Chapter 7 Single-Dimensional
Arrays

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

Opening Problem

Read one hundred numbers, compute their
average, and find out how many numbers are
above the average.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All ?
rights reserved.

Objectives

To describe why arrays are necessary in programming (87.1).

To declare array reference variables and create arrays (887.2.1-7.2.2).

To obtain array size using arrayRefVar.length and know default values in an array (87.2.3).
To access array elements using indexes (87.2.4).

To declare, create, and initialize an array using an array initializer (87.2.5).

To program common array operations (displaying arrays, summing all elements, finding the
minimum and maximum elements, random shuffling, and shifting elements) (87.2.6).

To simplify programming using the foreach loops (87.2.7).

To apply arrays in application development (AnalyzeNumbers, DeckOfCards) (887.3-7.4).
To copy contents from one array to another (87.5).

To develop and invoke methods with array arguments and return values (887.6—7.8).

To define a method with a variable-length argument list (§7.9).

To search elements using the linear (§7.10.1) or binary (87.10.2) search algorithm. \
To sort an array using the selection sort approach (87.11).

To use the methods in the java.util.Arrays class (87.12).

To pass arguments to the main method from the command line (87.13).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All ?
rights reserved.

Introducing Arrays

Array Is a data structure that represents a collection of the
same types of data.
double[] myList = new double[10];

myList | reference . > :
Y - myList[0] 5.6
T myList[1] 4.5
Array reference myList[2] 3.3
variable myList[3] 13.2
myList[4] 4.0
Arrag clement at ——>-myList[5] 3433 = Element value
index 5 ‘
myList[6] 34.0
myList[7] 45.45
myList[8] 99.993
myList[9] 11123
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All ?

rights reserved.

Declaring Array Variables

= datatypel|] arrayRefVar;

Example:

double[] myList;

+ datatype arrayRefVar([]; // Thisstylels
allowed, but not preferred

Example:

double myList([];

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

Creating Arrays

arrayRefVar = new datatypelarraySize];

Example:
myList = new double[1l0];

myList [0] references the first element in the arraK
myList [9] references the last element in the arra

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All ?
rights reserved.

Declaring and Creating
In One Step

= datatype|[] arrayRefVar = new
datatypel[arraySize];

double[] myList = new double[10];

= datatype arrayRefVar|[] = new
datatypel[arraySize];

double myList[] = new double[1l0];

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

The Length of an Array

Once an array Is created, Iits size Is fixed. It cannot be
changed. You can find its size using

arrayRefVar.length

For example,

myL.ist.length returns 10

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All ?
rights reserved.

Default VValues

When an array Is created, Its elements are
assigned the default value of

0 for the numeric primitive data types,
'\u000Q' for char types, and
false for boolean types.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All ?
rights reserved.

Indexed Variables

The array elements are accessed through the index. The
array Indices are 0O-based, 1.e., it starts from 0 to
arrayRefVar.length-1. In the example in Figure 6.1,
myList holds ten double values and the indices are
from 0 to 9.

Each element In the array Is represented using the
following syntax, known as an indexed variable: \

arrayRefVar[index];

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 1?
rights reserved.

Using Indexed Variables

After an array Is created, an indexed variable can
be used In the same way as a regular variable.
For example, the following code adds the value
In myList[0] and myList[1] to myList[2].

myList[2] = myList[0] + myList[1l];

D\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 1?
rights reserved.

Array Initializers

< Declaring, creating, Initializing in one step:
double[] myList = {1.9, 2.9, 3.4, 3.5};

This shorthand syntax must be in one
statement.

A\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All :P
rights reserved.

Declaring, creating, initializing
Using the Shorthand Notation

double[] myList = {1.9, 2.9, 3.4, 3.5};

This shorthand notation is equivalent to the

following statements:

double[] myList = new double[4];

myList[0] = 1.9;

myList[1] = 2.9;

myList[2] = 3.4;
3.5

myList[3] =

°
14

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

CAUTION

Using the shorthand notation, you
have to declare, create, and initialize
the array all in one statement.
Splitting 1t would cause a syntax
error. For example, the following Is
Wrong: N\
double[] myList; D

myList = {1.9, 2.9, 3.4, 3.5},
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 1?
ghts reserved.

animation

Trace Program with Arrays

Declare array variable values, create an
array, and assign its reference to values

public class Test {
public static void main(Str args) { After the array is created
Int[| values = new Int|5]; " E—m——
for (inti=1;1<5;i++){
values[i] = 1 + values[i-1];
s
values[0] = values[1] + values[4];
by
b

