
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
1

Chapters 4, 10 Strings

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
2

The String Type
The char type only represents one character. To represent a string

of characters, use the data type called String. For example,

String message = "Welcome to Java";

String is actually a predefined class in the Java library just like the

System class and Scanner class. The String type is not a primitive

type. It is known as a reference type. Any Java class can be used

as a reference type for a variable. Reference data types will be

thoroughly discussed in Chapter 9, “Objects and Classes.” For the

time being, you just need to know how to declare a String

variable, how to assign a string to the variable, how to concatenate

strings, and to perform simple operations for strings.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
3

Simple Methods for String Objects

Method Description

Returns the number of characters in this string.

Returns the character at the specified index from this string.

Returns a new string that concatenates this string with string s1.

Returns a new string with all letters in uppercase.

Returns a new string with all letters in lowercase.

Returns a new string with whitespace characters trimmed on both sides.

length()

charAt(index)

concat(s1)

toUpperCase()

toLowerCase()

trim()

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
4

Simple Methods for String Objects

Strings are objects in Java. The methods in the preceding

table can only be invoked from a specific string instance.

For this reason, these methods are called instance methods.

A non-instance method is called a static method. A static

method can be invoked without using an object. All the

methods defined in the Math class are static methods. They

are not tied to a specific object instance. The syntax to

invoke an instance method is

referenceVariable.methodName(arguments).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
5

Getting String Length

String message = "Welcome to Java";

System.out.println("The length of " + message + " is "

+ message.length());

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
6

Getting Characters from a String

String message = "Welcome to Java";

System.out.println("The first character in message is "

+ message.charAt(0));

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
7

Converting Strings

"Welcome".toLowerCase() returns a new string, welcome.

"Welcome".toUpperCase() returns a new string,

WELCOME.

" Welcome ".trim() returns a new string, Welcome.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
8

String Concatenation

String s3 = s1.concat(s2); or String s3 = s1 + s2;

// Three strings are concatenated

String message = "Welcome " + "to " + "Java";

// String Chapter is concatenated with number 2

String s = "Chapter" + 2; // s becomes Chapter2

// String Supplement is concatenated with character B

String s1 = "Supplement" + 'B'; // s1 becomes SupplementB

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
9

Reading a String from the Console
Scanner input = new Scanner(System.in);

System.out.print("Enter three words separated by spaces: ");

String s1 = input.next();

String s2 = input.next();

String s3 = input.next();

System.out.println("s1 is " + s1);

System.out.println("s2 is " + s2);

System.out.println("s3 is " + s3);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
10

Reading a Character from the

Console

Scanner input = new Scanner(System.in);

System.out.print("Enter a character: ");

String s = input.nextLine();

char ch = s.charAt(0);

System.out.println("The character entered is " + ch);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
11

Comparing Strings

Method Description

Returns true if this string is equal to string s1.

Returns true if this string is equal to string s1; it is case insensitive.

Returns an integer greater than 0, equal to 0, or less than 0 to indicate whether

this string is greater than, equal to, or less than s1.

Same as compareTo except that the comparison is case insensitive.

Returns true if this string starts with the specified prefix.

Returns true if this string ends with the specified suffix.

equals(s1)

equalsIgnoreCase(s1)

compareTo(s1)

compareToIgnoreCase(s1)

startsWith(prefix)

endsWith(suffix)

OrderTwoCities Run

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
12

import java.util.Scanner;

public class OrderTwoCities {

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

// Prompt the user to enter two cities

System.out.print("Enter the first city: ");

String city1 = input.nextLine();

System.out.print("Enter the second city: ");

String city2 = input.nextLine();

if (city1.compareTo(city2) < 0)

System.out.println("The cities in alphabetical order are " +

city1 + " " + city2);

else

System.out.println("The cities in alphabetical order are " +

city2 + " " + city1);

}

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
13

Obtaining Substrings

Method Description

Returns this string’s substring that begins with the character at the specified

beginIndex and extends to the end of the string, as shown in Figure 4.2.

