
COMP231
Advanced Programming

Chapter 12 Exception Handling and Text IO

Compiled By: Dr. Majdi Mafarja

Fall Semester 2017/2018

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
2

Exception-Handling Overview

Show runtime error

Fix it using an if statement

With a method

RunQuotient

RunQuotientWithIf

RunQuotientWithMethod

http://www.cs.armstrong.edu/liang/intro11e/html/Quotient.html
http://www.cs.armstrong.edu/liang/intro11e/html/QuotientWithIf.html
http://www.cs.armstrong.edu/liang/intro11e/html/QuotientWithMethod.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
3

Exception Advantages

Now you see the advantages of using exception handling.

It enables a method to throw an exception to its caller.

Without this capability, a method must handle the

exception or terminate the program.

RunQuotientWithException

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
4

Handling InputMismatchException

By handling InputMismatchException, your program will

continuously read an input until it is correct.

RunInputMismatchExceptionDemo

http://www.cs.armstrong.edu/liang/intro11e/html/QuotientWithException.html
http://www.cs.armstrong.edu/liang/intro11e/html/InputMismatchExceptionDemo.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
5

Exception Types

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
6

System Errors

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

System errors are thrown by JVM

and represented in the Error class.

The Error class describes internal

system errors. Such errors rarely

occur. If one does, there is little

you can do beyond notifying the

user and trying to terminate the

program gracefully.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
7

Exceptions

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

Exception describes errors

caused by your program

and external

circumstances. These

errors can be caught and

handled by your program.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
8

Runtime Exceptions

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

RuntimeException is caused by

programming errors, such as bad

casting, accessing an out-of-bounds

array, and numeric errors.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
9

Checked Exceptions vs.

Unchecked Exceptions

RuntimeException, Error and their subclasses are

known as unchecked exceptions. All other

exceptions are known as checked exceptions,

meaning that the compiler forces the programmer
to check and deal with the exceptions.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
10

Unchecked Exceptions

In most cases, unchecked exceptions reflect programming

logic errors that are not recoverable. For example, a

NullPointerException is thrown if you access an object

through a reference variable before an object is assigned to

it; an IndexOutOfBoundsException is thrown if you access

an element in an array outside the bounds of the array.

These are the logic errors that should be corrected in the

program. Unchecked exceptions can occur anywhere in the

program. To avoid cumbersome overuse of try-catch

blocks, Java does not mandate you to write code to catch

unchecked exceptions.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
11

Unchecked Exceptions

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

Unchecked

exception.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
12

Declaring, Throwing, and

Catching Exceptions

method1() {

 try {

 invoke method2;

 }

 catch (Exception ex) {

 Process exception;

 }

}

method2() throws Exception {

 if (an error occurs) {

 throw new Exception();

 }

}

catch exception throw exception

declare exception

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
13

Declaring Exceptions

Every method must state the types of checked

exceptions it might throw. This is known as

declaring exceptions.

public void myMethod()

throws IOException

public void myMethod()

throws IOException, OtherException

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
14

Throwing Exceptions

When the program detects an error, the program
can create an instance of an appropriate exception
type and throw it. This is known as throwing an
exception. Here is an example,

throw new TheException();

TheException ex = new TheException();
throw ex;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
15

Throwing Exceptions Example

/** Set a new radius */

public void setRadius(double newRadius)

throws IllegalArgumentException {

if (newRadius >= 0)

radius = newRadius;

else

throw new IllegalArgumentException(

"Radius cannot be negative");

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
16

Catching Exceptions

try {

statements; // Statements that may throw exceptions

}

catch (Exception1 exVar1) {

handler for exception1;

}

catch (Exception2 exVar2) {

handler for exception2;

}

...

catch (ExceptionN exVar3) {

handler for exceptionN;

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
17

Catching Exceptions

try

catch

try

catch

try

catch

An exception

is thrown in

method3

Call Stack

main method main method

method1

main method

method1

main method

method1

method2 method2

method3

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
18

Catch or Declare Checked Exceptions

Suppose p2 is defined as follows:

void p2() throws IOException {

 if (a file does not exist) {

 throw new IOException("File does not exist");

 }

 ...