A~ w N P O
o|lo|lo|lo|lo

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

Trace Program with Arrays

I becomes 1]

public static vo In(String[] args) {
Int[] ew int[5];
for (Int1=1;1<5;i1++) {
values[i] =1 + values][i-1];
by

values[0] = values[1] + values[4];

}

! S\

After the array is created

A~ w N P O
o|lo|lo|lo|lo

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

Trace Program with Arrays

I (=1) is less than 5]

public class Test {
public static void m tring[] args) {

|nt[] ValueS = ne nt[5], After the array is created
for (inti=1;|i I++) { o
values[i] =1 + values][i-1]; 1 | o
} 2 [
values[0] = values[1] + values[4]; 3|0
¥ =

! S\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

Trace Program with Arrays

After this line is executed, value[1] is 1 }

public class Test {
public static void main(Stri
Int[] values = new int[5];
for(inti=1;i<5;i++){
values[i] =i + values[i-1]; ° ﬁ/}
by

values[0] = values[1] + values[4];

}

! S\

gS) { After the first iteration

N w N | P |O
o|lol|lo|r |o

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

Trace Program with Arrays

After i++, i becomes 2]

public class Test {
public static void main(Stri
int[] values = new int
for (inti=1;1<5;i++) {
values[i] =1 + values][i-1];
b

values[0] = values[1] + values[4];

¥ N\

After the first iteration

A w M P O
o|lo|lo|r|o

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

Trace Program with Arrays

] I (=2) is less than 5
public class Test {

public static void main(String[]
args) {

Int[] values = new Int[5L

for(inti=1;1<5;i++) {

After the first iteration

values[i] = i + values[i-1]; -
} » [0
values[0] = values[1] + 3 [o
values[4]; . |0

}

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

Trace Program with Arrays

After this line is executed, }

values[2] is3 (2 + 1)

public class Test {

public static void main(Stri
Int[] values = new int[5];
for(inti=1;i<5;i++){

0

1

values[i] =1 + values|i-1]; ~ ——
} 3
4

values[0] = values[1] + values[4];

}

! S\

gS) { After the second iteration

Ol o | W |k |oO

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

Trace Program with Arrays

After this, 1 becomes 3.]

public class Test {
public static void main(§ Ag[] args) { After the second teration
Int[] values = new int[
for(inti=1;1<5;i+#) {
values[i] = i1 + values[i-1];
by
values[0] = values[1] + values[4];
by
b

N w N PO
olo|lw]|r|lo

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

Trace Program with Arrays

I (=3) is still less than 5.

public class Test {
public static void main(Strs
Int[] values = new i
for (inti=1;[i <5]i++) {
values[i] = i1 + values[i-1];
by
values[0] = values[1] + values[4];
by
b

After the second iteration

N w N PO
olo|lw]|r|lo

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

Trace Program with Arrays

After this line, values[3] becomes 6 (3 + 3)]

public class Test {
public static void main(String[] ar
Int[] values = new int[5];
for(inti=1;i<5;i++){

values|i] =1 + values]i-1]; \

values[0] = values[1] + values[4];

}

} S\

After the third iteration

N |lw]|D>d P O
o|lo|lw|r |lo

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

Trace Program with Arrays

After this, i becomes 4

public class Test {
public static void main(Strin { After the third iteration
Int[] values = new int[5];
for (inti=1;1<5;I+4) {
values[i] = i1 + values[i-1];
}
values[0] = values[1] + values[4];
}
}

N w N PO
o|lo|lw|r |lo

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

Trace Program with Arrays

I (=4) is still less than 5

public class Test {
public static void main(Strs
Int[] values = new |
for (inti=1;[i <5 i++) {
values[i] = i1 + values[i-1];
by
values[0] = values[1] + values[4];
by
b

After the third iteration

N w N PO
o|lo|lw|r |lo

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

Trace Program with Arrays

After this, values[4] becomes 10 (4 + 6)]

public class Test {
public static void main(Stri rgs) { After the fourth iteration
Int[] values = new int[5];
for(inti=1;i<5;i++) {

values[i] = i + values[i-1]; \

values[0] = values[1] + values[4];

}

} S\

N lw N PO
o | w |l |lo

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

Trace Program with Arrays

After i++, i becomes 5]

public class Test {
public static void main(String[] ar
int[] values = new int[5];
for (inti=1;i<5;i++
values[i] =i + values]i-1];
¥
values[0] = values[1] + values[4];
by
b