Returns this string’s substring that begins at the specified beginIndex and

extends to the character at index endIndex – 1, as shown in Figure 9.6.

Note that the character at endIndex is not part of the substring.

substring(beginIndex)

substring(beginIndex,

endIndex)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
14

Finding a Character or a Substring

in a String

Method Description

Returns the index of the first occurrence of ch in the string. Returns -1 if not

matched.

Returns the index of the first occurrence of ch after fromIndex in the string.

Returns -1 if not matched.

Returns the index of the first occurrence of string s in this string. Returns -1 if

not matched.

Returns the index of the first occurrence of string s in this string after

fromIndex. Returns -1 if not matched.

Returns the index of the last occurrence of ch in the string. Returns -1 if not

matched.

Returns the index of the last occurrence of ch before fromIndex in this

string. Returns -1 if not matched.

Returns the index of the last occurrence of string s. Returns -1 if not matched.

Returns the index of the last occurrence of string s before fromIndex.

Returns -1 if not matched.

indexOf(ch)

indexOf(ch, fromIndex)

indexOf(s)

indexOf(s, fromIndex)

lastIndexOf(ch)

lastIndexOf(ch,

fromIndex)

lastIndexOf(s)

lastIndexOf(s,

fromIndex)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
15

Finding a Character or a Substring

in a String
int k = s.indexOf(' ');

String firstName = s.substring(0, k);

String lastName = s.substring(k + 1);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
16

Conversion between Strings and

Numbers

int intValue = Integer.parseInt(intString);

double doubleValue = Double.parseDouble(doubleString);

String s = number + "";

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
17

Formatting Output

Use the printf statement.

System.out.printf(format, items);

Where format is a string that may consist of substrings and

format specifiers. A format specifier specifies how an item

should be displayed. An item may be a numeric value,

character, boolean value, or a string. Each specifier begins

with a percent sign.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
18

Frequently-Used Specifiers

Specifier Output Example

%b a boolean value true or false

%c a character 'a'

%d a decimal integer 200

%f a floating-point number 45.460000

%e a number in standard scientific notation 4.556000e+01

%s a string "Java is cool"

int count = 5;

double amount = 45.56;

System.out.printf("count is %d and amount is %f", count, amount);

display count is 5 and amount is 45.560000

items

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

Formatting Data types

19

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

Formatting: widths

20

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

Formatting: comma, zeros

21

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.

Formatting: Justification

22

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
23

Constructing Strings

String newString = new String(stringLiteral);

String message = new String("Welcome to Java");

Since strings are used frequently, Java provides a

shorthand initializer for creating a string:

String message = "Welcome to Java";

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
24

Strings Are Immutable

A String object is immutable; its contents cannot be changed.

Does the following code change the contents of the string?

String s = "Java";

s = "HTML";

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
25

Trace Code

String s = "Java";

s = "HTML";

: String

String object for "Java"

s

After executing String s = "Java";

After executing s = "HTML";

: String

String object for "Java"

: String

String object for "HTML"

Contents cannot be changed

This string object is

now unreferenced
 s

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
26

Trace Code

String s = "Java";

s = "HTML";

: String

String object for "Java"

s

After executing String s = "Java";

After executing s = "HTML";

: String

String object for "Java"

: String

String object for "HTML"

Contents cannot be changed

This string object is

now unreferenced
 s

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
27

Interned Strings

Since strings are immutable and are frequently

used, to improve efficiency and save memory, the

JVM uses a unique instance for string literals with

the same character sequence. Such an instance is

called interned. For example, the following

statements:

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
28

Examples

display

s1 == s is false

s1 == s3 is true

A new object is created if you use the
new operator.

If you use the string initializer, no new
object is created if the interned object is
already created.

