
Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
1

Chapter 12 Exception Handling

and Text IO

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
2

Motivations

When a program runs into a runtime error, the

program terminates abnormally. How can you

handle the runtime error so that the program can

continue to run or terminate gracefully? This is the

subject we will introduce in this chapter.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
3

Objectives
 To get an overview of exceptions and exception handling (§12.2).

 To explore the advantages of using exception handling (§12.2).

 To distinguish exception types: Error (fatal) vs. Exception (nonfatal) and checked vs. unchecked (§12.3).

 To declare exceptions in a method header (§12.4.1).

 To throw exceptions in a method (§12.4.2).

 To write a try-catch block to handle exceptions (§12.4.3).

 To explain how an exception is propagated (§12.4.3).

 To obtain information from an exception object (§12.4.4).

 To develop applications with exception handling (§12.4.5).

 To use the finally clause in a try-catch block (§12.5).

 To use exceptions only for unexpected errors (§12.6).

 To rethrow exceptions in a catch block (§12.7).

 To create chained exceptions (§12.8).

 To define custom exception classes (§12.9).

 To discover file/directory properties, to delete and rename files/directories, and to create directories using the

File class (§12.10).

 To write data to a file using the PrintWriter class (§12.11.1).

 To use try-with-resources to ensure that the resources are closed automatically (§12.11.2).

 To read data from a file using the Scanner class (§12.11.3).

 To understand how data is read using a Scanner (§12.11.4).

 To develop a program that replaces text in a file (§12.11.5).

 To read data from the Web (§12.12).

 To develop a Web crawler (§12.13).

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Exception Handling

The exception handling in java is one of the

powerful mechanism to handle the runtime

errors so that normal flow of the application

can be maintained.

An exception is an event that occurs during

the execution of a program that disrupts the

normal flow of instructions.
 Run time error occurs during the execution of a program. In

contrast, compile-time errors occur while a program is being compiled.
Runtime errors indicate bugs in the program or problems that the
designers had anticipated but could do nothing about. For example,
running out of memory will often cause a runtime error.

4

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Difference between error & exception

Errors indicate serious problems and abnormal

conditions that most applications should not try

to handle.

 Error defines problems that are not expected to be

caught under normal circumstances by program. For

example memory error, hardware error, JVM error etc.

Exceptions are conditions within the code.

A developer can handle such conditions and take

necessary corrective actions. Few examples –
DivideByZero exception, NullPointerException,

ArithmeticException, ArrayIndexOutOfBoundsException

5

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Try Catch in Java – Exception handling

A try block is always

followed by a catch

block, which handles

the exception that

occurs in associated try

block/

6

A catch block must

be associated with a

try block

http://beginnersbook.com/2013/04/try-catch-in-java/

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Flow of try catch

block program can

also contain nested

try-catch-finally

blocks.

7

class Nest{

public static void main(String args[]){

//Parent try block

try{

//Child try block1

try{

//try-catch block inside another try block

System.out.println("Inside block1");

int b =45/0;

System.out.println(b);

}

catch(ArithmeticException e1){

//Exception Message

System.out.println("Exception: e1");

}

//Child try block2

try{

//try-catch block inside another try block

System.out.println("Inside block2");

int b =45/0;

System.out.println(b);

}

catch(ArrayIndexOutOfBoundsException e2){

//Exception Message

System.out.println("Exception: e2");

}

System.out.println("Just other statement");

}

catch(ArithmeticException e3){ //Catch of Main(parent) try

block

//Exception Message

System.out.println("Arithmetic Exception");

System.out.println("Inside parent try catch block");

}

catch(ArrayIndexOutOfBoundsException e4){

System.out.println("ArrayIndexOutOfBoundsException");

System.out.println("Inside parent try catch block");

}

catch(Exception e5){

System.out.println("Exception");

System.out.println("Inside parent try catch block");

}

System.out.println("Next statement..");

}

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

catch, try, throw

The Catch or Specify Requirement

How to catch and try handle exceptions.

