
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
1

Chapter 9 Objects and Classes

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
2

OO Programming Concepts

Object-oriented programming (OOP) involves

programming using objects. An object represents

an entity in the real world that can be distinctly

identified. For example, a student, a desk, a circle,

a button, and even a loan can all be viewed as

objects. An object has a unique identity, state, and

behaviors. The state of an object consists of a set

of data fields (also known as properties) with their

current values. The behavior of an object is

defined by a set of methods.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

Problems with Procedural Languages

 Data does not have an owner.

 Difficult to maintain data integrity.

 Functions are building blocks.

 Many functions can modify a given block

of data.

 Difficult to trace bug sources when data is

corrupted.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

What is Object?
 An object has state, exhibits some well

defined behaviour, and has a unique

identity.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

Abstraction - Modeling
 Abstraction focuses upon the essential

characteristics of some object, relative to

the perspective of the viewer.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

What is Class?
• A class represents a set of objects that share

common structure and a common behavior.

• A class is a blueprint or prototype that defines the

variables and methods common to all objects of a

certain kind.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

Class Access

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

Class Access cont.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

Class Access cont.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

Class Access cont.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

Initialization of Objects

 Constructors ensure correct initialization of all data.

They are automatically called at the time of object

creation.

 Destructors on the other hand ensure the de allocation of

resources before an object dies or goes out of scope.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

Lifecycle of an Object

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
13

Objects

An object has both a state and behavior. The state

defines the object, and the behavior defines what

the object does.

Class Name: Circle

Data Fields:

radius is _______

Methods:

getArea

Circle Object 1

Data Fields:

radius is 10

Circle Object 2

Data Fields:

radius is 25

Circle Object 3

Data Fields:

radius is 125

A class template

Three objects of

the Circle class

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
14

Classes

Classes are constructs that define objects of the

same type. A Java class uses variables to define

data fields and methods to define behaviors.

Additionally, a class provides a special type of

methods, known as constructors, which are invoked

to construct objects from the class.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

Encapsulation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

Encapsulation

 Encapsulation is used to hide unimportant

implementation details from other objects.

 In real world

– When you want to change gears on your

car:

You don’t need to know how the gear

mechanism works.

You just need to know which lever to

move.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

Encapsulation cont.

 In software programs:

– You don’t need to know how a class is

implemented.

– You just need to know which methods to

invoke.

– Thus, the implementation details can

change at any time without affecting

other parts of the program.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

Inheritance

 Extending the functionality of a class or

 Specializing the functionality of the class.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

Inheritance cont.

 Subclasses: a subclass may inherit

the structure and behaviour of it’s

superclass.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

Polymorphism
 Polymorphism refers to the ability of an object

to provide different behaviours (use different

implementations) depending on its own nature.

Specifically, depending on its position in the

class hierarchy.

drawShape (class Shape)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
21

Classes

 class Circle {

/** The radius of this circle */

double radius = 1.0;

/** Construct a circle object */

Circle() {

}

/** Construct a circle object */

Circle(double newRadius) {

 radius = newRadius;

}

/** Return the area of this circle */
double getArea() {

 return radius * radius * 3.14159;

}

 }

Data field

Method

Constructors

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
22

UML Class Diagram

Circle

radius: double

Circle()

Circle(newRadius: double)

getArea(): double

getPerimeter(): double

setRadius(newRadius:

double): void

circle1: Circle

radius = 1.0

Class name

 Data fields

 Constructors and

methods

circle2: Circle

radius = 25

circle3: Circle

radius = 125

UML Class Diagram

UML notation

for objects

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
23

Example: Defining Classes and
Creating Objects

Objective: Demonstrate creating objects,

accessing data, and using methods.

TestSimpleCircle Run

https://liveexample.pearsoncmg.com/html/TestSimpleCircle.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
24

Example: Defining Classes and Creating Objects

 TV

channel: int

volumeLevel: int

on: boolean

+TV()

+turnOn(): void

+turnOff(): void

+setChannel(newChannel: int): void

+setVolume(newVolumeLevel: int): void

+channelUp(): void

+channelDown(): void

+volumeUp(): void

+volumeDown(): void

The current channel (1 to 120) of this TV.

The current volume level (1 to 7) of this TV.

Indicates whether this TV is on/off.

Constructs a default TV object.

Turns on this TV.

Turns off this TV.

Sets a new channel for this TV.

Sets a new volume level for this TV.

Increases the channel number by 1.

Decreases the channel number by 1.

Increases the volume level by 1.

Decreases the volume level by 1.

The + sign indicates

a public modifier.

