
COMP231
Advanced Programming

Chapter 6 Methods

Compiled By: Dr. Majdi Mafarja

Fall Semester 2017/2018

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
2

Opening Problem

Find the sum of integers from 1 to 10, from 20 to 30, and

from 35 to 45, respectively.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
3

Problem

int sum = 0;

for (int i = 1; i <= 10; i++)

sum += i;

System.out.println("Sum from 1 to 10 is " + sum);

sum = 0;

for (int i = 20; i <= 30; i++)

sum += i;

System.out.println("Sum from 20 to 30 is " + sum);

sum = 0;

for (int i = 35; i <= 45; i++)

sum += i;

System.out.println("Sum from 35 to 45 is " + sum);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
4

Problem

int sum = 0;

for (int i = 1; i <= 10; i++)

sum += i;

System.out.println("Sum from 1 to 10 is " + sum);

sum = 0;

for (int i = 20; i <= 30; i++)

sum += i;

System.out.println("Sum from 20 to 30 is " + sum);

sum = 0;

for (int i = 35; i <= 45; i++)

sum += i;

System.out.println("Sum from 35 to 45 is " + sum);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
5

Solution

public static int sum(int i1, int i2) {

int sum = 0;

for (int i = i1; i <= i2; i++)

sum += i;

return sum;

}

public static void main(String[] args) {

System.out.println("Sum from 1 to 10 is " + sum(1, 10));

System.out.println("Sum from 20 to 30 is " + sum(20, 30));

System.out.println("Sum from 35 to 45 is " + sum(35, 45));

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
6

Defining Methods

A method is a collection of statements that are

grouped together to perform an operation.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)

 result = num1;

else

 result = num2;

return result;

}

Define a method Invoke a method

int z = max(x, y);

actual parameters

(arguments)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
7

Defining Methods

A method is a collection of statements that are

grouped together to perform an operation.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)

 result = num1;

else

 result = num2;

return result;

}

modifier

return value

type
method

name
formal

parameters

return value

method

body

method

header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters

(arguments)

method

signature

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
8

Method Signature

Method signature is the combination of the method name and the

parameter list.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)

 result = num1;

else

 result = num2;

return result;

}

modifier

return value

type
method

name
formal

parameters

return value

method

body

method

header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters

(arguments)

method

signature

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
9

Formal Parameters

The variables defined in the method header are known as

formal parameters.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)

 result = num1;

else

 result = num2;

return result;

}

modifier

return value

type
method

name
formal

parameters

return value

method

body

method

header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters

(arguments)

method

signature

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
10

Actual Parameters

When a method is invoked, you pass a value to the parameter. This

value is referred to as actual parameter or argument.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)

 result = num1;

else

 result = num2;

return result;

}

modifier

return value

type
method

name
formal

parameters

return value

method

body

method

header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters

(arguments)

method

signature

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
11

Return Value Type
A method may return a value. The returnValueType is the data type

of the value the method returns. If the method does not return a

value, the returnValueType is the keyword void. For example, the

returnValueType in the main method is void.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)

 result = num1;

else

 result = num2;

return result;

}

modifier

return value

type
method

name
formal

parameters

return value

method

body

method

header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters

(arguments)

method

signature

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
12

Calling Methods

Testing the max method

This program demonstrates calling a method max
to return the largest of the int values

TestMax Run

http://www.cs.armstrong.edu/liang/intro11e/html/TestMax.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
13

Calling Methods, cont.

pass the value of i
pass the value of j

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
14

Trace Method Invocation

return max(i, j) and assign the

return value to k

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
15

Trace Method Invocation

Execute the print statement

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
16

CAUTION
A return statement is required for a value-returning method. The
method shown below in (a) is logically correct, but it has a
compilation error because the Java compiler thinks it possible that
this method does not return any value.

To fix this problem, delete if (n < 0) in (a), so that the compiler will
see a return statement to be reached regardless of how the if
statement is evaluated.

 public static int sign(int n) {
 if (n > 0)

 return 1;

 else if (n == 0)

 return 0;

 else if (n < 0)

 return –1;

}

(a)

Should be

(b)

public static int sign(int n) {

 if (n > 0)

 return 1;

 else if (n == 0)

 return 0;

 else

 return –1;

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
17

Reuse Methods from Other Classes

NOTE: One of the benefits of methods is for reuse. The max

method can be invoked from any class besides TestMax. If

you create a new class Test, you can invoke the max method

using ClassName.methodName (e.g., TestMax.max).

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
18

Call Stacks

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
19

Trace Call Stack

i is declared and initialized

The main method

is invoked.

i: 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
20

Trace Call Stack

j is declared and initialized

The main method

is invoked.

j: 2

i: 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
21

Trace Call Stack

Declare k

The main method

is invoked.

Space required for the

main method

 k:
j: 2

i: 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
22

Trace Call Stack

Invoke max(i, j)

The main method

is invoked.

Space required for the

main method

 k:
j: 2

i: 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
23

Trace Call Stack

pass the values of i and j to num1

and num2

The max method is

invoked.

num2: 2

num1: 5

Space required for the
main method

 k:
j: 2

i: 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
24

Trace Call Stack

Declare result

The max method is

invoked.

 result:

num2: 2

num1: 5

Space required for the
main method

 k:
j: 2

i: 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
25

Trace Call Stack

(num1 > num2) is true

The max method is

invoked.

 result:

num2: 2

num1: 5

Space required for the
main method

 k:
j: 2

i: 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
26

Trace Call Stack

Assign num1 to result

The max method is

invoked.

