Sunday, January 10, 2016

zegys R s
M

EIRZEIT UHIVERSITY

Recursion

Abdallah Karakra

Computer Science Department
Comp 230

Introduction to Recursion

A recursive function is one that calls

itself.

printf ("This is a recursive function.\n"%);
message () ;

void message ()

{

Sunday, January 10, 2016 Abdallah Karakra

Splitting a Problem into Smaller
Problems

size n — size n—1 — sizen-2 —> size 2

problem problem problem problem

\ \ * o o \ \
size 1 size 1 size 1 size 1
problem problem problem problem

* Assume that the problem of size 1 can be solved easily (i.e., the simple
case).

* We can recursively split the problem into a problem of size 1 and another
problem of size n-1.

Sunday, January 10, 2016 Abdallah Karakra

Let f(x)=f(x -1)+3,

£(7) = f(7-1)+3
f(6) = f(6-1)+3
f(5) = f(5-1)+3
f(4) = f(4-1)+3
f(3) = f(3-1)+3
f(2) = f(2-1)+3

f(1) = f(1-1)+3

Splitting a Problem into Smaller
**

> 1(7)=f(6)+3
> 1(6)=f(5)+3
> 1(5)=f(4)+3
> f(4)=f(3)+3
> £(3)=f(2)+3
> 1(2)=f(1)+3
> f(1)=f(0)+3

f(0)=4 , find f(7)

size n g size n-1
prablem problem

size 1 size 1
problem problem

A

PaN

f(7)=22+2=25
f(6)=19+3=22
f(5)=16+3=19
f(4)=13+3=16
f(3)=10+3=13

f(2)=7+3=10

size 1 size 1
problem problem

Base case

f(1)=4+3=7
/f(O)= 4 >/
S~—

Abdallah Karakra

Sunday, January 10, 2016

Recursive Problem

The function below displays the string "This Is a
recursive function.\n", and then calls itself.

void message ()

{

printf ("This is a recursive function.\n“);
message () ;

Sunday, January 10, 2016 Abdallah Karakra

Recursive Problem

* The function Is like an infinite loop
because there iIs no code to stop it
from repeating.

 Like a loop, a recursive function must
have some algorithm to control the
number of times it repeats.

Sunday, January 10, 2016 Abdallah Karakra

Recursion

« Like a loop, a recursive function must have some algorithm
to control the number of times it repeats. Shown below is a
modification of the message function. It passes an integer

argument, which holds the number of times the function is
to call itself.

void message (int times)

{
if (times > 0)

{

printf ("This is a recursive function.\n");
message (times - 1);

Sunday, January 10, 2016 Abdallah Karakra

Recursion

* The function contains an 1 f/else
statement that controls the repetition.

* As long as the times argument is

greater than zero, it will display the

message and call itself again. Each time
it calls itself, It passes times - 1 as

the argument.

Sunday, January 10, 2016 Abdallah Karakra

Recursive Function

Let f(x)=f(x -1)+3, f(0)=4, find f(7)

int f(int x)

{

if (x == 0)
return 4; //base case

else

return f(x-1)+3;

Recursive function terminates when a base case is met.

Sunday, January 10, 2016 Abdallah Karakra

Trace of f(x)=f(x -1)+3

Sunday, January 10, 2016 Abdallah Karakra

Recursive Function multiply

We can implement the multiplication by addition.

1. /=*

2. * Performs integer multiplication using + operator.
3. * Pre: m and n are defined and n > 0

4. * Post: returns m * n

5. * /

6. int

7. multiply(int m, int n)

8. {

9. The simple case is “m*1=m.”

10.

1 - if (n == 1)

12. return m; /* simple case */

13. else

14. return m + multiply(m, n - 1); /* recursive step */

The recursive step uses the following equation:

“m*n = m+m*(n-1).”

Sunday, January 10, 2016

Trace of Function multiply(6,3)

/
multjply(é}/
[T M+mult|p/(

—3

= multlply(/O,/ 1)
b

Sunday, January 10, 2016 Abdallah Karakra

Recursive Function Factorial

In mathematics, the notation n! represents the factorial of the number n. The
factorial of a number is defined as:

n! = 1 2 * 3 * ... *n ifn>0

1 if n = 0

Sunday, January 10, 2016 Abdallah Karakra

Recursive Function Factorial

Another way of defining the factorial of a number, using recursion, is:

Factorial (n) =

n * Factorial(n - 1) if n >0

1 ifn=20
The following C function implements the recursive definition shown above:
int factorial (int num)

{

1f (num == 0)

return 1;
else

return num * factorial (num - 1);

Sunday, January 10, 2016

Abdallah Karakra

Recursive Function

Factorial

1. /*

2 * Compute n! using a recursive definition
3. * Pre: n >= 0

4. */

5. int

6. factorial(int n)

. {

8.

<k
10. if (n == 0)
s return 1;
12. else
13. return n * factorial(n - 1);
14.
15.

16. }

Sunday, January 10, 2016

Abdallah Karakra

ITrace of fact = factorial(3);

Abdallah Karakra

Tracing recursive methods

Consider the following method:

int mystery(int x, int y) {
if (x <y)
return X;
else
return mystery(x - v, y);

}

For each call below, indicate what value is returned:

mystery (6, 13) 6
mystery (14, 10)
mystery (37, 10)
mystery (8, 2)

mystery (50, 7)

RPFON B

Sunday, January 10, 2016 Abdallah Karakra

Recursive Function Power

finclude<stdio.h>
int power (int, int) ;
int main)
|
int =, v;
printf ("Enter x and y ");
scanf ("sd%d", &x, &vy) ;
printf ("power=%d", power (x,vy))
return O;
}
int power (int x,int vy)
i
if (y>0)
return x*power (x,vy-1);
else
return 1;

Sunday, January 10, 2016 Abdallah Karakra

Question?

“Success is the sum of small efforts, repeated day in and day out.”
Robert Collier

Sunday, January 10, 2016 Abdallah Karakra

L. N ! IE ~
2 \ F RS 1 4 o~ g B i
\ \ .l
]] A \)| \ A
UL ¢l GOl mn
SEVENTI EDITION

JERI R. HANLY | ELLIOT B. KOFFMAN

References:
Problem Solving & Program Design in C (main reference)

Sunday, January 10, 2016 Abdallah Karakra