TV

Run TestTV

https://liveexample.pearsoncmg.com/html/TV.html
https://liveexample.pearsoncmg.com/html/TestTV.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
25

Constructors

Circle() {

}

Circle(double newRadius) {

 radius = newRadius;

}

Constructors are a special

kind of methods that are

invoked to construct objects.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
26

Constructors, cont.

A constructor with no parameters is referred to as a

no-arg constructor.

· Constructors must have the same name as the

class itself.

· Constructors do not have a return type—not

even void.

· Constructors are invoked using the new

operator when an object is created. Constructors

play the role of initializing objects.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
27

Creating Objects Using

Constructors

new ClassName();

Example:

new Circle();

new Circle(5.0);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
28

Default Constructor

A class may be defined without constructors. In

this case, a no-arg constructor with an empty body

is implicitly defined in the class. This constructor,

called a default constructor, is provided

automatically only if no constructors are

explicitly defined in the class.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
29

Declaring Object Reference Variables

To reference an object, assign the object to a reference
variable.

To declare a reference variable, use the syntax:

ClassName objectRefVar;

Example:

Circle myCircle;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
30

Declaring/Creating Objects

in a Single Step

ClassName objectRefVar = new ClassName();

Example:

Circle myCircle = new Circle();

Create an object Assign object reference

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
31

Accessing Object’s Members

 Referencing the object’s data:

 objectRefVar.data

 e.g., myCircle.radius

 Invoking the object’s method:

 objectRefVar.methodName(arguments)

 e.g., myCircle.getArea()

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
32

Trace Code, cont.

Circle myCircle = new Circle(5.0);

Circle yourCircle = new Circle();

yourCircle.radius = 100;

: Circle

radius: 5.0

reference value myCircle

Assign object reference

to myCircle

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
33

Trace Code, cont.

Circle myCircle = new Circle(5.0);

Circle yourCircle = new Circle();

yourCircle.radius = 100;

: Circle

radius: 5.0

reference value myCircle

reference value yourCircle

: Circle

radius: 1.0

Assign object reference

to yourCircle

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
34

Trace Code, cont.

Circle myCircle = new Circle(5.0);

Circle yourCircle = new Circle();

yourCircle.radius = 100;

: Circle

radius: 5.0

reference value myCircle

reference value yourCircle

: Circle

radius: 100.0

Change radius in

yourCircle

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
35

Caution

Recall that you use

Math.methodName(arguments) (e.g., Math.pow(3, 2.5))

to invoke a method in the Math class. Can you invoke getArea() using
SimpleCircle.getArea()? The answer is no. All the methods used before
this chapter are static methods, which are defined using the static
keyword. However, getArea() is non-static. It must be invoked from an
object using

objectRefVar.methodName(arguments) (e.g., myCircle.getArea()).

More explanations will be given in the section on “Static Variables,
Constants, and Methods.”

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
36

Reference Data Fields

The data fields can be of reference types. For example,
the following Student class contains a data field name of
the String type.

public class Student {

 String name; // name has default value null

 int age; // age has default value 0

 boolean isScienceMajor; // isScienceMajor has default value false

 char gender; // c has default value '\u0000'

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
37

The null Value

If a data field of a reference type does not

reference any object, the data field holds a

special literal value, null.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
38

Default Value for a Data Field

The default value of a data field is null for a
reference type, 0 for a numeric type, false for a
boolean type, and '\u0000' for a char type.
However, Java assigns no default value to a local
variable inside a method.

public class Test {

 public static void main(String[] args) {

 Student student = new Student();

 System.out.println("name? " + student.name);

 System.out.println("age? " + student.age);

 System.out.println("isScienceMajor? " + student.isScienceMajor);

 System.out.println("gender? " + student.gender);

 }

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
39

Example

public class Test {

 public static void main(String[] args) {

 int x; // x has no default value

 String y; // y has no default value

 System.out.println("x is " + x);

 System.out.println("y is " + y);

 }

}

Compile error: variable not

initialized

Java assigns no default value to a local variable
inside a method.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
40

Differences between Variables of

Primitive Data Types and Object Types

1 Primitive type int i = 1 i

Object type Circle c c reference

Created using new Circle()

c: Circle

radius = 1

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
41

Copying Variables of Primitive

Data Types and Object Types

i

Primitive type assignment i = j

Before:

 1

 j

2

i

After:

 2

 j

2

c1

Object type assignment c1 = c2

Before:

 c2

c1

After:

c2

c1: Circle

radius = 5

c2: Circle

radius = 9

c1: Circle

radius = 5

c2: Circle

radius = 9

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
42

Garbage Collection

As shown in the previous figure, after the

assignment statement c1 = c2, c1 points to

the same object referenced by c2. The object

previously referenced by c1 is no longer

referenced. This object is known as garbage.

