
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All rights reserved. 1

Chapter 5 Loops

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
2

Motivations

Suppose that you need to print a string (e.g.,
"Welcome to Java!") a hundred times. It would be
tedious to have to write the following statement a
hundred times:

System.out.println("Welcome to Java!");

So, how do you solve this problem?

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
3

Opening Problem

System.out.println("Welcome to Java!");

System.out.println("Welcome to Java!");

System.out.println("Welcome to Java!");

System.out.println("Welcome to Java!");

System.out.println("Welcome to Java!");

System.out.println("Welcome to Java!");

…

…

…
System.out.println("Welcome to Java!");

System.out.println("Welcome to Java!");

System.out.println("Welcome to Java!");

Problem:

100

times

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
4

Introducing while Loops

int count = 0;

while (count < 100) {

System.out.println("Welcome to Java");

count++;

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All rights reserved. 5

Objectives
 To write programs for executing statements repeatedly using a while loop

(§5.2).

 To follow the loop design strategy to develop loops (§§5.2.1–5.2.3).

 To control a loop with a sentinel value (§5.2.4).

 To obtain large input from a file using input redirection rather than typing

from the keyboard (§5.2.5).

 To write loops using do-while statements (§5.3).

 To write loops using for statements (§5.4).

 To discover the similarities and differences of three types of loop statements

(§5.5).

 To write nested loops (§5.6).

 To learn the techniques for minimizing numerical errors (§5.7).

 To learn loops from a variety of examples (GCD, FutureTuition,

Dec2Hex) (§5.8).

 To implement program control with break and continue (§5.9).

 To write a program that displays prime numbers (§5.11).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
6

while Loop Flow Chart

while (loop-continuation-condition) {

// loop-body;

Statement(s);

}

int count = 0;

while (count < 100) {

System.out.println("Welcome to Java!");

count++;

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
7

Trace while Loop

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count++;

}

Initialize count

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
8

Trace while Loop, cont.

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count++;

}

(count < 2) is true

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
9

Trace while Loop, cont.

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count++;

}

Print Welcome to Java

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
10

Trace while Loop, cont.

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count++;

}

Increase count by 1

count is 1 now

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
11

Trace while Loop, cont.

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count++;

}

(count < 2) is still true since count

is 1

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
12

Trace while Loop, cont.

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count++;

}

Print Welcome to Java

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
13

Trace while Loop, cont.

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count++;

}

Increase count by 1

count is 2 now

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
14

Trace while Loop, cont.

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count++;

}

(count < 2) is false since count is 2

now

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
15

Trace while Loop

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count++;

}

The loop exits. Execute the next

statement after the loop.

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
16

Caution

Don’t use floating-point values for equality checking in a
loop control. Since floating-point values are
approximations for some values, using them could result
in imprecise counter values and inaccurate results.
Consider the following code for computing 1 + 0.9 + 0.8
+ ... + 0.1:

double item = 1; double sum = 0;

while (item != 0) { // No guarantee item will be 0

sum += item;

item -= 0.1;

}

System.out.println(sum);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
17

do-while Loop

do {

// Loop body;

Statement(s);

} while (loop-continuation-condition);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
18

for Loops
for (initial-action; loop-

continuation-condition; action-
after-each-iteration) {

// loop body;
Statement(s);

}

int i;

for (i = 0; i < 100; i++) {

System.out.println(

"Welcome to Java!");

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
19

Trace for Loop

int i;

for (i = 0; i < 2; i++) {

System.out.println(

"Welcome to Java!");

}

Declare i

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
20

Trace for Loop, cont.

int i;

for (i = 0; i < 2; i++) {

System.out.println(

"Welcome to Java!");

}

Execute initializer

i is now 0

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
21

Trace for Loop, cont.

int i;

for (i = 0; i < 2; i++) {

System.out.println("Welcome to Java!");

}

(i < 2) is true

since i is 0

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
22

Trace for Loop, cont.

int i;

for (i = 0; i < 2; i++) {

System.out.println("Welcome to Java!");

}

Print Welcome to Java

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
23

Trace for Loop, cont.