Also, the throw statement and

the Throwable class and its subclasses.

8

Java Document by Oracle Weblink

The try and catch Block - Weblink

try and catch question and answer -- Weblink

https://docs.oracle.com/javase/tutorial/essential/exceptions/catchOrDeclare.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/try.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/QandE/answers.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
9

Exception-Handling Overview

Quotient QuotientWithIf
Show runtime error Fix it using an if statement

With a method
QuotientWithMethod

import java.util.Scanner;

public class Quotient {

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

// Prompt the user to enter two integers

System.out.print("Enter two integers: ");

int number1 = input.nextInt();

int number2 = input.nextInt();

System.out.println(number1 + " / " +

number2 + " is " + (number1 / number2));

}

}

import java.util.Scanner;

public class QuotientWithIf {

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

// Prompt the user to enter two integers

System.out.print("Enter two integers: ");

int number1 = input.nextInt();

int number2 = input.nextInt();

if (number2 != 0)

System.out.println(number1 + " / " + number2 +

" is " +

(number1 / number2));

else

System.out.println("Divisor cannot be zero ");

}

}
import java.util.Scanner;

public class QuotientWithMethod {

public static int quotient(int number1,

int number2) {

if (number2 == 0) {

System.out.println("Divisor cannot be

zero");

System.exit(1);

}

return number1 / number2;

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
10

Exception Types

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
11

System Errors

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

System errors are thrown by JVM

and represented in the Error class.

The Error class describes internal

system errors. Such errors rarely

occur. If one does, there is little

you can do beyond notifying the

user and trying to terminate the

program gracefully.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
12

Exceptions

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

Exception describes errors

caused by your program

and external circumstances.

These errors can be caught

and handled by your

program.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
13

Runtime Exceptions

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

RuntimeException is caused by

programming errors, such as bad

casting, accessing an out-of-bounds

array, and numeric errors.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
14

Checked Exceptions vs.

Unchecked Exceptions

RuntimeException, Error and their subclasses are

known as unchecked exceptions. All other

exceptions are known as checked exceptions,

meaning that the compiler forces the programmer
to check and deal with the exceptions.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
15

Unchecked Exceptions

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

Unchecked

exception.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
16

Declaring, Throwing, and

Catching Exceptions

method1() {

 try {

 invoke method2;

 }

 catch (Exception ex) {

 Process exception;

 }

}

method2() throws Exception {

 if (an error occurs) {

 throw new Exception();

 }

}

catch exception throw exception

declare exception

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
17

Declaring Exceptions

Every method must state the types of checked

exceptions it might throw. This is known as

declaring exceptions.

public void myMethod()

throws IOException

public void myMethod()

throws IOException, OtherException

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
18

Throwing Exceptions

When the program detects an error, the program
can create an instance of an appropriate exception
type and throw it. This is known as throwing an
exception. Here is an example,

throw new TheException();

TheException ex = new TheException();
throw ex;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
19

Throwing Exceptions Example

/** Set a new radius */

public void setRadius(double newRadius)

throws IllegalArgumentException {

if (newRadius >= 0)

radius = newRadius;

else

throw new IllegalArgumentException(

"Radius cannot be negative");

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
20

Catching Exceptions

try {

statements; // Statements that may throw exceptions

}

catch (Exception1 exVar1) {

handler for exception1;

}

catch (Exception2 exVar2) {

handler for exception2;

}

...

catch (ExceptionN exVar3) {

handler for exceptionN;

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
21

Catching Exceptions

main method {
 ...

 try {

 ...
 invoke method1;
 statement1;
 }

 catch (Exception1 ex1) {

 Process ex1;
 }
 statement2;
}

method1 {
 ...

 try {

 ...
 invoke method2;
 statement3;
 }

 catch (Exception2 ex2) {

 Process ex2;
 }
 statement4;
}

method2 {
 ...

 try {

 ...
 invoke method3;
 statement5;
 }

 catch (Exception3 ex3) {

 Process ex3;
 }
 statement6;
}

An exception

is thrown in

method3

Call Stack

main method main method

method1

main method

method1

main method

method1

method2 method2

method3

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
22

Catch or Declare Checked Exceptions

Suppose p2 is defined as follows:

void p2() throws IOException {

 if (a file does not exist) {

 throw new IOException("File does not exist");

 }

 ...

