9/7/2015

Advanced Programming

By: Mamoun Nawahdah (Ph.D.)
2015/2016

Welcome to COMP231,
one of the most

interesting

programming courses
offered at Computer
Science Department

Course Description

In this course, you will learn
some of the concepts,
fundamental syntax, and
thought processes behind true
Object-Oriented Programming
(OOP)

e

Course Description

+* Upon completion of this course, you’ll be able to:

= Demonstrate understanding of classes, constructors, objects,

and instantiation.
= Access variables and modifier keywords.
= Develop methods using parameters and return values.
= Build control structures in an object-oriented environment.
= Convert data types using APl methods and objects.

= Design object-oriented programs using scope, inheritance,
and other design techniques.

= Create an object-oriented application using Java packages,
APlIs. and interfaces, in conjunction with classes and objects.

9/7/2015

Logistics

¢ Instructor: Mamoun Nawahdah (Masri318)
¢ Text book:
= Introduction To JAVA Programming, 10" edition.
= Author: Y. Daniel Liang.
= Publisher: Prentice Hall.

** Lab Manual:
= Title: LABORATORY WORK BOOK (COMP231)

e

Grading Criteria

** Midterm exam 30%
s 4 Assignments 10%
** 4 Quizzes 15%
+¢ Final Practical Exam 10%
¢ Final exam 35%

e

9/7/2015

Special Regulations

s Assignments:

= All assignments are individual efforts any
duplicated copies will be treated as a cheating
attempt which lead to ZERO mark.

= Using code from the internet will be treated
as cheating as well.

= The assignments should be submitted
through Ritaj within the specified deadline.

= No late submissions are accepted even by 1
minute after the deadline.

Special Class Regulations

¢ Attendance is mandatory. University regulations
will be strictly enforced.

+»* Mobile: Keep it off during the class. If your
mobile ring you have to leave the classroom
quickly, quietly and don’t come back.

+¢ Late: you are expected to be in the classroom

before the teacher arrival. After 5 minutes you
will not allowed entering the classroom.

e

9/7/2015

Course Outline

Topics Chapter Chapter # of
P 10t Edition 9th Edition lectures

Introduction to Java 1-8 1-7

Objects and Classes 9 8
4.4,10.10, 9,14

10.11
Thinking in Objects 10 10
Inheritance and Polymorphism 11 11
Midterm Exam (30%)

Abstract Classes and Interfaces 15

Exception Handling and Text /O 14

JavaFX Basics External Material

Event-Driven Programming External Material

JavaFX Ul Controls External Material

Final Exam (35%)

Lab Outline

| lab# | Title | Quizzes |
Program structure in Java

n Structure Programming - Revision
I Methods

I Arrays and Object Use

“ Object-Oriented Programming

String

“ Inheritance and Polymorphism

Abstract classes and Interfaces and Text I/O
GUI

Event-Driven Programming

Practical Final Exam (10%)

e

9/7/2015

Why Java?

< Java is a general
purpose programming
language.

+ Java is the Internet —Se——e—-

programming language. J’AVA

e

Characteristics of Java

+*Java Is Simple

+*Java Is Object-Oriented
+¢Java Is Distributed

++Java Is Interpreted

+¢+Java Is Robust

¢ Java Is Secure

+¢Java Is Architecture-Neutral
+»+Java Is Portable

+»Java's Performance

+»Java Is Multithreaded

* %+ Java Is Dynamic

9/7/2015

JDK Versions

+*JDK 1.02 (1995)

+*JDK 1.1 (1996)

+*JDK 1.2 (1998)

++JDK 1.3 (2000)

<JDK 1.4 (2002)

+*JDK 1.5 (2004) a. k. a. JDK 5 or Java 5
+*JDK 1.6 (2006) a. k. a. IDK 6 or Java 6
+*JDK 1.7 (2011) a. k. a. IDK 7 or Java 7

e < JDK 8 (April 15, 2014)

JDK Editions

++ Java Standard Edition (J2SE)

= J2SE can be used to develop client-side standalone
applications or applets.
+¢ Java Enterprise Edition (J2EE)

= J2EE can be used to develop server-side applications
such as Java servlets, Java ServerPages, and Java
ServerFaces.

+» Java Micro Edition (J2ME).

= J2ME can be used to develop applications for mobile
devices such as cell phones.

9/7/2015

9/7/2015

Popular Java IDEs

IDE = Integrated Development Environment

\J NetBeans
<A

e

A Simple Java Program

// This program prints Welcome to Java!

public class Welcome {
public static void main(String[] args) {
System.out.printin("Welcome to Java!");

}
}

e

Creating and Editing Using NotePad

To use NotePad, type: =10l x|
notepad Welcome.java 2
from the DOS prompt.

:\book>notepad Welcome.java_

< I v

8] welcome - Notepad - ol x|
Fie Edit Format View Help
l// This application program prints Welcome to Java! a
pubTlic class Welcome
public static void main(String[] args) {
System.out.printin("welcome to Java!");

} <
<] 20

2 N

Creating, Compiling, and Running Programs

| Create/Modify Source Code {

Source code (developed by the programmer)

public class Welcome { Saved on the disk

public static void main(String[] args) {
System.out.printin("Welcome to Javal"); Source Code
}

}
Bytecode (generated by the compiler for JVM Compile Source Code
to read and interpret) eg.. javac Welcome.java
Method Welcome () If compile errors occur
0 aload_0 Stored on the disk

Method void main(java.lang.String[]) ‘_@

0 getstatic #2 ..

3 T1dc #3 <String "Welcome to Javal!'>
5 invokevirtual #4 ..

8 return |

Run Bytecode
eg. java Welcome

“Welcome to Java ™ is displayed on the console

[Welcome to Java! F—@sult
REE

C:\book>java Welcome - If runtime errors or incorrect result

Welcome to Java!
C:\book> = 18
< | »

9/7/2015

9/7/2015

Compiling and Running Java

from the Command Window

¢ Set path to JDK bin directory
set path=c:\Program Files\java\jdk1.8.0\bin
¢ Set classpath to include the current directory

set classpath=.
s Compile:
javac Welcome.java

** Run:

java Welcome
19

Anatomy of a Java Program

+* Class name

+** Main method

s Statements

¢ Statement terminator
+* Reserved words

s Comments

+* Blocks

10

Class Name

/

+* Each class has a name.

¢ By convention, class names start with an
uppercase letter.

+¢ In this example, the class name is Welcome.

//This program prints Welcome to Java!
public class Welcome {
public static void main(String[] args) {
System.out.printin("Welcome to Java!");

}

r'e |

** Every Java program must have at least one class.

Main Method

+** |In order to run a class, the class must
contain a method named main.

» The program is executed from the main
method.

//This program prints Welcome to Java!
public class Welcome {

public static void main(String[] args) {
System.out.printin("Welcome to Java!");

}

e |

9/7/2015

11

Statement

¢ A statement represents an action or a
sequence of actions.

+» The statement System.out.printin("Welcome

to Java!") in the program is a statement to
display the greeting “Welcome to Java!”.

//This program prints Welcome to Java!
public class Welcome {
public static void main(String[] args) {
System.out.printin("Welcome to Java!");

}

A)

Statement Terminator

//This program prints Welcome to Java!
public class Welcome {
public static void main(String[] args) {

System.out.printin("Welcome to Java!"),

}
}

e

¢ Every statement in Java ends with a semicolon

24

9/7/2015

12

Reserved Words

+» Reserved words or keywords are words that have a
specific meaning to the compiler and cannot be used for
other purposes in the program.

¢ For example, when the compiler sees the word class,
it understands that the word after class is the name for
the class.

//This program prints Welcome to Java!
public class Welcome {
public static void main(String[] args) {
System.out.printin("Welcome to Java!");

}

e

Programming Style and
Documentation

s Appropriate Comments.
+* Naming Conventions.

** Proper Indentation and Spacing
Lines.

¢ Block Styles.

o %

9/7/2015

13

9/7/2015

Naming Conventions

¢ Choose meaningful and
descriptive names.

** Class names:

= Capitalize the First Letter of
each word in the name. For
example, the class name
ComputeExpression.

Proper Indentation and
Spacing

¢ Indentation
" Indent two spaces.
¢ Spacing

= Use blank line to separate
segments of the code.

e

14

Block Styles

Next-line

style

e

—]

> {

public class Test

public static wvoid main(String[] args)
{
System.out.println("Block Styles");
}
}

Rl

public class Test { é__—__—__f

public statg’.c void main(String[] args) {Z
System.ouff.println("Block Styles");
}
}

End-of-line
syyle

29

Programming Errors

+* Syntax Errors

= Detected by the compiler

¢ Runtime Errors

= Causes the program to abort

+»* Logic Errors

e

= Produces incorrect result

30

9/7/2015

15

S35 Ml e 5 W

BIRZEIT UNIVERSITY

Elementary
Programming

Liang, Introductionto Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

By: Mamoun Nawahdah (PhD)
2015/2016

Trace a Program Execution

public class ComputeArea {
/** Main method */
public static void main(String[] args) {
double radius;
double area;

memory

// Assign a radius area I:l
radius = 20;

// Compute area
area = radius * radius * 3.14159;

// Display results
System.out.printIn("The area for the circle of radius " +
radius + " is " + area);

} Lo

:\hook>java Computefrea [~
he area for the circle of radius 28.8 is 1256.636

5 .

9/9/2015

Identifiers

+» An identifier is a sequence of characters that consist of
letters, digits, underscores (_), and dollar signs ($).

¢ An identifier must start with a letter, an underscore (_),
or a dollar sign ($). It cannot start with a digit.

= An identifier cannot be a reserved word. (See
Appendix A, “Java Keywords”).

+* An identifier cannot be true, false, or null.

¢ An identifier can be of any length.

e

Declaring Variables

int x; // Declare x to be an integer variable
double radius; // Declare radius to be a double variable

char a; // Declare a to be a character variable

Assignment Statements
x=1; // Assign 1 to x
radius = 1.0; // Assign 1.0 to radius

a="A'; // Assign 'A' to a

9/9/2015

Declaring and Initializing
in One Step

intx=1;

double d = 1.4;

Named Constants

final datatype CONSTANTNAME = VALUE;
final double Pl = 3.14159;

* final int SIZE = 3;

Naming Conventions

+* Choose meaningful and descriptive names.

** Variables and method names:
= Use lowercase.

= |f the name consists of several words,
concatenate all in one, use lowercase for the
first word, and capitalize the first letter of each
subsequent word in the name.

= For example, the variables radius and area, and
the method computeArea.

Eid :

9/9/2015

Naming Conventions, cont.

+* Class names:

= Capitalize the first letter of each word in the
name.

= For example, the class name ComputeArea.

+* Constants:

= Capitalize all letters in constants, and use
underscores to connect words.

= For example, the constant Pl and
MAX_VALUE

Numerical Data Types

Name Range Storage Size
byte 2702 -1 (12810 127) $-bit signed

short 2P 02 -1 (32768 10 32767) 16-bit signed
int 23110231 1 (2147483648 t0 2147483647) 32-bit signed
long —263 to 263 -1 64-bit signed

(i.e.,-9223372036854775808 to 9223372036854775807)

float Negative range: 32-bit IEEE 754

-3.4028235E+38 to -1.4E-45
Positive range:
1.4E-45103 4028235E+38

double Negative range: 64-bit IEEE 754

-1.7976931348623157E+308 to -4.9E-324

Positive range:
4.9E-32410 1.7976931348623157E+308

9/9/2015

double vs. float

e

The double type values are more accurate than the
float type values. For example,

System.out.printIin("1.0 7 3.0 is " + 1.0 /7 3.0);

displays1.0 / 3.0 is 0.3333333333333333

N

16 digits

displays 1.0F / 3.0F is 0.33333334
—

7 digits

System.out.printIn(*1.0F / 3.0F is " + 1.0F /7 3.0F);

Increment and Decrement Operators

Description

Example (assume i = 1)

Operator Name

++var preincrement
var++ postincrement
——var predecrement
var— postdecrement

Increment var by 1, and use the
new var value in the statement

Increment var by 1, but use the
original var value in the statement

Decrement var by 1, and use the
new var value in the statement

Decrement var by 1, and use the
original var value in the statement

int j = ++1;
// 3 is 2, i is 2
int j = i++;
'/ is 1, i is 2
int j = —1i;
// j is 0, i is 0
int j = i—;
// j is 1, i is 0

10

9/9/2015

Numeric Type Conversion

Consider the following statements:

byte i = 100;
longk=i*3+4;

doubled=i*3.1+k/2;

e

Conversion Rules

/

two operands of different types, Java

the following rules:
1. If one of the operands is double, the other is
converted into double.

is converted into float.

converted into long.

#Otherwise, both operands are converted into int.

** When performing a binary operation involving

automatically converts the operand based on

2. Otherwise, if one of the operands is float, the other

3. Otherwise, if one of the operands is long, the other is

12

9/9/2015

Type Casting

Implicit casting

double d = 3; (type widening)
Explicit casting

inti=(int)3.0; (type narrowing)
inti=(int)3.9; (Fraction part is truncated)

What is wrong? int x=6/2.0;

range increases
>

byte, short, int, long, float, double

Character Data Type

char letter ='A’; (ASCII)
char numChar = '4"; (ASCII)

char letter = "\u0041'; (Unicode)
char numChar = "\u0034'; (Unicode)

NOTE: The increment and decrement operators can
also be used on char variables to get the next or
preceding Unicode character. For example, the
following statements display character b.

char ch ='a’;

% System.out.printin(++ch);

9/9/2015

9/9/2015

The String Type

¢ The char type only represents one
character. To represent a string of characters,
use the data type called String. For example:

String message = "Welcome to Java!";

+¢* String is actually a predefined class in the
Java library.

¢ The String type is not a primitive type. It is
known as a reference type.

* -

String Concatenation

// Three strings are concatenated

String message = "Welcome " + "to " + "Java";

// String Chapter is concatenated with number 2
String s = "Chapter" + 2; // s becomes Chapter2

// String Supplement is concatenated with character B
String s1 = "Supplement" + 'B'; // s1 becomes SupplementB

o %

Console Input

¢ You can use the Scanner class for console input.

+* Java uses System.in to refer to the standard
input device (i.e. Keyboard).
import java.util.Scanner;
public class Test{
public static void main(String[] s){

Scanner input = new Scanner(System.in);
System.out.printin(“Enter X:”);
int x = input.nextint();
System.out.printin(“You entered: "+ x);

P |

Reading Numbers from the Keyboard

Scanner input = new Scanner(System.in);
int value = input.nextint();

Method Description

nextByte() reads an integer of the byte type.
nextShort () reads an integer of the short type.
nextInt () reads an integer of the int type.

nextLong () reads an integer of the 1ong type.

nextFloat () reads a number of the float type.
nextDouble () reads a number of the double type.

18

9/9/2015

9/9/2015

’-z‘.?‘**% Vv
5 e

——ARAC:
BIRZEIT UNIVERSITY

\®\Q\[.//g/

. (o)7e),
Selections 2

Liang, Introduction to Java Programming, Tenth Edition, (¢) 2015 Pearson Education, Inc. All w

By: Mamoun Nawahdah (Ph.D.)
2015/2016

Comparison Operators

Java Mathematics Name Example Result
Operator Symbol (radius is 5)

< < less than radius < 0 false
<= < less than or equal to radius <= 0 false
> > greater than radius > 0 true
>= 2 greater than or equal to radius >= 0 true
== = equal to radius == 0 false
1= # not equal to radius != 0 true

if-else

if (radius >=0) {
area = radius * radius * 3.14159;
System.out.printIn("The area for the " +

"circle of radius " + radius + " is " + area);
}
else {

System.out.printIn("Negative input");
}

Eid |

Common Errors

+* Adding a semicolon at the end of an if clause is a
common mistake.

if (radius >= 0) ,
{

area = radius*radius*Pl;

System.out.printin("The area for the circle is " + area);

}

+» This mistake is hard to find, because it is not a compilation error
or a runtime error, it is a logic error.

%+ This error often occurs when you use the next-line block style.

o |

9/9/2015

9/9/2015

Logical Operators

Operator Name

! not

&& and

11 or

N exclusive or

e

switch Statements

switch (status) {

case 0: compute taxes for single filers;
break;

case 1: compute taxes for married file jointly;
break;

case 2: compute taxes for married file separately;
break;

case 3: compute taxes for head of household;
break;

default: System.out.printIn("Errors: invalid status");
System.exit(1);

}

Ed :

Problem: Chinese Zodiac

Write a program that prompts the user to enter a
year and displays the animal for the year.

tiger

rooster

rabbit

monkey

snake

horse

e

year % 12 =

(o monkey
1: rooster
2:dog

3: pig
4:rat
Srox

6: tiger

7: rabbit
8: dragon
9: snake
10: horse
_ 11:sheep

Conditional Operator

if (x> 0)

y=1
else
y=-1;

+¢ is equivalent to:

y=(x>0) ? 1 :

_1;

(boolean-expression) ? expressionl : expression2

e

9/9/2015

9/9/2015

Conditional Operator

if (num % 2 ==0)

System.out.printin(num + “is even”);
else
System.out.printin(num + “is odd”);

\ 4

System.out.printin((hum % 2==0) ?

num + “is even” : num + “is odd”);

g 9

Formatting Output

< Use the printf statement:
System.out.printf(format, items);

= Where format is a string that may consist of
substrings and format specifiers.

» A format specifier specifies how an item should be
displayed.

= An item may be a numeric value, character, boolean
value, or a string.

» Each specifier begins with a percent sign.

o m

Frequently-Used Specifiers

Specifier Output Example

%b a boolean value true or false

%c a character ‘a’

%d a decimal integer 200

%f a floating-point number 45.460000

%e a number in standard scientific notation 4.556000e+01

%s a string "Java is cool"
items

Operator Precedence

var++, var--

+, - (Unary plus and minus), ++var,--var
(type) Casting

I (Not)

* /, % (Multiplication, division, and remainder)
+, - (Binary addition and subtraction)

<, <=, >, >= (Comparison)

==, 1=; (Equality)

~ (Exclusive OR)

&& (Conditional AND) Short-circuit AND
Il (Conditional OR) Short-circuit OR

= +=, -=, *=, /=, %= (Assignhment operator)

R?
0‘0

5

%

X3

S

X3

S

5

%

o
°n

5

%

5

%

X3

S

X3

S

R?
0‘0

5

%

#

9/9/2015

9/9/2015

Operator Precedence and Associativity

¢ The expression in the parentheses is evaluated first.
(Parentheses can be nested, in which case the expression
in the inner parentheses is executed first.)

»» When evaluating an expression without parentheses,
the operators are applied according to the precedence
rule and the associativity rule.

+¢ If operators with the same precedence are next to
each other, their associativity determines the order of
evaluation. All binary operators except assignment
operators are left-associative.

-

Operator Associativity

< When two operators with the same
precedence are evaluated, the associativity of
the operators determines the order of
evaluation.

¢ All binary operators except assignment
operators are left-associative.

a—-b+c-disequivalentto ((a—b)+c)-d
s Assignment operators are right-associative.

Therefore, the expression

a=b+=c=5isequivalenttoa=(b+=(c=05))

295 MmO =
BIRZEIT UNIVERSITY

Liang, Introduction to Java Programming, Tenth Edition, (¢) 2015 Pearson Education, Inc. All

oops

By: Mamoun Nawahdah (Ph.D.)

2015/2016

Opening Problem

Problem:

100
times

e

4

/‘System.out.println("WeIcome
System.out.printIn(*'Welcome
System.out.printIn(*'Welcome
System.out.printIn(*'Welcome
System.out.printIn(*'Welcome
System.out.printIn(*'Welcome

System.out.printIn(*'Welcome
System.out.printIn(*'Welcome
\‘System.out.println("WeIcome

to
to
to
to
to
to

to
to
to

9/15/2015

9/15/2015

Introducing while Loops

int count =0;
while (count < 100) {
System.out.printIn("Welcome to Java");

count++;

}

e

do-while Loop

do {
// Loop body;
Statement(s);

} while (loop-continuation-condition);

e

for Loops

for (initial-action ;
loop-continuation-condition ;
action-after-each-iteration) {
// loop body;
Statement(s);

}

for (inti=0;i<100; i++){
System.out.printin("Welcome to Java!");

}

e

Note

+» The initial-action in a for loop can be a list of zero or
more comma-separated expressions.

+» The action-after-each-iteration in a for loop can be a
list of zero or more comma-separated statements.

+» Therefore, the following two for loops are correct:

for(inti=1; i<100; System.out.printin(i++));

for(inti=0,j=0; (i+j<10); i++ j++){

// Do something

e |

9/15/2015

Note

¢ If the loop-continuation-condition in a for loop
is omitted, it is implicitly true.

¢ Thus the statement given below in (a), which is
an infinite loop, is correct.

for (;o) { Equivalcnt while (true) {
// Do something p— // Do something
} }

Ed :

Caution

+» Adding a semicolon at the end of the for
clause before the loop body is a common
mistake, as shown below:

Logic Error

o

for (inti=0;i<10; i++))

{

System.out.printIn("iis " +i);

e s

9/15/2015

Caution
+» Similarly, the following loop is also wrong:
int i=0; .
while (i < 10); ___—Logic Error
{

System.out.printIn("iis " +i);
i++;

}

+* In the case of the do loop, the following
semicolon is needed to end the loop:
int i=0;
do {
System.out.printIn("iis " +i);
i++;

% }while (i<10); — <" 9

break

public class TestBreak {
public static void main(String[] args) {
int sum = 0;
int number = 0;

while (number < 20) {
number++;
sum += number;
if (sum >= 100)
break:;

}

System.out.println ("The number is " + number):;
System.out.println("The sum is " + sum);

9/15/2015

continue

public class TestContinue {
public static void main(String[] args) {
int sum = 0;
int number = 0;

while (number < 20) {
number++;
if (number == 10 || number == 11)
continue;

(; sum += number;

System.out.println ("The sum is

+ sum) ;
}
}

o ﬂ

Problem: Displaying Prime Numbers

Problem: Write a program that displays the first 50 prime
numbers in five lines, each of which contains 10 numbers. An
integer greater than 1 is prime if its only positive divisor is 1 or
itself. For example, 2, 3, 5, and 7 are prime numbers, but 4, 6,
8, and 9 are not.

Solution: The problem can be broken into the following tasks:
e For number=2,3,4,5, 6, ..., test whether the number is
prime.

e Determine whether a given number is prime.
e Count the prime numbers.
* Print each prime number, and print 10 numbers per line.

o 12

9/15/2015

/‘*/
355 (Wialll pe0A

— AR
BIRZEIT UNIVERSITY

Methods

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc_ All

By: Mamoun Nawahdah (Ph.D.)

