

 COMP142/ COMP133/ COMP230/ COMP132

 Introduction to Computer and Programming

Compiled and Prepared by:

Dr. Majdi M. Mafarja

2

CHAPTER 1: INTRODUCTION 4

C LANGUAGE ELEMENTS: 4
USER-DEFINED IDENTIFIERS (VARIABLES): 6
INPUT/OUTPUT OPERATIONS AND FUNCTIONS 7
OPERATORS 10
TYPE CONVERSION THROUGH CASTS 12
FILE I/O 15
EXERCISES 16

CHAPTER 2: TOP-DOWN DESIGN WITH FUNCTIONS 18

LIBRARY FUNCTIONS 18
USER DEFINED FUNCTIONS 20
TYPES OF USER-DEFINED FUNCTIONS 22
EXERCISES 26

CHAPTER 4: SELECTION STRUCTURES, IF AND SWITCH STATEMENTS 27

INTRODUCTION 27
SELECTION STRUCTURE 28
THE ‘IF’ STATEMENT 29
NESTED ‘IF’ STATEMENTS 31
CONDITIONAL OPERATOR (?:) 34
THE ‘SWITCH’ CONSTRUCT 35

CHAPTER 4: REPETITION STRUCTURE 36

REPETITION STRUCTURE ERROR! BOOKMARK NOT DEFINED.
THE ‘WHILE’ CONSTRUCT 36
COUNTER-CONTROL REPETITION AND SENTINEL-CONTROL REPETITION 37
THE ‘DO-WHILE’ CONSTRUCT 38
FLAG-CONTROLLED LOOPS 39
THE ‘FOR’ CONSTRUCT 39
THE ‘BREAK’ AND ‘CONTINUE’ STATEMENTS 40
NESTED LOOPS AND COMBINED STRUCTURES 42
END OF FILE SENTINEL LOOP: 47
EXERCISES 48

CHAPTER 5: POINTERS 49

POINTER VARIABLES 49
POINTER OPERATORS * AND & 50
POINTERS AS FUNCTION PARAMETERS (CALL BY REFERENCE) 52

CHAPTER 6: ARRAYS 55

3

SINGLE DIMENSION ARRAYS 55
ARRAYS AS ARGUMENTS TO FUNCTIONS (1D) 56
SEARCHING AN ELEMENT IN THE ARRAY (LINEAR SEARCH): 58
SORTING AN ARRAY 59
ARRAY EXAMPLE 60
MULTIDIMENSIONAL ARRAYS 62
PASSING MULTIDIMENSIONAL ARRAYS TO A FUNCTION 63
POINTERS AND ARRAYS 64
POINTER ARITHMETIC 65

CHAPTER 6: STRINGS 67

PRINTF AND SCANF WITH STRINGS 68
STRING MANIPULATION FUNCTIONS 69
ARRAYS OF STRINGS 74
STRINGS AND POINTERS 74
ARRAYS OF POINTERS 75
5.7 EXERCISES 76

BIBLIOGRAPHY 78

4

Chapter 1: Introduction

C Language Elements:

C Language is a sequential programming language, i.e. it compiles the program line by line

sequentially.

A C program consists of one or more functions or code modules, which are groups of C statements to

be executed in a given order. Each C program must contain a main() function. This is the first

function called when the program starts to run.

As the figure below, the C program has two parts: preprocessor directives and the main function.

5

The “Hello World” Program

Consider first a simple C program which simply prints a line of text to the computer screen. This is

traditionally the first C program you will see and is commonly called the “Hello World” program for

obvious reasons.

 #include <stdio.h>

 void main()

 {

 /* This is how comments are implemented in C

 to comment out a block of text */

 // or like this for a single line comment

 printf("Hello World\n") ;

 }

As you can see this program consists of just one function, the mandatory main function.

 The parentheses, (), after the word main indicate that this is a function.

 The curly braces, { }, are used to denote a block of code (the start and end of the main

function)

To place a comment (a statement that will not be compiled) you can use:

 a /* ... */ pair in the case of a block comment (more than one line of code) or

 a double forward slash, //, may be used to comment out the remains of a single line of test.

The line
 printf("Hello World\n ") ;

 This statement is used to print an output on the screen. It must be terminated by a semicolon.

 The characters \n prints a newline on the screen.

printf is a function that is contained in the stdio library which included in your

program by the statement: #include <stdio.h>

 NB: C is case sensitive i.e. printf() and Printf() would be regarded as two different

functions.

Reserved Words:

A reserved word is a word that has a special meaning in C.

6

User-Defined Identifiers (Variables):

In order to make the program flexible a useful, the programmer can identify (يعرّف) his own identifiers

to name memory cells that will hold real life quantities or data e.g. a person’s name, age, height, bank

balance, etc.

Syntax: type variable_name (or variable-list);

Basic Data Types

There are five basic data types char, int, float, double, and void. All other data types in C are based

on these.

 char 1 byte (8 bits) with range -128 to 127

 int 4 bytes with range -2,147,483,648 to 2,147,483,647

 float 4 bytes with range 10-38 to 1038 with 7 digits of precision

 double 8 bytes with range 10-308 to 10308 with 15 digits of precision

 void generic pointer, used to indicate no function parameters etc.

For Example :-
int i ; // a memory cell is reserved to hold an integer value

char a, b, ch ; //three character variables are defined

Variable Names

Names of variables and functions in C are called identifiers and are case sensitive. When defining a

variable you have to follow the following rules:

1. An identifier must consist only of letters, digits, and underscores (NO special characters

like: +*&^%#$@ … etc).

2. An identifier cannot begin with a digit.

3. A C reserved word cannot be used as an identifier.

4. An identifier defined in a C standard library should not be redefined.

Valid Identifiers

7

letter_1, letter_2, inches, cent, CENT_PER_INCH, Hello, variable

Initialising Variables

When variables are declared in a program it just means that an appropriate amount of memory is

allocated to them for their exclusive use. This memory however is not initialised to zero or to any

other value automatically and so will contain random values unless specifically initialised before use.

Syntax :- type var-name = constant ;

For Example :-

char ch = 'a'; // Character constants are normally represented between single quotes, e.g.
'a', 'b', etc

 double d = 12.2323 ;

 int i, j = 20 ; /* note in this case i is not initialised */

There are also a number of special character constants sometimes called Escape Sequences, which

are preceded by the backslash character '\', and have special meanings in C.

\n newline

\t tab

\b backspace

\' single quote

\" double quote

\0 null character

Input/Output Operations and Functions

This section introduces the common input and output functions provided in the C standard library

<stdio>.

printf()

The printf() function is used for formatted output and uses a control string which is made up of a

series of format specifiers to govern how it prints out the values of the variables or constants

required. The more common format specifiers are given below

%c character

%d signed integer

8

%i signed integer

%f floating point

For Example :-
 int i ;

 printf("%d", i) ;

The printf() function takes a variable number of arguments. In the above example two arguments

are required, the format string and the variable i. The value of i is substituted for the format specifier

%d which simply specifies how the value is to be displayed, in this case as a signed integer.

Some further examples :-

int i = 10, j = 20;

char ch = 'a’;

double f = 23421.2345;

printf("%d + %d", i, j) ; /* values are substituted from

 the variable list in order as required */

printf("%c", ch) ;

printf("%s", "Hello World\n") ;

printf("The value of f is : %f", f) ;/*Output as : 23421.2345 */

Field Width Specifiers

Field width specifiers are used in the control string to format the numbers or characters output

appropriately .

Syntax :- %[total width printed][.decimal places printed]format specifier]

where square braces indicate optional arguments.

For Example :-

 int i = 15, j = -13 ;
 float f = 13.3576 ;

 printf("%5d\n", i) ; /* prints "___15" where _ indicates a space

character … here you have 3 spaces!! */

 printf("%-5d\n", i) ; /*prints 15___ where 15 is left justified */

 printf("%05d\n", i) ; /*prints 00015 0 (zero) causes a field to

be padded using zeros rather than space

characters */

 printf("%+d\n", j) ; /*prints: -13 + (plus sign) displays a plus

sign preceding positive values and a minus

preceding negative values, */

 printf("%6.2f\n", f) ; /* prints "_13.36" which has a total width

of 6 and displays 2 decimal places */

 printf("%*.*f\n", 6,2,f) ; /* prints "_13.36" as above. Here *

is used as replacement character for field

widths */

9

scanf()

 This function is similar to the printf function except that it is used for formatted input. The format

specifiers have the same meaning as for printf() and the space character or the newline character

are normally used as delimiters between different inputs.

For Example :-
int i, d ;

char c ;

float f ;

scanf("%d", &i) ;

scanf("%d %c %f", &d, &c, &f) ; /* e.g. type "10_x_1.234" */

scanf("%d %c", &i, &c) ; /* e.g. type "10 x" */

The & character is the address of an operator in C, it returns the address in memory of the variable it

acts on. (The & character tells the function exactly where the variable
resides in memory and so allow the function to alter it directly

rather than to uselessly alter a copy of it.)

scanf("%c%c%c", &letter_1, &letter_2, &letter_3);

10

Operators

One of the most important features of C is that it has a very rich set of built in operators including

arithmetic, relational, logical, and bitwise operators.

Assignment Operator

 int x ;

 x = 20 ;

Some common notation :- lvalue -- left hand side of an assignment operation

 rvalue -- right hand side of an assignment operation

Type Conversions :- the value of the rvalue of an assignment is converted to the type of the lvalue.

This may sometimes yield compiler warnings if information is lost in the conversion.

For Example :-

int x ;

char ch ;

float f ;

ch = x ; /* ch is assigned lower 8 bits of x, the remaining

bits are discarded so we have a possible

information loss */

x = f ; /* x is assigned non fractional part of f only

within int range, information loss possible */

f = x ; /* value of x is converted to floating point */

11

Multiple assignments are possible to any degree in C, the assignment operator has right to left

associativity which means that the rightmost expression is evaluated first.

For Example :-
 x = y = z = 100 ;

In this case the expression z = 100 is carried out first. This causes the value 100 to be placed in z

with the value of the whole expression being 100 also. This expression value is then taken and

assigned by the next assignment operator on the left i.e. x = y = (z = 100);

Arithmetic Operators

+ - * / same rules as mathematics with * and / being evaluated before + and -.

% modulus / remainder operator

For Example :-

int a = 5, b = 2, x ;

float c = 5.0, d = 2.0, f ;

x = a / b ; // integer division, x = 2.

f = c / d ; // floating point division, f = 2.5.

x = 5 % 2 ; // remainder operator, x = 1.

x = 7 + 3 * 6 / 2 - 1 ;// x=15,* and / evaluated ahead of + and -.

Note that parentheses may be used to clarify or modify the evaluation of expressions of any type in C

in the same way as in normal arithmetic.

x = 7 + (3 * 6 / 2) - 1 ;// clarifies order of evaluation without penalty

x = (7 + 3) * 6 / (2 - 1) ;// changes order of evaluation, x = 60 now.

Mixed-Type Assignment Statement

m = 3;

n = 2;

p = 2.0;

x = m / p; /*int/double results double */

y = m / n; /*int/int reslts an int number, since y is a double

variable the result will be saved as a double format 1.0*/

12

x = 9 * 0.5; // x is a double variable

n = 9 * 0.5; // n is an it variable

Type Conversion through Casts

C allows the programmer to convert the type of an expression by placing the desired

type in parentheses before the expression, an operation called a type cast.

