2.2 - & AT
gv..g B3 ﬁ %\/‘
NS A Y

BIRZEIT UNIVERSITY

Chapter 13 Abstract Classes and Interfaces

Abstract classes: Defining templates for subclasses

Interfaces: Defining common behavior for unrelated
classes

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 1
rights reserved.

iv‘g B3 %\/‘
NS A Y

IIIIIIIIIIIIIIIII

abstract Classes and Methods

+ Abstract classes: some methods
are only declared, but no concrete
Implementations are provided.

<« Those methods called abstract
methods and they need to be
Implemented by the extending
classes.

ing, Eleventh Edition, (¢) 2017 Pearson Education, Inc. All
rved

abstract class Person {
protected String name;

public abstract String getDescription() ,

}"' ‘ Person ‘
[

Class Student extends Person {

private String major;

‘ Employee ‘ Student

public String getDescription() {
return name + “ a student major in “ + major;

}
¥

Class Employee extends Person {
private float salary;

public String getDescription() {
return name + “ an employee with a salary of $ “ + salary;

¥
¥

Abstract Classes and Abstract Metho

<«——— Abstract class name is italicized

GeometricObject

-color: String
-filled: boolean
-dateCreated: java.util.Date

The # sign indicates
protected modifier

Abstract methods ——
are italicized

#GeometricObject()

#GeometricObject(color: string,
filled: boolean)

+getColor(): String
+setColor(color: String): void
+isFilled(): boolean
+setFilled(filled: boolean): void
+getDateCreated(): java.util.Date
+toString(): String

+getArea(): double
+getPerimeter(): double

T T

Circle

Rectangle

2, 2 3
R a "‘/\‘/'
e 3 %

<

SMVERSHY

GeometricObject

Circle

Rectangle

TestGeometricObject

Methods getArea and getPerimeter are
overridden in Circle and Rectangle.
Superclass methods are generally omitted

in the UML diagram for subclasses.

-radius: double

-width: double

+Circle()
+Circle(radius: double)

-height: double

+Rectangle()

+Circle(radius: double, color: string,

filled: boolean)
+getRadius(): double
+setRadius(radius: double): void
+getDiameter() : double

+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double,
color: string, filled: boolean)

+getWidth() : double
+setWidth(width: double): void
+getHeight(): double
+setHeight(height: double): void

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

https://liveexample.pearsoncmg.com/html/GeometricObject.html
https://liveexample.pearsoncmg.com/html/Circle.html
https://liveexample.pearsoncmg.com/html/Rectangle.html
https://liveexample.pearsoncmg.com/html/TestGeometricObject.html

st
7 £ A&

BIRZEIT UNIVERSITY

abstract method In abstract class

An abstract method cannot be contained in a non-abstract class.

If a subclass of an abstract superclass does not implement all the
abstract methods, the subclass must be defined abstract.

In other words, in a nonabstract subclass extended from an
abstract class, all the abstract methods must be implemented, even
If they are not used in the subclass.

= In UML graphic notation, the names of abstract classes and
their abstract methods

=are Italicized

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 5
rights reserved.

abstract class

An abstract class cannot be instantiated using
the new operator, but you can still define its
constructors, which are invoked in the
constructors of its subclasses.

For instance, the constructors of
GeometricObject are invoked in the Circle
class and the Rectangle class.

2.0 4% 2 AL v
gv..g B3 ﬁ %\/‘
N 2P A P =

Abstract Class without Abstract Method

+ A class that contains abstract methods mMust be
abstract.

s However, It Is possible to define an abstract
class that contains no abstract methods.

» In this case, you cannot create instances of the class
using the new operator.

» The constructor in the abstract class is defined as protected
because it is used only by subclasses

» This class Is used as a base class for defining a new

Su b@l\a.lgrguction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 7
. rights reserved.

superclass of abstract class may be™

concrete

A subclass can be abstract even If its
superclass Is concrete.

For example, the Object class Is concrete, but

Its subclasses, such as GeometricObject, may
be abstract.

tesd

S5 Mo
3 - 2=

Concrete Method Overridden™
to be abstract

“» A subclass can override a method from
Its superclass to define it abstract.

»» This Is rare, but useful when the
Implementation of the method in the
superclass becomes invalid in the subclass.
In this case, the subclass must be defined
abstract.

