

Numbering Systems

Abdallah Karakra

Computer Science Department

Comp 230

Thursday, September 10, 2015

Outline

- History.
- Decimal System.
- Binary System.
- Octal System.
- Hexadecimal System.
- Converting from one System to another system & back.
- Binary Addition
- Signed Numbers
- Summary

History

Long ago, humans used sticks to count.

Later learned how to draw pictures of sticks in the ground and eventually on paper.

Using symbols to represent the numbers instead of sticks. 5 v

Decimal System

Most People Use decimal representation to count.

 In decimal there are 10 digits 0,1,2,3,4,5,6,7,8,9
 The base is 10
 We can Represent any value for these digits Ex: 754 , 123 , 889 , 345

Decimal System

7.0² + 5.10¹ + 4.10⁹=700+50+4=754 base Digit position

123 ???

Thursday, September 10, 2015

Binary System

Computer is not smart as a human.

Easy to make an electronic machine with two states: on and off, or 1 and 0.

In Binary there are 2 digits 0,1 The base is 2

Thursday, September 10, 2015

Binary System

Each digit in binary number called BIT. 1010,4 digits, How many bits? answer:4 bits

4 bits form a NIBBLE.
8 bits form a byte.
10100011, How many Bits, Nibbles and Bytes?

Answer :8 bits ,2 Nibbles and 1 byte

Binary System

Two bytes form a WORD and two words form a DOUBLE WORD (rarely used).

EX: 0000 1111 1010 1010 : 16 bits , WORD

Thursday, September 10, 2015

Octal System

Uses 8 digits 0,1,2,3,4,5,6,7

The base is 8

♦ EX (123)₈ , (156)₈

Thursday, September 10, 2015

Hexadecimal System

Uses 16 digits

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

The base is 16

*****EX: 123h , 456h 0E120h

Thursday, September 10, 2015

Suppose we need to develop new system with base 5,7 or 3?

Base 5 : 0,1,2,3,4

Base 7: 0,1,2,3,4,5,6

Base 3: 0,1,2

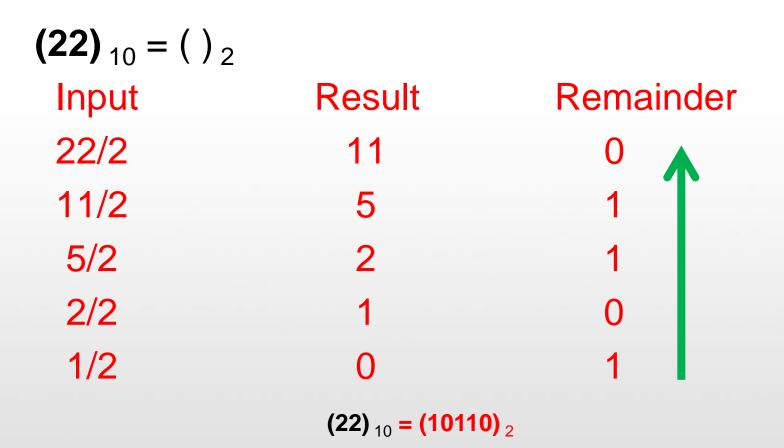
Thursday, September 10, 2015

Binary to Decimal

✤ 10110b

 $1^{24}+0^{23}+1^{22}+1^{21}+0^{20}=$ $16+0+4+2=(22)_{10}$

1010b =?? , 0010b = ?? , 101b=??


Answer:

1010b=(10)₁₀ **0010b=(2)**₁₀ **101b=(5)**₁₀

Thursday, September 10, 2015

Decimal to Binary

Thursday, September 10, 2015

Decimal to Binary

 $(13)_{10} = (1101)_2$ $(220)_{10} = (11011100)_2$ $(21)_{10} = ()_2 H.W$ $(15)_{10} = ()_2 H.W$

Thursday, September 10, 2015

Binary to Octal

 $100101010b = ()_8$ 100 101 010 = (452)₈

$111000111b = ()_8$

111 000 111 = $(707)_8$

Thursday, September 10, 2015

Binary to Octal

* $100101011b = (453)_8$ * $101101011b = ()_8$ H.W * $100101001b = ()_8$ H.W

Thursday, September 10, 2015

$10010101b = ()_{h}$

1001 0101 =(95h)

