
11/18/2017

1

COMP231
Advanced Programming

Chapter 13 Abstract Classes and Interfaces

Compiled By: Dr. Majdi Mafarja

Fall Semester 2017/2018

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
22

Abstract Classes and Abstract Methods

Run

GeometricObject

Circle

Rectangle

TestGeometricObject

http://www.cs.armstrong.edu/liang/intro11e/html/GeometricObject.html
http://www.cs.armstrong.edu/liang/intro11e/html/Circle.html
http://www.cs.armstrong.edu/liang/intro11e/html/Rectangle.html
http://www.cs.armstrong.edu/liang/intro11e/html/TestGeometricObject.html

11/18/2017

2

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
33

abstract method in abstract class

An abstract method cannot be contained in a

nonabstract class. If a subclass of an abstract

superclass does not implement all the abstract

methods, the subclass must be defined abstract. In

other words, in a nonabstract subclass extended from

an abstract class, all the abstract methods must be

implemented, even if they are not used in the

subclass.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
44

object cannot be created from

abstract class

An abstract class cannot be instantiated using

the new operator, but you can still define its

constructors, which are invoked in the

constructors of its subclasses. For instance,

the constructors of GeometricObject are

invoked in the Circle class and the Rectangle

class.

11/18/2017

3

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
55

abstract class without abstract

method

A class that contains abstract methods must

be abstract. However, it is possible to define

an abstract class that contains no abstract

methods. In this case, you cannot create

instances of the class using the new operator.

This class is used as a base class for defining

a new subclass.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
66

superclass of abstract class may be

concrete

A subclass can be abstract even if its

superclass is concrete. For example, the

Object class is concrete, but its subclasses,

such as GeometricObject, may be abstract.

11/18/2017

4

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
77

concrete method overridden to be

abstract

A subclass can override a method from its

superclass to define it abstract. This is rare,

but useful when the implementation of the

method in the superclass becomes invalid in

the subclass. In this case, the subclass must be

defined abstract.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
88

abstract class as type

You cannot create an instance from an

abstract class using the new operator, but an

abstract class can be used as a data type.

Therefore, the following statement, which

creates an array whose elements are of

GeometricObject type, is correct.

GeometricObject[] geo = new GeometricObject[10];

11/18/2017

5

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
99

Case Study: the Abstract Number Class

RunLargestNumbers

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
1010

The Abstract Calendar Class and Its

GregorianCalendar subclass

http://www.cs.armstrong.edu/liang/intro11e/html/LargestNumbers.html

11/18/2017

6

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
1111

The Abstract Calendar Class and Its

GregorianCalendar subclass
An instance of java.util.Date represents a specific

instant in time with millisecond precision.

java.util.Calendar is an abstract base class for

extracting detailed information such as year, month,

date, hour, minute and second from a Date object.

Subclasses of Calendar can implement specific

calendar systems such as Gregorian calendar, Lunar

Calendar and Jewish calendar. Currently,

java.util.GregorianCalendar for the Gregorian

calendar is supported in the Java API.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
1212

The GregorianCalendar Class

You can use new GregorianCalendar() to construct

a default GregorianCalendar with the current time

and use new GregorianCalendar(year, month, date)

to construct a GregorianCalendar with the specified

year, month, and date. The month parameter is 0-

based, i.e., 0 is for January.

11/18/2017

7

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
1313

The get Method in Calendar Class
The get(int field) method defined in the Calendar class is useful to

extract the date and time information from a Calendar object. The

fields are defined as constants, as shown in the following.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
1414

Getting Date/Time Information from

Calendar

RunTestCalendar

http://www.cs.armstrong.edu/liang/intro11e/html/TestCalendar.html

11/18/2017

8

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
1515

Interfaces

What is an interface?

Why is an interface useful?

How do you define an interface?

How do you use an interface?

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
1616

What is an interface?

Why is an interface useful?

An interface is a classlike construct that contains

only constants and abstract methods. In many

ways, an interface is similar to an abstract class,

but the intent of an interface is to specify common

behavior for objects. For example, you can specify

that the objects are comparable, edible, cloneable

using appropriate interfaces.

