Chapter 15 Event-Driven
Programming and Animations

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

553 %"/ I
=))t\—/ VW,L/?

Procedural vs. Event-Driven ===
Programming

» Procedural programming Is executed In
procedural order.

= In event-driven programming, code Is executed
upon activation of events.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 2
rights reserved.

a.z‘._?*l% (P4

BIRZEIT UNIVERSITY

Taste of Event-Driven Programming

The example displays a button in the frame. A
message Is displayed on the console when a
button is clicked.

<+ Command Prompt - java HandleEvent - |I:I |i|

C:\book>java HandleEvent il
0K button clicked

Cancel button clicked

0K button clicked

. _lofx

0K Cancel

HandleEvent -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 3
rights reserved.

https://liveexample.pearsoncmg.com/html/HandleEvent.html

5.&_?*\% (P4

BIRZEIT UNIVERSITY

Handling GUI Events

Source object (e.g., button)

Listener object contains a method for
processing the event.

button > event | > handler
Clicking a button An event is The event handler
fires an action event an object processes the event
(Event source object) (Event object) (Event handler object’
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 4

rights reserved.

animation i @,’*,»/\;
Trace Executl O n BIRZEIT UNIVERSITY
public class HandleEvent extends Applica“/
public void start(Stage primaryStage) {4 1. Start from the

main method to
create a window and

display it)

OKHandlerClass handlerl = new OKHandlerClass();
btOK.setOnAction(handlerl);
CancelHandlerClass handler2 = new CancelHandlerClass();

btCancel.setOnAction(handler?); _E
30 O OK Cancel
primaryStage.show(); // Display the stage
}
¥
class OKHandlerClass implements EventHandler<ActionEvent> {
@Override
public void handle(ActionEvent e) {
System.out.printin("OK button clicked");
}
¥
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 5

rights reserved.

animation i @,,’*,l/\;
Trace Executlon BIRZEIT UNIVERSITY
public class HandleEvent extends Application { e _ R\
public void start(Stage primaryStage) { 2. Click OK

OKHandlerClass handlerl = new OKHandlerClass();
btOK.setOnAction(handlerl); J
CancelHandlerClass handler2 = new CancelHandlerClass(),
btCancel.setOnAction(handler?);

primaryStage.show(); // Display the stage =13l x|

} 0K Cancel

}

class OKHandlerClass implements EventHandler<ActionEvent> {
@Override
public void handle(ActionEvent e) {
System.out.printin("OK button clicked");

¥
¥

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 6
rights reserved.

animation i @«’*”/K
Trace Executlon BIRZEIT UNIVERSITY
public class HandleEvent extends Application { e _ ™\
public void start(Stage primaryStage) { 3. The JVM invokes
o the listener’s handle
OKHandlerClass handlerl = new OKHandlerClass(); method
btOK.setOnAction(handlerl); /
CancelHandlerClass handler2 = new CancelHandlerClas
btCancel.setOnAction(handler?);
primaryStage.show(); // Display the stage =10 x|
} 0K Cancel
¥
class OKHandlerClass implements EventHagser<ActionEvent> {
@Override
public void handle(ActionEvent e) { PrOr———)] |
System.out.printin(*"OK button clicked"); C:\pook>jaua HandleEuent &
} * [

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 7
rights reserved.

(J5ey 2 Eiﬁ E‘% L3
BIRZEIT UNIVERSITY

Events

a An event can be defined as a type of signal
to the program that something has
happened.

Q The event is generated by external user
actions such as mouse movements, mouse
clicks, or keystrokes.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 8
rights reserved.

25y e\
.-)tW, A

BIRZEIT UNIVERSITY

Event Classes

——ActionEventl

|

|

|

|

|

|

|

|

- |
Event k&— InputEvent fﬂ——— !
|

|

|

|

|

|

|

|

EventObject
|
|
| L
| KeyEvent |
|
! . JavaFX event classes are in
! ——W1nd0wEvent| e
! the javafx.event package
| _ o o L L L L L e e e e M M Y L
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 9

rights reserved.

