

Computer Science Department

Laboratory Workbook

Comp231

Advanced Programming

Prepared by:

Approved by:

Computer Science Department

2017/2018

Computer Science Department (Laboratory Work Book for Comp231) 2

Introduction

The aim of this lab manual is to help students of the “advanced programming” course to

understand and apply a variety of object oriented programming and design concepts. Every lab

session is provided with lab objectives, a brief discussion about the experiment’s topics or

concepts that strength the student understanding to the lab material; a Java language syntax for

the commands or statements that will be used; and some exercises that allow the student to

completely understand the topic. The exercises in this manual are carefully prepared, studied

and revised by several members of the academic staff in the computer science department at

Birzeit University.

The lab manual starts explaining Object Oriented Programming using Java language from

scratch. It allows the students to learn about the structure of the Java programs and provides

students with sufficient knowledge to understand object-oriented programming concepts using

Java language. Further, the manual covers all object-oriented programming concepts such as

the use of objects and classes, inheritance, polymorphism, abstract classes and interfaces. In

addition, students will learn how to make a graphical user interface programs and event driven

programming. Finally, this manual gives students a complete understanding to the above topics

in which they will be able to proceed with the advanced courses during their study.

Computer Science Department (Laboratory Work Book for Comp231) 3

Table of Contents

Lab 1: Program Structure in Java .. 4

Lab 2: Structured Programming - Revision .. 10

Lab 3: Methods ... 18

Lab 4: Arrays and Object Use .. 19

Lab 5: Object-Oriented Programming ... 23

Lab 6: Strings ... 27

Lab 7: Inheritance and Polymorphism .. 31

Lab 8: Abstract Classes and Interfaces .. 33

Lab 9: Exception-handling and text I/O ... 37

Lab 10: JavaFX basics and UI controls ... 39

Lab 11: Event-Driven Programming .. 41

Lab 12- Extra Lab: JavaFX and Event-Driven Programming .. 44

Computer Science Department (Laboratory Work Book for Comp231) 4

Lab 1: Program Structure in Java

Objectives

• To understand the layout and the structure of a simple Java program.

• To be able to create, compile and run a simple Java program using command line (cmd).

• To apply Scanner and Loops

Simple Java Program

This program will allow you to understand the layout to Java Programs:

// Text printing program – First lab

public class Welcome {

 // main method begins execution of Java application

 public static void main(String[] args) {

 for (int i = 0; i < 3; i++)

 System.out.println("Welcome to comp231");

 } // end method

} // end class Welcome

Computer Science Department (Laboratory Work Book for Comp231) 5

Compiling, and Executing a Java Program

Sun releases each version of J2SE with a Java Development Toolkit (JDK).

Figure1.1 (process diagram)

Computer Science Department (Laboratory Work Book for Comp231) 6

To check that you have installed the JDK, run command line interface (cmd). For example, in

windows 10 you can use Cortana to search for and lunch the command prompt, Inside Cortana’s

search field, enter command or cmd. Then click or tab on he command prompt result.

Then type the following command:

 java –version

This command will show you the version of the JDK you have installed (Figure1.2),:.

 Figure1.2 (java version)

Computer Science Department (Laboratory Work Book for Comp231) 7

To run a java program using cmd we use the following steps:

1- Open Notepad and name it as ClassName.java using the following command, then write

your source code inside it (figure1.3) :

 Notepad className.java

 Figure1.3 (open notepad file)

2- After completing your source code, open cmd (run → cmd) then you have to compile it

using the following command (figure 1.4):

3- javac ClassName.java

Figure1.4 (compiling source code)

Computer Science Department (Laboratory Work Book for Comp231) 8

4- If no compilation errors appear, this means that you can run your program using the

following command (figure 1.5):

 java ClassName

/

Figure1.5 (Running byte code)

Read from consol:

Console input is not directly supported in Java, but you can use the Scanner class to create an

object to read input from System.in, as follows:

Scanner input = new Scanner(System.in);

 The syntax new Scanner (System.in) creates an object of the Scanner type. The syntax

Scanner input declares that input is a variable whose type is Scanner. The whole line

Scanner input = new Scanner (System.in)

 creates a Scanner object and assigns its reference to the variable input.