After the fourth iteration

N w N P O
| Wl = |O

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

Trace Program with Arrays

I (=5) <5 is false. Exit the loop]

public class Test {
public static void m ring[] args) {
int[] values = ne
for (inti=1]i <5} i++) {
values[i] = i + values][i-1];
¥

values[0] = values[1] + values[4];

}

| 2\

After the fourth iteration

o | w |k |lo

A~ w b PO

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

public class Test {
public static void Ing[] args) {
Int[] values = ne :
for (inti=1;1
values[i] =)

by

values[O] = values[1] + values[4];
}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

Trace Program with Arrays

After this line, values[0] is 11 (1 +10) |

0 11
1 1
2 3
3 6
4 10

/

Processing Arrays

See the examples in the text.

1.

2.

3.

(Initializing arrays with input values)

(Initializing arrays with random values)

(Printing arrays)

(Summing all elements)

(Finding the largest element)

(Finding the smallest index of the largest element) \
(Random shuffling)

(Shifting elements)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All ?
rights reserved.

Initializing arrays with input values

java.util.Scanner input = new java.util.Scanner(System.in);
System.out.print("Enter " + myL.ist.length + "' values: ");
for (int 1 = 0; 1 < myList.length; 1++)

myList[i] = input.nextDouble();

A\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All ?
rights reserved.

Initializing arrays with random values

for (int 1 = 0; 1 <myList.length; i1++) {
myL.ist[1] = Math.random() * 100;
J

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All Q
rights reserved.

Printing arrays

for (inti=0; i <myList.length; i++) {
System.out.print(myList[i] + " ");
3

ramming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All ?
r eserved.

Summing all elements

double total = O;

for (int i = 0; i < myList.length; i++) {
total += myList[i];

s

)

amming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All ?
rights reserved.

Finding the largest element

double max = myLlist|[0];
for (int1=1; 1 <myList.length; i++) {
If (myList[i] > max) max = myLIist[i];

}

ing, Eleventh Edition, (¢) 2017 Pearson Education, Inc. All
rved

Random shuffling

for (int i = 0; i < myList.length - 1; i++) { myList
// Generate an index J randomly I —> [0]
int j = (int) (Math.random () [1]
* myList.length); i
|

// Swap myList([i] with myList[7j]
double temp = myList[i];
myList[i] = myList[j];

myList[]] = temp;

. swa
A random index [i] P

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

Shifting Elements

double temp = myList[0]; // Retain the first element

// Shift elements left myList

for (int i = 1; 1 < myList.length; i++) { Q_{\
myList[i - 1] = myList[i]; I I

} &

// Move the first element to fill in the last position
myList[myList.length - 1] = temp;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

Enhanced for Loop (for-each loop)

JDK 1.5 introduced a new for loop that enables you to traverse the complete array

sequentially without using an index variable. For example, the following code
displays all elements in the array myL.ist:

for (double value: mylist)
System.out.println(value) ;

In general, the syntax is

for (elementType value: arrayRefVar) ({
// Process the value

} A\

You still have to use an index variable if you wish to traverse the array in a
different order or change the elements in the array.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All ?
rights reserved.

Copying Arrays

Often, in a program, you need to duplicate an array or a part of an array.
In such cases you could attempt to use the assignment statement (=), as

follows:

list2 = list1:

Before the assignment After the assignment
Tist2 = Tistl; Tist2 = 1istl;
Tistl > Tistl >
Contents Contents
of 11stl of Tistl
1ist2 - Tist2
Contents Contents
of 11st2 of 11st2
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 4?

rights reserved.

Copying Arrays

Using a loop:
int[] sourceArray = {2, 3, 1, 5, 10};

int[] targetArray = new
int[sourceArray.length];

for (int 1 = 0; i < sourceArrays.length; i++)

A\

targetArray[i] = sourceArray[i];

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All ?
rights reserved.

The arraycopy Utility

arraycopy (sourceArray, SrcC_pos,
targetArray, tar pos, length);

Example:
System.arraycopy (sourceArray, O,

targetArray, 0, sourceArray.length) ;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

14

A\

Passing Arrays to Methods

public static void printArray(int[] array) ({
for (int 1 = 0; i < array.length; ;j
System.out.print (array[i] + " "

Invoke the method

int[] list = {
printArray(list) ;

Invoke the method
printArray(new int[]{3, 1, 2, 6, 4, 2});

I

Anonymous array

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

Anonymous Array

The statement
printArray(new Iint[]{3, 1, 2, 6, 4, 2});
creates an array using the following syntax:

new dataType[]{literalO, literall, ..., literalk};

There Is no explicit reference variable for the array.
Such array Is called an anonymous array.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

3

Pass By Value

Java uses pass by value to pass arguments to a method. There
are important differences between passing a value of variables
of primitive data types and passing arrays.

