
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All rights reserved. 1

Chapter 3 Selections

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

 Java Mathematics Name Example Result

Operator Symbol (radius is 5)

< < less than radius < 0 false

<= ≤ less than or equal to radius <= 0 false

> > greater than radius > 0 true

>= ≥ greater than or equal to radius >= 0 true

== = equal to radius == 0 false

!= ≠ not equal to radius != 0 true

2

Relational Operators

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
3

The boolean Type and Operators

Often in a program you need to compare two

values, such as whether i is greater than j. Java

provides six comparison operators (also known

as relational operators) that can be used to

compare two values. The result of the

comparison is a Boolean value: true or false.

boolean b = (1 > 2);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
4

Problem: A Simple Math Learning Tool

Run

This example creates a program to let a first grader

practice additions. The program randomly

generates two single-digit integers number1 and

number2 and displays a question such as “What is

7 + 9?” to the student. After the student types the

answer, the program displays a message to indicate

whether the answer is true or false.

AdditionQuiz

https://liveexample.pearsoncmg.com/html/AdditionQuiz.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
5

One-way if Statements

if (boolean-expression) {
 statement(s);
}

if (radius >= 0) {

 area = radius * radius * PI;

 System.out.println("The area"

 + " for the circle of radius "

 + radius + " is " + area);

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
6

Simple if Demo

Run

Write a program that prompts the user to enter an integer. If the

number is a multiple of 5, print HiFive. If the number is divisible

by 2, print HiEven.

SimpleIfDemo

https://liveexample.pearsoncmg.com/html/SimpleIfDemo.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
7

The Two-way if Statement
if (boolean-expression) {

 statement(s)-for-the-true-case;

}

else {

 statement(s)-for-the-false-case;

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
8

if-else Example

if (radius >= 0) {

 area = radius * radius * 3.14159;

 System.out.println("The area for the “

 + “circle of radius " + radius +

 " is " + area);

}

else {

 System.out.println("Negative input");

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
9

Multiple Alternative if Statements

 if (score >= 90.0)
 System.out.print("A");

else

 if (score >= 80.0)

 System.out.print("B");

 else

 if (score >= 70.0)

 System.out.print("C");

 else

 if (score >= 60.0)

 System.out.print("D");

 else

 System.out.print("F");

 (a)

Equivalent

if (score >= 90.0)

 System.out.print("A");

else if (score >= 80.0)

 System.out.print("B");

else if (score >= 70.0)

 System.out.print("C");

else if (score >= 60.0)

 System.out.print("D");

else

 System.out.print("F");

(b)

This is better

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
10

TIP

 if (number % 2 == 0)
 even = true;

else

 even = false;

(a)

Equivalent

boolean even

 = number % 2 == 0;

(b)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
11

CAUTION

if (even == true)

 System.out.println(

 "It is even.");

(a)

Equivalent if (even)

 System.out.println(

 "It is even.");

(b)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
12

Problem: An Improved Math Learning Tool

This example creates a program to teach a

first grade child how to learn subtractions.

The program randomly generates two single-

digit integers number1 and number2 with

number1 >= number2 and displays a question

such as “What is 9 – 2?” to the student. After

the student types the answer, the program

displays whether the answer is correct.

SubtractionQuiz Run

https://liveexample.pearsoncmg.com/html/SubtractionQuiz.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
13

Logical Operators

Operator Name Description

! not logical negation

&& and logical conjunction

|| or logical disjunction

^ exclusive or logical exclusion

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
14

Truth Table for Operator !

p !p Example (assume age = 24, weight = 140)

true false !(age > 18) is false, because (age > 18) is true.

false true !(weight == 150) is true, because (weight == 150) is false.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
15

Truth Table for Operator &&

p1 p2 p1 && p2 Example (assume age = 24, weight = 140)

false false false (age <= 18) && (weight < 140) is false, because both

conditions are both false.

false true false

true false false (age > 18) && (weight > 140) is false, because (weight

> 140) is false.

true true true (age > 18) && (weight >= 140) is true, because both

(age > 18) and (weight >= 140) are true.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
16

Truth Table for Operator ||

p1 p2 p1 || p2 Example (assume age = 24, weihgt = 140)

false false false

false true true (age > 34) || (weight <= 140) is true, because (age > 34)

is false, but (weight <= 140) is true.

true false true (age > 14) || (weight >= 150) is false, because

(age > 14) is true.

true true true

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
17

Truth Table for Operator ^

p1 p2 p1 ^ p2 Example (assume age = 24, weight = 140)

false false false (age > 34) ^ (weight > 140) is true, because (age > 34) is false

and (weight > 140) is false.

false true true (age > 34) ^ (weight >= 140) is true, because (age > 34) is false

but (weight >= 140) is true.

true false true (age > 14) ^ (weight > 140) is true, because (age > 14) is

true and (weight > 140) is false.

true true false

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
18

Examples

System.out.println("Is " + number + " divisible by 2 and 3? " +

 ((number % 2 == 0) && (number % 3 == 0)));

System.out.println("Is " + number + " divisible by 2 or 3? " +

 ((number % 2 == 0) || (number % 3 == 0)));

 System.out.println("Is " + number +

 " divisible by 2 or 3, but not both? " +

 ((number % 2 == 0) ^ (number % 3 == 0)));

TestBooleanOperators

Run

https://liveexample.pearsoncmg.com/html/SubtractionQuiz.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
19

Problem: Determining Leap Year?