Computer Science Department (Laboratory Work Book for Comp231) 9

An object has methods that can be invoked as functions in c programming language. When

someone invokes an object’s method, he/she is asking the object to perform a certain task. For

example, you can invoke the nextDouble() method to read a double value as follows:
double radius = input.nextDouble();

Scanner methods that the Scanner object can use:

boolean hasNext() This method returns true if this scanner has another token in its input.

String next() This method finds and returns the next complete token from this

scanner.

double nextDouble() This method scans the next token of input as double.

int nextInt() This method scans the next token of input as an int.

String nextLine() This methods advances this scanner past the current line and returns

the input that was skipped.

Exercises

1. Write a java application using notepad that prints your name, id, course name

 (Which is “advanced programming comp231”) and your instructor’s name with the section

number next to it. Then from console use JDK to compile and run the program.

2. Use notepad to write a java application that asks the user to enter 10 numbers and calculates

their average then displays the result. From console use JDK to compile and run the program.

Computer Science Department (Laboratory Work Book for Comp231) 10

Lab 2: Structured Programming - Revision

Objectives

• To introduce Eclipse debugger - an important tool for finding and fixing

Run-time errors.

• To be able to write simple Java application using output and input streams.

• To become familiar with primitive data types.

• To become familiar with the conditional statements in Java (i.e. if, if else, switch).

• To become familiar with the control structures in Java (i.e. while, for, do while).

• To create methods, invoke methods and pass arguments to a method.

• To determine the scope of variables.

Conditional Statements in Java

1. Single Condition

 if (expression) {

 statement(s);

 }

Multiple conditions:

 if (expression) {

 statement(s);

 }

 else {

 statement(s);

 }

Computer Science Department (Laboratory Work Book for Comp231) 11

2. Multiple Selections

 switch (expression) {

 case constant-expression:

 Statement(s);

 break;

 default:

 Statement(s);

 break;

 }

Control Structures (Loops)

1. while loop:

while (expression) {

 Statement(s);

}

2. do-while loop:

do {

 Statement(s);

} while (expression);

3. for loop :

for (initial-action; expression ;action-after-each-iteration) {

 Statement(s);

}

Computer Science Department (Laboratory Work Book for Comp231) 12

Eclipse IDE

This lab will introduce you to Eclipse, a full-featured and very versatile Integrated

Development Environment(IDE). During the assignments and labs in this course you will

be using Eclipse extensively to develop Java programs.

You can download it from the following link:

 https://eclipse.org/mars/

Running the Program

1- To open Eclipse, double click its application icon, then chose the workspace (folder) as in

figure2.1. All your work will be saved in this folder, so make sure that you chose it and

remember where you have saved it (the path).

Figure2.1 (workspace)

 If you want to change it, click brows and select new place for it as in figure 2.2. The new

place that we have chosen is myWorkspace, then click ok.

https://eclipse.org/mars/

Computer Science Department (Laboratory Work Book for Comp231) 13

Figure2.2 (changing workspace)

2- Now you can create your first project by going to File New Java project. Then

name your project as HelloWorld and click finish.

Figure2.3 (new java project)

Computer Science Department (Laboratory Work Book for Comp231) 14

3- To create a new class, right click on your project name (HelloWorld), then New Class

4- After creating your class, you are ready to write your code inside it. Later on, to run your

program, right-click on your class that contains the main method

Choose run then choose java application as in figure 2.4

Figure2.4(run java application)

5- The results of your program will appear in the console.

Computer Science Department (Laboratory Work Book for Comp231) 15

Methods:

Syntax

[modifiers] data-type method-name ([parameter-declaration]) {…}

Calling a Method

When creating a method, you give a definition of what the method is supposed to do. To

use a method, you have to call or invoke it.

There are two ways to call a method; the choice is based on whether the method returns a

value or not:

1. If the method returns a value, a call to the method is usually treated as a value.

For example:

 data-type variable-name = method-name(passed-arguments);

Calls method-name (passed-arguments) and assigns the result of the method

to the variable variable-name.

