
Exception Handling
 and
Text IO

2

Runtime Error?

3

Fix it Using an if Statement

Suppose there is another method that can
throw the exception

Better handling
using exceptions

Handling an exception and
continuing program execution

8

Exception Handling

 Exception handling technique enables a

method to throw an exception to its caller.

 Without this capability, a method must
handle the exception or terminate the
program.

9

Exception Types

10

System Errors

System errors are thrown by JVM and represented in the
Error class. The Error class describes internal system errors.

11

Exceptions

 Exception describes errors caused by your program and
external circumstances.

 These errors can be caught and handled by your program.

12

Runtime Exceptions

 RuntimeException is caused by programming errors,
such as bad casting, accessing an out-of-bounds array, and
numeric errors.

13

Checked Exceptions vs.
Unchecked Exceptions

 RuntimeException, Error and their

subclasses are known as unchecked
exceptions.

 All other exceptions are known as checked
exceptions, meaning that the compiler forces
the programmer to check and deal with the
exceptions.

14

Unchecked Exceptions
 In most cases, unchecked exceptions reflect programming
logic errors that are not recoverable.

 For example:

 a NullPointerException is thrown if you access an
object through a reference variable before an object is
assigned to it.

 an IndexOutOfBoundsException is thrown if you access
an element in an array outside the bounds of the array.

 These are the logic errors that should be corrected in the
program.

15

Declaring, Throwing, and
Catching Exceptions

16

Declaring Exceptions

 Every method must state the types of
checked exceptions it might throw.

 This is known as declaring exceptions.

public void x() throws IOException

public void y() throws IOException, OtherException

17

Throwing Exceptions
 When the program detects an error, the
program can create an instance of an appropriate
exception type and throw it.

 This is known as throwing an exception.

throw new TheException();

TheException ex = new TheException();
throw ex;

18

Throwing Exceptions Example

public void setRadius(double newRadius)
 throws IllegalArgumentException {
 if (newRadius >= 0)
 radius = newRadius;
 else
 throw new IllegalArgumentException(
 "Radius cannot be negative");
 }

19

Catching Exceptions
try {
 statements; // Statements that may throw exceptions

}
catch (Exception1 exVar1) {
 handler for exception1;
}
catch (Exception2 exVar2) {
 handler for exception2;
}
...
catch (ExceptionN exVar3) {
 handler for exceptionN;
}

20

Catch or Declare Checked Exceptions

 Java forces you to deal with checked exceptions.

 You must invoke it in a try-catch block or declare to
throw the exception in the calling method.

 For example, suppose that method p1 invokes method
p2 and p2 may throw a checked exception (e.g.,
IOException), you have to write the code as follow:

Important Example

throws IllegalArgumentException

25

Rethrowing Exceptions

try {
 statements;
}
catch(TheException ex) {
 perform operations before exits;

 throw ex;
}

26

The finally Clause

try {
 statements;
}
catch(TheException ex) {
 handling ex;
}
finally {
 finalStatements;
}

27

Trace a Program Execution
try {
 statements;
}
catch(TheException ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

Suppose no
exceptions in

the statements

try {
 statements;
}
catch(TheException ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

28

Trace a Program Execution

The final block
is always
executed

try {
 statements;
}
catch(TheException ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

29

Trace a Program Execution

Next statement
in the method

is executed

30

Trace a Program Execution
try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

Suppose an
exception of

type Exception1
is thrown in
statement2

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

31

Trace a Program Execution

The exception is
handled.

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

32

Trace a Program Execution

The final block
is always
executed.

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

33

Trace a Program Execution

The next
statement in the
method is now

executed.

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
catch(Exception2 ex) {
 handling ex;
 throw ex;
}
finally {
 finalStatements;
}

Next statement;

34

Trace a Program Execution

statement2
throws an

exception of
type Exception2.

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
catch(Exception2 ex) {
 handling ex;
 throw ex;
}
finally {
 finalStatements;
}

Next statement;

35

Trace a Program Execution

Handling
exception

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
catch(Exception2 ex) {
 handling ex;
 throw ex;
}
finally {
 finalStatements;
}

Next statement;

36

Trace a Program Execution

Execute the
final block

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
catch(Exception2 ex) {
 handling ex;
 throw ex;
}
finally {
 finalStatements;
}

Next statement;

37

Trace a Program Execution

Rethrow the
exception and

control is
transferred to the

caller

38

Cautions When Using Exceptions

 Exception handling separates error-handling
code from normal programming tasks, thus

making programs easier to read and to modify.

 Be aware, however, that exception handling

usually requires more time and resources
because it requires instantiating a new
exception object, rolling back the call stack, and
propagating the errors to the calling methods.

39

When to Throw Exceptions

 An exception occurs in a method.

 If you want the exception to be processed
by its caller, you should create an
exception object and throw it.

 If you can handle the exception in the
method where it occurs, there is no need
to throw it.

40

When to Use Exceptions

 You should use it to deal with unexpected
error conditions.

 Do not use it to deal with simple, expected
situations. For example, the following code:

try {

 System.out.println(refVar.toString());

}

catch (NullPointerException ex) {

 System.out.println("refVar is null");

}

41

When to Use Exceptions

 is better to be replaced by:

if (refVar != null)

 System.out.println(refVar.toString());

else

 System.out.println("refVar is null");

42

Defining Custom Exception Classes

Use the exception classes in the API
whenever possible.