 String s1 = "Welcome to Java";

String s2 = new String("Welcome to Java");

String s3 = "Welcome to Java";

System.out.println("s1 == s2 is " + (s1 == s2));

System.out.println("s1 == s3 is " + (s1 == s3));

: String

Interned string object for

"Welcome to Java"

: String

A string object for

"Welcome to Java"

s1

s2

s3

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
29

Trace Code
 String s1 = "Welcome to Java";

String s2 = new String("Welcome to Java");

String s3 = "Welcome to Java";

: String

Interned string object for

"Welcome to Java"

s1

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
30

Trace Code
 String s1 = "Welcome to Java";

String s2 = new String("Welcome to Java");

String s3 = "Welcome to Java";

: String

Interned string object for

"Welcome to Java"

: String

A string object for

"Welcome to Java"

s1

s2

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
31

Trace Code
 String s1 = "Welcome to Java";

String s2 = new String("Welcome to Java");

String s3 = "Welcome to Java";

: String

Interned string object for

"Welcome to Java"

: String

A string object for

"Welcome to Java"

s1

s2

s3

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
32

Replacing and Splitting Strings

java.lang.String

+replace(oldChar: char,

newChar: char): String

+replaceFirst(oldString: String,

newString: String): String

+replaceAll(oldString: String,

newString: String): String

+split(delimiter: String):

String[]

Returns a new string that replaces all matching character in this

string with the new character.

Returns a new string that replaces the first matching substring in

this string with the new substring.

Returns a new string that replace all matching substrings in this

string with the new substring.

Returns an array of strings consisting of the substrings split by the

delimiter.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
33

Examples

"Welcome".replace('e', 'A') returns a new string, WAlcomA.

"Welcome".replaceFirst("e", "AB") returns a new string,

WABlcome.

"Welcome".replace("e", "AB") returns a new string,

WABlcomAB.

"Welcome".replace("el", "AB") returns a new string,

WABcome.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
34

Splitting a String

String[] tokens = "Java#HTML#Perl".split("#”,0);

for (int i = 0; i < tokens.length; i++)

System.out.print(tokens[i] + " ");

Java HTML Perl

displays

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
35

Matching, Replacing and Splitting by Patterns

You can match, replace, or split a string by specifying a pattern.

This is an extremely useful and powerful feature, commonly

known as regular expression. Regular expression is complex to

beginning students. For this reason, two simple patterns are

used in this section. Please refer to Supplement III.F, “Regular
Expressions,” for further studies.

"Java".matches("Java");

"Java".equals("Java");

"Java is fun".matches("Java.*");

"Java is cool".matches("Java.*");

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
36

Matching, Replacing and Splitting by Patterns

The replaceAll, replaceFirst, and split methods can be used with

a regular expression. For example, the following statement

returns a new string that replaces $, +, or # in "a+b$#c" by the

string NNN.

String s = "a+b$#c".replaceAll("[$+#]", "NNN");

System.out.println(s);

Here the regular expression [$+#] specifies a pattern that

matches $, +, or #. So, the output is aNNNbNNNNNNc.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
37

Matching, Replacing and Splitting by Patterns

The following statement splits the string into an array of strings
delimited by some punctuation marks.

String[] tokens = "Java,C?C#,C++".split("[.,:;?]");

for (int i = 0; i < tokens.length; i++)

System.out.println(tokens[i]);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
38

Convert Character and Numbers

to Strings

The String class provides several static valueOf

methods for converting a character, an array of

characters, and numeric values to strings. These

methods have the same name valueOf with

different argument types char, char[], double, long,

int, and float. For example, to convert a double

value to a string, use String.valueOf(5.44). The

return value is string consists of characters ‘5’, ‘.’,

‘4’, and ‘4’.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
39

StringBuilder and StringBuffer

The StringBuilder/StringBuffer class is

an alternative to the String class. In general, a

StringBuilder/StringBuffer can be used wherever a

string is used. StringBuilder/StringBuffer is more

flexible than String. You can add, insert, or append

new contents into a string buffer, whereas the

value of a String object is fixed once the string is

created.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
40

StringBuilder Constructors

java.lang.StringBuilder

+StringBuilder()

+StringBuilder(capacity: int)

+StringBuilder(s: String)

Constructs an empty string builder with capacity 16.

Constructs a string builder with the specified capacity.