2015/2016

Defining Methods

** A method is a collection of statements that are
grouped together to perform an operation.

Define a method
return value method formal
modifier type / name parameters
~
l;m"lin —yppublic static int|max (int numl, int num2) | {
cader 1
int result;
method
body parameter list

if (numl > num?2)
result = numl;
else

ethod
result = num2; [mene

signature

return result; = return value

Invoke a method

e

int z = max (%, V)’

actual parameters
(arguments)

9/14/2015

CAUTION

«* A return statement is required for a value-returning method.

+* The method shown below in (a) is logically correct, but it has a
compilation error because the Java compiler thinks it possible
that this method does not return any value.

public static int sign(int n) { public static int sign(int n) {
if (n > 0) Should be if (n > 0)
return 1; > return 1;
else if (n == 0) else if (n == 0)
return 0O; return 0;
else if (n < 0) else
return -1; return -1;
} }
@ (®)

F To fix this problem, delete if (n < 0) in (a), so that the compiler
will see a return statement to be reached regardless of how the
if statement is evaluated.

Ed :

Passing Parameters

public static void NPrintIn(String message, int n) {
for (inti=0;i<n;i++)
System.out.printin(message);

< Suppose you invoke the method using
nPrintin(“Welcome to Java”, 5);

What is the output?

< Suppose you invoke the method using
nPrintin(“Computer Science”, 15);

What is the output?

< Can you invoke the method using
* nPrintin(15, “Computer Science”); :

9/14/2015

9/14/2015

Ambiguous Invocation

public class AmbiguousOverloading {
public static void main(String[] args) {
System.out.printin(max(1, 2));

}

public static double max(int num1, double num2) {
if (hum1 > num?2)
return numil;
else
return num2;

}

public static double max(double num1, int num2) {
if (hum1 > num2)
return numil;
else
return num2;

}
e A s

Scope of Local Variables

+* A local variable: a variable defined inside
a method.

+** Scope: the part of the program where the
variable can be referenced.

» The scope of a local variable starts from
its declaration and continues to the end of
the block that contains the variable.

** A local variable must be declared before it
can be used.

Scope of Local Variables

+¢* You can declare a local variable with the same
name multiple times in different non-nesting
blocks in a method, but you cannot declare a local
variable twice in nested blocks.

It is fine to declare i in two It is wrong to declare i in
nnnnnnn ting blocks two nesting blocks
public static void methodl () { public static void method2() {
int x = 1;
int y = 1; - =1;
_ int sum = 0;
for (=1; 1 < 10; i++) {
\‘ X += 1i; for (=1; i < 10; i++)
} sum += i;
}
-for (=1; 1 < 10; i++) {
y +=1i; .
_1

Ed :

Method Abstraction

+** You can think of the method body as a
black box that contains the detailed
implementation for the method.

Optional arguments Optional return
for Input value
Method Header

-(_ -

8

9/14/2015

Benefits of Methods

e Write a method once and reuse it
anywhere.

e Information hiding. Hide the
implementation from the user.

e Reduce complexity.

e

The Math Class

¢ Class constants:
= Pl
=E

¢ Class methods:

" Trigonometric Methods

" Exponent Methods

" Rounding Methods

= min, max, abs, and random Methods

e

9/14/2015

Trigonometric Methods

++ cos(double a)
+» tan(double a)
++ acos(double a)
+»+ asin(double a)

+» atan(double a)

+¢* sin(double a) Examples:

Math.sin(0)
Math.sin(Math.PI / 6)
Math.sin(Math.Pl1 / 2)
Math.cos(0)
Math.cos(Math.PI / 6)

Math.cos(Math.PI / 2)

returns 0.0

returns 0.5

returns 1.0

returns 1.0

returns 0.866

returns 0.0

\

Radians

Math.toRadians(90)

e

Exponent Methods

++» exp(double a)

+» log(double a)

+ logl0(double a)

++» pow(double a, double b)

*+ sqrt(double a)
Returns the square root of a.

e

Returns e raised to the power of a.

Returns a raised to the power of b.

Examples:

Returns the natural logarithm of a. Math.exp(1)

Math.log(2.71)

Returns the 10-based logarithm of a. Math.pow(2, 3)

Math.pow(3, 2)
Math.pow(3.5, 2.5)
Math.sqrt(4)

Math.sqrt(10.5)

returns 2.71

returns 1.0

returns 8.0

returns 9.0

returns 22.917

returns 2.0

returns 3.24

9/14/2015

9/14/2015

Rounding Methods

+»double ceil(double x) x rounded up to its nearest
integer. This integer is returned as a double value.

+*double floor(double x) x is rounded down to its
nearest integer. This integer is returned as a double
value.

+*double rint(double x) xis rounded to its nearest
integer. If x is equally close to two integers, the even
one is returned as a double.

+*int round(float x) Return (int)Math.floor(x+0.5).
+»*long round(double x) Return (long)Math.floor(x+0.5).

o H

min, max, and abs

+* max(a, b) and min(a, b)

Returns the maximum or Examples:
minimum of two

Math.max(2, 3) returns 3
parameters.

. Math.max(2.5, 3) returns 3.0
% abs(a)

Returns the absolute value
of the parameter. Math.abs(-2) returns 2

Math.min(2.5, 3.6) returns 2.5

¢ random() Math.abs(-2.1) returns 2.1

Returns a random double
value in the range [0.0, 1.0).

The random Method

+ Generates a random double value greater than
or equal to 0.0 and less than 1.0

(0 <= Math.random() < 1.0)

. Returns a random integer
(int) (Math.random() * 10) — between 0 and 9. g

Returns a random integer

50 + (int) (Math.random() * 50) — > between 50 and 99

In general:

a + Math.random() * b Returns a random number between

a and a + b, excluding a + b.

* ©

Case Study: Computing Angles of a Triangle

A=acos(la*a-b*b-c*c)/ (-2*Db*c))
B=acos((b*b-a*a-c*c)/ (-2*a?*c))
C=acos((lc*c-b*hb-a*ra)/ (-2*a?*hbh))

x1,y1

Write a program that prompts the user to enter
the x- and y-coordinates of the three corner points
in a triangle and then displays the triangle’s angles.

e m

9/14/2015

9/15/2015

1,*_1*\% y v
-:'%—-’) A

——ARAC:
BIRZEIT UNIVERSITY

rrays

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

By: Mamoun Nawahdah (Ph.D.)
2015/2016

Introducing Arrays

+* Array is a data structure that represents a collection of
the same types of data.

double[] myList = new double[10];

myList |reference yList[0] 56

T myList[1] 4.5

Array reference myList[2] 3.3
variable myList[3] 13.2
myList[4] 4.0

Array element at

index S —myList[5] 3433 <«— Element value

myList[6] 34.0
myList[7] 45.45
myList[8] 99.993

g! myList[9] 11123
2

9/15/2015

Declaring Array Variables

datatype[] arrayRefVar;
Example:

double[] mylList;

d atatype d rray Rera r[],' // This style is allowed, but not preferred
Example:

double mylList[];

e

Creating Arrays

arrayRefVar = new datatype[arraySize];
Example:
myList = new double[10];

= mylList[0] references the 15t element in the
array.

= mylList[9] references the last element in
the array.

e

Declaring and Creating in 1 Step

datatype[] arrayRefVar = new datatype[arraySize];

double[] myList = new double[10];

datatype arrayRefVar[] = new datatype[arraySize];

double mylList[] = new double[10];

e

The Length of an Array

¢ Once an array is created, its size is fixed.
¢ It cannot be changed.
+** You can find its size using:

arrayRerar.length
For example:
myList.length => returns 10

e

9/15/2015

9/15/2015

Default Values

** When an array is created, its elements
are assigned the default value of :

=0 for the numeric data types.

='\u0000' for char types.
= false for boolean types.

e

Indexed Variables

** The array elements are accessed through
the index.

* The array indices are 0-based, i.e., it starts
from 0 to arrayRefVar.length-1.

+* Each element in the array is represented
using the following syntax, known as an
indexed variable:

arrayRefVar[index];

Ed :

9/15/2015

Using Indexed Variables

*» After an array is created, an indexed variable
can be used in the same way as a regular
variable.

s For example, the following code adds the
value in myList[0] and myList[1] to myList[2]:

myList[2] = myList[0] + myList[1];

g 9

Array Initializers
¢ Declaring, creating, initializing in 1 step:

double[] myList = {1.9, 2.9, 3.4, 3.5};

¢ This shorthand notation is equivalent to the
following statements:

double[] myList = new double[4];
myList[0] = 1.9;
mylList[1] = 2.9;
mylList[2] = 3.4;

* mylList[3] = 3.5; 10

9/15/2015

Trace Program with Arrays

public class Test {
public static void main(String[] args) {
int[] values = new int[5];
for (inti=1;i<5;i++){
values[i] =i + values[i-1];
}
values[0] = values[1] + values[4];
}
}

e

Initializing arrays with input values

Scanner input = new Scanner(System.in);
System.out.print("Enter " + mylList.length + " values:");

for (inti=0; i <mylist.length ; i++)

myList[i] = input.nextDouble();

e

Initializing arrays with random values

for (inti=0; i < myList.length; i++)
myList[i] = Math.random() * 100;
Printing arrays

for (inti =0; i < myList.length; i++)
System.out.print(myList[i] + " ");

e

Summing all elements

double total = 0;
for (int i =0; i < myList.length; i++)
total += myList[i];

Finding the largest element

double max = myList[0];
for (inti=1; i < mylList.length; i++) {
if (myList[i] > max)
max = myList[i];

e |

9/15/2015

9/15/2015

Random Shuffling

for (int i = 0; 1 < myList.length; i++) {
// Generate an index] randomly
int index = (int) (Math.random ()
* myList.length);

// Swap myList[i] with myList[index]

double temp = myList[i];

myList[i] = myList[index]; myList

myList[index] = temp; i“*{ﬂ
}

swap

[index]
* A random index

Shifting Elements

double temp = myList[0]; // Retain the first element

// Shift elements left

for (int i = 1; 1 < myList.length; i++) {
myList[i - 1] = myList[i];

}

// Move the first element to fill in the last position
myList [myList.length - 1] = temp;

myList

Aot

o m

Enhanced for Loop (for-each loop)

++» JDK 1.5 introduced a new for loop that enables you to traverse
the complete array sequentially without using an index variable.
+*» For example, the following code displays all elements in the
array mylList:

for (double value: myList) System.out.printin(value);
+* In general, the syntax is:

for (elementType value: arrayRefVar) {
// Process the value

}

+* You still have to use an index variable if you wish to traverse
the array in a different order or change the elements in the array.

o ﬂ

Copying Arrays

+» Often, in a program, you need to duplicate an array or a
part of an array. In such cases you could attempt to use
the assignment statement (=), as follows:

list2 = list1;

Before the assignment After the assignment
Tist2 = 1istl; Tist2 = 1istl;
Tistl > Tistl >
Contents Contents
of Tistl of Tistl
Tist2 > list2)
Contents Con!ems
of Tist2 of Tist2

9/15/2015

Copying Arrays

+* Using a loop:

int[] sourceArray ={2, 3, 1, 5, 10};
int[] targetArray = new int[sourceArray.length];

for (inti = 0; i < sourceArrays.length; i++)
targetArrayl[i] = sourceArrayl[il;

2 m

The arraycopy Utility

System.arraycopy(sourceArray, src_pos,
targetArray, tar_pos, length);

s Example:

System.arraycopy(sourceArray, 0,
targetArray, 0, sourceArray.length);

o w

9/15/2015

10

9/15/2015

Passing Arrays to Methods

public static void printArray(int[] array) {
for (inti = 0; i < array.length; i++) {
System.out.print(array[i] + " ");

}
}

< Invoke the method
int[] list=1{3,1, 2, 6, 4, 2};
printArray(list);

o U

Anonymous Array

¢ The statement
printArray(new int[]{3, 1, 2, 6, 4, 2});

+»* Creates array using the following syntax:
new dataType[]{literalO, literall, ..., literalk}

¢ There is no explicit reference variable for
the array.

+¢ Such array is called an anonymous array.

o H

11

Pass by Value

¢ For a parameter of a primitive type value, the
actual value is passed.

= Changing the value of the local parameter
inside the method does not affect the value of
the variable outside the method.

¢ For a parameter of an array type, the value of
the parameter contains a reference to an array;
this reference is passed to the method.

= Any changes to the array that occur inside the
method body will affect the original array that
was passed as the argument.

Simple Example

public class Test {
public static void main(String[] args) {

intx=1;
int[] y = new int[10];

m(x, y);

System.out.printin("x is " + x);

System.out.printin("y[0] is " + y[0]);
}

public static void m(int number, int[] numbers) {
number = 1001;
numbers[0] = 5555;

}

A

9/15/2015

12

Returning an Array from a Method

public static int[] reverse(int[] list) {

}

int[] result = new int[list.length];

for (int i=0, j=result.length - 1; i < list.length/2; i++, j--) {
result[j] = list[i];

}

return result;

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

-

Linear Search

+*»* The linear search approach compares the key
element, key, sequentially with each element in
the array list.

+* The method continues to do so until the key
matches an element in the list or the list is
exhausted without a match being found.

¢ If a match is made, the linear search returns
the index of the element in the array that
matches the key.

+* If no match is found, the search returns -1.

9/15/2015

13

9/15/2015

From Idea to Solution

public static int linearSearch(int[] list, int key) {
for (inti=0; i < list.length; i++)
if (key == list[i]) returni;
return -1;

}

Trace the method:
int[] list={1, 4, 4, 2, 5, -3, 6, 2};

inti = linearSearch(list, 4); // returns 1
int j = linearSearch(list, -4); // returns -1

int k = linearSearch(list, -3); // returns 5

27

The Arrays.binarySearch Method

+*Since binary search is frequently used in programming,
Java provides several binarySearch methods for
searching a key in an array of int, double, char, short,
long, and float in the java.util.Arrays class.

int[] list = {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79};

System.out.printin("Index is " + Arrays.binarySearch(list, 11));

char[] chars ={'a', 'c','g', 'x', 'y', '2'};
System.out.printIn("Index is " + Arrays.binarySearch(chars, 't'));

+¢ For the binarySearch method to work, the array must
be pre-sorted in increasing order.

e :

14

Selection Sort

++ Selection sort finds the smallest number in the list and places it
first. It then finds the smallest number remaining and places it
second, and so on until the list contains only a single number.

swap

Select 1 (the smallest) and swap it 2 0 5 4 8 1 6
with 2 (the first) in the list
swap
w; l The number 1 is now in the
Select 2 (the smallest) and swap it O 5 4 8 2 6 correct position and thus no
with O (the first) in the remaining longer needs to be considered
list swap
‘L_ * The number 2 is now inthe
Select 4 (the smallest) and swap it 5 4 8 9 6 correct position and thus no
;\'xth 5 (the first) in the remaining longer needs to be considered.
ist
R The number 6 is now in the
5 isthe smallest and in the right 5 8 9 6 correct position and thus no
position. No swap is necessary swap longer needsto be considered.
& 1’ The number 5 is now in the
Select 6 (the smallest) and swap it g8 0 6 correct position and thus no
with 8 (the first) in the remaining longer needsto be considered.
list swap
‘J’ l The number 6 is now in the
Select 8 (the smallest) and swap it o 8 correct position and thus no
with 9 (the first) in the remaining longer needs to be considered.
List

The number 8 is now in the
Since there is only one element 9 correct position and thus no
Temaining in the list, sort is longer needs to be considered 29
completed

From Idea to Solution

for (inti=0; i< list.length; i++) {
select the smallest element in list[i..listSize-1];
swap the smallest with list[i], if necessary;
// list[i] is in its correct position.
// The next iteration apply on list[i..listSize-1]
}

o w

9/15/2015

15

The Arrays.SOrt Method

java.util.Arrays class.

e

< Java provides several sort methods for sorting an array
of int, double, char, short, long, and float in the

< For example, the following code sorts an array of
numbers and an array of characters:

double[] numbers ={6.0, 4.4, 1.9, 2.9, 3.4, 3.5};
java.util.Arrays.sort(numbers);
char[] chars ={'a', ‘A", '4",'F', 'D', 'P'};
java.util.Arrays.sort(chars);

main Method is just a Regular Method

parameters.

+¢* You can call a regular method by passing actual

*¢ You can pass arguments to main.

+»* For example, the main method in class B is
invoked by a method in A,

as shown below:

"Boston', "Atlanta'};
B.main(strings) ;

public class A { class B {
public static void main(String[] args) { public static void main(String[] args) {
String[] strings = {"New York", for (int 1 = 0; 1 < args.length; i++)

System.out.printin(args[i]);
3
}

e

32

9/15/2015

16

Command-Line Parameters

class TestMain {

public static void main(String[] s) {

} javaTestMain arg0 argl arg2... argn

¢ In the main method, get the arguments from
s[0], s[1], ..., s[n], which corresponds to argo0,
argl, ..., argn in the command line.

Problem: Calculator

+* Objective: Write a program that will
perform binary operations on integers.
The program receives three parameters:

an operator and two integers.

java Calculator 2 + 3
java Calculator 2 - 3

java Calculator 2 / 3
java Calculator 2 . 3

e 34

9/15/2015

17

Declare/Create 2D Arrays

// Declare array refvar

dataType[][] refvar;

// Create array and assign its reference to variable

refVar = new dataType[10][10];

// Combine declaration and creation in one statement
dataType[][] refVar = new dataType[10][10];

// Alternative syntax

% dataType refVar[][] = new dataType[10][10];

Creating 2D Arrays

int[][] matrix = new int[10][10];

for (int i = 0; i < matrix.length; i++)
for (int j = 0; j < matrix[i].length; j++)
matrix[i][j] = (int)(Math.random() * 1000);

9/15/2015

18

9/15/2015

Declaring, Creating, and Initializing

Using Shorthand Notations

+»* You can also use an array initializer to declare,
create and initialize a 2-dimensional array.

+»* For example:

e

int[][] array = {
{1, 2, 3},
{4, 5, 6},
{7, 8,9},
{10, 11, 12}

b

Lengths of 2D Arrays

X

ey

x[0]
x[1]

x[2]

x.lengthis 3

e

int[][] x = new int[3][4];

~
s

Pad

x[0] [0 x[0][1]

x[0] [2]

x[0][3]

x[1][0]|x[1][1]

x[1][2]

x[11[3]

x[2][0]|x[2][1]

x[2][2]

x[2][3]

x[0].lengthis 4

x[1].lengthis 4

x[2].Tlengthis 4

38

19

Lengths of 2D Arrays, cont.

int[][] array = { array.length
{1, 2,3}, array[0].length
{4,5, 6}, array[1].length
{7, 8,9}, array[2].length
{10, 11, 12} array[3].length
I

array[4].length = ArrayindexOutOfBoundsException

2

Ragged Arrays

¢ Each row in a 2D array is itself an array. So, the rows can
have different lengths.

% Such an array is known as a ragged array.
For example:

int[][] triangleArray = { /“_1 2(3[4]5
{1 | 2] 3 ’ 4 - 5} k) _7\-‘\7“

4
Bae, 1 GBEE
{4, 53, -
{s} =
}; .
\\\

9/15/2015

20

Printing arrays

for (int row = 0; row < matrix.length; row++) {
for (int column = 0; column < matrix[row].length;
column++) {
System.out.print(matrix[row][column] + " ");

System.out.printin();

}

e 41

What is Sudoku?

Checking Whether a Solution Is Correct

513 7 5134167819 1]|2
6 1195 6| 7|2|1|9]|5|3[4]|38
918 6 1(9(8|3|14|2|5|6|7

8 6 3 8(5(9|7|6| 11423
4 8 3 1 41 2|16 |8[5|3|7(9|1
7 2 6 711319/ 2]|4]8|5]6
6 916 |1 |5 3|7|2]|8|4
41119 5 218|714/ 1]|9|6(3|5

8 719 314|528 |6|1(7(9

9/15/2015

21

9/15/2015

Multidimensional Arrays

¢ Occasionally, you will need to represent

n-dimensional data structures.

¢ In Java, you can create n-dimensional arrays for
any integer n.

¢ The way to declare two-dimensional array
variables and create two-dimensional arrays can
be generalized to declare n-dimensional array
variables and create n-dimensional arrays for n > 2.

Multidimensional Arrays
double[J[][] scores =

{{7.5, 20.5}, {9.0, 22.5}, {15, 33.5}, {13, 21.5}, {15, 2.5}},
{{4.5, 21.5}, {9.0, 22.5}, {15, 34.5}, {12, 20.5}, {14, 9.5}},
{{6.5, 30.5}, {9.4, 10.5}, {11, 33.5}, {11, 23.5}, {10, 2.5}},
{{6.5, 23.5}, {9.4, 32.5}, {13, 34.5}, {11, 20.5}, {16, 7.5}},
{{8.5, 26.5}, {9.4, 52.5}, {13, 36.5}, {13, 24.5}, {16, 2.5}},
{{9.5, 20.5}, {9.4, 42.5}, {13, 31.5}, {12, 20.5}, {16, 6.5}}};

Which student Which exam Multiple-choic
scores[1 1 [J] [k]

22

L}O/L_.L pesid
BIRZEIT UNIVERSITY

Concepts

By: Mamoun Nawahdah (Ph.D.)
2015/2016

Problems with Procedural Languages

+» Data does not have an owner.
+» Difficult to maintain data integrity.
+** Functions are building blocks.

** Many functions can modify a given block
of data.

+* Difficult to trace bug sources when data is
corrupted.

e

9/15/2015

What is Object?

+* An object has state, exhibits some well
defined behaviour, and has a unique
identity. | |

State

data members
fields
properties

Behavior
member functions
methods

Abstraction - Modeling

¢ Abstraction focuses upon the essential
characteristics of some object, relative to
the perspectlve of the viewer.

= 1.‘ _- g
C A 33;; g e,\

.lusmmmmnmdmmmadmw relative 10 the
parspactive of (he viewa

~ e
r N ﬂ '}*&
LY k-«-—) %, \9
[¥ / iﬁ) Y ku‘l‘. .
\ % d { \ver
N ‘%“!.E. & \V o o
~ &Y 4 <
& /.}/»\ o ‘f-; Ky
P L]
??“fv—f« ST N .
AL \
& ~ "l
. (o) -
!‘:‘ Lrd X A ‘\\ - t
LR N _.ﬁ~ i Z
;!*\l’c d’; N\ Z Automobile Enga.
\
) L, ‘
MV / An abstraction includes the essential details relative to the perspective of the viewer

9/15/2015

What is Class?