Syntax : (type) expression

For example, if we have an integer x, and we wish to use floating point division in the expression x/2

we might do the following

 (float) x / 2

which causes x to be temporarily cast to a floating point value and then implicit casting causes the

whole operation to be floating point division.

The same results could be achieved by stating the operation as
 x / 2.0

which essentially does the same thing but the former is more obvious and descriptive of what is

happening.

Increment and Decrement Operators

13

There are two special unary operators in C, Increment ++, and Decrement --, which cause the variable

they act on to be incremented or decremented by 1 respectively.

For Example :-
 x++ ; /* equivalent to x = x + 1 ; */

++ and -- can be used in prefix or postfix notation. In prefix notation the value of the variable is

either incremented or decremented and is then read while in postfix notation the value of the variable

is read first and is then incremented or decremented.

For Example :-
int i, j = 2 ;

i = ++ j ; /* prefix :- i has value 3, j has value 3 */

i = j++ ; /* postfix :- i has value 3, j has value 4 */

Special Assignment Operators

Many C operators can be combined with the assignment operator as shorthand notation

For Example :-
 x = x + 10 ;

can be replaced by
 x += 10 ;

Similarly for -=, *=, /=, %=, etc.

These shorthand operators improve the speed of execution as they require the expression, the variable

x in the above example, to be evaluated once rather than twice.

Relational Operators

The full set of relational operators are provided in shorthand notation

 > >= < <= == !=

For Example :-
 if (x == 2)

 printf(“x is equal to 2\n”) ;

Logical Operators

 && -- Logical AND

 | | -- Logical OR

 ! -- Logical NOT

For Example :-

if (x >= 0 && x < 10)

 printf(“x is greater than or equal to zero and less than

ten.\n”) ;

NB : There is no Boolean type in C so TRUE and FALSE are deemed to have the following

meanings.

 FALSE -- value zero

 TRUE -- any non-zero value but 1 in the case of in-built relational operations

14

For Example :-

 2 > 1 -- TRUE so expression has value 1

 2 > 3 -- FALSE so expression has value 0

 i = 2 > 1 ; -- relation is TRUE -- has value 1, i is assigned value 1

NB : Every C expression has a value. Typically, we regard expressions like 2 + 3 as the only

expressions with actual numeric values. However, the relation 2 > 1 is an expression which evaluates

to TRUE so it has a value 1 in C. Likewise if we have an expression x = 10 this has a value which in

this case is 10 the value actually assigned.

Sizeof Operator

The sizeof operator gives the amount of storage, in bytes, associated with a variable or a type

(including aggregate types as we will see later on).

The expression is either an identifier or a type-cast expression (a type specifier enclosed in

parentheses).

Syntax : sizeof (expression)

For Example :-
int x , size ;

size = sizeof (x) ;

printf(“The integer x requires %d bytes on this machine”, size);

printf(“Doubles take up %d bytes on this machine”, sizeof (

double)) ;

Precedence of Operators

When several operations are combined into one C expression the compiler has to rely on a strict set

of precedence rules to decide which operation will take preference. The precedence of C operators is

given below.

Precedence Operator Associativity

Highest () [] . left to right

 ! ++ -- +(unary) -(unary) (type) * & sizeof right to left

 * / % left to right

 + - left to right

 < <= > >= left to right

 == != left to right

 && left to right

 || left to right

 = += -= *= /= %= right to left

Operators at the top of the table have highest precedence and when combined with other operators at

the same expression level will be evaluated first.

15

File I/O

Input and output to and from files is identical to that at the command line, except the fprintf and

fscanf functions are used and they require another argument. This additional argument is called a
file pointer.

In order to write two floating point numbers to a file

1. First you need to declare the file pointer with the FILE type

2. open the file

3. use the fprintf function to write in the file

float x=1, y=2;

FILE *file;

file = fopen(‘‘file.txt’’,’’w’’);

fprintf(file,’’%f %f\n’’,x,y);

fclose(file);

16

The function fprintf is identical to the printf function, except now we see it has another

argument: “file”, which is a pointer to the file. Before you use the file variable, you need to open the

file with
file = fopen(“file.txt”,”w”);

This opens up the file ‘‘file.txt’’ and the ‘‘w’’ which is the mode and indicates how the file will be

used. The following three modes are allowed:

Mode String

Open for reading “r”

Open for writing “ w”

When you are done with the file, you close it with
fclose(file);

The ‘‘r’’ mode is used when you would like to open a file for reading. To read two floating point

numbers from a file, you would use the fscanf function, which is identical to scanf, except that it

takes the file pointer as its first argument, as in

float x, y;

FILE *file;

file = fopen(‘‘file.txt’’,’’r’’);

fscanf(file,’’%f %f\n’’,&x,&y);

fclose(file);

You can check to make sure your files are opened correctly (that is, that they exist), by checking to

make sure file is not the predefined NULL pointer. We’ll discuss this pointer in more detail later, but

for now, to ensure that your file was opened correctly, you use

if(!file)

printf(‘‘File did not open correctly!\n’’);

Exercises

1. Write a program to check what the following code segment outputs and explain the results.

char c ;

printf("sizeof(c) = %d\n", sizeof(c)) ;

printf("sizeof('a') = %d\n", sizeof('a')) ;

printf("sizeof(c = 'a') = %d\n", sizeof(c='a')) ;

2. Write a program which reads a character from the keyboard and writes out its ASCII

representation.

Now write a program which reads in an integer from the keyboard and print out its character

representation. Make certain you carry out appropriate bounds / error checking.

3. Describe the output from each of the following statements.

i. printf(“%-10d\n”, 10000) ;
ii. printf(“%8.3f\n”, 23.234) ;

iii.printf(“%+*.*lf\n”, 10, 3, 1234.234) ;

iv. printf(“%d\n”, 16) ;

4. What value does x contain after each of the following where x is of type float.

i. x = 7 + 3 * 6 / 2 - 1 ;

17

ii. x = 2 % 2 + 2 * 2 - 2 / 2 ;
iii. x = (3 * 9 * (3 + (4 * 5 / 3))) ;
iv. x = 12.0 + 2 / 5 * 10.0 ;
v. x = 2 / 5 + 10.0 * 3 - 2.5 ;

vi. x = 15 > 10 && 5 < 2 ;

5. Write a program to read Fahrenheit temperatures and print them in Celsius. The formula is

6. C = (5/9)(F - 32). Use variables of type double in your program.

7. Write a program that reads in the radius of a circle and prints the circle’s diameter,

circumference and area. Use the value 3.14159 for “pi”.

18

Chapter 2: Top-Down Design with Functions

In programming, a function is a segment that groups a set of code statements in a given order and that

can be referenced by a unique name to perform a specific task.

A C program has at least one function main(). Without main() function, there is technically no C

program.

Types of C functions

There are two types of functions in C programming:

 Library function

 User defined function

Library functions

C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations.

Examples of using C Library functions:

1. Square root function

19

#include <stdio.h>

#include <math.h>

int main(){

 float num,root;

 printf("Enter a number to find square root.");

 scanf("%f",&num);

 root=sqrt(num);/* Computes the square root of num and stores

in root. */

 printf("Square root of %.2f=%.2f",num,root);

 return 0;

}

Output
Enter a number to find square root.12

Square root of 12.00=3.46

2. Power function

#include <stdio.h>

#include <math.h>

int main ()

{

 printf("Value 8.0 ^ 3 = %lf\n", pow(8.0, 3));

 printf("Value 3.05 ^ 1.98 = %lf", pow(3.05, 1.98));

 return(0);

}

Output:
Value 8.0 ^ 3 = 512.000000

Value 3.05 ^ 1.98 = 9.097324

3. More Examples

#include <stdio.h>

#include <math.h>

int main()

{

 float result,value;

 printf("Input a float value: ");

 scanf("%f",&value);

 result = sqrt(value);

 printf("The square root of %.2f is %.2f\n", value,result);

 result = pow(value,3);

 printf("%.2f to the 3rd power is %.2f\n", value,result);

 result = floor(value);

 printf("The floor of %.2f is %.2f\n", value,result);

 result = ceil(value);

 printf("And the ceiling of %.2f is %.2f\n", value,result);

 return(0);

}

Output:
Input a float value: 9.3

The square root of 9.30 is 3.05

9.30 to the 3rd power is 804.36

The floor of 9.30 is 9.00

And the ceiling of 9.30 is 10.00

20

User defined functions

C allows programmer to define their own function according to their requirement. These

types of functions are known as user-defined functions. Suppose, a programmer wants to

find factorial of a number and check whether it is prime or not in same program. Then,

he/she can create two separate user-defined functions in that program: one for finding

factorial and other for checking whether it is prime or not.

Syntax : return_type function_name (parameter_list)

 {

 body of function ;

 }

Example of user-defined function

Write a C program to find the area of a circle. Make a function to find the area and display the

result in main() function.

Function Prototype (declaration)

When writing programs in C it is normal practice to write the main() function first and to position

all user functions after it or indeed in another file. Thus if a user function is called directly in

main() the compiler will not know anything about it at this point i.e. if it takes parameters etc.

This means we need to give the compiler this information by providing a function prototype or

declaration before the function is called.

Syntax : return_type function_name (parameter_list);

This declaration simply informs the compiler what type the function returns and what type and

how many parameters it takes. Names may or may not be given to the parameters at this time.

21

For Example :- “Hello World” program.

 #include <stdio.h> /* standard I/O function prototypes */

 void hello() ; /* prototype */

 void main(void)

 {

 hello () ; // function call

 }

 void hello () // function definition

 {

 printf ("Hello World \n") ;

 }

Function Definition

The prototype tells the compiler what arguments the function takes and what it returns, but not

what it does. We define our own functions just like we do the main function

 Function Header – The same as the prototype, except it is not ended by the symbol ;

 Function Body – A code block enclosed by {}, containing variable declarations and

executable statements. In the function body, we define what actually the function does.

Function Call

To use a function, you will have to call that function to perform the defined task.

When a program calls a function, the program control is transferred to the called function. A

called function performs a defined task and when its return statement is executed or when its

function-ending closing brace is reached, it returns the program control back to the main

program.

 To call a function, you simply need to pass the required parameters along with the

function name, and if the function returns a value, then you can store the returned value.

One more Example:

22

Types of User-defined Functions

For better understanding of arguments and return type in functions, user-defined functions can be

categorized as:

1. Function with no arguments and no return value

2. Function with no arguments and return value

3. Function with arguments but no return value

4. Function with arguments and return value.

The following program aims to find the rectangle area. I’ll use this example to explain all

types of functions.

#include<stdio.h>

int main()

{

 double lenght, width, area;

 printf("please enter length and wedth for the rectangle\n");

 scanf("%lf%lf",&lenght,&width);

 area = lenght*width;

 printf("The rectangle area is %f\n",area);

 return 0;

}

1. Function with no arguments and no return value

void find_Area () // Function Header

{ // open brace

 double lenght, width, area;

 printf("please enter length and wedth for the rectangle\n");

 scanf("%lf%lf",&lenght,&width);

 area = lenght*width;

 printf("The rectangle area is %f\n",area);

} // close brace

How to use function 1?

