)
COMP231

Advanced Programming

Chapter 12 Exception Handling and Text 10

Compiled By: Dr. Majdi Mafarja
Fall Semester 2017/2018

Exception-Handling Overview

Show runtime error

Quotient -

Fix it using an if statement

QuotientWithIf -

With a method

QuotientWithMethod -

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

http://www.cs.armstrong.edu/liang/intro11e/html/Quotient.html
http://www.cs.armstrong.edu/liang/intro11e/html/QuotientWithIf.html
http://www.cs.armstrong.edu/liang/intro11e/html/QuotientWithMethod.html

Exception Advantages

QuotientWithException -

Now you see the advantages of using exception handling.
It enables a method to throw an exception to its caller.
Without this capability, a method must handle the

exception or terminate the program. \

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All ?
rights reserved.

Handling InputMismatchException

InputMismatchExceptionDemo -

By handling InputMismatchException, your program will
continuously read an input until it is correct.

S\

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All ?
rights reserved.

http://www.cs.armstrong.edu/liang/intro11e/html/QuotientWithException.html
http://www.cs.armstrong.edu/liang/intro11e/html/InputMismatchExceptionDemo.html

Exception Types

l Object m—ﬁhrowablem_

ik

ClassNotFoundException
IOException

ArithmeticException
—{ NullPointerException

—{ RuntimeException Kl—

Many more classes

LinkageError

VirtuaIMachineError‘

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

Many more classes

rights reserved.

—{ IndexOutOfBoundsException ‘

4{ Illegal ArgumentException ‘

Many more classes

aw

l Object N—Fhrowablem—

System errors are thrown by JV
and represented in the Error clas
The Error class describes interna
system errors. Such errors rarely
occur. If one does, there is little
you can do beyond notifying the
user and trying to terminate the

program gracefully.

I

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

System Errors

i

ClassNotFoundException
I0Exception

ArithmeticException
%NullPointerException

—{ RuntimeException K]—

Many more classes

4{ IndexOutOfBoundsException ‘

4‘ Illegal ArgumentException ‘

LinkageError
VirtualMachineError

Many more classes

rights reserved.

Many more classes

ovw

Exception describes errors
caused by your program
and external
circumstances. These
errors can be caught and

vdiod by your pragrm. [T 22K

l Object WThrowable‘q_

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

Exceptions

I0Exception

ClassNotFoundException

ArithmeticException
—{NuIIPoimerExceplion

—{ RuntimeException Kl—

Many more classes

—{ IndexOutOfBoundsException ‘

4{ Illegal ArgumentException ‘

Many more classes

LinkageError

VirtuaIMachineError‘

Many more classes

rights reserved.

)

l Object m—ﬁhrowablem—

I0Exception
o

ClassNotFoundException

Runtime Exceptions

ArithmeticException
%NullPointerException

RuntimeException

:]_

Many more classes

LinkageError

VirtualMachineError ‘

Many more classes

rights reserved.

4{ IndexOutOfBoundsException

4‘ Illegal ArgumentException ‘

Many more classes

RuntimeException is caus
programming errors, such as
casting, accessing an out-of:
array, and numeric errors.

=

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

Checked Exceptions vs.
Unchecked Exceptions

RuntimeException, Error and their subclasses are
known as unchecked exceptions. All other
exceptions are known as checked exceptions,
meaning that the compiler forces the programmer
to check and deal with the exceptions. \

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All ?
rights reserved.

Unchecked Exceptions

In most cases, unchecked exceptions reflect programming
logic errors that are not recoverable. For example, a
NullPointerException is thrown if you access an object
through a reference variable before an object is assigned to
it; an IndexOutOfBoundsException is thrown if you access
an element in an array outside the bounds of the array.
These are the logic errors that should be corrected in the
program. Unchecked exceptions can occur anywhere in the
program. To avoid cumbersome overuse of try-catch \
blocks, Java does not mandate you to write code to catc
unchecked exceptions.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All k
rights reserved.