Event Information

An event object contains whatever properties are
pertinent to the event. You can identify the source
object of the event using the getSource() instance
method In the EventODbject class. The subclasses of
EventObject deal with special types of events,
such as button actions, window events, mouse
movements, and keystrokes. Table 15.1 lists
external user actions, source objects, and event
types generated.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 10
rights reserved.

H5) ,‘*{/ 5
- 1

3]

BIRZEIT UNIVERSITY

Selected User Actions and Handlers

User Action Source Object Event Type Fired Event Registration Method
Click a button Button ActionEvent setOnAction(EventHandler<ActionEvent>)
Press Enter in a text field TextField ActionEvent setOnAction(EventHandler<ActionEvent>)
Check or uncheck RadioButton ActionEvent setOnAction(EventHandler<ActionEvent>)
Check or uncheck CheckBox ActionEvent setOnAction(EventHandler<ActionEvent>)
Select a new item ComboBox ActionEvent setOnAction(EventHandler<ActionEvent>)
Mouse pressed Node, Scene MouseEvent setOnMousePressed(EventHandler<MouseEvent>)
Mouse released setOnMouseRel eased (EventHandler<MouseEvent>)
Mouse clicked setOnMouseClicked(EventHandler<MouseEvent>)
Mouse entered setOnMouseEntered(EventHandler<MouseEvent>)
Mouse exited setOnMouseEx1ited (EventHandler<MouseEvent>)
Mouse moved setOnMouseMoved (EventHand1er<MouseEvent>)
Mouse dragged setOnMouseDragged (EventHandler<MouseEvent>)
Key pressed Node, Scene KeyEvent setOnKeyPressed(EventHandler<KeyEvent>)
Key released setOnKeyReleased(EventHand]er<KeyEvent>)
Key typed setOnKeyTyped (EventHandler<KeyEvent>)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 11

rights reserved.

The Delegation Model e

Trigger an event . «interface»
Usler —— = source: SourceClass | EventHandler<T extends Event>
f&iff,/ +setOnXEventType(listener) +handle(event: T)

(2) Register by invoking
source.setOnXEventType(listener):

(1) A listener object is an

instance of a listener interface listener: ListenerClass
(a) A generic source object with a generic event T
«interface»
source: javafx.scene.control.Button I EventHandler<ActionEvenr>
+setOnAction(listener) +handle(event: ActionEvent)

(2) Register by invoking
source.setOnAction(listener);

(1) An action event listenfer is an instance of Jistener: CustomlListenerClass
EventHandler<ActionEvent>

(b) A Button source object with an ActionEvent

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 12
rights reserved.

R
)/Vk__/‘m
BIRZEIT UNIVERSITY

The Delegation Model: Example

Button btOK = new Button ("OK") ;
OKHandlerClass handler = new OKHandlerClass{();

btOK.setOnAction (handler) ;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 13
rights reserved.

57 Wi yedl

Example: First Version for ==
ControlCircle (no listeners)

Now let us consider to write a program that uses
two buttons to control the size of a circle.

i h
El ControlCircleWithoutEventHandling E.lﬂlﬂ_hj
B

ControlCircleWithoutEventHandling -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 14
rights reserved.

https://liveexample.pearsoncmg.com/html/ControlCircleWithoutEventHandling.html

e Y

)/'__-/‘wv

Example: Second Version for ===
ControlCircle (with listener for Enlarge)

Now let us consider to write a program that uses
two buttons to control the size of a circle.

ControlCircle -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 15
rights reserved.

https://liveexample.pearsoncmg.com/html/ControlCircle.html

Inner Class Listeners

A listener class Is designed specifically to

C
C
S
d

reate a listener object for a GUI
omponent (e.g., a button). It will not be
nared by other applications. So, It Is

opropriate to define the listener class

INnside the frame class as an inner class.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

16

ﬁ@

BIRZEIT UNIVERSITY

Inner Classes

Inner class: A class i1s a member of another class.

Advantages: In some applications, you can use an
Inner class to make programs simple.

An Inner class can reference the data and
methods defined in the outer class in which it
nests, so you do not need to pass the reference

of the outer class to the constructor of the inner
class.