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
23

Catch or Declare Checked Exceptions

Java forces you to deal with checked exceptions. If a method declares a

checked exception (i.e., an exception other than Error or

RuntimeException), you must invoke it in a try-catch block or declare to

throw the exception in the calling method. For example, suppose that

method p1 invokes method p2 and p2 may throw a checked exception (e.g.,

IOException), you have to write the code as shown in (a) or (b).

void p1() {

 try {

 p2();

 }

 catch (IOException ex) {

 ...

 }

}

(a)

(b)

void p1() throws IOException {

 p2();

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
24

Example: Declaring, Throwing, and

Catching Exceptions

Objective: This example demonstrates
declaring, throwing, and catching exceptions
by modifying the setRadius method in the
Circle class defined in Chapter 8. The new
setRadius method throws an exception if
radius is negative.

TestCircleWithException

Run

CircleWithException

html/CircleWithException.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

public class TestCircleWithException {

public static void main(String[] args) {

try {

CircleWithException c1 = new CircleWithException(5);

CircleWithException c2 = new CircleWithException(-5);

CircleWithException c3 = new CircleWithException(0);

}

catch (IllegalArgumentException ex) {

System.out.println(ex);

}

System.out.println("Number of objects created: " +

CircleWithException.getNumberOfObjects());

}

}

25

TestCircleWithException
public class CircleWithException {

/** The radius of the circle */

private double radius;

/** The number of the objects created */

private static int numberOfObjects = 0;

/** Construct a circle with radius 1 */

public CircleWithException() {

this(1.0);

}

/** Construct a circle with a specified radius */

public CircleWithException(double newRadius) {

setRadius(newRadius);

numberOfObjects++;

}

/** Return radius */

public double getRadius() {

return radius;

}

/** Set a new radius */

public void setRadius(double newRadius)

throws IllegalArgumentException {

if (newRadius >= 0)

radius = newRadius;

else

throw new IllegalArgumentException(

"Radius cannot be negative");

}

/** Return numberOfObjects */

public static int getNumberOfObjects() {

return numberOfObjects;

}

/** Return the area of this circle */

public double findArea() {

return radius * radius * 3.14159;

}

}

CircleWithException

html/CircleWithException.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
26

Rethrowing Exceptions

try {

statements;

}

catch(TheException ex) {

perform operations before exits;

throw ex;

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
27

The finally Clause

try {

statements;

}

catch(TheException ex) {

handling ex;

}

finally {

finalStatements;

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
28

Trace a Program Execution
animation

try {

statements;

}

catch(TheException ex) {

handling ex;

}

finally {

finalStatements;

}

Next statement;

Suppose no
exceptions in the
statements

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
29

Trace a Program Execution
animation

try {

statements;

}

catch(TheException ex) {

handling ex;

}

finally {

finalStatements;

}

Next statement;

The final block is
always executed

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
30

Trace a Program Execution
animation

try {

statements;

}

catch(TheException ex) {

handling ex;

}

finally {

finalStatements;

}

Next statement;

Next statement in the
method is executed

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
31

Trace a Program Execution
animation

try {

statement1;

statement2;

statement3;

}

catch(Exception1 ex) {

handling ex;

}

finally {

finalStatements;

}

Next statement;

Suppose an exception
of type Exception1 is
thrown in statement2

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
32

Trace a Program Execution
animation

try {

statement1;

statement2;

statement3;

}

catch(Exception1 ex) {

handling ex;

}

finally {

finalStatements;