You have to declare the function prototype at the beginning of the program (same return

data type, function name and number of parameters, then add semicolon(;)).
void find_Area(); // Function prototype

In the main function; since the function has no return data, so just put the function name

and () to call the function.
find_Area(); // Function Call

See the following code …

http://www.programiz.com/c-programming/types-user-defined-functions#no_no
http://www.programiz.com/c-programming/types-user-defined-functions#no_yes
http://www.programiz.com/c-programming/types-user-defined-functions#yes_no
http://www.programiz.com/c-programming/types-user-defined-functions#yes_yes
http://www.programiz.com/c-programming/types-user-defined-functions#no_no

23

#include<stdio.h>

void find_Area(); // Function prototype

int main()

{

 find_Area(); // Function Call

 return 0;

}

/*function definition */

void find_Area() // Function Header

{

 double lenght, width, area;

 printf("please enter length and wedth for the rectangle\n");

 scanf("%lf%lf",&lenght,&width);

 area = lenght*width;

 printf("The rectangle area is %f\n",area);

}

2. Function with no arguments and return value

#include<stdio.h>

double find_Area();

int main()

{

 double a = find_Area(); // the function returns the area and

save it to the a variable

 printf("The rectangle area is %f\n", a);

 return 0;

}

double find_Area()

{

 double lenght, width, area;

 printf("please enter length and wedth for the rectangle\n");

 scanf("%lf%lf",&lenght,&width);

 area = lenght*width;

 return area;

}

How to use function 2?

1. Don’t forget to add the function prototype.

2. Declare a variable with same type of the returned data (i.e., the function returns area,

area is a double, so you have to declare ‘a’ as double…).

3. Assign the value returned by the function to the declared variable (a).
 double a = find_Area();

OR you can call it directly in the printf function if you don’t need to use the returned

value from the function.

printf("The rectangle area is %f\n", find_Area());

3. Function with arguments but no return value

#include<stdio.h>

void find_Area(double l, double w);

int main()

{

 double length, width;

 printf("please enter length and wedth for the rectangle\n");

 scanf("%lf%lf",&length,&width);

 find_Area(length,width);

 return 0;

http://www.programiz.com/c-programming/types-user-defined-functions#no_yes
http://www.programiz.com/c-programming/types-user-defined-functions#yes_no

24

}

void find_Area(double l, double w)

{

 double area;

 area = l*w;

 printf("The rectangle area is %f\n“, area);

}

How to use function 3?

1. After declaring the function prototype before the main() function…

2. Write the function name in the main function and Pass values to the function be

assigned to each parameter.

4. Function with arguments and return value.

#include<stdio.h>

double find_Area(double l, double w);

int main()

{

 double length, width;

 printf("please enter length and wedth for the rectangle\n");

 scanf("%lf%lf",&length,&width);

 double a = find_Area(length,width);

 printf("The rectangle area is %f\n",a);

 return 0;

}

double find_Area(double l, double w)

{

 double area;

 area = l*w;

 return area;

}

How to use function 3?

1. After declaring the function prototype before the main() function…

2. Declare a variable with same type of the returned data; double in this example.

3. Assign the value returned by the function to the declared variable (a).

4. Pass values to the function be assigned to each parameter.

5. In this function we have two parameters, so we have to pass two double

values, the values may be constants (1, 2.3, 4 etc.) or can be passed by

variables (x, i).

http://www.programiz.com/c-programming/types-user-defined-functions#yes_yes

25

Example:

Write a complete C program that finds the maximum between two numbers. Use function to find the max.

#include <stdio.h>

/* function declaration */

int max(int num1, int num2);

int main () {

 /* local variable definition */

 int a = 100;

 int b = 200;

 int ret;

 /* calling a function to get max value */

 ret = max(a, b);

 printf("Max value is : %d\n", ret);

 return 0;

}

/* function returning the max between two numbers */

int max(int num1, int num2) {

 /* local variable declaration */

 int result;

 if (num1 > num2)

 result = num1;

 else

 result = num2;

 return result;

}

Another example to show you what’s happened to the computer memory when using functions:

26

Exercises

1. Write a program that can convert temperatures from the Fahrenheit scale to Celsius and back.

The relationship is C = (5/9)(F - 32). Your program should read a temperature and which

scale is used and convert it to the other, printing out the results. Write one or more functions to

carry out the actual conversion.

2. Write a program that reads in the radius of a circle and prints the circle’s diameter,

circumference and area. Write functions for appropriate logical tasks in your program. You

should #define all appropriate constants in your program.

27

Chapter 4: Selection Structures, if and switch Statements

Introduction

In a procedural language (Like C), the flow of execution is determined by the control

structures of the program. All programs can be written using these three control structures:

 Sequence

 Selection (if and switch)

 Repetition (for, while and do-while)

 Sequential flow is specified by a compound statement, consisting of a group of statements in

a block, delimited by braces:

 {

 statement1;

 statement2;

 .

 .

 statementn;

 }

 A selection structure allows for choice among alternative statements, and a repetition

structure allows an action to be repeated while some condition remains true, as depicted in the

flowcharts below. We will study these structures in details.

condition
Yes No

action-1 action-2 condition

No

action
Yes

Selection structure Repetition structure

28

Selection Structure

C provides a few versions of the selection structure: one-way branch, two-way branch,

and multi-way branch.

Relational and Equality Operators

Most conditions that we use to perform comparisons will have one of these forms:

variable relational-operator variable

variable relational-operator constant

variable equality-operator variable

variable equality-operator constant

Example:

Logical Operators

&& -- Logical AND

| | -- Logical OR

! -- Logical NOT

29

A ! A B A && B A || B

T F T T T

T F F F T

F T T F T

F T F F F

Operator Precedence

Example

The ‘if’ statement

The ‘if’ statement allows some action to be taken when a condition is met. The action could

be a single statement, or a compound statement that comprises a number of statements. The

syntax for an ‘if’ construct with a single-statement action is

 if (expression)

 statement;

30

If the expression is nonzero (true), then statement is executed; otherwise, statement is skipped

and control passes to the next statement in the program.

 For example,

 fine = 20;

 if (speed > 50)

 fine += 10;

 printf("Fine is %d\n", fine);

 Here, ‘fine’ will remain at 20 if the condition (speed > 50) is false. Otherwise, ‘fine’ will be

increased to 30.

Compound-statement Action

Sometime, the course of action we want to take when the ‘if’ condition is true consists of a

compound statement (a sequence of statements). In this case, we use the braces to mark off

the compound statement. The syntax is hence:

if (expression)

{

 compound-statement;

}

Flags

Making use of the fact that zero is false and non-zero value is true, we could save a few

keystrokes in some cases.

For example, suppose ‘attended’ is an integer variable to indicate if a student has attended a

course. It contains zero if he has not attended, or 1 if he has. Such a variable that stores zero

or 1 is known as a flag. Suppose ‘attendance’ is an integer variable that counts the number

of students in a course. A code fragment could look like this (this code is most likely within a

loop in order to perform the counting):

if (attended == 1)

 attendance++;

The above could be replaced by:

if (attended)

 attendance++;

which achieves the same result. Why?

 Similarly, if we want to count the number of absentees, we could have:

 if (attended == 0)

 {

 absentees++;

 printf("One more absentee.\n");

 }

or this shorter version favoured by experienced programmers:

 if (!attended){

 absentees++;

 printf("One more absentee.\n");

 }

31

BE Careful when naming the flag … use a meaningful name …

Nested ‘if’ statements

Since an ‘if’ construct is a statement, it can appear in the body of another ‘if’ construct. This

gives rise to nested ‘if’ statements, as shown below:

 if (exam >= 80)

 if (project >= 90)

 grade = 'A';

 The above code could also be written using a single ‘if’ construct with compound condition:

 if (exam >= 80 && project >= 90)

 grade = 'A';

Lazy (short-circuit) evaluation

The evaluation stops as soon as the value of the logical expression can be determined. The

evaluation is carried out from left to right.

 In the example above, if the expression (exam >= 80) is false, the second expression (project

>= 90) would not need to be evaluated, since the whole compound condition is false.

 Similarly, for a compound logical expression like this:

 if (bank_bal < 0.0 || expenses > 100.0)

 printf("Red alert!\n");

 If bank_bal is less than 0.0, the whole condition is true, and so the second logical expression

need not be evaluated.

Common Mistakes

1. Floating-point numbers are inexact. Hence, you should not use the equality (==) or

the inequality (!=) test on floating-point numbers. In testing for equality, compute the

difference of the two values instead and check that the difference is small enough. In

testing for inequality, you may compute the difference and check that it exceeds a

threshold, or you may simply use other relational operators like <, <=, >, >=

depending on the situation.

2. The equality (==) operator is often mixed up with the assignment (=) operator, and

that could result in hard-to-spot errors. Some beginners also tend to omit the

parentheses around the condition.

3. It is a mistake to put a semicolon after the condition, like this:

 if (a > b);

 printf("a is larger than b\n");

This would create an empty statement for the ‘if’ construct. The printf() statement is

now outside the ‘if’ construct, and thus it will be executed regardless of the truth value

of the ‘if’ condition.

32

The ‘if-else’ Construct

The ‘if-else’ construct provides a two-way branch in which one of the two alternative paths is

taken depending on the truth value of the condition. The format of the ‘if-else’ construct is:

 if (expression)

 statement1 ;

 else

 statement2 ;

or, with compound-statement actions, we have:
 if (expression){

 compound-statement1 ;

 }

 else{

 compound-statement2 ;

 }

 For example,
if (count == 0)

ave = 0.0;

else

ave = (float) total/count;

if (score1 < score2){

better_score = score2;

printf("score2 is better\n");

}

else{

better_score = score1;

printf("score1 is better\n");

}

 The use of ‘if-else’ avoids redundant code such as this:

 if (count == 0)

 ave = 0.0;

 if (count != 0)

 ave = (float) total/count;

 In the above code, two conditions will have to be tested. Using the ‘if-else’ construct, only

one condition is necessary.

Logical Assignment for Flags

Consider this example where a flag ‘snr_citizen’ is assigned 1 to represent a senior citizen, or

zero to represent non-senior citizen:

 if (age >= 65)

 snr_citizen = 1;

 else

 snr_citizen = 0;

 In cases like this, we may write a single assignment statement without using the ‘if’

statement:

33

snr_citizen = (age >= 65);

 As another example, the code below sets the variable ‘even’ to 1 if n is even, or zero if n is

odd.

if (n % 2 == 0)

 even = 1;

else

 even = 0;

 The short form would be:

 even = (n % 2 == 0);

The statement is more succinct, and achieves the same purpose. You are encouraged to use

such form whenever appropriate.

Nested ‘if-else’ statements

Just as we have nested ‘if’ statements, we can also have nested ‘if-else’ statements. For

example:

 if (marks < 50)

 grade = 'F';

 else

 if (marks < 70)

 grade = 'B';

 else

 grade = 'A’;

 The fail grade is given if the marks fall below 50, and execution continues on to the next

statement after the ‘if’ construct (the whole code above is considered as one single compound

statement). Otherwise, the mark is compared to 70, and ‘B’ grade is awarded if it is below

70, or ‘A’ grade if it is above or equal to 70. A fuller version with more grades will be shown

later.

