
Abstract Classes
and Interfaces

abstract Classes and Methods

 Abstract classes: some methods
are only declared, but no concrete
implementations are provided.

 Those methods called abstract
methods and they need to be
implemented by the extending
classes.

abstract class Person {
protected String name;
. . .

public abstract String getDescription() ;
. . .

}
Class Student extends Person {

private String major;
. . .

public String getDescription() {
return name + “ a student major in “ + major;

}
}
Class Employee extends Person {

private float salary;
. . .

public String getDescription() {
return name + “ an employee with a salary of $ “ + salary;

}
}

4

abstract Classes and abstract Methods

5

abstract Method in abstract Class

 An abstract method cannot be contained in a
non-abstract class.

 If a subclass of an abstract superclass does not
implement all the abstract methods, the subclass
must be defined abstract.

 In other words, in a nonabstract subclass
extended from an abstract class, all the abstract
methods must be implemented, even if they are not
used in the subclass.

6

Object Can't be Created from
abstract Class
 An abstract class can't be instantiated
using the new operator, but you can still
define its constructors, which are invoked
in the constructors of its subclasses.

 For instance, the constructors of
GeometricObject are invoked in the Circle
class and the Rectangle class.

7

Abstract Class without Abstract Method

 A class that contains abstract methods must be

abstract.

 However, it is possible to define an abstract class
that contains no abstract methods.

 In this case, you cannot create instances of
the class using the new operator.

 This class is used as a base class for defining
a new subclass.

8

Superclass of abstract Class
may be Concrete

 A subclass can be abstract even if
its superclass is concrete.

 For example, the Object class is
concrete, but its subclasses, such as
GeometricObject, may be abstract.

9

Concrete Method Overridden
to be abstract
 A subclass can override a method from
its superclass to define it abstract.

 This is rare, but useful when the
implementation of the method in the
superclass becomes invalid in the subclass.
In this case, the subclass must be defined
abstract.

10

abstract Class as Type

 You can’t create an instance from an
abstract class using the new operator, but an
abstract class can be used as a data type.

 Therefore, the following statement, which
creates an array whose elements are of
GeometricObject type, is correct:

GeometricObject[] geo = new GeometricObject[10];

11

Case Study:

The Abstract Number Class

12

The Abstract Calendar Class and
Its GregorianCalendar subclass

13

GregorianCalendar subclass
An instance of java.util.Date represents a specific

instant in time with millisecond precision.

 java.util.Calendar is an abstract base class for
extracting detailed information such as year, month,
date, hour, minute and second from a Date object.

 Subclasses of Calendar can implement specific calendar
systems such as Gregorian calendar, Lunar Calendar
and Jewish calendar.

 Currently, java.util.GregorianCalendar for the
Gregorian calendar is supported in the Java API.

14

The GregorianCalendar Class

 You can use new GregorianCalendar() to
construct a default GregorianCalendar with
the current time

 Use new GregorianCalendar(year, month,
date) to construct a GregorianCalendar
with the specified year, month, and date.

 The month parameter is 0-based, i.e., 0 is
for January.

15

The get Method in Calendar Class

 The get(int field) method defined in the Calendar class is useful to
extract the date and time information from a Calendar object. The
fields are defined as constants, as shown in the following.

16

Interfaces
 An interface is a way to
describe what classes should
do, without specifying how
they should do it.

 It is not a class but a set of
requirements for classes that
want to conform to the
interface.

17

What is an interface?

 An interface is a class-like construct that

contains only constants and abstract methods.

 In many ways, an interface is similar to an
abstract class, but the intent of an interface is to
specify common behavior for objects.

 For example, you can specify that the objects
are comparable, edible, cloneable using
appropriate interfaces.

18

Define an interface
 To distinguish an interface from a class, Java uses
the following syntax to define an interface:

public interface InterfaceName {
// constant declarations;
// method signatures;

}

Example:

public interface Edible {

/** Describe how to eat */

public abstract String howToEat();
}

19

Interface is a Special Class
 An interface is treated like a special class in Java.

 Each interface is compiled into a separate
bytecode file, just like a regular class.

 Like an abstract class, you cannot create an
instance from an interface using the new operator,
but in most cases you can use an interface more or
less the same way you use an abstract class.

 For example, you can use an interface as a data
type for variable, as the result of casting, and so on.

20

Example

 You can now use the Edible interface to specify
whether an object is edible.

 This is accomplished by letting the class implement
this interface using the implements keyword.

 For example, the classes Chicken and Fruit
implement the Edible interface.

21

Omitting Modifiers in Interfaces

 All data fields are public final static and all
methods are public abstract in an interface.

 For this reason, these modifiers can be omitted,
as shown below:

 A constant defined in an interface can be
accessed using syntax:

InterfaceName.CONSTANT_NAME

22

Example: The Comparable Interface

// This interface is defined in

// java.lang package

package java.lang;

public interface Comparable<E> {

public int compareTo(E o);

}

23

Integer and BigInteger Classes

24

String and Date Classes

Examples

Integer i1 = new Integer(3), i2 = new Integer(3);

System.out.println(i1.compareTo(i2));

System.out.println("ABC".compareTo("ABE"));

Date date1 = new Date(2013, 1, 1);

Date date2 = new Date(2012, 1, 1);

System.out.println(date1.compareTo(date2));

26

instanceof

 Let n be an Integer object, s be a String object,

and d be a Date object.