* A class represents a set of objects that share
common structure and a common behavior.

* Aclass is a blueprint or prototype that
defines the variables and methods common to
all objects of a certain kind.

Class Access

PROBLEM: You have a garden and it is public.
Anyone can take the properties of the
garden when they want.

9/15/2015

9/15/2015

Class Access cont.

SOLUTION? Put a high fence around my garden, now it
is safe! But waite, | can no longer access my own garden.

Class Access cont.

SOLUTION: Hire a private guard and give him rules
on who is able to access the garden. Anyone wanting
to use the garden must get permission from guard.
garden is now safe and accessible.

Class Access cont.

Setters and Getters to Safeguard Data

Set Property Outside
Get Property Requester

Requester

Initialization of Objects

What if garden had weeds from the beginning?

+» Constructors ensure correct initialization of all data.
They are automatically called at the time of object
creation.

¢ Destructors on the other hand ensure the de allocation
|I§ of resources before an object dies or goes out of scope.

9/15/2015

Lifecycle of an Object

¢ Some call it the holy trinity of OOP:

> Born Healthy

Using constructors
>Lives safely

Using setters and getters
>Dies cleanly

Using destructors

e

Anatomy of a Class

9/15/2015

Methods

Encapsulation _

Variables

& FIRST LAW OF OOP: Data must be hidden,
i.e., PRIVATE

& Read access through read functions

Wiite access through write functions

o

For every piece of data, 4 possibilities
>> read and write allowed

>> read only

>> write only

>> N0 access

e

Encapsulation

implementation details from other objects.
+* In real world

= When you want to change gears on your
car:

*You don’t need to know how the gear
mechanism works.

* You just need to know which lever to

move.

9/15/2015

Encapsulation cont.

¢ In software programs:

= You don’t need to know how a class is
implemented.

= You just need to know which methods
to invoke.

= Thus, the implementation details can
change at any time without affecting
other parts of the program.

e

Inheritance

+» Extending the functionality of a class or

¢ Specializing the functionality of the class.

e

9/15/2015

Inheritance cont.

¢ Subclasses: a subclass may inherit
the structure and behaviour of it’s
superclass.

Vehicle
Car
% Electric Petrol

Truck

Multiple Inheritance

** One class have more than one base class.

Horse

% Flying Horse

9/15/2015

Multiple Inheritance cont.

s Ambiguity in multiple inheritance:

e

Polymorphism

¢ Polymorphism refers to the ability of an object
to provide different behaviours (use different
implementations) depending on its own nature.
Specifically, depending on its position in the

class hierarchy.

drawShape (class Shape)

e

Shape

draw()
erase()

iy

Circle

Square

Triangle

draw()
erase()

draw()
erasel)

draw()
erase()

9/15/2015

10

25032 ‘*U/ >
BIRZEIT UNIVERSITY S

Objects
& Classes

Liang, Introduction to Java Programming, Tenth Edition, (¢) 2015 Pearson Education, Inc. All

14, z

v

A

he

By: Mamoun Nawahdah (Ph.D.)
2015/2016

OO Programming Concepts

% Object-oriented programming (OOP) involves
programming using objects.

s An object represents an entity in the real world that
can be distinctly identified.

s For example, a student, a desk, a circle, a button,
and even a loan can all be viewed as objects.

% An object has a unique identity, state, and
behaviors.

» The state of an object consists of a set of data fields (also
known as properties) with their current values.

2

*; The behavior of an object is defined by a set of methods.

10/3/2015

Objects and Classes

% An object has both a state and behavior.

s The state defines the object, and the behavior

defines what the object does.

% Classes are constructs that define objects of the
same type.

% A Java class uses variables to define data fields

and methods to define behaviors.

+ Additionally, a class provides a special type of
methods, known as constructors, which are
invoked to construct objects from the class.

A

Objects and Classes cont.

Class Name: Circle

Data Fields:
radius is

Methods:
getArea

«———— Aclasstemplate

Circle Object 1

Data Fields
radiusis__10

Circle Object 2

Data Fields:
radiusis__ 25

Circle Object 3

Data Fields:

\

radiusis _125

J

e

Three objects of
the Circle class

10/3/2015

Classes

class Circle {
/** The radius of this circle */
double radius = 1.0; «< Data field
/** Construct a circle object */ —]
Circle() {
J €—1— Constructors
/** Construct a circle object */
Circle(double newRadius) {
radius = newRadius;]
}
/** Return the area of this circle */
double getArea() { «< Method
return radius * radius * 3.14159;
}
}

e

UML Class Diagram

Circle

radius: double

UML Class Diagram
Circle()

Circle(newRadius: double)

getArea(): double

«&———— Class name

«€———— Data fields

«——— Constructors and
methods

circlel: Circle

circle2: Circle

circle3: Circle

radius=1.0 radius =25

radius= 125

\

J

[
UML notation
for objects

e

10/3/2015

10/3/2015

Constructors

+» Constructors are a special kind of
methods that are invoked to construct objects.

Circle() {
}

Circle(double newRadius) {
radius = newRadius;

Eid :

Constructors cont.

% A constructor with no parameters is referred to as
a no-arg constructor.

% Constructors MUSt have the same name as the
class itself.

% Constructors do not have a return type—not even
void.

s Constructors are invoked using the new operator
when an object is created.

% Constructors play the role of initializing objects.

Eid :

Creating Objects Using Constructors

new ClassName();

Example:

new Circle();

new Circle(5.0);

e

Default Constructor

¢ A class maybe defined without constructors.

¢ In this case, a no-arg constructor with an
empty body is implicitly declared in the class.

< This constructor, called a default
constructor, is provided automatically

O N LY I F no constructors are

explicitly defined in the class.

2 m

10/3/2015

10/3/2015

Declaring Object Reference Variables

¢ To reference an object, assign the object
to a reference variable.

+» To declare a reference variable, use the
syntax:

ClassName objectRefVar;
Example:

Circle myCircle;

o H

Declaring/Creating Objects in a Single Step

ClassName objectRefvar = new ClassName();

Assign object reference Create an object

Example: PN

Circle myCircle = new Circle() |

10/3/2015

Accessing Object’s Members

+* Referencing the object’s data:
objectRefVar.data
e.g., myCircle.radius

+* Invoking the object’s method:

objectRefVar.methodName(arguments)

e.g., myCircle.getArea()

o H

Reference Data Fields

¢ The data fields can be of reference types.

= |f a data field of a reference type does not reference
any object, the data field holds a special literal value,
null.

= For example, the following Student class contains a
data field name of the String type.

public class Student {
String name; // name has default value null
int age; // age has default value 0
boolean isScienceMajor; // default false
char gender; // default value "\u0000'

e

Default Value for a Data Field

+* The default value of a data field is:

null for a reference type
0 for a numeric type

false for a boolean type
'\u0000' for a char type

< However, Java assigns NO default value

to a local variable inside a method.

e

Example

« Java assigns N0 default value to a local
variable inside a method.

public class Test {
public static void main(String[] args) {
int x; // x has no default value
String y; // y has no default value
System.out.printin("x is " + x);
System.out.printin("y is " +y);

}
}

* Compilation error: variables not initialized

16

10/3/2015

Differences between Variables of

Primitive Data Types and Object Types

Primitive type inti=1

i

Created usil\Incw Circle()

Object type Circle ¢

C reference |——— | c: Circle

radius = 1

e

Copying Variables of Primitive Data
Types and Object Types

Primitive type assignment i=j

Before: After:

Object type assignment ¢l = ¢2

Before: After:

e] el
e | [F— o | [F—

Y Y Y Y

cl: Circle C2: Circle ¢l: Circle C2: Circle
radius = 5 radius =9 rading = 5 radius =9

10/3/2015

Garbage Collection

** As shown in the previous figure, after the
assignment statement c1 = c2, c1 points to
the same object referenced by c2.

¢ The object previously referenced by c1 is
no longer referenced.

%+ This object is known as garbage.
¢ Garbage is automatically collected by JVM.

* -

The Date Class

+¢ Java provides a system-independent encapsulation of
date and time in the java.util.Date class.

+¢ You can use the Date class to create an instance for the
current date and time and use its toString method to return
the date and time as a string.

L java.util.Date
The + sign indicates

publicmodifer ——>(+Date() Constructs a Date object for the current time.
+Date(elapseTime: long) Constructs a Date object fora given time in
milliseconds elapsed since January 1, 1970, GMT.
+toString(): Sting Retums a string representing the date and time.
+getTime(): long Retums the number of milliseconds since January 1,
1970, GMT.

+setTime(elapseTime: long): void | Sets anew elapse time in the object.

o w

10/3/2015

10

The Date Class Example

s For example, the following code:

java.util.Date date = new java.util.Date();

System.out.printin(date.toString());

= displays a string like:
Mon Nov 04 19:50:54 IST 2013

e

21

The Random Class

java.util.Random

+Random()
+Random(seed: long)
+nextint(): int
+nextlnt(n: int): int
+nextLong(): long
+nextDouble(): double
+nextFloat(): float

+nextBoolean(): boolean

e

+¢* You have used Math.random() to obtain a random double
value between 0.0 and 1.0 (excluding 1.0).

¢ A more useful random number generator is provided in
the java.util.Random class.

Constructs a Random object with the current time as its seed.
Constructs a Random object with a specified seed.

Returns a random int value.

Returns a random int value between 0 and n (exclusive).
Returns a random long value.

Returns a random double value between 0.0 and 1.0 (exclusive).
Returns a random float value between 0.0F and 1.0F (exclusive).

Returns a random boolean value.

22

10/3/2015

11

10/3/2015

Instance Variables, and Methods

* Instance variables belong to a
specific instance.

+* Instance methods are invoked
by an instance of the class.

* -

Static variables, Constants, and Methods

+» Static variables are shared by all the
instances of the class.

+ Static methods are not tied to a specific
object.

++ Static constants are final variables shared
by all the instances of the class.

+» To declare static variables, constants, and

methods, use the statiCc modifier.

12

Static

Aftertwo Circle
Objects were created,

numberOfObjects
is 2.
UML Notation: instantiate
underline: static — circlel: Circle Memory
variables or methods RRE o { ; Fadiiis
Circle - numberOfObjects = 2
radius: double .
numberOfObjects: int P
getNumberOfObjects(): int o numberOfObjects
getArea(): double instantiate . circle2: Circle
radius = § 5 | radius

numberOfObjects = 2

e

Static Variable

not to the object (instance).

instance variables.

the class.

¢ It is a variable which belongs to the class and

+¢ Static variables are initialized only once, at the
start of the execution. These variables will be
initialized first, before the initialization of any

¢ A single copy to be shared by all instances of
+¢ A static variable can be accessed directly by

the class name and doesn’t need any object.
%Syntax : <class-name>.<static-variable-name>

10/3/2015

13

10/3/2015

Static Method

+* It is a method which belongs to the class and not to the
object (instance).

+* A static method can access only static data. It can not
access non-static data (instance variables).

+* A static method can call only other static methods and
can not call a non-static method from it.

+* A static method can be accessed directly by the class
name and doesn’t need any object.

Syntax : <class-name>.<static-method-name>

+* A static method cannot refer to “this” or “super”
keywords in anyway.

main method is static, since it must be accessible for an
application to run, before any instantiation takes place.

Static example

class Student {
int a; //initialized to zero
static int b; //initialized to zero only when class is loaded

Student(){
//Constructor incrementing static variable b
b++;

public void showData(){
System.out.println("value of a
System.out.println("value of b

“+a);
"+b);

J
//public static void increment(){
//a++;
I}

}

class Demo{
public static void main(String args[]){

Student s1 = new Student(); .
s1.showData(); ey C:\WINDOWS\system32\cmd.exe

>:\uworkspace>java Demo
alue of a =

student s2 = new Student();
s2.showData();
//Student.b++; of b =

//s1.showData(); of a :
y 3 of b

14

Static example cont.

¢ Following diagram shows , how reference
variables & objects are created and static variables
are accessed by the different instances.

. ’w : ‘

»
....
. '...
"ay

Visibility Modifiers

+» By default, the class, variable, or method can be
accessed by any class in the same package.

& public: The class, data, or method is visible to any
class in any package.

& private: The data or methods can be accessed only
by the declaring class.

» The get and set methods are used to read and modify
private properties.

o w

10/3/2015

15

package pl;

public class C1 {
public int x;
int y;
private int z;
public void ml1() {
}
void m2(Q) {
}

private void m3() {

package pl;

public class C2 {
void aMethod() {
Cl o = new C1();
can access 0.X;
can access 0.Y;
cannot access 0.z;

can invoke o.ml1();
can invoke o.m2();

cannot invoke o0.m3(Q);

package p2;

public class C3 {
void aMethod() {
Cl o = new C1Q);
can access 0.X;
cannot access 0.Y;
cannot access 0.z;

can invoke o.ml1();
cannot invoke o.m2();
cannot invoke o.m3();

} } }
} } }
package pl; package pl; package p2;
class C1 { public class C2 { public class C3 {
. can access (1 cannot access (1;
} } can access (C2;
}

The private modifier restricts access to within a class.
The default modifier restricts access to within a package.
*The public modifier enables unrestricted access. -

NOTE

¢ An object cannot access its private members, as
shown in (b). It is OK, however, if the object is
declared in its own class, as shown in (a).

public class C {
private boolean x;

C c = new CQ);

}

return x ? 1 : -1;
}
}

public static void main(String[] args) {

System.out.printin(c.x);
System.out.printin(c.convert()); }

private int convert() {

}

public class Test {
public static void main(String[] args) {
C ¢ = new C();
System.out.printin(c.x);
System.out.printin(c.cghvert());

A

(a) This is okay because object € is used inside the class C.

(b) This is wrong because X and convert are private in class C

32

10/3/2015

16

Example of Data Field Encapsulation

Circle

The -sign indicates
private modifier ==

-radius: double

‘D]lmbﬁrﬂﬂ!bjﬁclﬁ" int

+Circle()

+Circle(radius: double)

+getR adius(): double

+sefR adiu s(radius: double): void
+getNumberOfObject(): mt
+getArea(): double

e

The radius of this circle (default: 1.0).

The number of circle objects created.

Constructs adefault circle object.

Constructs acircle object with the specified radius.
Retums the radius of this circle.

Sets anew radius forthis circle.

Retums the number of circle objects created.

Retums the area of this circle.

Overloading Methods and Constructors

A

+** In a class, there can be several methods

with the same name. However they must
have different signature.

+** The signature of a method is comprised of
its name, its parameter types and the order
of its parameter.

+* The signature of a method
is not comprised of its return type nor its
visibility nor its thrown exceptions.

10/3/2015

17

Passing Objects to Methods

+** Passing by value for primitive type
value (the value is passed to the
parameter).

+* Passing by value for reference type
value (the value is the reference to
the object).

* .

Passing Objects to Methods

public class TestPassObject {
public static void main(String[] args) {

Circle myCircle = new Circle(1);
// Print areas for radius 1, 2, 3, 4, and 5.
intn=5;
printAreas(myCircle, n);
System.out.printIn("\n" + "Radius is " + myCircle.getRadius());
System.out.printIn("nis " + n);

}

/** Print a table of areas for radius */
public static void printAreas(Circle c, int times) {
System.out.printIn("Radius \t\tArea");
while (times >=1) {
System.out.printin(c.getRadius() + "\t\t" + c.getArea());
c.setRadius(c.getRadius() + 1);
times--;

}

}
P %

10/3/2015

18

Array of Objects

Circle[] circleArray = new Circle[10];

+** An array of objects is actual
of reference variables.

ly an array

+* So invoking circleArray[1].getArea()
involves two levels of referencing as

shown in the next figure.

circleArray references to the entire array.
circleArray[1] references to a Circle object.

e

37

Array of Objects

Circle[] circleArray = new Circle[10];

» Circle object0

circleArray reference fm————>- circleArray[0]
' circleArray[1]

—|—> Circle object 1

circleArray[9]

» Circle object9

circleArray[0] = new Circle();
circleArray[1] = new Circle();

circleArray[9] = new Circle();

10/3/2015

19

Immutable Objects and Classes

¢ If the contents of an object
(instance) can't be changed once
the object is created, the object is

called animmutable ObjECt

and its class is called an

immutable class.

e

Immutable Objects and Classes

< If you delgte the public class Circle {
set method in the private double radius = 1;

Circle class, the

class would be public double getArea() {
immutable return radius * radius * Math.PI;

because radius is

private and cannot = public void setRadius(double r) {
be changed radius =r;

without a set }

method.)

e 40

10/3/2015

20

Immutable Objects and Classes

e

» A class with all private data fields
and without mutators is not
necessarily immutable.

¢ For example, the following class
Student has all private data fields
and no mutators, but it is
mutable!!!

Example

import java.util.Date;
public class Student {
private int id;
private Date birthDate;

public Student(int ssn, Date newBD) {
id = ssn;
birthDate = newBD;

}

publicint getld(){ returnid; }

public Date getBirthDate() { return birthDate; }
}

o odl

public class Test {

public static void main(String[] args) {

}

java.util.Date bd = new java.util.Date();

Student student = new Student(111223333, bd);
java.util.Date date = student.getBirthDate();
date.setMonth(5); // Now the student birthdate is changed!

10/3/2015

21

What Class is Immutable?

** For a class to be immutable:
= |t must mark all data fields private.
= Provide no mutator methods.

= No accessor methods that would
return a reference to a mutable data
field object.

* -

Scope of Variables

+»* The scope of instance and static variables is the
entire class. They can be declared anywhere
inside a class.

** The scope of a local variable starts from its
declaration and continues to the end of the
block that contains the variable.

% A local variable MUST be initialized explicitly
before it can be used.

10/3/2015

22

10/3/2015

Scope of Variables

** What is the output?

public class A{
int year = 2014; // instance variable

void p() {
System.out.printIn(“Year: "+ year);
int year = 2015; //local variable
System.out.printIn(“Year: "+ year);

}

% }

The this Keyword

+ The this keyword is the name of a reference
that refers to an object itself.

+* One common use of the this keyword is
reference a class’s hidden data fields.
+»* Another common use of the this keyword to

enable a constructor to invoke another
constructor of the same class.

23

10/3/2015

Reference the Hidden Data Fields

public class F {
private int i = 5;
private static double k = 0;

void setI(int i) {
this.i = i,

}

static void setK (double k) {
F.k = k;
}
}

Suppose that fl and f2 are two objects of F.
F fl = new F(); F £f2 = new F();

Invoking fl.setI (10) is to execute
this.i = 10, where this refers f1l

Invoking f2.setI (45) is to execute
this.i = 45, where this refers f2 47

Calling Overloaded Constructor

public class Circle {
private double radius;

public Circle(double radius) {
this.radius = radius;

}
this must be explicitly used to reference the data
public CircleQ { field radius of the object being constructed
this(1.0);
}

—> this is used to invoke another constructor

public double getArea() {
return this.radius * this.radius * Math.Pl;

v T

Every instance variable belongs to an instance

* represented by this, which is normally omitted
48

24

10/17/2015

e e

BIRZEIT UNIVERSITY

Strings

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

By: Mamoun Nawahdah (Ph.D.)
2015/2016

Constructing Strings

String newString = new String(stringlLiteral);

String message = new String("Welcome to Java");

Since strings are used frequently, Java provides a
shorthand initializer for creating a string:

String message = "Welcome to Java";

B :

cannot be changed.

strings Are IMMuta ble

+* A String object is immutable; its contents

+»* Does the following code change the contents of

the string s?

String s = 'Java’;

s = "HTML";

After executing String s = "Java";

s _—,—) : String

Stﬁ% object for "Java"

Contents cannot be changed

2

S

After executing s = "HTML";

mae)' : String
\ String object for "Java"
¥ -
: String

String object for "HTML"

This string object is
now unreferenced

Interned Strings

Lo

+* Since strings are immutable and are
frequently used, to improve efficiency and

save memory, the JVM uses a unique

instance for string literals with the same
character sequence.

% Such an instance is called interned.

10/17/2015

Example

) : String
. Tin,

[nterned string object for

String s1 = "Welcome to Java";

String s3 = "Welcome to Java";

sl ==s2is false
sl ==s3is true

2

String s2 = new String("Welcome to Java"); s2(F—> : String

System.out.printIn("s1 ==s2is " + (s1 == s2));

"Welcome to Java"

A string object for
"Welcome to Java"

System.out.printIn("s1 ==s3is " + (s1 == s3));

Display: <+ A new object is created if you use
the new operator.

+ If you use the string initializer, no

new object is created ifthe
interned object is already created.

String Comparisons

java.lang.String

+equals(s1: Object): boolean

+equalsignoreCase(s1: String):
boolean

+compareTo(s1: String): int

+regionMatches(toffset: int, s1:
String, offset: int, len: int): boolean

toffset: int, s1: String, offset: int,
len: int): boolean

+startsWith(prefix: String): boolean
+endsWith(suffix: String): boolean

+compareTolgnoreCase(sl: String): int

+regionMatches(ignoreCase: boolean,

Lo

Returns true if this string is equal to string s1.

Returns true if this string is equal to string s1 case-
insensitive.

Returns an integer greater than 0, equal to 0, or less than
0 to indicate whether this string is greater than, equal
to, or less than s1.

Same as compareTo except that the comparison is case-
insensitive.

Returns true if the specified subregion of this string
exactly matches the specified subregion in string s1.

Same as the preceding method except that you can specify
whether the match is case-sensitive.
Returns true if this string starts with the specified prefix.

Returns true if this string ends with the specified suffix.

10/17/2015

10/17/2015

String Comparisons

String s1 = new String("Welcome");
String s2 = “Welcome";

if (s1.equals(s2)){
// s1 and s2 have the same contents

}
if (s1 ==5s2){

// s1 and s2 have the same reference

oo’ 7

String Comparisons
compareTo(Object object)

String s1 = new String("Welcome");
String s2 = “Welcome";

if (s1.compareTo(s2) > 0) {
// sl is greater than s2

}
else if (s1.compareTo(s2) == 0) {

// s1 and s2 have the same contents
}

else {
// slis less than s2

rN |

String Length, Characters,

and Combining Strings

java.lang String

Finding String Length

Finding string length using the Iength() method:

message = "Welcome to Java";
message.length(); //returns1s

+length(): int Retums the number of characters in this string.
+charAt(index: int): char Retums the character at the specified index from this string.
+concat(sl: String): String | Retums anew string that concatenate this string with string s1

Retrieving Individual
Characters in a String

+* Do not use message[0]

% Use message.charAt(index)

** Index starts from O

Indices 01 2 3 4 5 6 7 8 9 1011 1213 14

message |W|e |l |c|o|[m|e t| o J

a

A\

a

message.char A(0)

Lo

message. length() is 15

message.charAt(14)

10/17/2015

10/17/2015

String Concatenation

String s3 = s1.concat(s2);
String s3 = sl + s2;

s1+s2+s3+s4+s5
same as
(((s1.concat(s2)).concat(s3)).concat(s4)).concat(s5);

e u

Extracting Substrings

javalang.Stting

+substring(be ginndex: int): | Returns this string’s substring that begins with the character at the
String speci fied beginindex and extends to the end of the string. as
shown in Figure 8.6.

