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• A recursive function is one that calls 

itself. 

 
f1 

 void message() 

 { 

  printf("This is a recursive function.\n“); 

  message(); 

 } 



Splitting a Problem into Smaller 

Problems 
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• Assume that the problem of size 1 can be solved easily (i.e., the simple 
case). 

• We can recursively split the problem into a problem of size 1 and another 
problem of size n-1. 



Splitting a Problem into Smaller  
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f(7) = f(7-1)+3   f(7)=f(6)+3                               f(7)=22+2=25 
 
f(6) = f(6-1)+3   f(6)=f(5)+3                               f(6)=19+3=22 
 
f(5) = f(5-1)+3   f(5)=f(4)+3                               f(5)=16+3=19 
 
f(4) = f(4-1)+3   f(4)=f(3)+3                               f(4)=13+3=16 
 
f(3) = f(3-1)+3   f(3)=f(2)+3                               f(3)=10+3=13 
 
f(2) = f(2-1)+3   f(2)=f(1)+3                               f(2)=7+3=10 
 
f(1) = f(1-1)+3   f(1)=f(0)+3                               f(1)=4+3=7 
 
                                                                              f(0)=4 
 
 
 
 

Base case 

Let  f(x)=f(x -1)+3 ,  f(0)=4 , find f(7) 



Recursive Problem 
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 void message() 

 { 

  printf("This is a recursive function.\n“); 

  message(); 

 } 

The function below displays the string "This is a 

recursive function.\n", and then calls itself. 
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Recursive Problem 

• The function is like an infinite loop 

because there is no code to stop it 

from repeating. 

• Like a loop, a recursive function must 

have some algorithm to control the 

number of times it repeats.  



Sunday, January 10, 2016 Abdallah Karakra 

 

 

 

 

Recursion 
• Like a loop, a recursive function must have some algorithm 

to control the number of times it repeats. Shown below is a 
modification of the message function. It passes an integer 

argument, which holds the number of times the function is 

to call itself.   

void message(int times) 

{ 

 if (times > 0) 

 {    

  printf("This is a recursive function.\n“); 

  message(times - 1); 

 } 

  

}  



Sunday, January 10, 2016 Abdallah Karakra 

 

 

 

 

Recursion 

• The function contains an if/else 

statement that controls the repetition.  

• As long as the times argument is 

greater than zero, it will display the 

message and call itself again. Each time 
it calls itself, it passes times - 1 as 

the argument.  



 Recursive Function 
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Let  f(x)=f(x -1)+3 ,  f(0)=4 , find f(7) 
 

int f(int x) 

{ 

  if (x == 0)  

      return 4; //base case  

  else 

      return f(x-1)+3; 

  

}  

Recursive function terminates when a base case is met.  

 



Trace of f(x)=f(x -1)+3  
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 Recursive Function multiply 
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We can implement the multiplication by addition. 

The simple case is “m*1=m.” 

The recursive step uses the following equation: 
“m*n = m+m*(n-1).” 



        Trace of Function multiply(6,3) 
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. 



Sunday, January 10, 2016 Abdallah Karakra 

 

 

 

 

    Recursive Function Factorial 

In mathematics, the notation n! represents the factorial of the number n. The 

factorial of a number is defined as: 

  

 n! = 1 * 2 * 3 * ... * n  if n > 0 

  1          if n = 0 
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Another way of defining the factorial of a number, using recursion, is:  

 
Factorial(n) = n * Factorial(n - 1)  if n > 0  

           1  if n = 0 

 The following C function implements the recursive definition shown above: 

 int factorial(int num) 

{ 

 if (num == 0) 

             return 1;  

       else  

       return num * factorial(num - 1);  

 
          

} 

    Recursive Function Factorial 
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    Recursive Function Factorial 
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 Trace of fact = factorial(3); 
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Tracing recursive methods 

Consider the following method: 
int mystery(int x, int y) { 

if (x < y) 

    return x; 

  else 

    return mystery(x - y, y); 

} 

For each call below, indicate what value is returned: 
 
mystery(6, 13)  ____________ 
mystery(14, 10)  ____________ 
mystery(37, 10)  ____________ 
mystery(8, 2)  ____________ 
mystery(50, 7)  ____________ 
 
 

6 

4 

7 
0 
1 
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Recursive Function Power 



Question? 
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“Success is the sum of small efforts, repeated day in and day out.”  

   Robert Collier 
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 Problem Solving & Program Design in C  (main reference) 
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