
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
1

Chapter 7, 8 Arrays

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
2

Opening Problem

Read one hundred numbers, compute their

average, and find out how many numbers are

above the average.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
3

Introducing Arrays

Array is a data structure that represents a collection of the

same types of data.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
4

Declaring Array Variables

 datatype[] arrayRefVar;

double[] myList;

– datatype arrayRefVar[]; // This style is allowed, but not preferred

double myList[];

 arrayRefVar = new datatype[arraySize];

 myList = new double[10];

 myList[0] references the first element in the array.

 datatype[] arrayRefVar = new

 datatype[arraySize];

 double[] myList = new double[10];

 myList.length returns 10

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
5

More on Arrays

When an array is created, its elements are

assigned the default value of

0 for the numeric primitive data types,

'\u0000' for char types, and

false for boolean types.

The array elements are accessed through the index.

The array indices are 0-based, i.e., it starts from

0 to arrayRefVar.length-1.

myList[2] = myList[0] + myList[1];

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
6

Declaring, creating, initializing

Using the Shorthand Notation

double[] myList = {1.9, 2.9, 3.4, 3.5};

This shorthand notation is equivalent to the

following statements:

double[] myList = new double[4];

myList[0] = 1.9;

myList[1] = 2.9;

myList[2] = 3.4;

myList[3] = 3.5;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
7

CAUTION

Using the shorthand notation, you
have to declare, create, and initialize
the array all in one statement.
Splitting it would cause a syntax
error. For example, the following is
wrong:

double[] myList;

myList = {1.9, 2.9, 3.4, 3.5};

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
8

Trace Program with Arrays

public class Test {

 public static void main(String[] args) {

 int[] values = new int[5];

 for (int i = 1; i < 5; i++) {

 values[i] = i + values[i-1];

 }

 values[0] = values[1] + values[4];

 }

}

Declare array variable values, create an

array, and assign its reference to values

After the array is created

0

1

2

3

4

0

0

0

0

0

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
9

Trace Program with Arrays

public class Test {

 public static void main(String[] args) {

 int[] values = new int[5];

 for (int i = 1; i < 5; i++) {

 values[i] = i + values[i-1];

 }

 values[0] = values[1] + values[4];

 }

}

After this line, values[0] is 11 (1 + 10)

0

1

2

3

4

11

1

3

6

10

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
10

Initializing arrays
 With input values

java.util.Scanner input = new java.util.Scanner(System.in);

System.out.print("Enter " + myList.length + " values: ");

for (int i = 0; i < myList.length; i++)

 myList[i] = input.nextDouble();

With Random numbers
for (int i = 0; i < myList.length; i++) {

 myList[i] = Math.random() * 100;

}

Printing:
for (int i = 0; i < myList.length; i++) {

 System.out.print(myList[i] + " ");

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
11

Array Processing

Summing
for (int i = 0; i < myList.length; i++) {

 total += myList[i];

}

Largest Element
double max = myList[0];

for (int i = 1; i < myList.length; i++) {

 if (myList[i] > max) max = myList[i];

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
12

Shuffling & Shifting
 for (int i = 0; i < myList.length - 1; i++) {

 // Generate an index j randomly

 int j = (int)(Math.random()

 * myList.length);

 // Swap myList[i] with myList[j]

 double temp = myList[i];

 myList[i] = myList[j];

 myList[j] = temp;

}

myList

[0]

[1]

.

.

.

A random index

i

swap

.

.

.

[i]

 [j]

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
13

Enhanced for Loop (for-each loop)

JDK 1.5 introduced a new for loop that enables you to traverse the complete array

sequentially without using an index variable. For example, the following code

displays all elements in the array myList:

for (double value: myList)

 System.out.println(value);

In general, the syntax is

for (elementType value: arrayRefVar) {

 // Process the value

}

You still have to use an index variable if you wish to traverse the array in a

different order or change the elements in the array.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
14

Analyze Numbers

Read one hundred numbers, compute their

average, and find out how many numbers are

above the average.