 Another example of a call that is treated as a return-value is:

 System.out.println(method-name(passed-arguments));

 Which prints the return value of the method call method-name(passed-

arguments)

2. If the method returns void it should be called using a statement. For example,

the method println returns void. The following call is a statement:

 System.out.println("Welcome to Java!");

Computer Science Department (Laboratory Work Book for Comp231) 16

Exercises

1. The body mass index (BMI) is a ratio of person’s weight and height. The index can be used to

determine if a weight is unhealthy for certain height. Here is the formula:

𝐵𝑀𝐼 =
𝑤𝑒𝑖𝑔ℎ𝑡(𝑝𝑜𝑢𝑛𝑑𝑠) × 703

ℎ𝑒𝑖𝑔ℎ𝑡2(𝑖𝑛𝑐ℎ𝑒𝑠)

Write a java program that reads values for weight in kilograms and height in centimetres and

prints out the BMI.

Hence, the above formula uses pounds and inches, so you have to include the following two

methods to do the needed conversion.
- Converts from Kilograms to Pounds:

𝑝𝑜𝑢𝑛𝑑𝑠 = 𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚 × 2.2

 public static double kilogramToPound(double kilogram)

- Converts from Centimetres to Inches:

𝑖𝑛𝑐ℎ𝑒𝑠 = 𝑐𝑒𝑛𝑡𝑖𝑚𝑒𝑡𝑒𝑟 × 0.39

public static double centimetresToInches(double centimetres)

Your program should also print on screen an interpretation of the BMI. Use the following

scale.

BMI Interpretation

15 <= BMI < 19 Underweight

19 <=BMI < 25 Normal

25<= BMI <30 Overweight

Computer Science Department (Laboratory Work Book for Comp231) 17

2. Write a java application that will determine the salary for each of several employees. The

company pays “straight-time” for the first 40 hours, if the employee worked more than 40

hours, we consider the extra hours as overtime and the employee gets 50% extra for each

overtime hour. You are given a list of employees of the company, each employee has a number

of worked hours and hourly rate.

 Your application should input this information (worked hours and hourly rate) for each

employee then it should determine and display the employee’s salary.

The program will stop if we enter -1.

Output may appear as follow:

3. A prime number is a number that has no positive divisors other than 1 and itself. Your

program should stop if we entered a number less than 2. Write a java program that finds the

prime numbers between 2 and 500 using the following method signature, your program will

stop if the user enter a number less than 2

public static boolean isPrime(int number)

Now improve your program to allow the user to enter a number then check if it is prime or

not.

Enter hours worked (-1 to end): 39

Enter hourly rate of the worker ($00.00):10.00

Salary is $390.0

Enter hours worked (-1 to end): 41

Enter hourly rate of the worker ($00.00):10.00

Salary is $415.0

Enter hours worked (-1 to end): -1

Computer Science Department (Laboratory Work Book for Comp231) 18

Lab 3: Methods

Objectives

• To practice more about methods (create, invoke and pass arguments).

• To determine the scope of variables.

Exercises

1. The exponential ex can be calculated using the following formula:

𝑒𝑥 = 1 +
𝑥

1!
+

𝑥

2!

2

+
𝑥3

3!
+

𝑥4

4!
+

𝑥5

5!

The factorial of non-negative integer n is written n! And is defined as follows:

𝑛! = 𝑛 ∙ (𝑛 − 1). (𝑛 − 2). ⋯ .1

 𝑛! = 1 (𝑖𝑓 𝑛 = 0)

Write a java program that contains two methods factorial and exp according to the

formulas that we mentioned above. The main task for this program is to ask the user to

enter a number and calculate its exponential then display the result.

➢ Note that exp method will call factorial method.

2. An integer number is said to be perfect number if the sum of its factors including 1 (but

not the number itself) is equal to the number itself.

For example 6 is perfect because 6 = 1 + 2 + 3.

Write a method isPerfectNumber using the following signature that determines if

parameter number is perfect number. Use this method in a main method that determine

and prints all the perfect numbers between 1 and 1000.

 public boolean isPerfectNumber(int number)

3. Write a java method that accepts a binary number and converts it to decimal then display

the result. For Example:

(110)2 = (6)10

(22 *1)+ (21 *1) + (20*0) = 6

Additional task: write a method that accepts a decimal and converts it to binary.

