
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
1

Chapter 2 Elementary Programming

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
2

Motivations

In the preceding chapter, you learned how to

create, compile, and run a Java program. Starting

from this chapter, you will learn how to solve

practical problems programmatically. Through

these problems, you will learn Java primitive data

types and related subjects, such as variables,

constants, data types, operators, expressions, and

input and output.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
3

Objectives
 To write Java programs to perform simple computations (§2.2).

 To obtain input from the console using the Scanner class (§2.3).

 To use identifiers to name variables, constants, methods, and classes (§2.4).

 To use variables to store data (§§2.5–2.6).

 To program with assignment statements and assignment expressions (§2.6).

 To use constants to store permanent data (§2.7).

 To name classes, methods, variables, and constants by following their naming conventions (§2.8).

 To explore Java numeric primitive data types: byte, short, int, long, float, and double (§2.9.1).

 To read a byte, short, int, long, float, or double value from the keyboard (§2.9.2).

 To perform operations using operators +, -, *, /, and % (§2.9.3).

 To perform exponent operations using Math.pow(a, b) (§2.9.4).

 To write integer literals, floating-point literals, and literals in scientific notation (§2.10).

 To write and evaluate numeric expressions (§2.11).

 To obtain the current system time using System.currentTimeMillis() (§2.12).

 To use augmented assignment operators (§2.13).

 To distinguish between postincrement and preincrement and between postdecrement and predecrement (§2.14).

 To cast the value of one type to another type (§2.15).

 To describe the software development process and apply it to develop the loan payment program (§2.16).

 To write a program that converts a large amount of money into smaller units (§2.17).

 To avoid common errors and pitfalls in elementary programming (§2.18).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
4

Introducing Programming with an

Example

Listing 2.1 Computing the Area of a Circle

This program computes the area of the circle.

Run

ComputeArea

Note: Clicking the blue button runs the code from
Windows. If you cannot run the buttons, see

IMPORTANT NOTE: If you cannot run the buttons, see
liveexample.pearsoncmg.com/slide/javaslidenote.doc.

Note: Clicking the green button displays the source code
with interactive animation. You can also run the code in
a browser. Internet connection is needed for this button.

http://www.cs.armstrong.edu/liang/javaslidenote.doc

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
5

Trace a Program Execution
public class ComputeArea {

/** Main method */

public static void main(String[] args) {

double radius;

double area;

// Assign a radius

radius = 20;

// Compute area

area = radius * radius * 3.14159;

// Display results

System.out.println("The area for the circle of radius " +

radius + " is " + area);

}

}

no valueradius

allocate memory

for radius

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
6

Trace a Program Execution
public class ComputeArea {

/** Main method */

public static void main(String[] args) {

double radius;

double area;

// Assign a radius

radius = 20;

// Compute area

area = radius * radius * 3.14159;

// Display results

System.out.println("The area for the circle of radius " +

radius + " is " + area);

}

}

no valueradius

memory

no valuearea

allocate memory

for area

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
7

Trace a Program Execution
public class ComputeArea {

/** Main method */

public static void main(String[] args) {

double radius;

double area;

// Assign a radius

radius = 20;

// Compute area

area = radius * radius * 3.14159;

// Display results

System.out.println("The area for the circle of radius " +

radius + " is " + area);

}

}

20radius

no valuearea

assign 20 to radius

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
8

Trace a Program Execution
public class ComputeArea {

/** Main method */

public static void main(String[] args) {

double radius;

double area;

// Assign a radius

radius = 20;

// Compute area

area = radius * radius * 3.14159;

// Display results

System.out.println("The area for the circle of radius " +

radius + " is " + area);

}

}

20radius

memory

1256.636area

compute area and assign it

to variable area

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
9

Trace a Program Execution
public class ComputeArea {

/** Main method */

public static void main(String[] args) {

double radius;

double area;

// Assign a radius

radius = 20;

// Compute area

area = radius * radius * 3.14159;

// Display results

System.out.println("The area for the circle of radius " +

radius + " is " + area);

}

}

20radius

memory

1256.636area

print a message to the

console

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
10

Reading Input from the Console

1. Create a Scanner object

Scanner input = new Scanner(System.in);

2. Use the method nextDouble() to obtain to a double value.

For example,

System.out.print("Enter a double value: ");

Scanner input = new Scanner(System.in);

double d = input.nextDouble();

Run

Run

ComputeAreaWithConsoleInput

ComputeAverage

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
11

Implicit Import and Explicit Import

java.util.* ; // Implicit import

java.util.Scanner; // Explicit Import

No performance difference

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
12

Identifiers

 An identifier is a sequence of characters that consist of

letters, digits, underscores (_), and dollar signs ($).

