

 Recursion

Abdallah Karakra

Sunday, January 10, 2016

Computer Science Department

Comp 230

 Introduction to Recursion

Sunday, January 10, 2016 Abdallah Karakra

• A recursive function is one that calls

itself.

f1

 void message()

 {

 printf("This is a recursive function.\n“);

 message();

 }

Splitting a Problem into Smaller

Problems

Sunday, January 10, 2016 Abdallah Karakra

• Assume that the problem of size 1 can be solved easily (i.e., the simple
case).

• We can recursively split the problem into a problem of size 1 and another
problem of size n-1.

Splitting a Problem into Smaller

Sunday, January 10, 2016 Abdallah Karakra

f(7) = f(7-1)+3 f(7)=f(6)+3 f(7)=22+2=25

f(6) = f(6-1)+3 f(6)=f(5)+3 f(6)=19+3=22

f(5) = f(5-1)+3 f(5)=f(4)+3 f(5)=16+3=19

f(4) = f(4-1)+3 f(4)=f(3)+3 f(4)=13+3=16

f(3) = f(3-1)+3 f(3)=f(2)+3 f(3)=10+3=13

f(2) = f(2-1)+3 f(2)=f(1)+3 f(2)=7+3=10

f(1) = f(1-1)+3 f(1)=f(0)+3 f(1)=4+3=7

 f(0)=4

Base case

Let f(x)=f(x -1)+3 , f(0)=4 , find f(7)

Recursive Problem

Sunday, January 10, 2016 Abdallah Karakra

 void message()

 {

 printf("This is a recursive function.\n“);

 message();

 }

The function below displays the string "This is a

recursive function.\n", and then calls itself.

Sunday, January 10, 2016 Abdallah Karakra

Recursive Problem

• The function is like an infinite loop

because there is no code to stop it

from repeating.

• Like a loop, a recursive function must

have some algorithm to control the

number of times it repeats.

Sunday, January 10, 2016 Abdallah Karakra

Recursion
• Like a loop, a recursive function must have some algorithm

to control the number of times it repeats. Shown below is a
modification of the message function. It passes an integer

argument, which holds the number of times the function is

to call itself.

void message(int times)

{

 if (times > 0)

 {

 printf("This is a recursive function.\n“);

 message(times - 1);

 }

}

Sunday, January 10, 2016 Abdallah Karakra

Recursion

• The function contains an if/else

statement that controls the repetition.

• As long as the times argument is

greater than zero, it will display the

message and call itself again. Each time
it calls itself, it passes times - 1 as

the argument.

 Recursive Function

Sunday, January 10, 2016 Abdallah Karakra

Let f(x)=f(x -1)+3 , f(0)=4 , find f(7)

int f(int x)

{

 if (x == 0)

 return 4; //base case

 else

 return f(x-1)+3;

}

Recursive function terminates when a base case is met.

Trace of f(x)=f(x -1)+3

Sunday, January 10, 2016 Abdallah Karakra

 Recursive Function multiply

Sunday, January 10, 2016 Abdallah Karakra

We can implement the multiplication by addition.

The simple case is “m*1=m.”

The recursive step uses the following equation:
“m*n = m+m*(n-1).”

 Trace of Function multiply(6,3)

Sunday, January 10, 2016 Abdallah Karakra

.

Sunday, January 10, 2016 Abdallah Karakra

 Recursive Function Factorial

In mathematics, the notation n! represents the factorial of the number n. The

factorial of a number is defined as:

 n! = 1 * 2 * 3 * ... * n if n > 0

 1 if n = 0

Sunday, January 10, 2016 Abdallah Karakra

Another way of defining the factorial of a number, using recursion, is:

Factorial(n) = n * Factorial(n - 1) if n > 0

 1 if n = 0

 The following C function implements the recursive definition shown above:

 int factorial(int num)

{

 if (num == 0)

 return 1;

 else

 return num * factorial(num - 1);

}

 Recursive Function Factorial

Sunday, January 10, 2016 Abdallah Karakra

 Recursive Function Factorial

Sunday, January 10, 2016 Abdallah Karakra

 Trace of fact = factorial(3);

Sunday, January 10, 2016 Abdallah Karakra

Tracing recursive methods

Consider the following method:
int mystery(int x, int y) {

if (x < y)

 return x;

 else

 return mystery(x - y, y);

}

For each call below, indicate what value is returned:

mystery(6, 13) ____________
mystery(14, 10) ____________
mystery(37, 10) ____________
mystery(8, 2) ____________
mystery(50, 7) ____________

6

4

7
0
1

Sunday, January 10, 2016 Abdallah Karakra

Recursive Function Power

Question?

Sunday, January 10, 2016 Abdallah Karakra

“Success is the sum of small efforts, repeated day in and day out.”

 Robert Collier

 References:

 Problem Solving & Program Design in C (main reference)

Sunday, January 10, 2016 Abdallah Karakra