Unchecked Exceptions

l Object m—ﬁhrowablem_

IOException

ClassNotFoundException

ArithmeticException

—{NuIIPoimerExceplion

74 RuntimeException Kl—

— Many more classes

IndexOutOfBoundsException

4{ Illegal ArgumentException ‘

LinkageError

*‘{ Error

VirtuaIMachineError‘

Many more classes

— Many more classes

Unchecked
exception.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Ww

catch exception

Declaring, Throwing, and
Catching Exceptions

methodl () {

itry {

invoke method2; ===t
}
N icatch (Exception ex) {

Process exception;

}

declare exception

method2 () i

if (an error occurs)

hrows Exception i

{

bt

Ethrow new Exception(); :éé_throw eXCeption

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

v

Declaring Exceptions

Every method must state the types of checked
exceptions it might throw. This is known as
aeclaring exceptions.

public void myMethod()
throws IOException

public void myMethod() \
throws IOException, OtherException

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All R
rights reserved.

Throwing Exceptions

When the program detects an error, the program
can create an instance of an appropriate exception
type and throw it. This is known as throwing an
exception. Here is an example,

throw new TheException();

TheException ex = new TheException(); \
throw ex;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All R
rights reserved.

Throwing Exceptions Example

/** Set a new radius */
public void setRadius (double newRadius)

throws IllegalArgumentException {

if (newRadius >= 0)
radius = newRadius;

else
throw new IllegalArgumentException (

"Radius cannot be negative") ;

>/

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

E'

Catching Exceptions

try {
statements; // Statements that may throw exceptions
}
catch (Exceptionl exVarl) ({
handler for exceptionl;
}
catch (Exception2 exVar2) ({
handler for exception2;

}

catch (ExceptionN exVar3) ({

handler for exceptionN;
} .~\\\

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

:’

Catching Exceptions

main method ¢ l methodl ¢ method2 ¢
try ¢ / try ¢ // try ¢ /
invoke methodl:/ invoke method2: ir‘){roke method3 5/
statementl: statement3: statements5:
¥ ¥ ¥
catch (Exceptionl exl) { catch (Exception2 ex2) ¢ catch (Exception3 ex3) {
Process exl: Process ex2: Process ex3:
¥ ¥
statement2: statement4: statementé:
¥ Y
Call stack
method3
method2 method2
methodl methodl methodl
main method main method main method main method

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

An exception
is thrown in
method3

)

Suppose p2 is defined as follows:

void p2() throws IOException {
if (a file does not exist) {
throw new IOException("File does not exist");

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Catch or Declare Checked Exceptions

'5'

Catch or Declare Checked Exceptions

Java forces you to deal with checked exceptions. If a method declares a
checked exception (i.e., an exception other than Error or
RuntimeException), you must invoke it in a try-catch block or declare to
throw the exception in the calling method. F
method p1 invokes method p2 and p2 throw a checked excéption (e.g.,
IOException), you have to write the-Code as shown in (a) or

void pl() | void pl() throws EOException {
try {

}P2(); p2();

catch (IOException ex) { }

}

}

(a) (b)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All R
rights reserved.

Example: Declaring, Throwing, and
Catching Exceptions

= Objective: This example demonstrates
declaring, throwing, and catching exceptions
by modifying the setRadius method in the
Circle class defined in Chapter 9. The new
setRadius method throws an exception if
radius is negative. \

CircleWithException

TestCircleWithException -

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All k
rights reserved.

http://www.cs.armstrong.edu/liang/intro11e/html/TestCircleWithException.html
http://www.cs.armstrong.edu/liang/intro11e/html/CircleWithException.html

Rethrowing Exceptions

try {
statements;

}
catch (TheException ex) {

perform operations before exits;
throw ex;

A\

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All ?
rights reserved.