11/18/2017

9

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
1717

Define an Interface
To distinguish an interface from a class, Java uses the

following syntax to define an interface:

public interface InterfaceName {

constant declarations;

abstract method signatures;

}

Example:

public interface Edible {

/** Describe how to eat */

public abstract String howToEat();

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
1818

Interface is a Special Class

An interface is treated like a special class in Java.

Each interface is compiled into a separate bytecode

file, just like a regular class. Like an abstract class,

you cannot create an instance from an interface

using the new operator, but in most cases you can

use an interface more or less the same way you use

an abstract class. For example, you can use an

interface as a data type for a variable, as the result

of casting, and so on.

11/18/2017

10

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
1919

Example
You can now use the Edible interface to specify whether an

object is edible. This is accomplished by letting the class for

the object implement this interface using the implements

keyword. For example, the classes Chicken and Fruit

implement the Edible interface (See TestEdible).

RunTestEdibleEdible

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
2020

Omitting Modifiers in Interfaces

All data fields are public final static and all methods are public

abstract in an interface. For this reason, these modifiers can be

omitted, as shown below:

 public interface T1 {
 public static final int K = 1;

 public abstract void p();

}

Equivalent

public interface T1 {

 int K = 1;

 void p();

}

A constant defined in an interface can be accessed using syntax

InterfaceName.CONSTANT_NAME (e.g., T1.K).

http://www.cs.armstrong.edu/liang/intro11e/html/TestEdible.html
http://www.cs.armstrong.edu/liang/intro11e/html/Edible.html

11/18/2017

11

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
2121

Example: The Comparable Interface

// This interface is defined in

// java.lang package

package java.lang;

public interface Comparable<E> {

public int compareTo(E o);

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
2222

The toString, equals, and hashCode
Methods

Each wrapper class overrides the toString,

equals, and hashCode methods defined in the

Object class. Since all the numeric wrapper

classes and the Character class implement

the Comparable interface, the compareTo

method is implemented in these classes.

11/18/2017

12

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
2323

Integer and BigInteger Classes
 public class Integer extends Number

 implements Comparable<Integer> {

 // class body omitted

 @Override

 public int compareTo(Integer o) {

 // Implementation omitted

 }

}

public class BigInteger extends Number

 implements Comparable<BigInteger> {

 // class body omitted

 @Override

 public int compareTo(BigInteger o) {

 // Implementation omitted

 }

}

 public class String extends Object

 implements Comparable<String> {

 // class body omitted

 @Override

 public int compareTo(String o) {

 // Implementation omitted

 }

}

public class Date extends Object

 implements Comparable<Date> {

 // class body omitted

 @Override

 public int compareTo(Date o) {

 // Implementation omitted

 }

}

String and Date Classes

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
2424

Example

1 System.out.println(new Integer(3).compareTo(new Integer(5)));

2 System.out.println("ABC".compareTo("ABE"));

3 java.util.Date date1 = new java.util.Date(2013, 1, 1);

4 java.util.Date date2 = new java.util.Date(2012, 1, 1);

5 System.out.println(date1.compareTo(date2));

11/18/2017

13

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
2525

Generic sort Method

Let n be an Integer object, s be a String object, and

d be a Date object. All the following expressions are

true.

s instanceof String

s instanceof Object

s instanceof Comparable

d instanceof java.util.Date

d instanceof Object

d instanceof Comparable

n instanceof Integer

n instanceof Object

n instanceof Comparable

The java.util.Arrays.sort(array) method requires that

the elements in an array are instances of

Comparable<E>.

RunSortComparableObjects

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
2626

Defining Classes to Implement Comparable

ComparableRectangle RunSortRectangles

http://www.cs.armstrong.edu/liang/intro11e/html/SortComparableObjects.html
http://www.cs.armstrong.edu/liang/intro11e/html/ComparableRectangle.html
http://www.cs.armstrong.edu/liang/intro11e/html/SortRectangles.html

11/18/2017

14

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
2727

The Cloneable Interfaces

package java.lang;

public interface Cloneable {

}

Marker Interface: An empty interface.

A marker interface does not contain constants or methods.