< For a parameter of a primitive type value, the actual value is
passed. Changing the value of the local parameter inside the
method does not affect the value of the variable outside the
method.

< For a parameter of an array type, the value of the paramet\
contains a reference to an array; this reference is passed to t
method. Any changes to the array that occur inside the meth
body will affect the original array that was passed as the
argument.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 4?
rights reserved.

Simple Example

public class Test {
public static void main(String[] args) ({
int x = 1; // x represents an int value

int[] y = new int[10]; // y represents an array of int values

m(x, y); // Invoke m with arguments x and y

System.ou 1 ("x 1is " + x);

System.out.pr is " + y[0]);

public static void m(int number, int[] n ers) { \
number = 1001; // Assign a new value to number
N
46"

numbers[0] = 5555; // Assign a new value to numbers[0]

Liang, introduction to Java FProgiaimiming, Eieveitin £dition, {C) 2017 Peaison Education, inc. Ali

rights reserved.

Call Stack

Stack Heap

Activation record for

method m e '_\
; - | reference |[<€ -
int[] numbers: Arrays are

4
A

: I
] ———————— - - :
1nt number: 1 | : An E}H‘ay of stored in a
Activation record for the I ten1nt heap.
main method I} values is
|

int[] y: reference f—— -1 stored here
TNt X!] === === -

When invoking m(X, y), the values of x and y are pa
to number and numbers. Since y contains the referen
value to the array, numbers now contains the same
reference value to the same array.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All P
rights reserved.

Call Stack

Stack Heap Stack

Activation record for the
swapFirstTwoInArray

Activation record for method
the swap method int[] array | reference |-

i,

Activation record for |
the main method l

int[] a |reference

Activation record for the
main method

=PGRS int[] afreference}-

L———————‘

I-dal[l]:2
When invoking m(X, y), the values of x and y are
passed to number and numbers. Since y contains th
reference value to the array, numbers now contains
same reference value to the same array.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All k
rights reserved.

Heap

Heap

< The arrays are

7 55§5 stored in a
Space required for the heap.
main method _

int[] y:reference”]
intx: 1 0

The JVM stores the array in an area of memory,
called heap, which is used for dynamic memory
allocation where blocks of memory are allocated a
freed In an arbitrary order.

A\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

o

Passing Arrays as Arguments

< ODbjective: Demonstrate differences of
passing primitive data type variables

and array variables.
TestPassArray - 9

Liang, Introduction to Java Programming, Elev th Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

Example, cont.

Stack Heap Stack
_ Space required for the
Space required for the swapFirstTwolnArray
swap method method
Ei: i I-: int[] array [reference |}~
: —_ |
_ " ——— :
Space required for the | Space required for the :
main method Lo main method !
int[] a |reference —— A 219 int[] a [reference }--|--
Jl-_.-_-a[O]: 1 |
Invok int nl, int n2 ~
nvoke swap(int nl, int n2). Invoke swapFirstTwolnArray(int[] array).
The primitive type values in The arrays are The reference value in a is passed to the
a[0] and a[1] are passed to the stored in a swapFirstTwolnArray method.
swap method. heap.

y

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All ?
rights reserved.

Returning an Array from a Method

public static int[] reverse(int[] 1list) {
int[] result = new int[list.length];

for (int i = 0, |jJ = result.length - 1;
i < list.length; i++, j--)
result[]j] = list[1i];

list ~ \\\[‘
return result;

} result ‘ / T~

int[] 1listl {1, 2, 3, l/, 5, 6}; \

int[] list2 = reverse(listl) ;

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All ?
rights reserved.

animation

Trace the reverse Method

int[] 1listl = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(listl);

Declare result and create array }

public static int[] reverse(int[] list) {
int[] result = new int[list.length];

for (int\i = 0, j = result.length - 1;
i < INist.length; i++, j—-) {
result[j]\ = 1list[i];
}

return result;

}

/

list 11234 5| 6

result olololo| oo

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

Trace the reverse Method, cont.

