
COMP231
Advanced Programming

Chapter 3 Selections

Compiled By: Dr. Majdi Mafarja

Fall Semester 2017/2018

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
2

The boolean Type and Operators

Often in a program you need to compare two

values, such as whether i is greater than j. Java

provides six comparison operators (also known

as relational operators) that can be used to

compare two values. The result of the

comparison is a Boolean value: true or false.

boolean b = (1 > 2);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
3

Relational Operators

 Java Mathematics Name Example Result

Operator Symbol (radius is 5)

< < less than radius < 0 false

<= ≤ less than or equal to radius <= 0 false

> > greater than radius > 0 true

>= ≥ greater than or equal to radius >= 0 true

== = equal to radius == 0 false

!= ≠ not equal to radius != 0 true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
4

One-way if Statements

if (boolean-expression) {
statement(s);

}

if (radius >= 0) {

area = radius * radius * PI;

System.out.println("The area"

+ " for the circle of radius "

+ radius + " is " + area);

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
5

Note

 if i > 0 {
 System.out.println("i is positive");

}

(a) Wrong (b) Correct

if (i > 0) {

 System.out.println("i is positive");

}

 if (i > 0) {
 System.out.println("i is positive");

}

(a)

Equivalent

(b)

if (i > 0)

 System.out.println("i is positive");

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
6

Simple if Demo

Run

Write a program that prompts the user to enter an integer. If the

number is a multiple of 5, print HiFive. If the number is divisible

by 2, print HiEven.

SimpleIfDemo

http://www.cs.armstrong.edu/liang/intro11e/html/SimpleIfDemo.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
7

The Two-way if Statement
if (boolean-expression) {

statement(s)-for-the-true-case;

}

else {

statement(s)-for-the-false-case;

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
8

if-else Example

if (radius >= 0) {

area = radius * radius * 3.14159;

System.out.println("The area for the “

+ “circle of radius " + radius +

" is " + area);

}

else {

System.out.println("Negative input");

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
9

Multiple Alternative if Statements

 if (score >= 90.0)
 System.out.print("A");

else

 if (score >= 80.0)

 System.out.print("B");

 else

 if (score >= 70.0)

 System.out.print("C");

 else

 if (score >= 60.0)

 System.out.print("D");

 else

 System.out.print("F");

 (a)

Equivalent

if (score >= 90.0)

 System.out.print("A");

else if (score >= 80.0)

 System.out.print("B");

else if (score >= 70.0)

 System.out.print("C");

else if (score >= 60.0)

 System.out.print("D");

else

 System.out.print("F");

(b)

This is better

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
10

Multi-Way if-else Statements

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
11

Trace if-else statement

if (score >= 90.0)

System.out.print("A");

else if (score >= 80.0)

System.out.print("B");

else if (score >= 70.0)

System.out.print("C");

else if (score >= 60.0)

System.out.print("D");

else

System.out.print("F");

Suppose score is 70.0 Exit the if statement

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
12

Note
The else clause matches the most recent if clause in the
same block.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
13

Note, cont.

Nothing is printed from the preceding statement. To force

the else clause to match the first if clause, you must add a

pair of braces:
int i = 1;

int j = 2;

int k = 3;

if (i > j) {

if (i > k)

System.out.println("A");

}

else

System.out.println("B");

This statement prints B.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
14

Common Errors

Adding a semicolon at the end of an if clause is a common

mistake.

if (radius >= 0);

{

area = radius*radius*PI;

System.out.println(

"The area for the circle of radius " +

radius + " is " + area);

}

This mistake is hard to find, because it is not a compilation error or

a runtime error, it is a logic error.

This error often occurs when you use the next-line block style.

Wrong

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
15

TIP

 if (number % 2 == 0)
 even = true;

else

 even = false;

(a)

Equivalent

boolean even

 = number % 2 == 0;

(b)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
16

CAUTION

if (even == true)

 System.out.println(

 "It is even.");

(a)

Equivalent if (even)

 System.out.println(

 "It is even.");

(b)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
17

Problem: Body Mass Index

Body Mass Index (BMI) is a measure of health on

weight. It can be calculated by taking your weight

in kilograms and dividing by the square of your

height in meters. The interpretation of BMI for

people 16 years or older is as follows:

 BMI Interpretation

 BMI < 18.5 Underweight

18.5 <= BMI < 25.0 Normal
25.0 <= BMI < 30.0 Overweight

30.0 <= BMI Obese

ComputeAndInterpretBMI Run

http://www.cs.armstrong.edu/liang/intro11e/html/SubtractionQuiz.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
18

Problem: Computing Taxes

The US federal personal income tax is calculated

based on the filing status and taxable income.