Computer Science Department (Laboratory Work Book for Comp231) 19

Lab 4: Arrays and Object Use
Objectives

• To introduce the concept of arrays in Java.

• To understand how to declare an array, initialize it and refer to individual elements inside

the array.

• To understand how to pass an array of elements to a method.

• To understand the concept of array of Objects.

Syntax

To use an array in a program, you must declare a variable to reference the array, and you must

specify the type of array the variable can reference.

dataType[] arrayName = new dataType[sizeOfAnArray];

dataType arrayName[] = new dataType[sizeOfAnArray];

Passing an array to a method

Arrays are objects therefore they are passed to the method by reference.

To pass an array to a method as a parameter you have to write the following:

modifiers data-type method-name (dataType []arrayName) {…}

Computer Science Department (Laboratory Work Book for Comp231) 20

Exercises

1. A building with n apartments is to be represented in an array.

➢ Write an application that reads the number of apartments and use it as the size of

the array. The apartment number will serve as the index of the array.

The values in the array represent the number of people who live in the apartment.

For example: a building which has 4 apartments can be represented as follows :

Building:

3

2

1

0

Now, create a building (array on integers) as above then print the following

information:

1- Number of people in the building.

2- The average number of people per apartment

3- The number of apartments with above-average occupancy, and the

number with below-average occupancy.

2

4

6

2

Computer Science Department (Laboratory Work Book for Comp231) 21

➢ Modify the above application to read the number of people in the apartment and

their ages. Still, the apartment number serves as an index into an array of

apartments. But, the values of the apartment represent the ages of people who live

in the apartment instead of their number. Add a new method averageAges() to

find the average age of the building residents.

 Hint: use 2 dimensional arrays as in the following figure and build it at run time.

 Building:

2. Write a java program that has a method called linearSearch as in the following signature

which accepts an array of integers and an integer number to search for it inside the array.

If the number is found in the array, it will return its index, else if the number is not found

it will return -1.

 public static int linearSearch(int [] myArray , int number)

3

2

1

0

30 25

45 25 21 15

50 40 20 18 15 10

60 65

Computer Science Department (Laboratory Work Book for Comp231) 22

3. Write an application that creates a one dimensional array of 5 Students. Then write a test

program to print the student details in the list.

Tips for solution:

Use the following Student class to solve the question.

 public class Student {

 private int studentId;

 private String studentName;

 public Student() {

 }

 public Student(int stId, String stName) {

 studentId = stId;

 studentName = stName;

 }

 public void setStudentId(int number) {

 studentId = number;

 }

 public int getStudentId() {

 return studentId;

 }

 public void setStudentName(String name) {

 studentName = name;

 }

 public String getStudentName() {

 return studentName;

 }

}

To create an array of 4 Students do the following:

 Student []array = new Student[4];

To create a new student, do the following:

 array[index] = new Student(120, "Ali Jumah");

Computer Science Department (Laboratory Work Book for Comp231) 23

Lab 5: Object-Oriented Programming

Objectives

• To understand objects and classes, and the differences between them.

• To use UML (Unified Modeling Language) graphical notations to describe classes and

objects.

• To understand and apply the role of constructors.

Unified Modeling Language (UML)

UML is a standardized general-purpose modeling language in the field of software engineering.

UML includes a set of graphical notation techniques to create abstract models of specific systems,

referred to as UML model.

Classes always start with upper case letter while objects start with lower case letters.

Data members and member methods start with lower case letters.

Objects are instances from classes.

An object has attributes (properties) and behavior.

• The attributes (states) of an object is represented by data fields (also known as properties).

• The behavior of an object is defined by a set of methods.

The following UML represents Student class that we have seen in our previous lab:

Computer Science Department (Laboratory Work Book for Comp231) 24

Exercises

1. Create an Employee class according to the following UML.

Write a driver class that creates an array of 4 Employees then passes the array to a method

named largestSalary which will return the employee object with the largest salary.

 public static Employee largestSalary (Employee [] employees)

Computer Science Department (Laboratory Work Book for Comp231) 25

2. Develop MyArray class. The internal representation of this class is an array of integers.

The following methods should be included in the class to deal with the array:

MyArray(int []) // Constructor

min(): int // returns the minimum element in the array

max(): int // returns the maximum element in the array

average():double // returns the average of the elements

printArray():void // prints the elements of the array

getSize():int //returns the length of the array

Average (mean) is 𝑥̅ =
𝑥1+ 𝑥12+ …+ 𝑥𝑁

𝑁
=

1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1

Develop a driver class to create objects (array) from the created class and test their

behaviors.

