

Numbering Systems

Abdallah Karakra

Computer Science Department

Comp 230

Wednesday, September 16, 2015

SUCCEED

You will never know if you don't keep trying, the next time might be your time to succeed.

Wednesday, September 16, 2015

Outline

- Converting Fractions.
- Adding Binary Fractions.
- Binary Subtraction.
- Data Representation.
- Characters and Integers Representation.
- Floating Point Representation.
- Summary

When converting a fractional decimal value to binary, we need to use a slightly different approach. Instead of dividing by 2, we repeatedly multiply the decimal fraction by 2.

Let's take an example !

Wednesday, September 16, 2015

Convert **11.375**₁₀ to it's binary equivalents. First convert 11 to binary.

We know from the last lecture $11_{10} = 1011_2$

Now convert $.375_{10}$ to binary

Wednesday, September 16, 2015

$$0.375 * 2 = 0.750$$

 $0.750 * 2 = 1.500$
 $0.500 * 2 = 1.000$

 $.375_{10} = .011_{2}$

 $11.375_{10} = 1011.011_{2}$

Wednesday, September 16, 2015

- Convert the following numbers to their binary equivalents.
- $\Box \quad (26.75_{10}) = 11010.11_2$ $\Box \quad (37.375_{10}) = H.W$

- Exercise:
- Convert the following decimal number to binary?

 $(0.2)_{10} = (0.0011)_2$ $(0.3)_{10} = (0.01001)_2$

Wednesday, September 16, 2015

Adding Binary Fractions

- Example:
- 1011.0+0.011=

1011.0 + 0.011

1011.0 11

Wednesday, September 16, 2015

Adding Binary Fractions

- Example:
- 110.01+1.011=

, 110.01 ⊦ 1.011

111.101

Wednesday, September 16, 2015

Binary Subtraction

 Solve the following 8-bit subtraction problem using 2's complement representation.

$$01111111_2 - 76_{10} =???$$

Think if we rewrite the above problem as $0111111_2 + (-76)_{10}$

Wednesday, September 16, 2015

Wednesday, September 16, 2015

Binary Subtraction Cont.

$01111111_2 + (-76)_{10}$

1 11 1 01111111 127 + 10110100 - 76

51

Wednesday, September 16, 2015

125 → 01111101

1's complement \rightarrow 10000010 2's complement \rightarrow + 1

10000011→(-125)

Wednesday, September 16, 2015

Binary Subtraction Cont.

$00110010_2 + (-125)_{10}$

00110¹10 50 + 10000011 - 125

10110101 -75

 The 2's comp for the result (10110101) is 01001011 equivalent to (75) 10

Wednesday, September 16, 2015

Data Representation

*Computer understand two things: on and off .

 $\$ Data represented in binary form .

♦ Bit is the basic unit for storing data $0 \rightarrow off$, $1 \rightarrow on$.

✤Byte is a group of 8 bits. That is, each byte has 256(2⁸) possible values.

Two bytes form a word

Parity bit

- Used for error detection
- Two types: 1. Odd parity (number of 1's are odd)
 - 2. Even parity (number of 1's are even)

Characters Representation

Using the **even parity** bit to represent the character **Q** (**Q** = 81 in ASCII) in memory (Hexadecimal) ?

 $(81)_{10} = (01010001)_2$

Wednesday, September 16, 2015

Abdallah Karakra

BIRZEIT UŇI

Characters Representation

Using the **odd parity** bit to represent **your name** in memory ?

Ex. Ahmad

A 01000001 h 01101000 m 01101101 ..

Memory

C1	
60	
00	
6D	
61	
64	

Integers Representation

Represent the following integer in memory using 2 byte?

Wednesday, September 16, 2015

Integers Representation

Represent the following integer in memory using 2 byte?

Wednesday, September 16, 2015

32 bits divided into three sections

Wednesday, September 16, 2015

32 bits divided into three sections

Abdallah Karakra

BIRZEIT UŇ

255/2=127.5 we take the integer part 127

0----- 255

-127 ----- 128

Let's take an example !

Wednesday, September 16, 2015

Use the 32-bit floating representation to represent the following the binary number and show how it will represented in the memory?

(26.75) 10

Answer: Convert the number from decimal to binary

Wednesday, September 16, 2015

 $(26.75)_{10} = (11010.11)_2$

```
(11010.11)_2 = (1.101011 * 2^4)_2 Scientific notation
```

```
Exponent = 127+4=131
```

```
(131)_{10} = (10000011)_2
```


Wednesday, September 16, 2015

Lab 1 . P8,9 Q.5,6,7,9,11

Wednesday, September 16, 2015

Summary

- •Converting Fractions.
- •Adding Binary Fractions.
- •Binary Subtraction.
- •Data Representation.
- •Characters and Integers Representation.
- •Floating Point Representation.