The finally Clause

try {
statements;
}

catch (TheException ex) {
handling ex;
}
finally {
finalStatements; \

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All ?
rights reserved.

animation .
Trace a Program Execution

(Suppose no
exceptions in the
statements
try {
| statements; — |
}

catch (TheException ex) {
handling ex;

}
finally {

finalStatements;

}

Next statement;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

/

Z'

animation .
Trace a Program Execution

The final block is

try { always executed
statements;

}

catch (TheException ex) {
handling ex;

}

finally {
[EinalStatements;

}

Next statement;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

/

i 4

animation .
Trace a Program Execution

Next statement in the

try { method is executed

statements;

}

catch (TheException ex) {
handling ex;

}

finally {
finalStatements;

/

}

INext statement; |

Liang, Introduction to Java Programmi;\igh'tl':p;:eErsietgjln. (c) 2015 Pearson Education, Inc. All k
animation
Trace a Program Execution
try { Suppose an exception
statementl; of type Exceptionl is
| statement2; thrown in statement2

statement3;

}

catch (Exceptionl ex) {
handling ex;

}

finally {
finalStatements;

} ~\\\

Next statement;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

E’

animation .
Trace a Program Execution

The exception is
handled.

try {
statementl;
statement2;

statement3;

handling ex;

finally {
finalStatements;

}

Next statement;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

4

E'

animation .
Trace a Program Execution

try { The final block is
statementl; always executed.
statement2;
statement3;

}

catch (Exceptionl ex) {
handling ex;

}

finally {
finalStatements; ’T

}

Next statement;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

7/

E’

animation .
Trace a Program Execution

try { The next statement in
statementl; the method is now
statement2; executed.
statement3;

}

catch (Exceptionl ex) {
handling ex;

}

finally {
finalStatements;

}

4

Next statement; /T

Liang, Introduction to Java Programmi;\ig.h"l':pézeErsietgjln. (c) 2015 Pearson Education, Inc. All k
Trace a Program Execution
try {
statementl; 4—J~—-_-—_ﬂ_~_ﬂ———*—”fétaIen1§nt2 throws an
| s::a::emen::i ; — exception of type
} statement3; Exception2.

catch (Exceptionl ex) {
handling ex;

}

catch (Exception2 ex) {
handling ex;
throw ex;

}

finally {
finalStatements;

}

7/

Next statement;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

€’

animation .
Trace a Program Execution

try {
statementl; Handling exception \
statement2;
statement3;

}

catch (Exceptionl ex) {
handling ex;

}

catch (Exception2 ex)
handling ex;
throw ex;

}

finally {
finalStatements;

}

4

Next statement;

&'

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

animation .
Trace a Program Execution

try {
statementl; | Execute the final block |
statement2;
statement3;

}

catch (Exceptionl ex) {
handling ex;

}

catch (Exception2 ex) {
handling ex;
throw ex;

}

finally {
[finalStatements; |

}

Next statement;

v

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

animation .
Trace a Program Execution

try {
statementl; Rethrow the exception
statement2; and control is
statement3; transferred to the caller

}

catch (Exceptionl ex) {
handling ex;

}

catch (Exception2 ex) {
handling ex;

| throw ex;

}

finally {
finalStatements;

}

Next statement;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All Q
rights reserved.

Cautions When Using Exceptions

= Exception handling separates error-handling
code from normal programming tasks, thus
making programs easier to read and to modify.
Be aware, however, that exception handling
usually requires more time and resources
because it requires instantiating a new exception
object, rolling back the call stack, and \
propagating the errors to the calling methods.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All ?
rights reserved.

When to Throw Exceptions

= AN exception occurs in a method. If you want
the exception to be processed by its caller, you
should create an exception object and throw it.
If you can handle the exception in the method
where it occurs, there is no need to throw it.

N\

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All ?
rights reserved.