Computer Science Department (Laboratory Work Book for Comp231) 26

3. Create City class using the following UML:

Create a class City according to the above UML class diagram, then create an array of

cities which contains 4 city objects. Then pass the array to a method named

belowAverage that accepts an array of City objects and an integer which represents

certain temperature. This method shall print all information about all cities that have a

temperature below the given temperature.

public static void belowAverage(City [] cities , int avgTemp)

Computer Science Department (Laboratory Work Book for Comp231) 27

Lab 6: Strings
Objectives

1. To be able to create and manipulate non-modifiable (immutable) string objects of class

String.

2. To be able to create and manipulate modifiable string objects of class StringBuffer/

StringBuilder class.

Syntax

Strings are Objects in Java and Strings can be declared and created using one of the following:

String stringName = new String(“String Litral”);

String stringName = new String(char [] arrayOfCharacters);

String stringName = “String Litral”;

String class methods:

The following are methods to deal with Strings:

Method Description

length() Returns the number of characters in this string.

charAt() Returns the character at the specific index from this string.

toUpperCase() Returns a new string with all letters in upper case.

toLowerCase() Returns a new string with all letters in lowercase.

trim() Returns a new string with whitespaces characters trimmed on both sides .

Computer Science Department (Laboratory Work Book for Comp231) 28

Method Description

equals(s1) Returns true if this string equal to string s1.

equalsIgnoreCase(s1) Returns true if this string is equal to string s1; it is case insensitive.

compareTo(s1) Returns an integer greater than 0, equal to 0, or less than 0 to

 indicate whether this string is greater than, equal or less than s1.

compareToIgnoreCase(s1) same as compareTo except that the comparison is case insensitive.

startsWith(prefix) Returns true if this string starts with specified prefix.

endsWith(suffix) Returns true if this string ends with specified suffix.

contains(s1) Returns true if s1 is substring in this string.

index(ch) Returns the index of the first occurrence of ch in the string.

 Returns -1 if not matched.

indexOf(ch, fromIndex) Returns the index of the first occurrence of ch after from Index in

 the string, Returns -1 if not matched.

indexOf(s) Returns the index of the first occurrence of string s in this string.

 Returns -1 if not matched.

indexOf(s, fromIndex) Returns the index of the first occurrence of string s in this string

 after from Index. Returns -1 if not matched.

lastIndexOf(ch) Returns the index of the last occurrence of ch in this string.

 Returns -1 if not matched.

lastIndexOf(s, fromIndex) Returns the index of the last occurrence of ch in before fromIndex

 in this string. Returns -1 if not matched.

lastIndexOf(s) Returns the index of the last occurrence of string s in this string.

 Returns -1 if not matched.

lastIndexOf(s, fromIndex) Returns the index of the last occurrence of string s in this string

 before fromIndex. Returns -1 if not matched.

Computer Science Department (Laboratory Work Book for Comp231) 29

Exercises

1. You will create a class named MyString that will perform different processing on Strings

that are sent to it. All of the methods you create will be static, and the class should work in

a similar manner to the Math class. Only the four methods listed below should be public.

1) Create a method reverseString that receives a String and returns a String that is the

exact reversal of the characters in the first String.

2) Create a method isPalindrome that receives a String and returns a boolean value of true

if the String is a Palindrome and false if it is not. A word is a palindrome if it reads the

same forwards and backwards. For example, the word level is a palindrome.

The idea of a palindrome can be extended to phrases or sentences if we ignore details

like punctuation, so you need to create a method that cleans the sentence from

punctuation and spaces, then convert the sentence to lower or upper case after that we

can use the method isPalindrome with the new sentence. Here are two familiar

examples:

Madam, I'm Adam → madamimadam

A man, a plan, a canal: Panama → amanaplanacanalpanama

3) Create a method ShortHnaded that receives a String and returns the String converted

into shorthand. The simplified shorthand form of a string is defined as follows:

1. Replace these four words: "and" with "&", "to" with "2", "you" with "U",

and "for" with "4".