+substring(beginindex: int, | Returns this string’s substring that begins at the specified
endIndex: int): String beginndex and extends to the character at index endIndex — 1, as

shown in Figure 8.6. Note that the characterat endndex is not
patt ofthe substring.

o u

Extracting Substrings

+* You can extract a single character from a string using
the charAt method.

+¢ You can also extract a substring from a string using the
substring method in the String class.

String s1 = "Welcome to Java";

String s2 = s1.substring(o, 11) +

Indices o 1 2 3

"HTML";

4 5 6 7 8 9 10 11 12 13 14

message Wile |l |c

ol m|e t| o Jla|v]a

2

I
message.substring(0, 11)

I
message.substring(11)
13

Converting, Replacing, and

java.lang.String

+toL owerCase(): String
+toUpperCase(): String
+rim(): String

+replace(oldChar: char,
newChar: char): String

+replaceFirst(oldString: String,
newString: String): String

+replaceAll(oldString: String,
newString: String): String

+split(delimiter: String):

String]]

Lo

Splitting Strings

Returns a new string with all characters converted to lowercase.
Returns a new string with all characters converted to uppercase.
Returns a new string with blank characters trimmed on both sides.

Returns a new string that replaces all matching character in this
string with the new character.

Returns a new string that replaces the first matching substring in
this string with the new substring.

Returns a new string that replace all matching substrings in this
string with the new substring.

Returns an array of strings consisting of the substrings splitby the
delimiter.

10/17/2015

Examples

"Welcome".toLowerCase()

returns a new string, welcome
"Welcome".toUpperCase()

returns a new string, WELCOME
" Welcome ".trim()

returns a new string, Welcome
"Welcome".replace('e’, 'A')

returns a new string, WAlcomA
"Welcome".replaceFirst("e", "AB")

returns a new string, WABIcome
"Welcome".replaceAll("e", "AB")

returns a new string, WABIcomAB

e

Splitting a String

String s1 = "Java#HTML#Perl”;

string[] tokens = s1.Split("#", 0);
for (inti = 0; i < tokens.length; i++)
System.out.printin(tokens[i]);

Displays: Java

HTML
Perl

o m

10/17/2015

10/17/2015

Matching, Replacing and
Splitting by Patterns

% You can match, replace, or split a string by
specifying a pattern.
¢ This is an extremely useful and powerful feature,

commonly known as regular expression.

"Java".matches("Java")

"Java".equals("Java")

"Java is fun".matches("Java.*")
* "Java is cool".matches("Java.*")

Matching, Replacing and
Splitting by Patterns

¢ The replaceAll, replaceFirst, and split methods can be used

with a regular expression.

¢ For example, the following statement returns a new string
that replaces $, +, or # in "a+bS#c" by the string NNN.

String s = "a+bS#c".replaceAll("[S+#]", "NNN");
System.out.printin(s);

Here the regular expression [$+#] specifies a pattern that
matches S, +, or #.

So, the output is aNNNbNNNNNNc

Matching, Replacing and

Splitting by Patterns

% The following statement splits the string into an
array of strings delimited by some punctuation

marks:

string[] tokens = "Java,c?c#,c++".Split("[.,:;?1");

for (int i = 0; i < tokens.length; i++)
System.out.printin(tokens[i]); C

2

Java

CH
C++

Finding a Character or a

Substring in a String

java.lang.String

+indexOf{ch: char): int

+indexOf{ch: char, fromIndex:
int): int
+indexOf(s: String): int

int): int
HastIndexOf{ch: int): int

+HastIndexOf{ch: int,
fromIndex: int): int
HastIndexOf(s: String): int

HastIndexOf{(s: String,
‘é fromIndex: int): int

+indexOf{s: String, fromIndex:

Returnsthe index of the first occurrence of ch in the string.
Returns -1 if not matched.

Returns the index of the first occurrence of ch after fromIndex in
the string. Returns -1 if not matched.

Returnsthe index of the first occurrence of string s in this string.
Returns -1 if not matched.

Returnsthe index of the first occurrence of string s in this string
after fromIndex. Returns -1 if not matched.

Returns the index of the last occurrence of ch in the string.
Returns -1 ifnot matched.

Returnsthe index of the last occurrence of ch before fromIndex
in this string. Returns -1 if not matched.

Returnsthe index of the last occurrence of string s. Returns -1 if
not matched.

Returns the index of the last occurrence of string s before
fromIndex. Returns -1 if not matched.

10/17/2015

10

10/17/2015

Finding a Character or a
Substring in a String
String s = "Welcome to Java”;
s.indexOf('W') returns 0
s.indexOf('x") returns -1
s.indexOf('o', 5) returns 9
s.indexOf("come") returns 3
s.indexOf("Java", 5) returns 11
s.indexOf("java", 5) returns -1
* s.lastIndexOf('a’) returns 14

Convert Character and
Numbers to Strings

+* The String class provides several static valueOf
methods for converting a character, an array of
characters, and numeric values to strings.

+* These methods have the same name valueOf
with different argument types char, char[],
double, long, int, and float.

+* For example, to convert a double value to a
string, use String.valueOf(5.44). The return value
is string consists of characters ‘5%, ¢/, ‘4’, and ‘4’.

11

The Character Class

java.lang.Character

+Character(value: char)

+charValue(): char
+compareTo(anotherCharacter: Character): int
+equals(anotherCharacter: Character): boolean

+isDigit(ch: char): boolean

+isLetter(ch: char): boolean

+isLetterOrDigit(ch: char): boolean

+isLowerCase(ch: char): boolean

+isU pperCase(ch: char): boolean

oL owerCase(ch: char): char

+toUpperCase(ch: char): char

2

Constructs a character object with char value
Returns the char value from this object
Compares this character with another

Returns true if this character equals to another
Returns true if the specified character is a digit
Returns true if the specified character is a letter
Returns true if the character is a letter or a digit
Returns true if the character is a lowercase letter
Returns true if the character is an uppercase letter
Returns the lowercase of the specified character

Returns the uppercase of the specified character

23

Examples

Character ¢ = new Character('b’);

c.compareTo(new Character('a'))
c.compareTo(new Character('b"))
c.compareTo(new Character('c'))
c.compareTo(new Character('d')
c.equals(new Character('b'))

c.equals(new Character('d'))

Lo

returns 1
returns 0
returns -1
returns -2
returns true

returns false

24

10/17/2015

12

StringBuilder and StringBuffer

+* The StringBuilder/StringBuffer class is an
alternative to the String class.

+** In general, a StringBuilder/StringBuffer can be
used wherever a String is used.

% StringBuilder/StringBuffer is more flexible
than String.

< You can add, insert, or append new
contents into a string buffer, whereas the value of
a String object is fixed once the string is created.

e 25

StringBuilder Constructors

javalang StringBuilder

+S tni ngBuilder() Constructs an empty s tring builder with capacity 16.
+StungBuilder(capacity: int) | Constrcts a string builder with the specified capacity.
+S tnngBuilder(s: S tring) Constructs a string builder with the speci fied string.

o 26

10/17/2015

13

10/17/2015

Modifying Strings in the Builder

java.lang StringBuilder
Happend(data: char[]): StringBuilder Appends a char array into this string builder.
Happend(data char[], offset: int, len: int): | Appendsa subarray in datainto this string builder.
String Buil der
Happend(v: aPrimitive [ype): StringBuilder | Appends a primitive type value as a string to this
builder.
Happend(s: String): StringBuilder Appends a string to this string builder.
tdelete(startIndex: int, endIndex: int): Deletes characters from startlndex to endIndex_
String Builder

tHdeleteCharAt(index: int): StringBuilder Deletes a character at the specifiedindex.
tHnsert(index: int, data: char[], offset: int, Inserts a subarray of the data in the array to the builder

len: int): StringBuilder at the specified index.

rHinsert(off set: int, data: char[]): Inserts data into this builder at the position offset.
String Builder

Hnsert(offset: int, b: aPrimitiveType): Inserts a value converted to a string into this builder.
String Buil der

rHnsert(offset: int, s: String): StringBuilder | Inserts a string into this builder at the position offset.

rtreplace(startIndex: int, endlndex: int, s
String): StringBuilder

rreverse(): StringBuilder Reverses the characters in the builder.

I+setCharAt(index: int, ch: char) void Sets a new character at the specified index in this
builder. 27

Replaces the characters in this builder from startIndex
to endIndex with the specified string.

Examples

StringBuilder sb = new StringBuilder(“Welcome to “);

sb.append("Java");
sb.insert(11, "HTML and ");
sb.delete(8, 11) ;

// changes the builder to Welcome Java
sb.deleteCharAt(8) ;

// changes the builder to Welcome o Java
sb.reverse() ;

// changes the builder to aval ot emocleW
sb.replace(11, 15, "HTML") ;

// changes the builder to Welcome to HTML

sb.setCharAt(0, 'w') ;

// sets the builder to welcome to Java

o zg

14

The toString, capacity, length,

setLength, and charAt Methods

javalang.StringBuilder

+toString(): String

+capacity(): int

+charAt(index: int): char

+length(): int

+setlength(newL ength: int): void

+substring(startindex: int): String

+substring(startindex: int, endIndex: int):
String

+trimT oSize(): void

2

Returns a string object from the string builder.
Returns the capacity ofthis string builder.

Returns the character at the specified index.
Returns the number of characters in this builder.
Sets a new length in this builder.

Returns a substring starting at startindex.

Returns a substring from startIndex to endIndex-1.

Reduces the starage size used for the string builder.

29

10/17/2015

15

(:;./p*‘:fﬂ/w/r
-)L.——)\/Ub} .

BIRZEIT UNIVERSITY

Thinking ¢ 00
in Objects

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

.

By: Mamoun Nawahdah (PhD)
2015/2016

Class Abstraction and Encapsulation

¢ Class abstraction means to separate class
implementation from the use of the class.

+* The creator of the class provides a description of the
class and let the user know how the class can be used.

+* The user of the class does not need to know how the
class is implemented.

+*The detail of implementation is encapsulated and
hidden from the user.

Class implementation is Class Contract Clients use the
like a black box hidden (Signatures of public class through
from the clients methods and public the contract of

% constants) the class

10/24/2015

Case Study: The BMI Class

BMI /

-name; String /

-age: int
-weight: double
-height: double

double, height: double)

+BMIi{name; String, weight: double,
height: double)

+getBMI(): double
+getStatus(): String

+BMI(name: String, age: int, weight:

2

e get methods for these data fields are
providedin the class, but omitted in the

UML diagram for brevity.

The name of the person.

The age of the person.

The weight of the person in pounds.
The height of the person in inches.

Creates a BMI object with the specified
name, age, weight, and height.

Creates a BMI object with the specified
name, weight, height, and a default age
20.

Returns the BMI

Returns the BMI status (e.g., normal,
overweight, etc.)

Object Composition

relationship.
Composition

N

£ Y

%+ Aggregation models has-a relationships and represents
an ownership relationship between two objects.

+» The owner object is called an aggregating object and
its class an aggregating class.

+»* The subject object is called an aggregated object and
its class an aggregated class.

+» Composition is actually a special case of the aggregation

Aggregation

‘/113

10/24/2015

Class Representation

+* An aggregation relationship is usually
represented as a data field in the aggregating class.

+* For example, the relationship in the previous
Figure can be represented as follows:

public class Name { public class Student { public class Address |
private Name name;

1 private Rddress address; b

2

Aggregation Between Same Class

¢ Aggregation may exist between objects of the
same class.

¢ For example, a person may have a supervisor:

1

Person [O——

. Supervisor

public class Person {

// The type for the data is the class itself

private Person supervisor;

o i]

10/24/2015

Aggregation Between Same Class

+* What happens if a person has several

supervisors?

Person

Supervisor

public class Person {

private Person[] supervisors;

* }

Example: The Course Class

Course

-courselame: String
-students: Stringl]
-mimber0fStudents: int

+Course{courseName: String)
tgetCourselName |} 1 String
+addStudent (student: String): void
+dropStudent{student: String) : void
+getStudents(] @ Stringl[]

tgetiuberOtStudents () @ int

Lo

Thename of th e course.
An array to store the students for the course.
Thenumber of students (default : 0).

Creates acoursewith the specified name.
Returns the course name.

Adds anew student to the course.

Drops a student from the course.

Returns the students in the course.

Returns the mumber of students in the course

10/24/2015

Designing a Class

% (Coherence) A class should describe a
single entity, and all the class operations
should logically fit together to support a
coherent purpose.

+** You can use a class for students, for
example, but you should not combine
students and staff in the same class, because
students and staff have different entities.

offe 9

Designing a Class cont.

< (Separating responsibilities) A single entity
with too many responsibilities can be broken into
several classes to separate responsibilities.

¢ Example: the classes String, StringBuilder, and
StringBuffer all deal with strings, for example, but have
different responsibilities:

= String class deals with immutable strings.
= StringBuilder class is for creating mutable strings.

= StringBuffer class is similar to StringBuilder except that

StringBuffer contains synchronized methods for updating strings.

o m

10/24/2015

Designing a Class cont.

+» Classes are designed for reuse.
+** Users can incorporate classes in many different

combinations, orders, and environments. Therefore,

you should design a class that imposes no

restrictions on what or when the user can do with it:

= Design the properties to ensure that the user can set
properties in any order, with any combination of
values.

= Design methods to function independently of their

order of occurrence.
* 11

Designing a Class cont.

% Follow standard Java programming style
and naming conventions:

= Choose informative names for classes, data
fields, and methods.

= Always place the data declaration before the
constructor, and place constructors before
methods.

= Always provide a constructor and initialize
variables to avoid programming errors.

o u

10/24/2015

Wrapper Classes

2

Boolean
Character
Short
Byte
Integer
Long
Float
Double

NOTE:

(1) The wrapper classes do not
have no-arg constructors.

(2) The instances of all wrapper

classes are Iimmutable, i.e.,
their internal values cannot be
changed once the objects are

created.

The Integer and Double Classes

java.lang.Integer

java.lang.Double

-value:int
+MAX VALUE: int
+MIN VALUE: int

-value: double
+MAX VALUE: double
+MIN_ VALUE: double

+Integer({value:int)
+Integer(s: String)
+byteValue(): byte
+shortValue(): short
+intValue(): int
+longVlaue(): long
+floatValue(): float
+doubleValue():double
+compareTo(o: Integer): int
+toString(): String

+valueOf(s: String): Integer
+valueOfs: String, radix: int): Integer

+parselnt(s: String): int
+parselnt(s: String, radix: int): int

+Double(value: double)

+Double(s: String)

+byteValue(): byte

+shortValue(): short

+intValue(): int

+longVlaue(): long

+floatValue(): float
+doubleValue():double
+compareTo(o: Double): int
+toString(): String

+valueOf(s: String): Double
+valueOfis: String, radix: int): Double
+parseDouble(s: String): double
+parseDouble(s: String, radix: int): double

10/24/2015

10/24/2015

Numeric Wrapper Class Constructors

+** You can construct a wrapper object either from
a primitive data type value or from a string
representing the numeric value.

+* The constructors for Integer and Double are:
public Integer(int value)
public Integer(String s)
public Double(double value)
public Double(String s)

e

Numeric Wrapper Class Constants

¢ Each numerical wrapper class has the constants
MAX_VALUE and MIN_VALUE.

** MAX_VALUE represents the maximum value of
the corresponding primitive data type.

¢ For Byte, Short, Integer, and Long, MIN_VALUE
represents the minimum byte, short, int, and long
values.

+¢ For Float and Double, MIN_VALUE represents
the minimum positive float and double values.

Conversion Methods

+* Each numeric wrapper class implements
the abstract methods doubleValue,
floatValue, intValue, longValue, and

shortValue, which are defined in the Number

class.

¢ These methods “convert” objects into
primitive type values.

2

The Static valueOf Methods

** The numeric wrapper classes have a
useful class method, valueOf(String s).

+** This method creates a new object
initialized to the value represented by the
specified string.

s For example:

Double doubleObject = Double.valueOf("12.4");

Integer integerObject = Integer.valueOf("12");

2

10/24/2015

The Methods for Parsing Strings into Numbers

+*** You have used the parselnt method in the
Integer class to parse a numeric string into
an int value and the parseDouble method in
the Double class to parse a numeric string
into a double value.

+* Each numeric wrapper class has two
overloaded parsing methods to parse a
numeric string into an appropriate numeric
value.

Automatic Conversion Between Primitive
Types and Wrapper Class Types

+* JDK 1.5 allows primitive type and wrapper classes
to be converted automatically. For example, the
following statement in (a) can be simplified as in (b):

Integer[] intArray = {new Integer(2),| S®F4= [Tovocer(] inthrray =gz, 4, 3}
new Integer(4), new Integer(3)};

(&) Wew JDE 15boxing (k)

Integer[] arr = {1, 2, 3};

System.out.println(arr[O] +arr[1] + arr[2]);

* Unboking

10/24/2015

10

10/24/2015

Biginteger and BigDecimal

¢ If you need to compute with very

large integers or high precision floating-
point values, you can use the Biginteger
and BigDecimal classes in the java.math

package.
* Both are immutable.

e A

Biginteger and BigDecimal

Biginteger a = new Biginteger("9223372036854775807");
BigInteger b = new BigInteger("2");

Biginteger c = a.multiply(b); // 9223372036854775807 * 2
System.out.printin(c);

BigDecimal a = new BigDecimal(1.0);
BigDecimal b = new BigDecimal(3);
BigDecimal c = a.divide(b, 20, BigDecimal.ROUND_UP);

System.out.printin(c);

e .

11

10/30/2015

T 7 -
2l A >

BIRZEIT UNIVERSITY

Inheritance and
Polymorphism

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc_ All

F H B - 5] i "’”’ s i . 7
A x \.‘.)8 i.'
N i S|)|
L .‘. A 0
By: Mamoun Nawahdah (Ph.D.)
2015/2016

Motivations

+** Suppose you will define classes to
model circles, rectangles, and triangles.
*** These classes have many common
features.

s What is the best way to design these
classes so to avoid redundancy?

The answer is to use inheritance.

Eiad :

Superclasses and Subclasses

GeometricObject

-color: String
-filled: boolean
-dateCreated: java.util. Date

The color of the object (default: white).
Indicates whether the object is filled with a codefault: false).
The date when the object was created.

+GeometricObject()

+GeometricObject(color: String,
filled: boolean)

+getColor(): String
+setColor(color: String): void
+isFilled(): boolean
+setFilled(filled: boolean): void
+getDateCreated(): java.util.Date

Creates a GeometricObject.
Creates a G icObject with the ified catat filled
values.

Returns the color.

Sets a new color.

Returns the filled property.

Sets a new filled property.

Returns the dateCreated.

Returns a string representation of this object.

+toString(): String

I

Circle Rectangle

-radius: double -width: double
+Circle() -height: double
+Circle(radius: double) +Rectangle()
+Circle(radius: double, color: String, +Rectangle(width: double, height: doubjle)

filled: boolean) +Rectangle(width: double, height: doubjle
+getRadius(): double color: String, filled: boolean)
+setRadius(radius: double): void +getWidth(): double
+getArea(): double +setWidth(width: double): void
+getPerimeter(): double +getHeight(): double
+getDiameter(): double +setHeight(height: double): void
+printCircle(): void +getArea(): double

+getPerimeter(): double 3

Superclass

i Subclass

class Convertible {

// Key (private)

// Speed : 155 (miles / hour)
// Weight 1600 kg

// Engine : 3.2 L 554 inline-6

}
N

// Weight 1399 kg
}

class Roadster extends Convertible {

// Speed : 165 (miles / hour)

10/30/2015

Are Superclass’s Constructor Inherited?

¢ No. Unlike properties and methods, a superclass's
constructors are not inherited in the subclass.

¢ They are invoked explicitly or implicitly.

¢ Explicitly using the SU per keyword.

¢ They can only be invoked from the subclasses'

constructors, using the keyword SuUper.

If the keyword super is not explicitly used,
the superclass's no-arg constructor is
automatically invoked.

i

+» For example:

public Af)
t

is equivalent to

Superclass’s Constructor is Always Invoked
+* A constructor may invoke an overloaded constructor or
its superclass’s constructor.

+* If none of them is invoked explicitly, the compiler puts
super() as the first statement in the constructor.

Y

b

public A(double d)
// some statements

{

is equivalent to

1

public A{) {

super();

e

}

public A{double d) {

super () ;
// some statements

10/30/2015

Using the Keyword SUper

¢ The keyword super refers to the
superclass of the class in which super
appears.

“ super keyword can be used in two ways:

= To call a superclass constructor.

= To call a superclass method.

i

Caution

¢ You must use the keyword super to
call the superclass constructor.

= Invoking a superclass constructor’s name
in a subclass causes a syntax error.

+» Java requires that the statement that

uses the keyword super appear first in
the constructor.

e

10/30/2015

10/30/2015

Constructor Chaining

Constructing an instance of a class invokes all the superclasses’ constructors
along the inheritance chain. This is called constructor chaining.

public class Faculty extends Enpl oyee {
public static void main(String[] args) {
Faculty f = new Faculty();

}
public Faculty() {
Super (); > System.out.printin(" (4) Faculty's no-arg constructor is invoked");
}
}

class Enpl oyee extends Person {
public Employee() {
this(" (2) Invoke Employee’s overloaded constructor");
System.out.printin(" (3) Employee's no-arg constructor is invoked");

}
public Employee(String s) {
Super(); > System.out.printin(s);

}

class Person {
public Person() {
System.out.printin(* (1) Person's no-arg constructor is invoked");
}
}

super); 2

Example on the Impact of a Superclass
without no-arg Constructor

+* Find out the errors in the following program:

public class Apple extends Fruit {
}

public class Fruit {
public Fruit(String name) {
System.out.printIn("Fruit's constructor is invoked");
}
}

o m

Defining a Subclass

s A subclass inherits from a superclass.
You can also:

= Add new properties.