11100011b = (E3h) H.W

Thursday, September 10, 2015

Decimal to Hexadecimal

Let's convert the value (39) 10 to Hexadecimal

InputResultRemainder39/16272/1602

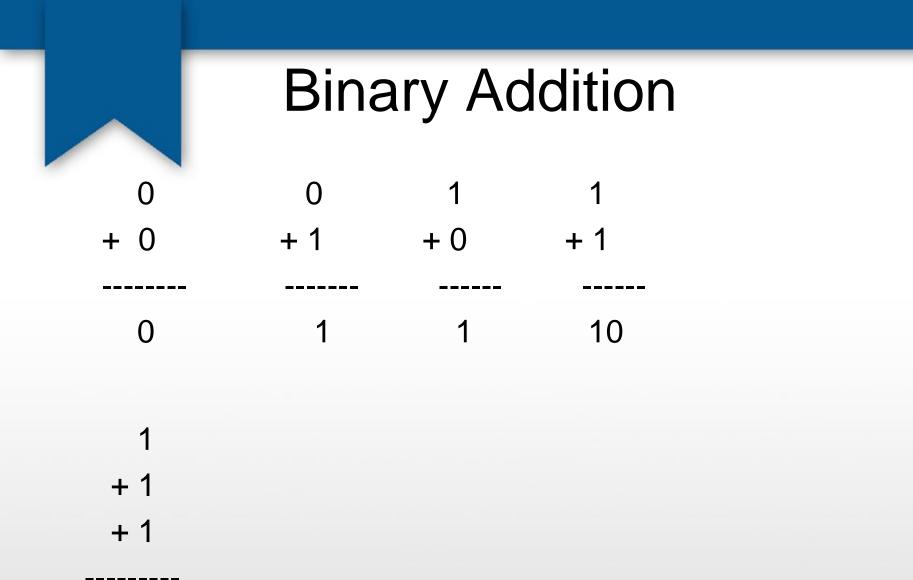
(39) ₁₀ = (27h)

Thursday, September 10, 2015

H.W

Covert the following numbers to decimal

- a. (72)₈ =(58)₁₀
- b. $(72)_{16} = (114)_{10}$
- c. (DE1) $_{16} = (3553)_{10}$



Using pen and paper , solve the following questions :

- a. (AB) ₁₆ =()₂
- b. (23)₄=()₈
- c. (35)₇=()₈
- d. (72E) ₁₆ =()₈

Thursday, September 10, 2015

11

Thursday, September 10, 2015

Binary Addition 01111+00110 =

1 1 1 0 1 1 1 1 + 0 0 1 1 0

1 0 1 0 1

Thursday, September 10, 2015

Binary Addition

11010011+01010110=

$1\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ = (297)_{10}$

Thursday, September 10, 2015

Binary Addition

H.W Solve Question 7, lab 1, page 9

Thursday, September 10, 2015

Our study of binary arithmetic, we have only considered positive numbers .

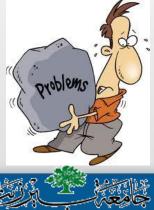
What about negative numbers?

Thursday, September 10, 2015

Signed Magnitude

add an extra digit to the front of our binary number to indicate whether the number is positive or negative.

this digit called sign bit.


- o for positive
- **1** for negative

Example:

$(5)_{10} = (101)_2$ Positive 5 is 0 1 0 1 Negative 5 is 1 1 0 1

The Problem : We need to specify how many bits in our numbers so we can be certain which bit is representing the sign !!!

RZEIT UNIV

Thursday, September 10, 2015

1 1 0 1 is 13 or -5

> One's Complement

Representing a signed number with 1's Complement is done by changing all the bits that are 1 to 0 and all bits that are 0 to 1.

□ Represent -5 in 1's complement by using 4-bit arithmetic? 0101 → 1010 □ Represent -1 in 1's complement ? 0001 → 1110

- > Two's Complement
- 2's comp=1'comp +1
- Represent -5 in 2's complement by using 4-bit arithmetic?
- (101)1's → 1010
 - 2's + 1

Lab 1 . P8,9 Q.1,2,3,4,8,10

Thursday, September 10, 2015

Summary

Decimal System. **Binary System.** Octal System. Hexadecimal System. Converting from one System to another system & back. **Binary Addition Signed Numbers**