 An identifier must start with a letter, an underscore (_),

or a dollar sign ($). It cannot start with a digit.

 An identifier cannot be a reserved word. (See Appendix

A, “Java Keywords,” for a list of reserved words).

 An identifier cannot be true, false, or

null.

 An identifier can be of any length.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
13

Variables

// Compute the first area

radius = 1.0;

area = radius * radius * 3.14159;

System.out.println("The area is “ +

area + " for radius "+radius);

// Compute the second area

radius = 2.0;

area = radius * radius * 3.14159;

System.out.println("The area is “ +

area + " for radius "+radius);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
14

Declaring Variables

int x; // Declare x to be an

// integer variable;

double radius; // Declare radius to

// be a double variable;

char a; // Declare a to be a

// character variable;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
15

Assignment Statements

x = 1; // Assign 1 to x;

radius = 1.0; // Assign 1.0 to radius;

a = 'A'; // Assign 'A' to a;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
16

Declaring and Initializing

in One Step

 int x = 1;

 double d = 1.4;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
17

Named Constants

final datatype CONSTANTNAME = VALUE;

final double PI = 3.14159;

final int SIZE = 3;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
18

Naming Conventions

Choose meaningful and descriptive names.

Variables and method names:

– Use lowercase. If the name consists of several

words, concatenate all in one, use lowercase

for the first word, and capitalize the first letter

of each subsequent word in the name. For

example, the variables radius and area, and

the method computeArea.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
19

Naming Conventions, cont.

 Class names:

– Capitalize the first letter of each word in
the name. For example, the class name
ComputeArea.

 Constants:

– Capitalize all letters in constants, and use
underscores to connect words. For
example, the constant PI and
MAX_VALUE

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
20

Numerical Data Types

 Name Range Storage Size

byte –27 to 27 – 1 (-128 to 127) 8-bit signed

short –215 to 215 – 1 (-32768 to 32767) 16-bit signed

int –231 to 231 – 1 (-2147483648 to 2147483647) 32-bit signed

long –263 to 263 – 1 64-bit signed

 (i.e., -9223372036854775808 to 9223372036854775807)

 float Negative range: 32-bit IEEE 754

 -3.4028235E+38 to -1.4E-45

 Positive range:

 1.4E-45 to 3.4028235E+38

 double Negative range: 64-bit IEEE 754

 -1.7976931348623157E+308 to -4.9E-324

 Positive range:

 4.9E-324 to 1.7976931348623157E+308

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
21

Reading Numbers from the Keyboard

Scanner input = new Scanner(System.in);

int value = input.nextInt();

Method Description

nextByte() reads an integer of the byte type.

nextShort() reads an integer of the short type.

nextInt() reads an integer of the int type.

nextLong() reads an integer of the long type.

nextFloat() reads a number of the float type.

nextDouble() reads a number of the double type.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
22

Numeric Operators

Name Meaning Example Result

+ Addition 34 + 1 35

- Subtraction 34.0 – 0.1 33.9

* Multiplication 300 * 30 9000

/ Division 1.0 / 2.0 0.5

% Remainder 20 % 3 2

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
23

Integer Division

+, -, *, /, and %

5 / 2 yields an integer 2.

5.0 / 2 yields a double value 2.5

5 % 2 yields 1 (the remainder of the division)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
24

Remainder Operator

Remainder is very useful in programming. For example, an
even number % 2 is always 0 and an odd number % 2 is always
1. So you can use this property to determine whether a number

is even or odd. Suppose today is Saturday and you and your
friends are going to meet in 10 days. What day is in 10
days? You can find that day is Tuesday using the following
expression:

 Saturday is the 6th day in a week

A week has 7 days

After 10 days

The 2nd day in a week is Tuesday
(6 + 10) % 7 is 2

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
25

NOTE

Calculations involving floating-point numbers are

approximated because these numbers are not stored

with complete accuracy. For example,

System.out.println(1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1);

displays 0.5000000000000001, not 0.5, and

System.out.println(1.0 - 0.9);

displays 0.09999999999999998, not 0.1. Integers are

stored precisely. Therefore, calculations with integers

yield a precise integer result.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
26

Exponent Operations

System.out.println(Math.pow(2, 3));

// Displays 8.0

System.out.println(Math.pow(4, 0.5));

// Displays 2.0

System.out.println(Math.pow(2.5, 2));

// Displays 6.25

System.out.println(Math.pow(2.5, -2));

// Displays 0.16

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
27

Number Literals

A literal is a constant value that appears directly
in the program. For example, 34, 1,000,000, and
5.0 are literals in the following statements:

int i = 34;

long x = 1000000;

double d = 5.0;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
28

Integer Literals
An integer literal can be assigned to an integer variable as

long as it can fit into the variable. A compilation error

would occur if the literal were too large for the variable to

hold. For example, the statement byte b = 1000 would

cause a compilation error, because 1000 cannot be stored

in a variable of the byte type.