2. Remove all vowels ('a', 'e', 'i', 'o', 'u', whether lowercase or uppercase), do

not remove ‘u’ and ‘I’ if they did not occurred in a word.

Computer Science Department (Laboratory Work Book for Comp231) 30

4) Also add the following methods:

 1- numberOfSentences: a method that accepts a string and return number of sentences on it.

A sentence can be determined if it ends with one of those punctuation (. , ? !).

 2- numberOfWords: a methods that accepts a string and return number of words, a word

consists of more than 3 characters.

 2. Design a java program that we can use to encrypt a sentence by using the following

methods respectively:

a. Convert al letters to capital.

b. reverseString: reverse the sentence

c. toNumbers: a method that converts the following letters to numbers:

 “O” to zero (0), “S” to $, “L” to 1

d. beginAndEnd: that add ** at the beginning and at the end of the sentence.

Finally, you should display the encrypted sentence.

 Hint: use stringBuilder.

Computer Science Department (Laboratory Work Book for Comp231) 31

Lab 7: Inheritance and Polymorphism
Objectives

• To understand the concepts of inheritance and polymorphism.

• To be able to develop a subclass from a superclass through inheritance.

• To understand the concepts of dynamic binding, and generic programming.

• To be able to restrict access to data and methods using the protected visibility modifier.

Definition

Inheritance: allows you to derive new classes from existing classes. Inheritance represents the is-

a relationship.

Polymorphism: is to behave differently with different subclasses.

As objects do not exist by themselves but are instances of a class, a class can inherit the features

of another class and add its own modifications. (This could mean restrictions or additions to its

functionality). Inheritance aids in the reuse of code.

Classes can have 'Children' that is, one class can be created out of another class. The original or

parent class is known as the SuperClass (or base class). The child class is known as the SubClass

(or derived class).

A SubClass inherits all the attributes and behaviors of the SuperClass, and may have additional

attributes and behaviors.

Syntax

In Java inheritance is represented using extends keyword as follows:

[modifiers] super-class-name { //Data members and methods …}

Computer Science Department (Laboratory Work Book for Comp231) 32

[modifiers] subclass-name extends super-class-name {…}

Exercises

1. Design a class named Account that represents a bank account and contains:

• An int data field named id for the account (default 0).

• A double data field named balance for the account (default 0).

• A Date data field named dateCreated that stores the date when the account was created.

• Two constructors:

1) No-arg constructor that creates a default account and initialize the dateCreated.

2) Constructor with arguments that accepts id and balance.

• The setter and getter methods for id and balance.

• Getter for dateCreated.

• A method named withdraw that withdraws a specified amount from the account.

• A method named deposit that deposits a specified amount to the account.

• toString method that returns id, balance and date created.

Create two subclasses for Checking and Saving accounts from Account class. A Checking

account has an overdraft limit equals to 1000, but a savings account cannot be overdrawn.

Step 1: Draw the UML diagram for the classes then implement the classes.

Step 2: Implement classes using eclipse.

Step3: Write a test program that creates different objects of Saving account, and Checking

account, and invokes their toString() methods and to call withdraw and deposit method.

Computer Science Department (Laboratory Work Book for Comp231) 33

Lab 8: Abstract Classes and Interfaces
Objectives

• To understand the concept of abstract classes.

• To be able to differentiate between abstract and concrete classes.

• To define a natural order using the Comparable interface.

• To declare custom interfaces

Theory

Abstract classes are used to declare common characteristics of subclasses. An abstract class

cannot be instantiated. It can only be used as a superclass for other classes that extend the abstract

class. Abstract classes are declared with the abstract keyword. Abstract classes are used to provide

a template or design for concrete subclasses down the inheritance tree.

An abstract method is a method signature without implementation. Its implementation is

provided by the subclasses. A class that contains abstract methods must be declared abstract.