Constructs a string builder with the specified string.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
41

Modifying Strings in the Builder

java.lang.StringBuilder

+append(data: char[]): StringBuilder

+append(data: char[], offset: int, len: int):

StringBuilder

+append(v: aPrimitiveType): StringBuilder

+append(s: String): StringBuilder

+delete(startIndex: int, endIndex: int):

StringBuilder

+deleteCharAt(index: int): StringBuilder

+insert(index: int, data: char[], offset: int,

len: int): StringBuilder

+insert(offset: int, data: char[]):

StringBuilder

+insert(offset: int, b: aPrimitiveType):

StringBuilder

+insert(offset: int, s: String): StringBuilder

+replace(startIndex: int, endIndex: int, s:

String): StringBuilder

+reverse(): StringBuilder

+setCharAt(index: int, ch: char): void

Appends a char array into this string builder.

Appends a subarray in data into this string builder.

Appends a primitive type value as a string to this

builder.

Appends a string to this string builder.

Deletes characters from startIndex to endIndex.

Deletes a character at the specified index.

Inserts a subarray of the data in the array to the builder

at the specified index.

Inserts data into this builder at the position offset.

Inserts a value converted to a string into this builder.

Inserts a string into this builder at the position offset.

Replaces the characters in this builder from startIndex

to endIndex with the specified string.

Reverses the characters in the builder.

Sets a new character at the specified index in this

builder.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
42

Examples

stringBuilder.append("Java");

stringBuilder.insert(11, "HTML and ");

stringBuilder.delete(8, 11) changes the builder to Welcome
Java.

stringBuilder.deleteCharAt(8) changes the builder to
Welcome o Java.

stringBuilder.reverse() changes the builder to avaJ ot
emocleW.

stringBuilder.replace(11, 15, "HTML")

changes the builder to Welcome to HTML.

stringBuilder.setCharAt(0, 'w') sets the builder to welcome
to Java.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
43

The toString, capacity, length,

setLength, and charAt Methods

java.lang.StringBuilder

+toString(): String

+capacity(): int

+charAt(index: int): char

+length(): int

+setLength(newLength: int): void

+substring(startIndex: int): String

+substring(startIndex: int, endIndex: int):

String

+trimToSize(): void

Returns a string object from the string builder.

Returns the capacity of this string builder.

Returns the character at the specified index.

Returns the number of characters in this builder.

Sets a new length in this builder.

Returns a substring starting at startIndex.

Returns a substring from startIndex to endIndex-1.

Reduces the storage size used for the string builder.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
44

Problem: Checking Palindromes

Ignoring Non-alphanumeric Characters

This example gives a program that counts the

number of occurrence of each letter in a string.

Assume the letters are not case-sensitive.

RunPalindromeIgnoreNonAlphanumeric

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
45

Regular Expressions

A regular expression (abbreviated regex) is a string

that describes a pattern for matching a set of

strings. Regular expression is a powerful tool for

string manipulations. You can use regular

expressions for matching, replacing, and splitting

strings.

Appendix H

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
46

Matching Strings

"Java".matches("Java");

"Java".equals("Java");

"Java is fun".matches("Java.*")

"Java is cool".matches("Java.*")

"Java is powerful".matches("Java.*")

Appendix H

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
47

Regular

Expression

Syntax

Appendix H

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
48

Replacing and Splitting Strings

java.lang.String

+matches(regex: String): boolean

+replaceAll(regex: String,

replacement: String): String

+replaceFirst(regex: String,

replacement: String): String

+split(regex: String): String[]

Returns true if this string matches the pattern.

Returns a new string that replaces all

matching substrings with the replacement.

Returns a new string that replaces the first

matching substring with the replacement.

Returns an array of strings consisting of the

substrings split by the matches.

Appendix H

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All

rights reserved.
49

Examples

String s = "Java Java Java".replaceAll("v\\w", "wi") ;

String s = "Java Java Java".replaceFirst("v\\w", "wi") ;

String[] s = "Java1HTML2Perl".split("\\d");

Appendix H