int[] 1listl = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(listl);

i=0andj=5

public static int[] reverse(int[] list) {
int[] result = new int[list.length];

for (int\i = 0, j = result.length - 17
i < INist.length; i++, j—-) {
result[j]\ = 1list[i];
}

return result;

}

list 11234 5| 6

result olololo| oo

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

Trace the reverse Method, cont.

int[] 1listl = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(listl);

| (=0) is less than 6

public static int[] reverse(int[] 1list)
int[] result = new int[list.len

for (int\i =0, j = t.length - 1;

i < Nist.length| i++, j--) {
result[j]\ = 1list[i];

}

return result;

}

list 11234 5| 6

result olololo| oo

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

Trace the reverse Method, cont.

int[] 1listl = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(listl);

i=0andj=5
Assign list[0] to result[5]

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1:
i < list.length; i++, j—--) {
result[j] = list[i]; ~]

}

return result;

}

list

result

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

Trace the reverse Method, cont.

int[] 1listl = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(listl);

public static int[] reverse(int[] list) {
int[] result = new int[list.length];

After this, i becomes 1 and j
becomes 4

for (int i = 0, j = result.lengt
i < list.length;|[i++, j--) {
result[j] = list[i];

}
return result;
} \
list 112 3| 4 5 6
result ololo|o] o1
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All ?

rights reserved.

animation

Trace the reverse Method, cont.

int[] 1listl = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(listl);

public static int[] reverse(int[] list) {

I (=1) is less than 6 J
int[] result = new int[list.length];

for (int 1 = 0, j = res =rTength - 1;
i < list.length| i++, j--) {
result[j] = list[i];

}

return result;

}

N\

list 11234 5| 6

result olololo| o1

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

Trace the reverse Method, cont.

int[] 1listl = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(listl);

i=landj=4
Assign list[1] to result[4]

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1:
i < list.length; i++, j—--) {
result[j] = list[i]; ~]

}

return result;

}

list 11234 5| 6

result olololo| 2|1

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

Trace the reverse Method, cont.

int[] 1listl = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(listl);

After this, i becomes 2 and

public static int[] reverse(int[] list) ({ J becomes 3

int[] result = new int[list.length];

for (int i = 0, j = result.lengt
i < list.length; [i++, j--) {
result[j] = list[i];

}
return result;
} \
list 112 3| 4 5 6
result ololo|o] 2|1
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All R

rights reserved.

animation

Trace the reverse Method, cont.

int[] 1listl = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(listl);

I (=2) is still less than 6

public static int[] reverse(int[] 1list)

int[] result = new int[list.len

for (int 1 =0, j = .length - 1;
i < list.length i++, j—--) {
result[j] = list[i];

}

return result;

}

list 11234 5| 6

result olololo| 2|1

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

Trace the reverse Method, cont.

int[] 1listl = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(listl);

i=2andj=3
Assign list[i] to result[j]

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1:
i < list.length; i++, j—--) {
result[j] = list[i]; ~]

}

return result;

}
list 1| 23|45 |6
result ololo|3| 2|1

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

Trace the reverse Method, cont.

int[] 1listl = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(listl);

After this, i becomes 3 and

public static int[] reverse(int[] list) { J becomes 2

int[] result = new int[list.length];

for (int i = 0, j = result.lengt
i < list.length; [i++, j--) {
result[j] = list[i];

}
return result;
} \
list 112 3| 4 5 6
result olo|lo|3] 2|1
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All k

rights reserved.

animation

Trace the reverse Method, cont.

int[] 1listl = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(listl);

I (=3) is still less than 6

public static int[] reverse(int[] 1list)

int[] result = new int[list.len

for (int 1 =0, j = .length - 1;
i < list.length i++, j—--) {
result[j] = list[i];

}

return result;

}

list 11234 5| 6

result ololo|3| 2|1

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

Trace the reverse Method, cont.

int[] 1listl = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(listl);

i=3andj=2
Assign list[i] to result[j]

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1:
i < list.length; i++, j—--) {
result[j] = list[i]; ~]

}

return result;

}
list 1] 2]3]4]5]6
result olol4]3| 2|1

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

Trace the reverse Method, cont.

int[] 1listl = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(listl);

After this, i becomes 4 and

public static int[] reverse(int[] list) { j becomes 1

int[] result = new int[list.length];

for (int i = 0, j = result.leng
i < list.length; [i++, j--) {
result[j] = list[i];

}
return result;
} ..\\\k
list 112 3| 4 5 6
result o|lo|4|3] 2|1
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All k

rights reserved.