An interface defines one or more constant identifiers and abstract methods. A separate class

implements the interface class and provides the definition of the abstract methods. Interfaces are

used as a design technique to help organize properties (identifiers) and behaviors (methods) the

implementing classes may assume.

Computer Science Department (Laboratory Work Book for Comp231) 34

Differences between abstract and interface classes:

Syntax

Abstract Class

 [modifier] abstract class Class-Name {

 /** Body of the class */

}

Abstract Method

[modifier] abstract data-type method-name([parameters-declarations]) {…}

Interface

 [modifier] interface InterfaceName {

 /** Constant declarations */

 /** Method signatures */

}

There are famous interface classes that you will use, such as Comparable which will help you in

comparing objects by implementing the compareTo method and Cloneable which will help you

cloning objects by implementing the clone method.

Computer Science Department (Laboratory Work Book for Comp231) 35

Exercises

1. Create the classes in the following inheritance hierarchy. An Employee should have a first

name, last name and ID number. In addition, the SalariedEmployee should have a weekly

salary; an HourlyEmployee should have a wage and a number of hours worked; a

CommissionEmployee should have a commission rate and gross sales; and a

BaseCommissionEmployee should have a base salary. Each class should have an appropriate

constructor, setters and getters. Each Employee should have an earning() and toString()

methods. Also make Employee comparable. The compareTo method compares between the

employees based on earnings.

• Write a method that finds the total earnings of all the employees in an array. The method

signature is:

 public static double totalEarning(Employee[] a)

• Write another method that sorts an array of Objects using the compareTo method. The

signature of this method is:

 public static void sort(Object[] a)

• Write a test program that creates an array of 5 employees and computes their total

earnings using the totalEarning method.

Computer Science Department (Laboratory Work Book for Comp231) 36

2. Implement the superclass Shape and its subclasses Circle, Rectangle and Square as shown

in the following UML class diagram, note that the compareTo method will compare based on

area:

Create an array list of 5 different shapes, then sort the list and print the type of each object

with its area.

Computer Science Department (Laboratory Work Book for Comp231) 37

Lab 9: Exception-handling and text I/O
Objectives

• To understand the concept of Exception and Exception handling.

• How to throw an exception?

• How to write a try-catch block to handle exception.

Theory

 A Runtime errors occur while a program is running if the JVM detects an operation that is

impossible to carry out, in java, the runtime errors are thrown as exception, so the exception is

an object that represents an error or condition that prevents execution from proceeding

normally. If the exception is not handled, the program will terminate abnormally.

Java exception handling model is based on three operations: declaring an exception, throwing an

exception, and catching an exception, as in the following figure.

Syntax

 Try-catch block:

 try{
 statements;

 }catch(Exception1 exVar1){

 Handler for exception1;

 } catch(Exception2 exVar2){

 Handler for exception2;

 }…

 catch(ExceptionN exVarN){

 Handler for exceptionN;

 }

Computer Science Department (Laboratory Work Book for Comp231) 38

 Exercises

1) Write a bin2Dec(String binaryString) method that converts a binary string into a

decimal number. Implement the bin2Dec method to throw a

NumberFormatException if the string is not binary String.

2) Design a Circle class that has radius and color as attributes and allow the

setRadius method to throw an IllegalArgumentException if the radius is

negative.

3) Write a program that reads unknown number of students from file named

students.txt, the data stored in this file as following:

 Ahmad 90 85 78

 Musa 76 80 84

 Salam 85 90 99

Then calculate the average of each student and save the results on a file named

output.txt as following:

 Ahmad 84.3

 Musa 80

 Salam 91.3

Computer Science Department (Laboratory Work Book for Comp231) 39

Lab 10: JavaFX basics and UI controls

Objectives

• To write a javaFX program and understand the relationship among stages, scenes, and

nodes.

• To create user interface using panes, UI controls, and shapes.

• To create a graphical user interface with various user-interface controls.

• Learn how to use several UI controls such as Button, Label, and TextField.

Theory

 A graphical user interface (GUI) makes a system user-friendly and easy to use. Creating a

GUI requires creativity and knowledge of how UI controls work. Since the UI controls in

javaFX are very flexible and versatile, you can create a wide assortment of useful user interface

for rich Internet applications.