= Add new methods.

= Override the methods of the
superclass.

i

Calling Superclass Methods

+* You could rewrite the printCircle() method
in the Circle class as follows:

public void printCircle() {
System.out.printIn("The circle is created " +

SUPEY .getDateCreated() +
"and the radius is " + radius);

}

e

10/30/2015

Superclasses and Subclasses

LP

GeometricObject
-color: String The color of the object (default: white).
-filled: boolean Indicates whether the object is filled with a codefault: false).
-dateCreated: java.util. Date The date when the object was created.
+GeometricObject() Creates a GeometricObject.
+GeometricObject(color: String, |Creates a GeometricObject with the ified caat filled
filled: boolean) values.
+getColor(): String Returns the color.
+setColor(color: String): void Sets a new color.
+isFilled(): boolean Returns the filled property.

+setFilled(filled: boolean): void Sets a new filled property.
+getDateCreated(): java.util.Date |Returns the dateCreated.
+toString(): String Retumns a string representation of this object.

[

Circle
-radius: double

+Circle()
+Circle(radius: double)

+Circle(radius: double, color: String,
filled: boolean)

+getRadius(): double
+setRadius(radius: double): void
+getArea(): double
+getPerimeter(): double

+getDiameter(): double
+printCircle(): void

Rectangle
-width: double
-height: double

+Rectangle()
+Rectangle(width: double, height: douby

+Rectangle(width: double, height: douby
color: String, filled: boolean)

+getWidth(): double
+setWidth(width: double): void
+getHeight(): double
+setHeight(height: double): void
+getArea(): double
+getPerimeter(): double 13

&

Overriding Methods in the Superclass

the superclass.

s Sometimes it is necessary for the subclass to
modify the implementation of a method defined in

< This is referred to as method overriding.

public class Circle extends GeometricObject {

// Other methods are omitted
/** Override the toString method defined in GeometricObject */
public String toString() {

return SU per.tOString() +"\n radius is " + radius;

10/30/2015

Note

¢ An instance method can be
overridden only if it is accessible.

= Thus a private method cannot be
overridden, because it is not accessible
outside its own class.

= |f a method defined in a subclass is
private in its superclass, the two methods
are completely unrelated.

Note cont.

+* Like an instance method, a static method
can be inherited.

= However, a static method cannot be
overridden.

= |f a static method defined in the
superclass is redefined in a subclass, the
method defined in the superclass is
hidden.

o m

10/30/2015

Overriding VS. Overloading

public class Test {
public static voi d main(String[] args) {
Aa = new A();
a.p(10);
a.p(10.0);
}
}

class B {
public void p(double i){
System.out.printin(i * 2);
}
}

class A extends B {

/I This method overrides the method in B
public void p(double i){

System.out.printin(i);
)
e

overriding VS. Overloading

public class Test {
public static void main(String[] args) {
Aa = new A();
a.p(10);
a.p(10.0);
}
}

class B {
public void p(double i){
System.out.printin(i * 2);
}
}

class A extends B {
/I This method overloads the method in B
public void p(int i){

System.out.printIn(i);
% }
}

10/30/2015

The Object Class

¢ Every class in Java is descended from the
java.lang.Object class.

¢ If no inheritance is specified when a class
is defined, the superclass of the class is

Object.

public class Circle { public class Circle extends Object|
Equivalent

b

}

i

The toString() method in Object

< The toString() method returns a
string representation of the object.
+* The default implementation returns a
string consisting of:
= A class name of which the object is an
instance.
" The at sign (@).
= A number representing this object.

e

10/30/2015

10

The toString() method in Object

Circle ¢ = new Circle();

System.out.printin(c.toString());

< The code displays something like:

Circle@15037e5

< This message is not very helpful or informative.

< Usually you should override the toString method
so that it returns an informative string representing
the object.

o A

class GraduateStudent extends Student {

}

class Student extends Person {
public String toString() {
return "Student";

}
}

class Person extends Object {
public String toString() {
return "Person";

}

2)

10/30/2015

11

Polymorphism

public class Demo {
public static void main(String[] a) { MethOd m takes a
m(new Object()): parameter of the

m(new Person());
m(new Student());
m(new GraduateStud

Object type.
public static void m(Object X){ YOU can InVOke It Wlth

System.out.println(x.toString()); any 0] bJ ect.

}
}

* An object of a subtype can be used wherever its
supertype value is required.

*+ This feature is known as polymorphism.

Dynamic Binding

public class Demo {
public static void main(String[] a) {
m(new GraduateStudent());
m(new Student()); . . .
m(new Person()); ThIS Capablllty IS knOWn as
m(new Object()); ° . °
) dynamic binding.
public static void m(Object x) {
System.out.printin(x.toString());
}
}

+» When the method m(Object x) is executed, the argument
x’s toString method is invoked. x may be an instance of
GraduateStudent, Student, Person, or Object.

+» Classes GraduateStudent, Student, Person, and Object
have their own implementation of the toString method.
Which implementation is used will be determined

& dynamically by the JVM at runtime.

24

10/30/2015

12

Dynamic Binding

¢ Dynamic binding works as follows:

= Suppose an object o is an instance of
classesC, C,, ...,C_,,and C_, where C, is a
subclass of C,, C, is a subclass of C;, ..., and
C,., is asubclass of C.

* That is, C_ is the most general class, and
C, is the most specific class.

| Cn Iq—l Cn-l IQ— q—l C2 Iq—l Cl |
Since o is an instance of,® is also an
Object instance of Cs, ..., Cn1, andC,

Dynamic Binding cont.

¢ Dynamic binding works as follows:

" [f o invokes a method p, the JVM searches the
implementation for the method p in C;, C,, ...,
C..and C, in this order, until it is found.

" Once an implementation is found, the search
stops and the first-found implementation is
invoked.

| Cn Iq—l Cn-l Iq— q—l C2 Iq—l Cl |
Since o is an instance of,® is also an
Object instance of §Cs, ..., Cn1, andC,

10/30/2015

13

10/30/2015

Generic Programming

public class Demo { .
public static void main(String[] a) { Polymorphism allows methods
m(new GraduateStudent()); . .
minew Student(): to be used generlcally for a wide
m(new Person()); range of object arguments.
m(new Object()); ..
} This is known as:
public static void m(Object x){ . .
System.out.printIn(x.toString()); gene”c programm"‘]g

}
}

% If a method’s parameter type is a superclass (e.g., Object), you
may pass an object to this method of any of the parameter’s
subclasses (e.g., Student).

“* When an object (e.g., a Student object) is used in the method,
the particular implementation of the method of the object that is
invoked (e.g., toString) is determined dynamically.

o N

Casting Objects

+¢ Casting can also be used to convert an object of one
class type to another within an inheritance hierarchy.

m(new Student());

assigns the object new Student() to a parameter of the
Object type. This statement is equivalent to:

Object o = new Student(); // Implicit casting
m(o);

The statement Object o = new Student(), known as
implicit casting, is legal because an instance of

ii Student is automatically an instance of Object.

28

14

Why Casting is Necessary?

¢ Suppose you want to assign the object reference 0 to a
variable of the Student type using the following statement:

Student b = o; //A compile error would occur.

+»* Why does the statement Object o = new Student() work
and the statement Student b = o doesn’t?

» This is because a Student object is always an
instance of Object, but an Object is not
necessarily an instance of Student.

= Even though you can see that o is really a
Student object, the compiler is not so clever to
know it.

29

Why Casting Is Necessary?

+» To tell the compiler that o is a Student
object, use an explicit casting.

¢ The syntax is similar to the one used for
casting among primitive data types.

¢ Enclose the target object type in
parentheses and place it before the object to
be cast, as follows:

Student b = (Student) o ; // explicit casting

o 30

10/30/2015

15

Casting from Superclass to Subclass

+» Explicit casting must be used when casting an
object from a superclass to a subclass.

Fruit fruit = new Apple();

Apple a = (Apple) fruit;

Orange o = (Orange) fruit;

¢ This type of casting may not always succeed.

Fruit

A

Apple Orange Mango
31

The instanceof Operator

+* Use the instanceof operator to test
whether an object is an instance of a class:

Object myObject = new Circle();

// Perform casting if myObject is an instance of Circle

if (myObject instanceof circle){
System.out.printin("The circle diameter is " +

((Circle)myObject).getDiameter());

o 32

10/30/2015

16

The equals Method

+* The equals() method compares the contents of two

objects.

+* The default implementation of the equals method in
the Object class is as follows:

public boolean equals (Object obj) {
return (this == obj);

< For example, the equals
method is overridden in
the Circle class.

i

public boolean equals(Object o) {
if (0 instanceof Circle) {
return radius == ((Circle)o).radius;

}
else

return false;

Note

e

** The == comparison operator is used for
comparing two primitive data type values
or for determining whether two objects
have the same references.

+* The equals method is intended to test
whether two objects have the same
contents, provided that the method is
modified in the defining class of the objects.

10/30/2015

17

The ArrayLlist Class

+¢* You can create an array to store
objects.

¢ But the array’s size is fixed once the
array is created.

% Java provides the ArrayList class
that can be used to store an unlimited
number of objects.

The Arraylist Class

javaautiL ArrayList<E>

+hrrayList() Creates an empty list

+add{o: E} = woid Appends anew ekmento at the end of this list.
+add({index: int, o: E) : void Addsanewelement o at the specifiedindex n this list.
+clear(): vold Removesalltheelements fir om thislist.

+contains{o: oObject): boolean Betimstrue if this list containg the element c.

+get{index: int) : E Renimstheelementfrom this list at the specified index
+index0f{o: Object) : int Renimsthe index of the first matching element in this list.
+isEmpty(): boolean Retims true if this list contains no elements.
+last Index0f{o: Cbject) : int Retimsthe index of the ba ¢ matching element in this list.
+remove (0! Object): boolean Bemovesthe element o from this list.
+size {): int Retimsthe mimber of elem ents in this list.
+remove (index: int) : boolean Removesthe element atthe specified index.

" +set{index: int, o: E) @ E Sets the element at the specified index.

S i

10/30/2015

18

Generic Type <E>

¢ ArrayList is known as a generic class with a

generic type E.

+¢ You can specify a concrete type to replace E

when creating an ArrayList.

¢ For example, the following statement creates an
Arraylist and assigns its reference to variable cities.
This ArraylList object can be used to store strings:

ArrayList<String> cities

ArrayList<String> cities

new ArrayList<String>();

new ArrayList<>();

37

Differences and Similarities
between Arrays and ArrayList

Operation Array

ArrayList

Creating an array/ArrayList String[] a = new String[l0]

Accessing an element alindex]
Updating an element alindex] = "London";
Returning size a.length

Adding a new element
Inserting a new element
Removing an element
Removing an element

Removing all elements

e

ArrayLisgt«String» list = new
list.get(index);
list . sget(index. "London"):
ligt.gize();
ligt.add("London")
list.add({index, "London")
list .remove(index);
ligt remove(Object):

list.clear(});

10/30/2015

19

ArrayLists from/to Arrays

+»* Creating an ArraylList from an array of objects:

String[] array = {"red", "green", "blue"};
Arraylist<String> list = new

ArrayList<>(Arrays.asList(array));

< Creating an array of objects from an ArrayList:

String[] arrayl = new String|[list.size()];
list.toArray(arrayl);

o ”

max and min in an ArrayList

java.util.Collections.max(list)
java.util.Collections.min(list)

Shuffling an ArraylList
Integer[] array = {3, 5, 95, 4, 15, 34, 3, 6, 5};
ArraylList<Integer> list = new
Arraylist<>(Arrays.asList(array));
java.util.Collections.shuffle(list);

& System.out.printIn(list);

10/30/2015

20

10/30/2015

The protected modifier

< The protected modifier can be applied on
data and methods in a class.

+* A protected data/method in a public class can be
accessed by any class in the same package OF its

subclasses, even if the subclasses are in a
different package.

e

Vishity ncreases

private, none (ifno modifier s used), protedted, pubic

Accessibility Summary
Modifier Accessed Accessed Accessed Accessed
onmembers from the from the from a from a different
in a class same class same package subclass package
public Vv v V. /
protected v W/ / -
default v v/ - -
private Vv - - -

21

Visibility Modifiers

package pl;

public class Ccl1 {
public int =;
protected int vy;
int z;
private int u;

protected void m{)
t
}

{

public class C2 {

)

Cl o = new Cl({);
Ccan access 0.X;
Ccan access 0.¥7
Ccan access 0.z;
cannot access o.u;

can invoke o.m{};

Py

package p2;

public class C3
extends C1
can access ®;
can access y;
can access z;
cannot access u;

can invoke m{);

}

{

public class C4
extends Cl1 {
can access ®;
can access y;
cannot access z;
cannot access u;

can invoke m({);

public class C5 |
Cl o = new Cl{};
can access o.X;

cannot
cannoct
cannot

cannot

access 0.y,
access 0.Z;
access o.uy

invoke o.m();

i

A Subclass Cannot Weaken the Accessibility

* A subclass may override a protected
method in its superclass and change its
visibility to public.

+» However, a subclass cannot weaken the
accessibility of a method defined in the

superclass.

* For example, if a method is defined as
public in the superclass, it must be defined as
public in the subclass.

e

10/30/2015

22

The final Modifier

% The final class cannot be extended:
final class Math {

}

*»» The final variable is a constant:
final static double Pl = 3.14159;

% The final method cannot be
overridden by its subclasses.

i

Note

+* The modifiers are used on classes
and class members (data and
methods), except that the final modifier
can also be used on local variables in a
method.

+» A final local variable is a constant
inside a method.

e

10/30/2015

23

11/9/2015

BIRZEIT UNIVERSITY

Abstract Classes
and Interfaces "9‘

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

By: Mamoun Nawahdah (Ph.D.)
2015/2016

abstract Classes and Methods

+*»* Abstract classes: some methods
are only declared, but no concrete
implementations are provided.

** Those methods called abstract
methods and they need to be
implemented by the extending
classes.

e

abstract class Person {
protected String name;

public abstract String getDescription() ,

=

Class Student extends Person { | |

private String major;

| Employee | | Student

public String getDescription() {
return “a student major in “ + major;

}

Class Employee extends Person {
private float salary;

public String getDescription() {
return “an employee with a salary of $ “ + salary;

}

*}

abstract Classes and abstract Methods

GeometricObject

Abstract class name is italicized

-color: String
-filled: boolean
-dateCreated: java.util.Date

The # sign indicates
protected modifier

#GeometricObject()

#GeometricObject(color: string,
filled: boolean)

+getColor(): String
+setColor(color: String): void
+isFilled(): boolean
+setFilled(filled: boolean): void
+getDateCreated(): java.util.Date
+toString(): String

+getArea(): double

+getPerimeter(): double Methods getArea and getPerimeter arc

overridden in Circle and Rectangle.
Superclass methods are generally omitted
in the UML diagram for subclasses.

Circle Reetangle

-radius: double -width: double
-height: double

Abstract methods
are italicized

+Circle()

+Circle(radius: double) +RECtBHQ1E()_)

+Circle(radius: double, color: string, +Rectangle(width: double, height: double)
filled: boolean) +Rectangle(width: double, height: double,

+getRadius(): double color: string, filled: boolean)

+setRadius (radius: double): void +getWidth(): double

+getDiameter(): double +setWidth(width: double): void
+getHeight(): double
+setHeight(height: double): void 4

11/9/2015

11/9/2015

abstract Method in abstract Class

+* An abstract method cannot be contained in a
non-abstract class.

+» If a subclass of an abstract superclass does not
implement all the abstract methods, the subclass
must be defined abstract.

+* In other words, in a nonabstract subclass
extended from an abstract class, all the abstract
methods must be implemented, even if they are not
used in the subclass.

e

Object Can't be Created from
abstract Class

+* An abstract class can't be instantiated
using the new operator, but you can still
define its constructors, which are invoked
in the constructors of its subclasses.

» For instance, the constructors of
GeometricObject are invoked in the Circle
class and the Rectangle class.

Ed :

Abstract Class without Abstract Method

+* A class that contains abstract methods must be
abstract.

+* However, it is possible to define an abstract class
that contains no abstract methods.

» In this case, you cannot create instances of
the class using the new operator.

» This class is used as a base class for defining
a new subclass.

Ed :

Superclass of abstract Class
may be Concrete

¢ A subclass can be abstract even if
its superclass is concrete.

¢ For example, the Object class is
concrete, but its subclasses, such as
GeometricObject, may be abstract.

Ed :

11/9/2015

11/9/2015

Concrete Method Overridden
to be abstract

+* A subclass can override a method from
its superclass to define it abstract.

» This is rare, but useful when the
implementation of the method in the
superclass becomes invalid in the subclass.
In this case, the subclass must be defined
abstract.

o g

abstract Class as Type

¢ You can’t create an instance from an
abstract class using the new operator, but an
abstract class can be used as a data type.

+* Therefore, the following statement, which
creates an array whose elements are of
GeometricObject type, is correct:

GeometricObject[] geo = new GeometricObject[10];

o m

Case Study:

The Abstract Number Class

Jjava.lang. Number

+byteValue(): byte
+shortValue(): short
+intValue(): int
+longVlaue(): Tlong
+floatValue(): float
+doubleValue(): double

| l |

Double Float | Long

LF‘
| | | | |

Integer ‘ Short | Byte Biglntcgcrl BigDccim:lll

11

The Abstract Calendar Class and

Java.util.Calendar

Its GregorianCalendar subclass

#Calendar()
+get(field: int): int
+set(field: int, value: int): void

+set(year: int, month: int,
dayOfMonth: int): void

+getActualMaximum(field: int): int
+add(field: int, amount: int): void
+getTime(): java.util.Date

+setTime(date: java.util.Date): void

Constructs a default calendar.

Returns the value of the given calendar field.

Sets the given calendar to the specified value.

Sets the calendar with the specified year, month. and date. The month
parameter is 0-based: that is, 0 is for January.

Returns the maximum value that the specified calendar field could have.

Adds or subtracts the specified amount of time to the given calendar field.

Returns a Date object representing this calendar’s time value (million
second offset from the UNIX epoch).

Sets this calendar’s time with the given Date object.

4‘1';

java.ntil.GregorianCalendar

+GregorianCalendar()

+GregorianCalendar(year: int,
month: int, dayOfMonth: int)

+GregorianCalendar(year: 1int,

month: int, dayOfMonth: int,
hour:int, minute: int, second: int)

Constructs a GregorianCalendar for the current time.

Constructs a GregorianCalendar for the specified year, month, and
date.

Constructs a GregorianCalendar for the specified year. month. date.
hour. minute. and second. The month parameter is 0-based. that
15,0 1s for January.

s d

12

11/9/2015

GregorianCalendar subclass

¢ An instance of java.util.Date represents a specific
instant in time with millisecond precision.

+¢ java.util.Calendar is an abstract base class for
extracting detailed information such as year, month,
date, hour, minute and second from a Date object.

+¢ Subclasses of Calendar can implement specific calendar
systems such as Gregorian calendar, Lunar Calendar
and Jewish calendar.

¢ Currently, java.util.GregorianCalendar for the
Gregorian calendar is supported in the Java API.

o 13

The GregorianCalendar Class

¢ You can use new GregorianCalendar() to
construct a default GregorianCalendar with
the current time

¢ Use new GregorianCalendar(year, month,
date) to construct a GregorianCalendar
with the specified year, month, and date.

** The month parameter is 0-based, i.e., 0 is
for January.

e 14

11/9/2015

The get Method in Calendar Class

¢ The get(int field) method defined in the Calendar class is useful to
extract the date and time information from a Calendar object. The
fields are defined as constants, as shown in the following.

e

Constant

Description

YEAR The year of the calendar.

MONTH The month of the calendar, with O for January.
DATE The day of the calendar.

HOUR The hour of the calendar (12-hour notation).
HOUR_OF DAY The hour of the calendar (24-hour notation).
MINUTE The minute of the calendar.

SECOND The second of the calendar.

DAY_OF _WEEK
DAY_OF_MONTH
DAY_OF _YEAR
WEEK_OF_MONTH
WEEK_OF_YEAR
AM_PM

The day number within the week, with 1 for Sunday.

Same as DATE.

The day number in the year, with | for the first day of the year.
The week number within the month, with | for the first week.
The week number within the year, with | for the first week.

Indicator for AM or PM (0 for AM and 1 for PM).

15

Interfaces

+* An interface is a way to
describe what classes should
do, without specifying how
they should do it.

.

- ”".' ‘ y - -

¢ Itis not a class but a set o
requirements for classes that
want to conform to the
interface.

o m

11/9/2015

What is an interface?

¢ An interface is a class-like construct that
contains only constants and abstract methods.

¢ In many ways, an interface is similar to an
abstract class, but the intent of an interface is to
specify common behavior for objects.

¢ For example, you can specify that the objects
are comparable, edible, cloneable using
appropriate interfaces.

o W

Define an interface

+»* To distinguish an interface from a class, Java uses
the following syntax to define an interface:

public interface InterfaceName {
// constant declarations;
// method signatures;

}
Example:
public interface Edible {

/** Describe how to eat */

public abstract String howToEat();

P |

11/9/2015

Interface is a Special Class

¢ An interface is treated like a special class in Java.

+¢ Each interface is compiled into a separate
bytecode file, just like a regular class.

+¢ Like an abstract class, you cannot create an
instance from an interface using the new operator,
but in most cases you can use an interface more or
less the same way you use an abstract class.

¢ For example, you can use an interface as a data
type for variable, as the result of casting, and so on.

Example | e a7

+howToEat(): String +sound(): String

.:
H
;
r '
- .
: ! |
Fruit Chicken | Notation: Tiger
The interface name and the
method names are italicized.
The dashed lines and hollow

Orange Apple I H’!u.rrzyt’('\ are used to point to
the interface.

+¢ You can now use the Edible interface to specify
whether an object is edible.

+¢ This is accomplished by letting the class implement
this interface using the implements keyword.

= For example, the classes Chicken and Fruit
* implement the Edible interface. "

11/9/2015

10

Omitting Modifiers in Interfaces

+»+ All data fields are public final static and all
methods are public abstract in an interface.

+* For this reason, these modifiers can be omitted,
as shown below:

public interface T1 { public interface T1

public static fimnal int K = 1; Equivalent int K = 1;

public abstract void p():; void p();
} }

{

+* A constant defined in an interface can be
accessed using syntax:

% InterfaceName.CONSTANT NAME .