Example:

Show the output of the following code fragments:

int a = 1, b = 2;

if (a == 1)

if (b == 2)

 printf("***\n");

else

 printf("###\n");

int a = 1, b = 2;

if (a == 1)

 if (b == 2)

 printf("***\n");

 else

 printf("###\n");

 if (a == 1) {

 if (b == 2)

 printf("***\n");

 }

 else

 printf("###\n");

34

Let’s look at another example. The code below is wrong (division-by-zero error):

 if (a == 0)

 if (b == 0)

 printf("Both a and b are zeros.\n");

 else

 c = b/a;

 The ‘else’ is attached to the second (nearer) ‘if’, and so when a is zero and b non-zero, the

statement c = b/a will be carried out, resulting in a division-by-zero error.

 The correct code should be:

 if (a == 0) {

 if (b == 0)

 printf("Both a and b are zeros.\n");

 }

 else

 c = b/a;

 This code will not result in a division-by-zero error since the statement c = b/a will only be

executed when a is non-zero.

Conditional Operator (?:)

C provides the conditional operator which is the only ternary operator that takes three

operands. The operator with the operands forms a conditional expression with this syntax:

 condition ? expr1 : expr2

The first operand is the condition, the second operand is the value if the condition is true, and

the third operand is the value if the condition is false.

 For example,

max = (a > b ? a : b); This is equivalent to:

if (a > b)

 max = a;

else

 max = b;

 Similarly, the two pieces of code below are equivalent:

 if (marks < 50)

 printf("Failed\n");

 else

 printf("Passed\n");

AND …

 printf("%s\n", grade < 50 ? "Failed" : "Passed");

35

The ‘switch’ Construct

The ‘switch’ is a multi-way selection statement generalising the ‘if-else’ statement. The

syntax is as follows:

 switch (expression) {

 case v1: s1 ;

 break;

 case v2: s2 ;

 break;

 . . .

 default: sn ;

 break; /* optional break */

}

The value of the expression should be of type int or char ONLY.

After the expression is evaluated, control jumps to the appropriate ‘case’ label, and the

statements in si are executed. Usually, the last statement before the next case is a ‘break’

statement. If there is no ‘break’ statement, the execution will fall through to the next

statement in the succeeding case. There may be at most one default label in a ‘switch’

construct. The purpose of the default case is to capture cases that are not enumerated.

 Here is an example:

#include <stdio.h>

int main(void)

{

 char class; /* input-character indicating class of ship */

 /* Read first character of serial number */

 printf("Enter ship serial number> ");

 scanf("%c", &class); /* scan first letter */

 /* Display first character followed by ship class */

 printf("Ship class is %c: ", class);

 switch (class) {

 case 'B':

 case 'b': printf ("Battleship\n");

 break;

 case 'C':

 case 'c': printf ("Cruiser\n");

 break;

 case 'D':

 case 'd': printf ("Destroyer\n");

 break;

 case 'F':

 case 'f': printf ("Frigate\n");

 break;

 default : printf ("Unknown ship class %c\n",

 class);

 }

return (0);

}

36

Chapter 4: Repetition Structure (Loops)

A loop is a group of instructions that is repeatedly executed while some condition stays true.

An infinite loop is one that goes on forever, and that must be avoided.

There are basically two (general) types of loop control:

 counter-controlled repetition where the number of times of repetition is known

beforehand,

 sentinel-controlled repetition where the loop stops when a special sentinel value is

encountered, or when the terminating condition is met.

 C provides 3 loop constructs:

 while loop

 for loop

 do-while loop

The ‘while’ Construct

The ‘while’ statement is a pre-test condition-controlled loop construct. It has the form:

 while (expression)

 statement ;

The expression is the loop condition and it is evaluated. If it is non-zero (true), the statement

in the loop body is executed and control is then passed back to the beginning of the loop, and

the condition tested again. If it is zero (false), then the loop terminates and control is passed

to the next statement after the ‘while’ construct. It is possible that the loop body is not

executed at all, if the loop condition is false at entry.

 As usual, the loop body could be a compound statement, in which case it must be enclosed

in braces.

 The code below prints n asterisks across the screen.

 count_star = 0;

 while (count_star < n) {

 printf("*");

 count_star++;

 }

 Assuming that n is an integer variable that contains the value 5, the above code prints 5 *’s.

We say that the loop goes through 5 iterations. Trace the code.

 The code could be rewritten as follows:

 count_star = 0;

 while (count_star++ < n)

 printf("*");

Example: Write a C program that computes the sum of the first 100 positive integers.

int num = 1; /* declaration and */

int total = 0; /* initialisation */

while (num <= 100) {

http://www.programtopia.net/c-programming/docs/while-loop
http://www.programtopia.net/c-programming/docs/do-while-loop

37

 total += num;

 num++;

}

 If the num++ statement is removed, and the condition (num <=100) is changed to (num++

<=100), following the previous example, would the amended code compute the same result?

 Which of the following is/are equivalent to the example above?

int num = 1;

int total = 0;

while (num <= 100)

{

 total += num;

 ++num;

}

 int num = 1;

 int total = 0;

 while (num <=100)

 total+= num++;

 int num = 1;

 int total = 0;

 while (num <=100)

 total+= ++num;

 The variable num above serves as the loop control variable in the loop statement. The loop

control variable determines whether the loop should continue or terminate. The following

operations involving the loop control variable are required for a successful loop construct:

 Initialisation (Start from) – before the loop is entered, the loop control variable

must be initialised.

 Testing (Stop at) – condition involving the loop control variable is tested before

the start of each loop iteration; if condition is true, loop body is executed.

 Updating (Step) – loop control variable is updated during each iteration (usually

at the beginning or the end of the loop body).

Counter-control repetition and Sentinel-control repetition

When the number of iterations is known, a counter-control method is more appropriate. In

this method, a counter is used to keep track of the number of iterations.

 Sentinel-control is a more general approach. It is handy when the number of iterations

cannot be determined beforehand, such as reading a list of values without knowing how many

values are there. A special value, one that does not fall within the range of the data values,

might be chosen to indicate the end of the list.

 The code below illustrates counter-control repetition in summing a list of 10 values entered

by the user:

 #define N 10

 . . .

 total = 0;

 count = 1;

 while (count++ <= N) {

 printf("Enter score: ");

 scanf("%d", &score);

 total += score;

 }

 avg = (float) total / N;

 printf("Average is %.2f\n", avg);

38

The code below illustrates sentinel-control repetition. The sentinel value of –1 is chosen to

indicate the end of the list of scores.

 #define SENTINEL –1

 . . .

 total = 0;

 count = 0;

 printf("Enter a score, OR –1 to end: ");

 scanf("%d", &score);

 while (score != SENTINEL) {

 total += score;

 count++;

 printf("Enter a score, OR –1 to end: ");

 scanf("%d", &score);

 }

 if (count) {

 avg = (float) total/count;

 printf("Average is %.2f\n", avg);

 }

 else

 printf("No scores were entered\n");

The disadvantage of user-defined sentinel such as –1 above is that the chosen sentinel value

must not be a valid data. Hence, the range of valid values must be known first. If this is not

possible, then setting an arbitrary sentinel is taking a risk. The more general solution is to use

the system-defined end-of-file (EOF) character (Will be discussed later in this chapter).

The ‘do-while’ Construct

The ‘do-while’ statement is a loop structure with a post-test condition, in contrast to the pre-

test condition in the ‘while’ statement. A post-test condition loop structure means that the

condition is tested after the loop body. This implies that the loop body is executed at least

once.

 The syntax for the ‘do-while’ construct is as follows:

 do

 statement ;

while (expression);

Below are two examples that illustrate the use of ‘do-while’ constructs.

c = 1;

do {

 printf ("%d ", c);

}while (++count <= 10);

do {

 printf("Enter a letter A through E: ");

 scanf("%c", &letter);

 } while (letter < 'A' || letter > 'E');

39

The second example above shows the common technique to request for data repeatedly until

it is valid.

Flag-controlled Loops

When the loop condition becomes too complex, flags may be used to simplify the code, and

makes it easier to read and understand. Here is an example of a flag-controlled loop:

 valid = 1;

 while (valid) {

 printf("Enter a letter A thru E: ");

 scanf("%c", &letter);

 valid = (letter >= 'A' && letter <= 'E');

 }

The ‘for’ Construct

The ‘for’ statement is another pre-test condition-control loop structure. It provides a more

compact form for counter-controlled loops.

 The syntax of the ‘for’ construct is as follows:

 for(initialization; stopping-condition; update-expression)

statement ;

 The ‘for’ construct is equivalent to this ‘while’ construct:
initialisation;

while (stopping-condition) {

 statement;

 update-expression;

}

An example:

for (count_star = 0; /* init */

 count_star < N; /* condition */

 count_star++) /* update */

 printf ("*");

 The initialisation-expression and update-expression are often comma-separated lists of

expressions. The comma operator evaluates the list from left to right. For example,

 for (x = 1, total = 0; x <= 100; x++)

 total += x;

 In this case, the initialisation-expression consists of two expression, namely, x = 1 and total

= 0.

 Any of the three expressions in the ‘for’ header can be omitted, but the semi-colons must

remain. If the initialisation-expression is missing, then the loop does not perform any

initialisation steps before executing the loop body. You have to ensure that all essential

initialisation steps are done before the loop, as shown here:

40

 x = 1;

 total = 0;

 for (; x <= 100; x++)

 total += x;

If the update-expression is missing, the loop does not perform any update operation. Again,

you must ensure that the necessary update operations are done in the loop body.

 for (x = 1, total = 0; x <= 100;) {

 total += x;

 x++;

 }

If the loop-condition is missing, then the test is always true. This means that the following

loop is infinite:

 for (x = 1, total = 0; ; x++)

 total += x;

Common Mistakes

Here are a few common mistakes when it comes to programming loops.

 Adding a semi-colon at the wrong place. For instance, in this code:

 for (x = 1; x <= 10; x++);

 printf("%d\n", x);

as well as in this code:

 x = 1;

 while (x <= 10);

 printf("%d\n", x++);

the semi-colons at the end of the ‘for’ line and the ‘while’ line create empty statements, and

so the printf() statements no longer fall inside the loop body. What output do the above two

codes produce?

 Omitting semi-colons in the ‘for’ header, and mixing up semi-colons with commas, are also

quite common.

 Another common mistake is to execute the loop one more time or one fewer time than

desired. For example, the following code executes n+1 times (must be from 0 to n-1):

 for (count = 0; count <= n; ++count)

 sum += count;

The ‘break’ and ‘continue’ Statements

The ‘break’ and continue statements are used to alter the flow of control.

The ‘break’ statement: terminates a loop under some special condition

The ‘continue’ statement: skips a section of the loop body in an iteration.

The ‘break’ statement in a ‘switch’, ‘while’, ‘do-while’ or ‘for’ structure causes immediate

exit from the structure. The example below demonstrates the effect of a ‘break’ statement in

a loop body.

41

 #include <stdio.h>

 main()

 {

 int x;

 for (x = 1; x <= 10; x++) {

 if (x == 5)

 break; /* break loop only if x == 5 */

 printf("%d ", x);

 }

 printf("\nBroke out of loop at x == %d\n", x);

 return 0;

 }

 The code produces the output below:

 1 2 3 4

 Broke out of loop at x == 5

 The ‘continue’ statement in a ‘while’, ‘do-while’ or ‘for’ structure skips the remaining

statements in the body, to the next iteration of the loop, as shown below:

 #include <stdio.h>

 main()

 {

 int x;

 for (x = 1; x <= 10; x++) {

 if (x == 5)

 continue; /* skip remaining code in

 loop only if x == 5 */

 printf("%d ", x);

 }

 printf("\nUsed 'continue' to ");

 printf("skip printing the value 5\n");

 return 0;

 }

 The output for this code is:

 1 2 3 4 6 7 8 9 10

 Used 'continue' to skip printing the value 5

Example :- Write a C program to simulate a basic calculator.

#include <stdio.h>

int main()

{

 double num1, num2, result ;

 char op ;

 int flag, cont = 1;

 while (cont)

 {

 printf (" Enter number operator number\n") ;

 scanf ("%lf %c %lf", &num1, &op, &num2) ;

 flag = 1;

 switch (op)

 {

 case '+' : result = num1 + num2 ;

42

 break ;

 case '-' : result = num1 - num2 ;

 break ;

 case '*' : result = num1 * num2 ;

 break ;

 case '/' : if (num2 != 0.0) {

 result = num1 / num2 ;

 break ;

 }

 // else we allow to fall through for error message

 default : {

printf ("ERROR -- Invalid operation or

division by 0.0\n") ;

 flag = 0;

 }

 }

 if (flag)

 printf("%f %c %f = %f\n", num1, op, num2, result) ;

 printf("Do you want to continue? enter 1 or 0 to exit\n");

 scanf("%d",&cont);

 } /* while statement */

 return 0;

}

NB : The break statement need not be included at the end of the case statement body if it is logically

correct for execution to fall through to the next case statement (as in the case of division by 0.0) or to

the end of the switch statement (as in the case of default :).

Nested Loops and Combined Structures

Just as we have nested ‘if’ and ‘if-else’ statements, we could also build nested loops, or

combine selection structures with repetition structures.

 The following code use a nested ‘for’ loop to print a pattern of asterisks:

 for (i = 1; i <= 4; ++i) {

 for (j = 1; j <= 6; ++j)

 printf("*");

 printf("\n");

 }

 The output is 4 rows by 6 columns of *’s:

 What about this code?

 for (i = 1; i <= 4; ++i) {

 for (j = 1; j <= i; ++j)

 printf("*");

 printf("\n");

 }

43

 The output this time is:

 *

 **

 Another example:

 for (i = 1; i <= 6; ++i) {

 if (i <= 3)

 printf("%d", i);

 else

 for (j = 1; j <= i; ++j)

 printf("*");

 printf("\n");

 }

 The output is:

 1

 2

 3

 Knowing how to combine control structures is an essential skill in programming and solving

algorithmic problems. You need to have plenty of practice on this.

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int a=50;

 int i;

 for (i=2; i<=a;i+=2)

 {

 printf("%5d",i);

 if (i%5==0)

 printf ("\n");

 }

 return 0;

}

 2 4 6 8 10

 12 14 16 18 20

 22 24 26 28 30

 32 34 36 38 40

 42 44 46 48 50

Program ended with exit code: 0

44

#include <stdio.h>

#include <stdlib.h>

int isPrime(int x);

int main()

{

 for (int i=2;i<=50;i++)

 if(isPrime(i))

 printf("%d\t",i);

 return 0;

}

int isPrime(int x){

 int prime = 1;

 for(int j=2;j<x;j++)

 if(x%j==0)

 prime=0;

 return prime;

}

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Program ended with exit code: 0

#include<stdio.h>

int main()

{

 int n, c, k;

 printf("Enter number of rows\n");

 scanf("%d",&n);

 for (c = 1 ; c <= n ; c++){

 for (k = 1 ; k <= c ; k++)

 printf("*");

 printf("\n");

 }

 for (c = n - 2 ; c >= 0 ; c--){

 for (k = c ; k >= 0 ; k--)

 printf("*");

 printf("\n");

 }

 return 0;

}

Enter number of rows
9

*

**

**

*

Program ended with exit

code: 0

45

#include<stdio.h>

int main(){

 int row, c, n, temp;

 printf("Enter the number of rows in

pyramid of stars you wish to see ");

 scanf("%d",&n);

 temp = n;

 for (row = 1 ; row <= n ; row++){

 for (c = 1 ; c < temp ; c++)

 printf(" ");

 temp--;

 for (c = 1 ; c <= 2*row - 1 ; c++)

 printf("*");

 printf("\n");

 }

 return 0;

}

Enter the number of

rows in pyramid of stars

you wish to see 9

 *

Program ended with exit

code: 0

#include<stdio.h>

int main()

{

 int n, c, k, space, count = 1;

 printf("Enter number of rows\n");

 scanf("%d",&n);

 space = n;

 for (c = 1 ; c <= n ; c++){

 for(k = 1 ; k < space ; k++)

 printf(" ");

 for (k = 1 ; k <= c ; k++){

 printf("*");

 if (c > 1 && count < c){

 printf("A");

 count++;

 }

 }

 printf("\n");

 space--;

 count = 1;

 }

 return 0;

}

Enter number of rows
5

 *

 A

 *A*A*

 *A*A*A*

*A*A*A*A*

Program ended with exit

code: 0

46

#include <stdio.h>

#include <stdlib.h>

int main(){

 char i;

 for (i = 'A'; i<='Z';i++){

 printf("%4c",i);

 if (i%4==0)

 printf("\n");

 }

 return 0;

}

 A B C D

 E F G H

 I J K L

 M N O P

 Q R S T

 U V W X

 Y Z

Program ended with exit

code: 0

#include<stdio.h>

int main(){

 int n, c, k;

 printf("Enter number of rows\n");

 scanf("%d",&n);

 for (c = 1 ; c <= n ; c++){

 for(k = 1 ; k <= c ; k++)

 printf("*");

 printf("\n");

 }

 return 0;

}

Enter number of rows
8

*

**

Program ended with exit

code: 0

#include <stdio.h>

int main()

{

 int n, c, k = 2, j;

 printf("Enter number of rows\n");

 scanf("%d",&n);

 for (j = 1 ; j <= n ; j++){

 for (c = 1 ; c <= 2*n-k ; c++)

 printf(" ");

 k = k + 2;

 for (c = 1 ; c <= j ; c++)

 printf("* ");

 printf("\n");

 }

 return 0;

}

Enter number of rows
9

 *

 * *

 * * *

 * * * *

 * * * * *

 * * * * * *

 * * * * * * *

 * * * * * * * *

* * * * * * * * *

Program ended with exit

code: 0

47

End of file sentinel loop:

#include <stdio.h>

#include <stdlib.h>

int main()

{

 FILE *inp;

 char c;

 int sum =0, score, input_status;

 inp = fopen("score.txt","r");

 printf ("Scores\n");

 input_status = fscanf(inp,"%d",&score);

 while (input_status ==1)

 {

 // printf("end of file is %2d\n",EOF);

 //printf("input_status is %2d\n",input_status);

 printf("%5d\n",score);

 sum+=score;

 input_status = fscanf(inp,"%d",&score);

 }

 if (input_status==EOF)

 printf ("\n Sum of the scores is %d\n\n",sum);

 else

 {

 fscanf(inp,"%c",&c);

 printf ("Error at %c",c);

 }

 //printf("EOF at the last line is %5d\n",EOF);

 //printf("input_status at the last line

is%5d\n",input_status);

 fclose (inp);

 return 0;

}

48

Exercises

1. Write a program which prints out the ASCII values of all characters input at the keyboard

terminating only when the character `q' or `Q' is entered.

2. Write a program to keep count of the occurrence of a user specified character in a stream of

characters of known length (e.g. 50 characters) input from the keyboard. Compare this to the

total number of characters input when ignoring all but alphabetic characters.

4. Note: The ASCII values of 'A'...'Z' are 65...90 and 'a'...'z' are 97...122.

5. Write a program that allows the user to read a user specified number of double precision

floating point numbers from the keyboard. Your program should calculate the sum and the

average of the numbers input. Try and ensure that any erroneous input is refused by your

program, e.g. inadvertently entering a non-numeric character etc.

6. Write a program which simulates the action of a simple calculator. The program should take

as input two integer numbers then a character which is one of +,-,*,/,%. The numbers should

be then processed according to the operator input and the result printed out.

49

Chapter 5: Pointers

A pointer is a variable that is used to store a memory address. Most commonly the address is

the location of another variable in memory.

If one variable holds the address of another then it is said to point to the second variable.

In the following example, x is an integer variable that stored in a memory location of address

200.

Another example:

Address Value Variable

1000

1004 1012 ivar_ptr

1008

1012 23 ivar

1016

In the above illustration ivar is a variable of type int with a value 23 and stored at memory

location 1012. ivar_ptr is a variable of type pointer to int which has a value of 1012 and is

stored at memory location 1004. Thus ivar_ptr is said to point to the variable ivar and allows

us to refer indirectly to it in memory.

NB : It should be remembered that ivar_ptr is a variable itself with a specific piece of

memory associated with it, in this 32-bit case four bytes at address 1004 which is used to

store an address.

Pointer Variables

Pointers like all other variables in C must be declared as such prior to use.

Syntax : type *ptr_name ;

which indicates that ptr is a pointer to a variable of type type. For example

int *ptr ; declares a pointer ptr to variables of type int.

char *ch ; declares a pointer ch to variables of type char.

double *dblPtr declares a pointer dblPtr to variables of type double.

50

Pointer Operators * and &

& is a unary operator that returns the address of its operand which must be a variable.

For Example :-

 int *m ;

int count=125, i ;/* m is a pointer to int, count, i are

integers */

m = &count ;

The address of the variable count is placed in the pointer variable m.

The * operator is the complement of the address operator & and is normally termed the

indirection operator. Like the & operator it is a unary operator and it returns the value of the

variable located at the address its operand stores.

For Example :-
 i = *m ;

assigns the value which is located at the memory location whose address is stored in m, to the

integer i. So essentially in this case we have assigned the value of the variable count to the

variable i. The final situation is illustrated below.

125 125 1000

1000 1724 1824

count mi

indirect ion

A pointer may also be initialised to 0 (zero) or NULL which means it is pointing at nothing.

NB : NULL is #defined in <stdio.h>.

For Example :-
 int var1, var2 ;

 int *ptr1, *ptr2 = &var2 ;

 int *ptr3 = NULL ;

 ...

 ptr1 = &var1 ;

ptr1 and ptr2 are now pointing to data locations within the program so we are free to

manipulate them at will i.e. we are free to manipulate the piece of memory they point to.

Pointers Examples:

51

#include <stdio.h>

int main() {

 int y=2;

 int *p;

 p = &y;

 printf ("y address is %p \n",&y);

 printf ("y address is %p \n“,p);

 printf ("y value is %d \n",y);

 printf ("y value is %d \n",*p);

 return 0;

}

Like other variables, always initialize pointers before using them!!!

For example:

#include<stdio.h>

int main()

{

 int x;

 int *p;

 scanf("%d",p); /*Incorrect … the pointer is not

initialized*/

 p = &x;

 scanf("%d",p); /* Correct */

printf("%d",x);

}

You can use pointers to access the values of other variables. To do this, use the * operator

(dereferencing operator).

