
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
1

Chapter 2 Elementary Programming

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
2

Trace a Program Execution
public class ComputeArea {

 /** Main method */

 public static void main(String[] args) {

 double radius;

 double area;

 // Assign a radius

 radius = 20;

 // Compute area

 area = radius * radius * 3.14159;

 // Display results

 System.out.println("The area for the circle of radius " +

 radius + " is " + area);

 }

}

20 radius

memory

1256.636 area

print a message to the

console

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
3

Reading Input from the Console

1. Create a Scanner object

Scanner input = new Scanner(System.in);

2. Use the method nextDouble() to obtain to a double

value. For example,

System.out.print("Enter a double value: ");
Scanner input = new Scanner(System.in);
double d = input.nextDouble();

Run

Run

ComputeAreaWithConsoleInput

ComputeAverage

https://liveexample.pearsoncmg.com/html/ComputeAreaWithConsoleInput.html
https://liveexample.pearsoncmg.com/html/ComputeAverage.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
4

Identifiers

 An identifier is a sequence of characters that consist of

letters, digits, underscores (_), and dollar signs ($).

 An identifier must start with a letter, an underscore (_),

or a dollar sign ($). It cannot start with a digit.

 An identifier cannot be a reserved word. (See Appendix

A, “Java Keywords,” for a list of reserved words).

 An identifier cannot be true, false, or

null.

 An identifier can be of any length.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
5

Variables

int x; // Declare x to be an

 // integer variable;

double radius; // Declare radius to

 // be a double variable;

char a; // Declare a to be a

 // character variable;

x = 1; // Assign 1 to x;

radius = 1.0; // Assign 1.0 to radius;

a = 'A'; // Assign 'A' to a;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
6

Declaring and Initializing

in One Step

 int x = 1;

 double d = 1.4;

 Named Constants
final datatype CONSTANTNAME = VALUE;

final double PI = 3.14159;

final int SIZE = 3;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
7

Naming Conventions

Choose meaningful and descriptive names.

Variables and method names:

– Use lowercase.

– If the name consists of several words,

concatenate all in one, use lowercase for the

first word, and capitalize the first letter of each

subsequent word in the name.

– For example, the variables radius and area,

and the method computeArea.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
8

Naming Conventions, cont.

 Class names:
– Capitalize the first letter of each word in

the name. For example, the class name
ComputeArea.

 Constants:

– Capitalize all letters in constants, and use
underscores to connect words. For
example, the constant PI and
MAX_VALUE

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
9

Character Data Type

char letter = 'A'; (ASCII)

char numChar = '4'; (ASCII)

char letter = '\u0041'; (Unicode)

char numChar = '\u0034'; (Unicode)

NOTE: The increment and decrement operators can

also be used on char variables to get the next or

preceding Unicode character. For example, the

following statements display character b.

 char ch = 'a';

 System.out.println(++ch);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
10

Numerical Data Types

 Name Range Storage Size

byte –27 to 27 – 1 (-128 to 127) 8-bit signed

short –215 to 215 – 1 (-32768 to 32767) 16-bit signed

int –231 to 231 – 1 (-2147483648 to 2147483647) 32-bit signed

long –263 to 263 – 1 64-bit signed

 (i.e., -9223372036854775808 to 9223372036854775807)

 float Negative range: 32-bit IEEE 754

 -3.4028235E+38 to -1.4E-45

 Positive range:

 1.4E-45 to 3.4028235E+38

 double Negative range: 64-bit IEEE 754

 -1.7976931348623157E+308 to -4.9E-324

 Positive range:

 4.9E-324 to 1.7976931348623157E+308

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
11

Reading Numbers from the Keyboard

Scanner input = new Scanner(System.in);

int value = input.nextInt();

Method Description

nextByte() reads an integer of the byte type.

nextShort() reads an integer of the short type.

nextInt() reads an integer of the int type.

nextLong() reads an integer of the long type.

nextFloat() reads a number of the float type.

nextDouble() reads a number of the double type.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

Strings

The char type only represents one character.

To represent a string of characters, use the

data type called String. For example:

 String message = "Welcome to Java!";

 String is actually a predefined class in the

Java library.

 The String type is not a primitive type. It is

known as a reference type.

 12

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

More on Strings
// Three strings are concatenated

String message = "Welcome " + "to " + "Java";

// String Chapter is concatenated with number 2

String s = "Chapter" + 2; // s becomes Chapter2

 You can use the Scanner class for console input.

 Java uses System.in to refer to the standard input device

(i.e. Keyboard).

13

public class Test{

 public static void main(String[] s){

 Scanner input = new Scanner(System.in);

 System.out.println(“Enter text : ”);

 int x = input.nextLine();

 System.out.println(“You entered: ”+ x);

 }

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
14

Integer Division

+, -, *, /, and %

5 / 2 yields an integer 2.