Computer Science Department (Laboratory Work Book for Comp231) 40

Exercises

1. Write a program that display the traffic light as in the figure below:

2. Write a java program that displays a checkboard in which each white and black cell is a

Rectangle with a fill color black or white as in the figure below:

3. Write a java program that displays the following UI:

Save your code, we are going to

improve on it in the next lab.

JavaFX

Computer Science Department (Laboratory Work Book for Comp231) 41

Lab 11: Event-Driven Programming

Objectives

• To get the taste of event-driven programming.

• To describe events, even sources, and event classes.

• To define event handler classes using inner classes, and simplify event handling using

lambda expression.

To develop applications using MouseEvents and KeyEvents.

Theory

 When you run a Java GUI program, the program interacts with the user, and the events drive

its execution. This is called event-driven programming. An event can be defined as a signal

to the program that something has happened. Events are triggered by external user actions,

such as mouse movements, mouse clicks, and keystrokes. The program can choose to respond

to or ignore an event.

Computer Science Department (Laboratory Work Book for Comp231) 42

Exercises

1. Write a program that displays the traffic light as in the figure below, the program will

simulate a traffic light, the user can select one of the three lights: red, yellow, or green.

When a radio button is selected, the light is turned on. Only one light can be on at a

time, No light is on when the program starts.

2. Write a java program that displays the following UI and sets the horizontal-alignment

and column-size properties of text field dynamically:

JavaFX

Computer Science Department (Laboratory Work Book for Comp231) 43

3. Write a complete Java program which will display a user interface (UI) as in the

following figure using javaFX to collect student information. The collected

information are:

a. Student number

b. Student name

c. Average

d. Department name

When your program started, it should display a UI that enables the user to

enter the required information and add button that will take information

and saves it in a file.

Computer Science Department (Laboratory Work Book for Comp231) 44

Lab 12- Extra Lab: JavaFX and Event-Driven Programming
• Using Eclipse Appropriately implement the following UML:

o Add getters and setters as necessary.
o Every time the Student constructor invoked, the numOfCreatedStudents

incremented.

Computer Science Department (Laboratory Work Book for Comp231) 45

• Create a file “students.txt” to your project with the following data:
• 1120752:Majdi : CSE : 70

• 1130340:Rand : CSE : 75

• 1131913:Maen : CS : 50

• 1141339:Areen : CSE : 65

• 1141622:Deema : CSE : 80

• 1141647:Wafa : PHY : 55

• 1141945:Kasandra : PHY : 50

• 1142149:Manar : CSE : 65

• 1142529: Sami : CS : 78

• 1142753: Mohammad : CS : 88

• 1150304: Maab : MATH : 72

• 1150467: Amr : ACC : 99

• 1151504: Hadi : CSE : 82

• 1152270: Atheer : CS : 92

• 1152770: Farhat : SCI : 80

• 1153216: Isra : ENG : 76

• 1153279: Yazeed : CS : 67

• 1160063: Ayah : CS : 99

• 1160144: Feras : CSE : 97

• 1160724: Sajeda : CSE : 89

• 1161357: Bara : CS

• 1161728: Omar : CS

• 1161798: Husam : CSE : 70

* Each line in the file consists of: student information: id, name, major, and average
marks, separated by a (:).

• Create a driver class named Driver that has an ArrayList of Students.

• The driver class does the following:
o At start, it reads the students.txt file records (line by line). Converts each line to a

specific student object with appropriate major and add it to the students ArrayList.
▪ Notes:

• Only consider the students with CS or CSE major.

• Some student’s information are missing, in this case ignore this
student.

o Implement the following methods:
▪ topStudent(major): returns the students that has the best average in his

major.
▪ studentsAverage(major): returns the average of students in the major.

Computer Science Department (Laboratory Work Book for Comp231) 46

o Build the following JavaFX GUI (as close as possible):

▪ Clicking the “Top Major Student” button will execute the method
topStudent(major) and pass to it the value of selected Major radio button.
The output will be displayed in the TextFiled as follow:

▪ Clicking the “Major Average” button will execute the method
studentsAverage(major) and pass to it the value of selected Major radio
button. The output will be displayed in the TextFiled as follow:

