
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
1

Chapter 12 Exception Handling

and Text IO

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
2

Exception-Handling Overview

Show runtime error

Fix it using an if statement

With a method

Run Quotient

Run QuotientWithIf

Run QuotientWithMethod

https://liveexample.pearsoncmg.com/html/Quotient.html
https://liveexample.pearsoncmg.com/html/QuotientWithIf.html
https://liveexample.pearsoncmg.com/html/QuotientWithMethod.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
3

Runtime Error?

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
4

Fix it Using an if Statement

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

Suppose there is another method that can

throw the exception

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
6

Exception Advantages

Now you see the advantages of using exception handling.

It enables a method to throw an exception to its caller.

Without this capability, a method must handle the

exception or terminate the program.

Run QuotientWithException

https://liveexample.pearsoncmg.com/html/QuotientWithException.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
8

Handling InputMismatchException

By handling InputMismatchException, your program will

continuously read an input until it is correct.

Run InputMismatchExceptionDemo

https://liveexample.pearsoncmg.com/html/InputMismatchExceptionDemo.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

Handling an exception and continuing

program execution

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
10

Exception Handling

 Exception handling technique enables a

method to throw an exception to its caller.

 Without this capability, a method must

handle the exception or terminate the

program.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

What's the Output?

11

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
12

Exception Types

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
13

System Errors

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

System errors are thrown by JVM

and represented in the Error class.

The Error class describes internal

system errors. Such errors rarely

occur. If one does, there is little

you can do beyond notifying the

user and trying to terminate the

program gracefully.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
14

Exceptions

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

Exception describes errors

caused by your program

and external

circumstances. These

errors can be caught and

handled by your program.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
15

Runtime Exceptions

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

RuntimeException is caused by

programming errors, such as bad

casting, accessing an out-of-bounds

array, and numeric errors.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

What is the Exception?!

16

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
17

Checked Exceptions vs.

Unchecked Exceptions

 RuntimeException, Error and their

subclasses are known as unchecked

exceptions.

 All other exceptions are known as checked

exceptions, meaning that the compiler forces the

programmer to check and deal with the exceptions.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
18

Unchecked Exceptions

 In most cases, unchecked exceptions reflect programming

logic errors that are not recoverable.

 For example:

 a NullPointerException is thrown if you access an

object through a reference variable before an object is

assigned to it.

 an IndexOutOfBoundsException is thrown if you

access an element in an array outside the bounds of the

array.

 These are the logic errors that should be corrected in the

program.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
19

Unchecked Exceptions

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

Unchecked

exception.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
20

Declaring, Throwing, and

Catching Exceptions

method1() {

 try {

 invoke method2;

 }

 catch (Exception ex) {

 Process exception;

 }

}

method2() throws Exception {

 if (an error occurs) {

 throw new Exception();

 }

}

catch exception throw exception

declare exception

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
21

Declaring Exceptions

Every method must state the types of checked

exceptions it might throw. This is known as

declaring exceptions.

public void myMethod()

 throws IOException

public void myMethod()

 throws IOException, OtherException

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
22

Throwing Exceptions

F When the program detects an error, the program
can create an instance of an appropriate exception
type and throw it.

F This is known as throwing an exception.

throw new TheException();

TheException ex = new
TheException();
throw ex;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
23

Throwing Exceptions Example

 /** Set a new radius */
 public void setRadius(double newRadius)

 throws IllegalArgumentException {

 if (newRadius >= 0)

 radius = newRadius;

 else

 throw new IllegalArgumentException(

 "Radius cannot be negative");

 }

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
24

Catching Exceptions
try {
 statements; // Statements that may throw exceptions

}
catch (Exception1 exVar1) {
 handler for exception1;
}
catch (Exception2 exVar2) {
 handler for exception2;
}
...
catch (ExceptionN exVar3) {
 handler for exceptionN;

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
25

Catch or Declare Checked Exceptions

 Java forces you to deal with checked exceptions.

 You must invoke it in a try-catch block or declare to

throw the exception in the calling method.

 For example, suppose that method p1 invokes method p2

and p2 may throw a checked exception (e.g.,

IOException), you have to write the code as follow:

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
26

Catching Exceptions

try

catch

try

catch

try

catch

An exception

is thrown in

method3

Call Stack

main method main method

method1

main method

method1

main method

method1

method2 method2

method3

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
27

Catch or Declare Checked Exceptions

Suppose p2 is defined as follows:

void p2() throws IOException {

 if (a file does not exist) {

 throw new IOException("File does not exist");

 }

 ...

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
28

Catch or Declare Checked Exceptions

Java forces you to deal with checked exceptions. If a method declares a

checked exception (i.e., an exception other than Error or

RuntimeException), you must invoke it in a try-catch block or declare to

throw the exception in the calling method. For example, suppose that

method p1 invokes method p2 and p2 may throw a checked exception (e.g.,

IOException), you have to write the code as shown in (a) or (b).

void p1() {

 try {

 p2();

 }

 catch (IOException ex) {

 ...