Space required for the

max method
 result: 5

num2: 2

num1: 5

Space required for the
main method

 k:
j: 2

i: 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
27

Trace Call Stack

Return result and assign it to k

The max method is

invoked.

Space required for the

max method
 result: 5

num2: 2

num1: 5

Space required for the
main method

 k:5
j: 2

i: 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
28

Trace Call Stack

Execute print statement

The main method

is invoked.

Space required for the

main method

 k:5
j: 2

i: 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
29

void Method Example

This type of method does not return a value. The method

performs some actions.

TestVoidMethod Run

TestReturnGradeMethod Run

http://www.cs.armstrong.edu/liang/intro11e/html/TestVoidMethod.html
http://www.cs.armstrong.edu/liang/intro11e/html/TestReturnGradeMethod.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
30

Passing Parameters
public static void nPrintln(String message, int n) {

for (int i = 0; i < n; i++)

System.out.println(message);

}

Suppose you invoke the method using

nPrintln(“Welcome to Java”, 5);

What is the output?

Suppose you invoke the method using

nPrintln(“Computer Science”, 15);

What is the output?

Can you invoke the method using

nPrintln(15, “Computer Science”);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
31

Pass by Value

This program demonstrates passing values

to the methods.

Increment Run

http://www.cs.armstrong.edu/liang/intro11e/html/Increment.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
32

Pass by Value

Testing Pass by value

This program demonstrates passing values

to the methods.

TestPassByValue Run

http://www.cs.armstrong.edu/liang/intro11e/html/TestPassByValue.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
33

Pass by Value, cont.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
34

Case Study: Converting Hexadecimals

to Decimals

Write a method that converts a hexadecimal

number into a decimal number.

ABCD =>

A*16^3 + B*16^2 + C*16^1+ D*16^0

= ((A*16 + B)*16 + C)*16+D

= ((10*16 + 11)*16 + 12)*16+13 = ?

Hex2Dec Run

http://www.cs.armstrong.edu/liang/intro11e/html/Hex2Dec.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
35

Overloading Methods

Overloading the max Method

public static double max(double num1, double

num2) {

if (num1 > num2)

return num1;

else

return num2;

}

TestMethodOverloading Run

http://www.cs.armstrong.edu/liang/intro11e/html/TestMethodOverloading.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
36

Ambiguous Invocation

Sometimes there may be two or more possible

matches for an invocation of a method, but the

compiler cannot determine the most specific

match. This is referred to as ambiguous

invocation. Ambiguous invocation is a

compile error.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
37

Ambiguous Invocation
public class AmbiguousOverloading {

public static void main(String[] args) {

System.out.println(max(1, 2));

}

public static double max(int num1, double num2) {

if (num1 > num2)

return num1;

else

return num2;

}

public static double max(double num1, int num2) {

if (num1 > num2)

return num1;

else

return num2;

}

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
38

Scope of Local Variables

A local variable: a variable defined inside a
method.

Scope: the part of the program where the
variable can be referenced.

The scope of a local variable starts from its
declaration and continues to the end of the
block that contains the variable. A local
variable must be declared before it can be
used.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
39

Scope of Local Variables, cont.

You can declare a local variable with the

same name multiple times in different non-

nesting blocks in a method, but you cannot

declare a local variable twice in nested

blocks.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
40

Scope of Local Variables, cont.
A variable declared in the initial action part of a for loop

header has its scope in the entire loop. But a variable

declared inside a for loop body has its scope limited in the

loop body from its declaration and to the end of the block

that contains the variable.

public static void method1() {

 .

 .

 for (int i = 1; i < 10; i++) {

 .

 .

 int j;

 .

 .

 .

 }

}

The scope of j

The scope of i

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
41

Scope of Local Variables, cont.

public static void method1() {

 int x = 1;

 int y = 1;

 for (int i = 1; i < 10; i++) {

 x += i;

 }

 for (int i = 1; i < 10; i++) {

 y += i;

 }

}

It is fine to declare i in two

non-nesting blocks

 public static void method2() {

 int i = 1;

 int sum = 0;

 for (int i = 1; i < 10; i++) {

 sum += i;

 }

 }

It is wrong to declare i in

two nesting blocks

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
42

Scope of Local Variables, cont.
// Fine with no errors

public static void correctMethod() {

int x = 1;

int y = 1;

// i is declared

for (int i = 1; i < 10; i++) {

x += i;

}

// i is declared again

for (int i = 1; i < 10; i++) {

y += i;

}

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
43

Scope of Local Variables, cont.

// With errors

public static void incorrectMethod() {

int x = 1;

int y = 1;

for (int i = 1; i < 10; i++) {

int x = 0;

x += i;

}

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
44

Method Abstraction

You can think of the method body as a black box

that contains the detailed implementation for the

method.

Method Header

Method body
Black Box

Optional arguments

for Input
Optional return

value

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
45

Benefits of Methods

• Write a method once and reuse it anywhere.

• Information hiding. Hide the implementation

from the user.

• Reduce complexity.

