
Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

COMP231
Advanced Programming

Chapter 10 Thinking in Objects

Compiled By: Dr. Majdi Mafarja

Fall Semester 2017/2018

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
2

Class Abstraction and Encapsulation

Class abstraction means to separate class implementation
from the use of the class. The creator of the class provides
a description of the class and let the user know how the
class can be used. The user of the class does not need to
know how the class is implemented. The detail of
implementation is encapsulated and hidden from the user.

Class Contract

(Signatures of

public methods and

public constants)

Class

Class implementation

is like a black box

hidden from the clients

Clients use the

class through the

contract of the class

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
3

Designing the Loan Class

Loan

-annualInterestRate: double

-numberOfYears: int

-loanAmount: double

-loanDate: Date

+Loan()

+Loan(annualInterestRate: double,

numberOfYears: int,

loanAmount: double)

+getAnnualInterestRate(): double

+getNumberOfYears(): int

+getLoanAmount(): double

+getLoanDate(): Date

+setAnnualInterestRate(

 annualInterestRate: double): void

+setNumberOfYears(

 numberOfYears: int): void

+setLoanAmount(

 loanAmount: double): void

+getMonthlyPayment(): double

+getTotalPayment(): double

The annual interest rate of the loan (default: 2.5).

The number of years for the loan (default: 1)

The loan amount (default: 1000).

The date this loan was created.

Constructs a default Loan object.

Constructs a loan with specified interest rate, years, and

loan amount.

Returns the annual interest rate of this loan.

Returns the number of the years of this loan.

Returns the amount of this loan.

Returns the date of the creation of this loan.

Sets a new annual interest rate to this loan.

Sets a new number of years to this loan.

Sets a new amount to this loan.

Returns the monthly payment of this loan.

Returns the total payment of this loan.

RunLoan TestLoanClass

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
4

Object-Oriented Thinking

Chapters 1-8 introduced fundamental programming
techniques for problem solving using loops, methods, and
arrays. The studies of these techniques lay a solid
foundation for object-oriented programming. Classes
provide more flexibility and modularity for building
reusable software. This section improves the solution for a
problem introduced in Chapter 3 using the object-oriented
approach. From the improvements, you will gain the
insight on the differences between the procedural
programming and object-oriented programming and see
the benefits of developing reusable code using objects and
classes.

http://www.cs.armstrong.edu/liang/intro11e/html/Loan.html
http://www.cs.armstrong.edu/liang/intro11e/html/TestLoanClass.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
5

The BMI Class

BMI

-name: String

-age: int

-weight: double

-height: double

+BMI(name: String, age: int, weight:

double, height: double)

+BMI(name: String, weight: double,

height: double)

+getBMI(): double

+getStatus(): String

The name of the person.

The age of the person.

The weight of the person in pounds.

The height of the person in inches.

Creates a BMI object with the specified

name, age, weight, and height.

Creates a BMI object with the specified

name, weight, height, and a default age

20.

Returns the BMI

Returns the BMI status (e.g., normal,

overweight, etc.)

The get methods for these data fields are

provided in the class, but omitted in the

UML diagram for brevity.

RunBMI UseBMIClass

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
6

Class Relationships
Association

Aggregation

Composition

Inheritance (Chapter 13)

Association: is a general binary relationship that describes

an activity between two classes.

http://www.cs.armstrong.edu/liang/intro11e/html/BMI.html
http://www.cs.armstrong.edu/liang/intro11e/html/UseBMIClass.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
7

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
8

Object Composition
Composition is actually a special case of the aggregation

relationship. Aggregation models has-a relationships and

represents an ownership relationship between two objects.

The owner object is called an aggregating object and its

class an aggregating class. The subject object is called an

aggregated object and its class an aggregated class.

Name Address Student

Composition Aggregation

1..3 1 1 1

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
9

Class Representation

An aggregation relationship is usually represented as a data

field in the aggregating class. For example, the relationship

in Figure 10.6 can be represented as follows:

public class Name {

 ...

}

public class Student {

 private Name name;

 private Address address;

 ...

}

public class Address {

 ...

}

Aggregated class Aggregating class Aggregated class

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
10

Aggregation or Composition

Since aggregation and composition

relationships are represented using classes in

similar ways, many texts don’t differentiate

them and call both compositions.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
11

Aggregation Between Same Class

Aggregation may exist between objects of the same class.

For example, a person may have a supervisor.

Person

Supervisor

1

1

public class Person {

// The type for the data is the class itself

private Person supervisor;

...

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
12

Aggregation Between Same Class

What happens if a person has several supervisors?

Person

Supervisor

1

m

public class Person {

 ...

 private Person[] supervisors;

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
13

Example: The Course Class

Course

-courseName: String

-students: String[]

-numberOfStudents: int

+Course(courseName: String)

+getCourseName(): String

+addStudent(student: String): void

+dropStudent(student: String): void

+getStudents(): String[]

+getNumberOfStudents(): int

The name of the course.

An array to store the students for the course.

The number of students (default: 0).

Creates a course with the specified name.

Returns the course name.

Adds a new student to the course.

Drops a student from the course.

Returns the students in the course.

Returns the number of students in the course.

RunCourse TestCourse

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
14

Example: The

StackOfIntegers Class

StackOfIntegers

-elements: int[]

-size: int

+StackOfIntegers()

+StackOfIntegers(capacity: int)

+empty(): boolean

+peek(): int

+push(value: int): int

+pop(): int

+getSize(): int

An array to store integers in the stack.