2.0 % 2 LT v
iv..g B3 i %\/‘
NS A Y

IIIIIIIIIIIIIIIII

abstract class as type

You cannot create an instance from an
abstract class using the new operator, but an
abstract class can be used as a data type.

Therefore, the following statement, which
creates an array whose elements are of
GeometricODbject type, Is correct.

GeometricObject[] geo = new GeometricObject[10];

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 10
rights reserved.

tﬁw’*ﬂ
Which is correct?

class A { public class abstract A {
abstract void unfinished() { abstract void unfinished();
} }
}
(a) (b)
class A { abstract class A {
abstract void unfinished(); protected void unfinished();
} 1
(c) (d)
abstract class A { abstract class A {
abstract void unfinished(); abstract int unfinished();
} 1

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 11
rights reserved.

W&L

BIRZEIT UNIVERSITY

Case Study: the Abstract Number Class

java.lang. Number

+byteValue(): byte
+shortValue(): short
+intValue(): int
+longVlaue(): long
+floatValue(): float
+doubleValue(): double

PaN

Double |

Float

Long

Integer | Short

Byte

Biglnteger |

BigDecimal |

LargestNumbers

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

12

https://liveexample.pearsoncmg.com/html/LargestNumbers.html

The Abstract Calendar Class and

GregorianCalendar subclass

java.util.Calendar

#Calendar()
+get(field: int): int
+set(field: int, value: int): void

+set(year: int, month: int,
dayOfMonth: int): void

+getActualMaximum(field: int): int
+add(field: int, amount: int): void
+getTime(): java.util.Date

+setTime(date: java.util.Date): void

Constructs a default calendar.
Returns the value of the given calendar field.
Sets the given calendar to the specified value.

Sets the calendar with the specified year. month, and date. The month
parameter is 0-based; that 1s, 0 is for January.

Returns the maximum value that the specified calendar field could have.
Adds or subtracts the specified amount of time to the given calendar field.

Returns a Date object representing this calendar’s time value (million
second offset from the UNIX epoch).

Sets this calendar’s time with the given Date object.

AP

Jjava.util. GregorianCalendar

+GregorianCalendar()
+GregorianCalendar(year: 1int,
month: 1int, dayOfMonth: int)

+GregorianCalendar(year: 1int,
month: 1int, dayOfMonth: int,
hour:int, minute: int, second: int)

Constructs a GregorianCalendar for the current time.

Constructs a GregorianCalendar for the specified year, month, and
date.

Constructs a GregorianCalendar for the specified year, month, date,
hour, minute, and second. The month parameter is O-based, that
s, 0 1s for January.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 13

rights reserved.

2.2 2 AT
523 Wiyt 54\;‘
e £3 - 2o

GregorianCalendar subclass™

= An Instance of java.util.Date represents a specific
Instant in time with millisecond precision.

< Java.util.Calendar Is an abstract base class for
extracting detailed information such as year, month, date,
hour, minute and second from a Date object.

< Subclasses of Calendar can implement specific calendar
systems such as Gregorian calendar, Lunar Calendar
and Jewish calendar.

< Currently, java.util.GregorianCalendar for the
Gregorian calendar is supported in the Java API.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 14
rights reserved.

— M/\@ 9

IIIIIIIIIIIIIIIII

The GregorianCalendar Class

-

You can use new GregorianCalendar() to construct
a default GregorianCalendar with the current time.

Use new GregorianCalendar(year, month, date) to
construct a GregorianCalendar with the specified
year, month, and date.

The month parameter Is 0-based, I.e., 0 Is for
January.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 15
rights reserved.

e

55

The get Method in Calendar Class™ "

The get(int field) method defined in the Calendar class is useful to
extract the date and time information from a Calendar object. The
fields are defined as constants, as shown in the following.

Constant Description

YEAR The year of the calendar.

MONTH The month of the calendar, with 0 for January.

DATE The day of the calendar.

HOUR The hour of the calendar (12-hour notation).

HOUR_ OF DAY The hour of the calendar (24-hour notation).

MINUTE The minute of the calendar.

SECOND The second of the calendar.

DAY OF WEEK The day number within the week, with 1 for Sunday.
DAY _OF MONTH Same as DATE.