#include<stdio.h>

int main()

{

 int n, m=3, *p;

 p= &m;

 n=*p;

 printf ("%d\n", n); // prints 3

 printf("%d\n",*p); // also prints 3

}

NB: *p = *(&y)=*(0022FF44)= y = 2

52

Another Example

#include<stdio.h>

int main()

{

 int m= 3, n=100, *p;

 p= &m;

 printf("m is %d\n",*p);

 m++;

 printf("now m is %d\n ",*p);

 p= &n;

 printf("n is %d\n",*p);

 p= 500; / *p is at the left of "= " */

 printf ("now n is %d\n ", n);

 return 0;

}

Pointers as Function Parameters (Call by Reference)

In the following example we want to exchange the values of two integer variables:

#include <stdio.h>

void swap(int, int);

int main()

{

 int a, b ;

 printf("Enter two numbers\n") ;

 scanf("%d%d", &a, &b) ;

 printf("Before swap function a = %d ; b = %d \n", a, b) ;

 swap(a, b) ;

 printf("After swap function a = %d ; b = %d \n", a, b) ;

 return 0;

}

void swap (int a, int b)

{

 int temp ;

 temp = a ;

 a = b;

 b = temp ;

 printf("In swap function a = %d ; b = %d \n", a, b) ;

}

As you can see in the previous example values of a and b are not changed in the main, while

they changed in the function!! SO: When we wanted to swap two values using a function we

were unable to actually swap the calling parameters as the call by value standard was

employed. The solution to the problem is to use call by reference which is implemented in C

by using pointers as is illustrated in the following example.

53

#include <stdio.h>

void swap(int*, int*);

void main()

{

 int a, b ;

 printf("Enter two numbers") ;

 scanf(" %d %d ", &a, &b) ;

 printf("a = %d ; b = %d \n", a, b) ;

 swap(&a, &b) ;

 printf("a = %d ; b = %d \n", a, b) ;

}

void swap (int *ptr1, int *ptr2)

{

 int temp ;

 temp = *ptr2 ;

 *ptr2 = *ptr1 ;

 *ptr1 = temp ;

}

The swap() function is now written to take integer pointers as parameters and so is called

in main() as
 swap(&a, &b) ;

where the addresses of the variables are passed and copied into the pointer variables in the

parameter list of swap(). These pointers must be de-referenced to manipulate the values, and

it is values in the same memory locations as in main() we are swapping unlike the previous

version of swap where we were only swapping local data values.

In our earlier call-by-value version of the program we called the function from main() as

swap(a,b); and the values of these two calling arguments were copied into the formal

arguments of function swap.

In our call-by-reference version above our formal arguments are pointers to int and it is the

addresses contained in these pointers, (i.e. the pointer values), that are copied here into the

formal arguments of the function. However when we de-reference these pointers we are

accessing the values in the main() function as their addresses do not change.

You can see what is happening when you make a call to the swap function with a = 20 and b

= 10.
swap(&a, &b) ;

54

Another Eample:

#include <stdio.h>

void min_max(int, int, int*, int*);

int main()

{

 int x,y;

 int small,big;

 printf("Two integers: ");

 scan f (" %d %d" , &x , &y);

 min_max(x,y,&small,&big);

 printf("%d < = %d", small, big);

 return 0;

}

void min_max(int a, int b, int *min, int *max)

{

 if (a> b){

 *max= a;

 *min= b;

 }

 else{

 *max=b;

 *min=a;

 }

}

Example: give the output of the following program.

#include <stdio.h>

void sum(int a, int b, int *cp);

int main(void)

{

 int x, y, z;

 x = 5; y = 3;

 printf(" x y z \n\n");

 sum(x, y, &z);

 printf("%4d%4d%4d\n", x, y, z);

 sum(y, x, &z);

 printf("%4d%4d%4d\n", x, y, z);

 sum(z,y, &x);

 printf("%4d%4d%4d\n", x, y, z);

 sum(z, z, &x);

 printf("%4d%4d%4d\n", x, y, z);

 sum(y, y, &y);

 printf("%4d%4d%4d\n", x, y, z);

 return (0);

}

void sum(int a, int b, int *cp)

{

 *cp = a + b;

}

55

Chapter 6: Arrays

An array is a collection of variables of the same type that are referenced by a common name.

Specific elements or variables in the array are accessed by means of an index into the array.

In C all arrays consist of contiguous memory locations. The lowest address (0) corresponds to

the first element in the array while the largest address corresponds to the last element in the

array.

C supports both single and multi-dimensional arrays.

Single Dimension Arrays

Syntax : type array_name[size] ;

where type is the type of each element in the array, var_name is any valid C identifier, and

size is the number of elements in the array which has to be a constant value.

NB : In C all arrays use zero as the index to the first element in the array.

For Example :-
 int array[5] ;

which we might illustrate as follows for a 32-bit system where each int requires 4 bytes.

array[0]

12 locn 1000

array[1]

-345 locn 1004

array[2]

342 locn 1008

array[3]

-30000 locn 1012

array[4]

23455 locn 1016

NB: The valid indices for array above are 0 .. 4, i.e. 0 .. size – 1.

NB: The array name is a pointer to the first element in the array. Array => &Array[0]

Initialising Arrays

Arrays can be initialised at time of declaration in the following manner.

 type array[size] = { value list };

For Example :-

56

 int i[5] = {1, 2, 3, 4, 5 } ;

Or you can initialize each element individually.

 i[0] = 1, i[1] = 2, etc.

The size specification in the declaration may be omitted which causes the compiler to count

the number of elements in the value list and allocate appropriate storage.

For Example :- int i[] = { 1, 2, 3, 4, 5 } ;

For Example :- To read an array with values 0 .. 99
int x[100] ;

int i ;

for (i = 0; i < 100; i++)

 x[i] = i ;

Arrays should be viewed as just collections of variables so we can treat the individual

elements in the same way as any other variables. For example, we can obtain the address of

each one as follows to read values into the array

for (i = 0; i < 100; i++) {

 printf("Enter element %d", i + 1) ;

 scanf("%d\n", &x[i]) ;

}

NB : Note the use of the printf statement here. As arrays are normally viewed as starting with

index 1 the user will feel happier using this so it is good policy to use it in “public”.

Arrays as arguments to functions

In C it is impossible to pass an entire array as an argument to a function -- instead the address

of the array is passed as a parameter to the function. (In time we will regard this as a pointer).

For Example :-
 void main()

 {

 int array[20] ;

 func1(array) ;/* passes pointer to array to func1 */

 }

Since we are passing the address of the array the function will be able to manipulate the

actual data of the array in main(). This is call by reference as we are not making a copy of the

data but are instead passing its address to the function. Thus the called function is

manipulating the same data space as the calling function.

57

func1

x

main()

array
refers to data

at address 1000

data at

address 1000
no data here

In the function receiving the array the formal parameters can be declared in one of three

almost equivalent ways as follows :-

 As a sized array :

 func1 (int x[10]) {

 ...

 }

 As an unsized array :

 func1 (int x[]) {

 ...

 }

 As an actual pointer

 func1 (int *x) {

 ...

 }

All three methods are identical because each tells us that in this case the address of an array of

integers is to be expected (passed from main).

For Example :- Program to calculate the average value of an array of doubles.

#include <stdio.h>

void read_array(double array[], int size) ;

double mean(double array[], int size) ;

void main()

{

 double data[100] ;

 double average ;

 read_array(data, 100) ;

 average = mean(data, 100) ;

 printf("Average is %f \n",average);

}

void read_array(double array[], int size)

{

 int i ;

 for (i = 0; i<100; i++) {

 printf(“\nEnter data value %d : i + 1);

 scanf(“%lf”, &array[i] ;

}

double mean(double array[], int size)

{

 double total = 0.0 ;

 int count = size ;

58

 while (count--) // size is a local variable which we

can

 // use at will

 total += array[count] ;

 return (total / size) ;

}

Searching an element in the array (Linear Search):

Given a one-dimensional array and some value x, check

wither x is in the array or not. If the element is found, the

position (i.e., "index") of x in the array is returned, or -1 if x

does not appear in the array. One option would be to use a

linear search. In a linear search, we compare x (which we

call the "key") with each element in the array list, starting at

one end and progressing to the other. Graphically, we can

imagine the following comparisons being made:

Function:
int Linear_search (int a[], int size, int key)

{

 int i;

 for(i=0;i<size;i++)

 if(a[i]==key)

 return i;

 return -1;

}

59

Sorting an Array
Selection Sort:

Bubble Sort

Bubble Sort is a sorting algorithm which compares two adjacent elements and swap them if they are

not in the right order. To sort the entire array, the array is traversed n-1 time (array having n

elements). These are called passes, In the first pass the largest element moves to the last position

(sorting in ascending order). So if the original (unsorted) array is:

http://www.google.ps/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&ved=0ahUKEwjFyajt49vMAhVMlxQKHW3RCD8QjRwIBw&url=http%3A%2F%2Fslideplayer.com%2Fslide%2F4969303%2F&psig=AFQjCNE0thJvvsOY6wXQCBrBdT7oi1dX-Q&ust=1463391382004846

60

void bubble_sort(int array[], int n){

 int temp, j, i;

 for (i = 0; i<n-1; i++){

 for (j=i+1; j< n; j++)

 if (array[i] < array[j])

 {

 temp = array[i];

 array[i] = array[j];

 array[j] = temp;

 }

 }

}

Array Example

Write a complete C program that does the following functionalities. Write a function for each one

and call it in the main.

1. Fill array elements from the keyboard

2. Print array elements

3. Find the summation of two arrays (print sum array in main).

4. Find the maximum value in the array (print it in main)

5. Search the array for a specific key.

6. Sort the array in ascending order.

#include <stdio.h>

#include <stdlib.h>

void read_array(int a[], int s);

void print_array (int a[], int s);

void sum_arr(int a1[],int a2[], int aSum[],int s);

int find_Max(int ar[], int s);

int search_arr(int ar[], int s, int k);//searching array

void sort_array(int a[], int s);

int main(){

 int size;

 printf ("Please enter the size of the array\n");

 scanf("%d",&size);

 int arr[size];

 int arr2[size];

 int sum_array[size];

 printf("\nEnter Array 1 elements\n\n");

 read_array(arr,size);

 printf("\nEnter Array 2 elements\n\n");

 read_array(arr2,size);

 sum_arr (arr,arr2,sum_array,size);

//***

 printf("Sum Array: \n");

 print_array (sum_array, size);

//***

 int max = find_Max(arr,size);

 printf("\nThe Max element in array 1 is %d\n",max);

//***

 int key;

61

 printf("\nPlease enter the key you want to search\n");

 scanf("%d",&key);

 int found = search_arr(arr, size, key);

 if (!found)

 printf("%d has not been found\n",key);

 else

 printf("%d has been found %d times\n",key, found);

//***

 sort_array(arr, size);

 printf("\nThe sorted array (1) (in descending order) is \n\n");

 print_array (arr, size);

 return 0;

}

void read_array(int a[], int s){

 int i;

 for (i = 0; i< s; i++){

 printf("Please enter element number %d: ",i+1);

 scanf("%d",&a[i]);

 }

}

void print_array (int a[], int s){

 int i;

 printf("[");

 for (i = 0; i< s; i++)

 printf("%d ",a[i]);

 printf("]\n");

}

void sum_arr(int a1[], int a2[], int aSum[],int s){

 int i;

 for (i = 0; i< s; i++)

 aSum[i] = a1[i]+a2[i];

}

int find_Max(int ar[], int s){

 int max = ar[0],i;

 for (i = 1; i< s; i++)

 if(ar[i]> max)

 max=ar[i];

 return max;

}

int search_arr(int ar[], int s, int k){

 int i, count =0;

 for (i = 0; i< s; i++)

 if(ar[i] == k)

 count++;

 return count;

}

void sort_array(int array[], int n){

 int temp, j, i;

 for (i = 0; i<n-1; i++){

 for (j=i+1; j< n; j++)

 if (array[i] < array[j]){

 temp = array[i];

 array[i] = array[j];

 array[j] = temp;

 }

 }

}

62

Multidimensional Arrays

Multidimensional arrays of any dimension are possible in C but in practice only two or three

dimensional arrays are workable. The most common multidimensional array is a two

dimensional array for example the computer displays, board games, a mathematical matrix

etc.

