
Lab 6: String and Text I/O
Objectives

1. To be able to create and manipulate nonmodifiable string objects of class String.
2. To be able to create and manipulate modifiable string objects of class StringBuffer/

StringBuilder class.
3. To write data into a file using PrintWriter class.
4. To print data from a file using Scanner class.

Syntax

Strings are Objects in Java and Strings can be declared and created using one of the
following:

String stringName = new String(“String Litral”);

String stringName = new String(char [] arrayOfCharacters);

String stringName = “String Litral”;

File Input and Output

To write data into a text file the java.io.PrintWriter class can be used. A PrintWriter
object can be created as follows:

PrintWriter out = new PrintWrite(fileName);

To read data from a file java.util.Scanner class can be used in which the physical name
of the file can be used instead of System.in that deals with consol to read from the keyboard.

Scanner in = new Scanner(fileName);

PrintWriter and Scanner classes UML

java.io.PrintWriter Java.util.Scanner
+PrintWriter(filename: String)
+print(s: String): void
+print(c: char): void
+print(cArray: char []): void
+print(i: int): void
+print(l: long): void
+print(f: float): void
+print(d: double): void
+print(b: boolean: void
Also contains the overloaded printf
and println methods

+Scanner(source: String)
+Scanner(source: File)
+close(): void
+hasNext(): boolean
+nextBoolean() :boolean
+nextInt() : int
+nextByte(): byte
+nextShort(): short
+nextLong() :long
+nextDouble() :double
+nextString() : String
+next(): String
+nextLine() :String
+useDelimiter(pattern: String):
Scanner

String class UML

The following is the java.lang.String class containing the methods to deal with Strings:

Java.lang.String
+String()
+String(String value)
+String(char[] text)
+String(char[] text, int offset, int count)
+String(byte[] data, int offset, int length, String encoding)
+ String(byte[] data, String encoding)
+length(): int
+indexOf(int ch): int
+indexOf(int ch, int fromIndex): int
+lastIndexOf(int ch): int
+lastIndexOf(int ch, int fromIndex): int
+indexOf(String str): int
+indexOf(String str, int fromIndex): int
+(String str): int
+lastIndexOf(String str, int fromIndex): int
+valueOf(char[] text): String
+ valueOf(char[] text, int offset, int count): String
+valueOf(boolean b): String
+valueOf(char c): String
+ valueOf(int i): String
+valueOf(long l): String
+valueOf(float f): String
+valueOf(double d): String
+ charAt(int index): char
+getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin): void
+getBytes(String encoding): byte[]
+getBytes():byte[]
+substring(int beginIndex): String
+substring(int beginIndex, int endIndex): String
+concat(String str): String
+toCharArray(): char []
+equals(Object anObject): boolean
+equalsIgnoreCase(String anotherString): boolean
+compareTo(String anotherString): int
+regionMatches(int toffset, String other, int ooffset, int len): boolean
+regionMatches(boolean ignoreCase, int toffset String other, int ooffset, int len): boolean
+startsWith(String prefix, int toffset): boolean
+startsWith(String prefix): boolean
+endsWith(String suffix): boolean
+ replace(char oldChar, char newChar): String
+toLowerCase(Locale locale): String
+String toLowerCase():String
+String toUpperCase(Locale locale): String
+String toUpperCase():String
+trim():String

Exercises

1. You will create a class that will perform several different functions on Strings that are
sent to it. All of the methods you create will be static, and the class should work in a
similar manner to the Math class. Only the four methods listed below should be public.
1) Create a method reverseString that receives a String and returns a String that is the

exact reversal of the characters in the first String.

2) Create a method isPalindrome that receives a String and returns a boolean value of
true if the String is a Palindrome and false if it is not. A word is a palindrome if it
reads the same forwards and backwards. For example, the word level is a palindrome.
The idea of a palindrome can be extended to phrases or sentences if we ignore details
like punctuation. Here are two familiar examples:

Madam, I'm Adam
A man, a plan, a canal: Panama

We can recognize these more elaborate examples as palindromes by considering the
text that is obtained by removing all spaces and punctuation marks and converting all
letters to their lower-case form.

Madam, I'm Adam  madamimadam
A man, a plan, a canal: Panama  amanaplanacanalpanama

If the "word" obtained from a phrase in this manner is a palindrome, then the phrase
is a palindrome. Your method should ignore the case of the letters. A palindrome is
determined by considering only alphabetic characters (a – z, A – Z) and numbers (0 –
9) as valid text.

Use these sample phrases as inputs for your run outputs:
radar
Lewd did I live, & evil I did dwel.
I like Java
Straw? No, too stupid a fad, I put soot on warts.

3) Create a method pigLatin that receives a String, converts the String to Pig Latin, and
returns the new Pig Latinated word. There may be multiple words in your String, so
you will need to have a recursive function that breaks down the String into single
words and then reconstructs the sentence in Pig Latin. Here's how to translate the
English word englishWord into the Pig Latin word pigLatinWord:

1. If there are no vowels in englishWord, then pigLatinWord is just englishWord
+ "ay". (There are ten vowels: 'a', 'e', 'i', 'o', and 'u', and their uppercase
counterparts. ‘y’ is not considered to be a vowel for the purposes of this
exercise, i.e. my becomes myay, why becomes whyay, etc.)

2. Else, if englishWord begins with a vowel, then pigLatinWord is just
englishWord + "yay".

3. Otherwise (if englishWord has a vowel in it and yet doesn't start with a
vowel), then pigLatinWord is end + start + "ay", where end and start are
defined as follows:

A) Let start be all of englishWord up to (but not including) its first vowel.
B) Let end be all of englishWord from its first vowel on.
C) But, if englishWord is capitalized, then capitalize end and "uncapitalize"

start.

4) Create a method ShortHnaded that receives a String and returns the String converted
into shorthand. The simplified shorthand form of a string is defined as follows:

1. Replace these four words: "and" with "&", "to" with "2", "you" with "U",
and "for" with "4".

2. Remove all vowels ('a', 'e', 'i', 'o', 'u', whether lowercase or uppercase)

2. Create a text file myText.txt containing the following:

Tom Sawyer
Huck Finn
Luke Skywalker
Obiwan Kenobe
The quick brown fox jumps over the lazy dog

Write a Java program to read a text from myText.txt file. The program must read the text word
by word, count the number of words in the file, and echo each (copy) word to the consol.

Note: Make sure not to miss any word, and not to repeat the last word by mistake.