DAY _OF _YEAR The day number in the year, with 1 for the first day of the year.

WEEK_OF_MONTH
WEEK_OF_YEAR
AM_PM

The week number within the month, with | for the first week.
The week number within the year, with 1 for the first week.
Indicator for AM or PM (0 for AM and | for PM).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 16

rights reserved.

2.2 2 *g}v‘ v
Ev‘é ,"“ %‘/c
N2 A Y ,l°.

BIRZEIT UNIVERSITY

Getting Date/Time Information from
Calendar

TestCalendar -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 17
rights reserved.

https://liveexample.pearsoncmg.com/html/TestCalendar.html

2.2 - & AT
gv..g B3 ﬁ %\/‘
N 2P A P =

Interfaces

What is an interface?

Why is an interface useful?
How do you define an interface?
How do you use an interface?

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 18
rights reserved.

A ‘«c.,\/c
E355 Wil e 01

What Is an Interface? ™
Why is an interface useful?

An Interface is a classlike construct that contains
only constants and abstract methods.

In many ways, an interface is similar to an abstract
class, but the intent of an interface Is to specify
common behavior for unrelated objects.

For example, you can specify that the objects are

comparable, edible, cloneable using appropriate
Interfaces.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 19
rights reserved.

What 1s an interface?

= An INnterface Is a class-like construct that
contains only constants and abstract methods.

< |n many ways, an interface iIs similar to an
abstract class, but the intent of an interface Is to
specify common behavior for objects.

+ For example, you can specify that the objects are
comparable, edible, cloneable using appropriate
Interfaces.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 20
rights reserved.

e
T A

BIRZEIT UNIVERSITY

Define an Interface

To distinguish an interface from a class, Java uses the
following syntax to define an interface:

public interface InterfaceName ({
constant declarations;
abstract method signatures;

}

Example:
public interface Edible {

/** Describe how to eat */

public abstract String howToEat() ;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 21
rights reserved.

2,045 2 L3 44
copr B o
N 2P A P =

BIRZEIT UNIVERSITY

Interface 1s a Special Class

< An Interface Is treated like a special class In
Java.

< Each interface is compiled into a separate
bytecode file, just like a regular class.

< Like an abstract class, you cannot create an
Instance from an interface using the new operator,
but In most cases you can use an interface more or
less the same way you use an abstract class.

< For example, you can use an interface as a data
type for variable, as the result of casting, and so on.
~fnc. All 29

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Educatio
rights reserved.

2.2 2 AT
523 Wiyt ﬂ%\é
e £3 - 2o

BIRZEIT UNIVERSITY

Example

You can now use the Edible interface to specify whether an
object Is edible. This is accomplished by letting the class for
the object implement this interface using the implements
keyword. For example, the classes Chicken and Fruit
Implement the Edible interface (See TestEdible).

Edible TestEdible -

Notation: «interface» :
The interface name and the . Animal
J P Edible
method names are italicized.
T;fw dashed lines and h("}h'mv +howToEat(): String +sound(): String
triangles are used to point to
the interface. A AN Z\

Fruit | C‘hickenl Tiger |

Orange | Apple |
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 23

rights reserved.

https://liveexample.pearsoncmg.com/html/TestEdible.html
https://liveexample.pearsoncmg.com/html/Edible.html

2.0 4% 2 AL v
gv..g B3 E %\/‘
N 2P A P =

BIRZEIT UNIVERSITY

Omitting Modifiers In Interfaces

All data fields are public final static and all methods are public
abstract in an interface. For this reason, these modifiers can be
omitted, as shown below:

public interface T1 { public interface T1 {
public static final int K = 1; Equivalent int K = 1;
public abstract void p(); void p();

} }

A constant defined in an interface can be accessed using syntax
InterfaceName.CONSTANT_NAME (e.g., T1.K).

YOU CAN also have public static methods!

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 24
rights reserved.

%%ﬂ*gg&%%w
555 Nl e
BIRZEIT UNIVERSITY

Default keyword (J8)

= A default method provides a default implementation for the method in
the interface. A class that implements the interface may simply use the
default implementation for the method or override the method with a
new implementation.