Syntax : type name [rows] [columns] ;

For Example :- 2D array of dimension 2 X 3.

 int d[2] [3] ;

d[0][0] d[0][1] d[0][2]

d[1][0] d[1][1] d[1][2]

A two dimensional array is actually an array of arrays, in the above case an array of two

integer arrays (the rows) each with three elements, and is stored row-wise in memory.

For Example :- Program to fill in a 2D array with numbers 1 to 6 and to print it out row-wise.

#include <stdio.h>

void main()

{

 int i, j, num[2][3] ;

 for (i = 0; i < 2; i++)

 for (j = 0; j < 3; j ++)

 num[i][j] = i * 3 + j + 1 ;

 for (i = 0; i < 2; i++)

 {

 for (j = 0; j < 3; j ++)

 printf("%d ",num[i][j]) ;

 printf("\n");

 }

}

For Example :- Program to tabulate sin(x) from x = 0 to 1 radians in steps of 0.1 radians.

#include <stdio.h>

#include <math.h>

int main()

{

 int i ;

 double x ;

 double table[20][2] ;// we will need 100 data points for

 // the above range and step size and

 // will store both x and f(x)

 for (x = 0.0, i = 0; x < 1.0; x += 0.1, i++)

 {

 table[i][0] = x ;

63

 table[i][1] = sin(x) ;

 printf("\n Sin(%lf) = %lf", table[i][0], table[i][1]);

 }

 return 0;

}

To initialise a multidimensional array all but the leftmost index must be specified so that the

compiler can index the array properly.

For Example :-
 int d[] [3] = { 1, 2, 3, 4, 5, 6 } ;

However it is more useful to enclose the individual row values in curly braces for clarity as

follows.

 int d[] [3] = { {1, 2, 3}, {4, 5, 6} } ;

Passing Multidimensional Arrays to a Function

Function calls with multi-dimensional arrays will be the same as with single dimension arrays

as we will still only pass the address of the first element of the array.

However, to declare the formal parameters to the function we need to specify all but one of

the dimensions of the array so that it may be indexed properly in the function.

For Example :-

2D array of doubles :- double x[10][20] ;

Call func1 with x a parameter :- func1(x) ;

Declaration in func1 :- func1(double y[][20]) {

 ...
 }

The compiler must at least be informed how many columns the matrix has to index it

correctly. For example to access element y[5][3] of the array in memory the compiler might

do the following

 element No = 5 * 20 + 3 = 103.

NB : Multi-dimensional arrays are stored row-wise so y[5][3] is the 4th element in the 6th

row.

Since we are dealing with an array of doubles this means it must access the memory location

103 X 8 bytes from the beginning of the array.

Thus the compiler needs to know how many elements are in each row of the 2D array above.

In general the compiler needs to know all dimensions except the leftmost at the very least.

64

For Example :- Program to add two 2 x 2 matrices.

#include <stdio.h>

void mat_read(int mat[2][2]) ; // Write these two functions for

yourself

void mat_print(int mat[2][2]) ;

void mat_add(int mat1[][2], int mat2[][2], int mat3[][2]) ;

int main()

{

 int mat_a[2][2], mat_b[2][2], mat_res[2][2] ;

 puts("Enter Matrix a row-wise :-\n");

 mat_read(mat_a) ;

 puts("\nMatrix a is :-\n") ;

 mat_print(mat_a) ;

 puts("Enter Matrix b row-wise");

 mat_read(mat_b) ;

 puts("\nMatrix b is :-\n") ;

 mat_print(mat_b) ;

 mat_add(mat_a, mat_b, mat_res) ;

 puts("The resultant matrix is\n") ;

 mat_print(mat_res) ;

 return 0;

}

void mat_add(int mat1[][2], int mat2[][2], int mat_res[][2])

{

 int j, k ;

 for (j = 0; j < 2; j++)

 for (k = 0; k < 2; k++)

 mat_res[j][k] = mat1[j][k] + mat2[j][k] ;

}

Pointers and Arrays

There is a very close relationship between pointer and array notation in C. As we have seen

already the name of an array is actually the address in memory of the array and so it is

essentially a constant pointer.

For Example :-
char str[80], *ptr ;

ptr = str ;/* causes ptr to point to start of string str */

ptr = &str[0] ; /* this performs the same as above */

It is illegal however to do the following

str = ptr ; /* illegal */

as str is a constant pointer and so its value i.e. the address it holds cannot be changed.

Instead of using the normal method of accessing array elements using an index we can

use pointers in much the same way to access them as follows.

65

char str[80], *ptr , ch;

ptr = str ; // position the pointer appropriately

*ptr = 'a' ; // access first element i.e. str[0]

ch = *(ptr + 1) ; // access second element i.e. str[1]

Thus *(array + index) is equivalent to array[index].

Note that the parentheses are necessary above as the precedence of * is higher than that of +.

The expression
 ch = *ptr + 1 ;

for example says to access the character pointed to by ptr (str[0] in above example with value

‘a’) and to add the value 1 to it. This causes the ASCII value of ‘a’ to be incremented by 1 so

that the value assigned to the variable ch is ‘b’.

 char ch[3]={'A','B','C'}, *p;

 p = ch;

 printf("%c\n",*p); // A

 printf("%c\n",*p+1); // B

 printf("%c\n",*(p+1)); // B

In fact so close is the relationship between the two forms that we can do the following

int x[10], *ptr ;

ptr = x ;

ptr[4] = 10 ; /* accesses element 5 of array by indexing a

pointer */

Pointer Arithmetic

Pointer variables can be manipulated in certain limited ways. Many of the manipulations are

most useful when dealing with arrays which are stored in contiguous memory locations.

Knowing the layout of memory enables us to traverse it using a pointer and not get

completely lost.

 Assignment
int count, *p1, *p2 ;

p1 = &count ; // assign the address of a variable

directly

p2 = p1 ; // assign the value of another pointer

variable, an address

 Addition / Subtraction

The value a pointer holds is just the address of a variable in memory, which is normally a four

byte entity. It is possible to modify this address by integer addition and subtraction if

necessary. Consider the following we assume a 32-bit system and hence 32-bit integers.

66

int *ptr ; Address Value

int array[3] = { 100, 101,

102 } ;
 ptr 1000 2008

ptr = array ;

 array[0] 2008 100

 array[1] 2012 101

 array[2] 2016 102

We now have the pointer variable ptr pointing at the start of array which is stored at memory

location 2008 in our illustration. Since we know that element array[1] is stored at address

2012 directly after element array[0] we could perform the following to access its value using

the pointer.

 ptr += 1 ;

This surprisingly will cause ptr to hold the value 1012 which is the address of array[1], so we

can access the value of element array[1]. The reason for this is that ptr is defined to be a

pointer to type int, which are four bytes in size on a 32-bit system. When we add 1 to ptr what

we want to happen is to point to the next integer in memory. Since an integer requires four

bytes of storage the compiler increments ptr by 4. Likewise a pointer to type char would be

incremented by 1, a pointer to float by 4, etc.

Similarly we can carry out integer subtraction to move the pointer backwards in memory.

ptr = ptr - 1 ;

 ptr -= 10 ;

The shorthand operators ++ and -- can also be used with pointers. In our continuing example

with integers the statement ptr++ ; will cause the address in ptr to be incremented by 4 and

so point to the next integer in memory and similarly ptr-- ; will cause the address in ptr to be

decremented by 4 and point to the previous integer in memory.

NB : Two pointer variables may not be added together (it does not make any logical sense).

 char *p1, *p2 ;

 p1 = p1 + p2 ; /* illegal operation */

Two pointers may however be subtracted as follows.

 int *p1, *p2, array[3], count ;

 p1 = array ;

 p2 = &array[2] ;

 count = p2 - p1 ; /* legal */

The result of such an operation is not however a pointer, it is the number of elements of the

base type of the pointer that lie between the two pointers in memory.

67

Chapter 6: Strings

In C a string is defined as a character array which is terminated by a special character, the null

character '\0', as there is no string type as such in C.

Thus the string or character array must always be defined to be one character longer than is

needed in order to cater for the '\0'.

For Example :- string to hold 5 characters

 char s[6] ;

 '\0'

A string constant is simply a list of characters within double quotes e.g. "Hello" with the '\0'

character being automatically appended at the end by the compiler.

A string may be initialised as simply as follows

 char s[6] = "Hello" ;

'H' 'e' 'l' 'l' 'o' '\0'

as opposed to
 char s[6] = { 'H', 'e', 'l', 'l', 'o', '\0' } ;

Again the size specification may be omitted allowing the compiler to determine the size

required.

Manipulating Strings

We can print out the contents of a string using printf() as we have seen already or by using

puts().

 printf("%s", s) ;

 puts(s) ;

Strings can be read in using scanf()

 scanf("%s", s) ;

where we do not require the familiar & as the name of an array without any index or

square braces is also the address of the array.

A string can also be read in using gets() // scanf will read the string till the first space!!!

 gets (s) ;

68

printf and scanf with strings
scanf and printf handle the strings as long as the %s available:

char str[6]="Hello";

printf("%s\n",str);

If the number of characters (n) is less than the string length (m) then the first n

characters (from 0 to n-1) will be filled and the character (n) will be filled by

the null character (\n).

char str[10]="Hello";

printf("%s\n",str);

'H' 'e' 'l' 'l' 'o' '\0'

Printf

char str[6]="Hello";

printf("%8s\n",str); // %8s would print the string right align

 H e l l o

char str[6]="Hello";

printf("%-8s\n", str); // %-8s would print the string left

align

H e l l o

char one_string[4];

one_string = "Hi";

|error: incompatible types in assignment|

69

String Manipulation Functions

• char *strcpy (char *dest, char *src) - Copy src string string into dest string.

#include <stdio.h>

#include <strings.h>

int main() {

 char input_str[20];

 char *output_str;

 strcpy(input_str, "Hello");

 printf("input_str: %s\n", input_str);

 output_str = strcpy(input_str, "World");

 printf("input_str: %s\n", input_str);

 printf("output_str: %s\n", output_str);

 return 0;

}

It will produce the following result:

• char *strncpy(char *string1, char *string2, int n) - Copy first n characters of

string2 to stringl .