}

Next statement;

The exception is
handled.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
33

Trace a Program Execution
animation

try {

statement1;

statement2;

statement3;

}

catch(Exception1 ex) {

handling ex;

}

finally {

finalStatements;

}

Next statement;

The final block is
always executed.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
34

Trace a Program Execution
animation

try {

statement1;

statement2;

statement3;

}

catch(Exception1 ex) {

handling ex;

}

finally {

finalStatements;

}

Next statement;

The next statement in
the method is now
executed.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
35

Trace a Program Execution
animation

try {

statement1;

statement2;

statement3;

}

catch(Exception1 ex) {

handling ex;

}

catch(Exception2 ex) {

handling ex;

throw ex;

}

finally {

finalStatements;

}

Next statement;

statement2 throws an
exception of type
Exception2.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
36

Trace a Program Execution
animation

try {

statement1;

statement2;

statement3;

}

catch(Exception1 ex) {

handling ex;

}

catch(Exception2 ex) {

handling ex;

throw ex;

}

finally {

finalStatements;

}

Next statement;

Handling exception

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
37

Trace a Program Execution
animation

try {

statement1;

statement2;

statement3;

}

catch(Exception1 ex) {

handling ex;

}

catch(Exception2 ex) {

handling ex;

throw ex;

}

finally {

finalStatements;

}

Next statement;

Execute the final block

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
38

Trace a Program Execution
animation

try {

statement1;

statement2;

statement3;

}

catch(Exception1 ex) {

handling ex;

}

catch(Exception2 ex) {

handling ex;

throw ex;

}

finally {

finalStatements;

}

Next statement;

Rethrow the exception
and control is
transferred to the caller

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
39

When to Throw Exceptions

An exception occurs in a method.

 If you want the exception to be processed by

its caller,

– Then you should create an exception object and

throw it.

– If you can handle the exception in the method

where it occurs, there is no need to throw it.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
40

When to Use Exceptions

When should you use the try-catch block in the code?
You should use it to deal with unexpected error
conditions. Do not use it to deal with simple, expected
situations. For example, the following code

try {

System.out.println(refVar.toString());

}

catch (NullPointerException ex) {

System.out.println("refVar is null");

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
41

When to Use Exceptions

is better to be replaced by

if (refVar != null)

System.out.println(refVar.toString());

else

System.out.println("refVar is null");

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
42

Custom Exception Class Example

Run

InvalidRadiusException

In Listing 13.8, the setRadius method throws an exception if the

radius is negative. Suppose you wish to pass the radius to the

handler, you have to create a custom exception class.

CircleWithRadiusException

TestCircleWithRadiusException

http://www.cs.armstrong.edu/liang/intro10e/html/InvalidRadiusException.html
http://www.cs.armstrong.edu/liang/intro10e/html/CircleWithRadiusException.html
http://www.cs.armstrong.edu/liang/intro10e/html/TestCircleWithRadiusException.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
43

The File Class

The File class is intended to provide an abstraction that

deals with most of the machine-dependent complexities

of files and path names in a machine-independent

fashion. The filename is a string. The File class is a

wrapper class for the file name and its directory path.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
44

Obtaining file properties and manipulating file

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
45

Problem: Explore File

Properties

TestFileClass

Objective: Write a program

that demonstrates how to

create files in a platform-

independent way and use the

methods in the File class to

obtain their properties. The

following figures show a

sample run of the program on

Windows and on Unix.

public class TestFileClass {

public static void main(String[] args) {

java.io.File file = new

java.io.File("image/us.gif");

System.out.println("Does it exist? " +

file.exists());

System.out.println("The file has " +

file.length() + " bytes");

System.out.println("Can it be read? " +

file.canRead());

System.out.println("Can it be written? " +

file.canWrite());

System.out.println("Is it a directory? " +

file.isDirectory());

System.out.println("Is it a file? " +

file.isFile());

System.out.println("Is it absolute? " +

file.isAbsolute());

System.out.println("Is it hidden? " +

file.isHidden());

System.out.println("Absolute path is " +

file.getAbsolutePath());

System.out.println("Last modified on " +

new java.util.Date(file.lastModified()));

}

}

Run

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
46

Text I/O

A File object encapsulates the properties of a file or a path,

but does not contain the methods for reading/writing data

from/to a file. In order to perform I/O, you need to create

objects using appropriate Java I/O classes. The objects

contain the methods for reading/writing data from/to a file.