= Java 8 also permits public static methods in an interface. A public static
method in an interface can be used just like a public static method in a
class.

public interface A {

public default void doSomething() {
System.out.printin("Do something");

}

public static int getAValue() ({
return 0;

}
}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 25
rights reserved.

2.0 % 2 I*x oy
(v‘{ ,‘.‘ v ‘)"/‘-' ‘/(
N2 AN PE J’.

BIRZEIT UNIVERSITY

Which iIs correct?

interface A { abstract interface A {
void print() { } abstract void print() { }
} }
(a) (b)
abstract interface A { interface A {
print(); void print();
} }
(c) (d)
interface A { interface A {
default void print() { static int get() {
} return O;
} }
}
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 26

rights reserved.

i\' i gﬁfﬁ 3)/
)/2v t/"z L
BIRZEIT UNIVERSITY

Find and Explain the Error!

Show the error in the following code:

interface A {
void m1() ;

}

class B implements A {
void m1() {
System.out.printin("m1");

}
}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 27
rights reserved.

2.0 % 2 LT v
iv..g B3 i %\/‘
NS A Y

BIRZEIT UNIVERSITY

Example: The Comparable Interface

// This interface is defined in
// java.lang package
package java.lang;

public interface Comparable<E> ({
public int compareTo (E o) ;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 28
rights reserved.

Integer and Biglnteger Classes®

cior B v

BIRZEIT UNIVERSITY

public class Integer extends Number
implements Comparable<Integer> {

@Override
public int compareTo (Integer o) {

}

public class BigInteger extends Number
implements Comparable<BigInteger> {

@Override
public int compareTo (BigInteger o) {

}

String and Date Classes

public class String extends Object
implements Comparable<String> {

@Override
public int compareTo (String o) {

}

public class Date extends Object

implements Comparable<Date> {

@Override
public int compareTo (Date o) {

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 29
rights reserved.

2.0 % 2 LT v
gv..g B3 ﬁ %\/‘
NS A Y

BIRZEIT UNIVERSITY

Example

1 System.out.printin(new Integer(3).compareTo(new Integer(5)));
2 System.out.printin(*"ABC".compareTo(''ABE"));

3 Java.util.Date datel = new java.util.Date(2013, 1, 1);

4 java.util.Date date2 = new java.util.Date(2012, 1, 1);

5 System.out.printin(datel.compareTo(date2));

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 30
rights reserved.

S0 ‘*“/\“;
3 e

The toString, equals, and hashCode™
Methods

Each wrapper class overrides the toString,
equals, and hashCode methods defined in the
ODbject class. Since all the numeric wrapper
classes and the Character class implement
the Comparable interface, the compareTo
method Is Implemented In these classes.

st
7 £ A&

Generic sort Method =

et n be an Integer object, s be a String object, and
d be a Date object. All the following expressions are

true.

n instanceof Integer s instanceof String d instanceof java.util.Date
n instanceof Object s instanceof Object d instanceof Object
n instanceof Comparable s instanceof Comparable d instanceof Comparable

The java.util.Arrays.sort(array) method requires that
the elements In an array are instances of
Comparable<E>.

SortComparableObjects -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 32
rights reserved.

https://liveexample.pearsoncmg.com/html/SortComparableObjects.html

» g
555 *"/\‘/
Lf"“ 2 A P

Defining Classes to Implement Comparablé™

GeometricObject | «interface»
java.lang. Comparable<ComparableRectangle>
i +comparelo(o: ComparableRectangle): int
Rectangle | PaN
ComparableRectangle | ------------------------------------ i

ComparableRectangle SortRectangles -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 33
rights reserved.

https://liveexample.pearsoncmg.com/html/ComparableRectangle.html
https://liveexample.pearsoncmg.com/html/SortRectangles.html

Extending Interfaces

IIIIIIIIIIIIIIIII

= Interfaces support multiple inheritance:

an interface can extend more than one
Interface.

< Superinterfaces and subinterfaces.
= Example:

public interface SerializableRunnable
extends
java.lo.Serializable , Runnable {

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

2.2 - & AT
5555 *4\/‘
N 2P A P =

IIIIIIIIIIIIIIIII

+ If a superinterface and a subinterface
contain two constants with the same name,
then the one belonging to the
superinterface is hidden:

Interface X {
Int val =1,

¥

Interface Y extends X {
Int val =2,

Int sum = val + X.val;

rights reserved.