#include <stdio.h>

#include <strings.h>

int main() {

 char input_str[20] = "Majdi";

 char *output_str;

 printf("input_str: %s\n", input_str);

 strncpy(input_str, "Wamy", 2);

 printf("input_str: %s\n", input_str);

 output_str = strncpy(input_str, "World", 3);

 printf("input_str: %s\n", input_str);

 printf("output_str: %s\n", output_str);

 return 0;

}

It will produce the following result:

input_str: Majdi

input_str: Wajdi

input_str: Wordi

output_str: Wordi

Program ended with exit code: 0

input_str: Hello

input_str: World

output_str: World

http://www.tutorialspoint.com/ansi_c/c_strcpy.htm
http://www.tutorialspoint.com/ansi_c/c_strncpy.htm

70

• int strcmp(char *string1, char *string2) - Compare string1 and string2 to

determine alphabetic order.

Return Value

• if Return value if < 0 then it indicates string1 is less than
string2

• if Return value if > 0 then it indicates string2 is less than
string1

• if Return value if = 0 then it indicates string1 is equal to
string2

#include <stdio.h>

#include <strings.h>

int main() {

 char string1[20];

 char string2[20];

 strcpy(string1, "Majdi");

 strcpy(string2, "Majdi Mafarja");

 printf("strcmp(string1, string2) Return Value is : %d\n", strcmp(

string1, string2));

 strcpy(string1, "Majdi Mafarja");

 strcpy(string2, "Majdi");

 printf("strcmp(string1, string2) Return Value is : %d\n", strcmp(

string1, string2));

 strcpy(string1, "Majdi");

 strcpy(string2, "Majdi");

 printf("strcmp(string1, string2) Return Value is : %d\n", strcmp(

string1, string2));

 return 0;

}

It will produce the following result:

strcmp(string1, string2) Return Value is : -32

strcmp(string1, string2) Return Value is : 32

strcmp(string1, string2) Return Value is : 0

Program ended with exit code: 0

• int strncmp(char *string1, char *string2, int n) - Compare first n characters of

two strings.

#include <stdio.h>

#include <strings.h>

int main() {

 char string1[20];

 char string2[20];

 strcpy(string1, "Majdi");

 strcpy(string2, "Majdi Mafarja");

 printf("strcmp(string1, string2) Return Value is : %d\n",

http://www.tutorialspoint.com/ansi_c/c_strcmp.htm
http://www.tutorialspoint.com/ansi_c/c_strncmp.htm

71

strncmp(string1, string2,4));

 strcpy(string1, "Majdi Mafarja");

 strcpy(string2, "Majdi");

 printf("strcmp(string1, string2) Return Value is : %d\n",

strncmp(string1, string2,10));

 strcpy(string1, "Majdi");

 strcpy(string2, "Majdi");

 printf("strcmp(string1, string2) Return Value is : %d\n",

strncmp(string1, string2,20));

 return 0;

}

It will produce the following result:
strcmp(string1, string2) Return Value is : 0

strcmp(string1, string2) Return Value is : 32

strcmp(string1, string2) Return Value is : 0

Program ended with exit code: 0

• int strlen(char *string) - Determine the length of a string.

#include <stdio.h>

#include <strings.h>

int main() {

 char string1[20];

 char string2[20];

 strcpy(string1, "Majdi");

 strcpy(string2, "Majdi Mafarja");

 printf("String 1 length is %d\n",strlen(string1));

 printf("String 2 length is %d\n",strlen(string2));

 return 0;

}

It will produce the following result:
String 1 length is 5

String 2 length is 13

• char *strcat(char *dest, const char *src); - Concatenate string src to the

string dest.

#include <stdio.h>

#include <strings.h>

int main() {

 char string1[20];

 char string2[20];

 strcpy(string1, "Majdi");

 strcpy(string2, "Mafarja");

http://www.tutorialspoint.com/ansi_c/c_strlen.htm
http://www.tutorialspoint.com/ansi_c/c_strcat.htm

72

 printf("Returned String : %s\n", strcat(string1,

string2));

 printf("Concatenated String : %s\n", string1);

 return 0;

}

•

It will produce the following result:
Returned String : MajdiMafarja

Concatenated String : MajdiMafarja

Program ended with exit code: 0

• char *strncat(char *dest, const char *src, int n); - Concatenate n chracters

from string src to the string dest.

#include <stdio.h>

#include <strings.h>

int main() {

 char string1[20];

 char string2[20];

 strcpy(string1, "Majdi");

 strcpy(string2, "Mafarja");

 printf("Returned String : %s\n", strncat(string1,

string2, 4));

 printf("Concatenated String : %s\n", string1);

 return 0;

}

It will produce the following result:
Returned String : MajdiMafa

Concatenated String : MajdiMafa

Program ended with exit code: 0

• char *strtok(char *s, const char *delim) - Parse the string s into tokens using

delim as delimiter.

#include <stdio.h>

#include <strings.h>

int main ()

{

 char str[] ="- This, a sample string.";

 char * pch;

 printf ("Splitting string \"%s\" into

tokens:\n",str);

 pch = strtok (str," ,.-");

 while (pch != NULL)

 {

 printf ("%s\n",pch);

http://www.tutorialspoint.com/ansi_c/c_strncat.htm
http://www.tutorialspoint.com/ansi_c/c_strtok.htm

73

 pch = strtok (NULL, " ,.-");

 }

 return 0;

}

It will produce the following result:
Splitting string "- This, a sample string." into tokens:

This

a

sample

string

Program ended with exit code: 0

printf("%s\n",last);

printf("%s\n",first);

printf("%s\n",middle);

Adams

John

Quincy

74

Arrays of Strings

An array of strings is in fact a two dimensional array of characters but it is more useful to

view this as an array of individual single dimension character arrays or strings.

For Example :-
 char str_array[10] [30] ;

where the row index is used to access the individual row strings and where the column index

is the size of each string, thus str_array is an array of 10 strings each with a maximum size of

29 characters leaving one extra for the terminating null character.

For Example :- Program to read strings into str_array and print them out character by

character.

#include <stdio.h>

char str_array[10][30] ;

int main()

{

 int i, j ;

 puts("Enter ten strings\n") ;

 for (i = 0 ; i < 10; i++) // read in as strings so a

single for loop suffices

 {

 printf(" %d : ", i + 1) ;

 gets(str_array[i]) ;

 }

 for (i = 0; i < 10; i++)//printed out as individual

chars so a nested for loop structure is required

{

 for (j=0; str_array[i][j] != '\0' ; j++)

 putchar (str_array[i][j]) ;

 putchar('\n') ;

 }

 return 0;

}

Strings and pointers

C's standard library string handling functions use pointers to manipulate the strings. For

example the prototype for the strcmp() function found in <string.h> is

 int strcmp(const char *string1, const char *string2) ;

where const is a C keyword which locks the variable it is associated with and prevents any

inadvertent changes to it within the function.

Strings can be initialised using pointer or array notation as follows

75

char *str = "Hello\n" ;

char string[] = "Hello\n" ;

in both cases the compiler allocates just sufficient storage for both strings.

Example :- Palindrome program using pointers.

#include <stdio.h>

int palin(char *) ; /* Function to determine if array is a

palindrome. returns 1 if it is a

palindrome, 0 otherwise */

void main()

{

 char str[30], c ;

 puts("Enter test string") ;

 gets(str) ;

 if (palin(str))

 printf("%s is a palindrome\n", str) ;

 else

 printf("%s is not a palindrome\n") ;

}

int palin (char *str)

{

 char *ptr ;

 ptr = str ;

 while (*ptr)

 ptr++ ; /* get length of string i.e. increment

ptr while *ptr != '\0' */

 ptr-- ; /* move back one from '\0' */

 while (str < ptr)

 if (*str++ != *ptr--)

 return 0 ; /* return value 0 if not a

palindrome */

 return 1 ; /* otherwise it is a palindrome */

}

Arrays of Pointers

It is possible to declare arrays of pointers in C the same as any other 'type'. For example
 int *x[10] ;

declares an array of ten integer pointers.

To make one of the pointers point to a variable one might do the following.

 x[2] = &var ;

To access the value pointed to by x[2] we would do the following

 *x[2]

76

which simply de-references the pointer x[2] using the * operator.

Passing this array to a function can be done by treating it the same as a normal array which

happens to be an array of elements of type int *.

For Example : -
void display(int *q[], int size)

{

 int t ;

 for (t=0; t < size; t++)

 printf("%d ", *q[t]) ;

}

Note that q is actually a pointer to an array of pointers as we will see later on with multiple

indirection.

A common use of pointer arrays is to hold arrays of strings.

For Example:- A function to print error messages.

void serror(int num)

{

 static char *err[] = {

 "Cannot Open File\n",

 "Read Error\n",

 "Write Error\n" } ;

 puts(err[num]);

}

Note that using an array of pointers to char initialised as above conserves space as no blank

filling characters are required as would be if we used

 char err[3][30] = {

 ... } ;

5.7 Exercises

1. Write a program that allows the user to read a user specified number of double precision

floating point numbers from the keyboard, storing them in an array of maximum size 100 say.

Your program should then calculate the sum and the average of the numbers input.

2. Modify your program in exercise 1 so that the maximum and minimum values in the data

are found and are ignored when calculating the average value.

3. Write a program that allows the elements of a user input array of doubles to be reversed so

that first becomes last etc. Use a separate swap function to carry out the switching of

elements.

77

4. Write a program that reads an array of up to 20 integers from the keyboard and produces a

histogram of the values as indicated below.

 *

 * *

 * *

 * * * *

 * * * * * *

 * * * * * * *

* * * * * * * * *

1 3 2 4 6 7 4 1 3

A two dimensional array of characters should be used to produce the histogram, filling it with

asterisks appropriate to the data values and then just printing out the array. Some scaling will

be required if the values are allowed to exceed the number of asterisks that can fit on the

screen vertically.

5. Write a program to accept two strings from the keyboard, compare them and then print out

whether or not they are the same.

6(a). Write a function to test whether or not a word is a palindrome e.g. MADAM.

 (b). Modify the function in 2(a) so that white space characters are ignored i.e. so that

MADAM IM ADAM for example is deemed a palindrome.

7. Write and test a function that inserts a character anywhere in a string. The function should

take the general form

 strins(char *string, char character, int position)

Notes :-

 1. Recall Microsoft C supports a broad range of string handling functions such as strlen(),

strcpy(), etc.

 2. Your function should provide sufficient error checking to prevent erroneous operation

e.g. your function should check that the desired position actually exists.

Modify the strins() function written above so that it allows a string of characters rather than

an individual character to be inserted at the designated position.

8. Write a program that multiplies two 2 X 2 matrices and prints out the resultant matrix.

The program should read in the individual matrices and display them in standard format for

the user to check them. The user should be allowed to correct/alter any one element of the

matrix at a time and check the revised matrix until satisfied. The results of the operation

should be displayed along with the two component matrices.

Recall that
a b

a b
.

c d

c d

a c b c a d b d

a c b c a d b d

1 1

2 2

1 1

2 2

1 1 1 2 1 1 1 2

2 1 2 2 2 1 2 2

78

Bibliography

problem solving and program design in c - 7th edition (Text Book)

https://www.cs.cmu.edu/~adamchik/15-121/

http://andrei.clubcisco.ro/cursuri/

https://www.cs.cmu.edu/~adamchik/15-121/
http://andrei.clubcisco.ro/cursuri/