animation

Trace the reverse Method, cont.

int[] 1listl = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(listl);

I (=4) is still less than 6

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.leng
i < list.length i++, j—--) {
result[j] = list[i];

}

return result;

}

list 11234 5| 6

result olol4]3| 2|1

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

Trace the reverse Method, cont.

int[] 1listl = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(listl);

iI=4andj=1
Assign list[i] to result[j]

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1:
i < list.length; i++, j—--) {
result[j] = list[i]; ~]

}

return result;

}

list 1

result 0

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

Trace the reverse Method, cont.

int[] 1listl = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(listl);

After this, i becomes 5 and

public static int[] reverse(int[] list) ({ J becomes 0

int[] result = new int[list.length];

for (int i = 0, j = result.lengt
i < list.length; [i++, j--) {
result[j] = list[i];

}
return result;
} \
list 112 3| 4 5 6
result o|5(4|3| 2|1
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All k

rights reserved.

animation

Trace the reverse Method, cont.

int[] 1listl = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(listl);

I (=5) is still less than 6

public static int[] reverse(int[] 1list)

int[] result = new int[list.leng

for (int 1 =0, j=r«r .length - 1;
i < list.length i++, j—--) {
result[j] = list[i];

}

return result;

}

list 11234 5| 6

result ol 5|43 2|1

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

Trace the reverse Method, cont.

int[] 1listl = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(listl);

i=5andj=0
Assign list[i] to result[j]

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1:
i < list.length; i++, j—--) {
result[j] = list[i]; ~]

}

return result;

}

list

result

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

animation

Trace the reverse Method, cont.

int[] 1listl = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(listl);

After this, i becomes 6 and

public static int[] reverse(int[] list) ({ J becomes -1

int[] result = new int[list.length];

for (int i = 0, j = result.lengt
i < list.length; |i++, J--
result[j] = list[i];

}
return result;
} \
list 112 3| 4 5 6
result 6|5(4|3| 2|1
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All -P

rights reserved.

animation

int[] 1listl = {1, 2, 3

, 4, 5, 6};

int[] list2 = reverse(listl);

public static int[] reverse(int[] 1list) theloop.
int[] result = new int[list.lengt
for (int i = 0, j = re .length - 1;
i < list.length| i++, j--) {
result[j] = list[i];
}
return result;
} \
"St 1] 2| 3 4 5
result 6|54 3] 2
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All -R

Trace the reverse Method, cont.

I (=6) <6 is false. So exit

rights reserved.

animation

Trace the reverse Method, cont.

int[] 1listl = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(listl);

Return result

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;
i < list.length; i++, j—--) {
result[j] = list[i];

}

return result; /

list2

list Zl 11 2| 3| 4 5 6
—

result ™ = 6|54 3| 2|1

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

Searching Arrays

Searching is the process of looking for a specific element in
an array; for example, discovering whether a certain score Is
Included in a list of scores. Searching Is a common task in
computer programming. There are many algorithms and data
structures devoted to searching. In this section, two
commonly used approaches are discussed, linear search and
binary search.

public class LinearSearch {
/** The method for finding a key in the list */

public static int linearSearch(int[] list, 1int key) {

for (int 1 = 0; 1 < list.length; i++)

if (key == list[i]) [0] 11 [2] ...
return 1i; list

return -1;

} key Compare key with list[i] fori=0, 1, ...
}
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 7?

rights reserved.

Linear Search

The linear search approach compares the key
element, key, sequentially with each element in
the array list. The method continues to do so

until the key matches an element in the list or

the list I1s exhausted without a match being

found. If a match is made, the linear search
returns the index of the element in the array \
that matches the key. If no match is found, the
search returns -1.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All #
rights reserved.

animation
|_Inear Search Animation

rights reserved.

animation

Linear Search Animation

https://liveexample.pearsoncmg.com/dsanimation/LinearS
earcheBook.html E

\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

https://liveexample.pearsoncmg.com/dsanimation/LinearSearcheBook.html
https://liveexample.pearsoncmg.com/dsanimation/LinearSearcheBook.html

From ldea to Solution

/** The method for finding a key in the list */

public static int linearSearch(int[] list, int key) {

for (int i = 0; 1 < list.length; i++)
if (key == list[i])

return i;

return -1;

Trace the method \
int[] list = {1, 4, 4, 2, 5, -3, 6, 2};

int i = linearSearch(list, 4); // returns 1

int j = linearSearch(list, -4); // returns -1

int k linearSearch(list, -3); // returns 5

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All #
rights reserved.

