝑇𝑇𝑇𝑠𝑠 

∅2 = ∅𝑘𝑘 − ∅1 = 71.26 − 40.4 = 30.86 𝑎𝑎𝑇𝑇𝑎𝑎𝑓𝑓𝑇𝑇𝑇𝑇𝑠𝑠   (0.538 𝑓𝑓𝑎𝑎𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠) 
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𝑇𝑇𝑇𝑇𝑎𝑎𝑠𝑠𝑠𝑠𝑡𝑡𝑎𝑎 𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑇𝑇,𝑇𝑇 =  𝑡𝑡𝑇𝑇𝑎𝑎𝑠𝑠𝑠𝑠𝑡𝑡𝑇𝑇 𝑎𝑎𝑓𝑓𝑇𝑇𝑎𝑎   𝑥𝑥 𝑎𝑎𝑎𝑎𝑇𝑇𝑓𝑓𝑎𝑎𝑎𝑎𝑇𝑇 𝑡𝑡𝑇𝑇𝑎𝑎𝑠𝑠𝑠𝑠𝑡𝑡𝑇𝑇 𝑠𝑠𝑡𝑡𝑓𝑓𝑇𝑇𝑠𝑠𝑠𝑠 =  ∅2 𝑎𝑎 𝑡𝑡 
𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡

2
= (0.538)(2.64)(0.12)(

6343
2

) = 540𝑘𝑘𝑁𝑁 

𝑅𝑅𝑇𝑇𝑠𝑠𝑎𝑎𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑠𝑠𝑎𝑎𝑎𝑎 𝑠𝑠𝑡𝑡𝑇𝑇𝑇𝑇𝑡𝑡 𝑎𝑎𝑓𝑓𝑇𝑇𝑎𝑎,𝐴𝐴𝑡𝑡 =
𝑇𝑇
𝑓𝑓𝑡𝑡

=
540000

0.4(420)
= 3214𝑚𝑚𝑚𝑚2       (11∅20𝑚𝑚𝑚𝑚) 

𝐴𝐴𝑡𝑡,𝑏𝑏𝑡𝑡𝑡𝑡 = 0.003𝐴𝐴𝑔𝑔 = 0.003(𝑏𝑏)(ℎ) = (0.003)(1000)(120)
= 360𝑚𝑚𝑚𝑚2/𝑚𝑚 (1∅10/200𝑚𝑚𝑚𝑚) 

 

Example 2: 

Given: 

- Refer to Figure 17.8 
- Folded plate 
- Plate thickness, t= 0.12m 
- Span, L=20m 
- Concrete strength, f’c= 28MPa 
- Steel strength, fy= 420MPa 
- Surface live load, WL= 0.8kN/m2  

Design the folded plate unit. 

 

 

Figure 17.8: Folded plate 

 

Solution: 

𝑎𝑎 = (0.12)(25) + 0.8 = 3.8𝑘𝑘𝑁𝑁/𝑚𝑚2 

𝐿𝐿𝑇𝑇𝑎𝑎𝑎𝑎𝑡𝑡ℎ 𝑡𝑡𝑓𝑓 𝑠𝑠𝑎𝑎𝑐𝑐𝑡𝑡𝑠𝑠𝑎𝑎𝑇𝑇𝑎𝑎 𝑡𝑡𝑠𝑠𝑎𝑎𝑇𝑇 = �2.52 + 2.52 = 3.536𝑚𝑚 

𝑞𝑞 = 𝑎𝑎(2)(3.536) = (3.8)(2)(3.536) = 26.87𝑘𝑘𝑁𝑁/𝑚𝑚 
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𝑀𝑀 =
𝑞𝑞𝐿𝐿2

8
=

(26.87)(20)2

8
= 1343.5𝑘𝑘𝑁𝑁.𝑚𝑚 

𝐼𝐼 = 2�
𝑡𝑡𝑎𝑎3

12
� 𝑠𝑠𝑠𝑠𝑎𝑎2𝛼𝛼 = (2)�

(0.12)(3.536)3

12
� 𝑠𝑠𝑠𝑠𝑎𝑎2 45 = 0.442𝑚𝑚4 

𝑍𝑍𝑡𝑡𝑜𝑜𝑡𝑡 = 𝑍𝑍𝑏𝑏𝑜𝑜𝑡𝑡𝑡𝑡𝑜𝑜𝑏𝑏 =
ℎ
2

=
2.5
2

= 1.25𝑚𝑚 

 

𝜎𝜎𝑡𝑡𝑜𝑜𝑡𝑡 =
𝑀𝑀𝑍𝑍𝑡𝑡𝑜𝑜𝑡𝑡
𝐼𝐼

=
(1343.5)(1.25)