 }

}

(a)

(b)

void p1() throws IOException {

 p2();

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
29

Example: Declaring, Throwing, and

Catching Exceptions

Objective: This example demonstrates
declaring, throwing, and catching exceptions
by modifying the setRadius method in the
Circle class defined in Chapter 9. The new
setRadius method throws an exception if
radius is negative.

Run TestCircleWithException

CircleWithException

https://liveexample.pearsoncmg.com/html/TestCircleWithException.html
https://liveexample.pearsoncmg.com/html/CircleWithException.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

throws

IllegalArgumentException

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

What’s the Exception?

33

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

What’s the Exception?

34

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

What’s the Exception

35

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
36

The finally Clause

try {

 statements;

}

catch(TheException ex) {

 handling ex;

}

finally {

 finalStatements;

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

What happens?
1. If no exception arises in the try block, finally block is executed

and the next statement after the try statement is executed.

2. If a statement causes an exception in the try block that is caught

in a catch block, the rest of the statements in the try block are

skipped, the catch block is executed, and the finally clause is

executed. The next statement after the try statement is executed.

3. If one of the statements causes an exception that is not caught in

any catch block, the other statements in the try block are skipped,

the finally clause is executed, and the exception is passed to the

caller of this method.

The finally block executes even if there is a return statement prior to reaching

the finally block.

Note: The catch block may be omitted when the finally clause is used.

37

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
38

Trace a Program Execution
animation

try {

 statements;

}

catch(TheException ex) {

 handling ex;

}

finally {

 finalStatements;

}

Next statement;

Suppose no
exceptions in the
statements

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
39

Trace a Program Execution
animation

try {

 statements;

}

catch(TheException ex) {

 handling ex;

}

finally {

 finalStatements;

}

Next statement;

The final block is
always executed

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
40

Trace a Program Execution
animation

try {

 statements;

}

catch(TheException ex) {

 handling ex;

}

finally {

 finalStatements;

}

Next statement;

Next statement in the
method is executed

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
41

Trace a Program Execution
animation

try {

 statement1;

 statement2;

 statement3;

}

catch(Exception1 ex) {

 handling ex;

}

finally {

 finalStatements;

}

Next statement;

Suppose an exception
of type Exception1 is
thrown in statement2

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
42

Trace a Program Execution
animation

try {

 statement1;

 statement2;

 statement3;

}

catch(Exception1 ex) {

 handling ex;

}

finally {

 finalStatements;

}

Next statement;

The exception is
handled.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
43

Trace a Program Execution
animation

try {

 statement1;

 statement2;

 statement3;

}

catch(Exception1 ex) {

 handling ex;

}

finally {

 finalStatements;

}

Next statement;

The final block is
always executed.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
44

Trace a Program Execution
animation

try {

 statement1;

 statement2;

 statement3;

}

catch(Exception1 ex) {

 handling ex;

}

finally {

 finalStatements;

}

Next statement;

The next statement in
the method is now
executed.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
45

Trace a Program Execution
animation

try {

 statement1;

 statement2;

 statement3;

}

catch(Exception1 ex) {

 handling ex;

}

catch(Exception2 ex) {

 handling ex;

 throw ex;

}

finally {

 finalStatements;

}

Next statement;

statement2 throws an
exception of type
Exception2.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
46

Trace a Program Execution
animation

try {

 statement1;

 statement2;

 statement3;

}

catch(Exception1 ex) {

 handling ex;

}

catch(Exception2 ex) {

 handling ex;

 throw ex;

}

finally {

 finalStatements;

}

Next statement;

Handling exception

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
47

Trace a Program Execution
animation

try {

 statement1;

 statement2;

 statement3;

}

catch(Exception1 ex) {

 handling ex;

}

catch(Exception2 ex) {

 handling ex;

 throw ex;

}

finally {

 finalStatements;

}

Next statement;

Execute the final block

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
48

Trace a Program Execution
animation

try {

 statement1;

 statement2;

 statement3;

}

catch(Exception1 ex) {

 handling ex;

}

catch(Exception2 ex) {

 handling ex;

 throw ex;

}

finally {

 finalStatements;

}

Next statement;

Rethrow the exception
and control is
transferred to the caller

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

Answer this

49

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
50

Cautions When Using Exceptions

 Exception handling separates error-handling

code from normal programming tasks, thus

making programs easier to read and to modify.

 Be aware, however, that exception handling

usually requires more time and resources

because it requires instantiating a new exception

object, rolling back the call stack, and

propagating the errors to the calling methods.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
51

When to Throw Exceptions

 An exception occurs in a method.

 If you want the exception to be processed

by its caller, you should create an

exception object and throw it.

 If you can handle the exception in the

method where it occurs, there is no need to

throw it.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
52

Rethrowing Exceptions

try {

 statements;

}

catch(TheException ex) {

 perform operations before exits;

 throw ex;

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
53

When to Use Exceptions

When should you use the try-catch block in the code?
You should use it to deal with unexpected error
conditions.