Example: The Comparable Interface

// This interface is defined in
// java.lang package
package java.lang;

public interface Comparable<E> {
public int compareTo(E o);

o H

11/9/2015

11

Integer and Biginteger Classes

e

public class Integer extends Number
implements Comparable<Integer> {

@Ooverride
public int compareTo (Integer o) {

}

public class BigInteger extends Number
implements Comparable<BigInteger>

@override
public int compareTo(BigInteger o) {

}

23

String and Date Classes

public class String extends Object
implements Comparable<String> {

@override
public int campareTo(String o) {

}

public class Date extends Object
implements Comparable<Date> {

@override
public int compareTo (Date o) {

}

24

11/9/2015

12

Examples

Integer il = new Integer(3), i2 = new Integer(3);

System.out.printin(il.compareTo(i2));

System.out.printin("ABC".compareTo("ABE"));

Date datel = new Date(2013, 1, 1);

Date date2 = new Date(2012, 1, 1);
System.out.printin(datel.compareTo(date2));

e

instanceof

¢ Let N be an Integer object, S be a String object,
and d be a Date object.

¢ All the following expressions are true:

n instanceof Integer
n instanceof Cbject
n instanceof Comparable

s instanceof String
s instanceof Cbject
s instanceof Comparable

d instanceof java.util.Date
d instanceof Object

* d instanceof Comparable

11/9/2015

13

11/9/2015

The toString, equals, and
hashCode Methods

+* Each wrapper class overrides the toString,
equals, and hashCode methods defined in
the Object class.

+* Since all the numeric wrapper classes and
the Character class implement the
Comparable interface, the compareTo
method is implemented in these classes.

o :

Generic SOrt Method

java.util.Arrays.sort(array)

< This method requires that the
elements in an array are

instances of Comparable<E>.

e .

14

11/9/2015

Extending Interfaces

+* Interfaces support multiple inheritance:
an interface can extend more than one
interface.

¢ Superinterfaces and subinterfaces.
s Example:

public interface SerializableRunnable extends
java.io.Serializable , Runnable {

e

Extending Interfaces — Constants

¢ If a superinterface and a subinterface
contain two constants with the same
name, then the one belonging to the
superinterface is hidden:

interface X {
int val =1;
}
interface Y extends X {
int val =2;
int sum =val + X.val;

15

11/9/2015

Extending Interfaces — Methods

¢ If a declared method in a subinterface
has the same signature as an inherited

method @NM the same return type, then

the new declaration overrides the
inherited method in its superinterface.

¢ If the only difference is in the return type,
then there will be a compile-time error.

e

The Cloneable Interfaces

+» A class that implements the Cloneable interface is
marked cloneable, and its objects can be cloned using the
clone() method defined in the Object class.

+» clone method returns a new object whose initial state is
a copy of the current state of the object on which clone
was invoked.

% Subsequent changes to the new clone object should
not affect the state of the original object.
package java.lang;

public interface Cloneable {

e ﬂ

16

Examples

% Many classes (e.g., Date and Calendar)
implement Cloneable. Thus, the instances of these
classes can be cloned. For example:

Calendar calendar = new GregorianCalendar(2003, 2, 1);
Calendar calendarCopy = (Calendar)calendar.clone();
System.out.printin("calendar == calendarCopy is " +
(calendar == calendarCopy));
System.out.printin("calendar.equals(calendarCopy) is " +
calendar.equals(calendarCopy));

calendar == calendarCopy is false
* calendar.equals(calendarCopy) is true

Implementing Cloneable Interface

+¢ To define a custom class that implements

the Cloneable interface, the class must
override the clone() method in the Object
class.

*» The following code defines a class named
House that implements Cloneable and

Comparable. ‘
A

11/9/2015

17

public class House implements Cloneable, Comparable<House> {
private int id;

private double area;

private java.util.Date whenBuilt;

public House(int id, double area) {
this.id = id;
this.area = area;
whenBuilt = new java.util.Date();

}

public int getld() { returnid; }
public double getArea() { return area; }

public java.util.Date getWhenBuilt() { return whenBuilt; }

L ud "

@Override // Override the clone method defined in the Object class
public Object clone() {
return super.clone();

}

@Override // Implement the compareTo method defined in Comparable

public int compareTo(House o) {
if (area > o.area)
return 1;
else if (area < o.area)
return -1;
else
return 0;

}

-

11/9/2015

18

Shallow vs. Deep Copy

housel: House

House housel = new House(1, 1750.50);

House house2 = (House)housel.clone();

Memory

e} = it

area = 1750.50 —

Shallow

whenBuilt

|
= 1750.50 I

= reference |——> whenBuilt: Date

Copy

house2 =
housel.clone()

house2: House

date object

contents

Memory

ndi="1
area = 1750.50 —

whenBuilt

—_— 1|

B 1750.50

= reference |—

e

Shallow vs. Deep Copy

housel: House

whenBui 1t =———>

Memory

id = 1 > 1 |

area = 1750.50 —> 1750.50

h 2 =
Deep 1252 Zioneo |
Copy

house2: House

whenBuilt

e

1 dt=N > 1 |

area = 1750.50 —> 1750.50

reference |'—> whenBuilt: Date
date object
contents
Memory
whenBuilt: Date

date object

—- e ference [—» contents

38

11/9/2015

19

Interfaces vs. Abstract Classes

+* In an interface, the data must be constants; an
abstract class can have all types of data.

+* Each method in an interface has only a signature
without implementation; an abstract class can have
concrete methods.

Variables

Constructors

Methods

Abstract

No restrictions
class

Constructors are invoked by
subclasses through constructor
chaining. An abstract class cannot be
instantiated using the new operator.

No restrictions.

Allvariables
Interface | mustbe public

No constructors.
An interface cannot be instantiated
using the new operator.

All methods must
be public abstract
instance methods

static final

39

e

Interfaces vs. Abstract Classes cont.

+» All classes share a single root, the Object class, but
there is no single root for interfaces.

+» Like a class, an interface also defines a type. A variable
of an interface type can reference any instance of the class
that implements the interface.

+» If a class extends an interface, this interface plays the
same role as a superclass.

+* You can use an interface as a data type and cast a
variable of an interface type to its subclass, and vice versa.

40

11/9/2015

20

11/9/2015

instanceof
Interfacel 2 l(|----- Interface2_2 i(" -----------------
Interfacel 1 l{ ll Interfacel |(I- ------------------ Interface2 1 |< |I'
M Class1 |< { Class2 |

+* Suppose that € is an instance of Class2.

+** Cis also an instance of Object, Class1, Interfacel,
Interfacel_1, Interfacel_2, Interface2_1, and Interface2_2.

e m

Caution: conflict interfaces

¢ In rare occasions, a class may
implement two interfaces with
conflict information (e.g., two same
constants with different values or two
methods with same signature but
different return type). This type of
errors will be detected by the
compiler.

e 42

21

11/9/2015

Whether to use an interface or a class?

+» Abstract classes and interfaces can both be
used to model common features.

¢ How do you decide whether to use an interface
or a class?

¢ In general, a strong is-a relationship that clearly
describes a parent-child relationship should be
modeled using classes.

¢ For example, a staff member is a person.

e :

Whether to use an interface or a class?

+» A weak is-a relationship, also known as an is-kind-of
relationship, indicates that an object possesses a certain
property.

% A weak is-a relationship can be modeled using interfaces.

% For example, all strings are comparable, so the String class
implements the Comparable interface.

%+ You can also use interfaces to circumvent single
inheritance restriction if multiple inheritance is desired.

%+ In the case of multiple inheritance, you have to design one
as a superclass, and others as interface.

e 44

22

BIRZEIT UNIVERSITY

Exception Handling

and . GCECr
Text 10 O~

_a -

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

By: Mamoun Nawahdah (Ph.D.)
2015/2016

Runtime Error?

import java.util.Scanner;

public class Quotient ({
public static void main(String[] args) {
Scanner input = new Scanner (System.in);

// Prompt the user to enter two integers
System.out.print ("Enter two integers: ");
int numberl = input.nextlInt();
int number2 = input.nextInt();

System.out.println(numberl + " / " + number2 + " is " +
(numberl / number2));

}

Ed :

11/23/2015

Fix it Using an if Statement

import java.util.Scanner;

public class QuotientWithIf {
public static void main(String[] args) {
Scanner input = new Scanner (System.in);

System.out.print ("Enter two integers: ");
int numberl = input.nextInt():;
int number?2 input.nextInt ();

if (number2 != 0)

(numberl / number?2)) ;
else

System.out.printin(numberl number?2 + " is

ey

System.out.println("Divisor cannot be zeroc ");

Exception Handling

+» Without this capability, a method must
handle the exception or terminate the
program.

eX'Cep'tiOD ®) noun \ik-'sep-shan\

: someone or something that is different from others :
someone or something that is not included

% : a case where a rule does not apply

+»» Exception handling technique enables a
method to throw an exception to its caller.

11/23/2015

Exception Types

ClassNotFoundException
IOException

e

—— Many more classes

]|

| Object |<-—|Th1m\'able|<]—

ArithmeticException
NullPointerException

_‘ IndexOutOfBoundsException I

_| IllegalArgumentException ‘

LinkageEmor

VirtualMachineError

e

L Many more classes

e

Many more classes

System Errors

—{ClasstFoundExccplicn ‘

IOException
R

. Many more classes

g

‘ Object m_{'l'hrowablclq_

LinkageError
VirtualMachineError

Many more classes

| T

ArithmeticException
NullPointerExceptios

4’ IndexOutOfBoundsException |

_{ IllegalArgumentException |

L Many more classes

System errors are thrown by JVM and represented in the
4 Error class. The Error class describes internal system errors.

)

11/23/2015

Exceptions

ClassNotFoundException
IOException

RuntimeException

I_ Many more classes

ArithmeticException

NullPointerExceptio

IndexOutOfBoundsException
IllegalArgumentException

Many more classes

| Object Iq—rl'hrowableK]—

LinkageError

VirtualMachineError

Many more classes

K/ . .

+» Exception describes errors caused by your program and
external circumstances.

+* These errors can be caught and handled by your program.

Runtime Exceptions

—{ClassNotFoundExccption |

IOException

RuntimeException

ArithmeticException

INullPointerException

IndexOutOfBoundsException

B

L Many more classes

IllegalArgumentException

| Object Iq—rl'hrowableK]—

Many more classes

LinkageError

VirtualMachineError

Many more classes

+¢ RuntimeException is caused by programming errors,
such as bad casting, accessing an out-of-bounds array, and
% numeric errors. 3

11/23/2015

11/23/2015

Checked Exceptions vs.
Unchecked Exceptions

“* RuntimeException, Error and their
subclasses are known as unchecked
exceptions.

+ All other exceptions are known as checked

exceptions, meaning that the compiler forces
the programmer to check and deal with the
exceptions.

g g

Unchecked Exceptions

¢ In most cases, unchecked exceptions reflect programming
logic errors that are not recoverable.

¢ For example:

= a NullPointerException is thrown if you access an
object through a reference variable before an object is
assigned to it.

= an IndexOutOfBoundsException is thrown if you access
an element in an array outside the bounds of the array.

¢ These are the logic errors that should be corrected in the

Eﬁ program.

11/23/2015

Declaring, Throwing, and
Catching Exceptions

|_declare exception

?throw new Exception(); ie_throwexception

\ methodl () {
try |

\ invoke method2;

.] H

Catdlexcepnoﬂ%gcatch (Exception ex) (i
! Process exception;

)
L T)

Declaring Exceptions

+* Every method must state the types of
checked exceptions it might throw.

< This is known as declaring exceptions.

public void x() throws IOException

public void y() throws IOException, OtherException

o m

11/23/2015

Throwing Exceptions

** When the program detects an error, the
program can create an instance of an appropriate
exception type and throw it.

% This is known as throwing an exception.

throw new TheException();

TheException ex = new TheException();
throw ex;

o H

Throwing Exceptions Example

public void setRadius(double newRadius)
throws lllegalArgumentException {
if (newRadius >= 0)
radius = newRadius;

else
throw new lllegalArgumentException(

"Radius cannot be negative");

}

11/23/2015

Catching Exceptions

try {
statements; // Statements that may throw exceptions

}
catch (Exceptionl exVarl) {

handler for exceptionl;
}
catch (Exception2 exVar2) {
handler for exception2;

}

catch (ExceptionN exVar3) {
handler for exceptionN;

}

* -

Catch or Declare Checked Exceptions

+»+ Java forces you to deal with checked exceptions.

¢ You must invoke it in a try-catch block or declare to
throw the exception in the calling method.

¢ For example, suppose that method p1 invokes method
p2 and p2 may throw a checked exception (e.g.,
IOException), you have to write the code as follow:

void pl() { void pl() throws IOException {
try |
p2(); p2();

}
catch (IOException ex) { }

}
}

1 public class CircleWithException {
2 /** The radius of the circle */
3 private double radius;
4
5 /** The number of the objects created */
) private static int numberOfObjects = 0;
-
8 /** Construct a circle with radius 1 */
9 public CircleWithException() {
10 this (1.0);
12
13 /** Construct a circle with a specified r&k’\us */
14 public CircleWithException (double newRadius)\ {
15 setRadius (newRadius) ;
16 numberOfObjects++;
7 }
18
19 /** Return radius */
20 public double getRadius () {
21 return radius;
22 }
24 /** Set a new radius */
25 public void setRadius (double newRadius
26 hrows IllegalArgumentException {
21 if (newRadius >= 0)
28 radius ewRadius
29 else
30 throw new IllegalArgumentException (
31 "Radius cannot be negative!
32
33
34 /** Return numberOfObjects */
39 public static int getNumberOfObjects () {
36 return numberOfObjects;
3 }
38
39 /** Return the area of this circle */
40 public double findArea () {
41 return radius * radius * 3.14159;
42 }
43 }

11/23/2015

1 public class TestCircleWithException {
2 public static wvoid main(String[] args) {
3 Xy
4 CircleWithException cl = new CircleWithException (5);
5 CircleWithException ¢2 = new CircleWithException(-5);
) CircleWithException c¢3 = new CircleWithException(0);
7 }
8 catch (IllegalArgument eption ex) |
9 System.out.println(e
10
11
12 System.out.println ("Number of objects created: " +
13 CircleWithException.getNumberOfObjects())
14 }
15 1}

e

Rethrowing Exceptions

try {
statements;

}
catch(TheException ex) {

perform operations before exits;
throw ex;
}

o w

11/23/2015

10

The finally Clause

try {
statements;
}

catch(TheException ex) {
handling ex;
}

finally {
finalStatements;
}

e

Trace a Program Execution

try {

} Suppose no
catch(TheException ex) { exceptions in
handling ex; the statements

}
finally {

finalStatements;

}

Next statement;

e

11/23/2015

11

Trace a Program Execution

try {

statements;
}
catch(TheException ex) {

handling ex; The final block
} EIENS
finally { executed

}

Next statement;

e B

Trace a Program Execution

try {
statements;

}

catch(TheException ex) {
handling ex;

}

finally {
finalStatements;

} Next statement

in the method
is executed

11/23/2015

12

Trace a Program Execution

try {

Next statement;

e

statement1; Suppose an
exception of

statement3; type Exceptionl
} is thrown in
catch(Exceptionl ex) { statement2
handling ex;
}
finally {
finalStatements;
}

25

Trace a Program Execution

try {
statementl;
statement?2;
statement3;

}

handled.

finally {
finalStatements;

}

Next statement;

e

The exception is

26

11/23/2015

13

Trace a Program Execution

try {
statementl;
statement?2;
statement3;

}

catch(Exception1 ex) {

handling ex; The final block
is always

}

executed.

Next statement;

o 27

Trace a Program Execution

try {
statementl;
statement?2;
statement3;

}
catch(Exception1 ex) {
handling ex;

} The next
finally { statement in the
finalStatements; method is now

} executed.

o zg

11/23/2015

14

Trace a Program Execution

statement?2
throws an
exception of

statement3;

}

catch(Exception1 ex) { type Exception2.

handling ex;

}

catch(Exception2 ex) {
handling ex;
throw ex;

}
finally {
finalStatements;

}

Next statement;

29

Trace a Program Execution

try {
statementl;
statement2;
statement3;

}

catch(Exceptionl ex) {
handling ex;

: Handling
catch(Exception2 ex) { exception

throw ex;

}
finally {
finalStatements;

}

Next statement;

30

11/23/2015

15

Trace a Program Execution

try {
statementl;
statement2;
statement3;

}

catch(Exceptionl ex) {
handling ex;

}

catch(Exception2 ex) {

handling ex;

throw ex;

Execute the
final block

Next statement;

31

Trace a Program Execution

try {
statementl;
statement2;
statement3;

}

catch(Exceptionl ex) { Rethrow the

handling ex; .
} exception and

catch(Exception2 ex) { control is
handling ex; transferred to the
} caller

finally {

finalStatements;

}

Next statement;

32

11/23/2015

16

Cautions When Using Exceptions

+»» Exception handling separates error-handling
code from normal programming tasks, thus

making programs easier to read and to modify.

+»» Be aware, however, that exception handling
usually requires more time and resources
because it requires instantiating a new
exception object, rolling back the call stack, and
propagating the errors to the calling methods.

-

When to Throw Exceptions

¢ An exception occurs in a method.

+* If you want the exception to be processed
by its caller, you should create an
exception object and throw it.

+¢ If you can handle the exception in the
method where it occurs, there is no need
to throw it.

11/23/2015

17

When to Use Exceptions

** You should use it to deal with unexpected
error conditions.

¢ Do not use it to deal with simple, expected
situations. For example, the following code:

try {
System.out.println(refVar.toString());

}

catch (NullPointerException ex) {
System.out.printIn("refVar is null");

}

e

When to Use Exceptions

¢ is better to be replaced by:

if (refVar 1= null)
System.out.printIn(refVar.toString());

else

System.out.printIn("refVar is null");

e

11/23/2015

18

Defining Custom Exception Classes

< Use the exception classes in the API
whenever possible.

< Define custom exception classes if the
predefined classes are not sufficient.

< Define custom exception classes by
extending Exception or a subclass of
Exception.

Custom Exception Class Example

1 public class InvalidRadiusException extends Exception ({
2 private double radius;

3

4 ** Construct an exception *

5 public InvalidRadiusException(double radius) {
6 super ("Invalid radius " + radius);

7 this.radius = radius;

8 }

9
10 /** Return the radius */
11 public double getRadius() {
12 return radius;
13 }
14)

public void setRadius (double newRadius)
throws InvalidRadiusException {
if (newRadius >= 0)
radius = newRadius;
else

throw new InvalidRadiusException (newRadius);
} 38

11/23/2015

19

The File Class

¢ The File class is intended to provide
an abstraction that deals with most of
the machine-dependent complexities
of files and path names in a machine-
independent fashion.

¢ The filename is a string.

¢ The File class is a wrapper class for
the file name and its directory path.

39

File class

javacio.File

+File(pathname: String)
+File(parent: String, child: String)
+File(parent: File, child: String)

+exists(): boolean
+canRead(): boolean
+canWrite(): boolean
+isDirectory(): boolean
+isFile(): boolean
+isAbsolute(): boolean
+isHidden(): boolean

e

Creates a File object for the specified path name. The path name may be a
directory or a file

Creates a File object for the child under the directory parent. The child may be
a file name or a subdirectory

Creates a File object for the child under the directory parent. The parentis a
File object. In the preceding constructor, the parent is a string

Returns true if the file or the directory represented by the File object exists
Returns true if the file represented by the File object exists and can be read
Returns true if the file represented by the File object exists and can be written.
Returns true if the Fi e object represents a directory

Returns true if the File object represents a file.

Returns true if the File object is created using an absolute path name.

Returns true if the file represented in the File object is hidden. The exact
definition of hidden is system-dependent. On Windows, you can mark a file
hidden in the File Properties dialog box. On Unix systems, a file is hidden if
its name begins with a period(.) character.

40

11/23/2015

20

File class

+getAbsolutePath(): String

+getCanonicalPath(): String

+getName(): String

+getPath(): String
+getParent(): String
+lastModified(): long
+length(): long

+listFile(): File[]
+delete(): boolean

+renameTo(dest: File): boolean
+mkdir(): boolean

+mkdirs(): boolean

Returns the complete absolute file or directory name represented by the File

object

Returns the same as getAbsolutePath() except that it removes redundant
names, such as *." and °..", from the path name, resolves symbolic links (on
Unix), and converts drive letters to standard uppercase (on Windows).

Returns the last name of the complete directory and file name represented by

the File object. For example, new File("c:\\book\\test.dat").getName() returns

test.dat
Returns the complete directory and file name represented by the Fi e object

For example.new File("c:\\book\\test.dat").getPath() returns c:\book\test.dat.

Returns the complete parent directory of the current directory or the file
represented by the File object. For example. new
File("c:\\book\\test.dat") .getParent() returns ¢:\book

Retumns the time that the file was last modified.

Returns the size of the file, or 0 if it does not exist or if it is a directory.

Returns the files under the directory for a directory File object

Deletes the file or directory represented by this Fi le object. The method returns
true if the deletion succeeds.

Renames the file or directory represented by this File object to the specified name
represented in dest. The method returns true if the operation succeeds.

Creates a directory represented in this File object. Returns true if the the directory is
created successfully

Same as mkd i r() except that it creates directory along with its parent directories if
the parent directories do not exist

41

Text 1/0

+ A File object encapsulates the properties of a file or a
path, but does not contain the methods for
reading/writing data from/to a file.

+** In order to perform I/0O, you need to create objects
using appropriate Java I/O classes.

+* The objects contain the methods for reading/writing
data from/to a file.

+* This section introduces how to read/write strings and
numeric values from/to a text file using the Scanner
and PrintWriter classes.

42

11/23/2015

21

PrintWriter class

java.io.PrintWriter

+PrintWriter(filename: String)
+print(s: String): void
+print(c: char): void
+print(cArray: char[]): void
+print(i: int): void
+print(l: long): void
+print(f: float): void
+print(d: double): void
+print(b: boolean): void
Also contains the overloaded
println methods.

Also contains the overloaded
printf methods.

e

Creates a PrintWriter for the specified file.
Writes a string.

Writes a character.

Writes an array of character.

Writes an int value.

Writes a long value.

Writes a float value.

Writes a double value.

Writes a boolean value.

A println method acts like a print method; additionally it
prints a line separator. The line separator string is defined
by the system. It is \r'n on Windows and \n on Unix.

The printf method was introduced in §3.6, “Formatting
Console Output and Strings.”