It is used to denote that a class possesses certain desirable

properties. A class that implements the Cloneable

interface is marked cloneable, and its objects can be

cloned using the clone() method defined in the Object

class.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
2828

Examples

Many classes (e.g., Date and Calendar) in the Java library implement

Cloneable. Thus, the instances of these classes can be cloned. For

example, the following code

Calendar calendar = new GregorianCalendar(2003, 2, 1);

Calendar calendarCopy = (Calendar)calendar.clone();

System.out.println("calendar == calendarCopy is " +

(calendar == calendarCopy));

System.out.println("calendar.equals(calendarCopy) is " +

calendar.equals(calendarCopy));

displays

calendar == calendarCopy is false

calendar.equals(calendarCopy) is true

11/18/2017

15

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
2929

Implementing Cloneable Interface

To define a custom class that implements the Cloneable

interface, the class must override the clone() method in

the Object class. The following code defines a class

named House that implements Cloneable and

Comparable.

House

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
3030

Shallow vs. Deep Copy

House house1 = new House(1, 1750.50);

House house2 = (House)house1.clone();

Shallow

Copy

http://www.cs.armstrong.edu/liang/intro11e/html/House.html

11/18/2017

16

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
3131

Shallow vs. Deep Copy
House house1 = new House(1, 1750.50);

House house2 = (House)house1.clone();

Deep

Copy

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
3232

Interfaces vs. Abstract Classes
In an interface, the data must be constants; an abstract class can
have all types of data.

Each method in an interface has only a signature without
implementation; an abstract class can have concrete methods.

11/18/2017

17

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
3333

Interfaces vs. Abstract Classes, cont.

Suppose that c is an instance of Class2. c is also an instance of Object, Class1,
Interface1, Interface1_1, Interface1_2, Interface2_1, and Interface2_2.

All classes share a single root, the Object class, but there is no single root for

interfaces. Like a class, an interface also defines a type. A variable of an interface

type can reference any instance of the class that implements the interface. If a class

extends an interface, this interface plays the same role as a superclass. You can use

an interface as a data type and cast a variable of an interface type to its subclass,

and vice versa.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
3434

Caution: conflict interfaces

In rare occasions, a class may implement two interfaces

with conflict information (e.g., two same constants with

different values or two methods with same signature but

different return type). This type of errors will be detected

by the compiler.

11/18/2017

18

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
3535

Whether to use an interface or a class?
Abstract classes and interfaces can both be used to model

common features. How do you decide whether to use an

interface or a class? In general, a strong is-a relationship that

clearly describes a parent-child relationship should be modeled

using classes. For example, a staff member is a person. A weak

is-a relationship, also known as an is-kind-of relationship,

indicates that an object possesses a certain property. A weak is-

a relationship can be modeled using interfaces. For example,

all strings are comparable, so the String class implements the

Comparable interface. You can also use interfaces to

circumvent single inheritance restriction if multiple inheritance

is desired. In the case of multiple inheritance, you have to

design one as a superclass, and others as interface.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
3636

The Rational Class

RunRational TestRationalClass

http://www.cs.armstrong.edu/liang/intro11e/html/Rational.html
http://www.cs.armstrong.edu/liang/intro11e/html/TestRationalClass.html

11/18/2017

19

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
37

Using Visibility Modifiers

Each class can present two contracts – one for the users

of the class and one for the extenders of the class. Make

the fields private and accessor methods public if they are

intended for the users of the class. Make the fields or

method protected if they are intended for extenders of

the class. The contract for the extenders encompasses the

contract for the users. The extended class may increase

the visibility of an instance method from protected to

public, or change its implementation, but you should

never change the implementation in a way that violates

that contract.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
38

Using Visibility Modifiers, cont.

A class should use the private modifier to hide its

data from direct access by clients. You can use get

methods and set methods to provide users with

access to the private data, but only to private data

you want the user to see or to modify. A class should

also hide methods not intended for client use. The

gcd method in the Rational class is private, for

example, because it is only for internal use within the

class.

11/18/2017

20

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.
39

Using the static Modifier

A property that is shared by all the instances

of the class should be declared as a static
property.