Binary Search

For binary search to work, the elements in the
array must already be ordered. Without loss of
generality, assume that the array Is In
ascending order.

e.g.,2471011455059 6006669 70 79

The binary search first compares the key with
the element in the middle of the array. N\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All *
rights reserved.

Binary Search, cont.

Consider the following three cases:

= If the key Is less than the middle element,
you only need to search the key iIn the first
half of the array.

+ If the key Is equal to the middle element,
the search ends with a match. \

< If the key Is greater than the middle
element, you only need to search the key in
the second half of the array.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All *
rights reserved.

animation

Key

8

Liang, Introduction to

Binary Search

List

23.6

8

2 |3 6.8

2 |3 |4 |6

8

Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

/

animation

Binary Search Animation

https://liveexample.pearsoncmg.com/dsanimation/BinaryS
earcheBook.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

https://liveexample.pearsoncmg.com/dsanimation/BinarySearcheBook.html
https://liveexample.pearsoncmg.com/dsanimation/BinarySearcheBook.html

Binary Search, cont.

keyis 11 Tow mid high
Y Y Y
key <50 0] (1] [2] [3] [4] [5] [e] [7] [8] [9] [10] [11] [12]
list |12 4 7 10 11 45 50 59 60 66 69 70 79

Tow mid high

Y Y Y

0] (1] [2] [3] 4] [5]
key > 7 list [2 4 7 10 11 45

Tow mid high

A
31 [4] 5]

key == 11 list 10 11 45

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

key is 54

key >50

key <66

key < 59

Binary Search, cont.

low mid hiih
[%] [1] [2] [3] [4] [5] [%] [7] [8] [9] [10] [11] [12]
list |2 4 7 10 11 45 50 59 60 66 69 70 79

low mid hiih

v

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9][10][11][12]
list 59 60 66 69 70 79

low mid high

v/

[7] [8]
list 59 60

6] [7] [8]
59 60

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All k
rights reserved.

Binary Search, cont.

The binarySearch method returns the index of the
element In the list that matches the search key If it
IS contained in the list. Otherwise, It returns

-Insertion point - 1.

The Insertion point is the point at which the key\
would be inserted into the list.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All k
rights reserved.

From ldea to Soluton

/** Use binary search to find the key in the list */
public static int binarySearch(int[] 1list, int key) {
int low = 0;
int high = list.length - 1;

while (high >= low) {

int mid = (low + high) / 2;

if (key < list[mid])
high = mid - 1;

else if (key == list[mid])
return mid;

else
low = mid + 1;

return -1 - low;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

The Arrays.binarySearch Method

Since binary search is frequently used in programming, Java provides several
overloaded binarySearch methods for searching a key in an array of int, double,
char, short, long, and float in the java.util.Arrays class. For example, the
following code searches the keys in an array of numbers and an array of
characters.

int[] list = {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79};
System.out.printin("Index is
java.util.Arrays.binarySearch(list, 11)); Return is 4

char[] chars = {'a','c’, 'g’, X', 'y', 'z'};
System.out.printin("Index is

java.util. Arrays.binarySearch(chars, 't)): Return is —4 (insertion poin

3, so return is -3-1)

For the binarySearch method to work, the array must be pre-sorted in increas
order.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All Q
rights reserved.

Sorting Arrays

Sorting, like searching, Is also a common task In

computer programming. Many different algorithms
have been developed for sorting. This section

Introduces a simple, intuitive sorting algorithms:
selection sort.

2\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All Q
rights reserved.

Selection Sort

Selection sort finds the smallest number in the list and places it first. It then finds
the smallest number remaining and places it second, and so on until the list
contains only a single number. swap

—

19~

Select 1 (the smallest) and swap it 9 5 4 8 6
with 2 (the first) in the list.
swap
The number 1 is now in the " + Select 2 (the smallest) and swap it
correct position and thus no l 9 5 4 8 2 6 with 9 (the first) in the remaining
longer needs to be considered. list.
swap
The number 2 is now in the ;]' Select 4 (the smallest) and swap it
correct position and thus no l 2 5 4 8 9 6 with 5 (the first) in the remaining
longer needs to be considered. list.
The num b?r .4 15 nowIn Ehe , - .G 5 is the smallest and in the right
correct position and thus no I 2 4 5 8 9 6 . . e
o position. No swap is necessary.
longer needs to be considered.
swap
The number 5 is now in the ; } Select 6 (the smallest) and swap it
correct position and thus no I 2 - 5 8 9 6 with 8 (the first) in the remaining
longer needs to be considered. list.
swap \