Garbage is automatically collected by JVM.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
43

Garbage Collection, cont

 TIP: If you know that an object is no longer

needed, you can explicitly assign null to a

reference variable for the object. The JVM

will automatically collect the space if the

object is not referenced by any variable.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

What's wrong?!

44

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

What's Wrong?!

45

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

What’s the output?!

46

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
47

The Date Class
Java provides a system-independent encapsulation of date
and time in the java.util.Date class. You can use the Date
class to create an instance for the current date and time and
use its toString method to return the date and time as a string.

java.util.Date

+Date()

+Date(elapseTime: long)

+toString(): String

+getTime(): long

+setTime(elapseTime: long): void

Constructs a Date object for the current time.

Constructs a Date object for a given time in

milliseconds elapsed since January 1, 1970, GMT.

Returns a string representing the date and time.

Returns the number of milliseconds since January 1,

1970, GMT.

Sets a new elapse time in the object.

The + sign indicates

public modifer

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
48

The Date Class Example

For example, the following code

java.util.Date date = new java.util.Date();

System.out.println(date.toString());

displays a string like Sun Mar 09 13:50:19

EST 2003.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
49

The Random Class
You have used Math.random() to obtain a random double
value between 0.0 and 1.0 (excluding 1.0). A more useful
random number generator is provided in the java.util.Random
class.

java.util.Random

+Random()

+Random(seed: long)

+nextInt(): int

+nextInt(n: int): int

+nextLong(): long

+nextDouble(): double

+nextFloat(): float

+nextBoolean(): boolean

Constructs a Random object with the current time as its seed.

Constructs a Random object with a specified seed.

Returns a random int value.

Returns a random int value between 0 and n (exclusive).

Returns a random long value.

Returns a random double value between 0.0 and 1.0 (exclusive).

Returns a random float value between 0.0F and 1.0F (exclusive).

Returns a random boolean value.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
50

The Random Class Example
If two Random objects have the same seed, they will generate
identical sequences of numbers. For example, the following
code creates two Random objects with the same seed 3.

Random random1 = new Random(3);

System.out.print("From random1: ");

for (int i = 0; i < 10; i++)

 System.out.print(random1.nextInt(1000) + " ");

Random random2 = new Random(3);

System.out.print("\nFrom random2: ");

for (int i = 0; i < 10; i++)

 System.out.print(random2.nextInt(1000) + " ");

From random1: 734 660 210 581 128 202 549 564 459 961

From random2: 734 660 210 581 128 202 549 564 459 961

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
51

The Point2D Class
Java API has a conveninent Point2D class in the
javafx.geometry package for representing a point in a two-
dimensional plane.

Run TestPoint2D

https://liveexample.pearsoncmg.com/html/TestPoint2D.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
52

Instance

 Variables, and Methods

Instance variables belong to a specific instance.

Instance methods are invoked by an instance of

the class.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
53

Static Variables, Constants,

and Methods

Static variables are shared by all the instances of the

class.

Static methods are not tied to a specific object.

Static constants are final variables shared by all the

instances of the class.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
54

Static Variables, Constants,

and Methods, cont.

To declare static variables, constants, and methods,

use the static modifier.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
55

Static Variables, Constants,

and Methods, cont.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
56

Example of

Using Instance and Class Variables

and Method

 Objective: Demonstrate the roles of
instance and class variables and their
uses. This example adds a class variable
numberOfObjects to track the number of
Circle objects created.

Run

CircleWithStaticMembers

TestCircleWithStaticMembers

https://liveexample.pearsoncmg.com/html/CircleWithStaticMembers.html
https://liveexample.pearsoncmg.com/html/TestCircleWithStaticMembers.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
57

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

Is this Correct?!

58

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
59

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

What do you think?

60

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

Which is correct?!

61

Let f be an instance of F

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
62

Visibility Modifiers and

Accessor/Mutator Methods
package-private or package-access
By default, the class, variable, or method can be

accessed by any class in the same package.

 public

 The class, data, or method is visible to any class in any

package.

 private

 The data or methods can be accessed only by the declaring

class.

The get and set methods are used to read and modify private

properties.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
63

The private modifier restricts access to within a class, the default

modifier restricts access to within a package, and the public

modifier enables unrestricted access.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
64

The default modifier on a class restricts access to within a package,

and the public modifier enables unrestricted access.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
65

NOTE

An object cannot access its private members, as shown in (b).