This section introduces how to read/write strings and

numeric values from/to a text file using the Scanner and

PrintWriter classes.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
47

Writing Data Using PrintWriter

WriteData Run

java.io.PrintWriter

+PrintWriter(filename: String)

+print(s: String): void

+print(c: char): void

+print(cArray: char[]): void

+print(i: int): void

+print(l: long): void

+print(f: float): void

+print(d: double): void

+print(b: boolean): void

Also contains the overloaded

println methods.

Also contains the overloaded

printf methods.

.

Creates a PrintWriter for the specified file.

Writes a string.

Writes a character.

Writes an array of character.

Writes an int value.

Writes a long value.

Writes a float value.

Writes a double value.

Writes a boolean value.

A println method acts like a print method; additionally it

prints a line separator. The line separator string is defined

by the system. It is \r\n on Windows and \n on Unix.

The printf method was introduced in §3.6, “Formatting

Console Output and Strings.”

http://www.cs.armstrong.edu/liang/intro10e/html/WriteData.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

 public class WriteData {

public static void main(String[] args) throws Exception {

java.io.File file = new java.io.File("scores.txt");

if (file.exists()) {

System.out.println("File already exists");

System.exit(0);

}

// Create a file

java.io.PrintWriter output = new java.io.PrintWriter(file);

 /* you can create PrintWriter objects for writing text to any file using

print, println, and printf **/

// Write formatted output to the file

output.print("John T Smith ");

output.println(90);

output.print("Eric K Jones ");

output.println(85);

// Close the file

output.close();

}

}

48

WriteData

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
49

Reading Data Using Scanner

java.util.Scanner

+Scanner(source: File)

+Scanner(source: String)

+close()

+hasNext(): boolean

+next(): String

+nextByte(): byte

+nextShort(): short

+nextInt(): int

+nextLong(): long

+nextFloat(): float

+nextDouble(): double

+useDelimiter(pattern: String):

Scanner

Creates a Scanner object to read data from the specified file.

Creates a Scanner object to read data from the specified string.

Closes this scanner.

Returns true if this scanner has another token in its input.

Returns next token as a string.

Returns next token as a byte.

Returns next token as a short.

Returns next token as an int.

Returns next token as a long.

Returns next token as a float.

Returns next token as a double.

Sets this scanner’s delimiting pattern.

ReadData Run

http://www.cs.armstrong.edu/liang/intro10e/html/ReadData.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
50

Problem: Replacing Text

Write a class named ReplaceText that replaces a string in a text

file with a new string. The filename and strings are passed as

command-line arguments as follows:

java ReplaceText sourceFile targetFile oldString newString

For example, invoking

java ReplaceText FormatString.java t.txt StringBuilder StringBuffer

replaces all the occurrences of StringBuilder by StringBuffer in

FormatString.java and saves the new file in t.txt.

ReplaceText Run

http://www.cs.armstrong.edu/liang/intro10e/html/ReplaceText.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
51

Reading Data from the Web

Just like you can read data from a file on your
computer, you can read data from a file on the
Web.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
52

Reading Data from the Web

URL url = new URL("www.google.com/index.html");

After a URL object is created, you can use the
openStream() method defined in the URL class to open an
input stream and use this stream to create a Scanner object
as follows:

Scanner input = new Scanner(url.openStream());

ReadFileFromURL Run

http://www.cs.armstrong.edu/liang/intro10e/html/ReadFileFromURL.html