There are four filing statuses: single filers, married

filing jointly, married filing separately, and head of

household. The tax rates for 2009 are shown below.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
19

Problem: Computing Taxes, cont.
if (status == 0) {

// Compute tax for single filers

}

else if (status == 1) {

// Compute tax for married file jointly

// or qualifying widow(er)

}

else if (status == 2) {

// Compute tax for married file separately

}

else if (status == 3) {

// Compute tax for head of household

}

else {

// Display wrong status

} ComputeTax Run

http://www.cs.armstrong.edu/liang/intro11e/html/SubtractionQuiz.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
20

Logical Operators

Operator Name Description

! not logical negation

&& and logical conjunction

|| or logical disjunction

^ exclusive or logical exclusion

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
21

Truth Table for Operator !

p !p Example (assume age = 24, weight = 140)

true false !(age > 18) is false, because (age > 18) is true.

false true !(weight == 150) is true, because (weight == 150) is false.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
22

Truth Table for Operator &&

p1 p2 p1 && p2 Example (assume age = 24, weight = 140)

false false false (age <= 18) && (weight < 140) is false, because both

conditions are both false.

false true false

true false false (age > 18) && (weight > 140) is false, because (weight

> 140) is false.

true true true (age > 18) && (weight >= 140) is true, because both

(age > 18) and (weight >= 140) are true.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
23

Truth Table for Operator ||

p1 p2 p1 || p2 Example (assume age = 24, weihgt = 140)

false false false

false true true (age > 34) || (weight <= 140) is true, because (age > 34)

is false, but (weight <= 140) is true.

true false true (age > 14) || (weight >= 150) is false, because

(age > 14) is true.

true true true

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
24

Truth Table for Operator ^

p1 p2 p1 ^ p2 Example (assume age = 24, weight = 140)

false false false (age > 34) ^ (weight > 140) is true, because (age > 34) is false

and (weight > 140) is false.

false true true (age > 34) ^ (weight >= 140) is true, because (age > 34) is false

but (weight >= 140) is true.

true false true (age > 14) ^ (weight > 140) is true, because (age > 14) is

true and (weight > 140) is false.

true true false

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
25

Examples

Here is a program that checks whether a number is divisible by 2

and 3, whether a number is divisible by 2 or 3, and whether a

number is divisible by 2 or 3 but not both:

TestBooleanOperators Run

http://www.cs.armstrong.edu/liang/intro11e/html/SubtractionQuiz.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
26

Examples

System.out.println("Is " + number + " divisible by 2 and 3? " +

((number % 2 == 0) && (number % 3 == 0)));

System.out.println("Is " + number + " divisible by 2 or 3? " +

((number % 2 == 0) || (number % 3 == 0)));

System.out.println("Is " + number +

" divisible by 2 or 3, but not both? " +

((number % 2 == 0) ^ (number % 3 == 0)));

TestBooleanOperators

Run

http://www.cs.armstrong.edu/liang/intro11e/html/TestBooleanOperatorsWithLineNumber.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
27

The & and | Operators

Supplement III.B, “The & and | Operators”

Companion
Website

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
28

The & and | Operators

If x is 1, what is x after this

expression?

(x > 1) & (x++ < 10)

If x is 1, what is x after this

expression?

(1 > x) && (1 > x++)

How about (1 == x) | (10 > x++)?

(1 == x) || (10 > x++)?

Companion
Website

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
29

Problem: Determining Leap Year?

This program first prompts the user to enter a year as

an int value and checks if it is a leap year.

A year is a leap year if it is divisible by 4 but not by

100, or it is divisible by 400.

(year % 4 == 0 && year % 100 != 0) || (year % 400

== 0)

LeapYear Run

http://www.cs.armstrong.edu/liang/intro11e/html/LeapYear.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
30

switch Statements
switch (status) {

case 0: compute taxes for single filers;

break;

case 1: compute taxes for married file jointly;

break;

case 2: compute taxes for married file separately;

break;

case 3: compute taxes for head of household;

break;

default: System.out.println("Errors: invalid status");

System.exit(1);

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
31

switch Statement Flow Chart

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
32

switch Statement Rules

switch (switch-expression) {

case value1: statement(s)1;

break;

case value2: statement(s)2;

break;

…

case valueN: statement(s)N;

break;

default: statement(s)-for-default;

}

The switch-expression
must yield a value of char,
byte, short, or int type and
must always be enclosed in
parentheses.

The value1, ..., and valueN must

have the same data type as the

value of the switch-expression.