5.0 / 2 yields a double value 2.5

5 % 2 yields 1 (the remainder of the division)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
15

Remainder Operator

Remainder is very useful in programming. For example, an
even number % 2 is always 0 and an odd number % 2 is always
1. So you can use this property to determine whether a number

is even or odd. Suppose today is Saturday and you and your
friends are going to meet in 10 days. What day is in 10
days? You can find that day is Tuesday using the following
expression:

 Saturday is the 6th day in a week

A week has 7 days

After 10 days

The 2nd day in a week is Tuesday
(6 + 10) % 7 is 2

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
16

NOTE

Calculations involving floating-point numbers are

approximated because these numbers are not stored

with complete accuracy. For example,

System.out.println(1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1);

displays 0.5000000000000001, not 0.5, and

System.out.println(1.0 - 0.9);

displays 0.09999999999999998, not 0.1. Integers are

stored precisely. Therefore, calculations with integers

yield a precise integer result.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
17

Exponent Operations

System.out.println(Math.pow(2, 3));

// Displays 8.0

System.out.println(Math.pow(4, 0.5));

// Displays 2.0

System.out.println(Math.pow(2.5, 2));

// Displays 6.25

System.out.println(Math.pow(2.5, -2));

// Displays 0.16

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
18

Integer Literals
An integer literal can be assigned to an integer variable as

long as it can fit into the variable. A compilation error

would occur if the literal were too large for the variable to

hold. For example, the statement byte b = 1000 would

cause a compilation error, because 1000 cannot be stored

in a variable of the byte type.

An integer literal is assumed to be of the int type, whose

value is between -231 (-2147483648) to 231–1

(2147483647). To denote an integer literal of the long type,

append it with the letter L or l. L is preferred because l

(lowercase L) can easily be confused with 1 (the digit

one).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
19

Floating-Point Literals

Floating-point literals are written with a decimal

point. By default, a floating-point literal is treated

as a double type value. For example, 5.0 is

considered a double value, not a float value. You

can make a number a float by appending the letter f

or F, and make a number a double by appending the

letter d or D. For example, you can use 100.2f or

100.2F for a float number, and 100.2d or 100.2D

for a double number.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
20

double vs. float

The double type values are more accurate than the

float type values. For example,

System.out.println("1.0 / 3.0 is " + 1.0 / 3.0);

displays 1.0 / 3.0 is 0.3333333333333333

 16 digits

displays 1.0F / 3.0F is 0.33333334

7 digits

System.out.println("1.0F / 3.0F is " + 1.0F / 3.0F);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
21

Arithmetic Expressions

)
94

(9
))(5(10

5

43

y

x

xx

cbayx

is translated to

(3+4*x)/5 – 10*(y-5)*(a+b+c)/x + 9*(4/x + (9+x)/y)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
22

How to Evaluate an Expression

Though Java has its own way to evaluate an

expression behind the scene, the result of a Java

expression and its corresponding arithmetic

expression are the same. Therefore, you can safely

apply the arithmetic rule for evaluating a Java

expression.
3 + 4 * 4 + 5 * (4 + 3) - 1

3 + 4 * 4 + 5 * 7 – 1

3 + 16 + 5 * 7 – 1

3 + 16 + 35 – 1

19 + 35 – 1

 54 - 1

 53

 (1) inside parentheses first

 (2) multiplication

 (3) multiplication

 (4) addition

 (6) subtraction

 (5) addition

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
23

Problem: Converting Temperatures

Write a program that converts a Fahrenheit degree

to Celsius using the formula:

Run

)32)((
9
5 fahrenheitcelsius

Note: you have to write

celsius = (5.0 / 9) * (fahrenheit – 32)

FahrenheitToCelsius

https://liveexample.pearsoncmg.com/html/FahrenheitToCelsius.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

 public class FahrenheitToCelsius {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 System.out.print("Enter a degree in Fahrenheit: ");

 double fahrenheit = input.nextDouble();

 // Convert Fahrenheit to Celsius

 double celsius = (5.0 / 9) * (fahrenheit - 32);

 System.out.println("Fahrenheit " + fahrenheit + " is " +

 celsius + " in Celsius");

 }

 }

24

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
25

Problem: Displaying Current Time

Write a program that displays current time in GMT in the

format hour:minute:second such as 1:45:19.

The currentTimeMillis method in the System class returns

the current time in milliseconds since the midnight, January

1, 1970 GMT. (1970 was the year when the Unix operating

system was formally introduced.) You can use this method

to obtain the current time, and then compute the current

second, minute, and hour as follows.

Run

Elapsed

time

Unix Epoch

01-01-1970

00:00:00 GMT

Current Time

Time

System.currentTimeMills()

ShowCurrentTime

https://liveexample.pearsoncmg.com/html/ShowCurrentTime.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
26

Augmented Assignment Operators

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
27

Increment and

Decrement Operators

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
28

Increment and

Decrement Operators, cont.

int i = 10;

int newNum = 10 * i++;

int newNum = 10 * i;

i = i + 1;

Same effect as

int i = 10;

int newNum = 10 * (++i);

i = i + 1;

int newNum = 10 * i;

Same effect as

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
29

Increment and

Decrement Operators, cont.