AnalyzeNumbers Run

https://liveexample.pearsoncmg.com/html/AnalyzeNumbers.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
15

Copying Arrays
Often, in a program, you need to duplicate an array or a part of an array.
In such cases you could attempt to use the assignment statement (=), as
follows:

list2 = list1;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
16

Copying Arrays

Using a loop:

int[] sourceArray = {2, 3, 1, 5, 10};

int[] targetArray = new

int[sourceArray.length];

for (int i = 0; i < sourceArrays.length; i++)

 targetArray[i] = sourceArray[i];

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
17

The arraycopy Utility

arraycopy(sourceArray, src_pos,

targetArray, tar_pos, length);

Example:

System.arraycopy(sourceArray, 0,

targetArray, 0, sourceArray.length);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
18

Passing Arrays to Methods
public static void printArray(int[] array) {

 for (int i = 0; i < array.length; i++) {

 System.out.print(array[i] + " ");

 }

}

Invoke the method

int[] list = {3, 1, 2, 6, 4, 2};

printArray(list);

Invoke the method

printArray(new int[]{3, 1, 2, 6, 4, 2});

Anonymous array

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
19

Anonymous Array

The statement

printArray(new int[]{3, 1, 2, 6, 4, 2});

creates an array using the following syntax:

new dataType[]{literal0, literal1, ..., literalk};

There is no explicit reference variable for the array.

Such array is called an anonymous array.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
20

Pass by Reference vs. By Value
Java uses pass by value to pass arguments to a method. There
are important differences between passing a value of variables
of primitive data types and passing arrays.

 For a parameter of a primitive type value, the actual value is
passed. Changing the value of the local parameter inside the
method does not affect the value of the variable outside the
method.

 For a parameter of an array type, the value of the parameter
contains a reference to an array; this reference is passed to the
method. Any changes to the array that occur inside the method
body will affect the original array that was passed as the
argument.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
21

public class Test {

 public static void main(String[] args) {

 int x = 1; // x represents an int value

 int[] y = new int[10]; // y represents an array of int values

 m(x, y); // Invoke m with arguments x and y

 System.out.println("x is " + x);

 System.out.println("y[0] is " + y[0]);

 }

 public static void m(int number, int[] numbers) {

 number = 1001; // Assign a new value to number

 numbers[0] = 5555; // Assign a new value to numbers[0]

 }

}

Simple Example

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
22

Call Stack

When invoking m(x, y), the values of x and y are passed

to number and numbers. Since y contains the reference

value to the array, numbers now contains the same

reference value to the same array.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
23

Call Stack

When invoking m(x, y), the values of x and y are

passed to number and numbers. Since y contains the

reference value to the array, numbers now contains the

same reference value to the same array.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
24

Heap

Space required for the

main method

 int[] y:

 int x: 1

reference

The arrays are

stored in a

heap.

Heap

 5555

 0

 0

The JVM stores the array in an area of memory,

called heap, which is used for dynamic memory

allocation where blocks of memory are allocated and

freed in an arbitrary order.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
25

Passing Arrays as Arguments

Objective: Demonstrate differences of

passing primitive data type variables

and array variables.

TestPassArray Run

https://liveexample.pearsoncmg.com/html/TestPassArray.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
26

Example, cont.

Invoke swap(int n1, int n2).

The primitive type values in

a[0] and a[1] are passed to the

swap method.

Space required for the

main method

 int[] a

Stack

Space required for the

swap method
n2: 2

n1: 1

reference
a[1]: 2

a[0]: 1

The arrays are

stored in a

heap.

Invoke swapFirstTwoInArray(int[] array).

The reference value in a is passed to the

swapFirstTwoInArray method.

Heap

Space required for the

main method

 int[] a

Stack
Space required for the

swapFirstTwoInArray

method
 int[] array

reference

reference

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
27

Returning an Array from a Method
public static int[] reverse(int[] list) {

 int[] result = new int[list.length];

 for (int i = 0, j = result.length - 1;

 i < list.length; i++, j--) {

 result[j] = list[i];

 }

 return result;

}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

list

result

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
28

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {

 int[] result = new int[list.length];

 for (int i = 0, j = result.length - 1;

 i < list.length; i++, j--) {

 result[j] = list[i];

 }

 return result;

}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

6 5 4 3 2 1

Return result

list2

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
29

Problem: Counting Occurrence of Each

Letter
 Generate 100 lowercase letters randomly and assign to an array of

characters.

 Count the occurrence of each letter in the array.

CountLettersInArray

Run

https://liveexample.pearsoncmg.com/html/CountLettersInArray.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
30

Variable-Length Arguments
You can pass a variable number of arguments of the same
type to a method.