ShowlnnerClass

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 17
rights reserved.

https://liveexample.pearsoncmg.com/html/ShowInnerClass.html

e oy

BIRZEIT UNIVERSITY

Inner Classes, cont.

public class Test { // OuterClass.java: inner class demo

A public class OuterClass {
} private int data;
public class A { /*%* A method in the outer class */

A public void m() {
} // Do something

}
(a) // An inner class
class InnerClass {
public class Test { /** A method in the inner class */
public void mi() {
// Directly reference data and method
// Inner class // defined in its outer class
public class A { data++;
S mQ) ;

} }

} }
}
(b) (c)
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 18

rights reserved.

(Jeey? %"/ L3
BIRZEIT UNIVERSITY

Inner Classes (cont.)

Inner classes can make programs simple and
concise.

An inner class supports the work of its
containing outer class and is compiled into a
class named
OuterClassName$InnerClassName.class.
For example, the inner class InnerClass in
OuterClass Is compiled into
OuterClass$InnerClass.class.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 19
rights reserved.

(Jeey? %"/ L3
=))t\—/ VW,L/?

BIRZEIT UNIVERSITY

Inner Classes (cont.)

2 An inner class can be declared public,
protected, or private subject to the same
visibility rules applied to a member of the
class.

a An Inner class can be declared static. A
static Iinner class can be accessed using
the outer class name. A static inner class
cannot access nonstatic members of the
outer class

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 20
rights reserved.

(el ‘*‘% L%
=))t\—/ \/W,L/?

BIRZEIT UNIVERSITY

Anonymous Inner Classes

An anonymous Inner class must always extend a superclass or
Implement an interface, but it cannot have an explicit extends or
Implements clause.

An anonymous inner class must implement all the abstract
methods in the superclass or in the interface.

An anonymous inner class always uses the no-arg constructor
from its superclass to create an instance. If an anonymous inner
class implements an interface, the constructor is Object().

An anonymous Inner class is compiled into a class named
OuterClassName$n.class. For example, if the outer class Test
has two anonymous inner classes, these two classes are
compiled into Test$1.class and Test$2.class.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 21
rights reserved.

ﬁ@

BIRZEIT UNIVERSITY

Anonymous Inner Classes (cont.)

Inner class listeners can be shortened using
anonymous inner classes. An anonymous inner class is
an inner class without a name. It combines declaring
an inner class and creating an instance of the class In
one step. An anonymous inner class Is declared as

follows:

new SuperClassName/InterfaceName() {
// Implement or override methods in superclass or interface

// Other methods If necessary

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 22
rights reserved.

Anonymous Inner Classes (cont.)

public void start(Stage primaryStage) {
// Omitted

btEnlarge.setOnAction(
new EnlargeHandler());

} ‘¥\\:>
class EnlargeHandler

implements EventHandler<ActionEvent> {
public void handle(ActionEvent e) {
circlePane.enlarge();
}
}

,H.,4§!§Eu,,w
25y e\
¢).__./{W A

BIRZEIT UNIVERSITY

// Omitted

btEnTarge.setOnAction(
new class—EnlargeHandtner

circlePane.enlarge();
}
1)

(a) Inner class EnTargelListener

CH AnonymousHandlerE
=

=P

Save Print

public void start(Stage primaryStage) {

implements EventHandler<ActionEvent>() {
public void handle(ActionEvent e) {

(b) Anonymous inner class

AnonymousHandlerDemo -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

23

https://liveexample.pearsoncmg.com/html/AnonymousHandlerDemo.html

(J5ey 2 ‘%"/ L3

Simplifying Event Handing Using™"
Lambda Expressions

Lambda expression is a new feature in Java 8. Lambda
expressions can be viewed as an anonymous method with a
concise syntax. For example, the following code in (a) can
be greatly simplified using a lambda expression in (b) in
three lines.

btEnlarge.setOnAction (
new EventHandler<ActionEvent> () {

QOverride })
public void handle (ActionEvent e) {

btEnlarge.setOnAction (e -> {

}
}
}) s

(@) Anonymous inner class event handler (b) Lambda expression event handler

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 24
rights reserved.