43

Scanner class

java.util.Scanner

+Scanner(source: File)
+Scanner(source: Strng)
+dose()

+hasNext(): boolean
+next(): String

+nextB yte(): byte
+nextShort(): short
+nextint(): int
+nextLong() long
+nextFloat(): float
+nextDouble(): double

+useDe imiter(pattern: String):
Scanner

e

Creates a Scanner object to read data from the spedified file.
Creates a Scanner object to read data from the spedfied string.
Closes this scanner.

Returns trueif this scanner has another token in its input.
Returns next token as a string.

Returns next token as abyte.

Returns next token as a short.

Returns next token as an int.

Returns next token as a long.

Returns next token as a float.

Returns next token as adauble.

Sets this scanner’s delimiting pattern.

44

11/23/2015

22

2272 ‘*”/ L
BIRZEIT UNIVERSITY

JavaFX
Basics

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

By: Mamoun Nawahdah (Ph.D.)
2015/2016

Motivations

¢ JavaFX is a new framework for developing Java
graphical user interface (GUI) programs.

¢ The JavaFX APl is an excellent example of how
the OO principle is applied.
¢ This chapter serves two purposes:
= First, it presents the basics of JavaFX programming.
= Second, it uses JavaFX to demonstrate OOP.
¢ Specifically, this chapter introduces the

framework of JavaFX and discusses JavaFX GUI
components and their relationships.

ol :

11/29/2015

JavaFX vs Swing and AWT

+* When Java was introduced, the GUI classes were
bundled in a library known as the Abstract Windows
Toolkit (AWT).

= AWT is fine for developing simple graphical user
interfaces, but not for developing comprehensive GUI.

® |n addition, AWT is prone to platform-specific bugs.

+» The AWT components were replaced by a more robust,
versatile, and flexible library known as Swing.

= Swing components depend less on the target platform
and use less of the native GUI resource.

+» With the release of Java 8, Swing is replaced by a
completely new GUI platform known as JavaFX.

Ed 3

Basic Structure of JavaFX

¢ Application
¢ Override the start (Stage) method

+» Stage, Scene, and Nodes

<«€— Stage

Scene

Button

U

11/29/2015

11/29/2015

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.scene.control.Button;
import javafx.stage.Stage;

’ Extend Application

public class MyJavaFX extends Application {

@verride // Override the start method in the Application class

public void start(Stage primaryStage) { ‘Overndestan
// Create a button and place it in the scene
Button btOK = new Button("OK");
Scene scene = new Scene(btOK, 2066, 250); ‘Crea&zascene
primaryStage.setTitle("MyJavaFX"); // Set the stage title
primaryStage.setScene(scene); // Place the scene in the stage
primaryStage.show(); // Display the stage Set a scene

¥ Display stage

. 8 +yJovanQURI=TES
* The main method is only needed for the IDE
* JavaFX support. Not needed for running fro

‘ Create a button

*/
public static void main(String[] args) { oK
launch(args);
‘E ‘Launchapp”caﬂon
L

Top Level
Container

Container for Ul
Elements

Text box }Buttons

(Ul controls)

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;

import javafx.stage.Stage;

public class MultipleStageDemo extends Application {
public void start(Stage primaryStage) {
Scene scene = new Scene (new Button("CK"), 200, 250);
primaryStage.setTitle ("MyJavaFX");
primaryStage.setScene (scene) ;
primaryStage.show () ;

Stage stage = new Stage();
stage.setTitle ("Second Stage");
stage.setScene (new Scene (new Button("New Stage"), 100, 100));

stage.show () ; Display the stage

public static veoid main(String[] args) {

launch (args) ;

import javafx.application.Application;

import javafx.scene.Scene; =101 x|
import javafx.scene.control.Button;

import javafx.scene.layout.StackPane; E:]

import javafx.stage.Stage;

public class ButtonInPane extends Application {
public void start (Stage primaryStage) {
StackPane pane = new StackPane();
pane.getChildren () .add (new Button("OK"));
Scene scene = new Scene (pane, 200, 50);
primaryStage.setTitle ("Button in a pane");
primaryStage.setScene (scene) ;

primaryStage.show() ;

public static void main(String[] args) {
launch (args) ;

11/29/2015

Panes, Ul Controls, and Shapes

) Shape l
Stage |

1

———————1<— Stage i - ImageV'iew I

Scene @ Scene

Parent — Control I

(Pane.
Control)

0O

- Nodes — Node F I—

L1 Parent |<|—

- Pane

Shapes such as Line, Circle,
Ellipse, Rectangle, Path,
Polygon, Polyline, and Text are
subclasses of Shape.

For displaying an image.

Ul controls such as Label,
TextField. Button, CheckBox,

RadioButton, and TextArea ard
subclasses of Control.

— FlowPane I
L GridPane '
b BorderPane l
— HBox l

— VBox |

—— StackPane l

Display a Shape

Iimpor: javafx.application.Application;

import javafx.scene.Scene;

import javafx.scene.layout.Pane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;

import javafx.stage.Stage;

public class ShowCircle extends Application {
public void start(Stage primaryStage) {
Circle circle = new Circle();

circle.setCenterX(100);

-laix]

.

circle.setCenterY (100) ; e

j . (0,0) X Axis
circle.setRadius (50);
circle.setStroke (Color.BLACK) ;
circle.setFill (null); ¥

(=,)
Pane pane = new Pane(); Java
pane.getChildren() .add (circle); Coordinate
v Axis System

Scene scene = new Scene (pane, 200, 200); A
primaryStage.setTitle ("ShowCircle");
primaryStage.setScene (scene);

primaryStage.show() ;

11/29/2015

Binding Properties

+» JavaFX introduces a new concept called binding
property that enables a target object to be bound to a
source object.

= |f the value in the source object changes, the target
property is also changed automatically.

¢ The target object is simply called a binding object or a
binding property.
B showcirde =1olx|

o n

Binding Properties

public void start(Stage primaryStage) {

Pane pane = new Pane();
Circle circle = new Circle();

circle.centerXProperty() .bind(pane.widthProperty() .divide(2));

circle.setRadius (50);
circle.setStroke (Color.BLACK) ;
circle.setFill (Color.WHITE) ;
pane.getChildren() .add(circle);

Scene scene = new Scene (pane, 200, 200);
primaryStage.setTitle ("ShowCircleCentered");
primaryStage.setScene (scene);

primaryStage.show () ;

2 12

circle.centerYProperty() .bind(pane.heightProperty() .divide(2));

11/29/2015

11/29/2015

Binding Property:
getter, setter, and property getter

public class SomeClassName { public class Circle {
private PropertyType Xx; private DoubleProperty centerX;
public propertyValueType getX() { ... } public double getCenterX() { ... }

public void setX(propertyValueType value) { ... } public void setCenterX(double value) { ... }

public PropertyType public DoubleProperty centerXProperty() { ... }
xProperty() { ... } }

(a) X is a binding property (b) centerXis binding property

o 13

Binding Property

s»JavaFX defines binding properties for
primitive types and strings.

¢ For a double/float/long/int/boolean value,
its binding property type is
DoubleProperty/ FloatProperty/
LongProperty/ IntegerProperty/
BooleanProperty.

¢ For a String, its binding property type is
StringProperty.

14

import javafx.beans.property.DoubleProperty;

import javafx.beans.property.SimpleDoubleProperty;

public class BindingDemo {
public static void main(String[] args) {
DoubleProperty dl = new SimpleDoubleProperty(l);
DoubleProperty d2 = new SimpleDoubleProperty(2);
dl.bind(d2);
System.out.println("dl is " + dl.getValue()
+ " and d2 is " + d2.getValue());
d2.setValue (70.2);
System.out.println("dl is " + dl.getValue ()
+ " and d2 is " + d2.getValue());

dl is 2.0 and d2 is 2.0
dl is 70.2 and d2 is 70.2

Common Properties and
Methods for Nodes

+* The abstract Node class defines many
properties and methods that are
common to all nodes.

= style: set a JavaFX CSS style

circle.setStyle("-fx-stroke: black; -fx-fill: red;");

= rotate: Rotate a node
button.setRotate(80);

o 16

11/29/2015

The Color Class

Jjavafx.scene.paint.Color

-red: double The red value of this Color (between 0.0 and 1.0).

-green: double The green value of this Color (between 0.0 and 1.0).

-blue: double The blue value of this Color (between 0.0 and 1.0).

-opacity: double The opacity of this Color (between 0.0 and 1.0).

+Color(r: double, g: double, b: Creates a Color with the specified red, green, blue, and opacity
double, opacity: double) values.

+brighter(): Color Creates a Color that is a brighter version of this Color.

+darker(): Color Creates a Color that is a darker version of this Color.

+color(r: double, g: double, b: Creates an opaque Color with the specified red, green, and blue
double): Color values.

i i H Creates a Color with the specified red, green. blue, and opacity

double, opacity: double): Color values.

+rgb(r: int, g: int, b: int): Creates a Color with the specified red, green, and blue values in the
Color range from 0 to 255.

+rgb(r: int, g: int, b: int, Creates a Color with the specified red. green. and blue values in the
opacity: double): Color range from 0 to 255 and a given opacity.

Color color = new Color(0.25, 0.14, 0.333, 0.51);

17
Jjavafx.scene.text.Font

-size: double The size of this font.

-name: String The name of this font.

-family: String The family of this font.

+Font(size: double) Creates a Font with the specified size.

+Font(name: String, size: Creates a Font with the specified full font name and size.
double)

+font(name: String, size: Creates a Font with the specified name and size.
double)

+font(name: String, w: Creates a Font with the specified name. weight. and size.
FontWeight, size: double

+font(name: String, w: FontWeight, (‘rcu;u§ a Font with the specified name. weight. posture.

F e and size.
+getFamilies(): List<String> Returns a list of font family names.
+getFontNames(): List<String> Returns a list of full font names including family and weight.

Font fontl = new Font("SansSerif", 16);
Font font2 = Font.font("Times New Roman", FontWeight.BOLD,

FontPosture.ITALIC, 12);
18

11/29/2015

The Image,

ImageView Class

javafx.scene.image.Image

-error: ReadOnlyBooleanProperty
-height: ReadOnlyBooleanProperty
-width: ReadOnlyBooleanProperty

Indicates whether the image is loaded correctly?
The height of the image.

The width of the image.

-progress: ReadOnlyBooleanProperty The approximate percentage of image’s loading that is

completed.

+Image(filenameOrURL: String)

Creates an Image with contents loaded from a file or a URL

Jjavafx.scene.image.Image View

-fitHeight: DoubleProperty
-fitWidth: DoubleProperty

-x: DoubleProperty

-y: DoubleProperty

-image: ObjectProperty<Image>

+ImageView()
+ImageView(image: Image)
+ImageView(filenameOruRL:String)

The height of the bounding box within which the image is resized to fit.

The width of the bounding box within which the image is resized to fit.
The x-coordinate of the ImageView origin.
The y-coordinate of the ImageView origin.

The image to be displayed in the image view.

Creates an ImageView.
Creates an ImageView with the specified image.
Creates an ImageView with image loaded from the specified file or URL

—

Layout Pan

es

+«» JavaFX provides

many types of panes for

organizing nodes in a container.

Class Description

A

Pane Base class for layout panes. It contains the getChildren() method for
returning a list of nodes in the pane.

StackPane Places the nodes on top of each other in the center of the pane.
FlowPane Places the nodes row-by-row horizontally or column-by-column vertically
GridPane Places the nodes in the cells in a two-dimensional grid.

BorderPane Places the nodes in the top, right, bottom, left, and center regions.

HBox Places the nodes in a single row.
VBox Places the nodes in a single column.

20

11/29/2015

10

FlowPane

_j'thyonmwhne

-alignment: ObjectProperty<Pos>

-orientation:
ObjectProperty<Orientation>

-hgap: DoubleProperty
-vgap: DoubleProperty

+FlowPane ()

+FlowPane(hgap: double, vgap:
double)

+FlowPane(orientation:
ObjectProperty<Orientation>)

+FlowPane(orientation:
ObjectProperty<Orientation>,
hgap: double, vgap: double

The overall alignment of the content in this pane (default: Pos.LEFT).
The orientation in this pane (default: Orientation.HORIZONTAL).

The horizontal gap between the nodes (default: 0).
The vertical gap between the nodes (default: 0).

Creates a default FlowPane.
Creates a FlowPane with a specified horizontal and vertical gap.

Creates a FlowPane with a specified orientation.

Creates a FlowPane with a specified orientation. horizontal gap and
vertical gap.

[l showFlowPane

First Name:

Last Name:

_lolx| ~lolx]

| MI: First Name: MI:

Last Name:

21

GridPane

Jjavalx.scene.layout.GridPane

-alignment: ObjectProperty<Pos>

-gridLinesVisible:
BooleanProperty

-hgap: DoubleProperty
-vgap: DoubleProperty

+GridPane()
+add(child: Node, columnIndex:
int, rowIndex: int): void
+addColumn(columnIndex: int,
children: Node...): void
+addRow(rowIndex: int,
children: Node...): void
+getColumnIndex(child: Node):
int
+setColumnIndex(child: Node,
nIndex: i : voi
+getRowIndex(child:Node): int
+setRowIndex(child: Node,
Ind int): id

+setHalighnment(child: Node,
lue: HP : voi
Valighnment(child: N
value: VPos): void

The overall alignment of the content in this pane (default: Pos.LEFT).
Is the grid line visible? (default: false)

The horizontal gap between the nodes (default: 0).

The vertical gap between the nodes (default: 0).

Creates a GridPane.
Adds a node to the specified column and row.

Adds multiple nodes to the specified column.

Adds multiple nodes to the specified row.

Returns the column index for the specified node.

Sets a node to a new column. This method repositions the node.

Returns the row index for the specified node.
Sets a node to a new row. This method repositions the node.

Sets the horizontal alignment for the child in the cell.

Sets the vertical alignment for the child in the cell.

11/29/2015

11

BorderPane

Jjavafx.scene.layout.BorderPane

-top: ObjectProperty<Node>

-right: ObjectProperty<Node>
-bottom: ObjectProperty<Node>

-left: ObjectProperty<Node>

-center: ObjectProperty<Node>

The node placed in the top region (default: nulT).
The node placed in the right region (default: nu1T).
The node placed in the bottom region (default: nul7).
The node placed in the left region (default: nu11).
The node placed in the center region (default: nul7).

+BorderPane()

+setAlignment(child: Node, pos:

Creates a BorderPane
Sets the alignment of the node in the BorderPane

Pos)

Top

Left

Center Right

Bottom

23

Hbox , VBox

Jjavafx.scene.layout. HBox

-alignment: ObjectProperty<Pos>
-fillHeight: BooleanProperty
-spacing: DoubleProperty

+HBox ()
+HBox (spacing: double)

+setMargin(node: Node, value:
Insets): void

The overall alignment of the children in the box (default: Pos . TOP_LEFT).

Is resizable children fill the full height of the box (default: true).
The horizontal gap between two nodes (default: 0).

Creates a default HBox.
Creates an HBox with the specified horizontal gap between nodes.
Selts the margin for the node in the pane.

Jjavafx.scene.layout.VBox

-alignment: ObjectProperty<Pos>
-fillWidth: BooleanProperty
-spacing: DoubleProperty

+VBox ()
+VBox(spacing: double)

+setMargin(node: Node, value:
Insets): void

The overall alignment of the children in the box (default: Pos. TOP_LEFT).

Is resizable children fill the full width of the box (default: true).
The vertical gap between two nodes (default: 0).

Creates a default VBox.
Creates a VBox with the specified horizontal gap between nodes.

Sets the margin for the node in the pane.

24

11/29/2015

12

Shapes

Node |4—

Shape |4—— Text |

— Line |
< JavaFX provides many [Rectangle |
shape classes for drawing | . . |

texts, lines, circles,
rectangles, ellipses, arcs,
polygons, and polylines.

e

—— ElTipse |

— Arc I

—— Polygon |

- —— Polyline |

Text

javafx.scene.text.Text

-text: StringProperty

-x: DoubleProperty

-y: DoubleProperty

-underline: BooleanProperty
-strikethrough: BooleanProperty
-font: ObjectProperty

+Text()
+Text(text: String)

+Text(x: double, y: double,
text: String)

Defines the text to be displayed.

Defines the x-coordinate of text (default 0).

Defines the y-coordinate of text (default 0)

Defines if each line has an underline below it (default false).
Defines if each line has a line through it (default false).

Defines the font for the text.
Creates an empty Text.
Creates a Text with the specified text.

Creates a Text with the specified x-, y-coordinates and text.

e

26

11/29/2015

13

Line

javafx.scene.shape.Line

-startX: DoubleProperty
-startY: DoubleProperty
-endX: DoubleProperty
-endY: DoubleProperty

The x-coordinate of the start point.
The y-coordinate of the start point.
The x-coordinate of the end point.

The y-coordinate of the end point.

+Line()

+Line(startX: double, startY:
doub}ej endX: double, endY:
e

dou

Creates an empty Line.
Creates a Line with the specified starting
and ending points.

0, 0

(getWidth(), 0)

(startX, startY)

(endX, endY)

e

(0, getHeight())

(getWidth(), getHeight()) 27

Rectangle

Jjavafx.scene.shape.Rectangle

-x: DoubleProperty
-y:DoubleProperty

-width: DoubleProperty
-height: DoubleProperty
-arcWidth: DoubleProperty

-arcHeight: DoubleProperty

+Rectangle()

+Rectanlge(x: double, y:
double, width: double,
height: double)

The x-coordinate of the upper-left corner of the rectangle (default 0).

The y-coordinate of the upper-left corner of the rectangle (default 0).

The width of the rectangle (default: 0).

The height of the rectangle (default: 0).

The arcWidth of the rectangle (default: 0). arcWidth is the horizontal
diameter of the arcs at the corner (see Figure 14.31a).

The arcHeight of the rectangle (default: 0). arcHeight is the vertical
diameter of the arcs at the corner (see Figure 14.31a).

Creates an empty Rectangle.

(']rcz}lu]’s’ a Rectangle with the specified upper-left corner point, width, and
height.

e

aw/2
o, y)—>
ah/2 | [7 =]
L z
5
3
N ot

—width——

(a) Rectangle(x, y, w, h) 28

11/29/2015

14

Circle, Ellipse

javafx.scene.shape.Circle
-centerX: DoubleProperty The x-coordinate of the center of the circle (default 0).
-centerY: DoubleProperty The y-coordinate of the center of the circle (default 0).
-radius: DoubleProperty The radius of the circle (default: Q).
+Circle() Creates an empty Circle.

+Circle(x:
+Circle(x:

double, y: double)
double, y: double,

Creates a Circle with the specified center.
Creates a Circle with the specified center and radius.

radius: double)
javafx.scene.shape.Ellipse J

-centerX: DoubleProperty The x-coordinate of the center of the ellipse (default 0),
-centerY: DoubleProperty The y-coordinate of the center of the ellipse (default 0).
-radiusX: DoubleProperty The horizontal radius of the ¢llipse (default: 0).
-radiusY: DoubleProperty The vertical radius of the ellipse (default: 0).
+E11ipse() Creates an empty E1T1ipse.
+E1Tipse(x: double, y: double) Creates an E111 pse with the specified center.

+E1lipse(x:

double, radiusY:

double, y: double,

Creates an E171pse with the specified center and
radiuses.

radiusX:
ﬁ double)

Ellipse

radiusX

radiusX,

radiusY (centerX, centerY)

(a) E1Tipse(centerX, centery,

radiusY)

30

11/29/2015

15

Arc

Jjavafx.scene.shape.Are

-centerX: DoubleProperty
-centerY: DoubleProperty
-radiusX: DoubleProperty
-radiusY: DoubleProperty
-startAngle: DoubleProperty
-length: DoubleProperty

-type: ObjectProperty<ArcType>

The x-coordinate of the center of the ellipse (default 0),

The y-coordinate of the center of the ellipse (default 0).

The horizontal radius of the ellipse (default: 0).

The vertical radius of the ellipse (default: 0).

The start angle of the arc in degrees.

The angular extent of the arc in degrees.

The closure type of the arc (ArcType .OPEN,
ArcType.CHORD, ArcType.ROUND).

+Arc()

+Arc(x: double, y: double,
radiusX: double, radiusY:
double, startAngle: double,
length: double)

Creates an empty Arc.
Creates an Arc with the specified arguments.

e

radiusX radiusY length
., startAngle
e

---r-» 0 degree

........................ '(ccnlcr)(.ccmcr‘{)
(a)Arc(centerX, centerY, radiusX,

. 31
radiusY, startAngle, length)

Polygon and Polyline

(40, 20)
(70, 40)
(20, 60)
(60, 80) (60, 80)
(a) Polygon (b) Polyline
javafx scene.shape Polygon
+Polygon () Creates an empty polygon.
+Polygen (double. .. points) Creates a polygon with the given points.
tgetPoints(): Returns a list of double values as x- and
ObservableList<Double> y—coordinates of the points.

32

11/29/2015

16

12/21/2015

Bess ‘*"/ L
BIRZEIT UNIVERSITY

JavaFX Ul Controls

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

@-@-—m@\@- "P 05

DE AR AW
@V

v

By: Mamoun Nawahdah (Ph.D.)
2015/2016

Frequently Used Ul Controls

Node |<}——— Parent K}— Control]<]—— Labeled ButtonBase
CheckB
L ImageView — Scrol1Bar | Label | Ml

. ToggleButton |<}— RadioButton
L MediaView —_Slider |

TextArea l
\— TextInputControl H

TextField I<}— PasswordFie]d]
— ListView |

— ComboBoxBase |<]—CornboBox|

< Throughout this book, the prefixes Ibl, bt, chk, rb, tf, pf, ta, cbo, lv,
scb, sld, and mp are used to name reference variables for Label,
Button, CheckBox, RadioButton, TextField, PasswordField,

TextArea, ComboBox, ListView, ScrollBar, Slider, and MediaPlayer.

12/21/2015

Labeled

«»* A label is a display area for a short text, a node, or both.

It is often used to label other controls (usually text fields).

¢ Labels and buttons share many common properties. These
common properties are defined in the Labeled class.

Jjavafx.scene.control. Labeled
-alignment: ObjectProperty<Pos> Specifies the alignment of the text and node in the labeled.
-contentDisplay: Specifies the position of the node relative to the text using the constants
ObjectProperty<ContentDisplay> TOP,BOTTOM, LEFT, and RIGHT defined in ContentDisplay.
-graphic: ObjectProperty<Node> A graphic for the labeled.
-graphicTextGap: DoubleProperty The gap between the graphic and the text.
-textFill: ObjectProperty<Paint> The paint used to fill the text.
-text: StringProperty A text for the labeled.
-underline: BooleanProperty Whether text should be underlined.
-wrapText: BooleanProperty Whether text should be wrapped if the text exceeds the width.