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
19

Catch or Declare Checked Exceptions

Java forces you to deal with checked exceptions. If a method declares a

checked exception (i.e., an exception other than Error or

RuntimeException), you must invoke it in a try-catch block or declare to

throw the exception in the calling method. For example, suppose that

method p1 invokes method p2 and p2 may throw a checked exception (e.g.,

IOException), you have to write the code as shown in (a) or (b).

void p1() {

 try {

 p2();

 }

 catch (IOException ex) {

 ...

 }

}

(a)

(b)

void p1() throws IOException {

 p2();

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
20

Example: Declaring, Throwing, and

Catching Exceptions

Objective: This example demonstrates
declaring, throwing, and catching exceptions
by modifying the setRadius method in the
Circle class defined in Chapter 9. The new
setRadius method throws an exception if
radius is negative.

RunTestCircleWithException

CircleWithException

http://www.cs.armstrong.edu/liang/intro11e/html/TestCircleWithException.html
http://www.cs.armstrong.edu/liang/intro11e/html/CircleWithException.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
21

Rethrowing Exceptions

try {

statements;

}

catch(TheException ex) {

perform operations before exits;

throw ex;

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
22

The finally Clause

try {

statements;

}

catch(TheException ex) {

handling ex;

}

finally {

finalStatements;

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
23

Trace a Program Execution
animation

try {

statements;

}

catch(TheException ex) {

handling ex;

}

finally {

finalStatements;

}

Next statement;

Suppose no
exceptions in the
statements

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
24

Trace a Program Execution
animation

try {

statements;

}

catch(TheException ex) {

handling ex;

}

finally {

finalStatements;

}

Next statement;

The final block is
always executed

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
25

Trace a Program Execution
animation

try {

statements;

}

catch(TheException ex) {

handling ex;

}

finally {

finalStatements;

}

Next statement;

Next statement in the
method is executed

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
26

Trace a Program Execution
animation

try {

statement1;

statement2;

statement3;

}

catch(Exception1 ex) {

handling ex;

}

finally {

finalStatements;

}

Next statement;

Suppose an exception
of type Exception1 is
thrown in statement2

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
27

Trace a Program Execution
animation

try {

statement1;

statement2;

statement3;

}

catch(Exception1 ex) {

handling ex;

}

finally {

finalStatements;

}

Next statement;

The exception is
handled.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
28

Trace a Program Execution
animation

try {

statement1;

statement2;

statement3;

}

catch(Exception1 ex) {

handling ex;

}

finally {

finalStatements;

}

Next statement;

The final block is
always executed.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
29

Trace a Program Execution
animation

try {

statement1;

statement2;

statement3;

}

catch(Exception1 ex) {

handling ex;

}

finally {

finalStatements;

}

Next statement;

The next statement in
the method is now
executed.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
30

Trace a Program Execution
animation

try {

statement1;

statement2;

statement3;

}

catch(Exception1 ex) {

handling ex;

}

catch(Exception2 ex) {

handling ex;

throw ex;

}

finally {

finalStatements;

}

Next statement;

statement2 throws an
exception of type
Exception2.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
31

Trace a Program Execution
animation

try {

statement1;

statement2;

statement3;

}

catch(Exception1 ex) {

handling ex;

}

catch(Exception2 ex) {

handling ex;

throw ex;

}

finally {

finalStatements;

}

Next statement;

Handling exception

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
32

Trace a Program Execution
animation

try {

statement1;

statement2;

statement3;

}

catch(Exception1 ex) {

handling ex;

}

catch(Exception2 ex) {

handling ex;

throw ex;

}

finally {

finalStatements;

}

Next statement;

Execute the final block

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
33

Trace a Program Execution
animation

try {

statement1;

statement2;

statement3;

}

catch(Exception1 ex) {

handling ex;

}

catch(Exception2 ex) {

handling ex;

throw ex;

}

finally {

finalStatements;

}

Next statement;

Rethrow the exception
and control is
transferred to the caller

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
34

Cautions When Using Exceptions

Exception handling separates error-handling

code from normal programming tasks, thus

making programs easier to read and to modify.

Be aware, however, that exception handling

usually requires more time and resources

because it requires instantiating a new exception

object, rolling back the call stack, and

propagating the errors to the calling methods.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
35

When to Throw Exceptions

An exception occurs in a method. If you want

the exception to be processed by its caller, you

should create an exception object and throw it.