An integer literal is assumed to be of the int type, whose

value is between -231 (-2147483648) to 231–1

(2147483647). To denote an integer literal of the long type,

append it with the letter L or l. L is preferred because l

(lowercase L) can easily be confused with 1 (the digit

one).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
29

Floating-Point Literals

Floating-point literals are written with a decimal

point. By default, a floating-point literal is treated

as a double type value. For example, 5.0 is

considered a double value, not a float value. You

can make a number a float by appending the letter f

or F, and make a number a double by appending the

letter d or D. For example, you can use 100.2f or

100.2F for a float number, and 100.2d or 100.2D
for a double number.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
30

double vs. float

The double type values are more accurate than the

float type values. For example,

System.out.println("1.0 / 3.0 is " + 1.0 / 3.0);

displays 1.0 / 3.0 is 0.3333333333333333

 16 digits

displays 1.0F / 3.0F is 0.33333334

7 digits

System.out.println("1.0F / 3.0F is " + 1.0F / 3.0F);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
31

Scientific Notation

Floating-point literals can also be specified in

scientific notation, for example, 1.23456e+2, same

as 1.23456e2, is equivalent to 123.456, and

1.23456e-2 is equivalent to 0.0123456. E (or e)

represents an exponent and it can be either in

lowercase or uppercase.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
32

Arithmetic Expressions

)
94

(9
))(5(10

5

43

y

x

xx

cbayx

is translated to

(3+4*x)/5 – 10*(y-5)*(a+b+c)/x + 9*(4/x + (9+x)/y)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
33

How to Evaluate an Expression

Though Java has its own way to evaluate an

expression behind the scene, the result of a Java

expression and its corresponding arithmetic

expression are the same. Therefore, you can safely

apply the arithmetic rule for evaluating a Java

expression.
3 + 4 * 4 + 5 * (4 + 3) - 1

3 + 4 * 4 + 5 * 7 – 1

3 + 16 + 5 * 7 – 1

3 + 16 + 35 – 1

19 + 35 – 1

 54 - 1

 53

 (1) inside parentheses first

 (2) multiplication

 (3) multiplication

 (4) addition

 (6) subtraction

 (5) addition

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
34

Problem: Converting Temperatures

Write a program that converts a Fahrenheit degree

to Celsius using the formula:

Run

)32)((
9
5 fahrenheitcelsius

Note: you have to write

celsius = (5.0 / 9) * (fahrenheit – 32)

FahrenheitToCelsius

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
35

Augmented Assignment Operators

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
36

Increment and

Decrement Operators

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
37

Increment and

Decrement Operators, cont.

int i = 10;

int newNum = 10 * i++;

int newNum = 10 * i;

i = i + 1;

Same effect as

int i = 10;

int newNum = 10 * (++i);

i = i + 1;

int newNum = 10 * i;

Same effect as

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
38

Increment and

Decrement Operators, cont.

Using increment and decrement operators makes

expressions short, but it also makes them complex and

difficult to read. Avoid using these operators in expressions

that modify multiple variables, or the same variable for

multiple times such as this: int k = ++i + i.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
39

Numeric Type Conversion

Consider the following statements:

byte i = 100;

long k = i * 3 + 4;

double d = i * 3.1 + k / 2;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
40

Conversion Rules

When performing a binary operation involving two

operands of different types, Java automatically

converts the operand based on the following rules:

1. If one of the operands is double, the other is

converted into double.

2. Otherwise, if one of the operands is float, the other is

converted into float.

3. Otherwise, if one of the operands is long, the other is

converted into long.

4. Otherwise, both operands are converted into int.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
41

Type Casting

Implicit casting

double d = 3; (type widening)

Explicit casting

int i = (int)3.0; (type narrowing)

int i = (int)3.9; (Fraction part is truncated)

What is wrong? int x = 5 / 2.0;

byte, short, int, long, float, double

range increases