Using increment and decrement operators makes

expressions short, but it also makes them complex and

difficult to read. Avoid using these operators in expressions

that modify multiple variables, or the same variable for

multiple times such as this: int k = ++i + i.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
30

Assignment Expressions and

Assignment Statements

Prior to Java 2, all the expressions can be used as

statements. Since Java 2, only the following types of

expressions can be statements:

variable op= expression; // Where op is +, -, *, /, or %

++variable;

variable++;

--variable;

variable--;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
31

Numeric Type Conversion

Consider the following statements:

byte i = 100;

long k = i * 3 + 4;

double d = i * 3.1 + k / 2;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
32

Conversion Rules

 When performing a binary operation involving two

operands of different types, Java automatically

converts the operand based on the following rules:

1. If one of the operands is double, the other is

converted into double.

2. Otherwise, if one of the operands is float, the other is

converted into float.

3. Otherwise, if one of the operands is long, the other is

converted into long.

4. Otherwise, both operands are converted into int.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
33

Type Casting

Implicit casting

 double d = 3; (type widening)

Explicit casting

 int i = (int)3.0; (type narrowing)

 int i = (int)3.9; (Fraction part is truncated)

What is wrong? int x = 5 / 2.0;

byte, short, int, long, float, double

range increases

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
34

Problem: Keeping Two Digits After

Decimal Points

Write a program that displays the sales tax with two
digits after the decimal point.

Run SalesTax

public class SalesTax {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 System.out.print("Enter purchase amount: ");

 double purchaseAmount = input.nextDouble(); double

tax = purchaseAmount * 0.06; System.out.println("Sales tax is

" + (int)(tax * 100) / 100.0);

 }

}

https://liveexample.pearsoncmg.com/html/SalesTax.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
35

Casting in an Augmented Expression

In Java, an augmented expression of the form x1 op=

x2 is implemented as x1 = (T)(x1 op x2), where T is

the type for x1. Therefore, the following code is

correct.

int sum = 0;

sum += 4.5; // sum becomes 4 after this statement

sum += 4.5 is equivalent to sum = (int)(sum + 4.5).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
36

Problem:

 Computing Loan Payments

Run

This program lets the user enter the interest

rate, number of years, and loan amount, and

computes monthly payment and total

payment.

12)1(
11

arsnumberOfYeerestRatemonthlyInt

erestRatemonthlyIntloanAmount
mentmonthlyPay

ComputeLoan

https://liveexample.pearsoncmg.com/html/ComputeLoan.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

 public class ComputeLoan {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 System.out.print("Enter yearly interest rate, for example 8.25: ");

 double annualInterestRate = input.nextDouble();

 double monthlyInterestRate = annualInterestRate / 1200;

 System.out.print("Enter number of years as an integer, for example 5: ");

 int numberOfYears = input.nextInt();

 System.out.print("Enter loan amount, for example 120000.95: ");

 double loanAmount = input.nextDouble();

 double monthlyPayment = loanAmount * monthlyInterestRate / (1

 - 1 / Math.pow(1 + monthlyInterestRate, numberOfYears * 12));

 double totalPayment = monthlyPayment * numberOfYears * 12;

 System.out.println("The monthly payment is $" +

 (int)(monthlyPayment * 100) / 100.0);

 System.out.println("The total payment is $" +

 (int)(totalPayment * 100) / 100.0);

 }

 }

37

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
38

Common Errors and Pitfalls

Common Error 1: Undeclared/Uninitialized

Variables and Unused Variables

Common Error 2: Integer Overflow

Common Error 3: Round-off Errors

Common Error 4: Unintended Integer Division

Common Error 5: Redundant Input Objects

Common Pitfall 1: Redundant Input Objects

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
39

Common Error 1:

Undeclared/Uninitialized Variables

and Unused Variables

double interestRate = 0.05;

double interest = interestrate * 45;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
40

Common Error 2: Integer Overflow

int value = 2147483647 + 1;

// value will actually be -2147483648

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
41

Common Error 3: Round-off Errors

System.out.println(1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1);

System.out.println(1.0 - 0.9);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
42

Common Error 4: Unintended Integer

Division
 int number1 = 1;
int number2 = 2;

double average = (number1 + number2) / 2;

System.out.println(average);

(a)

int number1 = 1;

int number2 = 2;

double average = (number1 + number2) / 2.0;

System.out.println(average);

(b)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
43

Common Pitfall 1: Redundant Input

Objects

Scanner input = new Scanner(System.in);

System.out.print("Enter an integer: ");

int v1 = input.nextInt();

Scanner input1 = new Scanner(System.in);

System.out.print("Enter a double value: ");

double v2 = input1.nextDouble();