VarArgsDemo

Run

public class VarArgsDemo {

 public static void main(String[] args) {

printMax(34, 3, 3, 2, 56.5);

printMax(new double[]{1, 2, 3});

}

 public static void printMax(double... numbers) {

 if (numbers.length == 0) {

 System.out.println("No argument passed");

 return;

 }

 double result = numbers[0];

 for (int i = 1; i < numbers.length; i++)

 if (numbers[i] > result) result = numbers[i];

 System.out.println("The max value is " + result);

 }

}

https://liveexample.pearsoncmg.com/html/VarArgsDemo.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
31

Searching Arrays

 public class LinearSearch {

 /** The method for finding a key in the list */

 public static int linearSearch(int[] list, int key) {

 for (int i = 0; i < list.length; i++)

 if (key == list[i])

 return i;

 return -1;

 }

}

 list

key Compare key with list[i] for i = 0, 1, …

 [0] [1] [2] …

Searching is the process of looking for a specific element in
an array; for example, discovering whether a certain score is
included in a list of scores. Searching is a common task in
computer programming. There are many algorithms and data
structures devoted to searching. In this section, two
commonly used approaches are discussed, linear search and
binary search.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
32

Linear Search

The linear search approach compares the key

element, key, sequentially with each element in

the array list. The method continues to do so

until the key matches an element in the list or

the list is exhausted without a match being

found. If a match is made, the linear search

returns the index of the element in the array

that matches the key. If no match is found, the

search returns -1.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
33

From Idea to Solution
/** The method for finding a key in the list */

public static int linearSearch(int[] list, int key) {

 for (int i = 0; i < list.length; i++)

 if (key == list[i])

 return i;

 return -1;

}

int[] list = {1, 4, 4, 2, 5, -3, 6, 2};

int i = linearSearch(list, 4); // returns 1

int j = linearSearch(list, -4); // returns -1

int k = linearSearch(list, -3); // returns 5

Trace the method

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
34

Binary Search

For binary search to work, the elements in the

array must already be ordered. Without loss of

generality, assume that the array is in

ascending order.

e.g., 2 4 7 10 11 45 50 59 60 66 69 70 79

The binary search first compares the key with

the element in the middle of the array.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
35

Binary Search, cont.

 If the key is less than the middle element,
you only need to search the key in the first
half of the array.

 If the key is equal to the middle element,
the search ends with a match.

 If the key is greater than the middle
element, you only need to search the key in
the second half of the array.

Consider the following three cases:

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
36

From Idea to Soluton
/** Use binary search to find the key in the list */

public static int binarySearch(int[] list, int key) {

 int low = 0;

 int high = list.length - 1;

 while (high >= low) {

 int mid = (low + high) / 2;

 if (key < list[mid])

 high = mid - 1;

 else if (key == list[mid])

 return mid;

 else

 low = mid + 1;

 }

 return -1 - low;

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
37

The Arrays.binarySearch Method
Since binary search is frequently used in programming, Java provides several
overloaded binarySearch methods for searching a key in an array of int, double,
char, short, long, and float in the java.util.Arrays class. For example, the
following code searches the keys in an array of numbers and an array of
characters.

int[] list = {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79};

System.out.println("Index is " +

 java.util.Arrays.binarySearch(list, 11));

char[] chars = {'a', 'c', 'g', 'x', 'y', 'z'};

System.out.println("Index is " +

 java.util.Arrays.binarySearch(chars, 't'));

For the binarySearch method to work, the array must be pre-sorted in increasing
order.

Return is 4

Return is –4 (insertion point is
3, so return is -3-1)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
38

Sorting Arrays

Sorting, like searching, is also a common task in

computer programming. Many different algorithms

have been developed for sorting. This section

introduces a simple, intuitive sorting algorithms:

selection sort.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
39

Selection Sort
Selection sort finds the smallest number in the list and places it first. It then finds
the smallest number remaining and places it second, and so on until the list
contains only a single number.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
40

The Code
 /** The method for sorting the numbers */

 public static void selectionSort(double[] list) {
 for (int i = 0; i < list.length; i++) {

 // Find the minimum in the list[i..list.length-1]

 double currentMin = list[i];

 int currentMinIndex = i;

 for (int j = i + 1; j < list.length; j++) {

 if (currentMin > list[j]) {

 currentMin = list[j];

 currentMinIndex = j;

 }

 }

 // Swap list[i] with list[currentMinIndex] if necessary;

 if (currentMinIndex != i) {

 list[currentMinIndex] = list[i];

 list[i] = currentMin;

 }

 }

 }

Invoke it

selectionSort(yourList)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
41

The Arrays.sort Method

Since sorting is frequently used in programming, Java provides several
overloaded sort methods for sorting an array of int, double, char, short,
long, and float in the java.util.Arrays class. For example, the following
code sorts an array of numbers and an array of characters.

double[] numbers = {6.0, 4.4, 1.9, 2.9, 3.4, 3.5};

java.util.Arrays.sort(numbers);

char[] chars = {'a', 'A', '4', 'F', 'D', 'P'};

java.util.Arrays.sort(chars);

Java 8 now provides Arrays.parallelSort(list) that utilizes the multicore
for fast sorting.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
42

The Arrays.toString(list) Method
The Arrays.toString(list) method can be used to return a string

representation for the list.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
43

Main Method Is Just a Regular Method

 public class A {
 public static void main(String[] args) {

 String[] strings = {"New York",

 "Boston", "Atlanta"};

 B.main(strings);

 }

}

class B {

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++)

 System.out.println(args[i]);

 }

}

You can call a regular method by passing actual

parameters. Can you pass arguments to main? Of

course, yes. For example, the main method in class

B is invoked by a method in A, as shown below:

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
44

Command-Line Parameters

class TestMain {

 public static void main(String[] args) {

 ...