int i;

for (i = 0; i < 2; i++) {

System.out.println("Welcome to Java!");

}

Execute adjustment statement

i now is 1

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
24

Trace for Loop, cont.

int i;

for (i = 0; i < 2; i++) {

System.out.println("Welcome to Java!");

}

(i < 2) is still true

since i is 1

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
25

Trace for Loop, cont.

int i;

for (i = 0; i < 2; i++) {

System.out.println("Welcome to Java!");

}

Print Welcome to Java

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
26

Trace for Loop, cont.

int i;

for (i = 0; i < 2; i++) {

System.out.println("Welcome to Java!");

}

Execute adjustment statement

i now is 2

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
27

Trace for Loop, cont.

int i;

for (i = 0; i < 2; i++) {

System.out.println("Welcome to Java!");

}

(i < 2) is false

since i is 2

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
28

Trace for Loop, cont.

int i;

for (i = 0; i < 2; i++) {

System.out.println("Welcome to Java!");

}

Exit the loop. Execute the next

statement after the loop

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
29

Note

The initial-action in a for loop can be a list of zero or more

comma-separated expressions. The action-after-each-

iteration in a for loop can be a list of zero or more comma-

separated statements. Therefore, the following two for

loops are correct. They are rarely used in practice,

however.

for (int i = 1; i < 100; System.out.println(i++));

for (int i = 0, j = 0; (i + j < 10); i++, j++) {

// Do something

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
30

Note

If the loop-continuation-condition in a for loop is omitted,

it is implicitly true. Thus the statement given below in (a),

which is an infinite loop, is correct. Nevertheless, it is

better to use the equivalent loop in (b) to avoid confusion:

 for (; ;) {
 // Do something

}

(a)

Equivalent while (true) {

 // Do something

}

(b)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
31

Caution

Adding a semicolon at the end of the for clause before

the loop body is a common mistake, as shown below:

Logic

Error

for (int i=0; i<10; i++);

{

System.out.println("i is " + i);

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
32

Caution, cont.
Similarly, the following loop is also wrong:
int i=0;
while (i < 10);
{
System.out.println("i is " + i);
i++;

}

In the case of the do loop, the following semicolon is
needed to end the loop.
int i=0;
do {
System.out.println("i is " + i);
i++;

} while (i<10);

Logic Error

Correct

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
33

Which Loop to Use?
The three forms of loop statements, while, do-while, and for, are

expressively equivalent; that is, you can write a loop in any of these

three forms. For example, a while loop in (a) in the following figure

can always be converted into the following for loop in (b):

A for loop in (a) in the following figure can generally be converted into the

following while loop in (b) except in certain special cases (see Review Question

3.19 for one of them):

 for (initial-action;
 loop-continuation-condition;

 action-after-each-iteration) {

 // Loop body;

}

(a)

Equivalent

(b)

initial-action;

while (loop-continuation-condition) {

 // Loop body;

 action-after-each-iteration;

}

 while (loop-continuation-condition) {
 // Loop body

}

(a)

Equivalent

(b)

for (; loop-continuation-condition;) {

 // Loop body

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
34

Recommendations

Use the one that is most intuitive and comfortable for

you. In general, a for loop may be used if the number of

repetitions is known, as, for example, when you need to

print a message 100 times. A while loop may be used if

the number of repetitions is not known, as in the case of

reading the numbers until the input is 0. A do-while loop

can be used to replace a while loop if the loop body has to

be executed before testing the continuation condition.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
35

Nested Loops

Problem: Write a program that uses nested for

loops to print a multiplication table.

MultiplicationTable Run

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
36

break

 public class TestBreak {
 public static void main(String[] args) {

 int sum = 0;

 int number = 0;

 while (number < 20) {

 number++;

 sum += number;

 if (sum >= 100)

 break;

 }

 System.out.println("The number is " + number);

 System.out.println("The sum is " + sum);

 }

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
37

continue

 public class TestContinue {
 public static void main(String[] args) {

 int sum = 0;

 int number = 0;

 while (number < 20) {

 number++;

 if (number == 10 || number == 11)

 continue;

 sum += number;

 }

 System.out.println("The sum is " + sum);

 }

}