- &

Tt — A

< If a declared method In a subinterface has
the same signature as an inherited method

and the same return type, then the new

declaration overrides the inherited method
In Its superinterface.

= |If the only difference Is In the return type,
then there will be a complile-time error.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

st
7 £ A&

BIRZEIT UNIVERSITY

The Cloneable Interfaces

Marker Interface: An empty interface.

A marker interface does not contain constants or methods.
It IS used to denote that a class possesses certain desirable
properties. A class that implements the Cloneable
Interface is marked cloneable, and its objects can be
cloned using the clone() method defined in the Object

class.

package java.lang;
public interface Cloneable {

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 37
rights reserved.

2.0 % 2 LT v
gv..g B3 E %\/‘
NS A Y

Exam D les

Many classes (e.g., Date and Calendar) in the Java library implement
Cloneable. Thus, the instances of these classes can be cloned. For
example, the following code

Calendar calendar = new GregorianCalendar (2003, 2, 1);

Calendar calendarCopy = (Calendar)calendar.clone() ;
System.out.println("calendar == calendarCopy is " +
(calendar == calendarCopy))

System.out.println("calendar.equals (calendarCopy) is " +
calendar.equals (calendarCopy)) ;

displays
calendar == calendarCopy is false
calendar.equals(calendarCopy) is true

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 38
rights reserved.

e s
T A

Implementing Cloneable Interface™™

To define a custom class that implements the Cloneable
Interface, the class must override the clone() method in
the Object class. The following code defines a class
named House that implements Cloneable and
Comparable.

House

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

39

https://liveexample.pearsoncmg.com/html/House.html

public class House implements Cloneable, Comparable<House>
{

private int id;

private double area;

private java.util.Date whenBuilt;

RSITY

public House(int id, double area) {
this.id = id;
this.area = area;
whenBuilt = new java.util.Date();

h
publicintgetld() { returnid; }

public double getArea() { returnarea; }

public java.util.Date getWhenBuilt() { return whenBuilt;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 40 &

rights reserved.

S et
@Override // Override the clone method defined in the Object class STy
public Object clone() {

return super.clone();
¥

@Override // Implement the compareTo method defined in Comparable

public int compareTo(House 0) {
If (area > o0.area)
return 1;
else if (area < o.area)
return -1;
else
return O;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 41
rights reserved.

2.2 2 I
copr B o
N 2P A P =

BIRZEIT UNIVERSITY

Shallow vs. Deep Copy

House housel = new House(1, 1750.50);

House house2 = (House)housel.clone();

housel: House Memory

Shallow «-: -

area = 1750.50 =—=> 1750.50

C O py whenBui |t =———=> reference » whenBuilt: Date

date object
house2 = l contents

housel.clone()

house2: House Memory

id =1 > |

area = 1750.50 =—> 1750.50

whenBui |t =— cference =

(a)

Liang, Introduction w vava riuyialiiiiy, CISVEIUl CUILULLL (L) ZUL Feadldull Cuusauull, 1. Al 42
rights reserved.

i B

BIRZEIT UNIVERSITY

Shallow vs. Deep Copy

public Object clone() {

try {
// Perform a shallow copy
House houseClone = (House)super.clone();
// Deep copy on whenBuilt
houseClone.whenBuilt = (java.util.Date)(whenBuilt.clone());
return houseClone;
)

catch (CloneNotSupportedException ex) {
return null;

} id =1 > 1 |
} area = 1750.50 —> 1750.50 |

housel: House Memory

whenBui 1t =———=> reference |—> whenBuilt: Date
date object
house2 = contents
housel.clone()
house2: House Memory
id = 1 > 1 |
area = 1750.50 —p 175050 | . ienBullcDate
) date object
whenBuilt » reference —- contents
Liang, Introduction to Java Programming, Eleventh Editio -

rights reserved. (b)

2.2 2 *t)"‘ v
v‘-ﬁ“ %‘/c
L/"..M/\zglb

BIRZEIT UNIVERSITY

Interfaces vs. Abstract Classes

In an interface, the data must be constants; an abstract class can
have all types of data.