If you can handle the exception in the method

where it occurs, there is no need to throw it.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
36

When to Use Exceptions

When should you use the try-catch block in the code?
You should use it to deal with unexpected error
conditions. Do not use it to deal with simple, expected
situations. For example, the following code

try {

System.out.println(refVar.toString());

}

catch (NullPointerException ex) {

System.out.println("refVar is null");

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
37

When to Use Exceptions

is better to be replaced by

if (refVar != null)

System.out.println(refVar.toString());

else

System.out.println("refVar is null");

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
38

The File Class

The File class is intended to provide an abstraction that

deals with most of the machine-dependent complexities

of files and path names in a machine-independent

fashion. The filename is a string. The File class is a

wrapper class for the file name and its directory path.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
39

Obtaining file properties and manipulating file

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
40

Problem: Explore File Properties

Objective: Write a program that demonstrates how to

create files in a platform-independent way and use the

methods in the File class to obtain their properties. The

following figures show a sample run of the program on

Windows and on Unix.

RunTestFileClass

http://www.cs.armstrong.edu/liang/intro11e/html/TestFileClass.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
41

Text I/O

A File object encapsulates the properties of a file or a path,

but does not contain the methods for reading/writing data

from/to a file. In order to perform I/O, you need to create

objects using appropriate Java I/O classes. The objects

contain the methods for reading/writing data from/to a file.

This section introduces how to read/write strings and

numeric values from/to a text file using the Scanner and

PrintWriter classes.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
42

Writing Data Using PrintWriter

java.io.PrintWriter

+PrintWriter(filename: String)

+print(s: String): void

+print(c: char): void

+print(cArray: char[]): void

+print(i: int): void

+print(l: long): void

+print(f: float): void

+print(d: double): void

+print(b: boolean): void

Also contains the overloaded

println methods.

Also contains the overloaded

printf methods.

.

Creates a PrintWriter for the specified file.

Writes a string.

Writes a character.

Writes an array of character.

Writes an int value.

Writes a long value.

Writes a float value.

Writes a double value.

Writes a boolean value.

A println method acts like a print method; additionally it

prints a line separator. The line separator string is defined

by the system. It is \r\n on Windows and \n on Unix.
The printf method was introduced in §4.6, “Formatting

Console Output and Strings.”

RunWriteData

http://www.cs.armstrong.edu/liang/intro11e/html/WriteData.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
43

Try-with-resources

Programmers often forget to close the file. JDK 7 provides

the followings new try-with-resources syntax that

automatically closes the files.

try (declare and create resources) {

Use the resource to process the file;

}

RunWriteDataWithAutoClose

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
44

Reading Data Using Scanner

java.util.Scanner

+Scanner(source: File)

+Scanner(source: String)

+close()

+hasNext(): boolean

+next(): String

+nextByte(): byte

+nextShort(): short

+nextInt(): int

+nextLong(): long

+nextFloat(): float

+nextDouble(): double

+useDelimiter(pattern: String):

Scanner

Creates a Scanner object to read data from the specified file.

Creates a Scanner object to read data from the specified string.

Closes this scanner.

Returns true if this scanner has another token in its input.

Returns next token as a string.

Returns next token as a byte.

Returns next token as a short.

Returns next token as an int.

Returns next token as a long.

Returns next token as a float.

Returns next token as a double.

Sets this scanner’s delimiting pattern.

RunReadData

http://www.cs.armstrong.edu/liang/intro11e/html/WriteDataWithAutoClose.html
http://www.cs.armstrong.edu/liang/intro11e/html/ReadData.html

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
45

Problem: Replacing Text

Write a class named ReplaceText that replaces a string in a text

file with a new string. The filename and strings are passed as

command-line arguments as follows:

java ReplaceText sourceFile targetFile oldString newString

For example, invoking

java ReplaceText FormatString.java t.txt StringBuilder StringBuffer

replaces all the occurrences of StringBuilder by StringBuffer in

FormatString.java and saves the new file in t.txt.

RunReplaceText

http://www.cs.armstrong.edu/liang/intro11e/html/ReplaceText.html