Ed 3

Label

+* The Label class defines labels.

javafx.scene.control.lLabeled

2

javafx.scene.control.Label
+Label() Creates an empty label.
+Label (text: String) Creates a label with the specified text.
+Label (text: String, graphic: Node) | | Createsa label with the specified text and graphic.

Ed 4

ButtonBase and Button
+* A button is a control that triggers an action event when
clicked.

++ JavaFX provides regular buttons, toggle buttons, check
box buttons, and radio buttons.

** The common features of these buttons are defined in
ButtonBase and Labeled classes.

Jjavafx.scene.control.Labeled I

4).

Jjavafx.scene.conirol. ButtonBase

-onAction: ObjectProperty<EventHandler Defines a handler for handling a button’s action.
<ActionEvent>>

AF

Jjavafx.scene.control. Button
+Button() Creates an empty button.
+Button(text: String) Creates a button with the specified text.
+Button(text: String, graphic: Node) Creates a button with the specified text and graphic

CheckBox

+* A CheckBox is used for the user to make a selection.

+ Like Button, CheckBox inherits all the properties such
as onAction, text, graphic, alignment, graphicTextGap,
textFill, contentDisplay from ButtonBase and Labeled.

Jjavafx.scene.control.Labeled |

ll_\

Jjavafx.scene.control. ButtonBase

-onAction: ObjectProperty<EventHandler/ Defines a handler for handling a button’s action.
<ActionEvent>>

AP.

Jjavafx.scene.control.CheckBox

-selected: BooleanProperty Indicates whether this check box is checked.

+CheckBox () Creates an empty check box.

* +CheckBox (text: String) Creates a check box with the specified text.

12/21/2015

RadioButton

+¢ Radio buttons, also known as option buttons, enable you to
choose a single item from a group of choices.

+¢ In appearance radio buttons resemble check boxes, but check
boxes display a square that is either checked or blank, whereas
radio buttons display a circle that is either filled (if selected) or

blank (if not selected).
Jjavafx.scene.control. ToggleButton

-selected: BooleanProperty

-toggleGroup:
ObjectProperty<ToggleGroup>

+ToggleButton()
+ToggleButton(text: String)
+ToggleButton(text: String, graphic: Node)

Indicates whether the button is selected.

Specifies the button group to which the button belongs.

Creates an empty toggle button.
Creates a toggle button with the specified text.

Creates a toggle button with the specified text and graphic.

AP

Jjavafx.seene.control.RadioButton

+RadioButton() Creates an empty radio button.
W +RadioButton(text: String) Creates a radio button with the specified text.
e

TextField

Javafx.scene.control. TextInputControl

¢ A text field can be used to enter or display a
string. TextField is a subclass of TextinputControl.

-text: StringProperty
-editable: BooleanProperty

The text content of this control.

Indicates whether the text can be edited by the user.

=

Jjavafx.scene.control. TextField

-alignment: ObjectProperty<Pos>
-prefColumnCount: IntegerProperty
-onAction:

ObjectProperty<EventHandler<ActionEvent>>

Specifies how the text should be aligned in the text field.
Specifies the preferred number of columns in the text field

Specifies the handler for processing the action event on the
text field.

+TextField()
+TextField(text: String)

Creates an empty text field.

Creates a text field with the specified text.

e

12/21/2015

12/21/2015

TextArea

+* A TextArea enables the user to enter
multiple lines of text.

Jjavafx.scene.control. TextInputControl
-text: StringProperty The text content of this control.
-editable: BooleanProperty Indicates whether the text can be edited by the user.

javafx.scene.control.TextArea

-prefColumnCount: IntegerProperty Specifies the preferred number of text columns.
-prefRowCount: IntegerProperty Specifies the preferred number of text rows.
-wrapText: BooleanProperty Specifies whether the text is wrapped to the next line.
+TextArea() Creates an empty text area.
+TextArea(text: String) Creates a text area with the specified text.

Ed :

ComboBox

+* A combo box, also known as a choice list or drop-
down list, contains a list of items from which the
user can choose.

Javafx.scene.control.ComboBoxBase<T>

-value: ObjectProperty<T> The value selected in the combo box.
-editable: BooleanProperty Specifies whether the combo box allows user input.
-onAction: Specifies the handler for processing the action event.

ObjectProperty<EventHandler<ActionEvent>>

AP

Javafx.scene.control.ComboBox<T>
-items: ObjectProperty<ObservableList<T>> The items in the combo box popup.
-visibleRowCount: IntegerProperty The maximum number of visible rows of the items in
the combo box popup.
+ComboBox () Creates an empty combo box.
+ComboBox(items: Observablelist<T>) Creates a combo box with the specified items.

e m

ListView

s A list view is a component that performs
basically the same function as a combo
box, but it enables the user to choose a

single value or multiple values.

Javafx.scene.control. ListView<T>

-items: ObjectProperty<Observablelist<T>>

-orientation: BooleanProperty

-selectionModel:

ObjectProperty<MultipleSelectionModel<T>>

The items in the list view.

Indicates whether the items are displayed horizontally or vertically
in the list view.

Specifies how items are selected, The SelectionMode] is also used
to obtain the selected items.

+ListView()
+ListView(items: Observablelist<T>)

Creates an empty list view.

Creates a list view with the specified items.

A

11

ScrollBar

Jjavafx.scene.control.ScrollBar

¢ A scroll bar is a control that
enables the user to select
from a range of values. The
scrollbar appears in two
styles: horizontal and vertical.

Minimal value Maximal value

Track

A A

Thumb

Left button Right button

-blockIncrement: DoubleProperty
-max: DoubleProperty
-min: DoubleProperty
-unitIncrement: DoubleProperty

-value: DoubleProperty
-visibleAmount: DoubleProperty
-orientation: ObjectProperty<Orientation>

+Scrol1Bar()
+increment()
+decrement()

The amount to adjust the scroll bar if the track of the bar is clicked (default: 10).

The maximum value represented by this scroll bar (default: 100).

The minimum value represented by this scroll bar (default: 0).

The amount to adjust the scroll bar when the increment () and decrement ()
methods are called (default: 1).

Current value of the scroll bar (default: 0).

The width of the scroll bar (default: 15).

Specifies the orientation of the scroll bar (default: HORIZONTAL)

Creates a default horizontal scroll bar.
Increments the value of the scroll bar by unitIncrement.
Decrements the value of the scroll bar by unitIncrement

o

12

12/21/2015

Slider

+¢ Slider is similar to
ScrollBar, but Slider has 7
more properties and can »
appear in many forms. — ‘ . ,

Jjavafx.scene.control.Slider

~llx]

JavaFX Programming

25 50 75 100

-blockIncrement: DoubleProperty
-max: DoubleProperty

-min: DoubleProperty

-value: DoubleProperty

-orientation: ObjectProperty<Orientation> Spe

-majorTickUnit: DoubleProperty

-minorTickCount: IntegerProperty
-showTickLabels: BooleanProperty
-showTickMarks: BooleanProperty

The amount to adjust the slider if the track of the bar is clicked (default: 10).
The maximum value represented by this slider (default: 100).

The minimum value represented by this slider (default: 0).

Current value of the slider (default: 0).

ies the orientation of the slider (default: HORIZONTAL).

The unit distance between major tick marks

The number of minor ticks to place between two major ticks.

ies whether the labels for tick marks are shown.

Specifies whether the tick marks are shown.

+Slider()

+STider(min: double, max: double,
value: double)

Creates a default horizontal slider.
Creates a slider with the specified min, max, and value.

13

Case Study: TicTacToe

[H TicTacToe

_[olx]

e (I

>

e

O

UM

=
O =<
a i | B

X won! The game is over

Draw! The game is over

javafx.scene.layout.Pane I

Aﬁ

Cell

-token: char

Token used in the cell (default:' ')..

+getToken() : char
+setToken (token: char): void
-handleMouseClick() : void

Returns the token in the cell.
Sets a new token in the cell.

Handles a mouse click event.

14

12/21/2015

12/21/2015

Case Study: TicTacToe cont.

Cell | javafx.application.Application |

| T

1
—’ TicTacToe
-whoseTurn: char Indicates which player has the turn, initially X.
-cell: Cell[]1[] A 3 X 3. two-dimensional array for cells.
-Tb1Status: Label A label to display game status.
+TicTacToe() Constructs the TicTacToe user interface.
+isFull(): boolean Returns true if all cells are filled.
+isWon(token: char): boolean Returns true if a player with the specified token has won.

B TicTacToe :

Media

+** You can use the Media class to obtain the source
of the media, the MediaPlayer class to play and
control the media, and the MediaView class to
display the video.

javafx.scene.media.Media
-duration: ReadOnlyObjectProperty The durations in seconds of the source media.
<Duration>
-width: ReadOnlyIntegerProperty The width in pixels of the source video.
-height: ReadOnlyIntegerProperty The height in pixels of the source video.
+Media(source: String) Creates a Media from a URL source.

e m

MediaPlayer

javafx.scene.media.MediaPlayer

*+The MediaPlayer class playes and controls the media
with properties such as autoPlay, currentCount,
cycleCount, mute, volume, and totalDuration.

-autoPlay: BooleanProperty
-currentCount: ReadOnlyIntegerProperty
-cycleCount: IntegerProperty

-mute: BooleanProperty

-volume: DoubleProperty

-totalDuration:
ReadOnlyObjectProperty<Duration>

+MediaPlayer(media: Media)
+play(): void
+pause(): void
+seek(): void

Specifies whether the playing should start automatically.
The number of completed playback cycles.

Specifies the number of time the media will be played.
Specifies whether the audio is muted.

The volume for the audio.

The amount of time to play the media from start to finish.

Creates a player for a specified media.
Plays the media.
Pauses the media.

Seeks the player to a new playback time.

e

17

MediaView

Jjavafx.scene.media.MediaView

¢ The MediaView class is a subclass of Node that
provides a view of the Media being played by a
MediaPlayer. The MediaView class provides the
properties for viewing the media.

-x: DoubleProperty
-y: DoubleProperty

-mediaPlayer:
ObjectProperty<MediaPlayer>

-fitWidth: DoubleProperty
-fitHeight: DoubleProperty

+MediaView()
+MediaView(mediaPlayer: MediaPlayer)

Specifies the current x-coordinate of the media view.
Specifies the current y-coordinate of the media view.

Specifies a media player for the media view.

Specifies the width of the view for the media to fit.

Specifies the height of the view for the media to fit.

Creates an empty media view.

Creates a media view with the specified media player.

A

18

12/21/2015

BIRZEIT UNIVERSITY

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

By: Mamoun Nawahdah (Ph.D.)
2015/2016

Procedural vs. Event-
Driven Programming

= Procedural programming is executed
in procedural order.

" |n event-driven programming, code is
executed upon activation of events.

Ed :

12/21/2015

Handling GUI Events

+* Source object (e.g., button)

+» Listener object contains a method for
processing the event.

| > | >
button | event | handler |
Clicking a button An event is The event handler

fires an action event an object processes the event

(Event source object)

Ed :

(Event object) (Event handler object;

Events

** An event can be defined as a type of
signal to the program that something
has happened.

** The event is generated by external
user actions such as mouse
movements, mouse clicks, or
keystrokes.

Ed 4

12/21/2015

12/21/2015

Event Classes

|
|
:
|
: MouseEvent|
|
|

|
|
|
|
|
:
|
EventObject|<]T Event |<]—— InputEvent !
|
|
[
|
|
|
|

KeyEvent |

- JavaFX event classes are in
— WindowEvent :
—l the javafx.event package

e e e e e e e e e = = = = = =

Event Information

+* An event object contains whatever properties are
pertinent to the event.

+** You can identify the source object of the event
using the getSource() instance method in the
EventObject class.

+»* The subclasses of EventObject deal with special
types of events, such as button actions, window
events, component events, mouse movements,
and keystrokes.

Ed :

Selected User Actions and
Handlers

User Action Source Object Event Type Fired Event Registration Method
Click a button Button ActionEvent setOnAction(EventHandler<ActionEvent>)
Press Enter in a text field TextField ActionEvent setOnAction(EventHandler<ActionEvent>)
Check or uncheck RadioButton ActionEvent setOnAction(EventHandler<ActionEvent>)
Check or uncheck CheckBox ActionEvent setOnAction(EventHandler<ActionEvent>)
Select a new item ComboBox ActionEvent setOnAction(EventHandler<ActionEvent>)
Mouse pressed Node, Scene MouseEvent setOnMousePressed(EventHandler<MouseEvent>)
Mouse released setOnMouseReleased(EventHand]ler<MouseEvent>))
Mouse clicked setOnMouseClicked(EventHandler<MouseEvent>)
Mouse entered setOnMouseEntered(EventHandler<MouseEvent>)
Mouse exited setOnMouseExited(EventHandler<MouseEvent>)
Mouse moved setOnMouseMoved(EventHandler<MouseEvent>)
Mouse dragged setOnMouseDragged(EventHandler<MouseEvent>)
Key pressed Node, Scene KeyEvent setOnKeyPressed(EventHandler<KeyEvent>)
Key released setOnKeyReleased(EventHandler<KeyEvent>)
Key typed setOnKeyTyped(EventHandler<KeyEvent>)
7
Th [
e Delegation Model
ALLJ;:Jn e i, pONICh: Snm:ceCIass EvmlHam;';’i::;'f::znds Evenr>
\J +setOnXEventType(listener) +handle(event: T)
(2) Register by invoking
source.setOnXEventType(listener): E
(1) A listener object is an : E
instance of a listener interface listener: ListenerClass
(a) A generic source object with a generic event T
«interface»
source: javafx.scene.control. Button EventHandler<ActionEvent>
+setOnAction(1listener) +handle(event: ActionEvent)
(2) Register by invoking é
source.setOnAction(listener); §
H

(1) An action event listener is an instance of Jistener: CustomListenerClass
EventHandler<ActionEvent>

(b) A Button source object with an ActionEvent

12/21/2015

The Delegation Model: Example

OKHandlerClass handler = new OKHandIerCIasS();

public class HandleEvent extends Application { :
public void start(Stage primaryStage) 1. Start from the main

method to create a

OKHandlerClass handlerl = new OKHandlerClass(); (MLLSSIREUCReIIEVALE
btOK.setOnAction(handlerl);
CancelHandlerClass handler2 = new CancelHandlerClass();

?t'CanceI.setOnActlon(handlerZ); m STzl
primaryStage.show(); // Display the stage

¥
¥

class OKHandlerClass implements EventHandler<ActionEvent> {
@Override
public void handle(ActionEvent e) {

System.out.printIn("OK button clicked"); o

<~ Command Prompt - java Hawe 5 [m] [F |
C:\book)jaua.HandleEuent
3. Click OK. The JVM invokes [l iRttt -

the listener’s handle method 4

e ;

12/21/2015

Example: ControlCircle

** Now let us consider to write a program
that uses two buttons to control the size of
a circle.

L

Inner Class Listeners

*» A listener class is designed specifically to
create a listener object for a GUI
component (e.g., a button).

¢ It will not be shared by other applications.

¢ So, it is appropriate to define the listener
class inside the frame class as an inner
class.

o 12

12/21/2015

Inner Classes

e

¢ Inner class: A class is a member of another class.

¢ Advantages: In some applications, you can use
an inner class to make programs simple:

= An inner class can reference the data and
methods defined in the outer class in which it
nests, so you do not need to pass the
reference of the outer class to the constructor
of the inner class.

13
Inner Classes cont.
T class Tes OuterClass.java: inner class demo
public class OuterClass {
private int data;
“* A method in the outer class
public void m() {
Do somet ‘! 1Nng
}
(a) An inner class
public class Test { class InnerClass {
A method in the inne
public void mi() {
Inner class yirectly refer od
public class A { defi n i
data++;
b mQ;
} }
}
(b) }
(c)
14

12/21/2015

12/21/2015

Inner Classes cont.

¢ Inner classes can make programs simple and
concise.

¢ An inner class supports the work of its
containing outer class and is compiled into a
class named
OuterClassNameSinnerClassName.class.

= For example, the inner class InnerClass in
OuterClass is compiled into
OuterClassSinnerClass.class .

o 15

Inner Classes cont.

¢ An inner class can be declared public,
protected, or private subject to the same
visibility rules applied to a member of the class.

¢ An inner class can be declared static.

¢ A static inner class can be accessed using the
outer class name.

+* A static inner class cannot access non-static
members of the outer class

o m

Anonymous Inner Classes (5=

¢ An anonymous inner class must always extend a

superclass or implement an interface, but it cannot have an explicit
extends or implements clause.

¢ An anonymous inner class must implement all the abstract
methods in the superclass or in the interface.

+* An anonymous inner class always uses the no-arg constructor
from its superclass to create an instance. If an anonymous inner
class implements an interface, the constructor is Object().

¢+ An anonymous inner class is compiled into a class named
OuterClassName$n.class.

= For example, if the outer class Test has two anonymous inner
classes, these two classes are compiled into Test$1.class and

TestS$2.class.
e :

Anonymous Inner Classes cont.

¢ Inner class listeners can be shortened using anonymous
inner classes.

¢ An anonymous inner class is an inner class without a
name.

¢ It combines declaring an inner class and creating an
instance of the class in one step.

% An anonymous inner class is declared as follows:

new SuperClassName/InterfaceName() {
// Implement or override methods in superclass or interface
// Other methods if necessary

}

e 18

12/21/2015

Anonymous Inner Classes cont.

public void start(Stage primaryStage) { public void start(Stage primaryStage) {
btEnlarge.setOnAction(btEnlarge.setOnAction(
new EnlargeHandler()); new class EnlargeHandiner
} implements EventHandler<ActionEvent>() {
‘B public void handle(ActionEvent e) {
class EnlargeHandler circlePane.enlarge();
implements EventHandler<ActionEvent> { }
public void handle(ActionEvent e) { Y
circlePane.enlarge(); }
}
}
(a) Inner class EnlargelListener (b) Anonymous inner class

o 19

Simplifying Event Handing Using
Lambda Expressions

¢ Lambda expression is a new feature in Java 8.

+* Lambda expressions can be viewed as an anonymous
method with a concise syntax.

+» For example, the following code in (a) can be greatly
simplified using a lambda expression in (b) in three lines.

btEnlarge.setOnAction(btEnlarge.setOnAction(e -> {
new EventHandler<ActionEvent>() {
@Override)i

public void handle (ActionEvent e) {

}
}
1)

(a) Anonymous inner class event handler (b) Lambda expression event handler

20

12/21/2015

10

Basic Syntax for a Lambda Expression

¢ The basic syntax for a lambda expression is either:
(typel paraml, type2 param2, ...) -> expression
or
(typel paraml, type2 param2, ...) -> { statements; }

+ The data type for a parameter may be explicitly
declared or implicitly inferred by the compiler.

¢ The parentheses can be omitted if there is only
one parameter without an explicit data type.

e 21

¢ The statements in the lambda expression is all
for that method.

¢ If it contains multiple methods, the compiler will
not be able to compile the lambda expression.

¢ So, for the compiler to understand lambda
expressions, the interface must contain exactly
one abstract method.

+¢* Such an interface is known as a functional
interface, or a Single Abstract Method (SAM)

interface.
* 22

Single Abstract Method Interface (SAM)

12/21/2015

11

MouseEvent

javafx.scene.input.MouseEvent

+getButton(): MouseButton
+getClickCount(): int
+getX(): double

+getY(): double
+getSceneX(): double
+getSceneY(): double
+getScreenX(): double
+getScreenY(): double
+1sA1tDown(): boolean
+isControlDown(): boolean
+isMetaDown(): boolean
+1sShiftDown(): boolean

Indicates which mouse button has been clicked.
Returns the number of mouse clicks associated with this event.

Returns the x-coordinate of the mouse point in the event source node.

Returns the y-coordinate of the mouse point in the event source node.

Returns the x-coordinate of the mouse point in the scene.
Returns the y-coordinate of the mouse point in the scene.
Returns the x-coordinate of the mouse point in the screen.
Returns the y-coordinate of the mouse point in the screen.
Returns true if the ATt key is pressed on this event.

Returns true if the Control key is pressed on this event.
Returns true if the mouse Meta button is pressed on this event.

Returns true if the Shift key is pressed on this event.

e

23

The KeyEvent Class

javafx.scene.input.KeyEvent

+getCharacter(): String
+getCode(): KeyCode
+getText(): String
+isATtDown(): boolean

+isMetaDown(): boolean
+isShiftDown(): boolean

+isControlDown(): boolean

Returns the character associated with the key in this event.
Returns the key code associated with the key in this event.
Returns a string describing the key code.

Returns true if the A1t key is pressed on this event.

Returns true if the Control key is pressed on this event.

Returns true if the mouse Meta button is pressed on this event.

Returns true if the Shift key is pressed on this event.

e

24

12/21/2015

12

The KeyCode Constants

Constant Description Constant Description

HOME The Home key CONTROL The Control key

END The End key SHIFT The Shift key

PAGE_UP The Page Up key BACK_SPACE The Backspace key
PAGE_DOWN The Page Down key CAPS The Caps Lock key

uP The up-arrow key NUM_LOCK The Num Lock key

DOWN The down-arrow key ENTER The Enter key

LEFT The left-arrow key UNDEFINED The keyCode unknown
RIGHT The right-arrow key F1to F12 The function keys from FI to F12
ESCAPE The Esc key Oto9 The number keys from 0 to 9
TAB The Tab key AtoZ The letter keys from A to Z

e

25

Case Study: Bouncing Ball

STV 8 ourcenanconOURT=T Il counccoascontmm=TEe]

javafx.scene.layout.Pane I

j}.

BallPane

-x: double

-y: double

-dx: double

-dy: double

-radius: double
-circle: Circle
-animation: Timeline

+BallPane()

+play(): void

+pause(): void
+increaseSpeed(): void
+decreaseSpeed(): void
+rateProperty(): DoubleProperty
+moveBall(): void

KW

javafx.application.Application |

Ar

BounceBallControl

|
26

12/21/2015

13

	01_Introduction (1)
	02_ElementeryProgramming (1)
	03_Selections (1)
	04_Loops (1)
	05_Methods
	06_Arrays (1)
	07_OOoverview (1)
	08_ObjectsandClasses
	09_Strings
	10_ThinkinginObjects
	11_InheritanceandPolymorphism
	12_Abstract+classes+and+Interfaces
	16_Exception+Handling
	17_JavaFX
	18_JavaFXUIControls
	19_Event-DrivenProgramming