Each method in an interface has only a signature without
Implementation; an abstract class can have concrete methods.

Variables Constructors Methods

Abstract class No restrictions. Constructors are invoked by subclasses through No restrictions.
constructor chaining. An abstract class cannot be
instantiated using the new operator.

Interface All variables must be No constructors. An interface cannot be instantiated All methods must be public
public static final. using the new operator. abstract instance methods
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 44

rights reserved.

(j‘*"/\;
- = 3 -

<o
z~

Interfaces vs. Abstract Classes, cont==

All classes share a single root, the Object class, but there is no single root for
Interfaces. Like a class, an interface also defines a type. A variable of an interface
type can reference any instance of the class that implements the interface. If a class
extends an interface, this interface plays the same role as a superclass. You can use
an interface as a data type and cast a variable of an interface type to its subclass,
and vice versa.

Interfacel_2 |4-
Interfacel_1 |4- ---------- Interfacel |q- ------------------ Interface2_1 |4- ----------------

]
]
1
[T —

Object |4 Class1 |4 Class2 |

Suppose that c is an instance of Class2. ¢ is also an instance of Object, Classl,
Interfacel, Interfacel 1, Interfacel 2, Interface2 1, and Interface2_ 2.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 45
rights reserved.

’%\"’\‘*‘%‘;

- - - 5535 N0

Caution: conflict interfaces
In rare occasions, a class may implement two interfaces
with conflict information (e.g., two same constants with
different values or two methods with same signature but

different return type). This type of errors will be detected
by the compiler.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 46
rights reserved.

Whether to use an interface or a class®

Abstract classes and interfaces can both be used to model

common features.

How do you decide whether to use an

Interface or a class? In general, a strong is-a relationship that
clearly describes a parent-child relationship should be modeled

using classes. For

example, a staff member Is a person. A weak

Is-a relationship, also known as an is-kind-of relationship,

Indicates that an o
a relationship can
all strings are com

nject possesses a certain property. A weak is-
pe modeled using interfaces. For example,

parable, so the String class implements the

Comparable interface. You can also use interfaces to

circumvent single

Inheritance restriction if multiple inheritance

IS desired. In the case of multiple inheritance, you have to
design one as a superclass, and others as interface.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved. 47

25553 ‘*v/\/
E355 Wil e 01

BIRZEIT UNIVERSITY

Interfaces vs. Abstract Classes

“* In an interface, the data must be constants; an
abstract class can have all types of data.

¢ Each method in an interface has only a signature
without implementation; an abstract class can have
concrete methods.

Variables Constructors Methods
Constructors are invoked by
Abstract o subclasses through constructor .
No restrictions . No restrictions.
class chaining. An abstract class cannot be

instantiated usingthe new operator.

Allvariables No constructors. All methods must
Interface | mustbe public | Aninterface cannot be instantiated be public abstract
static final using the new operator. instance methods

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 48

rights reserved.

y
€5 ’*V/\/
N 2P A P =

The Rational Class
java. lang. Number H\ Rai_jona-l

-
-
-

-
-

14

java. lang.Comparable<Rational> Iq"'

Add, Subtract, Multiply, Divide

Rational

-numerator: long The numerator of this rational number.

-denominator: long The denominator of this rational number.

+Rational) Creates a rational number with numerator O and denominator 1.

+Rational (humerator: long, Creates a rational number with a specified numerator and
denominator: Tong) denominator.

+getNumerator(): long Returns the numerator of this rational number.

+getDenominator(): long Returns the denominator of this rational number.

+add(secondRational: Rational): Returns the addition of this rational number with another.
Rational

+subtract(secondRational: Returns the subtraction of this rational number with another.
Rational): Rational

+multiply(secondRational: Returns the multiplication of this rational number with another.
Rational): Rational

+divide(secondRational: Returns the division of this rational number with another.
Rational): Rational

+toString(): String Returns a string in the form “numerator/denominator.” Returns

the numerator if denominator is 1.
-gcd(n: long, d: long): long Returns the greatest common divisor of n and d.

Rational TestRationalClass -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 49
rights reserved.

https://liveexample.pearsoncmg.com/html/Rational.html
https://liveexample.pearsoncmg.com/html/TestRationalClass.html