 All the following expressions are true:

2727

The toString, equals, and
hashCode Methods
 Each wrapper class overrides the toString,

equals, and hashCode methods defined in
the Object class.

 Since all the numeric wrapper classes and
the Character class implement the
Comparable interface, the compareTo
method is implemented in these classes.

28

Generic sort Method

java.util.Arrays.sort(array)

 This method requires that the

elements in an array are

instances of Comparable<E>.

Extending Interfaces
 Interfaces support multiple inheritance:

an interface can extend more than one
interface.

 Superinterfaces and subinterfaces.

 Example:

public interface SerializableRunnable extends
java.io.Serializable , Runnable {

. . .

}

Extending Interfaces – Constants
 If a superinterface and a subinterface

contain two constants with the same
name, then the one belonging to the
superinterface is hidden:

interface X {
int val = 1;

}
interface Y extends X {

int val = 2;
int sum = val + X.val;

}

Extending Interfaces – Methods

 If a declared method in a subinterface
has the same signature as an inherited

method and the same return type, then

the new declaration overrides the
inherited method in its superinterface.

 If the only difference is in the return type,

then there will be a compile-time error.

32

The Cloneable Interface

package java.lang;

public interface Cloneable {

}

 A class that implements the Cloneable interface is
marked cloneable, and its objects can be cloned using the
clone() method defined in the Object class.

 clone method returns a new object whose initial state is
a copy of the current state of the object on which clone
was invoked.

 Subsequent changes to the new clone object should
not affect the state of the original object.

33

Examples
Many classes (e.g., Date and Calendar)
implement Cloneable. Thus, the instances of these
classes can be cloned. For example:

calendar == calendarCopy is false
calendar.equals(calendarCopy) is true

Calendar calendar = new GregorianCalendar(2003, 2, 1);

Calendar calendarCopy = (Calendar)calendar.clone();

System.out.println("calendar == calendarCopy is " +

(calendar == calendarCopy));

System.out.println("calendar.equals(calendarCopy) is " +

calendar.equals(calendarCopy));

34

Implementing Cloneable Interface

 To define a custom class that implements

the Cloneable interface, the class must
override the clone() method in the Object
class.

 The following code defines a class named

House that implements Cloneable and
Comparable.

35

public class House implements Cloneable, Comparable<House> {
private int id;
private double area;
private java.util.Date whenBuilt;

public House(int id, double area) {

this.id = id;
this.area = area;
whenBuilt = new java.util.Date();

}

public int getId() { return id; }

public double getArea() { return area; }

public java.util.Date getWhenBuilt() { return whenBuilt; }

36

@Override // Override the clone method defined in the Object class

public Object clone() {

return super.clone();

}

@Override // Implement the compareTo method defined in Comparable

public int compareTo(House o) {
if (area > o.area)

return 1;
else if (area < o.area)

return -1;
else

return 0;

}

}

37

Shallow vs. Deep Copy

House house1 = new House(1, 1750.50);

House house2 = (House)house1.clone();

Shallow
Copy

38

Shallow vs. Deep Copy

Deep
Copy

39

Interfaces vs. Abstract Classes
 In an interface, the data must be constants; an
abstract class can have all types of data.

 Each method in an interface has only a signature
without implementation; an abstract class can have
concrete methods.

40

Interfaces vs. Abstract Classes cont.

 All classes share a single root, the Object class, but
there is no single root for interfaces.

 Like a class, an interface also defines a type. A variable
of an interface type can reference any instance of the class
that implements the interface.

 If a class extends an interface, this interface plays the
same role as a superclass.

 You can use an interface as a data type and cast a
variable of an interface type to its subclass, and vice versa.

41

instanceof

 Suppose that c is an instance of Class2.

 c is also an instance of Object, Class1, Interface1,
Interface1_1, Interface1_2, Interface2_1, and Interface2_2.

42

Caution: conflict interfaces
 In rare occasions, a class may

implement two interfaces with
conflict information (e.g., two same
constants with different values or two
methods with same signature but
different return type). This type of
errors will be detected by the
compiler.

43

Whether to use an interface or a class?

 Abstract classes and interfaces can both be
used to model common features.

 How do you decide whether to use an interface
or a class?

 In general, a strong is-a relationship that clearly
describes a parent-child relationship should be
modeled using classes.

 For example, a staff member is a person.

4444

Whether to use an interface or a class?

 A weak is-a relationship, also known as an is-kind-of
relationship, indicates that an object possesses a certain
property.

 A weak is-a relationship can be modeled using interfaces.

 For example, all strings are comparable, so the String class
implements the Comparable interface.

 You can also use interfaces to circumvent single
inheritance restriction if multiple inheritance is desired.

 In the case of multiple inheritance, you have to design one
as a superclass, and others as interface.