When to Use Exceptions

When should you use the try-catch block in the code?
You should use it to deal with unexpected error
conditions. Do not use it to deal with simple, expected
situations. For example, the following code

try {

System.out.println (refVar. toString()) ;
| A\
catch (NullPointerException ex) {

System.out.println("refVar is null");

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All ?
rights reserved.

When to Use Exceptions

Is better to be replaced by

if (refvar !'= null)
System.out.println (refVar. toString()) ;
else

System.out.println("refVar is null");

A\

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All ?
rights reserved.

The File Class

The File class is intended to provide an abstraction that
deals with most of the machine-dependent complexities
of files and path names in a machine-independent
fashion. The filename is a string. The File class is a
wrapper class for the file name and its directory path.

A\

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All Q
rights reserved.

Obtaining file properties and manipulating file

Tevnlo
+File(pathname: String) Creates a File object for the specified path name. The path name may be a
directory or a file.
+File(parent: String, child: String) | | Createsa File object for the child under the directory parent. The child may be
a file name or a subdirectory.
+File(parent: File, child: String) Creates a FiTe object for the child under the directory parent. The parent is a
File object. In the preceding constructor. the parent is a string
+exists(): boolean Returns true if the file or the directory represented by the File object exists
+canRead(): boolean Returns true if the file represented by the File object exists and can be read
+canWrite(): boolean Returns true if the file represented by the File object exists and can be written.
+isDirectory(): boolean Returns true if the FiTe object represents a directory
+isFileQ: boolean Returns true if the File object represents a file.
+isAbsolute(): boolean Returns true if the File object is created using an absolute path name.
+isHidden(): boolean Returns true if the file represented in the File object is hidden. The exact
definition of hidden is system-dependent. On Windows, you can mark a file
hidden in the File Properties dialog box. On Unix systems, a file is hidden if
its name begins with a period(.) character
+getAbsolutePath(): String Returns the complete absolute file or directory name represented by the File
object
+getCanonicalPath(): String Returns the same as getAbsolutePath() except that it removes redundant
names, such as *." and "..". from the path name, resolves symbolic links (on
Unix), and converts drive letters to standard uppercase (on Windows)
+getName(): String Returns the last name of the complete directory and file name represented by
the File object. For example, new File("c:\\book\\test.dat").getName() returns
test.dat
+getPath(): String Returns the complete directory and file name represented by the File object
For example, new File("c:\\book\\test.dat").getPath() returns c:\book\test.dat
+getParent(): String Returns the complete parent directory of the current directory or the file
represented by the FiTe object. For example, new
File("c:\\book\\test.dat").getParent() returns c:\book.
+lastModified(): long Returns the time that the file was last modified.
+length(): long Returns the size of the file, or 0 if it does not exist or if it is a directory
+listFileQ: File[]l Returns the files under the directory for a directory File object
+delete(): boolean Deletes the file or directory represented by this Fi1e object. The method returns
true if the deletion succeeds.
+renameTo(dest: File): boolean Renames the file or directory represented by this File object to the specified name
represented in dest. The method returns true if the operation succeeds.
+mkdir(): boolean Creates a directory represented in this Fi1e object. Returns true if the the directory is
created successfully.
+mkdirs(): boolean Same as mkdi r() except that it creates directory along with its parent directories if
the parent directories do not exist
Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All ?

rights reserved.

Problem: Explore File Properties

Objective: Write a program that demonstrates how to
create files in a platform-independent way and use the
methods in the File class to obtain their properties. The
following figures show a sample run of the program on
Windows and on Unix.

