
Event-Driven
Programming

2

Procedural vs. Event-
Driven Programming

Procedural programming is executed
in procedural order.
 In event-driven programming, code is

executed upon activation of events.

33

Handling GUI Events

 Source object (e.g., button)

 Listener object contains a method for
processing the event.

4

Events

 An event can be defined as a type of
signal to the program that something
has happened.

 The event is generated by external
user actions such as mouse
movements, mouse clicks, or
keystrokes.

5

Event Classes

6

Event Information
 An event object contains whatever properties are

pertinent to the event.

 You can identify the source object of the event
using the getSource() instance method in the
EventObject class.

 The subclasses of EventObject deal with special
types of events, such as button actions, window
events, component events, mouse movements,
and keystrokes.

7

Selected User Actions and
Handlers

8

The Delegation Model

9

The Delegation Model: Example

Button btOK = new Button("OK");

OKHandlerClass handler = new OKHandlerClass();

btOK.setOnAction(handler);

1010

public class HandleEvent extends Application {

public void start(Stage primaryStage) {

…

OKHandlerClass handler1 = new OKHandlerClass();

btOK.setOnAction(handler1);

CancelHandlerClass handler2 = new CancelHandlerClass();

btCancel.setOnAction(handler2);

…

primaryStage.show(); // Display the stage

}

}

class OKHandlerClass implements EventHandler<ActionEvent> {

@Override

public void handle(ActionEvent e) {

System.out.println("OK button clicked");

}

}

1. Start from the main

method to create a

window and display it

2. Click OK

3. Click OK. The JVM invokes

the listener’s handle method

11

Example: ControlCircle

 Now let us consider to write a program
that uses two buttons to control the size of
a circle.

12

Inner Class Listeners

 A listener class is designed specifically to
create a listener object for a GUI
component (e.g., a button).

 It will not be shared by other applications.

 So, it is appropriate to define the listener
class inside the frame class as an inner
class.

13

Inner Classes

 Inner class: A class is a member of another class.

 Advantages: In some applications, you can use
an inner class to make programs simple:

 An inner class can reference the data and
methods defined in the outer class in which it
nests, so you do not need to pass the
reference of the outer class to the constructor
of the inner class.

14

Inner Classes cont.

15

Inner Classes cont.

 Inner classes can make programs simple and
concise.

 An inner class supports the work of its
containing outer class and is compiled into a
class named
OuterClassName$InnerClassName.class.

 For example, the inner class InnerClass in
OuterClass is compiled into
OuterClass$InnerClass.class.

16

Inner Classes cont.

 An inner class can be declared public,
protected, or private subject to the same
visibility rules applied to a member of the class.

 An inner class can be declared static.

 A static inner class can be accessed using the
outer class name.

 A static inner class cannot access non-static
members of the outer class

17

Anonymous Inner Classes
 An anonymous inner class must always extend a

superclass or implement an interface, but it cannot have an explicit
extends or implements clause.

 An anonymous inner class must implement all the abstract
methods in the superclass or in the interface.

 An anonymous inner class always uses the no-arg constructor
from its superclass to create an instance. If an anonymous inner
class implements an interface, the constructor is Object().

 An anonymous inner class is compiled into a class named
OuterClassName$n.class.

 For example, if the outer class Test has two anonymous inner
classes, these two classes are compiled into Test$1.class and
Test$2.class.

18

Anonymous Inner Classes cont.

 Inner class listeners can be shortened using anonymous
inner classes.

 An anonymous inner class is an inner class without a
name.

 It combines declaring an inner class and creating an
instance of the class in one step.

 An anonymous inner class is declared as follows:

new SuperClassName/InterfaceName() {
// Implement or override methods in superclass or interface
// Other methods if necessary

}

19

Anonymous Inner Classes cont.

20

Simplifying Event Handing Using
Lambda Expressions
 Lambda expression is a new feature in Java 8.

 Lambda expressions can be viewed as an anonymous
method with a concise syntax.

 For example, the following code in (a) can be greatly
simplified using a lambda expression in (b) in three lines.

22

Basic Syntax for a Lambda Expression

 The basic syntax for a lambda expression is either:

(type1 param1, type2 param2, ...) -> expression

or

(type1 param1, type2 param2, ...) -> { statements; }

 The data type for a parameter may be explicitly
declared or implicitly inferred by the compiler.

 The parentheses can be omitted if there is only
one parameter without an explicit data type.

23

Single Abstract Method Interface (SAM)

 The statements in the lambda expression is all
for that method.

 If it contains multiple methods, the compiler will
not be able to compile the lambda expression.

 So, for the compiler to understand lambda
expressions, the interface must contain exactly
one abstract method.

 Such an interface is known as a functional
interface, or a Single Abstract Method (SAM)
interface.

24

MouseEvent

25

The KeyEvent Class

26

The KeyCode Constants

27

Case Study: Bouncing Ball

BallPane

BounceBallControl