IIIIIIIIIIIIIII

Basic Syntax for a Lambda Expressmn

The basic syntax for a lambda expression is either
(typel paraml, type2 paramz2, ...) -> expression

or
(typel paraml, type2 paramz2, ...) -> { statements; }

The data type for a parameter may be explicitly
declared or implicitly inferred by the compiler. The
parentheses can be omitted If there iIs only one
parameter Wlthout an epr|C|t data type

ang, Introduc 0 Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 25
nghts reserve d.

IIIIIIIIIIIIIII

Single Abstract Method Interface (SAI\/I)

The statements in the lambda expression is all for
that method. If it contains multiple methods, the
compiler will not be able to compile the lambda
expression. So, for the compiler to understand
lambda expressions, the interface must contain
exactly one abstract method. Such an interface Is
known as a functional interface, or a Single Abstract
Method (SAM) interface.

AnonymousHandlerDemo Run

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 26
rights reserved.

https://liveexample.pearsoncmg.com/html/AnonymousHandlerDemo.html

The MouseEvent Class

javafx.scene.input.Mouse Event

gﬁ?;agkgﬁg;
- 1

-~

BIRZEIT UF:IIVERSITY

+getButton(): MouseButton
+getClickCount(): int
+getX(): double

+getY(): double
+getSceneX(): double
+getSceneY(): double
+getScreenX(): double
+getScreenY(): double
+i1sAl1tDown(): boolean
+isControlDown(): boolean
+isMetaDown(): boolean
+isShiftDown(): boolean

Indicates which mouse button has been clicked.

Returns the number of mouse clicks associated with this event.

Returns the x-coordinate of the mouse point in the event source node.

Returns the y-coordinate of the mouse point in the event source node.

Returns the x-coordinate of the mouse point in the scene.
Returns the y-coordinate of the mouse point in the scene.
Returns the x-coordinate of the mouse point in the screen.
Returns the y-coordinate of the mouse point in the screen.
Returns true if the A1t key is pressed on this event.

Returns true if the Control key is pressed on this event.
Returns true if the mouse Meta button is pressed on this event.
Returns true if the Shift key is pressed on this event.

MouseEventDemo -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 27

rights reserved.

https://liveexample.pearsoncmg.com/html/MouseEventDemo.html

The Kevy:

javafx.scene.input.KeyEvent

25y e\
.-)tW, A

BIRZEIT UNIVERSITY

vent Class

L]

+getCharacter(): String
+getCode () : KeyCode
+getText(): String
+1sAltDown() : boolean
+1sControlDown(): boolean
+isMetaDown(): boolean
+isShiftDown(): boolean

Returns the character associated with the key in this event.
Returns the key code associated with the key in this event.
Returns a string describing the key code.

Returns true if the A1t key is pressed on this event.

Returns true if the Control key is pressed on this event.
Returns true if the mouse Meta button is pressed on this event.

Returns true if the Shift key is pressed on this event.

KeyEventDemo -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 28

rights reserved.

https://liveexample.pearsoncmg.com/html/KeyEventDemo.html

The KeyCode Constants

-)tW, AC

BIRZEIT UNIVERSITY

Constant Description Constant Description

HOME The Home key CONTROL The Control key

END The End key SHIFT The Shift key

PAGE_UP The Page Up key BACK_SPACE The Backspace key

PAGE_DOWN The Page Down key CAPS The Caps Lock key

UP The up-arrow key NUM_LOCK The Num Lock key

DOWN The down-arrow key ENTER The Enter key

LEFT The left-arrow key UNDEFINED The keyCode unknown

RIGHT The right-arrow key F1to F12 The function keys from F1 to F12

ESCAPE The Esc key 0to9 The number keys from 0 to 9

TAB The Tab key AtoZ The letter keys from A to Z
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. Al 29

rights reserved.

a.z‘._?*l% (P4

BIRZEIT UNIVERSITY

Example: Control Circle with Mouse
and Key

ControlCircleWithMouseAndKey -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 30
rights reserved.

https://liveexample.pearsoncmg.com/html/ControlCircleWithMouseAndKey.html

" - e B
Listeners for Observable Objects

You can add a listener to process a value change in an
observable object.