The number of integers in the stack.

Constructs an empty stack with a default capacity of 16.

Constructs an empty stack with a specified capacity.

Returns true if the stack is empty.

Returns the integer at the top of the stack without

removing it from the stack.

Stores an integer into the top of the stack.

Removes the integer at the top of the stack and returns it.

Returns the number of elements in the stack.

RunTestStackOfIntegers

http://www.cs.armstrong.edu/liang/intro11e/html/Course.html
http://www.cs.armstrong.edu/liang/intro11e/html/TestCourse.html
http://www.cs.armstrong.edu/liang/intro11e/html/TestStackOfIntegers.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
15

Designing the StackOfIntegers Class

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
16

Implementing

StackOfIntegers Class

StackOfIntegers

http://www.cs.armstrong.edu/liang/intro11e/html/StackOfIntegers.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
1717

Wrapper Classes

 Boolean

 Character

 Short

 Byte

 Integer

 Long

 Float

 Double

NOTE: (1) The wrapper classes do

not have no-arg constructors. (2)

The instances of all wrapper

classes are immutable, i.e., their

internal values cannot be changed

once the objects are created.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
1818

The Integer and Double Classes

java.lang.Integer

-value: int

+MAX_VALUE: int

+MIN_VALUE: int

+Integer(value: int)

+Integer(s: String)

+byteValue(): byte

+shortValue(): short

+intValue(): int

+longVlaue(): long

+floatValue(): float

+doubleValue():double

+compareTo(o: Integer): int

+toString(): String

+valueOf(s: String): Integer

+valueOf(s: String, radix: int): Integer

+parseInt(s: String): int

+parseInt(s: String, radix: int): int

java.lang.Double

-value: double

+MAX_VALUE: double

+MIN_VALUE: double

+Double(value: double)

+Double(s: String)

+byteValue(): byte

+shortValue(): short

+intValue(): int

+longVlaue(): long

+floatValue(): float

+doubleValue():double

+compareTo(o: Double): int

+toString(): String

+valueOf(s: String): Double

+valueOf(s: String, radix: int): Double

+parseDouble(s: String): double

+parseDouble(s: String, radix: int): double

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
1919

The Integer Class

and the Double Class

Constructors

Class Constants MAX_VALUE, MIN_VALUE

Conversion Methods

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
2020

Numeric Wrapper Class Constructors

You can construct a wrapper object either from a

primitive data type value or from a string

representing the numeric value. The constructors

for Integer and Double are:

public Integer(int value)

public Integer(String s)

public Double(double value)

public Double(String s)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
2121

Numeric Wrapper Class Constants

Each numerical wrapper class has the constants

MAX_VALUE and MIN_VALUE. MAX_VALUE

represents the maximum value of the corresponding

primitive data type. For Byte, Short, Integer, and Long,

MIN_VALUE represents the minimum byte, short, int,

and long values. For Float and Double, MIN_VALUE

represents the minimum positive float and double

values. The following statements display the maximum

integer (2,147,483,647), the minimum positive float

(1.4E-45), and the maximum double floating-point

number (1.79769313486231570e+308d).

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
2222

Conversion Methods

Each numeric wrapper class implements the

abstract methods doubleValue, floatValue,

intValue, longValue, and shortValue, which

are defined in the Number class. These

methods “convert” objects into primitive

type values.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
2323

The Static valueOf Methods

The numeric wrapper classes have a useful

class method, valueOf(String s). This method

creates a new object initialized to the value

represented by the specified string. For

example:

Double doubleObject = Double.valueOf("12.4");

Integer integerObject = Integer.valueOf("12");

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
2424

The Methods for Parsing Strings into

Numbers

You have used the parseInt method in the

Integer class to parse a numeric string into an

int value and the parseDouble method in the

Double class to parse a numeric string into a

double value. Each numeric wrapper class

has two overloaded parsing methods to parse

a numeric string into an appropriate numeric

value.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
2525

Automatic Conversion Between Primitive

Types and Wrapper Class Types

JDK 1.5 allows primitive type and wrapper classes to be converted automatically.
For example, the following statement in (a) can be simplified as in (b):

Integer[] intArray = {new Integer(2),

 new Integer(4), new Integer(3)};

(a)

Equivalent

(b)

Integer[] intArray = {2, 4, 3};

New JDK 1.5 boxing

Integer[] intArray = {1, 2, 3};
System.out.println(intArray[0] + intArray[1] + intArray[2]);

Unboxing

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
2626

BigInteger and BigDecimal

If you need to compute with very large integers or

high precision floating-point values, you can use

the BigInteger and BigDecimal classes in the

java.math package. Both are immutable. Both

extend the Number class and implement the

Comparable interface.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
2727

BigInteger and BigDecimal

BigInteger a = new BigInteger("9223372036854775807");

BigInteger b = new BigInteger("2");

BigInteger c = a.multiply(b); // 9223372036854775807 * 2

System.out.println(c);

BigDecimal a = new BigDecimal(1.0);

BigDecimal b = new BigDecimal(3);

BigDecimal c = a.divide(b, 20, BigDecimal.ROUND_UP);

System.out.println(c);

RunLargeFactorial

http://www.cs.armstrong.edu/liang/intro11e/html/LargeFactorial.html