 }

}

java TestMain arg0 arg1 arg2 ... argn

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
45

Processing

Command-Line Parameters

In the main method, get the arguments from

args[0], args[1], ..., args[n], which

corresponds to arg0, arg1, ..., argn in

the command line.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
46

Problem: Calculator

Objective: Write a program that will perform

binary operations on integers. The program

receives three parameters: an operator and two

integers.

java Calculator 2 + 3

java Calculator 2 - 3

 java Calculator 2 / 3

 java Calculator 2 . 3

Calculator

Run

https://liveexample.pearsoncmg.com/html/Calculator.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
47

public class Calculator

public static void main(String[] args) {

if (args.length != 3) {

System.out.println("Usage: java Calculator operand1 operator operand2");

System.exit(1);

 }

int result = 0;

switch (args[1].charAt(0)) {
case '+': result = Integer.parseInt(args[0]) + Integer.parseInt(args[2]); break;

case '-': result = Integer.parseInt(args[0]) - Integer.parseInt(args[2]); break;

case '.': result = Integer.parseInt(args[0]) * Integer.parseInt(args[2]); break;

case '/': result = Integer.parseInt(args[0]) / Integer.parseInt(args[2]);

} // Display result

System.out.println(args[0] + ' ' + args[1] + ' ' + args[2] + " = " + result);

}

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
48

Declaring Variables of Two-

dimensional Arrays and Creating

Two-dimensional Arrays

int[][] matrix = new int[10][10];

 or

int matrix[][] = new int[10][10];

matrix[0][0] = 3;

for (int i = 0; i < matrix.length; i++)

 for (int j = 0; j < matrix[i].length; j++)

 matrix[i][j] = (int)(Math.random() * 1000);

double[][] x;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
49

Declaring, Creating, and Initializing Using

Shorthand Notations

You can also use an array initializer to declare, create and

initialize a two-dimensional array. For example,

int[][] array = new int[4][3];

array[0][0] = 1; array[0][1] = 2; array[0][2] = 3;

array[1][0] = 4; array[1][1] = 5; array[1][2] = 6;

array[2][0] = 7; array[2][1] = 8; array[2][2] = 9;

array[3][0] = 10; array[3][1] = 11; array[3][2] = 12;

int[][] array = {

 {1, 2, 3},

 {4, 5, 6},

 {7, 8, 9},

 {10, 11, 12}

};

Same as

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
50

Lengths of Two-dimensional

Arrays

int[][] x = new int[3][4];

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
51

Lengths of Two-dimensional

Arrays, cont.

int[][] array = {

 {1, 2, 3},

 {4, 5, 6},

 {7, 8, 9},

 {10, 11, 12}

};

array.length

array[0].length

array[1].length

array[2].length

array[3].length

array[4].length ArrayIndexOutOfBoundsException

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
52

Ragged Arrays

Each row in a two-dimensional array is itself an array. So,

the rows can have different lengths. Such an array is

known as a ragged array. For example,

int[][] matrix = {

 {1, 2, 3, 4, 5},

 {2, 3, 4, 5},

 {3, 4, 5},

 {4, 5},

 {5}

};

matrix.length is 5

matrix[0].length is 5

matrix[1].length is 4

matrix[2].length is 3

matrix[3].length is 2

matrix[4].length is 1

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
53

Ragged Arrays, cont.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
54

Initializing arrays with input values

java.util.Scanner input = new Scanner(System.in);

System.out.println("Enter " + matrix.length + " rows and " +

 matrix[0].length + " columns: ");

for (int row = 0; row < matrix.length; row++) {

 for (int column = 0; column < matrix[row].length; column++) {

 matrix[row][column] = input.nextInt();

 }

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
55

Initializing arrays with random values

for (int row = 0; row < matrix.length; row++) {

 for (int column = 0; column < matrix[row].length; column++) {

 matrix[row][column] = (int)(Math.random() * 100);

 }

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
56

Printing arrays

for (int row = 0; row < matrix.length; row++) {

 for (int column = 0; column < matrix[row].length; column++) {

 System.out.print(matrix[row][column] + " ");