An instance of Observable is known as an observable object,
which contains the addListener(InvalidationListener
listener) method for adding a listener. Once the value Is
changed in the property, a listener is notified. The listener class
should implement the InvalidationListener interface, which
uses the invalidated(Observable 0) method to handle the
property value change. Every binding property is an instance of
Observable.

ObservablePropertyDemo | Run

DisplayResizableClock | Run

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 31
rights reserved.

https://liveexample.pearsoncmg.com/html/ObservablePropertyDemo.html
https://liveexample.pearsoncmg.com/html/DisplayResizableClock.html

Animation

JavaFX provides the Animation class with the core

functionality for all animations.

Jjavafx.animation.Animation

The getter and setter methods for property
values and a getter for property itself are provided

2.0 ’*‘)"l \Y
E,,'_/.H T
N2 A R\

BIRZEIT UNIVERSITY

in the class, but omitted in the UML diagram for brevity.

e

-autoReverse: BooleanProperty
-cycleCount: IntegerProperty
-rate: DoubleProperty

-status: ReadOnlyObjectProperty
<Animation.Status>

+pause(): void
+play(): void
+stop(): void

Defines whether the animation reverses direction on alternating cycles.

Defines the number of cycles in this animation.

Defines the speed and direction for this animation.

Read-only property to indicate the status of the animation.

Pauses the animation.

Plays the animation from the current position.

Stops the animation and resets the animation.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

32

PathTransition e

javafx.animation.PathTransition

T - 2

2
=z
>

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

rs

-duration: ObjectProperty<Duration>
-node: ObjectProperty<Node>

-orientation: ObjectProperty
<PathTransition.OrientationType>

-path: ObjectType<Shape>

+PathTransition()

+PathTransition(duration: Duration,
path: Shape)

+PathTransition(duration: Duration,
path: Shape, node: Node)

The duration of this transition.
The target node of this transition.

The orientation of the node along the path.

The shape whose outline is used as a path to animate the node move.

Creates an empty PathTransition.
Creates a PathTransition with the specified duration and path.

Creates a PathTransition with the specified duration, path, and node.

PathTransitionDemo -
FlagRisingAnimation -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 33

rights reserved.

https://liveexample.pearsoncmg.com/html/FlagRisingAnimation.html
https://liveexample.pearsoncmg.com/html/PathTransitionDemo.html

FadeTransition Goi s

’7m’qpazﬁ
(3 - 2

2
%
>

The FadeTransition class animates the change of the
opacity in a node over a given time.

Jjavafx.animation.FadeTransition

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

&,

-duration: ObjectProperty<Duration>
-node: ObjectProperty<Node>
-fromValue: DoubleProperty
-toValue: DoubleProperty

-byValue: DoubleProperty

+FadeTransition()
+FadeTransition(duration: Duration)

+FadeTransition(duration: Duration,
node: Node)

The duration of this transition.

The target node of this transition.
The start opacity for this animation.
The stop opacity for this animation.

The incremental value on the opacity for this animation.

Creates an empty FadeTransition.
Creates a FadeTransition with the specified duration.
Creates a FadeTransition with the specified duration and node.

FadeTransitionDemo -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 34

rights reserved.

https://liveexample.pearsoncmg.com/html/FadeTransitionDemo.html

- - / */
Timeline e

PathTransition and FadeTransition define specialized
animations. The Timeline class can be used to program any
animation using one or more KeyFrames. Each
KeyFrame iIs executed sequentially at a specified time
Interval. Timeline inherits from Animation.

TimelineDemo -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 35
rights reserved.

https://liveexample.pearsoncmg.com/html/TimelineDemo.html

Case Study: Bouncing Ball &%

= _lolx _lolx

javafx.scene.layout.Pane | Jjavafx.application.Application |

T T

BallPane H BounceBallControl |

-X: double

-y: double

-dx: double

-dy: double

-radius: double
-circle: Circle
-animation: Timeline

+BallPane()

+play(Q: void
+pause(): void
+increaseSpeed(): void

+decreaseSpeed(): void
+rateProperty(): DoubleProperty BallPane BounceBallControl -

+moveBall(): void

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 36
rights reserved.

https://liveexample.pearsoncmg.com/html/BounceBallControl.html
https://liveexample.pearsoncmg.com/html/BallPane.html