This program first prompts the user to enter a year as

an int value and checks if it is a leap year.

A year is a leap year if it is divisible by 4 but not by

100, or it is divisible by 400.

 (year % 4 == 0 && year % 100 != 0) || (year % 400

== 0)

LeapYear Run

https://liveexample.pearsoncmg.com/html/LeapYear.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
20

switch Statement Rules

switch (switch-expression) {

 case value1: statement(s)1;

 break;

 case value2: statement(s)2;

 break;

 …

 case valueN: statement(s)N;

 break;

 default: statement(s)-for-default;

}

The switch-expression
must yield a value of char,
byte, short, or int type and
must always be enclosed in
parentheses.

The value1, ..., and valueN must

have the same data type as the

value of the switch-expression.

The resulting statements in the

case statement are executed when

the value in the case statement

matches the value of the switch-

expression. Note that value1, ...,

and valueN are constant

expressions, meaning that they

cannot contain variables in the

expression, such as 1 + x.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
21

switch Statement Rules

 The keyword break is optional,

but it should be used at the end of

each case in order to terminate the

remainder of the switch

statement. If the break statement

is not present, the next case

statement will be executed.

switch (switch-expression) {

 case value1: statement(s)1;

 break;

 case value2: statement(s)2;

 break;

 …

 case valueN: statement(s)N;

 break;

 default: statement(s)-for-default;

}

 The default case, which is

optional, can be used to perform

actions when none of the

specified cases matches the

switch-expression.
When the value in a case statement matches the value

of the switch-expression, the statements starting from

this case are executed until either a break statement or

the end of the switch statement is reached.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
22

Trace switch statement

switch (day) {

 case 1:

 case 2:

 case 3:

 case 4:

 case 5: System.out.println("Weekday"); break;

 case 0:

 case 6: System.out.println("Weekend");

}

Suppose day is 2:

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
23

Conditional Operators
if (x > 0)

 y = 1
else
 y = -1;

is equivalent to

y = (x > 0) ? 1 : -1;
(boolean-expression) ? expression1 : expression2

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
24

Conditional Operator

if (num % 2 == 0)

 System.out.println(num + “is even”);

else

 System.out.println(num + “is odd”);

System.out.println(

 (num % 2 == 0)? num + “is even” :

 num + “is odd”);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
25

Operator Precedence
 var++, var--

 +, - (Unary plus and minus), ++var,--var

 (type) Casting

 ! (Not)

 *, /, % (Multiplication, division, and remainder)

 +, - (Binary addition and subtraction)

 <, <=, >, >= (Relational operators)

 ==, !=; (Equality)

 ^ (Exclusive OR)

 && (Conditional AND) Short-circuit AND

 || (Conditional OR) Short-circuit OR

 =, +=, -=, *=, /=, %= (Assignment operator)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
26

Operator Precedence and Associativity

The expression in the parentheses is evaluated first.
(Parentheses can be nested, in which case the expression
in the inner parentheses is executed first.) When
evaluating an expression without parentheses, the
operators are applied according to the precedence rule and
the associativity rule.

If operators with the same precedence are next to each
other, their associativity determines the order of
evaluation. All binary operators except assignment
operators are left-associative.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
27

Operator Associativity

 When two operators with the same precedence
are evaluated, the associativity of the operators
determines the order of evaluation. All binary
operators except assignment operators are left-
associative.

 a – b + c – d is equivalent to ((a – b) + c) – d

 Assignment operators are right-associative.
Therefore, the expression

 a = b += c = 5 is equivalent to a = (b += (c = 5))

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
28

Example
Applying the operator precedence and associativity rule,
the expression 3 + 4 * 4 > 5 * (4 + 3) - 1 is evaluated as
follows:

3 + 4 * 4 > 5 * (4 + 3) - 1

3 + 4 * 4 > 5 * 7 – 1

3 + 16 > 5 * 7 – 1

3 + 16 > 35 – 1

19 > 35 – 1

19 > 34

false

 (1) inside parentheses first

 (2) multiplication

 (3) multiplication

 (4) addition

 (5) subtraction

 (6) greater than