 }

 System.out.println();

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
57

Passing Arrays to Methods

PassTwoDimensionalArray

Run

public class PassTwoDimensionalArray {

 public static void main(String[] args) {

 int[][] m = getArray(); // Get an array // Display sum of elements

 System.out.println("\nSum of all elements is " + sum(m));

 }

 public static int[][] getArray() { // Create a Scanner

 Scanner input = new Scanner(System.in); // Enter array values

 int[][] m = new int[3][4];

 System.out.println("Enter " + m.length + " rows and " +

 m[0].length + " columns: ");

 for (int i = 0; i < m.length; i++)

 for (int j = 0; j < m[i].length; j++)

 m[i][j] = input.nextInt();

 return m;

 }

 public static int sum(int[][] m) {

 int total = 0;

 for (int row = 0; row < m.length; row++) {

 for (int column = 0; column < m[row].length; column++) {

 total += m[row][column];

 }

 }

 return total;

 }

}

https://liveexample.pearsoncmg.com/html/PassTwoDimensionalArray.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
58

Problem: Finding Two Points

Nearest to Each Other
https://liveexample.pearson
cmg.com/dsanimation/Clos
estPaireBook.html

PassTwoDimensionalArray Run

https://liveexample.pearsoncmg.com/dsanimation/ClosestPaireBook.html
https://liveexample.pearsoncmg.com/html/FindNearestPoints.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
59

Multidimensional Arrays

Occasionally, you will need to represent n-

dimensional data structures. In Java, you can create

n-dimensional arrays for any integer n.

The way to declare two-dimensional array

variables and create two-dimensional arrays can be

generalized to declare n-dimensional array

variables and create n-dimensional arrays for n >=

3.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
60

Multidimensional Arrays

double[][][] scores = {

 {{7.5, 20.5}, {9.0, 22.5}, {15, 33.5}, {13, 21.5}, {15, 2.5}},

 {{4.5, 21.5}, {9.0, 22.5}, {15, 34.5}, {12, 20.5}, {14, 9.5}},

 {{6.5, 30.5}, {9.4, 10.5}, {11, 33.5}, {11, 23.5}, {10, 2.5}},

 {{6.5, 23.5}, {9.4, 32.5}, {13, 34.5}, {11, 20.5}, {16, 7.5}},

 {{8.5, 26.5}, {9.4, 52.5}, {13, 36.5}, {13, 24.5}, {16, 2.5}},

 {{9.5, 20.5}, {9.4, 42.5}, {13, 31.5}, {12, 20.5}, {16, 6.5}}

};

scores[i] [j] [k]

Which student

Which exam

Multiple-choice or essay

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
61

Problem: Calculating Total Scores

Objective: write a program that calculates the total score for students

in a class. Suppose the scores are stored in a three-dimensional array

named scores. The first index in scores refers to a student, the second

refers to an exam, and the third refers to the part of the exam. Suppose

there are 7 students, 5 exams, and each exam has two parts--the

multiple-choice part and the programming part. So, scores[i][j][0]

represents the score on the multiple-choice part for the i’s student on

the j’s exam. Your program displays the total score for each student.

TotalScore Run

https://liveexample.pearsoncmg.com/html/TotalScore.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
62

public class TotalScore { /** Main method */

 public static void main(String[] args) {

 double[][][] scores =

 { {{7.5, 20.5}, {9.0, 22.5}, {15, 33.5}, {13, 21.5}, {15, 2.5}},

 {{4.5, 21.5}, {9.0, 22.5}, {15, 34.5}, {12, 20.5}, {14, 9.5}},

 {{6.5, 30.5}, {9.4, 10.5}, {11, 33.5}, {11, 23.5}, {10, 2.5}},

 {{6.5, 23.5}, {9.4, 32.5}, {13, 34.5}, {11, 20.5}, {16, 7.5}},

 {{8.5, 26.5}, {9.4, 52.5}, {13, 36.5}, {13, 24.5}, {16, 2.5}},

 {{9.5, 20.5}, {9.4, 42.5}, {13, 31.5}, {12, 20.5}, {16, 6.5}},

 {{1.5, 29.5}, {6.4, 22.5}, {14, 30.5}, {10, 30.5}, {16, 6.0}}};

 // Calculate and display total score for each student

 for (int i = 0; i < scores.length; i++) {

 double totalScore = 0;

 for (int j = 0; j < scores[i].length; j++)

 for (int k = 0; k < scores[i][j].length; k++)

 totalScore += scores[i][j][k];

 System.out.println("Student " + i + "'s score is " + totalScore);

 }

 }

}