0.442
= 3799.5𝑘𝑘𝑁𝑁/𝑚𝑚2 = 3.8𝑀𝑀𝑎𝑎𝑎𝑎    < 0.45(28)

= 12.6𝑀𝑀𝑎𝑎𝑎𝑎        𝐶𝐶𝑡𝑡𝑚𝑚𝐶𝐶𝑓𝑓𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑎𝑎      𝑂𝑂𝑂𝑂    

𝜎𝜎𝑏𝑏𝑜𝑜𝑡𝑡𝑡𝑡𝑜𝑜𝑏𝑏 =
𝑀𝑀𝑍𝑍𝑏𝑏𝑜𝑜𝑡𝑡𝑡𝑡𝑜𝑜𝑏𝑏

𝐼𝐼
= 3799.5𝑘𝑘𝑁𝑁/𝑚𝑚2          𝑇𝑇𝑇𝑇𝑎𝑎𝑠𝑠𝑠𝑠𝑡𝑡𝑎𝑎 

𝑇𝑇𝑇𝑇𝑎𝑎𝑠𝑠𝑠𝑠𝑡𝑡𝑎𝑎,𝑇𝑇 = (0.12)(0.5)(3.536)(
3799.5

2
) = 403𝑘𝑘𝑁𝑁 

𝑅𝑅𝑇𝑇𝑠𝑠𝑎𝑎𝑓𝑓𝑡𝑡𝑓𝑓𝑐𝑐𝑠𝑠𝑎𝑎𝑎𝑎 𝑠𝑠𝑡𝑡𝑇𝑇𝑇𝑇𝑡𝑡 𝑎𝑎𝑓𝑓𝑇𝑇𝑎𝑎,𝐴𝐴𝑡𝑡 =
𝑇𝑇
𝑓𝑓𝑡𝑡

=
403000

0.4(420)
= 2399𝑚𝑚𝑚𝑚2       (8∅20𝑚𝑚𝑚𝑚) 

𝐴𝐴𝑡𝑡,𝑏𝑏𝑡𝑡𝑡𝑡 = 0.003𝐴𝐴𝑔𝑔 = 0.003(𝑏𝑏)(ℎ) = (0.003)(1000)(120)
= 360𝑚𝑚𝑚𝑚2/𝑚𝑚 (1∅10/200𝑚𝑚𝑚𝑚) 

 



Design of Reinforced Concrete Structures: A Practical Approach 
 

416 
 

References: 
 

1. ACI 350 (2006), Code Requirements for Environmental Engineering Concrete Structures     
and Commentary (ACI 350-06), American Concrete Institute, Farmington Hills, MI. 

2. Arthur H. Nilson, David Darwin and Charles W. Dolan, Design of Concrete Structures, 
fourteenth edition in SI units, McGraw Hill, 2010. 

3. ASCE 7-10, Minimum Design Loads for Buildings and Other Structures. 
4. ASCE 7-16, Minimum Design Loads for Buildings and Other Structures. 
5. Building Code Requirements for Structural Concrete and Commentary (ACI 318M-11), 

American Concrete Institute, Farmington Hills, MI, 2011. 
6. Building Code Requirements for Structural Concrete and Commentary (ACI 318M-14), 

American Concrete Institute, Farmington Hills, MI, 2014. 
7. Building Code Requirements for Structural Concrete and Commentary (ACI 318-19), 

American Concrete Institute, Farmington Hills, MI, 2019. 
8. Das B.M. (2011), Principles of Foundation Engineering, 7th edition, Nelson, Thomson 

Canada Limited, Toronto, Canada. 
9. Edward G. Naway, Reinforced Concrete a Fundamental Approach, Sixth edition, Prentice 

Hall, 2009. 
10. IBC (2012), International Building Code. 
11. IBC (2015), International Building Code. 
12. IBC (2018), International Building Code. 
13. Jack C. McCormac and Russell H.Brown, Design of Reinforced Concrete, 9th Edition 2014 
14. James K. Wight and James G. MacGregor, Reinforced Concrete Mechanics and Design, 

Seventh edition, Pearson, 2016. 
15. Kelkar V. and Sewell R. (1987), Fundamentals of the Analysis and Design of Shell 

Structures, Prentice Hall, New Jersey. 
 



 
 
 
This Third Edition of Design of Reinforced Concrete Structures: A Practical 
Approach book covers the analysis and design principles of reinforced 
concrete sections, members and systems in a simplified way. It 
introduces the design of beams, slabs, columns and footings based on ACI 
318-19. In addition, it introduces the design of special structures like 
retaining walls, water tanks and shell structures. 
 
This book presents the basic mechanics of structural concrete in a 
practical approach. It presents many practical examples in the design of 
reinforced concrete elements and systems.  
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