It is OK, however, if the object is declared in its own class, as

shown in (a).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
66

Why Data Fields Should Be

private?

To protect data.

To make code easy to maintain.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
67

Example of

Data Field Encapsulation

 Circle

-radius: double

-numberOfObjects: int

+Circle()

+Circle(radius: double)

+getRadius(): double

+setRadius(radius: double): void

+getNumberOfObjects(): int

+getArea(): double

The radius of this circle (default: 1.0).

The number of circle objects created.

Constructs a default circle object.

Constructs a circle object with the specified radius.

Returns the radius of this circle.

Sets a new radius for this circle.

Returns the number of circle objects created.

Returns the area of this circle.

The - sign indicates

private modifier

Run

CircleWithPrivateDataFields

TestCircleWithPrivateDataFields

https://liveexample.pearsoncmg.com/html/CircleWithPrivateDataFields.html
https://liveexample.pearsoncmg.com/html/TestCircleWithPrivateDataFields.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
68

Passing Objects to Methods
 Passing by value for primitive type value (the value is

passed to the parameter)

 Passing by value for reference type value (the value is the

reference to the object)

Run TestPassObject

https://liveexample.pearsoncmg.com/html/TestPassObject.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
69

Passing Objects to Methods, cont.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
70

Array of Objects

 An array of objects is actually an array of
reference variables. So invoking
circleArray[1].getArea() involves two
levels of referencing as shown in the next
figure. circleArray references to the entire
array. circleArray[1] references to a
Circle object.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
71

Array of Objects, cont.

 Circle[] circleArray = new Circle[10];

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
72

Array of Objects, cont.

Summarizing the areas of the circles

Run TotalArea

https://liveexample.pearsoncmg.com/html/TotalArea.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
73

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

What is the output?

74

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

What is the output?

75

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

What is the output?

76

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

What is the output?

77

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

What is the output?

78

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
79

Immutable Objects and Classes
If the contents of an object cannot be changed once the object

is created, the object is called an immutable object and its class

is called an immutable class. If you delete the set method in

the Circle class in Listing 8.10, the class would be immutable

because radius is private and cannot be changed without a set

method.

A class with all private data fields and without mutators is not

necessarily immutable. For example, the following class

Student has all private data fields and no mutators, but it is

mutable.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
80

Example
public class Student {

 private int id;

 private BirthDate birthDate;

 public Student(int ssn,

 int year, int month, int day) {

 id = ssn;

 birthDate = new BirthDate(year, month, day);

 }

 public int getId() {

 return id;

 }

 public BirthDate getBirthDate() {

 return birthDate;

 }

}

public class BirthDate {

 private int year;

 private int month;

 private int day;

 public BirthDate(int newYear,

 int newMonth, int newDay) {

 year = newYear;

 month = newMonth;

 day = newDay;

 }

 public void setYear(int newYear) {

 year = newYear;

 }

}

public class Test {

 public static void main(String[] args) {

 Student student = new Student(111223333, 1970, 5, 3);

 BirthDate date = student.getBirthDate();

 date.setYear(2010); // Now the student birth year is changed!

 }

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
81

What Class is Immutable?
For a class to be immutable,

 it must mark all data fields private and,

 provide no mutator methods and,

 no accessor methods that would return a reference to a

mutable data field object.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
82

Scope of Variables

 The scope of instance and static variables is the

entire class. They can be declared anywhere inside

a class.

 The scope of a local variable starts from its

declaration and continues to the end of the block

that contains the variable. A local variable must be

initialized explicitly before it can be used.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
83

The this Keyword

The this keyword is the name of a reference that

refers to an object itself. One common use of the

this keyword is reference a class’s hidden data

fields.

Another common use of the this keyword to

enable a constructor to invoke another

constructor of the same class.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
84

Reference the Hidden Data Fields

public class F {

 private int i = 5;

 private static double k = 0;

 void setI(int i) {

 this.i = i;

 }

 static void setK(double k) {

 F.k = k;

 }

}

Suppose that f1 and f2 are two objects of F.

F f1 = new F(); F f2 = new F();

Invoking f1.setI(10) is to execute

 this.i = 10, where this refers f1

Invoking f2.setI(45) is to execute

 this.i = 45, where this refers f2

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
85

Calling Overloaded Constructor

public class Circle {

 private double radius;

 public Circle(double radius) {

 this.radius = radius;

 }

 public Circle() {

 this(1.0);

 }

 public double getArea() {

 return this.radius * this.radius * Math.PI;

 }

}

Every instance variable belongs to an instance represented by this,

which is normally omitted

this must be explicitly used to reference the data

field radius of the object being constructed

this is used to invoke another constructor