The number 6 is now in the ‘F } Select 8 (the smallest) and swap it
correct position and thus no | 2 4 5 6 9 8 with 9 (the first) in the remaining
longer needs to be considered. list.
The number 8 is now in the Since there 1s only one element
correct position and thus no | 2 4 5 6 8 9 remaining in the list, the sort is
longer needs to be considered. completed.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All k

rights reserved.

animation

Selection Sort Animation

https://liveexample.pearsoncmg.com/dsanimation/Selectio
nSortNew.html
h

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

https://liveexample.pearsoncmg.com/dsanimation/SelectionSortNew.html
https://liveexample.pearsoncmg.com/dsanimation/SelectionSortNew.html

From ldea to Solution

for (int i = 0; i < list.length; i++) {
select the smallest element in list[i..listSize-1];
swap the smallest with list[i], if necessary;
// list[i] is in its correct position.
// The next iteration apply on list[i+l..listSize-1]

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

}
list[0] 1list[1l] 1list[2] list[3] list[10]
1list[0] 1list[1l] 1list[2] list[3] list[10]
1list[0] list[1l] 1list[2] list[3] list[10]
list[0] list[1l] list[2] list[3] list[10
list[0] 1list[1l] 1list[2] list[3] list[10]
list[0] 1list[l] 1list[2] l1list[3] list[10

for (int1=0; 1 <listSize; i++) {

select the smallest element in list[i..listSize-1]:
swpp the smallest with list[i], if necessary;

[/ 1{st[1] Is In Its correct position.

// The next iteration apply on list[i..listSize-1]

}
Expand

doyble currentMin = list[i];

for (intj = i+1; j < list.length; j++) {
If (currentMin > list[j]) {

currentMin = list[j]; \

}
¥

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

for (inti1=0; 1 <listSize; i++) {

select the smallest element in list[1..listSize-1];
swap the smallest with list[i], if necessary;
//|list[1] Is In Its correct position.

//|The next iteration apply on list[i..listSize-1]

}
Expand

double currentMin = list[i];

Int currentMinindex = 1;

for (intj =1; j < list.length; j++) {
If (currentMin > list[j]) {

currentMin = list[j];
currentMinindex = j;

}
¥

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

for (int1=0; 1 <listSize; i++) {

select the smallest element in list[i..listSize-1];
swap the smallest with list|I], IT necessary;
//|list[1] Is In Its correct position.

//|The next iteration apply on list[i..listSize-1]

}
Expand

If (currentMinindex '=1) {
list[currentMinindex] = list][i];

list[i] = currentMin;
} N\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

Wrap It in a Method

/** The method for sorting the numbers */

public static void selectionSort(double[] 1list) {
for (int i = 0; i < list.length; i++) {
// Find the minimum in the list[i..list.length-1]
double currentMin = list[i];
int currentMinIndex = 1i;
for (int j = i + 1; j < list.length; j++) {
if (currentMin > list[j]) {
currentMin = list[]j];
currentMinIndex = j;

}

// Swap list[i] with list[currentMinIndex] if necessary;

if (currentMinIndex !'= i) ({
list[currentMinIndex] = list[i]; Invoke it
list[i] = currentMin;
} :
| selectionSort(you

R

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved.

The Arrays.sort Method

Since sorting is frequently used in programming, Java provides several
overloaded sort methods for sorting an array of int, double, char, short,
long, and float in the java.util.Arrays class. For example, the following
code sorts an array of numbers and an array of characters.

double[] numbers = {6.0, 4.4, 1.9, 2.9, 3.4, 3.5};
java.util. Arrays.sort(numbers);

char[] chars = {'a', 'A’, '4", 'F', 'D', 'P'}; \
java.util.Arrays.sort(chars);

Java 8 now provides Arrays.parallelSort(list) that utilizes the multicor
for fast sorting.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All ?
rights reserved.

Command-Line Parameters

class TestMain {

public static void main(String[] args) {

java TestMain arg0 argl arg2 ... argn N\\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All Q
rights reserved.

Processing
Command-Line Parameters

In the main method, get the arguments from
args[0], args[l], ., args[n],which
corresponds to arg0, argl, ..., argnin
the command line.

2\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All Q
rights reserved.