SEE|

C:\book>jaua TestFileClass - fps —
Does it exist? true] ;‘hqn/laang.‘l?ook Il
Can it be read? true & java TestFileClass
Can it be written? true Does it exist? true
[y 12 3 sty reee 2 2 T e
Is it a file? t ?
:: :k :bsélzn?r::ls- g :: : ::I:;!::az false
Is it hidden? false : ‘ Ts it absolute? false
What is its absolute path? C:\book\.\image\us.gif Te it hidden? false
linat 19 1fs canonical path? C:\booklimageiue.gif lihat is its absolute path? /home/liang/book/./inage/us.gif

at 1s 1ts name? us.gl . hat is its canonical path? /home/liang/bock/image/us.gif
What is its path? .\image\us.gif Wnat is ite name? ue.gif
When was it last modified? Sat May 08 14:00:34 EDT 1999 What is its path? ./image/us.gif
What is the path separator? ; lihen was it last modified? Wed Jan 23 11:80:14 EST 2082
What is the name separator? \ Wihat is the path separator? :

What is the name separator? /

Ci\bonk.‘» 3
. | i |

TestFileClass -

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All ?
rights reserved.

http://www.cs.armstrong.edu/liang/intro11e/html/TestFileClass.html

Text 1/O

A File object encapsulates the properties of a file or a path,
but does not contain the methods for reading/writing data
from/to a file. In order to perform 1/O, you need to create
objects using appropriate Java 1/O classes. The objects
contain the methods for reading/writing data from/to a file.
This section introduces how to read/write strings and
numeric values from/to a text file using the Scanner anK

PrintWriter classes.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All ?

rights reserved.

Writing Data Using PrintWriter

java.io.PrintWriter

+PrintWriter(filename: String)
+print(s: String): void
+print(c: char): void
+print(cArray: charf]): void
+print(i: int): void

+print(l: long): void

+print(f: float): void

+print(d: double): void
+print(b: boolean): void

Also contains the overloaded
println methods.

Also contains the overloaded
printf methods.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

Creates a PrintWriter for the specified file.
Writes a string.

Writes a character.

Writes an array of character.

Writes an int value.

Writes a long value.

Writes a float value.

Writes a double value.

Writes a boolean value.

A println method acts like a print method; additionally it
prints a line separator. The line separator string is defined \
by the system. It is \r\n on Windows and \n on Unix.

The printf method was introduced in §4.6, “Formatting
Console Output and Strings.”

WriteData

rights reserved.

http://www.cs.armstrong.edu/liang/intro11e/html/WriteData.html

Try-with-resources

Programmers often forget to close the file. JDK 7 provides
the followings new try-with-resources syntax that
automatically closes the files.

try (declare and create resources) {
Use the resource to process the file;

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

A\

WriteDataWithAutoClose

rights reserved.

Reading Data Using Scanner

java.util.Scanner

+Scanner(source: File)
+Scanner(source: String)
+close()

+hasNext(): boolean
+next(): String
+nextByte(): byte
+nextShort(): short
+nextint(): int
+nextLong(): long
+nextFloat(): float
+nextDouble(): double

Scanner

+useDelimiter(pattern: String):

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

Creates a Scanner object to read data from the specified file.
Creates a Scanner object to read data from the specified string.
Closes this scanner.

Returns true if this scanner has another token in its input.
Returns next token as a string.

Returns next token as a byte.

Returns next token as a short.

Returns next token as an int.

Returns next token as a long.

Returns next token as a float.

Returns next token as a double.

Sets this scanner’s delimiting pattern.

ReadData J

4™

rights reserved.

http://www.cs.armstrong.edu/liang/intro11e/html/WriteDataWithAutoClose.html
http://www.cs.armstrong.edu/liang/intro11e/html/ReadData.html

Problem: Replacing Text

Write a class named ReplaceText that replaces a string in a text
file with a new string. The filename and strings are passed as
command-line arguments as follows:

java ReplaceText sourceFile targetFile oldString newString
For example, invoking
java ReplaceText FormatString.java t.txt StringBuilder StringBuffer

replaces all the occurrences of StringBuilder by StringBuffer in
FormatString.java and saves the new file in t.txt.

ReplaceText - 9

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

http://www.cs.armstrong.edu/liang/intro11e/html/ReplaceText.html