The resulting statements in the

case statement are executed when

the value in the case statement

matches the value of the switch-

expression. Note that value1, ...,

and valueN are constant

expressions, meaning that they

cannot contain variables in the

expression, such as 1 + x.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
33

switch Statement Rules

The keyword break is optional,

but it should be used at the end of

each case in order to terminate the

remainder of the switch

statement. If the break statement

is not present, the next case

statement will be executed.

switch (switch-expression) {

case value1: statement(s)1;

break;

case value2: statement(s)2;

break;

…

case valueN: statement(s)N;

break;

default: statement(s)-for-default;

}

The default case, which is

optional, can be used to perform

actions when none of the

specified cases matches the

switch-expression.
When the value in a case statement matches the value

of the switch-expression, the statements starting from

this case are executed until either a break statement or

the end of the switch statement is reached.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
34

Trace switch statement

switch (day) {

case 1:

case 2:

case 3:

case 4:

case 5: System.out.println("Weekday"); break;

case 0:

case 6: System.out.println("Weekend");

}

Suppose day is 2:

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
35

Trace switch statement

switch (day) {

case 1:

case 2:

case 3:

case 4:

case 5: System.out.println("Weekday"); break;

case 0:

case 6: System.out.println("Weekend");

}

Match case 2

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
36

Trace switch statement

switch (day) {

case 1:

case 2:

case 3:

case 4:

case 5: System.out.println("Weekday"); break;

case 0:

case 6: System.out.println("Weekend");

}

Fall through case 3

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
37

Trace switch statement

switch (day) {

case 1:

case 2:

case 3:

case 4:

case 5: System.out.println("Weekday"); break;

case 0:

case 6: System.out.println("Weekend");

}

Fall through case 4

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
38

Trace switch statement

switch (day) {

case 1:

case 2:

case 3:

case 4:

case 5: System.out.println("Weekday"); break;

case 0:

case 6: System.out.println("Weekend");

}

Fall through case 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
39

Trace switch statement

switch (day) {

case 1:

case 2:

case 3:

case 4:

case 5: System.out.println("Weekday"); break;

case 0:

case 6: System.out.println("Weekend");

}

Encounter break

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
40

Trace switch statement

switch (day) {

case 1:

case 2:

case 3:

case 4:

case 5: System.out.println("Weekday"); break;

case 0:

case 6: System.out.println("Weekend");

}

Exit the statement

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
41

Conditional Expressions
if (x > 0)

y = 1
else

y = -1;

is equivalent to

y = (x > 0) ? 1 : -1;
(boolean-expression) ? expression1 : expression2

Ternary operator
Binary operator
Unary operator

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
42

Conditional Operator

if (num % 2 == 0)

System.out.println(num + “is even”);

else

System.out.println(num + “is odd”);

System.out.println(

(num % 2 == 0)? num + “is even” :

num + “is odd”);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
43

Conditional Operator, cont.

boolean-expression ? exp1 : exp2

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
44

Operator Precedence
 var++, var--

 +, - (Unary plus and minus), ++var,--var

 (type) Casting

 ! (Not)

 *, /, % (Multiplication, division, and remainder)

 +, - (Binary addition and subtraction)

 <, <=, >, >= (Relational operators)

 ==, !=; (Equality)

 ^ (Exclusive OR)

 && (Conditional AND) Short-circuit AND

 || (Conditional OR) Short-circuit OR

 =, +=, -=, *=, /=, %= (Assignment operator)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
45

Operator Precedence and Associativity

The expression in the parentheses is evaluated first.
(Parentheses can be nested, in which case the expression
in the inner parentheses is executed first.) When
evaluating an expression without parentheses, the
operators are applied according to the precedence rule and
the associativity rule.

If operators with the same precedence are next to each
other, their associativity determines the order of
evaluation. All binary operators except assignment
operators are left-associative.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
46

Operator Associativity

When two operators with the same precedence
are evaluated, the associativity of the operators
determines the order of evaluation. All binary
operators except assignment operators are left-
associative.

a – b + c – d is equivalent to ((a – b) + c) – d

Assignment operators are right-associative.
Therefore, the expression

a = b += c = 5 is equivalent to a = (b += (c = 5))

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
47

Example
Applying the operator precedence and associativity rule,
the expression 3 + 4 * 4 > 5 * (4 + 3) - 1 is evaluated as
follows:

3 + 4 * 4 > 5 * (4 + 3) - 1

3 + 4 * 4 > 5 * 7 – 1

3 + 16 > 5 * 7 – 1

3 + 16 > 35 – 1

19 > 35 – 1

19 > 34

false

 (1) inside parentheses first

 (2) multiplication

 (3) multiplication

 (4) addition

 (5) subtraction

 (6) greater than

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
48

Operand Evaluation Order

Supplement III.A, “Advanced discussions on

how an expression is evaluated in the JVM.”

Companion
Website

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
49

Debugger

Debugger is a program that facilitates debugging.

You can use a debugger to

Execute a single statement at a time.

Trace into or stepping over a method.

Set breakpoints.

Display variables.

Display call stack.

Modify variables.