Define custom exception classes if the
predefined classes are not sufficient.

Define custom exception classes by
extending Exception or a subclass of
Exception.

43

Custom Exception Class Example

44

The File Class

 The File class is intended to provide
an abstraction that deals with most of
the machine-dependent complexities
of files and path names in a machine-
independent fashion.

 The filename is a string.

 The File class is a wrapper class for
the file name and its directory path.

45

File class

46

File class

47

Text I/O
 A File object encapsulates the properties of a file or a

path, but does not contain the methods for

reading/writing data from/to a file.

 In order to perform I/O, you need to create objects

using appropriate Java I/O classes.

 The objects contain the methods for reading/writing

data from/to a file.

 This section introduces how to read/write strings and

numeric values from/to a text file using the Scanner

and PrintWriter classes.

48

PrintWriter class

49

Scanner class

Read / Write from/to File

 File f = new File("C:\\Users\\Ahmad\\Desktop\\h.txt");

 Scanner sc = new Scanner(f);

 while (sc.hasNextLine()) {

 System.out.println(sc.nextLine());

 }

PrintWriter pw = new
PrintWriter("C:\\Users\\Ahmad\\Desktop\\h.txt");

pw.println("Welcome");

pw.close();

51

Problem: Replacing Text

 Write a class named ReplaceText that
replaces a string in a text file with a
new string. The filename and strings
are passed as command-line
arguments as follows:

 java ReplaceText sourceFile
targetFile oldString newString

52

Reading Data from the Web
Just like you can read data from a file on your
computer, you can read data from a file on
the Web.

53

Reading Data from the Web
URL url = new

URL("www.google.com/index.html");

 After a URL object is created, you can use
the openStream() method defined in the
URL class to open an input stream and use
this stream to create a Scanner object as
follows:

Scanner input = new
Scanner(url.openStream());

Read webpage
import java.util.Scanner;

public class ReadFileFromURL {

 public static void main(String[] args) {

 System.out.print("Enter a URL: ");

 String URLString = new Scanner(System.in).next();

 try {

 java.net.URL url = new java.net.URL(URLString);

 int count = 0;

 Scanner input = new Scanner(url.openStream());

 while (input.hasNext()) {

 String line = input.nextLine();

 count += line.length();

 }

 System.out.println("The file size is " + count + " characters");

 }

 catch (java.net.MalformedURLException ex) { System.out.println("Invalid URL"); }

 catch (java.io.IOException ex) { System.out.println("IO Errors"); }

 }

}

55

Case Study: Web Crawler
This case study develops a program that travels the
Web by following hyperlinks.

56

Case Study: Web Crawler
 The program follows the URLs to traverse the

Web.

 To avoid that each URL is traversed only once,
the program maintains two lists of URLs.

 One list stores the URLs pending for traversing and
the other stores the URLs that have already been
traversed.

 The algorithm for this program can be
described as follows:

57

Case Study: Web Crawler
Add the starting URL to a list named listOfPendingURLs;

while listOfPendingURLs is not empty {

 Remove a URL from listOfPendingURLs;

 if this URL is not in listOfTraversedURLs {

 Add it to listOfTraversedURLs;

 Display this URL;

 Exit the while loop when the size of S is equal to 100.

 Read the page from this URL and for each URL contained in the page {

 Add it to listOfPendingURLs if it is not is listOfTraversedURLs;

 }

 }

 }

Web Crawler program
import java.util.Scanner; import java.util.ArrayList; public class WebCrawler { public static
void main(String[] args) { Scanner input = new Scanner(System.in);
System.out.print("Enter a URL: "); String url = input.nextLine(); crawler(url); // Traverse
the Web from the a starting url } public static void crawler(String startingURL) {
ArrayList<String> listOfPendingURLs = new ArrayList<>(); ArrayList<String>
listOfTraversedURLs = new ArrayList<>(); listOfPendingURLs.add(startingURL); while
(!listOfPendingURLs.isEmpty() && listOfTraversedURLs.size() <= 100) { String urlString =
listOfPendingURLs.remove(0); listOfTraversedURLs.add(urlString);
System.out.println("Crawl " + urlString); for (String s: getSubURLs(urlString)) { if
(!listOfTraversedURLs.contains(s) && !listOfPendingURLs.contains(s))
listOfPendingURLs.add(s); } } } public static ArrayList<String> getSubURLs(String urlString)
{ ArrayList<String> list = new ArrayList<>(); try { java.net.URL url = new
java.net.URL(urlString); Scanner input = new Scanner(url.openStream()); int current = 0;
while (input.hasNext()) { String line = input.nextLine(); current = line.indexOf("http:",
current); while (current > 0) { int endIndex = line.indexOf("\"", current); if (endIndex > 0)
{ // Ensure that a correct URL is found list.add(line.substring(current, endIndex)); current
= line.indexOf("http:", endIndex); } else current = -1; } } } catch (Exception ex) {
System.out.println("Error: " + ex.getMessage()); } return list; } }