Do not use it to deal with simple, expected situations.
For example, the following code

try {

 System.out.println(refVar.toString());

}

catch (NullPointerException ex) {

 System.out.println("refVar is null");

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
54

When to Use Exceptions

is better to be replaced by

if (refVar != null)

 System.out.println(refVar.toString());

else

 System.out.println("refVar is null");

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
55

Defining Custom Exception Classes

Use the exception classes in the API whenever possible.

Define custom exception classes if the predefined

classes are not sufficient.

Define custom exception classes by extending

Exception or a subclass of Exception.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
56

Custom Exception Class Example
In Listing 13.8, the setRadius method throws an exception if the

radius is negative. Suppose you wish to pass the radius to the

handler, you have to create a custom exception class.

Run TestCircleWithRadiusException CircleWithRadiusException

InvalidRadiusException

https://liveexample.pearsoncmg.com/html/TestCircleWithRadiusException.html
https://liveexample.pearsoncmg.com/html/CircleWithRadiusException.html
https://liveexample.pearsoncmg.com/html/InvalidRadiusException.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
57

The File Class

The File class is intended to provide an abstraction that

deals with most of the machine-dependent complexities

of files and path names in a machine-independent

fashion.

The filename is a string.

The File class is a wrapper class for the file name and its

directory path.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
58

File class

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
59

File class

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
60

Text I/O

 A File object encapsulates the properties of a file or a

path, but does not contain the methods for

reading/writing data from/to a file.

 In order to perform I/O, you need to create objects

using appropriate Java I/O classes.

 The objects contain the methods for reading/writing

data from/to a file.

 This section introduces how to read/write strings and

numeric values from/to a text file using the Scanner and

PrintWriter classes.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
61

Problem: Explore File Properties
Objective: Write a program that demonstrates how to

create files in a platform-independent way and use the

methods in the File class to obtain their properties. The

following figures show a sample run of the program on

Windows and on Unix.

Run TestFileClass

https://liveexample.pearsoncmg.com/html/TestFileClass.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
62

Writing Data Using PrintWriter

java.io.PrintWriter

+PrintWriter(filename: String)

+print(s: String): void

+print(c: char): void

+print(cArray: char[]): void

+print(i: int): void

+print(l: long): void

+print(f: float): void

+print(d: double): void

+print(b: boolean): void

Also contains the overloaded

println methods.

Also contains the overloaded

printf methods.

.

Creates a PrintWriter for the specified file.

Writes a string.

Writes a character.

Writes an array of character.

Writes an int value.

Writes a long value.

Writes a float value.

Writes a double value.

Writes a boolean value.

A println method acts like a print method; additionally it

prints a line separator. The line separator string is defined

by the system. It is \r\n on Windows and \n on Unix.
The printf method was introduced in §4.6, “Formatting

Console Output and Strings.”

Run WriteData

https://liveexample.pearsoncmg.com/html/WriteData.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
63

Try-with-resources

Programmers often forget to close the file. JDK 7 provides

the followings new try-with-resources syntax that

automatically closes the files.

try (declare and create resources) {

 Use the resource to process the file;

}

Run WriteDataWithAutoClose

https://liveexample.pearsoncmg.com/html/WriteDataWithAutoClose.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
64

Reading Data Using Scanner

java.util.Scanner

+Scanner(source: File)

+Scanner(source: String)

+close()

+hasNext(): boolean

+next(): String

+nextByte(): byte

+nextShort(): short

+nextInt(): int

+nextLong(): long

+nextFloat(): float

+nextDouble(): double

+useDelimiter(pattern: String):

Scanner

Creates a Scanner object to read data from the specified file.

Creates a Scanner object to read data from the specified string.

Closes this scanner.

Returns true if this scanner has another token in its input.

Returns next token as a string.

Returns next token as a byte.

Returns next token as a short.

Returns next token as an int.

Returns next token as a long.

Returns next token as a float.

Returns next token as a double.

Sets this scanner’s delimiting pattern.

Run ReadData

https://liveexample.pearsoncmg.com/html/ReadData.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
65

Problem: Replacing Text

Write a class named ReplaceText that replaces a string in a text

file with a new string. The filename and strings are passed as

command-line arguments as follows:

java ReplaceText sourceFile targetFile oldString newString

For example, invoking

java ReplaceText FormatString.java t.txt StringBuilder StringBuffer

replaces all the occurrences of StringBuilder by StringBuffer in

FormatString.java and saves the new file in t.txt.

Run ReplaceText

https://liveexample.pearsoncmg.com/html/ReplaceText.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
66

Reading Data from the Web

Just like you can read data from a file on your
computer, you can read data from a file on the
Web.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
67

Reading Data from the Web

URL url = new URL("www.google.com/index.html");

After a URL object is created, you can use the
openStream() method defined in the URL class to open an
input stream and use this stream to create a Scanner object
as follows:

Scanner input = new Scanner(url.openStream());

Run ReadFileFromURL

https://liveexample.pearsoncmg.com/html/ReadFileFromURL.html

